1 //===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// 10 /// This header defines various interfaces for pass management in LLVM. There 11 /// is no "pass" interface in LLVM per se. Instead, an instance of any class 12 /// which supports a method to 'run' it over a unit of IR can be used as 13 /// a pass. A pass manager is generally a tool to collect a sequence of passes 14 /// which run over a particular IR construct, and run each of them in sequence 15 /// over each such construct in the containing IR construct. As there is no 16 /// containing IR construct for a Module, a manager for passes over modules 17 /// forms the base case which runs its managed passes in sequence over the 18 /// single module provided. 19 /// 20 /// The core IR library provides managers for running passes over 21 /// modules and functions. 22 /// 23 /// * FunctionPassManager can run over a Module, runs each pass over 24 /// a Function. 25 /// * ModulePassManager must be directly run, runs each pass over the Module. 26 /// 27 /// Note that the implementations of the pass managers use concept-based 28 /// polymorphism as outlined in the "Value Semantics and Concept-based 29 /// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base 30 /// Class of Evil") by Sean Parent: 31 /// * https://sean-parent.stlab.cc/papers-and-presentations 32 /// * http://www.youtube.com/watch?v=_BpMYeUFXv8 33 /// * https://learn.microsoft.com/en-us/shows/goingnative-2013/inheritance-base-class-of-evil 34 /// 35 //===----------------------------------------------------------------------===// 36 37 #ifndef LLVM_IR_PASSMANAGER_H 38 #define LLVM_IR_PASSMANAGER_H 39 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/STLExtras.h" 42 #include "llvm/ADT/StringRef.h" 43 #include "llvm/ADT/TinyPtrVector.h" 44 #include "llvm/IR/Analysis.h" 45 #include "llvm/IR/PassManagerInternal.h" 46 #include "llvm/Support/TypeName.h" 47 #include <cassert> 48 #include <cstring> 49 #include <iterator> 50 #include <list> 51 #include <memory> 52 #include <tuple> 53 #include <type_traits> 54 #include <utility> 55 #include <vector> 56 57 namespace llvm { 58 59 class Function; 60 class Module; 61 62 // Forward declare the analysis manager template. 63 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager; 64 65 /// A CRTP mix-in to automatically provide informational APIs needed for 66 /// passes. 67 /// 68 /// This provides some boilerplate for types that are passes. 69 template <typename DerivedT> struct PassInfoMixin { 70 /// Gets the name of the pass we are mixed into. 71 static StringRef name() { 72 static_assert(std::is_base_of<PassInfoMixin, DerivedT>::value, 73 "Must pass the derived type as the template argument!"); 74 StringRef Name = getTypeName<DerivedT>(); 75 Name.consume_front("llvm::"); 76 return Name; 77 } 78 79 void printPipeline(raw_ostream &OS, 80 function_ref<StringRef(StringRef)> MapClassName2PassName) { 81 StringRef ClassName = DerivedT::name(); 82 auto PassName = MapClassName2PassName(ClassName); 83 OS << PassName; 84 } 85 }; 86 87 /// A CRTP mix-in that provides informational APIs needed for analysis passes. 88 /// 89 /// This provides some boilerplate for types that are analysis passes. It 90 /// automatically mixes in \c PassInfoMixin. 91 template <typename DerivedT> 92 struct AnalysisInfoMixin : PassInfoMixin<DerivedT> { 93 /// Returns an opaque, unique ID for this analysis type. 94 /// 95 /// This ID is a pointer type that is guaranteed to be 8-byte aligned and thus 96 /// suitable for use in sets, maps, and other data structures that use the low 97 /// bits of pointers. 98 /// 99 /// Note that this requires the derived type provide a static \c AnalysisKey 100 /// member called \c Key. 101 /// 102 /// FIXME: The only reason the mixin type itself can't declare the Key value 103 /// is that some compilers cannot correctly unique a templated static variable 104 /// so it has the same addresses in each instantiation. The only currently 105 /// known platform with this limitation is Windows DLL builds, specifically 106 /// building each part of LLVM as a DLL. If we ever remove that build 107 /// configuration, this mixin can provide the static key as well. 108 static AnalysisKey *ID() { 109 static_assert(std::is_base_of<AnalysisInfoMixin, DerivedT>::value, 110 "Must pass the derived type as the template argument!"); 111 return &DerivedT::Key; 112 } 113 }; 114 115 namespace detail { 116 117 /// Actual unpacker of extra arguments in getAnalysisResult, 118 /// passes only those tuple arguments that are mentioned in index_sequence. 119 template <typename PassT, typename IRUnitT, typename AnalysisManagerT, 120 typename... ArgTs, size_t... Ns> 121 typename PassT::Result 122 getAnalysisResultUnpackTuple(AnalysisManagerT &AM, IRUnitT &IR, 123 std::tuple<ArgTs...> Args, 124 std::index_sequence<Ns...>) { 125 (void)Args; 126 return AM.template getResult<PassT>(IR, std::get<Ns>(Args)...); 127 } 128 129 /// Helper for *partial* unpacking of extra arguments in getAnalysisResult. 130 /// 131 /// Arguments passed in tuple come from PassManager, so they might have extra 132 /// arguments after those AnalysisManager's ExtraArgTs ones that we need to 133 /// pass to getResult. 134 template <typename PassT, typename IRUnitT, typename... AnalysisArgTs, 135 typename... MainArgTs> 136 typename PassT::Result 137 getAnalysisResult(AnalysisManager<IRUnitT, AnalysisArgTs...> &AM, IRUnitT &IR, 138 std::tuple<MainArgTs...> Args) { 139 return (getAnalysisResultUnpackTuple< 140 PassT, IRUnitT>)(AM, IR, Args, 141 std::index_sequence_for<AnalysisArgTs...>{}); 142 } 143 144 } // namespace detail 145 146 /// Manages a sequence of passes over a particular unit of IR. 147 /// 148 /// A pass manager contains a sequence of passes to run over a particular unit 149 /// of IR (e.g. Functions, Modules). It is itself a valid pass over that unit of 150 /// IR, and when run over some given IR will run each of its contained passes in 151 /// sequence. Pass managers are the primary and most basic building block of a 152 /// pass pipeline. 153 /// 154 /// When you run a pass manager, you provide an \c AnalysisManager<IRUnitT> 155 /// argument. The pass manager will propagate that analysis manager to each 156 /// pass it runs, and will call the analysis manager's invalidation routine with 157 /// the PreservedAnalyses of each pass it runs. 158 template <typename IRUnitT, 159 typename AnalysisManagerT = AnalysisManager<IRUnitT>, 160 typename... ExtraArgTs> 161 class PassManager : public PassInfoMixin< 162 PassManager<IRUnitT, AnalysisManagerT, ExtraArgTs...>> { 163 public: 164 /// Construct a pass manager. 165 explicit PassManager() = default; 166 167 // FIXME: These are equivalent to the default move constructor/move 168 // assignment. However, using = default triggers linker errors due to the 169 // explicit instantiations below. Find away to use the default and remove the 170 // duplicated code here. 171 PassManager(PassManager &&Arg) : Passes(std::move(Arg.Passes)) {} 172 173 PassManager &operator=(PassManager &&RHS) { 174 Passes = std::move(RHS.Passes); 175 return *this; 176 } 177 178 void printPipeline(raw_ostream &OS, 179 function_ref<StringRef(StringRef)> MapClassName2PassName) { 180 for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) { 181 auto *P = Passes[Idx].get(); 182 P->printPipeline(OS, MapClassName2PassName); 183 if (Idx + 1 < Size) 184 OS << ','; 185 } 186 } 187 188 /// Run all of the passes in this manager over the given unit of IR. 189 /// ExtraArgs are passed to each pass. 190 PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM, 191 ExtraArgTs... ExtraArgs); 192 193 template <typename PassT> 194 LLVM_ATTRIBUTE_MINSIZE std::enable_if_t<!std::is_same_v<PassT, PassManager>> 195 addPass(PassT &&Pass) { 196 using PassModelT = 197 detail::PassModel<IRUnitT, PassT, AnalysisManagerT, ExtraArgTs...>; 198 // Do not use make_unique or emplace_back, they cause too many template 199 // instantiations, causing terrible compile times. 200 Passes.push_back(std::unique_ptr<PassConceptT>( 201 new PassModelT(std::forward<PassT>(Pass)))); 202 } 203 204 /// When adding a pass manager pass that has the same type as this pass 205 /// manager, simply move the passes over. This is because we don't have 206 /// use cases rely on executing nested pass managers. Doing this could 207 /// reduce implementation complexity and avoid potential invalidation 208 /// issues that may happen with nested pass managers of the same type. 209 template <typename PassT> 210 LLVM_ATTRIBUTE_MINSIZE std::enable_if_t<std::is_same_v<PassT, PassManager>> 211 addPass(PassT &&Pass) { 212 for (auto &P : Pass.Passes) 213 Passes.push_back(std::move(P)); 214 } 215 216 /// Returns if the pass manager contains any passes. 217 bool isEmpty() const { return Passes.empty(); } 218 219 static bool isRequired() { return true; } 220 221 protected: 222 using PassConceptT = 223 detail::PassConcept<IRUnitT, AnalysisManagerT, ExtraArgTs...>; 224 225 std::vector<std::unique_ptr<PassConceptT>> Passes; 226 }; 227 228 template <typename IRUnitT> 229 void printIRUnitNameForStackTrace(raw_ostream &OS, const IRUnitT &IR); 230 231 template <> 232 void printIRUnitNameForStackTrace<Module>(raw_ostream &OS, const Module &IR); 233 234 extern template class PassManager<Module>; 235 236 /// Convenience typedef for a pass manager over modules. 237 using ModulePassManager = PassManager<Module>; 238 239 template <> 240 void printIRUnitNameForStackTrace<Function>(raw_ostream &OS, 241 const Function &IR); 242 243 extern template class PassManager<Function>; 244 245 /// Convenience typedef for a pass manager over functions. 246 using FunctionPassManager = PassManager<Function>; 247 248 /// A container for analyses that lazily runs them and caches their 249 /// results. 250 /// 251 /// This class can manage analyses for any IR unit where the address of the IR 252 /// unit sufficies as its identity. 253 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager { 254 public: 255 class Invalidator; 256 257 private: 258 // Now that we've defined our invalidator, we can define the concept types. 259 using ResultConceptT = detail::AnalysisResultConcept<IRUnitT, Invalidator>; 260 using PassConceptT = 261 detail::AnalysisPassConcept<IRUnitT, Invalidator, ExtraArgTs...>; 262 263 /// List of analysis pass IDs and associated concept pointers. 264 /// 265 /// Requires iterators to be valid across appending new entries and arbitrary 266 /// erases. Provides the analysis ID to enable finding iterators to a given 267 /// entry in maps below, and provides the storage for the actual result 268 /// concept. 269 using AnalysisResultListT = 270 std::list<std::pair<AnalysisKey *, std::unique_ptr<ResultConceptT>>>; 271 272 /// Map type from IRUnitT pointer to our custom list type. 273 using AnalysisResultListMapT = DenseMap<IRUnitT *, AnalysisResultListT>; 274 275 /// Map type from a pair of analysis ID and IRUnitT pointer to an 276 /// iterator into a particular result list (which is where the actual analysis 277 /// result is stored). 278 using AnalysisResultMapT = 279 DenseMap<std::pair<AnalysisKey *, IRUnitT *>, 280 typename AnalysisResultListT::iterator>; 281 282 public: 283 /// API to communicate dependencies between analyses during invalidation. 284 /// 285 /// When an analysis result embeds handles to other analysis results, it 286 /// needs to be invalidated both when its own information isn't preserved and 287 /// when any of its embedded analysis results end up invalidated. We pass an 288 /// \c Invalidator object as an argument to \c invalidate() in order to let 289 /// the analysis results themselves define the dependency graph on the fly. 290 /// This lets us avoid building an explicit representation of the 291 /// dependencies between analysis results. 292 class Invalidator { 293 public: 294 /// Trigger the invalidation of some other analysis pass if not already 295 /// handled and return whether it was in fact invalidated. 296 /// 297 /// This is expected to be called from within a given analysis result's \c 298 /// invalidate method to trigger a depth-first walk of all inter-analysis 299 /// dependencies. The same \p IR unit and \p PA passed to that result's \c 300 /// invalidate method should in turn be provided to this routine. 301 /// 302 /// The first time this is called for a given analysis pass, it will call 303 /// the corresponding result's \c invalidate method. Subsequent calls will 304 /// use a cache of the results of that initial call. It is an error to form 305 /// cyclic dependencies between analysis results. 306 /// 307 /// This returns true if the given analysis's result is invalid. Any 308 /// dependecies on it will become invalid as a result. 309 template <typename PassT> 310 bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA) { 311 using ResultModelT = 312 detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result, 313 Invalidator>; 314 315 return invalidateImpl<ResultModelT>(PassT::ID(), IR, PA); 316 } 317 318 /// A type-erased variant of the above invalidate method with the same core 319 /// API other than passing an analysis ID rather than an analysis type 320 /// parameter. 321 /// 322 /// This is sadly less efficient than the above routine, which leverages 323 /// the type parameter to avoid the type erasure overhead. 324 bool invalidate(AnalysisKey *ID, IRUnitT &IR, const PreservedAnalyses &PA) { 325 return invalidateImpl<>(ID, IR, PA); 326 } 327 328 private: 329 friend class AnalysisManager; 330 331 template <typename ResultT = ResultConceptT> 332 bool invalidateImpl(AnalysisKey *ID, IRUnitT &IR, 333 const PreservedAnalyses &PA) { 334 // If we've already visited this pass, return true if it was invalidated 335 // and false otherwise. 336 auto IMapI = IsResultInvalidated.find(ID); 337 if (IMapI != IsResultInvalidated.end()) 338 return IMapI->second; 339 340 // Otherwise look up the result object. 341 auto RI = Results.find({ID, &IR}); 342 assert(RI != Results.end() && 343 "Trying to invalidate a dependent result that isn't in the " 344 "manager's cache is always an error, likely due to a stale result " 345 "handle!"); 346 347 auto &Result = static_cast<ResultT &>(*RI->second->second); 348 349 // Insert into the map whether the result should be invalidated and return 350 // that. Note that we cannot reuse IMapI and must do a fresh insert here, 351 // as calling invalidate could (recursively) insert things into the map, 352 // making any iterator or reference invalid. 353 bool Inserted; 354 std::tie(IMapI, Inserted) = 355 IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, *this)}); 356 (void)Inserted; 357 assert(Inserted && "Should not have already inserted this ID, likely " 358 "indicates a dependency cycle!"); 359 return IMapI->second; 360 } 361 362 Invalidator(SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated, 363 const AnalysisResultMapT &Results) 364 : IsResultInvalidated(IsResultInvalidated), Results(Results) {} 365 366 SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated; 367 const AnalysisResultMapT &Results; 368 }; 369 370 /// Construct an empty analysis manager. 371 AnalysisManager(); 372 AnalysisManager(AnalysisManager &&); 373 AnalysisManager &operator=(AnalysisManager &&); 374 375 /// Returns true if the analysis manager has an empty results cache. 376 bool empty() const { 377 assert(AnalysisResults.empty() == AnalysisResultLists.empty() && 378 "The storage and index of analysis results disagree on how many " 379 "there are!"); 380 return AnalysisResults.empty(); 381 } 382 383 /// Clear any cached analysis results for a single unit of IR. 384 /// 385 /// This doesn't invalidate, but instead simply deletes, the relevant results. 386 /// It is useful when the IR is being removed and we want to clear out all the 387 /// memory pinned for it. 388 void clear(IRUnitT &IR, llvm::StringRef Name); 389 390 /// Clear all analysis results cached by this AnalysisManager. 391 /// 392 /// Like \c clear(IRUnitT&), this doesn't invalidate the results; it simply 393 /// deletes them. This lets you clean up the AnalysisManager when the set of 394 /// IR units itself has potentially changed, and thus we can't even look up a 395 /// a result and invalidate/clear it directly. 396 void clear() { 397 AnalysisResults.clear(); 398 AnalysisResultLists.clear(); 399 } 400 401 /// Returns true if the specified analysis pass is registered. 402 template <typename PassT> bool isPassRegistered() const { 403 return AnalysisPasses.count(PassT::ID()); 404 } 405 406 /// Get the result of an analysis pass for a given IR unit. 407 /// 408 /// Runs the analysis if a cached result is not available. 409 template <typename PassT> 410 typename PassT::Result &getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs) { 411 assert(AnalysisPasses.count(PassT::ID()) && 412 "This analysis pass was not registered prior to being queried"); 413 ResultConceptT &ResultConcept = 414 getResultImpl(PassT::ID(), IR, ExtraArgs...); 415 416 using ResultModelT = 417 detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result, 418 Invalidator>; 419 420 return static_cast<ResultModelT &>(ResultConcept).Result; 421 } 422 423 /// Get the cached result of an analysis pass for a given IR unit. 424 /// 425 /// This method never runs the analysis. 426 /// 427 /// \returns null if there is no cached result. 428 template <typename PassT> 429 typename PassT::Result *getCachedResult(IRUnitT &IR) const { 430 assert(AnalysisPasses.count(PassT::ID()) && 431 "This analysis pass was not registered prior to being queried"); 432 433 ResultConceptT *ResultConcept = getCachedResultImpl(PassT::ID(), IR); 434 if (!ResultConcept) 435 return nullptr; 436 437 using ResultModelT = 438 detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result, 439 Invalidator>; 440 441 return &static_cast<ResultModelT *>(ResultConcept)->Result; 442 } 443 444 /// Verify that the given Result cannot be invalidated, assert otherwise. 445 template <typename PassT> 446 void verifyNotInvalidated(IRUnitT &IR, typename PassT::Result *Result) const { 447 PreservedAnalyses PA = PreservedAnalyses::none(); 448 SmallDenseMap<AnalysisKey *, bool, 8> IsResultInvalidated; 449 Invalidator Inv(IsResultInvalidated, AnalysisResults); 450 assert(!Result->invalidate(IR, PA, Inv) && 451 "Cached result cannot be invalidated"); 452 } 453 454 /// Register an analysis pass with the manager. 455 /// 456 /// The parameter is a callable whose result is an analysis pass. This allows 457 /// passing in a lambda to construct the analysis. 458 /// 459 /// The analysis type to register is the type returned by calling the \c 460 /// PassBuilder argument. If that type has already been registered, then the 461 /// argument will not be called and this function will return false. 462 /// Otherwise, we register the analysis returned by calling \c PassBuilder(), 463 /// and this function returns true. 464 /// 465 /// (Note: Although the return value of this function indicates whether or not 466 /// an analysis was previously registered, you should just register all the 467 /// analyses you might want and let this class run them lazily. This idiom 468 /// lets us minimize the number of times we have to look up analyses in our 469 /// hashtable.) 470 template <typename PassBuilderT> 471 bool registerPass(PassBuilderT &&PassBuilder) { 472 using PassT = decltype(PassBuilder()); 473 using PassModelT = 474 detail::AnalysisPassModel<IRUnitT, PassT, Invalidator, ExtraArgTs...>; 475 476 auto &PassPtr = AnalysisPasses[PassT::ID()]; 477 if (PassPtr) 478 // Already registered this pass type! 479 return false; 480 481 // Construct a new model around the instance returned by the builder. 482 PassPtr.reset(new PassModelT(PassBuilder())); 483 return true; 484 } 485 486 /// Invalidate cached analyses for an IR unit. 487 /// 488 /// Walk through all of the analyses pertaining to this unit of IR and 489 /// invalidate them, unless they are preserved by the PreservedAnalyses set. 490 void invalidate(IRUnitT &IR, const PreservedAnalyses &PA); 491 492 private: 493 /// Look up a registered analysis pass. 494 PassConceptT &lookUpPass(AnalysisKey *ID) { 495 typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(ID); 496 assert(PI != AnalysisPasses.end() && 497 "Analysis passes must be registered prior to being queried!"); 498 return *PI->second; 499 } 500 501 /// Look up a registered analysis pass. 502 const PassConceptT &lookUpPass(AnalysisKey *ID) const { 503 typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(ID); 504 assert(PI != AnalysisPasses.end() && 505 "Analysis passes must be registered prior to being queried!"); 506 return *PI->second; 507 } 508 509 /// Get an analysis result, running the pass if necessary. 510 ResultConceptT &getResultImpl(AnalysisKey *ID, IRUnitT &IR, 511 ExtraArgTs... ExtraArgs); 512 513 /// Get a cached analysis result or return null. 514 ResultConceptT *getCachedResultImpl(AnalysisKey *ID, IRUnitT &IR) const { 515 typename AnalysisResultMapT::const_iterator RI = 516 AnalysisResults.find({ID, &IR}); 517 return RI == AnalysisResults.end() ? nullptr : &*RI->second->second; 518 } 519 520 /// Map type from analysis pass ID to pass concept pointer. 521 using AnalysisPassMapT = 522 DenseMap<AnalysisKey *, std::unique_ptr<PassConceptT>>; 523 524 /// Collection of analysis passes, indexed by ID. 525 AnalysisPassMapT AnalysisPasses; 526 527 /// Map from IR unit to a list of analysis results. 528 /// 529 /// Provides linear time removal of all analysis results for a IR unit and 530 /// the ultimate storage for a particular cached analysis result. 531 AnalysisResultListMapT AnalysisResultLists; 532 533 /// Map from an analysis ID and IR unit to a particular cached 534 /// analysis result. 535 AnalysisResultMapT AnalysisResults; 536 }; 537 538 extern template class AnalysisManager<Module>; 539 540 /// Convenience typedef for the Module analysis manager. 541 using ModuleAnalysisManager = AnalysisManager<Module>; 542 543 extern template class AnalysisManager<Function>; 544 545 /// Convenience typedef for the Function analysis manager. 546 using FunctionAnalysisManager = AnalysisManager<Function>; 547 548 /// An analysis over an "outer" IR unit that provides access to an 549 /// analysis manager over an "inner" IR unit. The inner unit must be contained 550 /// in the outer unit. 551 /// 552 /// For example, InnerAnalysisManagerProxy<FunctionAnalysisManager, Module> is 553 /// an analysis over Modules (the "outer" unit) that provides access to a 554 /// Function analysis manager. The FunctionAnalysisManager is the "inner" 555 /// manager being proxied, and Functions are the "inner" unit. The inner/outer 556 /// relationship is valid because each Function is contained in one Module. 557 /// 558 /// If you're (transitively) within a pass manager for an IR unit U that 559 /// contains IR unit V, you should never use an analysis manager over V, except 560 /// via one of these proxies. 561 /// 562 /// Note that the proxy's result is a move-only RAII object. The validity of 563 /// the analyses in the inner analysis manager is tied to its lifetime. 564 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs> 565 class InnerAnalysisManagerProxy 566 : public AnalysisInfoMixin< 567 InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>> { 568 public: 569 class Result { 570 public: 571 explicit Result(AnalysisManagerT &InnerAM) : InnerAM(&InnerAM) {} 572 573 Result(Result &&Arg) : InnerAM(std::move(Arg.InnerAM)) { 574 // We have to null out the analysis manager in the moved-from state 575 // because we are taking ownership of the responsibilty to clear the 576 // analysis state. 577 Arg.InnerAM = nullptr; 578 } 579 580 ~Result() { 581 // InnerAM is cleared in a moved from state where there is nothing to do. 582 if (!InnerAM) 583 return; 584 585 // Clear out the analysis manager if we're being destroyed -- it means we 586 // didn't even see an invalidate call when we got invalidated. 587 InnerAM->clear(); 588 } 589 590 Result &operator=(Result &&RHS) { 591 InnerAM = RHS.InnerAM; 592 // We have to null out the analysis manager in the moved-from state 593 // because we are taking ownership of the responsibilty to clear the 594 // analysis state. 595 RHS.InnerAM = nullptr; 596 return *this; 597 } 598 599 /// Accessor for the analysis manager. 600 AnalysisManagerT &getManager() { return *InnerAM; } 601 602 /// Handler for invalidation of the outer IR unit, \c IRUnitT. 603 /// 604 /// If the proxy analysis itself is not preserved, we assume that the set of 605 /// inner IR objects contained in IRUnit may have changed. In this case, 606 /// we have to call \c clear() on the inner analysis manager, as it may now 607 /// have stale pointers to its inner IR objects. 608 /// 609 /// Regardless of whether the proxy analysis is marked as preserved, all of 610 /// the analyses in the inner analysis manager are potentially invalidated 611 /// based on the set of preserved analyses. 612 bool invalidate( 613 IRUnitT &IR, const PreservedAnalyses &PA, 614 typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv); 615 616 private: 617 AnalysisManagerT *InnerAM; 618 }; 619 620 explicit InnerAnalysisManagerProxy(AnalysisManagerT &InnerAM) 621 : InnerAM(&InnerAM) {} 622 623 /// Run the analysis pass and create our proxy result object. 624 /// 625 /// This doesn't do any interesting work; it is primarily used to insert our 626 /// proxy result object into the outer analysis cache so that we can proxy 627 /// invalidation to the inner analysis manager. 628 Result run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM, 629 ExtraArgTs...) { 630 return Result(*InnerAM); 631 } 632 633 private: 634 friend AnalysisInfoMixin< 635 InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>>; 636 637 static AnalysisKey Key; 638 639 AnalysisManagerT *InnerAM; 640 }; 641 642 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs> 643 AnalysisKey 644 InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key; 645 646 /// Provide the \c FunctionAnalysisManager to \c Module proxy. 647 using FunctionAnalysisManagerModuleProxy = 648 InnerAnalysisManagerProxy<FunctionAnalysisManager, Module>; 649 650 /// Specialization of the invalidate method for the \c 651 /// FunctionAnalysisManagerModuleProxy's result. 652 template <> 653 bool FunctionAnalysisManagerModuleProxy::Result::invalidate( 654 Module &M, const PreservedAnalyses &PA, 655 ModuleAnalysisManager::Invalidator &Inv); 656 657 // Ensure the \c FunctionAnalysisManagerModuleProxy is provided as an extern 658 // template. 659 extern template class InnerAnalysisManagerProxy<FunctionAnalysisManager, 660 Module>; 661 662 /// An analysis over an "inner" IR unit that provides access to an 663 /// analysis manager over a "outer" IR unit. The inner unit must be contained 664 /// in the outer unit. 665 /// 666 /// For example OuterAnalysisManagerProxy<ModuleAnalysisManager, Function> is an 667 /// analysis over Functions (the "inner" unit) which provides access to a Module 668 /// analysis manager. The ModuleAnalysisManager is the "outer" manager being 669 /// proxied, and Modules are the "outer" IR unit. The inner/outer relationship 670 /// is valid because each Function is contained in one Module. 671 /// 672 /// This proxy only exposes the const interface of the outer analysis manager, 673 /// to indicate that you cannot cause an outer analysis to run from within an 674 /// inner pass. Instead, you must rely on the \c getCachedResult API. This is 675 /// due to keeping potential future concurrency in mind. To give an example, 676 /// running a module analysis before any function passes may give a different 677 /// result than running it in a function pass. Both may be valid, but it would 678 /// produce non-deterministic results. GlobalsAA is a good analysis example, 679 /// because the cached information has the mod/ref info for all memory for each 680 /// function at the time the analysis was computed. The information is still 681 /// valid after a function transformation, but it may be *different* if 682 /// recomputed after that transform. GlobalsAA is never invalidated. 683 684 /// 685 /// This proxy doesn't manage invalidation in any way -- that is handled by the 686 /// recursive return path of each layer of the pass manager. A consequence of 687 /// this is the outer analyses may be stale. We invalidate the outer analyses 688 /// only when we're done running passes over the inner IR units. 689 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs> 690 class OuterAnalysisManagerProxy 691 : public AnalysisInfoMixin< 692 OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>> { 693 public: 694 /// Result proxy object for \c OuterAnalysisManagerProxy. 695 class Result { 696 public: 697 explicit Result(const AnalysisManagerT &OuterAM) : OuterAM(&OuterAM) {} 698 699 /// Get a cached analysis. If the analysis can be invalidated, this will 700 /// assert. 701 template <typename PassT, typename IRUnitTParam> 702 typename PassT::Result *getCachedResult(IRUnitTParam &IR) const { 703 typename PassT::Result *Res = 704 OuterAM->template getCachedResult<PassT>(IR); 705 if (Res) 706 OuterAM->template verifyNotInvalidated<PassT>(IR, Res); 707 return Res; 708 } 709 710 /// Method provided for unit testing, not intended for general use. 711 template <typename PassT, typename IRUnitTParam> 712 bool cachedResultExists(IRUnitTParam &IR) const { 713 typename PassT::Result *Res = 714 OuterAM->template getCachedResult<PassT>(IR); 715 return Res != nullptr; 716 } 717 718 /// When invalidation occurs, remove any registered invalidation events. 719 bool invalidate( 720 IRUnitT &IRUnit, const PreservedAnalyses &PA, 721 typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv) { 722 // Loop over the set of registered outer invalidation mappings and if any 723 // of them map to an analysis that is now invalid, clear it out. 724 SmallVector<AnalysisKey *, 4> DeadKeys; 725 for (auto &KeyValuePair : OuterAnalysisInvalidationMap) { 726 AnalysisKey *OuterID = KeyValuePair.first; 727 auto &InnerIDs = KeyValuePair.second; 728 llvm::erase_if(InnerIDs, [&](AnalysisKey *InnerID) { 729 return Inv.invalidate(InnerID, IRUnit, PA); 730 }); 731 if (InnerIDs.empty()) 732 DeadKeys.push_back(OuterID); 733 } 734 735 for (auto *OuterID : DeadKeys) 736 OuterAnalysisInvalidationMap.erase(OuterID); 737 738 // The proxy itself remains valid regardless of anything else. 739 return false; 740 } 741 742 /// Register a deferred invalidation event for when the outer analysis 743 /// manager processes its invalidations. 744 template <typename OuterAnalysisT, typename InvalidatedAnalysisT> 745 void registerOuterAnalysisInvalidation() { 746 AnalysisKey *OuterID = OuterAnalysisT::ID(); 747 AnalysisKey *InvalidatedID = InvalidatedAnalysisT::ID(); 748 749 auto &InvalidatedIDList = OuterAnalysisInvalidationMap[OuterID]; 750 // Note, this is a linear scan. If we end up with large numbers of 751 // analyses that all trigger invalidation on the same outer analysis, 752 // this entire system should be changed to some other deterministic 753 // data structure such as a `SetVector` of a pair of pointers. 754 if (!llvm::is_contained(InvalidatedIDList, InvalidatedID)) 755 InvalidatedIDList.push_back(InvalidatedID); 756 } 757 758 /// Access the map from outer analyses to deferred invalidation requiring 759 /// analyses. 760 const SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> & 761 getOuterInvalidations() const { 762 return OuterAnalysisInvalidationMap; 763 } 764 765 private: 766 const AnalysisManagerT *OuterAM; 767 768 /// A map from an outer analysis ID to the set of this IR-unit's analyses 769 /// which need to be invalidated. 770 SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> 771 OuterAnalysisInvalidationMap; 772 }; 773 774 OuterAnalysisManagerProxy(const AnalysisManagerT &OuterAM) 775 : OuterAM(&OuterAM) {} 776 777 /// Run the analysis pass and create our proxy result object. 778 /// Nothing to see here, it just forwards the \c OuterAM reference into the 779 /// result. 780 Result run(IRUnitT &, AnalysisManager<IRUnitT, ExtraArgTs...> &, 781 ExtraArgTs...) { 782 return Result(*OuterAM); 783 } 784 785 private: 786 friend AnalysisInfoMixin< 787 OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>>; 788 789 static AnalysisKey Key; 790 791 const AnalysisManagerT *OuterAM; 792 }; 793 794 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs> 795 AnalysisKey 796 OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key; 797 798 extern template class OuterAnalysisManagerProxy<ModuleAnalysisManager, 799 Function>; 800 /// Provide the \c ModuleAnalysisManager to \c Function proxy. 801 using ModuleAnalysisManagerFunctionProxy = 802 OuterAnalysisManagerProxy<ModuleAnalysisManager, Function>; 803 804 /// Trivial adaptor that maps from a module to its functions. 805 /// 806 /// Designed to allow composition of a FunctionPass(Manager) and 807 /// a ModulePassManager, by running the FunctionPass(Manager) over every 808 /// function in the module. 809 /// 810 /// Function passes run within this adaptor can rely on having exclusive access 811 /// to the function they are run over. They should not read or modify any other 812 /// functions! Other threads or systems may be manipulating other functions in 813 /// the module, and so their state should never be relied on. 814 /// FIXME: Make the above true for all of LLVM's actual passes, some still 815 /// violate this principle. 816 /// 817 /// Function passes can also read the module containing the function, but they 818 /// should not modify that module outside of the use lists of various globals. 819 /// For example, a function pass is not permitted to add functions to the 820 /// module. 821 /// FIXME: Make the above true for all of LLVM's actual passes, some still 822 /// violate this principle. 823 /// 824 /// Note that although function passes can access module analyses, module 825 /// analyses are not invalidated while the function passes are running, so they 826 /// may be stale. Function analyses will not be stale. 827 class ModuleToFunctionPassAdaptor 828 : public PassInfoMixin<ModuleToFunctionPassAdaptor> { 829 public: 830 using PassConceptT = detail::PassConcept<Function, FunctionAnalysisManager>; 831 832 explicit ModuleToFunctionPassAdaptor(std::unique_ptr<PassConceptT> Pass, 833 bool EagerlyInvalidate) 834 : Pass(std::move(Pass)), EagerlyInvalidate(EagerlyInvalidate) {} 835 836 /// Runs the function pass across every function in the module. 837 PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM); 838 void printPipeline(raw_ostream &OS, 839 function_ref<StringRef(StringRef)> MapClassName2PassName); 840 841 static bool isRequired() { return true; } 842 843 private: 844 std::unique_ptr<PassConceptT> Pass; 845 bool EagerlyInvalidate; 846 }; 847 848 /// A function to deduce a function pass type and wrap it in the 849 /// templated adaptor. 850 template <typename FunctionPassT> 851 ModuleToFunctionPassAdaptor 852 createModuleToFunctionPassAdaptor(FunctionPassT &&Pass, 853 bool EagerlyInvalidate = false) { 854 using PassModelT = 855 detail::PassModel<Function, FunctionPassT, FunctionAnalysisManager>; 856 // Do not use make_unique, it causes too many template instantiations, 857 // causing terrible compile times. 858 return ModuleToFunctionPassAdaptor( 859 std::unique_ptr<ModuleToFunctionPassAdaptor::PassConceptT>( 860 new PassModelT(std::forward<FunctionPassT>(Pass))), 861 EagerlyInvalidate); 862 } 863 864 /// A utility pass template to force an analysis result to be available. 865 /// 866 /// If there are extra arguments at the pass's run level there may also be 867 /// extra arguments to the analysis manager's \c getResult routine. We can't 868 /// guess how to effectively map the arguments from one to the other, and so 869 /// this specialization just ignores them. 870 /// 871 /// Specific patterns of run-method extra arguments and analysis manager extra 872 /// arguments will have to be defined as appropriate specializations. 873 template <typename AnalysisT, typename IRUnitT, 874 typename AnalysisManagerT = AnalysisManager<IRUnitT>, 875 typename... ExtraArgTs> 876 struct RequireAnalysisPass 877 : PassInfoMixin<RequireAnalysisPass<AnalysisT, IRUnitT, AnalysisManagerT, 878 ExtraArgTs...>> { 879 /// Run this pass over some unit of IR. 880 /// 881 /// This pass can be run over any unit of IR and use any analysis manager 882 /// provided they satisfy the basic API requirements. When this pass is 883 /// created, these methods can be instantiated to satisfy whatever the 884 /// context requires. 885 PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, 886 ExtraArgTs &&... Args) { 887 (void)AM.template getResult<AnalysisT>(Arg, 888 std::forward<ExtraArgTs>(Args)...); 889 890 return PreservedAnalyses::all(); 891 } 892 void printPipeline(raw_ostream &OS, 893 function_ref<StringRef(StringRef)> MapClassName2PassName) { 894 auto ClassName = AnalysisT::name(); 895 auto PassName = MapClassName2PassName(ClassName); 896 OS << "require<" << PassName << '>'; 897 } 898 static bool isRequired() { return true; } 899 }; 900 901 /// A no-op pass template which simply forces a specific analysis result 902 /// to be invalidated. 903 template <typename AnalysisT> 904 struct InvalidateAnalysisPass 905 : PassInfoMixin<InvalidateAnalysisPass<AnalysisT>> { 906 /// Run this pass over some unit of IR. 907 /// 908 /// This pass can be run over any unit of IR and use any analysis manager, 909 /// provided they satisfy the basic API requirements. When this pass is 910 /// created, these methods can be instantiated to satisfy whatever the 911 /// context requires. 912 template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs> 913 PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, ExtraArgTs &&...) { 914 auto PA = PreservedAnalyses::all(); 915 PA.abandon<AnalysisT>(); 916 return PA; 917 } 918 void printPipeline(raw_ostream &OS, 919 function_ref<StringRef(StringRef)> MapClassName2PassName) { 920 auto ClassName = AnalysisT::name(); 921 auto PassName = MapClassName2PassName(ClassName); 922 OS << "invalidate<" << PassName << '>'; 923 } 924 }; 925 926 /// A utility pass that does nothing, but preserves no analyses. 927 /// 928 /// Because this preserves no analyses, any analysis passes queried after this 929 /// pass runs will recompute fresh results. 930 struct InvalidateAllAnalysesPass : PassInfoMixin<InvalidateAllAnalysesPass> { 931 /// Run this pass over some unit of IR. 932 template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs> 933 PreservedAnalyses run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) { 934 return PreservedAnalyses::none(); 935 } 936 }; 937 938 } // end namespace llvm 939 940 #endif // LLVM_IR_PASSMANAGER_H 941