1 //===-- AArch64TargetMachine.cpp - Define TargetMachine for AArch64 -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "AArch64TargetMachine.h" 13 #include "AArch64.h" 14 #include "AArch64MachineFunctionInfo.h" 15 #include "AArch64MachineScheduler.h" 16 #include "AArch64MacroFusion.h" 17 #include "AArch64Subtarget.h" 18 #include "AArch64TargetObjectFile.h" 19 #include "AArch64TargetTransformInfo.h" 20 #include "MCTargetDesc/AArch64MCTargetDesc.h" 21 #include "TargetInfo/AArch64TargetInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/CodeGen/CSEConfigBase.h" 25 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 26 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 27 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 28 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 29 #include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h" 30 #include "llvm/CodeGen/GlobalISel/Localizer.h" 31 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 32 #include "llvm/CodeGen/MIRParser/MIParser.h" 33 #include "llvm/CodeGen/MachineScheduler.h" 34 #include "llvm/CodeGen/Passes.h" 35 #include "llvm/CodeGen/TargetInstrInfo.h" 36 #include "llvm/CodeGen/TargetPassConfig.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/InitializePasses.h" 40 #include "llvm/MC/MCAsmInfo.h" 41 #include "llvm/MC/MCTargetOptions.h" 42 #include "llvm/MC/TargetRegistry.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Passes/PassBuilder.h" 45 #include "llvm/Support/CodeGen.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Target/TargetLoweringObjectFile.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/TargetParser/Triple.h" 50 #include "llvm/Transforms/CFGuard.h" 51 #include "llvm/Transforms/Scalar.h" 52 #include "llvm/Transforms/Utils/LowerIFunc.h" 53 #include "llvm/Transforms/Vectorize/LoopIdiomVectorize.h" 54 #include <memory> 55 #include <optional> 56 #include <string> 57 58 using namespace llvm; 59 60 static cl::opt<bool> EnableCCMP("aarch64-enable-ccmp", 61 cl::desc("Enable the CCMP formation pass"), 62 cl::init(true), cl::Hidden); 63 64 static cl::opt<bool> 65 EnableCondBrTuning("aarch64-enable-cond-br-tune", 66 cl::desc("Enable the conditional branch tuning pass"), 67 cl::init(true), cl::Hidden); 68 69 static cl::opt<bool> EnableAArch64CopyPropagation( 70 "aarch64-enable-copy-propagation", 71 cl::desc("Enable the copy propagation with AArch64 copy instr"), 72 cl::init(true), cl::Hidden); 73 74 static cl::opt<bool> EnableMCR("aarch64-enable-mcr", 75 cl::desc("Enable the machine combiner pass"), 76 cl::init(true), cl::Hidden); 77 78 static cl::opt<bool> EnableStPairSuppress("aarch64-enable-stp-suppress", 79 cl::desc("Suppress STP for AArch64"), 80 cl::init(true), cl::Hidden); 81 82 static cl::opt<bool> EnableAdvSIMDScalar( 83 "aarch64-enable-simd-scalar", 84 cl::desc("Enable use of AdvSIMD scalar integer instructions"), 85 cl::init(false), cl::Hidden); 86 87 static cl::opt<bool> 88 EnablePromoteConstant("aarch64-enable-promote-const", 89 cl::desc("Enable the promote constant pass"), 90 cl::init(true), cl::Hidden); 91 92 static cl::opt<bool> EnableCollectLOH( 93 "aarch64-enable-collect-loh", 94 cl::desc("Enable the pass that emits the linker optimization hints (LOH)"), 95 cl::init(true), cl::Hidden); 96 97 static cl::opt<bool> 98 EnableDeadRegisterElimination("aarch64-enable-dead-defs", cl::Hidden, 99 cl::desc("Enable the pass that removes dead" 100 " definitions and replaces stores to" 101 " them with stores to the zero" 102 " register"), 103 cl::init(true)); 104 105 static cl::opt<bool> EnableRedundantCopyElimination( 106 "aarch64-enable-copyelim", 107 cl::desc("Enable the redundant copy elimination pass"), cl::init(true), 108 cl::Hidden); 109 110 static cl::opt<bool> EnableLoadStoreOpt("aarch64-enable-ldst-opt", 111 cl::desc("Enable the load/store pair" 112 " optimization pass"), 113 cl::init(true), cl::Hidden); 114 115 static cl::opt<bool> EnableAtomicTidy( 116 "aarch64-enable-atomic-cfg-tidy", cl::Hidden, 117 cl::desc("Run SimplifyCFG after expanding atomic operations" 118 " to make use of cmpxchg flow-based information"), 119 cl::init(true)); 120 121 static cl::opt<bool> 122 EnableEarlyIfConversion("aarch64-enable-early-ifcvt", cl::Hidden, 123 cl::desc("Run early if-conversion"), 124 cl::init(true)); 125 126 static cl::opt<bool> 127 EnableCondOpt("aarch64-enable-condopt", 128 cl::desc("Enable the condition optimizer pass"), 129 cl::init(true), cl::Hidden); 130 131 static cl::opt<bool> 132 EnableGEPOpt("aarch64-enable-gep-opt", cl::Hidden, 133 cl::desc("Enable optimizations on complex GEPs"), 134 cl::init(false)); 135 136 static cl::opt<bool> 137 EnableSelectOpt("aarch64-select-opt", cl::Hidden, 138 cl::desc("Enable select to branch optimizations"), 139 cl::init(true)); 140 141 static cl::opt<bool> 142 BranchRelaxation("aarch64-enable-branch-relax", cl::Hidden, cl::init(true), 143 cl::desc("Relax out of range conditional branches")); 144 145 static cl::opt<bool> EnableCompressJumpTables( 146 "aarch64-enable-compress-jump-tables", cl::Hidden, cl::init(true), 147 cl::desc("Use smallest entry possible for jump tables")); 148 149 // FIXME: Unify control over GlobalMerge. 150 static cl::opt<cl::boolOrDefault> 151 EnableGlobalMerge("aarch64-enable-global-merge", cl::Hidden, 152 cl::desc("Enable the global merge pass")); 153 154 static cl::opt<bool> 155 EnableLoopDataPrefetch("aarch64-enable-loop-data-prefetch", cl::Hidden, 156 cl::desc("Enable the loop data prefetch pass"), 157 cl::init(true)); 158 159 static cl::opt<int> EnableGlobalISelAtO( 160 "aarch64-enable-global-isel-at-O", cl::Hidden, 161 cl::desc("Enable GlobalISel at or below an opt level (-1 to disable)"), 162 cl::init(0)); 163 164 static cl::opt<bool> 165 EnableSVEIntrinsicOpts("aarch64-enable-sve-intrinsic-opts", cl::Hidden, 166 cl::desc("Enable SVE intrinsic opts"), 167 cl::init(true)); 168 169 static cl::opt<bool> 170 EnableSMEPeepholeOpt("enable-aarch64-sme-peephole-opt", cl::init(true), 171 cl::Hidden, 172 cl::desc("Perform SME peephole optimization")); 173 174 static cl::opt<bool> EnableFalkorHWPFFix("aarch64-enable-falkor-hwpf-fix", 175 cl::init(true), cl::Hidden); 176 177 static cl::opt<bool> 178 EnableBranchTargets("aarch64-enable-branch-targets", cl::Hidden, 179 cl::desc("Enable the AArch64 branch target pass"), 180 cl::init(true)); 181 182 static cl::opt<unsigned> SVEVectorBitsMaxOpt( 183 "aarch64-sve-vector-bits-max", 184 cl::desc("Assume SVE vector registers are at most this big, " 185 "with zero meaning no maximum size is assumed."), 186 cl::init(0), cl::Hidden); 187 188 static cl::opt<unsigned> SVEVectorBitsMinOpt( 189 "aarch64-sve-vector-bits-min", 190 cl::desc("Assume SVE vector registers are at least this big, " 191 "with zero meaning no minimum size is assumed."), 192 cl::init(0), cl::Hidden); 193 194 static cl::opt<bool> ForceStreaming( 195 "force-streaming", 196 cl::desc("Force the use of streaming code for all functions"), 197 cl::init(false), cl::Hidden); 198 199 static cl::opt<bool> ForceStreamingCompatible( 200 "force-streaming-compatible", 201 cl::desc("Force the use of streaming-compatible code for all functions"), 202 cl::init(false), cl::Hidden); 203 204 extern cl::opt<bool> EnableHomogeneousPrologEpilog; 205 206 static cl::opt<bool> EnableGISelLoadStoreOptPreLegal( 207 "aarch64-enable-gisel-ldst-prelegal", 208 cl::desc("Enable GlobalISel's pre-legalizer load/store optimization pass"), 209 cl::init(true), cl::Hidden); 210 211 static cl::opt<bool> EnableGISelLoadStoreOptPostLegal( 212 "aarch64-enable-gisel-ldst-postlegal", 213 cl::desc("Enable GlobalISel's post-legalizer load/store optimization pass"), 214 cl::init(false), cl::Hidden); 215 216 static cl::opt<bool> 217 EnableSinkFold("aarch64-enable-sink-fold", 218 cl::desc("Enable sinking and folding of instruction copies"), 219 cl::init(true), cl::Hidden); 220 221 static cl::opt<bool> 222 EnableMachinePipeliner("aarch64-enable-pipeliner", 223 cl::desc("Enable Machine Pipeliner for AArch64"), 224 cl::init(false), cl::Hidden); 225 226 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64Target() { 227 // Register the target. 228 RegisterTargetMachine<AArch64leTargetMachine> X(getTheAArch64leTarget()); 229 RegisterTargetMachine<AArch64beTargetMachine> Y(getTheAArch64beTarget()); 230 RegisterTargetMachine<AArch64leTargetMachine> Z(getTheARM64Target()); 231 RegisterTargetMachine<AArch64leTargetMachine> W(getTheARM64_32Target()); 232 RegisterTargetMachine<AArch64leTargetMachine> V(getTheAArch64_32Target()); 233 auto PR = PassRegistry::getPassRegistry(); 234 initializeGlobalISel(*PR); 235 initializeAArch64A53Fix835769Pass(*PR); 236 initializeAArch64A57FPLoadBalancingPass(*PR); 237 initializeAArch64AdvSIMDScalarPass(*PR); 238 initializeAArch64BranchTargetsPass(*PR); 239 initializeAArch64CollectLOHPass(*PR); 240 initializeAArch64CompressJumpTablesPass(*PR); 241 initializeAArch64ConditionalComparesPass(*PR); 242 initializeAArch64ConditionOptimizerPass(*PR); 243 initializeAArch64DeadRegisterDefinitionsPass(*PR); 244 initializeAArch64ExpandPseudoPass(*PR); 245 initializeAArch64LoadStoreOptPass(*PR); 246 initializeAArch64MIPeepholeOptPass(*PR); 247 initializeAArch64SIMDInstrOptPass(*PR); 248 initializeAArch64O0PreLegalizerCombinerPass(*PR); 249 initializeAArch64PreLegalizerCombinerPass(*PR); 250 initializeAArch64PointerAuthPass(*PR); 251 initializeAArch64PostCoalescerPass(*PR); 252 initializeAArch64PostLegalizerCombinerPass(*PR); 253 initializeAArch64PostLegalizerLoweringPass(*PR); 254 initializeAArch64PostSelectOptimizePass(*PR); 255 initializeAArch64PromoteConstantPass(*PR); 256 initializeAArch64RedundantCopyEliminationPass(*PR); 257 initializeAArch64StorePairSuppressPass(*PR); 258 initializeFalkorHWPFFixPass(*PR); 259 initializeFalkorMarkStridedAccessesLegacyPass(*PR); 260 initializeLDTLSCleanupPass(*PR); 261 initializeKCFIPass(*PR); 262 initializeSMEABIPass(*PR); 263 initializeSMEPeepholeOptPass(*PR); 264 initializeSVEIntrinsicOptsPass(*PR); 265 initializeAArch64SpeculationHardeningPass(*PR); 266 initializeAArch64SLSHardeningPass(*PR); 267 initializeAArch64StackTaggingPass(*PR); 268 initializeAArch64StackTaggingPreRAPass(*PR); 269 initializeAArch64LowerHomogeneousPrologEpilogPass(*PR); 270 initializeAArch64DAGToDAGISelLegacyPass(*PR); 271 } 272 273 void AArch64TargetMachine::reset() { SubtargetMap.clear(); } 274 275 //===----------------------------------------------------------------------===// 276 // AArch64 Lowering public interface. 277 //===----------------------------------------------------------------------===// 278 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 279 if (TT.isOSBinFormatMachO()) 280 return std::make_unique<AArch64_MachoTargetObjectFile>(); 281 if (TT.isOSBinFormatCOFF()) 282 return std::make_unique<AArch64_COFFTargetObjectFile>(); 283 284 return std::make_unique<AArch64_ELFTargetObjectFile>(); 285 } 286 287 // Helper function to build a DataLayout string 288 static std::string computeDataLayout(const Triple &TT, 289 const MCTargetOptions &Options, 290 bool LittleEndian) { 291 if (TT.isOSBinFormatMachO()) { 292 if (TT.getArch() == Triple::aarch64_32) 293 return "e-m:o-p:32:32-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-" 294 "n32:64-S128-Fn32"; 295 return "e-m:o-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-n32:64-S128-" 296 "Fn32"; 297 } 298 if (TT.isOSBinFormatCOFF()) 299 return "e-m:w-p270:32:32-p271:32:32-p272:64:64-p:64:64-i32:32-i64:64-i128:" 300 "128-n32:64-S128-Fn32"; 301 std::string Endian = LittleEndian ? "e" : "E"; 302 std::string Ptr32 = TT.getEnvironment() == Triple::GNUILP32 ? "-p:32:32" : ""; 303 return Endian + "-m:e" + Ptr32 + 304 "-p270:32:32-p271:32:32-p272:64:64-i8:8:32-i16:16:32-i64:64-i128:128-" 305 "n32:64-S128-Fn32"; 306 } 307 308 static StringRef computeDefaultCPU(const Triple &TT, StringRef CPU) { 309 if (CPU.empty() && TT.isArm64e()) 310 return "apple-a12"; 311 return CPU; 312 } 313 314 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 315 std::optional<Reloc::Model> RM) { 316 // AArch64 Darwin and Windows are always PIC. 317 if (TT.isOSDarwin() || TT.isOSWindows()) 318 return Reloc::PIC_; 319 // On ELF platforms the default static relocation model has a smart enough 320 // linker to cope with referencing external symbols defined in a shared 321 // library. Hence DynamicNoPIC doesn't need to be promoted to PIC. 322 if (!RM || *RM == Reloc::DynamicNoPIC) 323 return Reloc::Static; 324 return *RM; 325 } 326 327 static CodeModel::Model 328 getEffectiveAArch64CodeModel(const Triple &TT, 329 std::optional<CodeModel::Model> CM, bool JIT) { 330 if (CM) { 331 if (*CM != CodeModel::Small && *CM != CodeModel::Tiny && 332 *CM != CodeModel::Large) { 333 report_fatal_error( 334 "Only small, tiny and large code models are allowed on AArch64"); 335 } else if (*CM == CodeModel::Tiny && !TT.isOSBinFormatELF()) 336 report_fatal_error("tiny code model is only supported on ELF"); 337 return *CM; 338 } 339 // The default MCJIT memory managers make no guarantees about where they can 340 // find an executable page; JITed code needs to be able to refer to globals 341 // no matter how far away they are. 342 // We should set the CodeModel::Small for Windows ARM64 in JIT mode, 343 // since with large code model LLVM generating 4 MOV instructions, and 344 // Windows doesn't support relocating these long branch (4 MOVs). 345 if (JIT && !TT.isOSWindows()) 346 return CodeModel::Large; 347 return CodeModel::Small; 348 } 349 350 /// Create an AArch64 architecture model. 351 /// 352 AArch64TargetMachine::AArch64TargetMachine(const Target &T, const Triple &TT, 353 StringRef CPU, StringRef FS, 354 const TargetOptions &Options, 355 std::optional<Reloc::Model> RM, 356 std::optional<CodeModel::Model> CM, 357 CodeGenOptLevel OL, bool JIT, 358 bool LittleEndian) 359 : CodeGenTargetMachineImpl( 360 T, computeDataLayout(TT, Options.MCOptions, LittleEndian), TT, 361 computeDefaultCPU(TT, CPU), FS, Options, 362 getEffectiveRelocModel(TT, RM), 363 getEffectiveAArch64CodeModel(TT, CM, JIT), OL), 364 TLOF(createTLOF(getTargetTriple())), isLittle(LittleEndian) { 365 initAsmInfo(); 366 367 if (TT.isOSBinFormatMachO()) { 368 this->Options.TrapUnreachable = true; 369 this->Options.NoTrapAfterNoreturn = true; 370 } 371 372 if (getMCAsmInfo()->usesWindowsCFI()) { 373 // Unwinding can get confused if the last instruction in an 374 // exception-handling region (function, funclet, try block, etc.) 375 // is a call. 376 // 377 // FIXME: We could elide the trap if the next instruction would be in 378 // the same region anyway. 379 this->Options.TrapUnreachable = true; 380 } 381 382 if (this->Options.TLSSize == 0) // default 383 this->Options.TLSSize = 24; 384 if ((getCodeModel() == CodeModel::Small || 385 getCodeModel() == CodeModel::Kernel) && 386 this->Options.TLSSize > 32) 387 // for the small (and kernel) code model, the maximum TLS size is 4GiB 388 this->Options.TLSSize = 32; 389 else if (getCodeModel() == CodeModel::Tiny && this->Options.TLSSize > 24) 390 // for the tiny code model, the maximum TLS size is 1MiB (< 16MiB) 391 this->Options.TLSSize = 24; 392 393 // Enable GlobalISel at or below EnableGlobalISelAt0, unless this is 394 // MachO/CodeModel::Large, which GlobalISel does not support. 395 if (static_cast<int>(getOptLevel()) <= EnableGlobalISelAtO && 396 TT.getArch() != Triple::aarch64_32 && 397 TT.getEnvironment() != Triple::GNUILP32 && 398 !(getCodeModel() == CodeModel::Large && TT.isOSBinFormatMachO())) { 399 setGlobalISel(true); 400 setGlobalISelAbort(GlobalISelAbortMode::Disable); 401 } 402 403 // AArch64 supports the MachineOutliner. 404 setMachineOutliner(true); 405 406 // AArch64 supports default outlining behaviour. 407 setSupportsDefaultOutlining(true); 408 409 // AArch64 supports the debug entry values. 410 setSupportsDebugEntryValues(true); 411 412 // AArch64 supports fixing up the DWARF unwind information. 413 if (!getMCAsmInfo()->usesWindowsCFI()) 414 setCFIFixup(true); 415 } 416 417 AArch64TargetMachine::~AArch64TargetMachine() = default; 418 419 const AArch64Subtarget * 420 AArch64TargetMachine::getSubtargetImpl(const Function &F) const { 421 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 422 Attribute TuneAttr = F.getFnAttribute("tune-cpu"); 423 Attribute FSAttr = F.getFnAttribute("target-features"); 424 425 StringRef CPU = CPUAttr.isValid() ? CPUAttr.getValueAsString() : TargetCPU; 426 StringRef TuneCPU = TuneAttr.isValid() ? TuneAttr.getValueAsString() : CPU; 427 StringRef FS = FSAttr.isValid() ? FSAttr.getValueAsString() : TargetFS; 428 bool HasMinSize = F.hasMinSize(); 429 430 bool IsStreaming = ForceStreaming || 431 F.hasFnAttribute("aarch64_pstate_sm_enabled") || 432 F.hasFnAttribute("aarch64_pstate_sm_body"); 433 bool IsStreamingCompatible = ForceStreamingCompatible || 434 F.hasFnAttribute("aarch64_pstate_sm_compatible"); 435 436 unsigned MinSVEVectorSize = 0; 437 unsigned MaxSVEVectorSize = 0; 438 if (F.hasFnAttribute(Attribute::VScaleRange)) { 439 ConstantRange CR = getVScaleRange(&F, 64); 440 MinSVEVectorSize = CR.getUnsignedMin().getZExtValue() * 128; 441 MaxSVEVectorSize = CR.getUnsignedMax().getZExtValue() * 128; 442 } else { 443 MinSVEVectorSize = SVEVectorBitsMinOpt; 444 MaxSVEVectorSize = SVEVectorBitsMaxOpt; 445 } 446 447 assert(MinSVEVectorSize % 128 == 0 && 448 "SVE requires vector length in multiples of 128!"); 449 assert(MaxSVEVectorSize % 128 == 0 && 450 "SVE requires vector length in multiples of 128!"); 451 assert((MaxSVEVectorSize >= MinSVEVectorSize || MaxSVEVectorSize == 0) && 452 "Minimum SVE vector size should not be larger than its maximum!"); 453 454 // Sanitize user input in case of no asserts 455 if (MaxSVEVectorSize != 0) { 456 MinSVEVectorSize = std::min(MinSVEVectorSize, MaxSVEVectorSize); 457 MaxSVEVectorSize = std::max(MinSVEVectorSize, MaxSVEVectorSize); 458 } 459 460 SmallString<512> Key; 461 raw_svector_ostream(Key) << "SVEMin" << MinSVEVectorSize << "SVEMax" 462 << MaxSVEVectorSize << "IsStreaming=" << IsStreaming 463 << "IsStreamingCompatible=" << IsStreamingCompatible 464 << CPU << TuneCPU << FS 465 << "HasMinSize=" << HasMinSize; 466 467 auto &I = SubtargetMap[Key]; 468 if (!I) { 469 // This needs to be done before we create a new subtarget since any 470 // creation will depend on the TM and the code generation flags on the 471 // function that reside in TargetOptions. 472 resetTargetOptions(F); 473 I = std::make_unique<AArch64Subtarget>( 474 TargetTriple, CPU, TuneCPU, FS, *this, isLittle, MinSVEVectorSize, 475 MaxSVEVectorSize, IsStreaming, IsStreamingCompatible, HasMinSize); 476 } 477 478 assert((!IsStreaming || I->hasSME()) && "Expected SME to be available"); 479 480 return I.get(); 481 } 482 483 void AArch64leTargetMachine::anchor() { } 484 485 AArch64leTargetMachine::AArch64leTargetMachine( 486 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 487 const TargetOptions &Options, std::optional<Reloc::Model> RM, 488 std::optional<CodeModel::Model> CM, CodeGenOptLevel OL, bool JIT) 489 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {} 490 491 void AArch64beTargetMachine::anchor() { } 492 493 AArch64beTargetMachine::AArch64beTargetMachine( 494 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 495 const TargetOptions &Options, std::optional<Reloc::Model> RM, 496 std::optional<CodeModel::Model> CM, CodeGenOptLevel OL, bool JIT) 497 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {} 498 499 namespace { 500 501 /// AArch64 Code Generator Pass Configuration Options. 502 class AArch64PassConfig : public TargetPassConfig { 503 public: 504 AArch64PassConfig(AArch64TargetMachine &TM, PassManagerBase &PM) 505 : TargetPassConfig(TM, PM) { 506 if (TM.getOptLevel() != CodeGenOptLevel::None) 507 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 508 setEnableSinkAndFold(EnableSinkFold); 509 } 510 511 AArch64TargetMachine &getAArch64TargetMachine() const { 512 return getTM<AArch64TargetMachine>(); 513 } 514 515 ScheduleDAGInstrs * 516 createMachineScheduler(MachineSchedContext *C) const override { 517 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 518 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 519 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 520 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 521 if (ST.hasFusion()) 522 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 523 return DAG; 524 } 525 526 ScheduleDAGInstrs * 527 createPostMachineScheduler(MachineSchedContext *C) const override { 528 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 529 ScheduleDAGMI *DAG = 530 new ScheduleDAGMI(C, std::make_unique<AArch64PostRASchedStrategy>(C), 531 /* RemoveKillFlags=*/true); 532 if (ST.hasFusion()) { 533 // Run the Macro Fusion after RA again since literals are expanded from 534 // pseudos then (v. addPreSched2()). 535 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 536 return DAG; 537 } 538 539 return DAG; 540 } 541 542 void addIRPasses() override; 543 bool addPreISel() override; 544 void addCodeGenPrepare() override; 545 bool addInstSelector() override; 546 bool addIRTranslator() override; 547 void addPreLegalizeMachineIR() override; 548 bool addLegalizeMachineIR() override; 549 void addPreRegBankSelect() override; 550 bool addRegBankSelect() override; 551 bool addGlobalInstructionSelect() override; 552 void addMachineSSAOptimization() override; 553 bool addILPOpts() override; 554 void addPreRegAlloc() override; 555 void addPostRegAlloc() override; 556 void addPreSched2() override; 557 void addPreEmitPass() override; 558 void addPostBBSections() override; 559 void addPreEmitPass2() override; 560 bool addRegAssignAndRewriteOptimized() override; 561 562 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 563 }; 564 565 } // end anonymous namespace 566 567 void AArch64TargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) { 568 569 PB.registerLateLoopOptimizationsEPCallback( 570 [=](LoopPassManager &LPM, OptimizationLevel Level) { 571 LPM.addPass(LoopIdiomVectorizePass()); 572 }); 573 if (getTargetTriple().isOSWindows()) 574 PB.registerPipelineEarlySimplificationEPCallback( 575 [](ModulePassManager &PM, OptimizationLevel, ThinOrFullLTOPhase) { 576 PM.addPass(LowerIFuncPass()); 577 }); 578 } 579 580 TargetTransformInfo 581 AArch64TargetMachine::getTargetTransformInfo(const Function &F) const { 582 return TargetTransformInfo(AArch64TTIImpl(this, F)); 583 } 584 585 TargetPassConfig *AArch64TargetMachine::createPassConfig(PassManagerBase &PM) { 586 return new AArch64PassConfig(*this, PM); 587 } 588 589 std::unique_ptr<CSEConfigBase> AArch64PassConfig::getCSEConfig() const { 590 return getStandardCSEConfigForOpt(TM->getOptLevel()); 591 } 592 593 void AArch64PassConfig::addIRPasses() { 594 // Always expand atomic operations, we don't deal with atomicrmw or cmpxchg 595 // ourselves. 596 addPass(createAtomicExpandLegacyPass()); 597 598 // Expand any SVE vector library calls that we can't code generate directly. 599 if (EnableSVEIntrinsicOpts && 600 TM->getOptLevel() != CodeGenOptLevel::None) 601 addPass(createSVEIntrinsicOptsPass()); 602 603 // Cmpxchg instructions are often used with a subsequent comparison to 604 // determine whether it succeeded. We can exploit existing control-flow in 605 // ldrex/strex loops to simplify this, but it needs tidying up. 606 if (TM->getOptLevel() != CodeGenOptLevel::None && EnableAtomicTidy) 607 addPass(createCFGSimplificationPass(SimplifyCFGOptions() 608 .forwardSwitchCondToPhi(true) 609 .convertSwitchRangeToICmp(true) 610 .convertSwitchToLookupTable(true) 611 .needCanonicalLoops(false) 612 .hoistCommonInsts(true) 613 .sinkCommonInsts(true))); 614 615 // Run LoopDataPrefetch 616 // 617 // Run this before LSR to remove the multiplies involved in computing the 618 // pointer values N iterations ahead. 619 if (TM->getOptLevel() != CodeGenOptLevel::None) { 620 if (EnableLoopDataPrefetch) 621 addPass(createLoopDataPrefetchPass()); 622 if (EnableFalkorHWPFFix) 623 addPass(createFalkorMarkStridedAccessesPass()); 624 } 625 626 if (EnableGEPOpt) { 627 // Call SeparateConstOffsetFromGEP pass to extract constants within indices 628 // and lower a GEP with multiple indices to either arithmetic operations or 629 // multiple GEPs with single index. 630 addPass(createSeparateConstOffsetFromGEPPass(true)); 631 // Call EarlyCSE pass to find and remove subexpressions in the lowered 632 // result. 633 addPass(createEarlyCSEPass()); 634 // Do loop invariant code motion in case part of the lowered result is 635 // invariant. 636 addPass(createLICMPass()); 637 } 638 639 TargetPassConfig::addIRPasses(); 640 641 if (getOptLevel() == CodeGenOptLevel::Aggressive && EnableSelectOpt) 642 addPass(createSelectOptimizePass()); 643 644 addPass(createAArch64StackTaggingPass( 645 /*IsOptNone=*/TM->getOptLevel() == CodeGenOptLevel::None)); 646 647 // Match complex arithmetic patterns 648 if (TM->getOptLevel() >= CodeGenOptLevel::Default) 649 addPass(createComplexDeinterleavingPass(TM)); 650 651 // Match interleaved memory accesses to ldN/stN intrinsics. 652 if (TM->getOptLevel() != CodeGenOptLevel::None) { 653 addPass(createInterleavedLoadCombinePass()); 654 addPass(createInterleavedAccessPass()); 655 } 656 657 // Expand any functions marked with SME attributes which require special 658 // changes for the calling convention or that require the lazy-saving 659 // mechanism specified in the SME ABI. 660 addPass(createSMEABIPass()); 661 662 // Add Control Flow Guard checks. 663 if (TM->getTargetTriple().isOSWindows()) { 664 if (TM->getTargetTriple().isWindowsArm64EC()) 665 addPass(createAArch64Arm64ECCallLoweringPass()); 666 else 667 addPass(createCFGuardCheckPass()); 668 } 669 670 if (TM->Options.JMCInstrument) 671 addPass(createJMCInstrumenterPass()); 672 } 673 674 // Pass Pipeline Configuration 675 bool AArch64PassConfig::addPreISel() { 676 // Run promote constant before global merge, so that the promoted constants 677 // get a chance to be merged 678 if (TM->getOptLevel() != CodeGenOptLevel::None && EnablePromoteConstant) 679 addPass(createAArch64PromoteConstantPass()); 680 // FIXME: On AArch64, this depends on the type. 681 // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes(). 682 // and the offset has to be a multiple of the related size in bytes. 683 if ((TM->getOptLevel() != CodeGenOptLevel::None && 684 EnableGlobalMerge == cl::BOU_UNSET) || 685 EnableGlobalMerge == cl::BOU_TRUE) { 686 bool OnlyOptimizeForSize = 687 (TM->getOptLevel() < CodeGenOptLevel::Aggressive) && 688 (EnableGlobalMerge == cl::BOU_UNSET); 689 690 // Merging of extern globals is enabled by default on non-Mach-O as we 691 // expect it to be generally either beneficial or harmless. On Mach-O it 692 // is disabled as we emit the .subsections_via_symbols directive which 693 // means that merging extern globals is not safe. 694 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); 695 696 // FIXME: extern global merging is only enabled when we optimise for size 697 // because there are some regressions with it also enabled for performance. 698 if (!OnlyOptimizeForSize) 699 MergeExternalByDefault = false; 700 701 addPass(createGlobalMergePass(TM, 4095, OnlyOptimizeForSize, 702 MergeExternalByDefault)); 703 } 704 705 return false; 706 } 707 708 void AArch64PassConfig::addCodeGenPrepare() { 709 if (getOptLevel() != CodeGenOptLevel::None) 710 addPass(createTypePromotionLegacyPass()); 711 TargetPassConfig::addCodeGenPrepare(); 712 } 713 714 bool AArch64PassConfig::addInstSelector() { 715 addPass(createAArch64ISelDag(getAArch64TargetMachine(), getOptLevel())); 716 717 // For ELF, cleanup any local-dynamic TLS accesses (i.e. combine as many 718 // references to _TLS_MODULE_BASE_ as possible. 719 if (TM->getTargetTriple().isOSBinFormatELF() && 720 getOptLevel() != CodeGenOptLevel::None) 721 addPass(createAArch64CleanupLocalDynamicTLSPass()); 722 723 return false; 724 } 725 726 bool AArch64PassConfig::addIRTranslator() { 727 addPass(new IRTranslator(getOptLevel())); 728 return false; 729 } 730 731 void AArch64PassConfig::addPreLegalizeMachineIR() { 732 if (getOptLevel() == CodeGenOptLevel::None) { 733 addPass(createAArch64O0PreLegalizerCombiner()); 734 addPass(new Localizer()); 735 } else { 736 addPass(createAArch64PreLegalizerCombiner()); 737 addPass(new Localizer()); 738 if (EnableGISelLoadStoreOptPreLegal) 739 addPass(new LoadStoreOpt()); 740 } 741 } 742 743 bool AArch64PassConfig::addLegalizeMachineIR() { 744 addPass(new Legalizer()); 745 return false; 746 } 747 748 void AArch64PassConfig::addPreRegBankSelect() { 749 bool IsOptNone = getOptLevel() == CodeGenOptLevel::None; 750 if (!IsOptNone) { 751 addPass(createAArch64PostLegalizerCombiner(IsOptNone)); 752 if (EnableGISelLoadStoreOptPostLegal) 753 addPass(new LoadStoreOpt()); 754 } 755 addPass(createAArch64PostLegalizerLowering()); 756 } 757 758 bool AArch64PassConfig::addRegBankSelect() { 759 addPass(new RegBankSelect()); 760 return false; 761 } 762 763 bool AArch64PassConfig::addGlobalInstructionSelect() { 764 addPass(new InstructionSelect(getOptLevel())); 765 if (getOptLevel() != CodeGenOptLevel::None) 766 addPass(createAArch64PostSelectOptimize()); 767 return false; 768 } 769 770 void AArch64PassConfig::addMachineSSAOptimization() { 771 if (TM->getOptLevel() != CodeGenOptLevel::None && EnableSMEPeepholeOpt) 772 addPass(createSMEPeepholeOptPass()); 773 774 // Run default MachineSSAOptimization first. 775 TargetPassConfig::addMachineSSAOptimization(); 776 777 if (TM->getOptLevel() != CodeGenOptLevel::None) 778 addPass(createAArch64MIPeepholeOptPass()); 779 } 780 781 bool AArch64PassConfig::addILPOpts() { 782 if (EnableCondOpt) 783 addPass(createAArch64ConditionOptimizerPass()); 784 if (EnableCCMP) 785 addPass(createAArch64ConditionalCompares()); 786 if (EnableMCR) 787 addPass(&MachineCombinerID); 788 if (EnableCondBrTuning) 789 addPass(createAArch64CondBrTuning()); 790 if (EnableEarlyIfConversion) 791 addPass(&EarlyIfConverterLegacyID); 792 if (EnableStPairSuppress) 793 addPass(createAArch64StorePairSuppressPass()); 794 addPass(createAArch64SIMDInstrOptPass()); 795 if (TM->getOptLevel() != CodeGenOptLevel::None) 796 addPass(createAArch64StackTaggingPreRAPass()); 797 return true; 798 } 799 800 void AArch64PassConfig::addPreRegAlloc() { 801 // Change dead register definitions to refer to the zero register. 802 if (TM->getOptLevel() != CodeGenOptLevel::None && 803 EnableDeadRegisterElimination) 804 addPass(createAArch64DeadRegisterDefinitions()); 805 806 // Use AdvSIMD scalar instructions whenever profitable. 807 if (TM->getOptLevel() != CodeGenOptLevel::None && EnableAdvSIMDScalar) { 808 addPass(createAArch64AdvSIMDScalar()); 809 // The AdvSIMD pass may produce copies that can be rewritten to 810 // be register coalescer friendly. 811 addPass(&PeepholeOptimizerLegacyID); 812 } 813 if (TM->getOptLevel() != CodeGenOptLevel::None && EnableMachinePipeliner) 814 addPass(&MachinePipelinerID); 815 } 816 817 void AArch64PassConfig::addPostRegAlloc() { 818 // Remove redundant copy instructions. 819 if (TM->getOptLevel() != CodeGenOptLevel::None && 820 EnableRedundantCopyElimination) 821 addPass(createAArch64RedundantCopyEliminationPass()); 822 823 if (TM->getOptLevel() != CodeGenOptLevel::None && usingDefaultRegAlloc()) 824 // Improve performance for some FP/SIMD code for A57. 825 addPass(createAArch64A57FPLoadBalancing()); 826 } 827 828 void AArch64PassConfig::addPreSched2() { 829 // Lower homogeneous frame instructions 830 if (EnableHomogeneousPrologEpilog) 831 addPass(createAArch64LowerHomogeneousPrologEpilogPass()); 832 // Expand some pseudo instructions to allow proper scheduling. 833 addPass(createAArch64ExpandPseudoPass()); 834 // Use load/store pair instructions when possible. 835 if (TM->getOptLevel() != CodeGenOptLevel::None) { 836 if (EnableLoadStoreOpt) 837 addPass(createAArch64LoadStoreOptimizationPass()); 838 } 839 // Emit KCFI checks for indirect calls. 840 addPass(createKCFIPass()); 841 842 // The AArch64SpeculationHardeningPass destroys dominator tree and natural 843 // loop info, which is needed for the FalkorHWPFFixPass and also later on. 844 // Therefore, run the AArch64SpeculationHardeningPass before the 845 // FalkorHWPFFixPass to avoid recomputing dominator tree and natural loop 846 // info. 847 addPass(createAArch64SpeculationHardeningPass()); 848 849 if (TM->getOptLevel() != CodeGenOptLevel::None) { 850 if (EnableFalkorHWPFFix) 851 addPass(createFalkorHWPFFixPass()); 852 } 853 } 854 855 void AArch64PassConfig::addPreEmitPass() { 856 // Machine Block Placement might have created new opportunities when run 857 // at O3, where the Tail Duplication Threshold is set to 4 instructions. 858 // Run the load/store optimizer once more. 859 if (TM->getOptLevel() >= CodeGenOptLevel::Aggressive && EnableLoadStoreOpt) 860 addPass(createAArch64LoadStoreOptimizationPass()); 861 862 if (TM->getOptLevel() >= CodeGenOptLevel::Aggressive && 863 EnableAArch64CopyPropagation) 864 addPass(createMachineCopyPropagationPass(true)); 865 866 addPass(createAArch64A53Fix835769()); 867 868 if (TM->getTargetTriple().isOSWindows()) { 869 // Identify valid longjmp targets for Windows Control Flow Guard. 870 addPass(createCFGuardLongjmpPass()); 871 // Identify valid eh continuation targets for Windows EHCont Guard. 872 addPass(createEHContGuardCatchretPass()); 873 } 874 875 if (TM->getOptLevel() != CodeGenOptLevel::None && EnableCollectLOH && 876 TM->getTargetTriple().isOSBinFormatMachO()) 877 addPass(createAArch64CollectLOHPass()); 878 } 879 880 void AArch64PassConfig::addPostBBSections() { 881 addPass(createAArch64SLSHardeningPass()); 882 addPass(createAArch64PointerAuthPass()); 883 if (EnableBranchTargets) 884 addPass(createAArch64BranchTargetsPass()); 885 // Relax conditional branch instructions if they're otherwise out of 886 // range of their destination. 887 if (BranchRelaxation) 888 addPass(&BranchRelaxationPassID); 889 890 if (TM->getOptLevel() != CodeGenOptLevel::None && EnableCompressJumpTables) 891 addPass(createAArch64CompressJumpTablesPass()); 892 } 893 894 void AArch64PassConfig::addPreEmitPass2() { 895 // SVE bundles move prefixes with destructive operations. BLR_RVMARKER pseudo 896 // instructions are lowered to bundles as well. 897 addPass(createUnpackMachineBundles(nullptr)); 898 } 899 900 bool AArch64PassConfig::addRegAssignAndRewriteOptimized() { 901 addPass(createAArch64PostCoalescerPass()); 902 return TargetPassConfig::addRegAssignAndRewriteOptimized(); 903 } 904 905 MachineFunctionInfo *AArch64TargetMachine::createMachineFunctionInfo( 906 BumpPtrAllocator &Allocator, const Function &F, 907 const TargetSubtargetInfo *STI) const { 908 return AArch64FunctionInfo::create<AArch64FunctionInfo>( 909 Allocator, F, static_cast<const AArch64Subtarget *>(STI)); 910 } 911 912 yaml::MachineFunctionInfo * 913 AArch64TargetMachine::createDefaultFuncInfoYAML() const { 914 return new yaml::AArch64FunctionInfo(); 915 } 916 917 yaml::MachineFunctionInfo * 918 AArch64TargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 919 const auto *MFI = MF.getInfo<AArch64FunctionInfo>(); 920 return new yaml::AArch64FunctionInfo(*MFI); 921 } 922 923 bool AArch64TargetMachine::parseMachineFunctionInfo( 924 const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS, 925 SMDiagnostic &Error, SMRange &SourceRange) const { 926 const auto &YamlMFI = static_cast<const yaml::AArch64FunctionInfo &>(MFI); 927 MachineFunction &MF = PFS.MF; 928 MF.getInfo<AArch64FunctionInfo>()->initializeBaseYamlFields(YamlMFI); 929 return false; 930 } 931