1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStartLR and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 /// A note on VPR.P0 (the lane mask): 39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a 40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks). 41 /// They will simply "and" the result of their calculation with the current 42 /// value of VPR.P0. You can think of it like this: 43 /// \verbatim 44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs 45 /// VPR.P0 &= Value 46 /// else 47 /// VPR.P0 = Value 48 /// \endverbatim 49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always 50 /// fall in the "VPT active" case, so we can consider that all VPR writes by 51 /// one of those instruction is actually a "and". 52 //===----------------------------------------------------------------------===// 53 54 #include "ARM.h" 55 #include "ARMBaseInstrInfo.h" 56 #include "ARMBasicBlockInfo.h" 57 #include "ARMSubtarget.h" 58 #include "MVETailPredUtils.h" 59 #include "Thumb2InstrInfo.h" 60 #include "llvm/ADT/SetVector.h" 61 #include "llvm/CodeGen/LivePhysRegs.h" 62 #include "llvm/CodeGen/MachineFrameInfo.h" 63 #include "llvm/CodeGen/MachineFunctionPass.h" 64 #include "llvm/CodeGen/MachineLoopInfo.h" 65 #include "llvm/CodeGen/MachineLoopUtils.h" 66 #include "llvm/CodeGen/MachineRegisterInfo.h" 67 #include "llvm/CodeGen/Passes.h" 68 #include "llvm/CodeGen/ReachingDefAnalysis.h" 69 #include "llvm/MC/MCInstrDesc.h" 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "arm-low-overhead-loops" 74 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 75 76 static cl::opt<bool> 77 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden, 78 cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"), 79 cl::init(false)); 80 81 static cl::opt<bool> 82 DisableOmitDLS("arm-disable-omit-dls", cl::Hidden, 83 cl::desc("Disable omitting 'dls lr, lr' instructions"), 84 cl::init(false)); 85 86 static bool isVectorPredicated(MachineInstr *MI) { 87 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 88 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 89 } 90 91 static bool isVectorPredicate(MachineInstr *MI) { 92 return MI->findRegisterDefOperandIdx(ARM::VPR, /*TRI=*/nullptr) != -1; 93 } 94 95 static bool hasVPRUse(MachineInstr &MI) { 96 return MI.findRegisterUseOperandIdx(ARM::VPR, /*TRI=*/nullptr) != -1; 97 } 98 99 static bool isDomainMVE(MachineInstr *MI) { 100 uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask; 101 return Domain == ARMII::DomainMVE; 102 } 103 104 static int getVecSize(const MachineInstr &MI) { 105 const MCInstrDesc &MCID = MI.getDesc(); 106 uint64_t Flags = MCID.TSFlags; 107 return (Flags & ARMII::VecSize) >> ARMII::VecSizeShift; 108 } 109 110 static bool shouldInspect(MachineInstr &MI) { 111 if (MI.isDebugInstr()) 112 return false; 113 return isDomainMVE(&MI) || isVectorPredicate(&MI) || hasVPRUse(MI); 114 } 115 116 static bool isHorizontalReduction(const MachineInstr &MI) { 117 const MCInstrDesc &MCID = MI.getDesc(); 118 uint64_t Flags = MCID.TSFlags; 119 return (Flags & ARMII::HorizontalReduction) != 0; 120 } 121 122 namespace { 123 124 using InstSet = SmallPtrSetImpl<MachineInstr *>; 125 126 class PostOrderLoopTraversal { 127 MachineLoop &ML; 128 MachineLoopInfo &MLI; 129 SmallPtrSet<MachineBasicBlock*, 4> Visited; 130 SmallVector<MachineBasicBlock*, 4> Order; 131 132 public: 133 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 134 : ML(ML), MLI(MLI) { } 135 136 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 137 return Order; 138 } 139 140 // Visit all the blocks within the loop, as well as exit blocks and any 141 // blocks properly dominating the header. 142 void ProcessLoop() { 143 std::function<void(MachineBasicBlock *)> Search = 144 [this, &Search](MachineBasicBlock *MBB) -> void { 145 if (!Visited.insert(MBB).second) 146 return; 147 148 for (auto *Succ : MBB->successors()) { 149 if (!ML.contains(Succ)) 150 continue; 151 Search(Succ); 152 } 153 Order.push_back(MBB); 154 }; 155 156 // Insert exit blocks. 157 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 158 ML.getExitBlocks(ExitBlocks); 159 append_range(Order, ExitBlocks); 160 161 // Then add the loop body. 162 Search(ML.getHeader()); 163 164 // Then try the preheader and its predecessors. 165 std::function<void(MachineBasicBlock*)> GetPredecessor = 166 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 167 Order.push_back(MBB); 168 if (MBB->pred_size() == 1) 169 GetPredecessor(*MBB->pred_begin()); 170 }; 171 172 if (auto *Preheader = ML.getLoopPreheader()) 173 GetPredecessor(Preheader); 174 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true, true)) 175 GetPredecessor(Preheader); 176 } 177 }; 178 179 class VPTBlock { 180 SmallVector<MachineInstr *, 4> Insts; 181 182 public: 183 VPTBlock(MachineInstr *MI) { Insts.push_back(MI); } 184 185 // Have we found an instruction within the block which defines the vpr? If 186 // so, not all the instructions in the block will have the same predicate. 187 bool hasUniformPredicate() { return getDivergent() == nullptr; } 188 189 // If it exists, return the first internal instruction which modifies the 190 // VPR. 191 MachineInstr *getDivergent() { 192 SmallVectorImpl<MachineInstr *> &Insts = getInsts(); 193 for (unsigned i = 1; i < Insts.size(); ++i) { 194 MachineInstr *Next = Insts[i]; 195 if (isVectorPredicate(Next)) 196 return Next; // Found an instruction altering the vpr. 197 } 198 return nullptr; 199 } 200 201 void insert(MachineInstr *MI) { 202 Insts.push_back(MI); 203 // VPT/VPST + 4 predicated instructions. 204 assert(Insts.size() <= 5 && "Too many instructions in VPT block!"); 205 } 206 207 bool containsVCTP() const { return llvm::any_of(Insts, isVCTP); } 208 209 unsigned size() const { return Insts.size(); } 210 SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; } 211 }; 212 213 // Represent the current state of the VPR and hold all instances which 214 // represent a VPT block, which is a list of instructions that begins with a 215 // VPT/VPST and has a maximum of four proceeding instructions. All 216 // instructions within the block are predicated upon the vpr and we allow 217 // instructions to define the vpr within in the block too. 218 class VPTState { 219 friend struct LowOverheadLoop; 220 221 SmallVector<VPTBlock, 4> Blocks; 222 SetVector<MachineInstr *> CurrentPredicates; 223 std::map<MachineInstr *, SetVector<MachineInstr *>> PredicatedInsts; 224 225 void CreateVPTBlock(MachineInstr *MI) { 226 assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR)) 227 && "Can't begin VPT without predicate"); 228 Blocks.emplace_back(MI); 229 // The execution of MI is predicated upon the current set of instructions 230 // that are AND'ed together to form the VPR predicate value. In the case 231 // that MI is a VPT, CurrentPredicates will also just be MI. 232 PredicatedInsts[MI] = CurrentPredicates; 233 } 234 235 void addInst(MachineInstr *MI) { 236 Blocks.back().insert(MI); 237 PredicatedInsts[MI] = CurrentPredicates; 238 } 239 240 void addPredicate(MachineInstr *MI) { 241 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI); 242 CurrentPredicates.insert(MI); 243 } 244 245 void resetPredicate(MachineInstr *MI) { 246 LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI); 247 CurrentPredicates.clear(); 248 CurrentPredicates.insert(MI); 249 } 250 251 public: 252 // Return whether the given instruction is predicated upon a VCTP. 253 bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) { 254 SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]; 255 if (Exclusive && Predicates.size() != 1) 256 return false; 257 // We do not know how to convert an else predicate of a VCTP. 258 if (getVPTInstrPredicate(*MI) == ARMVCC::Else) 259 return false; 260 return llvm::any_of(Predicates, isVCTP); 261 } 262 263 // Is the VPST, controlling the block entry, predicated upon a VCTP. 264 bool isEntryPredicatedOnVCTP(VPTBlock &Block, bool Exclusive = false) { 265 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 266 return isPredicatedOnVCTP(Insts.front(), Exclusive); 267 } 268 269 // If this block begins with a VPT, we can check whether it's using 270 // at least one predicated input(s), as well as possible loop invariant 271 // which would result in it being implicitly predicated. 272 bool hasImplicitlyValidVPT(VPTBlock &Block, ReachingDefAnalysis &RDA) { 273 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 274 MachineInstr *VPT = Insts.front(); 275 assert(isVPTOpcode(VPT->getOpcode()) && 276 "Expected VPT block to begin with VPT/VPST"); 277 278 if (VPT->getOpcode() == ARM::MVE_VPST) 279 return false; 280 281 // If the VPT block does not define something that is an "output", then 282 // the tail-predicated version will just perform a subset of the original 283 // vpt block, where the last lanes should not be used. 284 if (isVPTOpcode(VPT->getOpcode()) && 285 all_of(Block.getInsts(), [](const MachineInstr *MI) { 286 return !MI->mayStore() && !MI->mayLoad() && 287 !isHorizontalReduction(*MI) && !isVCTP(MI); 288 })) 289 return true; 290 291 auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) { 292 MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx)); 293 return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op); 294 }; 295 296 auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) { 297 MachineOperand &MO = MI->getOperand(Idx); 298 if (!MO.isReg() || !MO.getReg()) 299 return true; 300 301 SmallPtrSet<MachineInstr *, 2> Defs; 302 RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs); 303 if (Defs.empty()) 304 return true; 305 306 for (auto *Def : Defs) 307 if (Def->getParent() == VPT->getParent()) 308 return false; 309 return true; 310 }; 311 312 // Check that at least one of the operands is directly predicated on a 313 // vctp and allow an invariant value too. 314 return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) && 315 (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) && 316 (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2)); 317 } 318 319 bool isValid(ReachingDefAnalysis &RDA) { 320 // All predication within the loop should be based on vctp. If the block 321 // isn't predicated on entry, check whether the vctp is within the block 322 // and that all other instructions are then predicated on it. 323 for (auto &Block : Blocks) { 324 if (isEntryPredicatedOnVCTP(Block, false) && 325 !any_of(drop_begin(Block.getInsts()), [](const MachineInstr *MI) { 326 return getVPTInstrPredicate(*MI) == ARMVCC::Else; 327 })) 328 continue; 329 if (hasImplicitlyValidVPT(Block, RDA)) 330 continue; 331 332 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 333 // We don't know how to convert a block with just a VPT;VCTP into 334 // anything valid once we remove the VCTP. For now just bail out. 335 assert(isVPTOpcode(Insts.front()->getOpcode()) && 336 "Expected VPT block to start with a VPST or VPT!"); 337 if (Insts.size() == 2 && Insts.front()->getOpcode() != ARM::MVE_VPST && 338 isVCTP(Insts.back())) 339 return false; 340 341 for (auto *MI : Insts) { 342 // Check that any internal VCTPs are 'Then' predicated. 343 if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then) 344 return false; 345 // Skip other instructions that build up the predicate. 346 if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI)) 347 continue; 348 // Check that any other instructions are predicated upon a vctp. 349 // TODO: We could infer when VPTs are implicitly predicated on the 350 // vctp (when the operands are predicated). 351 if (!isPredicatedOnVCTP(MI)) { 352 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI); 353 return false; 354 } 355 } 356 } 357 return true; 358 } 359 }; 360 361 struct LowOverheadLoop { 362 363 MachineLoop &ML; 364 MachineBasicBlock *Preheader = nullptr; 365 MachineLoopInfo &MLI; 366 ReachingDefAnalysis &RDA; 367 const TargetRegisterInfo &TRI; 368 const ARMBaseInstrInfo &TII; 369 MachineFunction *MF = nullptr; 370 MachineBasicBlock::iterator StartInsertPt; 371 MachineBasicBlock *StartInsertBB = nullptr; 372 MachineInstr *Start = nullptr; 373 MachineInstr *Dec = nullptr; 374 MachineInstr *End = nullptr; 375 MachineOperand TPNumElements; 376 SmallVector<MachineInstr *, 4> VCTPs; 377 SmallPtrSet<MachineInstr *, 4> ToRemove; 378 SmallPtrSet<MachineInstr *, 4> BlockMasksToRecompute; 379 SmallPtrSet<MachineInstr *, 4> DoubleWidthResultInstrs; 380 SmallPtrSet<MachineInstr *, 4> VMOVCopies; 381 bool Revert = false; 382 bool CannotTailPredicate = false; 383 VPTState VPTstate; 384 385 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 386 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI, 387 const ARMBaseInstrInfo &TII) 388 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII), 389 TPNumElements(MachineOperand::CreateImm(0)) { 390 MF = ML.getHeader()->getParent(); 391 if (auto *MBB = ML.getLoopPreheader()) 392 Preheader = MBB; 393 else if (auto *MBB = MLI.findLoopPreheader(&ML, true, true)) 394 Preheader = MBB; 395 } 396 397 // If this is an MVE instruction, check that we know how to use tail 398 // predication with it. Record VPT blocks and return whether the 399 // instruction is valid for tail predication. 400 bool ValidateMVEInst(MachineInstr *MI); 401 402 void AnalyseMVEInst(MachineInstr *MI) { 403 CannotTailPredicate = !ValidateMVEInst(MI); 404 } 405 406 bool IsTailPredicationLegal() const { 407 // For now, let's keep things really simple and only support a single 408 // block for tail predication. 409 return !Revert && FoundAllComponents() && !VCTPs.empty() && 410 !CannotTailPredicate && ML.getNumBlocks() == 1; 411 } 412 413 // Given that MI is a VCTP, check that is equivalent to any other VCTPs 414 // found. 415 bool AddVCTP(MachineInstr *MI); 416 417 // Check that the predication in the loop will be equivalent once we 418 // perform the conversion. Also ensure that we can provide the number 419 // of elements to the loop start instruction. 420 bool ValidateTailPredicate(); 421 422 // Check that any values available outside of the loop will be the same 423 // after tail predication conversion. 424 bool ValidateLiveOuts(); 425 426 // Check the branch targets are within range and we satisfy our 427 // restrictions. 428 void Validate(ARMBasicBlockUtils *BBUtils); 429 430 bool FoundAllComponents() const { 431 return Start && Dec && End; 432 } 433 434 SmallVectorImpl<VPTBlock> &getVPTBlocks() { return VPTstate.Blocks; } 435 436 // Return the operand for the loop start instruction. This will be the loop 437 // iteration count, or the number of elements if we're tail predicating. 438 MachineOperand &getLoopStartOperand() { 439 if (IsTailPredicationLegal()) 440 return TPNumElements; 441 return Start->getOperand(1); 442 } 443 444 unsigned getStartOpcode() const { 445 bool IsDo = isDoLoopStart(*Start); 446 if (!IsTailPredicationLegal()) 447 return IsDo ? ARM::t2DLS : ARM::t2WLS; 448 449 return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo); 450 } 451 452 void dump() const { 453 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 454 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 455 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 456 if (!VCTPs.empty()) { 457 dbgs() << "ARM Loops: Found VCTP(s):\n"; 458 for (auto *MI : VCTPs) 459 dbgs() << " - " << *MI; 460 } 461 if (!FoundAllComponents()) 462 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 463 else if (!(Start && Dec && End)) 464 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 465 } 466 }; 467 468 class ARMLowOverheadLoops : public MachineFunctionPass { 469 MachineFunction *MF = nullptr; 470 MachineLoopInfo *MLI = nullptr; 471 ReachingDefAnalysis *RDA = nullptr; 472 const ARMBaseInstrInfo *TII = nullptr; 473 MachineRegisterInfo *MRI = nullptr; 474 const TargetRegisterInfo *TRI = nullptr; 475 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 476 477 public: 478 static char ID; 479 480 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 481 482 void getAnalysisUsage(AnalysisUsage &AU) const override { 483 AU.setPreservesCFG(); 484 AU.addRequired<MachineLoopInfoWrapperPass>(); 485 AU.addRequired<ReachingDefAnalysis>(); 486 MachineFunctionPass::getAnalysisUsage(AU); 487 } 488 489 bool runOnMachineFunction(MachineFunction &MF) override; 490 491 MachineFunctionProperties getRequiredProperties() const override { 492 return MachineFunctionProperties().set( 493 MachineFunctionProperties::Property::NoVRegs).set( 494 MachineFunctionProperties::Property::TracksLiveness); 495 } 496 497 StringRef getPassName() const override { 498 return ARM_LOW_OVERHEAD_LOOPS_NAME; 499 } 500 501 private: 502 bool ProcessLoop(MachineLoop *ML); 503 504 bool RevertNonLoops(); 505 506 void RevertWhile(MachineInstr *MI) const; 507 void RevertDo(MachineInstr *MI) const; 508 509 bool RevertLoopDec(MachineInstr *MI) const; 510 511 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 512 513 void RevertLoopEndDec(MachineInstr *MI) const; 514 515 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 516 517 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 518 519 void Expand(LowOverheadLoop &LoLoop); 520 521 void IterationCountDCE(LowOverheadLoop &LoLoop); 522 }; 523 } 524 525 char ARMLowOverheadLoops::ID = 0; 526 527 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 528 false, false) 529 530 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA, 531 InstSet &ToRemove, InstSet &Ignore) { 532 533 // Check that we can remove all of Killed without having to modify any IT 534 // blocks. 535 auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) { 536 // Collect the dead code and the MBBs in which they reside. 537 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 538 for (auto *Dead : Killed) 539 BasicBlocks.insert(Dead->getParent()); 540 541 // Collect IT blocks in all affected basic blocks. 542 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 543 for (auto *MBB : BasicBlocks) { 544 for (auto &IT : *MBB) { 545 if (IT.getOpcode() != ARM::t2IT) 546 continue; 547 RDA.getReachingLocalUses(&IT, MCRegister::from(ARM::ITSTATE), 548 ITBlocks[&IT]); 549 } 550 } 551 552 // If we're removing all of the instructions within an IT block, then 553 // also remove the IT instruction. 554 SmallPtrSet<MachineInstr *, 2> ModifiedITs; 555 SmallPtrSet<MachineInstr *, 2> RemoveITs; 556 for (auto *Dead : Killed) { 557 if (MachineOperand *MO = 558 Dead->findRegisterUseOperand(ARM::ITSTATE, /*TRI=*/nullptr)) { 559 MachineInstr *IT = RDA.getMIOperand(Dead, *MO); 560 RemoveITs.insert(IT); 561 auto &CurrentBlock = ITBlocks[IT]; 562 CurrentBlock.erase(Dead); 563 if (CurrentBlock.empty()) 564 ModifiedITs.erase(IT); 565 else 566 ModifiedITs.insert(IT); 567 } 568 } 569 if (!ModifiedITs.empty()) 570 return false; 571 Killed.insert(RemoveITs.begin(), RemoveITs.end()); 572 return true; 573 }; 574 575 SmallPtrSet<MachineInstr *, 2> Uses; 576 if (!RDA.isSafeToRemove(MI, Uses, Ignore)) 577 return false; 578 579 if (WontCorruptITs(Uses, RDA)) { 580 ToRemove.insert(Uses.begin(), Uses.end()); 581 LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI 582 << " - can also remove:\n"; 583 for (auto *Use : Uses) 584 dbgs() << " - " << *Use); 585 586 SmallPtrSet<MachineInstr*, 4> Killed; 587 RDA.collectKilledOperands(MI, Killed); 588 if (WontCorruptITs(Killed, RDA)) { 589 ToRemove.insert(Killed.begin(), Killed.end()); 590 LLVM_DEBUG(for (auto *Dead : Killed) 591 dbgs() << " - " << *Dead); 592 } 593 return true; 594 } 595 return false; 596 } 597 598 bool LowOverheadLoop::ValidateTailPredicate() { 599 if (!IsTailPredicationLegal()) { 600 LLVM_DEBUG(if (VCTPs.empty()) 601 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 602 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 603 return false; 604 } 605 606 assert(!VCTPs.empty() && "VCTP instruction expected but is not set"); 607 assert(ML.getBlocks().size() == 1 && 608 "Shouldn't be processing a loop with more than one block"); 609 610 if (DisableTailPredication) { 611 LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n"); 612 return false; 613 } 614 615 if (!VPTstate.isValid(RDA)) { 616 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n"); 617 return false; 618 } 619 620 if (!ValidateLiveOuts()) { 621 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n"); 622 return false; 623 } 624 625 // For tail predication, we need to provide the number of elements, instead 626 // of the iteration count, to the loop start instruction. The number of 627 // elements is provided to the vctp instruction, so we need to check that 628 // we can use this register at InsertPt. 629 MachineInstr *VCTP = VCTPs.back(); 630 if (Start->getOpcode() == ARM::t2DoLoopStartTP || 631 Start->getOpcode() == ARM::t2WhileLoopStartTP) { 632 TPNumElements = Start->getOperand(2); 633 StartInsertPt = Start; 634 StartInsertBB = Start->getParent(); 635 } else { 636 TPNumElements = VCTP->getOperand(1); 637 MCRegister NumElements = TPNumElements.getReg().asMCReg(); 638 639 // If the register is defined within loop, then we can't perform TP. 640 // TODO: Check whether this is just a mov of a register that would be 641 // available. 642 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 643 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 644 return false; 645 } 646 647 // The element count register maybe defined after InsertPt, in which case we 648 // need to try to move either InsertPt or the def so that the [w|d]lstp can 649 // use the value. 650 651 if (StartInsertPt != StartInsertBB->end() && 652 !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) { 653 if (auto *ElemDef = 654 RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) { 655 if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) { 656 ElemDef->removeFromParent(); 657 StartInsertBB->insert(StartInsertPt, ElemDef); 658 LLVM_DEBUG(dbgs() 659 << "ARM Loops: Moved element count def: " << *ElemDef); 660 } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) { 661 StartInsertPt->removeFromParent(); 662 StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 663 &*StartInsertPt); 664 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 665 } else { 666 // If we fail to move an instruction and the element count is provided 667 // by a mov, use the mov operand if it will have the same value at the 668 // insertion point 669 MachineOperand Operand = ElemDef->getOperand(1); 670 if (isMovRegOpcode(ElemDef->getOpcode()) && 671 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) == 672 RDA.getUniqueReachingMIDef(&*StartInsertPt, 673 Operand.getReg().asMCReg())) { 674 TPNumElements = Operand; 675 NumElements = TPNumElements.getReg(); 676 } else { 677 LLVM_DEBUG(dbgs() 678 << "ARM Loops: Unable to move element count to loop " 679 << "start instruction.\n"); 680 return false; 681 } 682 } 683 } 684 } 685 686 // Especially in the case of while loops, InsertBB may not be the 687 // preheader, so we need to check that the register isn't redefined 688 // before entering the loop. 689 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 690 MCRegister NumElements) { 691 if (MBB->empty()) 692 return false; 693 // NumElements is redefined in this block. 694 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 695 return true; 696 697 // Don't continue searching up through multiple predecessors. 698 if (MBB->pred_size() > 1) 699 return true; 700 701 return false; 702 }; 703 704 // Search backwards for a def, until we get to InsertBB. 705 MachineBasicBlock *MBB = Preheader; 706 while (MBB && MBB != StartInsertBB) { 707 if (CannotProvideElements(MBB, NumElements)) { 708 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 709 return false; 710 } 711 MBB = *MBB->pred_begin(); 712 } 713 } 714 715 // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect 716 // world the [w|d]lstp instruction would be last instruction in the preheader 717 // and so it would only affect instructions within the loop body. But due to 718 // scheduling, and/or the logic in this pass (above), the insertion point can 719 // be moved earlier. So if the Loop Start isn't the last instruction in the 720 // preheader, and if the initial element count is smaller than the vector 721 // width, the Loop Start instruction will immediately generate one or more 722 // false lane mask which can, incorrectly, affect the proceeding MVE 723 // instructions in the preheader. 724 if (std::any_of(StartInsertPt, StartInsertBB->end(), shouldInspect)) { 725 LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP\n"); 726 return false; 727 } 728 729 // For any DoubleWidthResultInstrs we found whilst scanning instructions, they 730 // need to compute an output size that is smaller than the VCTP mask operates 731 // on. The VecSize of the DoubleWidthResult is the larger vector size - the 732 // size it extends into, so any VCTP VecSize <= is valid. 733 unsigned VCTPVecSize = getVecSize(*VCTP); 734 for (MachineInstr *MI : DoubleWidthResultInstrs) { 735 unsigned InstrVecSize = getVecSize(*MI); 736 if (InstrVecSize > VCTPVecSize) { 737 LLVM_DEBUG(dbgs() << "ARM Loops: Double width result larger than VCTP " 738 << "VecSize:\n" << *MI); 739 return false; 740 } 741 } 742 743 // Check that the value change of the element count is what we expect and 744 // that the predication will be equivalent. For this we need: 745 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 746 // and we can also allow register copies within the chain too. 747 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) { 748 return -getAddSubImmediate(*MI) == ExpectedVecWidth; 749 }; 750 751 MachineBasicBlock *MBB = VCTP->getParent(); 752 // Remove modifications to the element count since they have no purpose in a 753 // tail predicated loop. Explicitly refer to the vctp operand no matter which 754 // register NumElements has been assigned to, since that is what the 755 // modifications will be using 756 if (auto *Def = RDA.getUniqueReachingMIDef( 757 &MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) { 758 SmallPtrSet<MachineInstr*, 2> ElementChain; 759 SmallPtrSet<MachineInstr*, 2> Ignore; 760 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 761 762 Ignore.insert(VCTPs.begin(), VCTPs.end()); 763 764 if (TryRemove(Def, RDA, ElementChain, Ignore)) { 765 bool FoundSub = false; 766 767 for (auto *MI : ElementChain) { 768 if (isMovRegOpcode(MI->getOpcode())) 769 continue; 770 771 if (isSubImmOpcode(MI->getOpcode())) { 772 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) { 773 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 774 " count: " << *MI); 775 return false; 776 } 777 FoundSub = true; 778 } else { 779 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 780 " count: " << *MI); 781 return false; 782 } 783 } 784 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 785 } 786 } 787 788 // If we converted the LoopStart to a t2DoLoopStartTP/t2WhileLoopStartTP, we 789 // can also remove any extra instructions in the preheader, which often 790 // includes a now unused MOV. 791 if ((Start->getOpcode() == ARM::t2DoLoopStartTP || 792 Start->getOpcode() == ARM::t2WhileLoopStartTP) && 793 Preheader && !Preheader->empty() && 794 !RDA.hasLocalDefBefore(VCTP, VCTP->getOperand(1).getReg())) { 795 if (auto *Def = RDA.getUniqueReachingMIDef( 796 &Preheader->back(), VCTP->getOperand(1).getReg().asMCReg())) { 797 SmallPtrSet<MachineInstr*, 2> Ignore; 798 Ignore.insert(VCTPs.begin(), VCTPs.end()); 799 TryRemove(Def, RDA, ToRemove, Ignore); 800 } 801 } 802 803 return true; 804 } 805 806 static bool isRegInClass(const MachineOperand &MO, 807 const TargetRegisterClass *Class) { 808 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 809 } 810 811 // MVE 'narrowing' operate on half a lane, reading from half and writing 812 // to half, which are referred to has the top and bottom half. The other 813 // half retains its previous value. 814 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 815 const MCInstrDesc &MCID = MI.getDesc(); 816 uint64_t Flags = MCID.TSFlags; 817 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 818 } 819 820 // Some MVE instructions read from the top/bottom halves of their operand(s) 821 // and generate a vector result with result elements that are double the 822 // width of the input. 823 static bool producesDoubleWidthResult(const MachineInstr &MI) { 824 const MCInstrDesc &MCID = MI.getDesc(); 825 uint64_t Flags = MCID.TSFlags; 826 return (Flags & ARMII::DoubleWidthResult) != 0; 827 } 828 829 // Can this instruction generate a non-zero result when given only zeroed 830 // operands? This allows us to know that, given operands with false bytes 831 // zeroed by masked loads, that the result will also contain zeros in those 832 // bytes. 833 static bool canGenerateNonZeros(const MachineInstr &MI) { 834 835 // Check for instructions which can write into a larger element size, 836 // possibly writing into a previous zero'd lane. 837 if (producesDoubleWidthResult(MI)) 838 return true; 839 840 switch (MI.getOpcode()) { 841 default: 842 break; 843 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 844 // fp16 -> fp32 vector conversions. 845 // Instructions that perform a NOT will generate 1s from 0s. 846 case ARM::MVE_VMVN: 847 case ARM::MVE_VORN: 848 // Count leading zeros will do just that! 849 case ARM::MVE_VCLZs8: 850 case ARM::MVE_VCLZs16: 851 case ARM::MVE_VCLZs32: 852 return true; 853 } 854 return false; 855 } 856 857 // Look at its register uses to see if it only can only receive zeros 858 // into its false lanes which would then produce zeros. Also check that 859 // the output register is also defined by an FalseLanesZero instruction 860 // so that if tail-predication happens, the lanes that aren't updated will 861 // still be zeros. 862 static bool producesFalseLanesZero(MachineInstr &MI, 863 const TargetRegisterClass *QPRs, 864 const ReachingDefAnalysis &RDA, 865 InstSet &FalseLanesZero) { 866 if (canGenerateNonZeros(MI)) 867 return false; 868 869 bool isPredicated = isVectorPredicated(&MI); 870 // Predicated loads will write zeros to the falsely predicated bytes of the 871 // destination register. 872 if (MI.mayLoad()) 873 return isPredicated; 874 875 auto IsZeroInit = [](MachineInstr *Def) { 876 return !isVectorPredicated(Def) && 877 Def->getOpcode() == ARM::MVE_VMOVimmi32 && 878 Def->getOperand(1).getImm() == 0; 879 }; 880 881 bool AllowScalars = isHorizontalReduction(MI); 882 for (auto &MO : MI.operands()) { 883 if (!MO.isReg() || !MO.getReg()) 884 continue; 885 if (!isRegInClass(MO, QPRs) && AllowScalars) 886 continue; 887 // Skip the lr predicate reg 888 int PIdx = llvm::findFirstVPTPredOperandIdx(MI); 889 if (PIdx != -1 && (int)MO.getOperandNo() == PIdx + 2) 890 continue; 891 892 // Check that this instruction will produce zeros in its false lanes: 893 // - If it only consumes false lanes zero or constant 0 (vmov #0) 894 // - If it's predicated, it only matters that it's def register already has 895 // false lane zeros, so we can ignore the uses. 896 SmallPtrSet<MachineInstr *, 2> Defs; 897 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs); 898 if (Defs.empty()) 899 return false; 900 for (auto *Def : Defs) { 901 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def)) 902 continue; 903 if (MO.isUse() && isPredicated) 904 continue; 905 return false; 906 } 907 } 908 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 909 return true; 910 } 911 912 bool LowOverheadLoop::ValidateLiveOuts() { 913 // We want to find out if the tail-predicated version of this loop will 914 // produce the same values as the loop in its original form. For this to 915 // be true, the newly inserted implicit predication must not change the 916 // the (observable) results. 917 // We're doing this because many instructions in the loop will not be 918 // predicated and so the conversion from VPT predication to tail-predication 919 // can result in different values being produced; due to the tail-predication 920 // preventing many instructions from updating their falsely predicated 921 // lanes. This analysis assumes that all the instructions perform lane-wise 922 // operations and don't perform any exchanges. 923 // A masked load, whether through VPT or tail predication, will write zeros 924 // to any of the falsely predicated bytes. So, from the loads, we know that 925 // the false lanes are zeroed and here we're trying to track that those false 926 // lanes remain zero, or where they change, the differences are masked away 927 // by their user(s). 928 // All MVE stores have to be predicated, so we know that any predicate load 929 // operands, or stored results are equivalent already. Other explicitly 930 // predicated instructions will perform the same operation in the original 931 // loop and the tail-predicated form too. Because of this, we can insert 932 // loads, stores and other predicated instructions into our Predicated 933 // set and build from there. 934 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 935 SetVector<MachineInstr *> FalseLanesUnknown; 936 SmallPtrSet<MachineInstr *, 4> FalseLanesZero; 937 SmallPtrSet<MachineInstr *, 4> Predicated; 938 MachineBasicBlock *Header = ML.getHeader(); 939 940 LLVM_DEBUG(dbgs() << "ARM Loops: Validating Live outs\n"); 941 942 for (auto &MI : *Header) { 943 if (!shouldInspect(MI)) 944 continue; 945 946 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode())) 947 continue; 948 949 bool isPredicated = isVectorPredicated(&MI); 950 bool retainsOrReduces = 951 retainsPreviousHalfElement(MI) || isHorizontalReduction(MI); 952 953 if (isPredicated) 954 Predicated.insert(&MI); 955 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) 956 FalseLanesZero.insert(&MI); 957 else if (MI.getNumDefs() == 0) 958 continue; 959 else if (!isPredicated && retainsOrReduces) { 960 LLVM_DEBUG(dbgs() << " Unpredicated instruction that retainsOrReduces: " << MI); 961 return false; 962 } else if (!isPredicated && MI.getOpcode() != ARM::MQPRCopy) 963 FalseLanesUnknown.insert(&MI); 964 } 965 966 LLVM_DEBUG({ 967 dbgs() << " Predicated:\n"; 968 for (auto *I : Predicated) 969 dbgs() << " " << *I; 970 dbgs() << " FalseLanesZero:\n"; 971 for (auto *I : FalseLanesZero) 972 dbgs() << " " << *I; 973 dbgs() << " FalseLanesUnknown:\n"; 974 for (auto *I : FalseLanesUnknown) 975 dbgs() << " " << *I; 976 }); 977 978 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 979 SmallPtrSetImpl<MachineInstr *> &Predicated) { 980 SmallPtrSet<MachineInstr *, 2> Uses; 981 RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses); 982 for (auto *Use : Uses) { 983 if (Use != MI && !Predicated.count(Use)) 984 return false; 985 } 986 return true; 987 }; 988 989 // Visit the unknowns in reverse so that we can start at the values being 990 // stored and then we can work towards the leaves, hopefully adding more 991 // instructions to Predicated. Successfully terminating the loop means that 992 // all the unknown values have to found to be masked by predicated user(s). 993 // For any unpredicated values, we store them in NonPredicated so that we 994 // can later check whether these form a reduction. 995 SmallPtrSet<MachineInstr*, 2> NonPredicated; 996 for (auto *MI : reverse(FalseLanesUnknown)) { 997 for (auto &MO : MI->operands()) { 998 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 999 continue; 1000 if (!HasPredicatedUsers(MI, MO, Predicated)) { 1001 LLVM_DEBUG(dbgs() << " Found an unknown def of : " 1002 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 1003 NonPredicated.insert(MI); 1004 break; 1005 } 1006 } 1007 // Any unknown false lanes have been masked away by the user(s). 1008 if (!NonPredicated.contains(MI)) 1009 Predicated.insert(MI); 1010 } 1011 1012 SmallPtrSet<MachineInstr *, 2> LiveOutMIs; 1013 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 1014 ML.getExitBlocks(ExitBlocks); 1015 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 1016 assert(ExitBlocks.size() == 1 && "Expected a single exit block"); 1017 MachineBasicBlock *ExitBB = ExitBlocks.front(); 1018 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) { 1019 // TODO: Instead of blocking predication, we could move the vctp to the exit 1020 // block and calculate it's operand there in or the preheader. 1021 if (RegMask.PhysReg == ARM::VPR) { 1022 LLVM_DEBUG(dbgs() << " VPR is live in to the exit block."); 1023 return false; 1024 } 1025 // Check Q-regs that are live in the exit blocks. We don't collect scalars 1026 // because they won't be affected by lane predication. 1027 if (QPRs->contains(RegMask.PhysReg)) 1028 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg)) 1029 LiveOutMIs.insert(MI); 1030 } 1031 1032 // We've already validated that any VPT predication within the loop will be 1033 // equivalent when we perform the predication transformation; so we know that 1034 // any VPT predicated instruction is predicated upon VCTP. Any live-out 1035 // instruction needs to be predicated, so check this here. The instructions 1036 // in NonPredicated have been found to be a reduction that we can ensure its 1037 // legality. Any MQPRCopy found will need to validate its input as if it was 1038 // live out. 1039 SmallVector<MachineInstr *> Worklist(LiveOutMIs.begin(), LiveOutMIs.end()); 1040 while (!Worklist.empty()) { 1041 MachineInstr *MI = Worklist.pop_back_val(); 1042 if (MI->getOpcode() == ARM::MQPRCopy) { 1043 VMOVCopies.insert(MI); 1044 MachineInstr *CopySrc = 1045 RDA.getUniqueReachingMIDef(MI, MI->getOperand(1).getReg()); 1046 if (CopySrc) 1047 Worklist.push_back(CopySrc); 1048 } else if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) { 1049 LLVM_DEBUG(dbgs() << " Unable to handle live out: " << *MI); 1050 VMOVCopies.clear(); 1051 return false; 1052 } 1053 } 1054 1055 return true; 1056 } 1057 1058 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) { 1059 if (Revert) 1060 return; 1061 1062 // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP] 1063 // can only jump back. 1064 auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End, 1065 ARMBasicBlockUtils *BBUtils, MachineLoop &ML) { 1066 MachineBasicBlock *TgtBB = End->getOpcode() == ARM::t2LoopEnd 1067 ? End->getOperand(1).getMBB() 1068 : End->getOperand(2).getMBB(); 1069 // TODO Maybe there's cases where the target doesn't have to be the header, 1070 // but for now be safe and revert. 1071 if (TgtBB != ML.getHeader()) { 1072 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n"); 1073 return false; 1074 } 1075 1076 // The WLS and LE instructions have 12-bits for the label offset. WLS 1077 // requires a positive offset, while LE uses negative. 1078 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 1079 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 1080 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 1081 return false; 1082 } 1083 1084 if (isWhileLoopStart(*Start)) { 1085 MachineBasicBlock *TargetBB = getWhileLoopStartTargetBB(*Start); 1086 if (BBUtils->getOffsetOf(Start) > BBUtils->getOffsetOf(TargetBB) || 1087 !BBUtils->isBBInRange(Start, TargetBB, 4094)) { 1088 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 1089 return false; 1090 } 1091 } 1092 return true; 1093 }; 1094 1095 StartInsertPt = MachineBasicBlock::iterator(Start); 1096 StartInsertBB = Start->getParent(); 1097 LLVM_DEBUG(dbgs() << "ARM Loops: Will insert LoopStart at " 1098 << *StartInsertPt); 1099 1100 Revert = !ValidateRanges(Start, End, BBUtils, ML); 1101 CannotTailPredicate = !ValidateTailPredicate(); 1102 } 1103 1104 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) { 1105 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI); 1106 if (VCTPs.empty()) { 1107 VCTPs.push_back(MI); 1108 return true; 1109 } 1110 1111 // If we find another VCTP, check whether it uses the same value as the main VCTP. 1112 // If it does, store it in the VCTPs set, else refuse it. 1113 MachineInstr *Prev = VCTPs.back(); 1114 if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) || 1115 !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) { 1116 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching " 1117 "definition from the main VCTP"); 1118 return false; 1119 } 1120 VCTPs.push_back(MI); 1121 return true; 1122 } 1123 1124 static bool ValidateMVEStore(MachineInstr *MI, MachineLoop *ML) { 1125 1126 auto GetFrameIndex = [](MachineMemOperand *Operand) { 1127 const PseudoSourceValue *PseudoValue = Operand->getPseudoValue(); 1128 if (PseudoValue && PseudoValue->kind() == PseudoSourceValue::FixedStack) { 1129 if (const auto *FS = dyn_cast<FixedStackPseudoSourceValue>(PseudoValue)) { 1130 return FS->getFrameIndex(); 1131 } 1132 } 1133 return -1; 1134 }; 1135 1136 auto IsStackOp = [GetFrameIndex](MachineInstr *I) { 1137 switch (I->getOpcode()) { 1138 case ARM::MVE_VSTRWU32: 1139 case ARM::MVE_VLDRWU32: { 1140 return I->getOperand(1).getReg() == ARM::SP && 1141 I->memoperands().size() == 1 && 1142 GetFrameIndex(I->memoperands().front()) >= 0; 1143 } 1144 default: 1145 return false; 1146 } 1147 }; 1148 1149 // An unpredicated vector register spill is allowed if all of the uses of the 1150 // stack slot are within the loop 1151 if (MI->getOpcode() != ARM::MVE_VSTRWU32 || !IsStackOp(MI)) 1152 return false; 1153 1154 // Search all blocks after the loop for accesses to the same stack slot. 1155 // ReachingDefAnalysis doesn't work for sp as it relies on registers being 1156 // live-out (which sp never is) to know what blocks to look in 1157 if (MI->memoperands().size() == 0) 1158 return false; 1159 int FI = GetFrameIndex(MI->memoperands().front()); 1160 1161 auto &FrameInfo = MI->getParent()->getParent()->getFrameInfo(); 1162 if (FI == -1 || !FrameInfo.isSpillSlotObjectIndex(FI)) 1163 return false; 1164 1165 SmallVector<MachineBasicBlock *> Frontier; 1166 ML->getExitBlocks(Frontier); 1167 SmallPtrSet<MachineBasicBlock *, 4> Visited{MI->getParent()}; 1168 unsigned Idx = 0; 1169 while (Idx < Frontier.size()) { 1170 MachineBasicBlock *BB = Frontier[Idx]; 1171 bool LookAtSuccessors = true; 1172 for (auto &I : *BB) { 1173 if (!IsStackOp(&I) || I.memoperands().size() == 0) 1174 continue; 1175 if (GetFrameIndex(I.memoperands().front()) != FI) 1176 continue; 1177 // If this block has a store to the stack slot before any loads then we 1178 // can ignore the block 1179 if (I.getOpcode() == ARM::MVE_VSTRWU32) { 1180 LookAtSuccessors = false; 1181 break; 1182 } 1183 // If the store and the load are using the same stack slot then the 1184 // store isn't valid for tail predication 1185 if (I.getOpcode() == ARM::MVE_VLDRWU32) 1186 return false; 1187 } 1188 1189 if (LookAtSuccessors) { 1190 for (auto *Succ : BB->successors()) { 1191 if (!Visited.contains(Succ) && !is_contained(Frontier, Succ)) 1192 Frontier.push_back(Succ); 1193 } 1194 } 1195 Visited.insert(BB); 1196 Idx++; 1197 } 1198 1199 return true; 1200 } 1201 1202 bool LowOverheadLoop::ValidateMVEInst(MachineInstr *MI) { 1203 if (CannotTailPredicate) 1204 return false; 1205 1206 if (!shouldInspect(*MI)) 1207 return true; 1208 1209 if (MI->getOpcode() == ARM::MVE_VPSEL || 1210 MI->getOpcode() == ARM::MVE_VPNOT) { 1211 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 1212 // 1) It will use the VPR as a predicate operand, but doesn't have to be 1213 // instead a VPT block, which means we can assert while building up 1214 // the VPT block because we don't find another VPT or VPST to being a new 1215 // one. 1216 // 2) VPSEL still requires a VPR operand even after tail predicating, 1217 // which means we can't remove it unless there is another 1218 // instruction, such as vcmp, that can provide the VPR def. 1219 return false; 1220 } 1221 1222 // Record all VCTPs and check that they're equivalent to one another. 1223 if (isVCTP(MI) && !AddVCTP(MI)) 1224 return false; 1225 1226 // Inspect uses first so that any instructions that alter the VPR don't 1227 // alter the predicate upon themselves. 1228 const MCInstrDesc &MCID = MI->getDesc(); 1229 bool IsUse = false; 1230 unsigned LastOpIdx = MI->getNumOperands() - 1; 1231 for (const auto &Op : enumerate(reverse(MCID.operands()))) { 1232 const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index()); 1233 if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR) 1234 continue; 1235 1236 if (ARM::isVpred(Op.value().OperandType)) { 1237 VPTstate.addInst(MI); 1238 IsUse = true; 1239 } else if (MI->getOpcode() != ARM::MVE_VPST) { 1240 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 1241 return false; 1242 } 1243 } 1244 1245 // If we find an instruction that has been marked as not valid for tail 1246 // predication, only allow the instruction if it's contained within a valid 1247 // VPT block. 1248 bool RequiresExplicitPredication = 1249 (MCID.TSFlags & ARMII::ValidForTailPredication) == 0; 1250 if (isDomainMVE(MI) && RequiresExplicitPredication) { 1251 if (MI->getOpcode() == ARM::MQPRCopy) 1252 return true; 1253 if (!IsUse && producesDoubleWidthResult(*MI)) { 1254 DoubleWidthResultInstrs.insert(MI); 1255 return true; 1256 } 1257 1258 LLVM_DEBUG(if (!IsUse) dbgs() 1259 << "ARM Loops: Can't tail predicate: " << *MI); 1260 return IsUse; 1261 } 1262 1263 // If the instruction is already explicitly predicated, then the conversion 1264 // will be fine, but ensure that all store operations are predicated. 1265 if (MI->mayStore() && !ValidateMVEStore(MI, &ML)) 1266 return IsUse; 1267 1268 // If this instruction defines the VPR, update the predicate for the 1269 // proceeding instructions. 1270 if (isVectorPredicate(MI)) { 1271 // Clear the existing predicate when we're not in VPT Active state, 1272 // otherwise we add to it. 1273 if (!isVectorPredicated(MI)) 1274 VPTstate.resetPredicate(MI); 1275 else 1276 VPTstate.addPredicate(MI); 1277 } 1278 1279 // Finally once the predicate has been modified, we can start a new VPT 1280 // block if necessary. 1281 if (isVPTOpcode(MI->getOpcode())) 1282 VPTstate.CreateVPTBlock(MI); 1283 1284 return true; 1285 } 1286 1287 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 1288 const ARMSubtarget &ST = mf.getSubtarget<ARMSubtarget>(); 1289 if (!ST.hasLOB()) 1290 return false; 1291 1292 MF = &mf; 1293 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 1294 1295 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 1296 RDA = &getAnalysis<ReachingDefAnalysis>(); 1297 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 1298 MRI = &MF->getRegInfo(); 1299 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 1300 TRI = ST.getRegisterInfo(); 1301 BBUtils = std::make_unique<ARMBasicBlockUtils>(*MF); 1302 BBUtils->computeAllBlockSizes(); 1303 BBUtils->adjustBBOffsetsAfter(&MF->front()); 1304 1305 bool Changed = false; 1306 for (auto *ML : *MLI) { 1307 if (ML->isOutermost()) 1308 Changed |= ProcessLoop(ML); 1309 } 1310 Changed |= RevertNonLoops(); 1311 return Changed; 1312 } 1313 1314 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 1315 bool Changed = false; 1316 1317 // Process inner loops first. 1318 for (MachineLoop *L : *ML) 1319 Changed |= ProcessLoop(L); 1320 1321 LLVM_DEBUG({ 1322 dbgs() << "ARM Loops: Processing loop containing:\n"; 1323 if (auto *Preheader = ML->getLoopPreheader()) 1324 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n"; 1325 else if (auto *Preheader = MLI->findLoopPreheader(ML, true, true)) 1326 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n"; 1327 for (auto *MBB : ML->getBlocks()) 1328 dbgs() << " - Block: " << printMBBReference(*MBB) << "\n"; 1329 }); 1330 1331 // Search the given block for a loop start instruction. If one isn't found, 1332 // and there's only one predecessor block, search that one too. 1333 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 1334 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 1335 for (auto &MI : *MBB) { 1336 if (isLoopStart(MI)) 1337 return &MI; 1338 } 1339 if (MBB->pred_size() == 1) 1340 return SearchForStart(*MBB->pred_begin()); 1341 return nullptr; 1342 }; 1343 1344 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII); 1345 // Search the preheader for the start intrinsic. 1346 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 1347 // with potentially multiple set.loop.iterations, so we need to enable this. 1348 if (LoLoop.Preheader) 1349 LoLoop.Start = SearchForStart(LoLoop.Preheader); 1350 else 1351 return Changed; 1352 1353 // Find the low-overhead loop components and decide whether or not to fall 1354 // back to a normal loop. Also look for a vctp instructions and decide 1355 // whether we can convert that predicate using tail predication. 1356 for (auto *MBB : reverse(ML->getBlocks())) { 1357 for (auto &MI : *MBB) { 1358 if (MI.isDebugValue()) 1359 continue; 1360 else if (MI.getOpcode() == ARM::t2LoopDec) 1361 LoLoop.Dec = &MI; 1362 else if (MI.getOpcode() == ARM::t2LoopEnd) 1363 LoLoop.End = &MI; 1364 else if (MI.getOpcode() == ARM::t2LoopEndDec) 1365 LoLoop.End = LoLoop.Dec = &MI; 1366 else if (isLoopStart(MI)) 1367 LoLoop.Start = &MI; 1368 else if (MI.getDesc().isCall()) { 1369 // TODO: Though the call will require LE to execute again, does this 1370 // mean we should revert? Always executing LE hopefully should be 1371 // faster than performing a sub,cmp,br or even subs,br. 1372 LoLoop.Revert = true; 1373 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 1374 } else { 1375 // Record VPR defs and build up their corresponding vpt blocks. 1376 // Check we know how to tail predicate any mve instructions. 1377 LoLoop.AnalyseMVEInst(&MI); 1378 } 1379 } 1380 } 1381 1382 LLVM_DEBUG(LoLoop.dump()); 1383 if (!LoLoop.FoundAllComponents()) { 1384 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 1385 return Changed; 1386 } 1387 1388 assert(LoLoop.Start->getOpcode() != ARM::t2WhileLoopStart && 1389 "Expected t2WhileLoopStart to be removed before regalloc!"); 1390 1391 // Check that the only instruction using LoopDec is LoopEnd. This can only 1392 // happen when the Dec and End are separate, not a single t2LoopEndDec. 1393 // TODO: Check for copy chains that really have no effect. 1394 if (LoLoop.Dec != LoLoop.End) { 1395 SmallPtrSet<MachineInstr *, 2> Uses; 1396 RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses); 1397 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 1398 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 1399 LoLoop.Revert = true; 1400 } 1401 } 1402 LoLoop.Validate(BBUtils.get()); 1403 Expand(LoLoop); 1404 return true; 1405 } 1406 1407 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 1408 // beq that branches to the exit branch. 1409 // TODO: We could also try to generate a cbz if the value in LR is also in 1410 // another low register. 1411 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 1412 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 1413 MachineBasicBlock *DestBB = getWhileLoopStartTargetBB(*MI); 1414 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1415 ARM::tBcc : ARM::t2Bcc; 1416 1417 RevertWhileLoopStartLR(MI, TII, BrOpc); 1418 } 1419 1420 void ARMLowOverheadLoops::RevertDo(MachineInstr *MI) const { 1421 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to mov: " << *MI); 1422 RevertDoLoopStart(MI, TII); 1423 } 1424 1425 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 1426 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 1427 MachineBasicBlock *MBB = MI->getParent(); 1428 SmallPtrSet<MachineInstr*, 1> Ignore; 1429 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 1430 if (I->getOpcode() == ARM::t2LoopEnd) { 1431 Ignore.insert(&*I); 1432 break; 1433 } 1434 } 1435 1436 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 1437 bool SetFlags = 1438 RDA->isSafeToDefRegAt(MI, MCRegister::from(ARM::CPSR), Ignore); 1439 1440 llvm::RevertLoopDec(MI, TII, SetFlags); 1441 return SetFlags; 1442 } 1443 1444 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1445 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1446 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1447 1448 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1449 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1450 ARM::tBcc : ARM::t2Bcc; 1451 1452 llvm::RevertLoopEnd(MI, TII, BrOpc, SkipCmp); 1453 } 1454 1455 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1456 void ARMLowOverheadLoops::RevertLoopEndDec(MachineInstr *MI) const { 1457 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to subs, br: " << *MI); 1458 assert(MI->getOpcode() == ARM::t2LoopEndDec && "Expected a t2LoopEndDec!"); 1459 MachineBasicBlock *MBB = MI->getParent(); 1460 1461 MachineInstrBuilder MIB = 1462 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::t2SUBri)); 1463 MIB.addDef(ARM::LR); 1464 MIB.add(MI->getOperand(1)); 1465 MIB.addImm(1); 1466 MIB.addImm(ARMCC::AL); 1467 MIB.addReg(ARM::NoRegister); 1468 MIB.addReg(ARM::CPSR); 1469 MIB->getOperand(5).setIsDef(true); 1470 1471 MachineBasicBlock *DestBB = MI->getOperand(2).getMBB(); 1472 unsigned BrOpc = 1473 BBUtils->isBBInRange(MI, DestBB, 254) ? ARM::tBcc : ARM::t2Bcc; 1474 1475 // Create bne 1476 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1477 MIB.add(MI->getOperand(2)); // branch target 1478 MIB.addImm(ARMCC::NE); // condition code 1479 MIB.addReg(ARM::CPSR); 1480 1481 MI->eraseFromParent(); 1482 } 1483 1484 // Perform dead code elimation on the loop iteration count setup expression. 1485 // If we are tail-predicating, the number of elements to be processed is the 1486 // operand of the VCTP instruction in the vector body, see getCount(), which is 1487 // register $r3 in this example: 1488 // 1489 // $lr = big-itercount-expression 1490 // .. 1491 // $lr = t2DoLoopStart renamable $lr 1492 // vector.body: 1493 // .. 1494 // $vpr = MVE_VCTP32 renamable $r3 1495 // renamable $lr = t2LoopDec killed renamable $lr, 1 1496 // t2LoopEnd renamable $lr, %vector.body 1497 // tB %end 1498 // 1499 // What we would like achieve here is to replace the do-loop start pseudo 1500 // instruction t2DoLoopStart with: 1501 // 1502 // $lr = MVE_DLSTP_32 killed renamable $r3 1503 // 1504 // Thus, $r3 which defines the number of elements, is written to $lr, 1505 // and then we want to delete the whole chain that used to define $lr, 1506 // see the comment below how this chain could look like. 1507 // 1508 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1509 if (!LoLoop.IsTailPredicationLegal()) 1510 return; 1511 1512 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1513 1514 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 1); 1515 if (!Def) { 1516 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1517 return; 1518 } 1519 1520 // Collect and remove the users of iteration count. 1521 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1522 LoLoop.End }; 1523 if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed)) 1524 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1525 } 1526 1527 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1528 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1529 // When using tail-predication, try to delete the dead code that was used to 1530 // calculate the number of loop iterations. 1531 IterationCountDCE(LoLoop); 1532 1533 MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt; 1534 MachineInstr *Start = LoLoop.Start; 1535 MachineBasicBlock *MBB = LoLoop.StartInsertBB; 1536 unsigned Opc = LoLoop.getStartOpcode(); 1537 MachineOperand &Count = LoLoop.getLoopStartOperand(); 1538 1539 // A DLS lr, lr we needn't emit 1540 MachineInstr* NewStart; 1541 if (!DisableOmitDLS && Opc == ARM::t2DLS && Count.isReg() && 1542 Count.getReg() == ARM::LR) { 1543 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't insert start: DLS lr, lr"); 1544 NewStart = nullptr; 1545 } else { 1546 MachineInstrBuilder MIB = 1547 BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc)); 1548 1549 MIB.addDef(ARM::LR); 1550 MIB.add(Count); 1551 if (isWhileLoopStart(*Start)) 1552 MIB.addMBB(getWhileLoopStartTargetBB(*Start)); 1553 1554 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1555 NewStart = &*MIB; 1556 } 1557 1558 LoLoop.ToRemove.insert(Start); 1559 return NewStart; 1560 } 1561 1562 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1563 auto RemovePredicate = [](MachineInstr *MI) { 1564 if (MI->isDebugInstr()) 1565 return; 1566 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1567 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 1568 assert(PIdx >= 1 && "Trying to unpredicate a non-predicated instruction"); 1569 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1570 "Expected Then predicate!"); 1571 MI->getOperand(PIdx).setImm(ARMVCC::None); 1572 MI->getOperand(PIdx + 1).setReg(0); 1573 }; 1574 1575 for (auto &Block : LoLoop.getVPTBlocks()) { 1576 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 1577 1578 auto ReplaceVCMPWithVPT = [&](MachineInstr *&TheVCMP, MachineInstr *At) { 1579 assert(TheVCMP && "Replacing a removed or non-existent VCMP"); 1580 // Replace the VCMP with a VPT 1581 MachineInstrBuilder MIB = 1582 BuildMI(*At->getParent(), At, At->getDebugLoc(), 1583 TII->get(VCMPOpcodeToVPT(TheVCMP->getOpcode()))); 1584 MIB.addImm(ARMVCC::Then); 1585 // Register one 1586 MIB.add(TheVCMP->getOperand(1)); 1587 // Register two 1588 MIB.add(TheVCMP->getOperand(2)); 1589 // The comparison code, e.g. ge, eq, lt 1590 MIB.add(TheVCMP->getOperand(3)); 1591 LLVM_DEBUG(dbgs() << "ARM Loops: Combining with VCMP to VPT: " << *MIB); 1592 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1593 LoLoop.ToRemove.insert(TheVCMP); 1594 TheVCMP = nullptr; 1595 }; 1596 1597 if (LoLoop.VPTstate.isEntryPredicatedOnVCTP(Block, /*exclusive*/ true)) { 1598 MachineInstr *VPST = Insts.front(); 1599 if (Block.hasUniformPredicate()) { 1600 // A vpt block starting with VPST, is only predicated upon vctp and has no 1601 // internal vpr defs: 1602 // - Remove vpst. 1603 // - Unpredicate the remaining instructions. 1604 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1605 for (unsigned i = 1; i < Insts.size(); ++i) 1606 RemovePredicate(Insts[i]); 1607 } else { 1608 // The VPT block has a non-uniform predicate but it uses a vpst and its 1609 // entry is guarded only by a vctp, which means we: 1610 // - Need to remove the original vpst. 1611 // - Then need to unpredicate any following instructions, until 1612 // we come across the divergent vpr def. 1613 // - Insert a new vpst to predicate the instruction(s) that following 1614 // the divergent vpr def. 1615 MachineInstr *Divergent = Block.getDivergent(); 1616 MachineBasicBlock *MBB = Divergent->getParent(); 1617 auto DivergentNext = ++MachineBasicBlock::iterator(Divergent); 1618 while (DivergentNext != MBB->end() && DivergentNext->isDebugInstr()) 1619 ++DivergentNext; 1620 1621 bool DivergentNextIsPredicated = 1622 DivergentNext != MBB->end() && 1623 getVPTInstrPredicate(*DivergentNext) != ARMVCC::None; 1624 1625 for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext; 1626 I != E; ++I) 1627 RemovePredicate(&*I); 1628 1629 // Check if the instruction defining vpr is a vcmp so it can be combined 1630 // with the VPST This should be the divergent instruction 1631 MachineInstr *VCMP = 1632 VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr; 1633 1634 if (DivergentNextIsPredicated) { 1635 // Insert a VPST at the divergent only if the next instruction 1636 // would actually use it. A VCMP following a VPST can be 1637 // merged into a VPT so do that instead if the VCMP exists. 1638 if (!VCMP) { 1639 // Create a VPST (with a null mask for now, we'll recompute it 1640 // later) 1641 MachineInstrBuilder MIB = 1642 BuildMI(*Divergent->getParent(), Divergent, 1643 Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST)); 1644 MIB.addImm(0); 1645 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1646 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1647 } else { 1648 // No RDA checks are necessary here since the VPST would have been 1649 // directly after the VCMP 1650 ReplaceVCMPWithVPT(VCMP, VCMP); 1651 } 1652 } 1653 } 1654 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1655 LoLoop.ToRemove.insert(VPST); 1656 } else if (Block.containsVCTP()) { 1657 // The vctp will be removed, so either the entire block will be dead or 1658 // the block mask of the vp(s)t will need to be recomputed. 1659 MachineInstr *VPST = Insts.front(); 1660 if (Block.size() == 2) { 1661 assert(VPST->getOpcode() == ARM::MVE_VPST && 1662 "Found a VPST in an otherwise empty vpt block"); 1663 LoLoop.ToRemove.insert(VPST); 1664 } else 1665 LoLoop.BlockMasksToRecompute.insert(VPST); 1666 } else if (Insts.front()->getOpcode() == ARM::MVE_VPST) { 1667 // If this block starts with a VPST then attempt to merge it with the 1668 // preceeding un-merged VCMP into a VPT. This VCMP comes from a VPT 1669 // block that no longer exists 1670 MachineInstr *VPST = Insts.front(); 1671 auto Next = ++MachineBasicBlock::iterator(VPST); 1672 assert(getVPTInstrPredicate(*Next) != ARMVCC::None && 1673 "The instruction after a VPST must be predicated"); 1674 (void)Next; 1675 MachineInstr *VprDef = RDA->getUniqueReachingMIDef(VPST, ARM::VPR); 1676 if (VprDef && VCMPOpcodeToVPT(VprDef->getOpcode()) && 1677 !LoLoop.ToRemove.contains(VprDef)) { 1678 MachineInstr *VCMP = VprDef; 1679 // The VCMP and VPST can only be merged if the VCMP's operands will have 1680 // the same values at the VPST. 1681 // If any of the instructions between the VCMP and VPST are predicated 1682 // then a different code path is expected to have merged the VCMP and 1683 // VPST already. 1684 if (std::none_of(++MachineBasicBlock::iterator(VCMP), 1685 MachineBasicBlock::iterator(VPST), hasVPRUse) && 1686 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(1).getReg()) && 1687 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(2).getReg())) { 1688 ReplaceVCMPWithVPT(VCMP, VPST); 1689 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1690 LoLoop.ToRemove.insert(VPST); 1691 } 1692 } 1693 } 1694 } 1695 1696 LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end()); 1697 } 1698 1699 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1700 1701 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1702 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1703 MachineInstr *End = LoLoop.End; 1704 MachineBasicBlock *MBB = End->getParent(); 1705 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1706 ARM::MVE_LETP : ARM::t2LEUpdate; 1707 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1708 TII->get(Opc)); 1709 MIB.addDef(ARM::LR); 1710 unsigned Off = LoLoop.Dec == LoLoop.End ? 1 : 0; 1711 MIB.add(End->getOperand(Off + 0)); 1712 MIB.add(End->getOperand(Off + 1)); 1713 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1714 LoLoop.ToRemove.insert(LoLoop.Dec); 1715 LoLoop.ToRemove.insert(End); 1716 return &*MIB; 1717 }; 1718 1719 // TODO: We should be able to automatically remove these branches before we 1720 // get here - probably by teaching analyzeBranch about the pseudo 1721 // instructions. 1722 // If there is an unconditional branch, after I, that just branches to the 1723 // next block, remove it. 1724 auto RemoveDeadBranch = [](MachineInstr *I) { 1725 MachineBasicBlock *BB = I->getParent(); 1726 MachineInstr *Terminator = &BB->instr_back(); 1727 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1728 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1729 if (BB->isLayoutSuccessor(Succ)) { 1730 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1731 Terminator->eraseFromParent(); 1732 } 1733 } 1734 }; 1735 1736 // And VMOVCopies need to become 2xVMOVD for tail predication to be valid. 1737 // Anything other MQPRCopy can be converted to MVE_VORR later on. 1738 auto ExpandVMOVCopies = [this](SmallPtrSet<MachineInstr *, 4> &VMOVCopies) { 1739 for (auto *MI : VMOVCopies) { 1740 LLVM_DEBUG(dbgs() << "Converting copy to VMOVD: " << *MI); 1741 assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!"); 1742 MachineBasicBlock *MBB = MI->getParent(); 1743 Register Dst = MI->getOperand(0).getReg(); 1744 Register Src = MI->getOperand(1).getReg(); 1745 auto MIB1 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD), 1746 ARM::D0 + (Dst - ARM::Q0) * 2) 1747 .addReg(ARM::D0 + (Src - ARM::Q0) * 2) 1748 .add(predOps(ARMCC::AL)); 1749 (void)MIB1; 1750 LLVM_DEBUG(dbgs() << " into " << *MIB1); 1751 auto MIB2 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD), 1752 ARM::D0 + (Dst - ARM::Q0) * 2 + 1) 1753 .addReg(ARM::D0 + (Src - ARM::Q0) * 2 + 1) 1754 .add(predOps(ARMCC::AL)); 1755 LLVM_DEBUG(dbgs() << " and " << *MIB2); 1756 (void)MIB2; 1757 MI->eraseFromParent(); 1758 } 1759 }; 1760 1761 if (LoLoop.Revert) { 1762 if (isWhileLoopStart(*LoLoop.Start)) 1763 RevertWhile(LoLoop.Start); 1764 else 1765 RevertDo(LoLoop.Start); 1766 if (LoLoop.Dec == LoLoop.End) 1767 RevertLoopEndDec(LoLoop.End); 1768 else 1769 RevertLoopEnd(LoLoop.End, RevertLoopDec(LoLoop.Dec)); 1770 } else { 1771 ExpandVMOVCopies(LoLoop.VMOVCopies); 1772 LoLoop.Start = ExpandLoopStart(LoLoop); 1773 if (LoLoop.Start) 1774 RemoveDeadBranch(LoLoop.Start); 1775 LoLoop.End = ExpandLoopEnd(LoLoop); 1776 RemoveDeadBranch(LoLoop.End); 1777 if (LoLoop.IsTailPredicationLegal()) 1778 ConvertVPTBlocks(LoLoop); 1779 for (auto *I : LoLoop.ToRemove) { 1780 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1781 I->eraseFromParent(); 1782 } 1783 for (auto *I : LoLoop.BlockMasksToRecompute) { 1784 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I); 1785 recomputeVPTBlockMask(*I); 1786 LLVM_DEBUG(dbgs() << " ... done: " << *I); 1787 } 1788 } 1789 1790 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1791 DFS.ProcessLoop(); 1792 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1793 fullyRecomputeLiveIns(PostOrder); 1794 1795 for (auto *MBB : reverse(PostOrder)) 1796 recomputeLivenessFlags(*MBB); 1797 1798 // We've moved, removed and inserted new instructions, so update RDA. 1799 RDA->reset(); 1800 } 1801 1802 bool ARMLowOverheadLoops::RevertNonLoops() { 1803 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1804 bool Changed = false; 1805 1806 for (auto &MBB : *MF) { 1807 SmallVector<MachineInstr*, 4> Starts; 1808 SmallVector<MachineInstr*, 4> Decs; 1809 SmallVector<MachineInstr*, 4> Ends; 1810 SmallVector<MachineInstr *, 4> EndDecs; 1811 SmallVector<MachineInstr *, 4> MQPRCopies; 1812 1813 for (auto &I : MBB) { 1814 if (isLoopStart(I)) 1815 Starts.push_back(&I); 1816 else if (I.getOpcode() == ARM::t2LoopDec) 1817 Decs.push_back(&I); 1818 else if (I.getOpcode() == ARM::t2LoopEnd) 1819 Ends.push_back(&I); 1820 else if (I.getOpcode() == ARM::t2LoopEndDec) 1821 EndDecs.push_back(&I); 1822 else if (I.getOpcode() == ARM::MQPRCopy) 1823 MQPRCopies.push_back(&I); 1824 } 1825 1826 if (Starts.empty() && Decs.empty() && Ends.empty() && EndDecs.empty() && 1827 MQPRCopies.empty()) 1828 continue; 1829 1830 Changed = true; 1831 1832 for (auto *Start : Starts) { 1833 if (isWhileLoopStart(*Start)) 1834 RevertWhile(Start); 1835 else 1836 RevertDo(Start); 1837 } 1838 for (auto *Dec : Decs) 1839 RevertLoopDec(Dec); 1840 1841 for (auto *End : Ends) 1842 RevertLoopEnd(End); 1843 for (auto *End : EndDecs) 1844 RevertLoopEndDec(End); 1845 for (auto *MI : MQPRCopies) { 1846 LLVM_DEBUG(dbgs() << "Converting copy to VORR: " << *MI); 1847 assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!"); 1848 MachineBasicBlock *MBB = MI->getParent(); 1849 auto MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::MVE_VORR), 1850 MI->getOperand(0).getReg()) 1851 .add(MI->getOperand(1)) 1852 .add(MI->getOperand(1)); 1853 addUnpredicatedMveVpredROp(MIB, MI->getOperand(0).getReg()); 1854 MI->eraseFromParent(); 1855 } 1856 } 1857 return Changed; 1858 } 1859 1860 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1861 return new ARMLowOverheadLoops(); 1862 } 1863