xref: /llvm-project/llvm/lib/Transforms/Scalar/NewGVN.cpp (revision 8e702735090388a3231a863e343f880d0f96fecb)
1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements the new LLVM's Global Value Numbering pass.
11 /// GVN partitions values computed by a function into congruence classes.
12 /// Values ending up in the same congruence class are guaranteed to be the same
13 /// for every execution of the program. In that respect, congruency is a
14 /// compile-time approximation of equivalence of values at runtime.
15 /// The algorithm implemented here uses a sparse formulation and it's based
16 /// on the ideas described in the paper:
17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from
18 /// Karthik Gargi.
19 ///
20 /// A brief overview of the algorithm: The algorithm is essentially the same as
21 /// the standard RPO value numbering algorithm (a good reference is the paper
22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23 /// The RPO algorithm proceeds, on every iteration, to process every reachable
24 /// block and every instruction in that block.  This is because the standard RPO
25 /// algorithm does not track what things have the same value number, it only
26 /// tracks what the value number of a given operation is (the mapping is
27 /// operation -> value number).  Thus, when a value number of an operation
28 /// changes, it must reprocess everything to ensure all uses of a value number
29 /// get updated properly.  In constrast, the sparse algorithm we use *also*
30 /// tracks what operations have a given value number (IE it also tracks the
31 /// reverse mapping from value number -> operations with that value number), so
32 /// that it only needs to reprocess the instructions that are affected when
33 /// something's value number changes.  The vast majority of complexity and code
34 /// in this file is devoted to tracking what value numbers could change for what
35 /// instructions when various things happen.  The rest of the algorithm is
36 /// devoted to performing symbolic evaluation, forward propagation, and
37 /// simplification of operations based on the value numbers deduced so far
38 ///
39 /// In order to make the GVN mostly-complete, we use a technique derived from
40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time
41 /// Algorithm in SSA" by R.R. Pai.  The source of incompleteness in most SSA
42 /// based GVN algorithms is related to their inability to detect equivalence
43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
44 /// We resolve this issue by generating the equivalent "phi of ops" form for
45 /// each op of phis we see, in a way that only takes polynomial time to resolve.
46 ///
47 /// We also do not perform elimination by using any published algorithm.  All
48 /// published algorithms are O(Instructions). Instead, we use a technique that
49 /// is O(number of operations with the same value number), enabling us to skip
50 /// trying to eliminate things that have unique value numbers.
51 //
52 //===----------------------------------------------------------------------===//
53 
54 #include "llvm/Transforms/Scalar/NewGVN.h"
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/ADT/BitVector.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseMapInfo.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/GraphTraits.h"
62 #include "llvm/ADT/Hashing.h"
63 #include "llvm/ADT/PointerIntPair.h"
64 #include "llvm/ADT/PostOrderIterator.h"
65 #include "llvm/ADT/SetOperations.h"
66 #include "llvm/ADT/SmallPtrSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/SparseBitVector.h"
69 #include "llvm/ADT/Statistic.h"
70 #include "llvm/ADT/iterator_range.h"
71 #include "llvm/Analysis/AliasAnalysis.h"
72 #include "llvm/Analysis/AssumptionCache.h"
73 #include "llvm/Analysis/CFGPrinter.h"
74 #include "llvm/Analysis/ConstantFolding.h"
75 #include "llvm/Analysis/GlobalsModRef.h"
76 #include "llvm/Analysis/InstructionSimplify.h"
77 #include "llvm/Analysis/MemoryBuiltins.h"
78 #include "llvm/Analysis/MemorySSA.h"
79 #include "llvm/Analysis/TargetLibraryInfo.h"
80 #include "llvm/Analysis/ValueTracking.h"
81 #include "llvm/IR/Argument.h"
82 #include "llvm/IR/BasicBlock.h"
83 #include "llvm/IR/Constant.h"
84 #include "llvm/IR/Constants.h"
85 #include "llvm/IR/Dominators.h"
86 #include "llvm/IR/Function.h"
87 #include "llvm/IR/InstrTypes.h"
88 #include "llvm/IR/Instruction.h"
89 #include "llvm/IR/Instructions.h"
90 #include "llvm/IR/IntrinsicInst.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/Use.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/Support/Allocator.h"
97 #include "llvm/Support/ArrayRecycler.h"
98 #include "llvm/Support/Casting.h"
99 #include "llvm/Support/CommandLine.h"
100 #include "llvm/Support/Debug.h"
101 #include "llvm/Support/DebugCounter.h"
102 #include "llvm/Support/ErrorHandling.h"
103 #include "llvm/Support/PointerLikeTypeTraits.h"
104 #include "llvm/Support/raw_ostream.h"
105 #include "llvm/Transforms/Scalar/GVNExpression.h"
106 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
107 #include "llvm/Transforms/Utils/Local.h"
108 #include "llvm/Transforms/Utils/PredicateInfo.h"
109 #include "llvm/Transforms/Utils/VNCoercion.h"
110 #include <algorithm>
111 #include <cassert>
112 #include <cstdint>
113 #include <iterator>
114 #include <map>
115 #include <memory>
116 #include <set>
117 #include <string>
118 #include <tuple>
119 #include <utility>
120 #include <vector>
121 
122 using namespace llvm;
123 using namespace llvm::GVNExpression;
124 using namespace llvm::VNCoercion;
125 using namespace llvm::PatternMatch;
126 
127 #define DEBUG_TYPE "newgvn"
128 
129 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
130 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
131 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
132 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
133 STATISTIC(NumGVNMaxIterations,
134           "Maximum Number of iterations it took to converge GVN");
135 STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
136 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
137 STATISTIC(NumGVNAvoidedSortedLeaderChanges,
138           "Number of avoided sorted leader changes");
139 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
140 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
141 STATISTIC(NumGVNPHIOfOpsEliminations,
142           "Number of things eliminated using PHI of ops");
143 DEBUG_COUNTER(VNCounter, "newgvn-vn",
144               "Controls which instructions are value numbered");
145 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
146               "Controls which instructions we create phi of ops for");
147 // Currently store defining access refinement is too slow due to basicaa being
148 // egregiously slow.  This flag lets us keep it working while we work on this
149 // issue.
150 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
151                                            cl::init(false), cl::Hidden);
152 
153 /// Currently, the generation "phi of ops" can result in correctness issues.
154 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
155                                     cl::Hidden);
156 
157 //===----------------------------------------------------------------------===//
158 //                                GVN Pass
159 //===----------------------------------------------------------------------===//
160 
161 // Anchor methods.
162 namespace llvm {
163 namespace GVNExpression {
164 
165 Expression::~Expression() = default;
166 BasicExpression::~BasicExpression() = default;
167 CallExpression::~CallExpression() = default;
168 LoadExpression::~LoadExpression() = default;
169 StoreExpression::~StoreExpression() = default;
170 AggregateValueExpression::~AggregateValueExpression() = default;
171 PHIExpression::~PHIExpression() = default;
172 
173 } // end namespace GVNExpression
174 } // end namespace llvm
175 
176 namespace {
177 
178 // Tarjan's SCC finding algorithm with Nuutila's improvements
179 // SCCIterator is actually fairly complex for the simple thing we want.
180 // It also wants to hand us SCC's that are unrelated to the phi node we ask
181 // about, and have us process them there or risk redoing work.
182 // Graph traits over a filter iterator also doesn't work that well here.
183 // This SCC finder is specialized to walk use-def chains, and only follows
184 // instructions,
185 // not generic values (arguments, etc).
186 struct TarjanSCC {
187   TarjanSCC() : Components(1) {}
188 
189   void Start(const Instruction *Start) {
190     if (Root.lookup(Start) == 0)
191       FindSCC(Start);
192   }
193 
194   const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
195     unsigned ComponentID = ValueToComponent.lookup(V);
196 
197     assert(ComponentID > 0 &&
198            "Asking for a component for a value we never processed");
199     return Components[ComponentID];
200   }
201 
202 private:
203   void FindSCC(const Instruction *I) {
204     Root[I] = ++DFSNum;
205     // Store the DFS Number we had before it possibly gets incremented.
206     unsigned int OurDFS = DFSNum;
207     for (const auto &Op : I->operands()) {
208       if (auto *InstOp = dyn_cast<Instruction>(Op)) {
209         if (Root.lookup(Op) == 0)
210           FindSCC(InstOp);
211         if (!InComponent.count(Op))
212           Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
213       }
214     }
215     // See if we really were the root of a component, by seeing if we still have
216     // our DFSNumber.  If we do, we are the root of the component, and we have
217     // completed a component. If we do not, we are not the root of a component,
218     // and belong on the component stack.
219     if (Root.lookup(I) == OurDFS) {
220       unsigned ComponentID = Components.size();
221       Components.resize(Components.size() + 1);
222       auto &Component = Components.back();
223       Component.insert(I);
224       LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n");
225       InComponent.insert(I);
226       ValueToComponent[I] = ComponentID;
227       // Pop a component off the stack and label it.
228       while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
229         auto *Member = Stack.back();
230         LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n");
231         Component.insert(Member);
232         InComponent.insert(Member);
233         ValueToComponent[Member] = ComponentID;
234         Stack.pop_back();
235       }
236     } else {
237       // Part of a component, push to stack
238       Stack.push_back(I);
239     }
240   }
241 
242   unsigned int DFSNum = 1;
243   SmallPtrSet<const Value *, 8> InComponent;
244   DenseMap<const Value *, unsigned int> Root;
245   SmallVector<const Value *, 8> Stack;
246 
247   // Store the components as vector of ptr sets, because we need the topo order
248   // of SCC's, but not individual member order
249   SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
250 
251   DenseMap<const Value *, unsigned> ValueToComponent;
252 };
253 
254 // Congruence classes represent the set of expressions/instructions
255 // that are all the same *during some scope in the function*.
256 // That is, because of the way we perform equality propagation, and
257 // because of memory value numbering, it is not correct to assume
258 // you can willy-nilly replace any member with any other at any
259 // point in the function.
260 //
261 // For any Value in the Member set, it is valid to replace any dominated member
262 // with that Value.
263 //
264 // Every congruence class has a leader, and the leader is used to symbolize
265 // instructions in a canonical way (IE every operand of an instruction that is a
266 // member of the same congruence class will always be replaced with leader
267 // during symbolization).  To simplify symbolization, we keep the leader as a
268 // constant if class can be proved to be a constant value.  Otherwise, the
269 // leader is the member of the value set with the smallest DFS number.  Each
270 // congruence class also has a defining expression, though the expression may be
271 // null.  If it exists, it can be used for forward propagation and reassociation
272 // of values.
273 
274 // For memory, we also track a representative MemoryAccess, and a set of memory
275 // members for MemoryPhis (which have no real instructions). Note that for
276 // memory, it seems tempting to try to split the memory members into a
277 // MemoryCongruenceClass or something.  Unfortunately, this does not work
278 // easily.  The value numbering of a given memory expression depends on the
279 // leader of the memory congruence class, and the leader of memory congruence
280 // class depends on the value numbering of a given memory expression.  This
281 // leads to wasted propagation, and in some cases, missed optimization.  For
282 // example: If we had value numbered two stores together before, but now do not,
283 // we move them to a new value congruence class.  This in turn will move at one
284 // of the memorydefs to a new memory congruence class.  Which in turn, affects
285 // the value numbering of the stores we just value numbered (because the memory
286 // congruence class is part of the value number).  So while theoretically
287 // possible to split them up, it turns out to be *incredibly* complicated to get
288 // it to work right, because of the interdependency.  While structurally
289 // slightly messier, it is algorithmically much simpler and faster to do what we
290 // do here, and track them both at once in the same class.
291 // Note: The default iterators for this class iterate over values
292 class CongruenceClass {
293 public:
294   using MemberType = Value;
295   using MemberSet = SmallPtrSet<MemberType *, 4>;
296   using MemoryMemberType = MemoryPhi;
297   using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
298 
299   explicit CongruenceClass(unsigned ID) : ID(ID) {}
300   CongruenceClass(unsigned ID, std::pair<Value *, unsigned int> Leader,
301                   const Expression *E)
302       : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
303 
304   unsigned getID() const { return ID; }
305 
306   // True if this class has no members left.  This is mainly used for assertion
307   // purposes, and for skipping empty classes.
308   bool isDead() const {
309     // If it's both dead from a value perspective, and dead from a memory
310     // perspective, it's really dead.
311     return empty() && memory_empty();
312   }
313 
314   // Leader functions
315   Value *getLeader() const { return RepLeader.first; }
316   void setLeader(std::pair<Value *, unsigned int> Leader) {
317     RepLeader = Leader;
318   }
319   const std::pair<Value *, unsigned int> &getNextLeader() const {
320     return NextLeader;
321   }
322   void resetNextLeader() { NextLeader = {nullptr, ~0}; }
323   bool addPossibleLeader(std::pair<Value *, unsigned int> LeaderPair) {
324     if (LeaderPair.second < RepLeader.second) {
325       NextLeader = RepLeader;
326       RepLeader = LeaderPair;
327       return true;
328     } else if (LeaderPair.second < NextLeader.second) {
329       NextLeader = LeaderPair;
330     }
331     return false;
332   }
333 
334   Value *getStoredValue() const { return RepStoredValue; }
335   void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
336   const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
337   void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
338 
339   // Forward propagation info
340   const Expression *getDefiningExpr() const { return DefiningExpr; }
341 
342   // Value member set
343   bool empty() const { return Members.empty(); }
344   unsigned size() const { return Members.size(); }
345   MemberSet::const_iterator begin() const { return Members.begin(); }
346   MemberSet::const_iterator end() const { return Members.end(); }
347   void insert(MemberType *M) { Members.insert(M); }
348   void erase(MemberType *M) { Members.erase(M); }
349   void swap(MemberSet &Other) { Members.swap(Other); }
350 
351   // Memory member set
352   bool memory_empty() const { return MemoryMembers.empty(); }
353   unsigned memory_size() const { return MemoryMembers.size(); }
354   MemoryMemberSet::const_iterator memory_begin() const {
355     return MemoryMembers.begin();
356   }
357   MemoryMemberSet::const_iterator memory_end() const {
358     return MemoryMembers.end();
359   }
360   iterator_range<MemoryMemberSet::const_iterator> memory() const {
361     return make_range(memory_begin(), memory_end());
362   }
363 
364   void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
365   void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
366 
367   // Store count
368   unsigned getStoreCount() const { return StoreCount; }
369   void incStoreCount() { ++StoreCount; }
370   void decStoreCount() {
371     assert(StoreCount != 0 && "Store count went negative");
372     --StoreCount;
373   }
374 
375   // True if this class has no memory members.
376   bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
377 
378   // Return true if two congruence classes are equivalent to each other. This
379   // means that every field but the ID number and the dead field are equivalent.
380   bool isEquivalentTo(const CongruenceClass *Other) const {
381     if (!Other)
382       return false;
383     if (this == Other)
384       return true;
385 
386     if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
387         std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
388                  Other->RepMemoryAccess))
389       return false;
390     if (DefiningExpr != Other->DefiningExpr)
391       if (!DefiningExpr || !Other->DefiningExpr ||
392           *DefiningExpr != *Other->DefiningExpr)
393         return false;
394 
395     if (Members.size() != Other->Members.size())
396       return false;
397 
398     return llvm::set_is_subset(Members, Other->Members);
399   }
400 
401 private:
402   unsigned ID;
403 
404   // Representative leader and its corresponding RPO number.
405   // The leader must have the lowest RPO number.
406   std::pair<Value *, unsigned int> RepLeader = {nullptr, ~0U};
407 
408   // The most dominating leader after our current leader (given by the RPO
409   // number), because the member set is not sorted and is expensive to keep
410   // sorted all the time.
411   std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
412 
413   // If this is represented by a store, the value of the store.
414   Value *RepStoredValue = nullptr;
415 
416   // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
417   // access.
418   const MemoryAccess *RepMemoryAccess = nullptr;
419 
420   // Defining Expression.
421   const Expression *DefiningExpr = nullptr;
422 
423   // Actual members of this class.
424   MemberSet Members;
425 
426   // This is the set of MemoryPhis that exist in the class. MemoryDefs and
427   // MemoryUses have real instructions representing them, so we only need to
428   // track MemoryPhis here.
429   MemoryMemberSet MemoryMembers;
430 
431   // Number of stores in this congruence class.
432   // This is used so we can detect store equivalence changes properly.
433   int StoreCount = 0;
434 };
435 
436 } // end anonymous namespace
437 
438 namespace llvm {
439 
440 struct ExactEqualsExpression {
441   const Expression &E;
442 
443   explicit ExactEqualsExpression(const Expression &E) : E(E) {}
444 
445   hash_code getComputedHash() const { return E.getComputedHash(); }
446 
447   bool operator==(const Expression &Other) const {
448     return E.exactlyEquals(Other);
449   }
450 };
451 
452 template <> struct DenseMapInfo<const Expression *> {
453   static const Expression *getEmptyKey() {
454     auto Val = static_cast<uintptr_t>(-1);
455     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
456     return reinterpret_cast<const Expression *>(Val);
457   }
458 
459   static const Expression *getTombstoneKey() {
460     auto Val = static_cast<uintptr_t>(~1U);
461     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
462     return reinterpret_cast<const Expression *>(Val);
463   }
464 
465   static unsigned getHashValue(const Expression *E) {
466     return E->getComputedHash();
467   }
468 
469   static unsigned getHashValue(const ExactEqualsExpression &E) {
470     return E.getComputedHash();
471   }
472 
473   static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
474     if (RHS == getTombstoneKey() || RHS == getEmptyKey())
475       return false;
476     return LHS == *RHS;
477   }
478 
479   static bool isEqual(const Expression *LHS, const Expression *RHS) {
480     if (LHS == RHS)
481       return true;
482     if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
483         LHS == getEmptyKey() || RHS == getEmptyKey())
484       return false;
485     // Compare hashes before equality.  This is *not* what the hashtable does,
486     // since it is computing it modulo the number of buckets, whereas we are
487     // using the full hash keyspace.  Since the hashes are precomputed, this
488     // check is *much* faster than equality.
489     if (LHS->getComputedHash() != RHS->getComputedHash())
490       return false;
491     return *LHS == *RHS;
492   }
493 };
494 
495 } // end namespace llvm
496 
497 namespace {
498 
499 class NewGVN {
500   Function &F;
501   DominatorTree *DT = nullptr;
502   const TargetLibraryInfo *TLI = nullptr;
503   AliasAnalysis *AA = nullptr;
504   MemorySSA *MSSA = nullptr;
505   MemorySSAWalker *MSSAWalker = nullptr;
506   AssumptionCache *AC = nullptr;
507   const DataLayout &DL;
508   std::unique_ptr<PredicateInfo> PredInfo;
509 
510   // These are the only two things the create* functions should have
511   // side-effects on due to allocating memory.
512   mutable BumpPtrAllocator ExpressionAllocator;
513   mutable ArrayRecycler<Value *> ArgRecycler;
514   mutable TarjanSCC SCCFinder;
515   const SimplifyQuery SQ;
516 
517   // Number of function arguments, used by ranking
518   unsigned int NumFuncArgs = 0;
519 
520   // RPOOrdering of basic blocks
521   DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
522 
523   // Congruence class info.
524 
525   // This class is called INITIAL in the paper. It is the class everything
526   // startsout in, and represents any value. Being an optimistic analysis,
527   // anything in the TOP class has the value TOP, which is indeterminate and
528   // equivalent to everything.
529   CongruenceClass *TOPClass = nullptr;
530   std::vector<CongruenceClass *> CongruenceClasses;
531   unsigned NextCongruenceNum = 0;
532 
533   // Value Mappings.
534   DenseMap<Value *, CongruenceClass *> ValueToClass;
535   DenseMap<Value *, const Expression *> ValueToExpression;
536 
537   // Value PHI handling, used to make equivalence between phi(op, op) and
538   // op(phi, phi).
539   // These mappings just store various data that would normally be part of the
540   // IR.
541   SmallPtrSet<const Instruction *, 8> PHINodeUses;
542 
543   // The cached results, in general, are only valid for the specific block where
544   // they were computed. The unsigned part of the key is a unique block
545   // identifier
546   DenseMap<std::pair<const Value *, unsigned>, bool> OpSafeForPHIOfOps;
547   unsigned CacheIdx;
548 
549   // Map a temporary instruction we created to a parent block.
550   DenseMap<const Value *, BasicBlock *> TempToBlock;
551 
552   // Map between the already in-program instructions and the temporary phis we
553   // created that they are known equivalent to.
554   DenseMap<const Value *, PHINode *> RealToTemp;
555 
556   // In order to know when we should re-process instructions that have
557   // phi-of-ops, we track the set of expressions that they needed as
558   // leaders. When we discover new leaders for those expressions, we process the
559   // associated phi-of-op instructions again in case they have changed.  The
560   // other way they may change is if they had leaders, and those leaders
561   // disappear.  However, at the point they have leaders, there are uses of the
562   // relevant operands in the created phi node, and so they will get reprocessed
563   // through the normal user marking we perform.
564   mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
565   DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
566       ExpressionToPhiOfOps;
567 
568   // Map from temporary operation to MemoryAccess.
569   DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;
570 
571   // Set of all temporary instructions we created.
572   // Note: This will include instructions that were just created during value
573   // numbering.  The way to test if something is using them is to check
574   // RealToTemp.
575   DenseSet<Instruction *> AllTempInstructions;
576 
577   // This is the set of instructions to revisit on a reachability change.  At
578   // the end of the main iteration loop it will contain at least all the phi of
579   // ops instructions that will be changed to phis, as well as regular phis.
580   // During the iteration loop, it may contain other things, such as phi of ops
581   // instructions that used edge reachability to reach a result, and so need to
582   // be revisited when the edge changes, independent of whether the phi they
583   // depended on changes.
584   DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange;
585 
586   // Mapping from predicate info we used to the instructions we used it with.
587   // In order to correctly ensure propagation, we must keep track of what
588   // comparisons we used, so that when the values of the comparisons change, we
589   // propagate the information to the places we used the comparison.
590   mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
591       PredicateToUsers;
592 
593   // the same reasoning as PredicateToUsers.  When we skip MemoryAccesses for
594   // stores, we no longer can rely solely on the def-use chains of MemorySSA.
595   mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
596       MemoryToUsers;
597 
598   // A table storing which memorydefs/phis represent a memory state provably
599   // equivalent to another memory state.
600   // We could use the congruence class machinery, but the MemoryAccess's are
601   // abstract memory states, so they can only ever be equivalent to each other,
602   // and not to constants, etc.
603   DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
604 
605   // We could, if we wanted, build MemoryPhiExpressions and
606   // MemoryVariableExpressions, etc, and value number them the same way we value
607   // number phi expressions.  For the moment, this seems like overkill.  They
608   // can only exist in one of three states: they can be TOP (equal to
609   // everything), Equivalent to something else, or unique.  Because we do not
610   // create expressions for them, we need to simulate leader change not just
611   // when they change class, but when they change state.  Note: We can do the
612   // same thing for phis, and avoid having phi expressions if we wanted, We
613   // should eventually unify in one direction or the other, so this is a little
614   // bit of an experiment in which turns out easier to maintain.
615   enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
616   DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
617 
618   enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
619   mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;
620 
621   // Expression to class mapping.
622   using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
623   ExpressionClassMap ExpressionToClass;
624 
625   // We have a single expression that represents currently DeadExpressions.
626   // For dead expressions we can prove will stay dead, we mark them with
627   // DFS number zero.  However, it's possible in the case of phi nodes
628   // for us to assume/prove all arguments are dead during fixpointing.
629   // We use DeadExpression for that case.
630   DeadExpression *SingletonDeadExpression = nullptr;
631 
632   // Which values have changed as a result of leader changes.
633   SmallPtrSet<Value *, 8> LeaderChanges;
634 
635   // Reachability info.
636   using BlockEdge = BasicBlockEdge;
637   DenseSet<BlockEdge> ReachableEdges;
638   SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
639 
640   // This is a bitvector because, on larger functions, we may have
641   // thousands of touched instructions at once (entire blocks,
642   // instructions with hundreds of uses, etc).  Even with optimization
643   // for when we mark whole blocks as touched, when this was a
644   // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
645   // the time in GVN just managing this list.  The bitvector, on the
646   // other hand, efficiently supports test/set/clear of both
647   // individual and ranges, as well as "find next element" This
648   // enables us to use it as a worklist with essentially 0 cost.
649   BitVector TouchedInstructions;
650 
651   DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
652   mutable DenseMap<const IntrinsicInst *, const Value *> IntrinsicInstPred;
653 
654 #ifndef NDEBUG
655   // Debugging for how many times each block and instruction got processed.
656   DenseMap<const Value *, unsigned> ProcessedCount;
657 #endif
658 
659   // DFS info.
660   // This contains a mapping from Instructions to DFS numbers.
661   // The numbering starts at 1. An instruction with DFS number zero
662   // means that the instruction is dead.
663   DenseMap<const Value *, unsigned> InstrDFS;
664 
665   // This contains the mapping DFS numbers to instructions.
666   SmallVector<Value *, 32> DFSToInstr;
667 
668   // Deletion info.
669   SmallPtrSet<Instruction *, 8> InstructionsToErase;
670 
671 public:
672   NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
673          TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
674          const DataLayout &DL)
675       : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), AC(AC), DL(DL),
676         PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)),
677         SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false,
678            /*CanUseUndef=*/false) {}
679 
680   bool runGVN();
681 
682 private:
683   /// Helper struct return a Expression with an optional extra dependency.
684   struct ExprResult {
685     const Expression *Expr;
686     Value *ExtraDep;
687     const PredicateBase *PredDep;
688 
689     ExprResult(const Expression *Expr, Value *ExtraDep = nullptr,
690                const PredicateBase *PredDep = nullptr)
691         : Expr(Expr), ExtraDep(ExtraDep), PredDep(PredDep) {}
692     ExprResult(const ExprResult &) = delete;
693     ExprResult(ExprResult &&Other)
694         : Expr(Other.Expr), ExtraDep(Other.ExtraDep), PredDep(Other.PredDep) {
695       Other.Expr = nullptr;
696       Other.ExtraDep = nullptr;
697       Other.PredDep = nullptr;
698     }
699     ExprResult &operator=(const ExprResult &Other) = delete;
700     ExprResult &operator=(ExprResult &&Other) = delete;
701 
702     ~ExprResult() { assert(!ExtraDep && "unhandled ExtraDep"); }
703 
704     operator bool() const { return Expr; }
705 
706     static ExprResult none() { return {nullptr, nullptr, nullptr}; }
707     static ExprResult some(const Expression *Expr, Value *ExtraDep = nullptr) {
708       return {Expr, ExtraDep, nullptr};
709     }
710     static ExprResult some(const Expression *Expr,
711                            const PredicateBase *PredDep) {
712       return {Expr, nullptr, PredDep};
713     }
714     static ExprResult some(const Expression *Expr, Value *ExtraDep,
715                            const PredicateBase *PredDep) {
716       return {Expr, ExtraDep, PredDep};
717     }
718   };
719 
720   // Expression handling.
721   ExprResult createExpression(Instruction *) const;
722   const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
723                                            Instruction *) const;
724 
725   // Our canonical form for phi arguments is a pair of incoming value, incoming
726   // basic block.
727   using ValPair = std::pair<Value *, BasicBlock *>;
728 
729   PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *,
730                                      BasicBlock *, bool &HasBackEdge,
731                                      bool &OriginalOpsConstant) const;
732   const DeadExpression *createDeadExpression() const;
733   const VariableExpression *createVariableExpression(Value *) const;
734   const ConstantExpression *createConstantExpression(Constant *) const;
735   const Expression *createVariableOrConstant(Value *V) const;
736   const UnknownExpression *createUnknownExpression(Instruction *) const;
737   const StoreExpression *createStoreExpression(StoreInst *,
738                                                const MemoryAccess *) const;
739   LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
740                                        const MemoryAccess *) const;
741   const CallExpression *createCallExpression(CallInst *,
742                                              const MemoryAccess *) const;
743   const AggregateValueExpression *
744   createAggregateValueExpression(Instruction *) const;
745   bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
746 
747   // Congruence class handling.
748   CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
749     // Set RPO to 0 for values that are always available (constants and function
750     // args). These should always be made leader.
751     unsigned LeaderDFS = 0;
752 
753     // If Leader is not specified, either we have a memory class or the leader
754     // will be set later. Otherwise, if Leader is an Instruction, set LeaderDFS
755     // to its RPO number.
756     if (!Leader)
757       LeaderDFS = ~0;
758     else if (auto *I = dyn_cast<Instruction>(Leader))
759       LeaderDFS = InstrToDFSNum(I);
760     auto *result =
761         new CongruenceClass(NextCongruenceNum++, {Leader, LeaderDFS}, E);
762     CongruenceClasses.emplace_back(result);
763     return result;
764   }
765 
766   CongruenceClass *createMemoryClass(MemoryAccess *MA) {
767     auto *CC = createCongruenceClass(nullptr, nullptr);
768     CC->setMemoryLeader(MA);
769     return CC;
770   }
771 
772   CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
773     auto *CC = getMemoryClass(MA);
774     if (CC->getMemoryLeader() != MA)
775       CC = createMemoryClass(MA);
776     return CC;
777   }
778 
779   CongruenceClass *createSingletonCongruenceClass(Value *Member) {
780     CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
781     CClass->insert(Member);
782     ValueToClass[Member] = CClass;
783     return CClass;
784   }
785 
786   void initializeCongruenceClasses(Function &F);
787   const Expression *makePossiblePHIOfOps(Instruction *,
788                                          SmallPtrSetImpl<Value *> &);
789   Value *findLeaderForInst(Instruction *ValueOp,
790                            SmallPtrSetImpl<Value *> &Visited,
791                            MemoryAccess *MemAccess, Instruction *OrigInst,
792                            BasicBlock *PredBB);
793   bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock,
794                            SmallPtrSetImpl<const Value *> &);
795   void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
796   void removePhiOfOps(Instruction *I, PHINode *PHITemp);
797 
798   // Value number an Instruction or MemoryPhi.
799   void valueNumberMemoryPhi(MemoryPhi *);
800   void valueNumberInstruction(Instruction *);
801 
802   // Symbolic evaluation.
803   ExprResult checkExprResults(Expression *, Instruction *, Value *) const;
804   ExprResult performSymbolicEvaluation(Instruction *,
805                                        SmallPtrSetImpl<Value *> &) const;
806   const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
807                                                 Instruction *,
808                                                 MemoryAccess *) const;
809   const Expression *performSymbolicLoadEvaluation(Instruction *) const;
810   const Expression *performSymbolicStoreEvaluation(Instruction *) const;
811   ExprResult performSymbolicCallEvaluation(Instruction *) const;
812   void sortPHIOps(MutableArrayRef<ValPair> Ops) const;
813   const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>,
814                                                  Instruction *I,
815                                                  BasicBlock *PHIBlock) const;
816   const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
817   ExprResult performSymbolicCmpEvaluation(Instruction *) const;
818   ExprResult performSymbolicPredicateInfoEvaluation(IntrinsicInst *) const;
819 
820   // Congruence finding.
821   bool someEquivalentDominates(const Instruction *, const Instruction *) const;
822   Value *lookupOperandLeader(Value *) const;
823   CongruenceClass *getClassForExpression(const Expression *E) const;
824   void performCongruenceFinding(Instruction *, const Expression *);
825   void moveValueToNewCongruenceClass(Instruction *, const Expression *,
826                                      CongruenceClass *, CongruenceClass *);
827   void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
828                                       CongruenceClass *, CongruenceClass *);
829   Value *getNextValueLeader(CongruenceClass *) const;
830   const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
831   bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
832   CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
833   const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
834   bool isMemoryAccessTOP(const MemoryAccess *) const;
835 
836   // Ranking
837   unsigned int getRank(const Value *) const;
838   bool shouldSwapOperands(const Value *, const Value *) const;
839   bool shouldSwapOperandsForIntrinsic(const Value *, const Value *,
840                                       const IntrinsicInst *I) const;
841 
842   // Reachability handling.
843   void updateReachableEdge(BasicBlock *, BasicBlock *);
844   void processOutgoingEdges(Instruction *, BasicBlock *);
845   Value *findConditionEquivalence(Value *) const;
846 
847   // Elimination.
848   struct ValueDFS;
849   void convertClassToDFSOrdered(const CongruenceClass &,
850                                 SmallVectorImpl<ValueDFS> &,
851                                 DenseMap<const Value *, unsigned int> &,
852                                 SmallPtrSetImpl<Instruction *> &) const;
853   void convertClassToLoadsAndStores(const CongruenceClass &,
854                                     SmallVectorImpl<ValueDFS> &) const;
855 
856   bool eliminateInstructions(Function &);
857   void replaceInstruction(Instruction *, Value *);
858   void markInstructionForDeletion(Instruction *);
859   void deleteInstructionsInBlock(BasicBlock *);
860   Value *findPHIOfOpsLeader(const Expression *, const Instruction *,
861                             const BasicBlock *) const;
862 
863   // Various instruction touch utilities
864   template <typename Map, typename KeyType>
865   void touchAndErase(Map &, const KeyType &);
866   void markUsersTouched(Value *);
867   void markMemoryUsersTouched(const MemoryAccess *);
868   void markMemoryDefTouched(const MemoryAccess *);
869   void markPredicateUsersTouched(Instruction *);
870   void markValueLeaderChangeTouched(CongruenceClass *CC);
871   void markMemoryLeaderChangeTouched(CongruenceClass *CC);
872   void markPhiOfOpsChanged(const Expression *E);
873   void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
874   void addAdditionalUsers(Value *To, Value *User) const;
875   void addAdditionalUsers(ExprResult &Res, Instruction *User) const;
876 
877   // Main loop of value numbering
878   void iterateTouchedInstructions();
879 
880   // Utilities.
881   void cleanupTables();
882   std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
883   void updateProcessedCount(const Value *V);
884   void verifyMemoryCongruency() const;
885   void verifyIterationSettled(Function &F);
886   void verifyStoreExpressions() const;
887   bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
888                               const MemoryAccess *, const MemoryAccess *) const;
889   BasicBlock *getBlockForValue(Value *V) const;
890   void deleteExpression(const Expression *E) const;
891   MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
892   MemoryPhi *getMemoryAccess(const BasicBlock *) const;
893   template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
894 
895   unsigned InstrToDFSNum(const Value *V) const {
896     assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
897     return InstrDFS.lookup(V);
898   }
899 
900   unsigned InstrToDFSNum(const MemoryAccess *MA) const {
901     return MemoryToDFSNum(MA);
902   }
903 
904   Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
905 
906   // Given a MemoryAccess, return the relevant instruction DFS number.  Note:
907   // This deliberately takes a value so it can be used with Use's, which will
908   // auto-convert to Value's but not to MemoryAccess's.
909   unsigned MemoryToDFSNum(const Value *MA) const {
910     assert(isa<MemoryAccess>(MA) &&
911            "This should not be used with instructions");
912     return isa<MemoryUseOrDef>(MA)
913                ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
914                : InstrDFS.lookup(MA);
915   }
916 
917   bool isCycleFree(const Instruction *) const;
918   bool isBackedge(BasicBlock *From, BasicBlock *To) const;
919 
920   // Debug counter info.  When verifying, we have to reset the value numbering
921   // debug counter to the same state it started in to get the same results.
922   DebugCounter::CounterState StartingVNCounter;
923 };
924 
925 } // end anonymous namespace
926 
927 template <typename T>
928 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
929   if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
930     return false;
931   return LHS.MemoryExpression::equals(RHS);
932 }
933 
934 bool LoadExpression::equals(const Expression &Other) const {
935   return equalsLoadStoreHelper(*this, Other);
936 }
937 
938 bool StoreExpression::equals(const Expression &Other) const {
939   if (!equalsLoadStoreHelper(*this, Other))
940     return false;
941   // Make sure that store vs store includes the value operand.
942   if (const auto *S = dyn_cast<StoreExpression>(&Other))
943     if (getStoredValue() != S->getStoredValue())
944       return false;
945   return true;
946 }
947 
948 bool CallExpression::equals(const Expression &Other) const {
949   if (!MemoryExpression::equals(Other))
950     return false;
951 
952   if (auto *RHS = dyn_cast<CallExpression>(&Other))
953     return Call->getAttributes()
954         .intersectWith(Call->getContext(), RHS->Call->getAttributes())
955         .has_value();
956 
957   return false;
958 }
959 
960 // Determine if the edge From->To is a backedge
961 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
962   return From == To ||
963          RPOOrdering.lookup(DT->getNode(From)) >=
964              RPOOrdering.lookup(DT->getNode(To));
965 }
966 
967 #ifndef NDEBUG
968 static std::string getBlockName(const BasicBlock *B) {
969   return DOTGraphTraits<DOTFuncInfo *>::getSimpleNodeLabel(B, nullptr);
970 }
971 #endif
972 
973 // Get a MemoryAccess for an instruction, fake or real.
974 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
975   auto *Result = MSSA->getMemoryAccess(I);
976   return Result ? Result : TempToMemory.lookup(I);
977 }
978 
979 // Get a MemoryPhi for a basic block. These are all real.
980 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
981   return MSSA->getMemoryAccess(BB);
982 }
983 
984 // Get the basic block from an instruction/memory value.
985 BasicBlock *NewGVN::getBlockForValue(Value *V) const {
986   if (auto *I = dyn_cast<Instruction>(V)) {
987     auto *Parent = I->getParent();
988     if (Parent)
989       return Parent;
990     Parent = TempToBlock.lookup(V);
991     assert(Parent && "Every fake instruction should have a block");
992     return Parent;
993   }
994 
995   auto *MP = dyn_cast<MemoryPhi>(V);
996   assert(MP && "Should have been an instruction or a MemoryPhi");
997   return MP->getBlock();
998 }
999 
1000 // Delete a definitely dead expression, so it can be reused by the expression
1001 // allocator.  Some of these are not in creation functions, so we have to accept
1002 // const versions.
1003 void NewGVN::deleteExpression(const Expression *E) const {
1004   assert(isa<BasicExpression>(E));
1005   auto *BE = cast<BasicExpression>(E);
1006   const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
1007   ExpressionAllocator.Deallocate(E);
1008 }
1009 
1010 // If V is a predicateinfo copy, get the thing it is a copy of.
1011 static Value *getCopyOf(const Value *V) {
1012   if (auto *II = dyn_cast<IntrinsicInst>(V))
1013     if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1014       return II->getOperand(0);
1015   return nullptr;
1016 }
1017 
1018 // Return true if V is really PN, even accounting for predicateinfo copies.
1019 static bool isCopyOfPHI(const Value *V, const PHINode *PN) {
1020   return V == PN || getCopyOf(V) == PN;
1021 }
1022 
1023 static bool isCopyOfAPHI(const Value *V) {
1024   auto *CO = getCopyOf(V);
1025   return CO && isa<PHINode>(CO);
1026 }
1027 
1028 // Sort PHI Operands into a canonical order.  What we use here is an RPO
1029 // order. The BlockInstRange numbers are generated in an RPO walk of the basic
1030 // blocks.
1031 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const {
1032   llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) {
1033     return BlockInstRange.lookup(P1.second).first <
1034            BlockInstRange.lookup(P2.second).first;
1035   });
1036 }
1037 
1038 // Return true if V is a value that will always be available (IE can
1039 // be placed anywhere) in the function.  We don't do globals here
1040 // because they are often worse to put in place.
1041 static bool alwaysAvailable(Value *V) {
1042   return isa<Constant>(V) || isa<Argument>(V);
1043 }
1044 
1045 // Create a PHIExpression from an array of {incoming edge, value} pairs.  I is
1046 // the original instruction we are creating a PHIExpression for (but may not be
1047 // a phi node). We require, as an invariant, that all the PHIOperands in the
1048 // same block are sorted the same way. sortPHIOps will sort them into a
1049 // canonical order.
1050 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands,
1051                                            const Instruction *I,
1052                                            BasicBlock *PHIBlock,
1053                                            bool &HasBackedge,
1054                                            bool &OriginalOpsConstant) const {
1055   unsigned NumOps = PHIOperands.size();
1056   auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock);
1057 
1058   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1059   E->setType(PHIOperands.begin()->first->getType());
1060   E->setOpcode(Instruction::PHI);
1061 
1062   // Filter out unreachable phi operands.
1063   auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) {
1064     auto *BB = P.second;
1065     if (auto *PHIOp = dyn_cast<PHINode>(I))
1066       if (isCopyOfPHI(P.first, PHIOp))
1067         return false;
1068     if (!ReachableEdges.count({BB, PHIBlock}))
1069       return false;
1070     // Things in TOPClass are equivalent to everything.
1071     if (ValueToClass.lookup(P.first) == TOPClass)
1072       return false;
1073     OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first);
1074     HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
1075     return lookupOperandLeader(P.first) != I;
1076   });
1077   std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
1078                  [&](const ValPair &P) -> Value * {
1079                    return lookupOperandLeader(P.first);
1080                  });
1081   return E;
1082 }
1083 
1084 // Set basic expression info (Arguments, type, opcode) for Expression
1085 // E from Instruction I in block B.
1086 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
1087   bool AllConstant = true;
1088   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
1089     E->setType(GEP->getSourceElementType());
1090   else
1091     E->setType(I->getType());
1092   E->setOpcode(I->getOpcode());
1093   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1094 
1095   // Transform the operand array into an operand leader array, and keep track of
1096   // whether all members are constant.
1097   std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
1098     auto Operand = lookupOperandLeader(O);
1099     AllConstant = AllConstant && isa<Constant>(Operand);
1100     return Operand;
1101   });
1102 
1103   return AllConstant;
1104 }
1105 
1106 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
1107                                                  Value *Arg1, Value *Arg2,
1108                                                  Instruction *I) const {
1109   auto *E = new (ExpressionAllocator) BasicExpression(2);
1110   // TODO: we need to remove context instruction after Value Tracking
1111   // can run without context instruction
1112   const SimplifyQuery Q = SQ.getWithInstruction(I);
1113 
1114   E->setType(T);
1115   E->setOpcode(Opcode);
1116   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1117   if (Instruction::isCommutative(Opcode)) {
1118     // Ensure that commutative instructions that only differ by a permutation
1119     // of their operands get the same value number by sorting the operand value
1120     // numbers.  Since all commutative instructions have two operands it is more
1121     // efficient to sort by hand rather than using, say, std::sort.
1122     if (shouldSwapOperands(Arg1, Arg2))
1123       std::swap(Arg1, Arg2);
1124   }
1125   E->op_push_back(lookupOperandLeader(Arg1));
1126   E->op_push_back(lookupOperandLeader(Arg2));
1127 
1128   Value *V = simplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), Q);
1129   if (auto Simplified = checkExprResults(E, I, V)) {
1130     addAdditionalUsers(Simplified, I);
1131     return Simplified.Expr;
1132   }
1133   return E;
1134 }
1135 
1136 // Take a Value returned by simplification of Expression E/Instruction
1137 // I, and see if it resulted in a simpler expression. If so, return
1138 // that expression.
1139 NewGVN::ExprResult NewGVN::checkExprResults(Expression *E, Instruction *I,
1140                                             Value *V) const {
1141   if (!V)
1142     return ExprResult::none();
1143 
1144   if (auto *C = dyn_cast<Constant>(V)) {
1145     if (I)
1146       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1147                         << " constant " << *C << "\n");
1148     NumGVNOpsSimplified++;
1149     assert(isa<BasicExpression>(E) &&
1150            "We should always have had a basic expression here");
1151     deleteExpression(E);
1152     return ExprResult::some(createConstantExpression(C));
1153   } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1154     if (I)
1155       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1156                         << " variable " << *V << "\n");
1157     deleteExpression(E);
1158     return ExprResult::some(createVariableExpression(V));
1159   }
1160 
1161   CongruenceClass *CC = ValueToClass.lookup(V);
1162   if (CC) {
1163     if (CC->getLeader() && CC->getLeader() != I) {
1164       return ExprResult::some(createVariableOrConstant(CC->getLeader()), V);
1165     }
1166     if (CC->getDefiningExpr()) {
1167       if (I)
1168         LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1169                           << " expression " << *CC->getDefiningExpr() << "\n");
1170       NumGVNOpsSimplified++;
1171       deleteExpression(E);
1172       return ExprResult::some(CC->getDefiningExpr(), V);
1173     }
1174   }
1175 
1176   return ExprResult::none();
1177 }
1178 
1179 // Create a value expression from the instruction I, replacing operands with
1180 // their leaders.
1181 
1182 NewGVN::ExprResult NewGVN::createExpression(Instruction *I) const {
1183   auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
1184   // TODO: we need to remove context instruction after Value Tracking
1185   // can run without context instruction
1186   const SimplifyQuery Q = SQ.getWithInstruction(I);
1187 
1188   bool AllConstant = setBasicExpressionInfo(I, E);
1189 
1190   if (I->isCommutative()) {
1191     // Ensure that commutative instructions that only differ by a permutation
1192     // of their operands get the same value number by sorting the operand value
1193     // numbers.  Since all commutative instructions have two operands it is more
1194     // efficient to sort by hand rather than using, say, std::sort.
1195     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
1196     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
1197       E->swapOperands(0, 1);
1198   }
1199   // Perform simplification.
1200   if (auto *CI = dyn_cast<CmpInst>(I)) {
1201     // Sort the operand value numbers so x<y and y>x get the same value
1202     // number.
1203     CmpInst::Predicate Predicate = CI->getPredicate();
1204     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
1205       E->swapOperands(0, 1);
1206       Predicate = CmpInst::getSwappedPredicate(Predicate);
1207     }
1208     E->setOpcode((CI->getOpcode() << 8) | Predicate);
1209     // TODO: 25% of our time is spent in simplifyCmpInst with pointer operands
1210     assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
1211            "Wrong types on cmp instruction");
1212     assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
1213             E->getOperand(1)->getType() == I->getOperand(1)->getType()));
1214     Value *V =
1215         simplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), Q);
1216     if (auto Simplified = checkExprResults(E, I, V))
1217       return Simplified;
1218   } else if (isa<SelectInst>(I)) {
1219     if (isa<Constant>(E->getOperand(0)) ||
1220         E->getOperand(1) == E->getOperand(2)) {
1221       assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
1222              E->getOperand(2)->getType() == I->getOperand(2)->getType());
1223       Value *V = simplifySelectInst(E->getOperand(0), E->getOperand(1),
1224                                     E->getOperand(2), Q);
1225       if (auto Simplified = checkExprResults(E, I, V))
1226         return Simplified;
1227     }
1228   } else if (I->isBinaryOp()) {
1229     Value *V =
1230         simplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), Q);
1231     if (auto Simplified = checkExprResults(E, I, V))
1232       return Simplified;
1233   } else if (auto *CI = dyn_cast<CastInst>(I)) {
1234     Value *V =
1235         simplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), Q);
1236     if (auto Simplified = checkExprResults(E, I, V))
1237       return Simplified;
1238   } else if (auto *GEPI = dyn_cast<GetElementPtrInst>(I)) {
1239     Value *V = simplifyGEPInst(GEPI->getSourceElementType(), *E->op_begin(),
1240                                ArrayRef(std::next(E->op_begin()), E->op_end()),
1241                                GEPI->getNoWrapFlags(), Q);
1242     if (auto Simplified = checkExprResults(E, I, V))
1243       return Simplified;
1244   } else if (AllConstant) {
1245     // We don't bother trying to simplify unless all of the operands
1246     // were constant.
1247     // TODO: There are a lot of Simplify*'s we could call here, if we
1248     // wanted to.  The original motivating case for this code was a
1249     // zext i1 false to i8, which we don't have an interface to
1250     // simplify (IE there is no SimplifyZExt).
1251 
1252     SmallVector<Constant *, 8> C;
1253     for (Value *Arg : E->operands())
1254       C.emplace_back(cast<Constant>(Arg));
1255 
1256     if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
1257       if (auto Simplified = checkExprResults(E, I, V))
1258         return Simplified;
1259   }
1260   return ExprResult::some(E);
1261 }
1262 
1263 const AggregateValueExpression *
1264 NewGVN::createAggregateValueExpression(Instruction *I) const {
1265   if (auto *II = dyn_cast<InsertValueInst>(I)) {
1266     auto *E = new (ExpressionAllocator)
1267         AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
1268     setBasicExpressionInfo(I, E);
1269     E->allocateIntOperands(ExpressionAllocator);
1270     std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
1271     return E;
1272   } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1273     auto *E = new (ExpressionAllocator)
1274         AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
1275     setBasicExpressionInfo(EI, E);
1276     E->allocateIntOperands(ExpressionAllocator);
1277     std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
1278     return E;
1279   }
1280   llvm_unreachable("Unhandled type of aggregate value operation");
1281 }
1282 
1283 const DeadExpression *NewGVN::createDeadExpression() const {
1284   // DeadExpression has no arguments and all DeadExpression's are the same,
1285   // so we only need one of them.
1286   return SingletonDeadExpression;
1287 }
1288 
1289 const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
1290   auto *E = new (ExpressionAllocator) VariableExpression(V);
1291   E->setOpcode(V->getValueID());
1292   return E;
1293 }
1294 
1295 const Expression *NewGVN::createVariableOrConstant(Value *V) const {
1296   if (auto *C = dyn_cast<Constant>(V))
1297     return createConstantExpression(C);
1298   return createVariableExpression(V);
1299 }
1300 
1301 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
1302   auto *E = new (ExpressionAllocator) ConstantExpression(C);
1303   E->setOpcode(C->getValueID());
1304   return E;
1305 }
1306 
1307 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
1308   auto *E = new (ExpressionAllocator) UnknownExpression(I);
1309   E->setOpcode(I->getOpcode());
1310   return E;
1311 }
1312 
1313 const CallExpression *
1314 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
1315   // FIXME: Add operand bundles for calls.
1316   auto *E =
1317       new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
1318   setBasicExpressionInfo(CI, E);
1319   if (CI->isCommutative()) {
1320     // Ensure that commutative intrinsics that only differ by a permutation
1321     // of their operands get the same value number by sorting the operand value
1322     // numbers.
1323     assert(CI->getNumOperands() >= 2 && "Unsupported commutative intrinsic!");
1324     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
1325       E->swapOperands(0, 1);
1326   }
1327   return E;
1328 }
1329 
1330 // Return true if some equivalent of instruction Inst dominates instruction U.
1331 bool NewGVN::someEquivalentDominates(const Instruction *Inst,
1332                                      const Instruction *U) const {
1333   auto *CC = ValueToClass.lookup(Inst);
1334    // This must be an instruction because we are only called from phi nodes
1335   // in the case that the value it needs to check against is an instruction.
1336 
1337   // The most likely candidates for dominance are the leader and the next leader.
1338   // The leader or nextleader will dominate in all cases where there is an
1339   // equivalent that is higher up in the dom tree.
1340   // We can't *only* check them, however, because the
1341   // dominator tree could have an infinite number of non-dominating siblings
1342   // with instructions that are in the right congruence class.
1343   //       A
1344   // B C D E F G
1345   // |
1346   // H
1347   // Instruction U could be in H,  with equivalents in every other sibling.
1348   // Depending on the rpo order picked, the leader could be the equivalent in
1349   // any of these siblings.
1350   if (!CC)
1351     return false;
1352   if (alwaysAvailable(CC->getLeader()))
1353     return true;
1354   if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
1355     return true;
1356   if (CC->getNextLeader().first &&
1357       DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
1358     return true;
1359   return llvm::any_of(*CC, [&](const Value *Member) {
1360     return Member != CC->getLeader() &&
1361            DT->dominates(cast<Instruction>(Member), U);
1362   });
1363 }
1364 
1365 // See if we have a congruence class and leader for this operand, and if so,
1366 // return it. Otherwise, return the operand itself.
1367 Value *NewGVN::lookupOperandLeader(Value *V) const {
1368   CongruenceClass *CC = ValueToClass.lookup(V);
1369   if (CC) {
1370     // Everything in TOP is represented by poison, as it can be any value.
1371     // We do have to make sure we get the type right though, so we can't set the
1372     // RepLeader to poison.
1373     if (CC == TOPClass)
1374       return PoisonValue::get(V->getType());
1375     return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
1376   }
1377 
1378   return V;
1379 }
1380 
1381 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1382   auto *CC = getMemoryClass(MA);
1383   assert(CC->getMemoryLeader() &&
1384          "Every MemoryAccess should be mapped to a congruence class with a "
1385          "representative memory access");
1386   return CC->getMemoryLeader();
1387 }
1388 
1389 // Return true if the MemoryAccess is really equivalent to everything. This is
1390 // equivalent to the lattice value "TOP" in most lattices.  This is the initial
1391 // state of all MemoryAccesses.
1392 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
1393   return getMemoryClass(MA) == TOPClass;
1394 }
1395 
1396 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
1397                                              LoadInst *LI,
1398                                              const MemoryAccess *MA) const {
1399   auto *E =
1400       new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
1401   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1402   E->setType(LoadType);
1403 
1404   // Give store and loads same opcode so they value number together.
1405   E->setOpcode(0);
1406   E->op_push_back(PointerOp);
1407 
1408   // TODO: Value number heap versions. We may be able to discover
1409   // things alias analysis can't on it's own (IE that a store and a
1410   // load have the same value, and thus, it isn't clobbering the load).
1411   return E;
1412 }
1413 
1414 const StoreExpression *
1415 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
1416   auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
1417   auto *E = new (ExpressionAllocator)
1418       StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
1419   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1420   E->setType(SI->getValueOperand()->getType());
1421 
1422   // Give store and loads same opcode so they value number together.
1423   E->setOpcode(0);
1424   E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
1425 
1426   // TODO: Value number heap versions. We may be able to discover
1427   // things alias analysis can't on it's own (IE that a store and a
1428   // load have the same value, and thus, it isn't clobbering the load).
1429   return E;
1430 }
1431 
1432 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
1433   // Unlike loads, we never try to eliminate stores, so we do not check if they
1434   // are simple and avoid value numbering them.
1435   auto *SI = cast<StoreInst>(I);
1436   auto *StoreAccess = getMemoryAccess(SI);
1437   // Get the expression, if any, for the RHS of the MemoryDef.
1438   const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1439   if (EnableStoreRefinement)
1440     StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1441   // If we bypassed the use-def chains, make sure we add a use.
1442   StoreRHS = lookupMemoryLeader(StoreRHS);
1443   if (StoreRHS != StoreAccess->getDefiningAccess())
1444     addMemoryUsers(StoreRHS, StoreAccess);
1445   // If we are defined by ourselves, use the live on entry def.
1446   if (StoreRHS == StoreAccess)
1447     StoreRHS = MSSA->getLiveOnEntryDef();
1448 
1449   if (SI->isSimple()) {
1450     // See if we are defined by a previous store expression, it already has a
1451     // value, and it's the same value as our current store. FIXME: Right now, we
1452     // only do this for simple stores, we should expand to cover memcpys, etc.
1453     const auto *LastStore = createStoreExpression(SI, StoreRHS);
1454     const auto *LastCC = ExpressionToClass.lookup(LastStore);
1455     // We really want to check whether the expression we matched was a store. No
1456     // easy way to do that. However, we can check that the class we found has a
1457     // store, which, assuming the value numbering state is not corrupt, is
1458     // sufficient, because we must also be equivalent to that store's expression
1459     // for it to be in the same class as the load.
1460     if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
1461       return LastStore;
1462     // Also check if our value operand is defined by a load of the same memory
1463     // location, and the memory state is the same as it was then (otherwise, it
1464     // could have been overwritten later. See test32 in
1465     // transforms/DeadStoreElimination/simple.ll).
1466     if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
1467       if ((lookupOperandLeader(LI->getPointerOperand()) ==
1468            LastStore->getOperand(0)) &&
1469           (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
1470            StoreRHS))
1471         return LastStore;
1472     deleteExpression(LastStore);
1473   }
1474 
1475   // If the store is not equivalent to anything, value number it as a store that
1476   // produces a unique memory state (instead of using it's MemoryUse, we use
1477   // it's MemoryDef).
1478   return createStoreExpression(SI, StoreAccess);
1479 }
1480 
1481 // See if we can extract the value of a loaded pointer from a load, a store, or
1482 // a memory instruction.
1483 const Expression *
1484 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1485                                     LoadInst *LI, Instruction *DepInst,
1486                                     MemoryAccess *DefiningAccess) const {
1487   assert((!LI || LI->isSimple()) && "Not a simple load");
1488   if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
1489     // Can't forward from non-atomic to atomic without violating memory model.
1490     // Also don't need to coerce if they are the same type, we will just
1491     // propagate.
1492     if (LI->isAtomic() > DepSI->isAtomic() ||
1493         LoadType == DepSI->getValueOperand()->getType())
1494       return nullptr;
1495     int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1496     if (Offset >= 0) {
1497       if (auto *C = dyn_cast<Constant>(
1498               lookupOperandLeader(DepSI->getValueOperand()))) {
1499         if (Constant *Res = getConstantValueForLoad(C, Offset, LoadType, DL)) {
1500           LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
1501                             << " to constant " << *Res << "\n");
1502           return createConstantExpression(Res);
1503         }
1504       }
1505     }
1506   } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) {
1507     // Can't forward from non-atomic to atomic without violating memory model.
1508     if (LI->isAtomic() > DepLI->isAtomic())
1509       return nullptr;
1510     int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1511     if (Offset >= 0) {
1512       // We can coerce a constant load into a load.
1513       if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1514         if (auto *PossibleConstant =
1515                 getConstantValueForLoad(C, Offset, LoadType, DL)) {
1516           LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
1517                             << " to constant " << *PossibleConstant << "\n");
1518           return createConstantExpression(PossibleConstant);
1519         }
1520     }
1521   } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1522     int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1523     if (Offset >= 0) {
1524       if (auto *PossibleConstant =
1525               getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1526         LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1527                           << " to constant " << *PossibleConstant << "\n");
1528         return createConstantExpression(PossibleConstant);
1529       }
1530     }
1531   }
1532 
1533   // All of the below are only true if the loaded pointer is produced
1534   // by the dependent instruction.
1535   if (LoadPtr != lookupOperandLeader(DepInst) &&
1536       !AA->isMustAlias(LoadPtr, DepInst))
1537     return nullptr;
1538   // If this load really doesn't depend on anything, then we must be loading an
1539   // undef value.  This can happen when loading for a fresh allocation with no
1540   // intervening stores, for example.  Note that this is only true in the case
1541   // that the result of the allocation is pointer equal to the load ptr.
1542   if (isa<AllocaInst>(DepInst)) {
1543     return createConstantExpression(UndefValue::get(LoadType));
1544   }
1545   // If this load occurs either right after a lifetime begin,
1546   // then the loaded value is undefined.
1547   else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1548     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1549       return createConstantExpression(UndefValue::get(LoadType));
1550   } else if (auto *InitVal =
1551                  getInitialValueOfAllocation(DepInst, TLI, LoadType))
1552       return createConstantExpression(InitVal);
1553 
1554   return nullptr;
1555 }
1556 
1557 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
1558   auto *LI = cast<LoadInst>(I);
1559 
1560   // We can eliminate in favor of non-simple loads, but we won't be able to
1561   // eliminate the loads themselves.
1562   if (!LI->isSimple())
1563     return nullptr;
1564 
1565   Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
1566   // Load of undef is UB.
1567   if (isa<UndefValue>(LoadAddressLeader))
1568     return createConstantExpression(PoisonValue::get(LI->getType()));
1569   MemoryAccess *OriginalAccess = getMemoryAccess(I);
1570   MemoryAccess *DefiningAccess =
1571       MSSAWalker->getClobberingMemoryAccess(OriginalAccess);
1572 
1573   if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1574     if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1575       Instruction *DefiningInst = MD->getMemoryInst();
1576       // If the defining instruction is not reachable, replace with poison.
1577       if (!ReachableBlocks.count(DefiningInst->getParent()))
1578         return createConstantExpression(PoisonValue::get(LI->getType()));
1579       // This will handle stores and memory insts.  We only do if it the
1580       // defining access has a different type, or it is a pointer produced by
1581       // certain memory operations that cause the memory to have a fixed value
1582       // (IE things like calloc).
1583       if (const auto *CoercionResult =
1584               performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1585                                           DefiningInst, DefiningAccess))
1586         return CoercionResult;
1587     }
1588   }
1589 
1590   const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI,
1591                                         DefiningAccess);
1592   // If our MemoryLeader is not our defining access, add a use to the
1593   // MemoryLeader, so that we get reprocessed when it changes.
1594   if (LE->getMemoryLeader() != DefiningAccess)
1595     addMemoryUsers(LE->getMemoryLeader(), OriginalAccess);
1596   return LE;
1597 }
1598 
1599 NewGVN::ExprResult
1600 NewGVN::performSymbolicPredicateInfoEvaluation(IntrinsicInst *I) const {
1601   auto *PI = PredInfo->getPredicateInfoFor(I);
1602   if (!PI)
1603     return ExprResult::none();
1604 
1605   LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
1606 
1607   const std::optional<PredicateConstraint> &Constraint = PI->getConstraint();
1608   if (!Constraint)
1609     return ExprResult::none();
1610 
1611   CmpInst::Predicate Predicate = Constraint->Predicate;
1612   Value *CmpOp0 = I->getOperand(0);
1613   Value *CmpOp1 = Constraint->OtherOp;
1614 
1615   Value *FirstOp = lookupOperandLeader(CmpOp0);
1616   Value *SecondOp = lookupOperandLeader(CmpOp1);
1617   Value *AdditionallyUsedValue = CmpOp0;
1618 
1619   // Sort the ops.
1620   if (shouldSwapOperandsForIntrinsic(FirstOp, SecondOp, I)) {
1621     std::swap(FirstOp, SecondOp);
1622     Predicate = CmpInst::getSwappedPredicate(Predicate);
1623     AdditionallyUsedValue = CmpOp1;
1624   }
1625 
1626   if (Predicate == CmpInst::ICMP_EQ)
1627     return ExprResult::some(createVariableOrConstant(FirstOp),
1628                             AdditionallyUsedValue, PI);
1629 
1630   // Handle the special case of floating point.
1631   if (Predicate == CmpInst::FCMP_OEQ && isa<ConstantFP>(FirstOp) &&
1632       !cast<ConstantFP>(FirstOp)->isZero())
1633     return ExprResult::some(createConstantExpression(cast<Constant>(FirstOp)),
1634                             AdditionallyUsedValue, PI);
1635 
1636   return ExprResult::none();
1637 }
1638 
1639 // Evaluate read only and pure calls, and create an expression result.
1640 NewGVN::ExprResult NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
1641   auto *CI = cast<CallInst>(I);
1642   if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1643     // Intrinsics with the returned attribute are copies of arguments.
1644     if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1645       if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1646         if (auto Res = performSymbolicPredicateInfoEvaluation(II))
1647           return Res;
1648       return ExprResult::some(createVariableOrConstant(ReturnedValue));
1649     }
1650   }
1651 
1652   // FIXME: Currently the calls which may access the thread id may
1653   // be considered as not accessing the memory. But this is
1654   // problematic for coroutines, since coroutines may resume in a
1655   // different thread. So we disable the optimization here for the
1656   // correctness. However, it may block many other correct
1657   // optimizations. Revert this one when we detect the memory
1658   // accessing kind more precisely.
1659   if (CI->getFunction()->isPresplitCoroutine())
1660     return ExprResult::none();
1661 
1662   // Do not combine convergent calls since they implicitly depend on the set of
1663   // threads that is currently executing, and they might be in different basic
1664   // blocks.
1665   if (CI->isConvergent())
1666     return ExprResult::none();
1667 
1668   if (AA->doesNotAccessMemory(CI)) {
1669     return ExprResult::some(
1670         createCallExpression(CI, TOPClass->getMemoryLeader()));
1671   } else if (AA->onlyReadsMemory(CI)) {
1672     if (auto *MA = MSSA->getMemoryAccess(CI)) {
1673       auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA);
1674       return ExprResult::some(createCallExpression(CI, DefiningAccess));
1675     } else // MSSA determined that CI does not access memory.
1676       return ExprResult::some(
1677           createCallExpression(CI, TOPClass->getMemoryLeader()));
1678   }
1679   return ExprResult::none();
1680 }
1681 
1682 // Retrieve the memory class for a given MemoryAccess.
1683 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1684   auto *Result = MemoryAccessToClass.lookup(MA);
1685   assert(Result && "Should have found memory class");
1686   return Result;
1687 }
1688 
1689 // Update the MemoryAccess equivalence table to say that From is equal to To,
1690 // and return true if this is different from what already existed in the table.
1691 bool NewGVN::setMemoryClass(const MemoryAccess *From,
1692                             CongruenceClass *NewClass) {
1693   assert(NewClass &&
1694          "Every MemoryAccess should be getting mapped to a non-null class");
1695   LLVM_DEBUG(dbgs() << "Setting " << *From);
1696   LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
1697   LLVM_DEBUG(dbgs() << NewClass->getID()
1698                     << " with current MemoryAccess leader ");
1699   LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
1700 
1701   auto LookupResult = MemoryAccessToClass.find(From);
1702   bool Changed = false;
1703   // If it's already in the table, see if the value changed.
1704   if (LookupResult != MemoryAccessToClass.end()) {
1705     auto *OldClass = LookupResult->second;
1706     if (OldClass != NewClass) {
1707       // If this is a phi, we have to handle memory member updates.
1708       if (auto *MP = dyn_cast<MemoryPhi>(From)) {
1709         OldClass->memory_erase(MP);
1710         NewClass->memory_insert(MP);
1711         // This may have killed the class if it had no non-memory members
1712         if (OldClass->getMemoryLeader() == From) {
1713           if (OldClass->definesNoMemory()) {
1714             OldClass->setMemoryLeader(nullptr);
1715           } else {
1716             OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1717             LLVM_DEBUG(dbgs() << "Memory class leader change for class "
1718                               << OldClass->getID() << " to "
1719                               << *OldClass->getMemoryLeader()
1720                               << " due to removal of a memory member " << *From
1721                               << "\n");
1722             markMemoryLeaderChangeTouched(OldClass);
1723           }
1724         }
1725       }
1726       // It wasn't equivalent before, and now it is.
1727       LookupResult->second = NewClass;
1728       Changed = true;
1729     }
1730   }
1731 
1732   return Changed;
1733 }
1734 
1735 // Determine if a instruction is cycle-free.  That means the values in the
1736 // instruction don't depend on any expressions that can change value as a result
1737 // of the instruction.  For example, a non-cycle free instruction would be v =
1738 // phi(0, v+1).
1739 bool NewGVN::isCycleFree(const Instruction *I) const {
1740   // In order to compute cycle-freeness, we do SCC finding on the instruction,
1741   // and see what kind of SCC it ends up in.  If it is a singleton, it is
1742   // cycle-free.  If it is not in a singleton, it is only cycle free if the
1743   // other members are all phi nodes (as they do not compute anything, they are
1744   // copies).
1745   auto ICS = InstCycleState.lookup(I);
1746   if (ICS == ICS_Unknown) {
1747     SCCFinder.Start(I);
1748     auto &SCC = SCCFinder.getComponentFor(I);
1749     // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
1750     if (SCC.size() == 1)
1751       InstCycleState.insert({I, ICS_CycleFree});
1752     else {
1753       bool AllPhis = llvm::all_of(SCC, [](const Value *V) {
1754         return isa<PHINode>(V) || isCopyOfAPHI(V);
1755       });
1756       ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
1757       for (const auto *Member : SCC)
1758         if (auto *MemberPhi = dyn_cast<PHINode>(Member))
1759           InstCycleState.insert({MemberPhi, ICS});
1760     }
1761   }
1762   if (ICS == ICS_Cycle)
1763     return false;
1764   return true;
1765 }
1766 
1767 // Evaluate PHI nodes symbolically and create an expression result.
1768 const Expression *
1769 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,
1770                                      Instruction *I,
1771                                      BasicBlock *PHIBlock) const {
1772   // True if one of the incoming phi edges is a backedge.
1773   bool HasBackedge = false;
1774   // All constant tracks the state of whether all the *original* phi operands
1775   // This is really shorthand for "this phi cannot cycle due to forward
1776   // change in value of the phi is guaranteed not to later change the value of
1777   // the phi. IE it can't be v = phi(undef, v+1)
1778   bool OriginalOpsConstant = true;
1779   auto *E = cast<PHIExpression>(createPHIExpression(
1780       PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant));
1781   // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1782   // See if all arguments are the same.
1783   // We track if any were undef because they need special handling.
1784   bool HasUndef = false, HasPoison = false;
1785   auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
1786     if (isa<PoisonValue>(Arg)) {
1787       HasPoison = true;
1788       return false;
1789     }
1790     if (isa<UndefValue>(Arg)) {
1791       HasUndef = true;
1792       return false;
1793     }
1794     return true;
1795   });
1796   // If we are left with no operands, it's dead.
1797   if (Filtered.empty()) {
1798     // If it has undef or poison at this point, it means there are no-non-undef
1799     // arguments, and thus, the value of the phi node must be undef.
1800     if (HasUndef) {
1801       LLVM_DEBUG(
1802           dbgs() << "PHI Node " << *I
1803                  << " has no non-undef arguments, valuing it as undef\n");
1804       return createConstantExpression(UndefValue::get(I->getType()));
1805     }
1806     if (HasPoison) {
1807       LLVM_DEBUG(
1808           dbgs() << "PHI Node " << *I
1809                  << " has no non-poison arguments, valuing it as poison\n");
1810       return createConstantExpression(PoisonValue::get(I->getType()));
1811     }
1812 
1813     LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
1814     deleteExpression(E);
1815     return createDeadExpression();
1816   }
1817   Value *AllSameValue = *(Filtered.begin());
1818   ++Filtered.begin();
1819   // Can't use std::equal here, sadly, because filter.begin moves.
1820   if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) {
1821     // Can't fold phi(undef, X) -> X unless X can't be poison (thus X is undef
1822     // in the worst case).
1823     if (HasUndef && !isGuaranteedNotToBePoison(AllSameValue, AC, nullptr, DT))
1824       return E;
1825 
1826     // In LLVM's non-standard representation of phi nodes, it's possible to have
1827     // phi nodes with cycles (IE dependent on other phis that are .... dependent
1828     // on the original phi node), especially in weird CFG's where some arguments
1829     // are unreachable, or uninitialized along certain paths.  This can cause
1830     // infinite loops during evaluation. We work around this by not trying to
1831     // really evaluate them independently, but instead using a variable
1832     // expression to say if one is equivalent to the other.
1833     // We also special case undef/poison, so that if we have an undef, we can't
1834     // use the common value unless it dominates the phi block.
1835     if (HasPoison || HasUndef) {
1836       // If we have undef and at least one other value, this is really a
1837       // multivalued phi, and we need to know if it's cycle free in order to
1838       // evaluate whether we can ignore the undef.  The other parts of this are
1839       // just shortcuts.  If there is no backedge, or all operands are
1840       // constants, it also must be cycle free.
1841       if (HasBackedge && !OriginalOpsConstant &&
1842           !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
1843         return E;
1844 
1845       // Only have to check for instructions
1846       if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
1847         if (!someEquivalentDominates(AllSameInst, I))
1848           return E;
1849     }
1850     // Can't simplify to something that comes later in the iteration.
1851     // Otherwise, when and if it changes congruence class, we will never catch
1852     // up. We will always be a class behind it.
1853     if (isa<Instruction>(AllSameValue) &&
1854         InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
1855       return E;
1856     NumGVNPhisAllSame++;
1857     LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
1858                       << "\n");
1859     deleteExpression(E);
1860     return createVariableOrConstant(AllSameValue);
1861   }
1862   return E;
1863 }
1864 
1865 const Expression *
1866 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
1867   if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1868     auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
1869     if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0)
1870       // EI is an extract from one of our with.overflow intrinsics. Synthesize
1871       // a semantically equivalent expression instead of an extract value
1872       // expression.
1873       return createBinaryExpression(WO->getBinaryOp(), EI->getType(),
1874                                     WO->getLHS(), WO->getRHS(), I);
1875   }
1876 
1877   return createAggregateValueExpression(I);
1878 }
1879 
1880 NewGVN::ExprResult NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
1881   assert(isa<CmpInst>(I) && "Expected a cmp instruction.");
1882 
1883   auto *CI = cast<CmpInst>(I);
1884   // See if our operands are equal to those of a previous predicate, and if so,
1885   // if it implies true or false.
1886   auto Op0 = lookupOperandLeader(CI->getOperand(0));
1887   auto Op1 = lookupOperandLeader(CI->getOperand(1));
1888   auto OurPredicate = CI->getPredicate();
1889   if (shouldSwapOperands(Op0, Op1)) {
1890     std::swap(Op0, Op1);
1891     OurPredicate = CI->getSwappedPredicate();
1892   }
1893 
1894   // Avoid processing the same info twice.
1895   const PredicateBase *LastPredInfo = nullptr;
1896   // See if we know something about the comparison itself, like it is the target
1897   // of an assume.
1898   auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1899   if (isa_and_nonnull<PredicateAssume>(CmpPI))
1900     return ExprResult::some(
1901         createConstantExpression(ConstantInt::getTrue(CI->getType())));
1902 
1903   if (Op0 == Op1) {
1904     // This condition does not depend on predicates, no need to add users
1905     if (CI->isTrueWhenEqual())
1906       return ExprResult::some(
1907           createConstantExpression(ConstantInt::getTrue(CI->getType())));
1908     else if (CI->isFalseWhenEqual())
1909       return ExprResult::some(
1910           createConstantExpression(ConstantInt::getFalse(CI->getType())));
1911   }
1912 
1913   // NOTE: Because we are comparing both operands here and below, and using
1914   // previous comparisons, we rely on fact that predicateinfo knows to mark
1915   // comparisons that use renamed operands as users of the earlier comparisons.
1916   // It is *not* enough to just mark predicateinfo renamed operands as users of
1917   // the earlier comparisons, because the *other* operand may have changed in a
1918   // previous iteration.
1919   // Example:
1920   // icmp slt %a, %b
1921   // %b.0 = ssa.copy(%b)
1922   // false branch:
1923   // icmp slt %c, %b.0
1924 
1925   // %c and %a may start out equal, and thus, the code below will say the second
1926   // %icmp is false.  c may become equal to something else, and in that case the
1927   // %second icmp *must* be reexamined, but would not if only the renamed
1928   // %operands are considered users of the icmp.
1929 
1930   // *Currently* we only check one level of comparisons back, and only mark one
1931   // level back as touched when changes happen.  If you modify this code to look
1932   // back farther through comparisons, you *must* mark the appropriate
1933   // comparisons as users in PredicateInfo.cpp, or you will cause bugs.  See if
1934   // we know something just from the operands themselves
1935 
1936   // See if our operands have predicate info, so that we may be able to derive
1937   // something from a previous comparison.
1938   for (const auto &Op : CI->operands()) {
1939     auto *PI = PredInfo->getPredicateInfoFor(Op);
1940     if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1941       if (PI == LastPredInfo)
1942         continue;
1943       LastPredInfo = PI;
1944       // In phi of ops cases, we may have predicate info that we are evaluating
1945       // in a different context.
1946       if (!DT->dominates(PBranch->To, I->getParent()))
1947         continue;
1948       // TODO: Along the false edge, we may know more things too, like
1949       // icmp of
1950       // same operands is false.
1951       // TODO: We only handle actual comparison conditions below, not
1952       // and/or.
1953       auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1954       if (!BranchCond)
1955         continue;
1956       auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1957       auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1958       auto BranchPredicate = BranchCond->getPredicate();
1959       if (shouldSwapOperands(BranchOp0, BranchOp1)) {
1960         std::swap(BranchOp0, BranchOp1);
1961         BranchPredicate = BranchCond->getSwappedPredicate();
1962       }
1963       if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1964         if (PBranch->TrueEdge) {
1965           // If we know the previous predicate is true and we are in the true
1966           // edge then we may be implied true or false.
1967           if (auto R = ICmpInst::isImpliedByMatchingCmp(BranchPredicate,
1968                                                         OurPredicate)) {
1969             auto *C = ConstantInt::getBool(CI->getType(), *R);
1970             return ExprResult::some(createConstantExpression(C), PI);
1971           }
1972         } else {
1973           // Just handle the ne and eq cases, where if we have the same
1974           // operands, we may know something.
1975           if (BranchPredicate == OurPredicate) {
1976             // Same predicate, same ops,we know it was false, so this is false.
1977             return ExprResult::some(
1978                 createConstantExpression(ConstantInt::getFalse(CI->getType())),
1979                 PI);
1980           } else if (BranchPredicate ==
1981                      CmpInst::getInversePredicate(OurPredicate)) {
1982             // Inverse predicate, we know the other was false, so this is true.
1983             return ExprResult::some(
1984                 createConstantExpression(ConstantInt::getTrue(CI->getType())),
1985                 PI);
1986           }
1987         }
1988       }
1989     }
1990   }
1991   // Create expression will take care of simplifyCmpInst
1992   return createExpression(I);
1993 }
1994 
1995 // Substitute and symbolize the instruction before value numbering.
1996 NewGVN::ExprResult
1997 NewGVN::performSymbolicEvaluation(Instruction *I,
1998                                   SmallPtrSetImpl<Value *> &Visited) const {
1999 
2000   const Expression *E = nullptr;
2001   // TODO: memory intrinsics.
2002   // TODO: Some day, we should do the forward propagation and reassociation
2003   // parts of the algorithm.
2004   switch (I->getOpcode()) {
2005   case Instruction::ExtractValue:
2006   case Instruction::InsertValue:
2007     E = performSymbolicAggrValueEvaluation(I);
2008     break;
2009   case Instruction::PHI: {
2010     SmallVector<ValPair, 3> Ops;
2011     auto *PN = cast<PHINode>(I);
2012     for (unsigned i = 0; i < PN->getNumOperands(); ++i)
2013       Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)});
2014     // Sort to ensure the invariant createPHIExpression requires is met.
2015     sortPHIOps(Ops);
2016     E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I));
2017   } break;
2018   case Instruction::Call:
2019     return performSymbolicCallEvaluation(I);
2020     break;
2021   case Instruction::Store:
2022     E = performSymbolicStoreEvaluation(I);
2023     break;
2024   case Instruction::Load:
2025     E = performSymbolicLoadEvaluation(I);
2026     break;
2027   case Instruction::BitCast:
2028   case Instruction::AddrSpaceCast:
2029   case Instruction::Freeze:
2030     return createExpression(I);
2031     break;
2032   case Instruction::ICmp:
2033   case Instruction::FCmp:
2034     return performSymbolicCmpEvaluation(I);
2035     break;
2036   case Instruction::FNeg:
2037   case Instruction::Add:
2038   case Instruction::FAdd:
2039   case Instruction::Sub:
2040   case Instruction::FSub:
2041   case Instruction::Mul:
2042   case Instruction::FMul:
2043   case Instruction::UDiv:
2044   case Instruction::SDiv:
2045   case Instruction::FDiv:
2046   case Instruction::URem:
2047   case Instruction::SRem:
2048   case Instruction::FRem:
2049   case Instruction::Shl:
2050   case Instruction::LShr:
2051   case Instruction::AShr:
2052   case Instruction::And:
2053   case Instruction::Or:
2054   case Instruction::Xor:
2055   case Instruction::Trunc:
2056   case Instruction::ZExt:
2057   case Instruction::SExt:
2058   case Instruction::FPToUI:
2059   case Instruction::FPToSI:
2060   case Instruction::UIToFP:
2061   case Instruction::SIToFP:
2062   case Instruction::FPTrunc:
2063   case Instruction::FPExt:
2064   case Instruction::PtrToInt:
2065   case Instruction::IntToPtr:
2066   case Instruction::Select:
2067   case Instruction::ExtractElement:
2068   case Instruction::InsertElement:
2069   case Instruction::GetElementPtr:
2070     return createExpression(I);
2071     break;
2072   case Instruction::ShuffleVector:
2073     // FIXME: Add support for shufflevector to createExpression.
2074     return ExprResult::none();
2075   default:
2076     return ExprResult::none();
2077   }
2078   return ExprResult::some(E);
2079 }
2080 
2081 // Look up a container of values/instructions in a map, and touch all the
2082 // instructions in the container.  Then erase value from the map.
2083 template <typename Map, typename KeyType>
2084 void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
2085   const auto Result = M.find_as(Key);
2086   if (Result != M.end()) {
2087     for (const typename Map::mapped_type::value_type Mapped : Result->second)
2088       TouchedInstructions.set(InstrToDFSNum(Mapped));
2089     M.erase(Result);
2090   }
2091 }
2092 
2093 void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
2094   assert(User && To != User);
2095   if (isa<Instruction>(To))
2096     AdditionalUsers[To].insert(User);
2097 }
2098 
2099 void NewGVN::addAdditionalUsers(ExprResult &Res, Instruction *User) const {
2100   if (Res.ExtraDep && Res.ExtraDep != User)
2101     addAdditionalUsers(Res.ExtraDep, User);
2102   Res.ExtraDep = nullptr;
2103 
2104   if (Res.PredDep) {
2105     if (const auto *PBranch = dyn_cast<PredicateBranch>(Res.PredDep))
2106       PredicateToUsers[PBranch->Condition].insert(User);
2107     else if (const auto *PAssume = dyn_cast<PredicateAssume>(Res.PredDep))
2108       PredicateToUsers[PAssume->Condition].insert(User);
2109   }
2110   Res.PredDep = nullptr;
2111 }
2112 
2113 void NewGVN::markUsersTouched(Value *V) {
2114   // Now mark the users as touched.
2115   for (auto *User : V->users()) {
2116     assert(isa<Instruction>(User) && "Use of value not within an instruction?");
2117     TouchedInstructions.set(InstrToDFSNum(User));
2118   }
2119   touchAndErase(AdditionalUsers, V);
2120 }
2121 
2122 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
2123   LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
2124   MemoryToUsers[To].insert(U);
2125 }
2126 
2127 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
2128   TouchedInstructions.set(MemoryToDFSNum(MA));
2129 }
2130 
2131 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
2132   if (isa<MemoryUse>(MA))
2133     return;
2134   for (const auto *U : MA->users())
2135     TouchedInstructions.set(MemoryToDFSNum(U));
2136   touchAndErase(MemoryToUsers, MA);
2137 }
2138 
2139 // Touch all the predicates that depend on this instruction.
2140 void NewGVN::markPredicateUsersTouched(Instruction *I) {
2141   touchAndErase(PredicateToUsers, I);
2142 }
2143 
2144 // Mark users affected by a memory leader change.
2145 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
2146   for (const auto *M : CC->memory())
2147     markMemoryDefTouched(M);
2148 }
2149 
2150 // Touch the instructions that need to be updated after a congruence class has a
2151 // leader change, and mark changed values.
2152 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
2153   for (auto *M : *CC) {
2154     if (auto *I = dyn_cast<Instruction>(M))
2155       TouchedInstructions.set(InstrToDFSNum(I));
2156     LeaderChanges.insert(M);
2157   }
2158 }
2159 
2160 // Give a range of things that have instruction DFS numbers, this will return
2161 // the member of the range with the smallest dfs number.
2162 template <class T, class Range>
2163 T *NewGVN::getMinDFSOfRange(const Range &R) const {
2164   std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
2165   for (const auto X : R) {
2166     auto DFSNum = InstrToDFSNum(X);
2167     if (DFSNum < MinDFS.second)
2168       MinDFS = {X, DFSNum};
2169   }
2170   return MinDFS.first;
2171 }
2172 
2173 // This function returns the MemoryAccess that should be the next leader of
2174 // congruence class CC, under the assumption that the current leader is going to
2175 // disappear.
2176 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
2177   // TODO: If this ends up to slow, we can maintain a next memory leader like we
2178   // do for regular leaders.
2179   // Make sure there will be a leader to find.
2180   assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
2181   if (CC->getStoreCount() > 0) {
2182     if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
2183       return getMemoryAccess(NL);
2184     // Find the store with the minimum DFS number.
2185     auto *V = getMinDFSOfRange<Value>(make_filter_range(
2186         *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
2187     return getMemoryAccess(cast<StoreInst>(V));
2188   }
2189   assert(CC->getStoreCount() == 0);
2190 
2191   // Given our assertion, hitting this part must mean
2192   // !OldClass->memory_empty()
2193   if (CC->memory_size() == 1)
2194     return *CC->memory_begin();
2195   return getMinDFSOfRange<const MemoryPhi>(CC->memory());
2196 }
2197 
2198 // This function returns the next value leader of a congruence class, under the
2199 // assumption that the current leader is going away.  This should end up being
2200 // the next most dominating member.
2201 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
2202   // We don't need to sort members if there is only 1, and we don't care about
2203   // sorting the TOP class because everything either gets out of it or is
2204   // unreachable.
2205 
2206   if (CC->size() == 1 || CC == TOPClass) {
2207     return *(CC->begin());
2208   } else if (CC->getNextLeader().first) {
2209     ++NumGVNAvoidedSortedLeaderChanges;
2210     return CC->getNextLeader().first;
2211   } else {
2212     ++NumGVNSortedLeaderChanges;
2213     // NOTE: If this ends up to slow, we can maintain a dual structure for
2214     // member testing/insertion, or keep things mostly sorted, and sort only
2215     // here, or use SparseBitVector or ....
2216     return getMinDFSOfRange<Value>(*CC);
2217   }
2218 }
2219 
2220 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2221 // the memory members, etc for the move.
2222 //
2223 // The invariants of this function are:
2224 //
2225 // - I must be moving to NewClass from OldClass
2226 // - The StoreCount of OldClass and NewClass is expected to have been updated
2227 //   for I already if it is a store.
2228 // - The OldClass memory leader has not been updated yet if I was the leader.
2229 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
2230                                             MemoryAccess *InstMA,
2231                                             CongruenceClass *OldClass,
2232                                             CongruenceClass *NewClass) {
2233   // If the leader is I, and we had a representative MemoryAccess, it should
2234   // be the MemoryAccess of OldClass.
2235   assert((!InstMA || !OldClass->getMemoryLeader() ||
2236           OldClass->getLeader() != I ||
2237           MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
2238               MemoryAccessToClass.lookup(InstMA)) &&
2239          "Representative MemoryAccess mismatch");
2240   // First, see what happens to the new class
2241   if (!NewClass->getMemoryLeader()) {
2242     // Should be a new class, or a store becoming a leader of a new class.
2243     assert(NewClass->size() == 1 ||
2244            (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
2245     NewClass->setMemoryLeader(InstMA);
2246     // Mark it touched if we didn't just create a singleton
2247     LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2248                       << NewClass->getID()
2249                       << " due to new memory instruction becoming leader\n");
2250     markMemoryLeaderChangeTouched(NewClass);
2251   }
2252   setMemoryClass(InstMA, NewClass);
2253   // Now, fixup the old class if necessary
2254   if (OldClass->getMemoryLeader() == InstMA) {
2255     if (!OldClass->definesNoMemory()) {
2256       OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
2257       LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2258                         << OldClass->getID() << " to "
2259                         << *OldClass->getMemoryLeader()
2260                         << " due to removal of old leader " << *InstMA << "\n");
2261       markMemoryLeaderChangeTouched(OldClass);
2262     } else
2263       OldClass->setMemoryLeader(nullptr);
2264   }
2265 }
2266 
2267 // Move a value, currently in OldClass, to be part of NewClass
2268 // Update OldClass and NewClass for the move (including changing leaders, etc).
2269 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
2270                                            CongruenceClass *OldClass,
2271                                            CongruenceClass *NewClass) {
2272   if (I == OldClass->getNextLeader().first)
2273     OldClass->resetNextLeader();
2274 
2275   OldClass->erase(I);
2276   NewClass->insert(I);
2277 
2278   // Ensure that the leader has the lowest RPO. If the leader changed notify all
2279   // members of the class.
2280   if (NewClass->getLeader() != I &&
2281       NewClass->addPossibleLeader({I, InstrToDFSNum(I)})) {
2282     markValueLeaderChangeTouched(NewClass);
2283   }
2284 
2285   // Handle our special casing of stores.
2286   if (auto *SI = dyn_cast<StoreInst>(I)) {
2287     OldClass->decStoreCount();
2288     // Okay, so when do we want to make a store a leader of a class?
2289     // If we have a store defined by an earlier load, we want the earlier load
2290     // to lead the class.
2291     // If we have a store defined by something else, we want the store to lead
2292     // the class so everything else gets the "something else" as a value.
2293     // If we have a store as the single member of the class, we want the store
2294     // as the leader
2295     if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
2296       // If it's a store expression we are using, it means we are not equivalent
2297       // to something earlier.
2298       if (auto *SE = dyn_cast<StoreExpression>(E)) {
2299         NewClass->setStoredValue(SE->getStoredValue());
2300         markValueLeaderChangeTouched(NewClass);
2301         // Shift the new class leader to be the store
2302         LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
2303                           << NewClass->getID() << " from "
2304                           << *NewClass->getLeader() << " to  " << *SI
2305                           << " because store joined class\n");
2306         // If we changed the leader, we have to mark it changed because we don't
2307         // know what it will do to symbolic evaluation.
2308         NewClass->setLeader({SI, InstrToDFSNum(SI)});
2309       }
2310       // We rely on the code below handling the MemoryAccess change.
2311     }
2312     NewClass->incStoreCount();
2313   }
2314   // True if there is no memory instructions left in a class that had memory
2315   // instructions before.
2316 
2317   // If it's not a memory use, set the MemoryAccess equivalence
2318   auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
2319   if (InstMA)
2320     moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
2321   ValueToClass[I] = NewClass;
2322   // See if we destroyed the class or need to swap leaders.
2323   if (OldClass->empty() && OldClass != TOPClass) {
2324     if (OldClass->getDefiningExpr()) {
2325       LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
2326                         << " from table\n");
2327       // We erase it as an exact expression to make sure we don't just erase an
2328       // equivalent one.
2329       auto Iter = ExpressionToClass.find_as(
2330           ExactEqualsExpression(*OldClass->getDefiningExpr()));
2331       if (Iter != ExpressionToClass.end())
2332         ExpressionToClass.erase(Iter);
2333 #ifdef EXPENSIVE_CHECKS
2334       assert(
2335           (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
2336           "We erased the expression we just inserted, which should not happen");
2337 #endif
2338     }
2339   } else if (OldClass->getLeader() == I) {
2340     // When the leader changes, the value numbering of
2341     // everything may change due to symbolization changes, so we need to
2342     // reprocess.
2343     LLVM_DEBUG(dbgs() << "Value class leader change for class "
2344                       << OldClass->getID() << "\n");
2345     ++NumGVNLeaderChanges;
2346     // Destroy the stored value if there are no more stores to represent it.
2347     // Note that this is basically clean up for the expression removal that
2348     // happens below.  If we remove stores from a class, we may leave it as a
2349     // class of equivalent memory phis.
2350     if (OldClass->getStoreCount() == 0) {
2351       if (OldClass->getStoredValue())
2352         OldClass->setStoredValue(nullptr);
2353     }
2354     OldClass->setLeader({getNextValueLeader(OldClass),
2355                          InstrToDFSNum(getNextValueLeader(OldClass))});
2356     OldClass->resetNextLeader();
2357     markValueLeaderChangeTouched(OldClass);
2358   }
2359 }
2360 
2361 // For a given expression, mark the phi of ops instructions that could have
2362 // changed as a result.
2363 void NewGVN::markPhiOfOpsChanged(const Expression *E) {
2364   touchAndErase(ExpressionToPhiOfOps, E);
2365 }
2366 
2367 // Perform congruence finding on a given value numbering expression.
2368 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
2369   // This is guaranteed to return something, since it will at least find
2370   // TOP.
2371 
2372   CongruenceClass *IClass = ValueToClass.lookup(I);
2373   assert(IClass && "Should have found a IClass");
2374   // Dead classes should have been eliminated from the mapping.
2375   assert(!IClass->isDead() && "Found a dead class");
2376 
2377   CongruenceClass *EClass = nullptr;
2378   if (const auto *VE = dyn_cast<VariableExpression>(E)) {
2379     EClass = ValueToClass.lookup(VE->getVariableValue());
2380   } else if (isa<DeadExpression>(E)) {
2381     EClass = TOPClass;
2382   }
2383   if (!EClass) {
2384     auto lookupResult = ExpressionToClass.insert({E, nullptr});
2385 
2386     // If it's not in the value table, create a new congruence class.
2387     if (lookupResult.second) {
2388       CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
2389       auto place = lookupResult.first;
2390       place->second = NewClass;
2391 
2392       // Constants and variables should always be made the leader.
2393       if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2394         NewClass->setLeader({CE->getConstantValue(), 0});
2395       } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2396         StoreInst *SI = SE->getStoreInst();
2397         NewClass->setLeader({SI, InstrToDFSNum(SI)});
2398         NewClass->setStoredValue(SE->getStoredValue());
2399         // The RepMemoryAccess field will be filled in properly by the
2400         // moveValueToNewCongruenceClass call.
2401       } else {
2402         NewClass->setLeader({I, InstrToDFSNum(I)});
2403       }
2404       assert(!isa<VariableExpression>(E) &&
2405              "VariableExpression should have been handled already");
2406 
2407       EClass = NewClass;
2408       LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
2409                         << " using expression " << *E << " at "
2410                         << NewClass->getID() << " and leader "
2411                         << *(NewClass->getLeader()));
2412       if (NewClass->getStoredValue())
2413         LLVM_DEBUG(dbgs() << " and stored value "
2414                           << *(NewClass->getStoredValue()));
2415       LLVM_DEBUG(dbgs() << "\n");
2416     } else {
2417       EClass = lookupResult.first->second;
2418       if (isa<ConstantExpression>(E))
2419         assert((isa<Constant>(EClass->getLeader()) ||
2420                 (EClass->getStoredValue() &&
2421                  isa<Constant>(EClass->getStoredValue()))) &&
2422                "Any class with a constant expression should have a "
2423                "constant leader");
2424 
2425       assert(EClass && "Somehow don't have an eclass");
2426 
2427       assert(!EClass->isDead() && "We accidentally looked up a dead class");
2428     }
2429   }
2430   bool ClassChanged = IClass != EClass;
2431   bool LeaderChanged = LeaderChanges.erase(I);
2432   if (ClassChanged || LeaderChanged) {
2433     LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression "
2434                       << *E << "\n");
2435     if (ClassChanged) {
2436       moveValueToNewCongruenceClass(I, E, IClass, EClass);
2437       markPhiOfOpsChanged(E);
2438     }
2439 
2440     markUsersTouched(I);
2441     if (MemoryAccess *MA = getMemoryAccess(I))
2442       markMemoryUsersTouched(MA);
2443     if (auto *CI = dyn_cast<CmpInst>(I))
2444       markPredicateUsersTouched(CI);
2445   }
2446   // If we changed the class of the store, we want to ensure nothing finds the
2447   // old store expression.  In particular, loads do not compare against stored
2448   // value, so they will find old store expressions (and associated class
2449   // mappings) if we leave them in the table.
2450   if (ClassChanged && isa<StoreInst>(I)) {
2451     auto *OldE = ValueToExpression.lookup(I);
2452     // It could just be that the old class died. We don't want to erase it if we
2453     // just moved classes.
2454     if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
2455       // Erase this as an exact expression to ensure we don't erase expressions
2456       // equivalent to it.
2457       auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
2458       if (Iter != ExpressionToClass.end())
2459         ExpressionToClass.erase(Iter);
2460     }
2461   }
2462   ValueToExpression[I] = E;
2463 }
2464 
2465 // Process the fact that Edge (from, to) is reachable, including marking
2466 // any newly reachable blocks and instructions for processing.
2467 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2468   // Check if the Edge was reachable before.
2469   if (ReachableEdges.insert({From, To}).second) {
2470     // If this block wasn't reachable before, all instructions are touched.
2471     if (ReachableBlocks.insert(To).second) {
2472       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2473                         << " marked reachable\n");
2474       const auto &InstRange = BlockInstRange.lookup(To);
2475       TouchedInstructions.set(InstRange.first, InstRange.second);
2476     } else {
2477       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2478                         << " was reachable, but new edge {"
2479                         << getBlockName(From) << "," << getBlockName(To)
2480                         << "} to it found\n");
2481 
2482       // We've made an edge reachable to an existing block, which may
2483       // impact predicates. Otherwise, only mark the phi nodes as touched, as
2484       // they are the only thing that depend on new edges. Anything using their
2485       // values will get propagated to if necessary.
2486       if (MemoryAccess *MemPhi = getMemoryAccess(To))
2487         TouchedInstructions.set(InstrToDFSNum(MemPhi));
2488 
2489       // FIXME: We should just add a union op on a Bitvector and
2490       // SparseBitVector.  We can do it word by word faster than we are doing it
2491       // here.
2492       for (auto InstNum : RevisitOnReachabilityChange[To])
2493         TouchedInstructions.set(InstNum);
2494     }
2495   }
2496 }
2497 
2498 // Given a predicate condition (from a switch, cmp, or whatever) and a block,
2499 // see if we know some constant value for it already.
2500 Value *NewGVN::findConditionEquivalence(Value *Cond) const {
2501   auto Result = lookupOperandLeader(Cond);
2502   return isa<Constant>(Result) ? Result : nullptr;
2503 }
2504 
2505 // Process the outgoing edges of a block for reachability.
2506 void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) {
2507   // Evaluate reachability of terminator instruction.
2508   Value *Cond;
2509   BasicBlock *TrueSucc, *FalseSucc;
2510   if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) {
2511     Value *CondEvaluated = findConditionEquivalence(Cond);
2512     if (!CondEvaluated) {
2513       if (auto *I = dyn_cast<Instruction>(Cond)) {
2514         SmallPtrSet<Value *, 4> Visited;
2515         auto Res = performSymbolicEvaluation(I, Visited);
2516         if (const auto *CE = dyn_cast_or_null<ConstantExpression>(Res.Expr)) {
2517           CondEvaluated = CE->getConstantValue();
2518           addAdditionalUsers(Res, I);
2519         } else {
2520           // Did not use simplification result, no need to add the extra
2521           // dependency.
2522           Res.ExtraDep = nullptr;
2523         }
2524       } else if (isa<ConstantInt>(Cond)) {
2525         CondEvaluated = Cond;
2526       }
2527     }
2528     ConstantInt *CI;
2529     if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2530       if (CI->isOne()) {
2531         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2532                           << " evaluated to true\n");
2533         updateReachableEdge(B, TrueSucc);
2534       } else if (CI->isZero()) {
2535         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2536                           << " evaluated to false\n");
2537         updateReachableEdge(B, FalseSucc);
2538       }
2539     } else {
2540       updateReachableEdge(B, TrueSucc);
2541       updateReachableEdge(B, FalseSucc);
2542     }
2543   } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2544     // For switches, propagate the case values into the case
2545     // destinations.
2546 
2547     Value *SwitchCond = SI->getCondition();
2548     Value *CondEvaluated = findConditionEquivalence(SwitchCond);
2549     // See if we were able to turn this switch statement into a constant.
2550     if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
2551       auto *CondVal = cast<ConstantInt>(CondEvaluated);
2552       // We should be able to get case value for this.
2553       auto Case = *SI->findCaseValue(CondVal);
2554       if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
2555         // We proved the value is outside of the range of the case.
2556         // We can't do anything other than mark the default dest as reachable,
2557         // and go home.
2558         updateReachableEdge(B, SI->getDefaultDest());
2559         return;
2560       }
2561       // Now get where it goes and mark it reachable.
2562       BasicBlock *TargetBlock = Case.getCaseSuccessor();
2563       updateReachableEdge(B, TargetBlock);
2564     } else {
2565       for (BasicBlock *TargetBlock : successors(SI->getParent()))
2566         updateReachableEdge(B, TargetBlock);
2567     }
2568   } else {
2569     // Otherwise this is either unconditional, or a type we have no
2570     // idea about. Just mark successors as reachable.
2571     for (BasicBlock *TargetBlock : successors(TI->getParent()))
2572       updateReachableEdge(B, TargetBlock);
2573 
2574     // This also may be a memory defining terminator, in which case, set it
2575     // equivalent only to itself.
2576     //
2577     auto *MA = getMemoryAccess(TI);
2578     if (MA && !isa<MemoryUse>(MA)) {
2579       auto *CC = ensureLeaderOfMemoryClass(MA);
2580       if (setMemoryClass(MA, CC))
2581         markMemoryUsersTouched(MA);
2582     }
2583   }
2584 }
2585 
2586 // Remove the PHI of Ops PHI for I
2587 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) {
2588   InstrDFS.erase(PHITemp);
2589   // It's still a temp instruction. We keep it in the array so it gets erased.
2590   // However, it's no longer used by I, or in the block
2591   TempToBlock.erase(PHITemp);
2592   RealToTemp.erase(I);
2593   // We don't remove the users from the phi node uses. This wastes a little
2594   // time, but such is life.  We could use two sets to track which were there
2595   // are the start of NewGVN, and which were added, but right nowt he cost of
2596   // tracking is more than the cost of checking for more phi of ops.
2597 }
2598 
2599 // Add PHI Op in BB as a PHI of operations version of ExistingValue.
2600 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
2601                          Instruction *ExistingValue) {
2602   InstrDFS[Op] = InstrToDFSNum(ExistingValue);
2603   AllTempInstructions.insert(Op);
2604   TempToBlock[Op] = BB;
2605   RealToTemp[ExistingValue] = Op;
2606   // Add all users to phi node use, as they are now uses of the phi of ops phis
2607   // and may themselves be phi of ops.
2608   for (auto *U : ExistingValue->users())
2609     if (auto *UI = dyn_cast<Instruction>(U))
2610       PHINodeUses.insert(UI);
2611 }
2612 
2613 static bool okayForPHIOfOps(const Instruction *I) {
2614   if (!EnablePhiOfOps)
2615     return false;
2616   return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
2617          isa<LoadInst>(I);
2618 }
2619 
2620 // Return true if this operand will be safe to use for phi of ops.
2621 //
2622 // The reason some operands are unsafe is that we are not trying to recursively
2623 // translate everything back through phi nodes.  We actually expect some lookups
2624 // of expressions to fail.  In particular, a lookup where the expression cannot
2625 // exist in the predecessor.  This is true even if the expression, as shown, can
2626 // be determined to be constant.
2627 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock,
2628                                  SmallPtrSetImpl<const Value *> &Visited) {
2629   SmallVector<Value *, 4> Worklist;
2630   Worklist.push_back(V);
2631   while (!Worklist.empty()) {
2632     auto *I = Worklist.pop_back_val();
2633     if (!isa<Instruction>(I))
2634       continue;
2635 
2636     auto OISIt = OpSafeForPHIOfOps.find({I, CacheIdx});
2637     if (OISIt != OpSafeForPHIOfOps.end())
2638       return OISIt->second;
2639 
2640     // Keep walking until we either dominate the phi block, or hit a phi, or run
2641     // out of things to check.
2642     if (DT->properlyDominates(getBlockForValue(I), PHIBlock)) {
2643       OpSafeForPHIOfOps.insert({{I, CacheIdx}, true});
2644       continue;
2645     }
2646     // PHI in the same block.
2647     if (isa<PHINode>(I) && getBlockForValue(I) == PHIBlock) {
2648       OpSafeForPHIOfOps.insert({{I, CacheIdx}, false});
2649       return false;
2650     }
2651 
2652     auto *OrigI = cast<Instruction>(I);
2653     // When we hit an instruction that reads memory (load, call, etc), we must
2654     // consider any store that may happen in the loop. For now, we assume the
2655     // worst: there is a store in the loop that alias with this read.
2656     // The case where the load is outside the loop is already covered by the
2657     // dominator check above.
2658     // TODO: relax this condition
2659     if (OrigI->mayReadFromMemory())
2660       return false;
2661 
2662     // Check the operands of the current instruction.
2663     for (auto *Op : OrigI->operand_values()) {
2664       if (!isa<Instruction>(Op))
2665         continue;
2666       // Stop now if we find an unsafe operand.
2667       auto OISIt = OpSafeForPHIOfOps.find({OrigI, CacheIdx});
2668       if (OISIt != OpSafeForPHIOfOps.end()) {
2669         if (!OISIt->second) {
2670           OpSafeForPHIOfOps.insert({{I, CacheIdx}, false});
2671           return false;
2672         }
2673         continue;
2674       }
2675       if (!Visited.insert(Op).second)
2676         continue;
2677       Worklist.push_back(cast<Instruction>(Op));
2678     }
2679   }
2680   OpSafeForPHIOfOps.insert({{V, CacheIdx}, true});
2681   return true;
2682 }
2683 
2684 // Try to find a leader for instruction TransInst, which is a phi translated
2685 // version of something in our original program.  Visited is used to ensure we
2686 // don't infinite loop during translations of cycles.  OrigInst is the
2687 // instruction in the original program, and PredBB is the predecessor we
2688 // translated it through.
2689 Value *NewGVN::findLeaderForInst(Instruction *TransInst,
2690                                  SmallPtrSetImpl<Value *> &Visited,
2691                                  MemoryAccess *MemAccess, Instruction *OrigInst,
2692                                  BasicBlock *PredBB) {
2693   unsigned IDFSNum = InstrToDFSNum(OrigInst);
2694   // Make sure it's marked as a temporary instruction.
2695   AllTempInstructions.insert(TransInst);
2696   // and make sure anything that tries to add it's DFS number is
2697   // redirected to the instruction we are making a phi of ops
2698   // for.
2699   TempToBlock.insert({TransInst, PredBB});
2700   InstrDFS.insert({TransInst, IDFSNum});
2701 
2702   auto Res = performSymbolicEvaluation(TransInst, Visited);
2703   const Expression *E = Res.Expr;
2704   addAdditionalUsers(Res, OrigInst);
2705   InstrDFS.erase(TransInst);
2706   AllTempInstructions.erase(TransInst);
2707   TempToBlock.erase(TransInst);
2708   if (MemAccess)
2709     TempToMemory.erase(TransInst);
2710   if (!E)
2711     return nullptr;
2712   auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB);
2713   if (!FoundVal) {
2714     ExpressionToPhiOfOps[E].insert(OrigInst);
2715     LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
2716                       << " in block " << getBlockName(PredBB) << "\n");
2717     return nullptr;
2718   }
2719   if (auto *SI = dyn_cast<StoreInst>(FoundVal))
2720     FoundVal = SI->getValueOperand();
2721   return FoundVal;
2722 }
2723 
2724 // When we see an instruction that is an op of phis, generate the equivalent phi
2725 // of ops form.
2726 const Expression *
2727 NewGVN::makePossiblePHIOfOps(Instruction *I,
2728                              SmallPtrSetImpl<Value *> &Visited) {
2729   if (!okayForPHIOfOps(I))
2730     return nullptr;
2731 
2732   if (!Visited.insert(I).second)
2733     return nullptr;
2734   // For now, we require the instruction be cycle free because we don't
2735   // *always* create a phi of ops for instructions that could be done as phi
2736   // of ops, we only do it if we think it is useful.  If we did do it all the
2737   // time, we could remove the cycle free check.
2738   if (!isCycleFree(I))
2739     return nullptr;
2740 
2741   SmallPtrSet<const Value *, 8> ProcessedPHIs;
2742   // TODO: We don't do phi translation on memory accesses because it's
2743   // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2744   // which we don't have a good way of doing ATM.
2745   auto *MemAccess = getMemoryAccess(I);
2746   // If the memory operation is defined by a memory operation this block that
2747   // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2748   // can't help, as it would still be killed by that memory operation.
2749   if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
2750       MemAccess->getDefiningAccess()->getBlock() == I->getParent())
2751     return nullptr;
2752 
2753   // Convert op of phis to phi of ops
2754   SmallPtrSet<const Value *, 10> VisitedOps;
2755   SmallVector<Value *, 4> Ops(I->operand_values());
2756   BasicBlock *SamePHIBlock = nullptr;
2757   PHINode *OpPHI = nullptr;
2758   if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
2759     return nullptr;
2760   for (auto *Op : Ops) {
2761     if (!isa<PHINode>(Op)) {
2762       auto *ValuePHI = RealToTemp.lookup(Op);
2763       if (!ValuePHI)
2764         continue;
2765       LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
2766       Op = ValuePHI;
2767     }
2768     OpPHI = cast<PHINode>(Op);
2769     if (!SamePHIBlock) {
2770       SamePHIBlock = getBlockForValue(OpPHI);
2771     } else if (SamePHIBlock != getBlockForValue(OpPHI)) {
2772       LLVM_DEBUG(
2773           dbgs()
2774           << "PHIs for operands are not all in the same block, aborting\n");
2775       return nullptr;
2776     }
2777     // No point in doing this for one-operand phis.
2778     // Since all PHIs for operands must be in the same block, then they must
2779     // have the same number of operands so we can just abort.
2780     if (OpPHI->getNumOperands() == 1)
2781       return nullptr;
2782   }
2783 
2784   if (!OpPHI)
2785     return nullptr;
2786 
2787   SmallVector<ValPair, 4> PHIOps;
2788   SmallPtrSet<Value *, 4> Deps;
2789   auto *PHIBlock = getBlockForValue(OpPHI);
2790   RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I));
2791   for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) {
2792     auto *PredBB = OpPHI->getIncomingBlock(PredNum);
2793     Value *FoundVal = nullptr;
2794     SmallPtrSet<Value *, 4> CurrentDeps;
2795     // We could just skip unreachable edges entirely but it's tricky to do
2796     // with rewriting existing phi nodes.
2797     if (ReachableEdges.count({PredBB, PHIBlock})) {
2798       // Clone the instruction, create an expression from it that is
2799       // translated back into the predecessor, and see if we have a leader.
2800       Instruction *ValueOp = I->clone();
2801       // Emit the temporal instruction in the predecessor basic block where the
2802       // corresponding value is defined.
2803       ValueOp->insertBefore(PredBB->getTerminator()->getIterator());
2804       if (MemAccess)
2805         TempToMemory.insert({ValueOp, MemAccess});
2806       bool SafeForPHIOfOps = true;
2807       VisitedOps.clear();
2808       for (auto &Op : ValueOp->operands()) {
2809         auto *OrigOp = &*Op;
2810         // When these operand changes, it could change whether there is a
2811         // leader for us or not, so we have to add additional users.
2812         if (isa<PHINode>(Op)) {
2813           Op = Op->DoPHITranslation(PHIBlock, PredBB);
2814           if (Op != OrigOp && Op != I)
2815             CurrentDeps.insert(Op);
2816         } else if (auto *ValuePHI = RealToTemp.lookup(Op)) {
2817           if (getBlockForValue(ValuePHI) == PHIBlock)
2818             Op = ValuePHI->getIncomingValueForBlock(PredBB);
2819         }
2820         // If we phi-translated the op, it must be safe.
2821         SafeForPHIOfOps =
2822             SafeForPHIOfOps &&
2823             (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps));
2824       }
2825       // FIXME: For those things that are not safe we could generate
2826       // expressions all the way down, and see if this comes out to a
2827       // constant.  For anything where that is true, and unsafe, we should
2828       // have made a phi-of-ops (or value numbered it equivalent to something)
2829       // for the pieces already.
2830       FoundVal = !SafeForPHIOfOps ? nullptr
2831                                   : findLeaderForInst(ValueOp, Visited,
2832                                                       MemAccess, I, PredBB);
2833       ValueOp->eraseFromParent();
2834       if (!FoundVal) {
2835         // We failed to find a leader for the current ValueOp, but this might
2836         // change in case of the translated operands change.
2837         if (SafeForPHIOfOps)
2838           for (auto *Dep : CurrentDeps)
2839             addAdditionalUsers(Dep, I);
2840 
2841         return nullptr;
2842       }
2843       Deps.insert(CurrentDeps.begin(), CurrentDeps.end());
2844     } else {
2845       LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2846                         << getBlockName(PredBB)
2847                         << " because the block is unreachable\n");
2848       FoundVal = PoisonValue::get(I->getType());
2849       RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2850     }
2851 
2852     PHIOps.push_back({FoundVal, PredBB});
2853     LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
2854                       << getBlockName(PredBB) << "\n");
2855   }
2856   for (auto *Dep : Deps)
2857     addAdditionalUsers(Dep, I);
2858   sortPHIOps(PHIOps);
2859   auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock);
2860   if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) {
2861     LLVM_DEBUG(
2862         dbgs()
2863         << "Not creating real PHI of ops because it simplified to existing "
2864            "value or constant\n");
2865     // We have leaders for all operands, but do not create a real PHI node with
2866     // those leaders as operands, so the link between the operands and the
2867     // PHI-of-ops is not materialized in the IR. If any of those leaders
2868     // changes, the PHI-of-op may change also, so we need to add the operands as
2869     // additional users.
2870     for (auto &O : PHIOps)
2871       addAdditionalUsers(O.first, I);
2872 
2873     return E;
2874   }
2875   auto *ValuePHI = RealToTemp.lookup(I);
2876   bool NewPHI = false;
2877   if (!ValuePHI) {
2878     ValuePHI =
2879         PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops");
2880     addPhiOfOps(ValuePHI, PHIBlock, I);
2881     NewPHI = true;
2882     NumGVNPHIOfOpsCreated++;
2883   }
2884   if (NewPHI) {
2885     for (auto PHIOp : PHIOps)
2886       ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
2887   } else {
2888     TempToBlock[ValuePHI] = PHIBlock;
2889     unsigned int i = 0;
2890     for (auto PHIOp : PHIOps) {
2891       ValuePHI->setIncomingValue(i, PHIOp.first);
2892       ValuePHI->setIncomingBlock(i, PHIOp.second);
2893       ++i;
2894     }
2895   }
2896   RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2897   LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
2898                     << "\n");
2899 
2900   return E;
2901 }
2902 
2903 // The algorithm initially places the values of the routine in the TOP
2904 // congruence class. The leader of TOP is the undetermined value `poison`.
2905 // When the algorithm has finished, values still in TOP are unreachable.
2906 void NewGVN::initializeCongruenceClasses(Function &F) {
2907   NextCongruenceNum = 0;
2908 
2909   // Note that even though we use the live on entry def as a representative
2910   // MemoryAccess, it is *not* the same as the actual live on entry def. We
2911   // have no real equivalent to poison for MemoryAccesses, and so we really
2912   // should be checking whether the MemoryAccess is top if we want to know if it
2913   // is equivalent to everything.  Otherwise, what this really signifies is that
2914   // the access "it reaches all the way back to the beginning of the function"
2915 
2916   // Initialize all other instructions to be in TOP class.
2917   TOPClass = createCongruenceClass(nullptr, nullptr);
2918   TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
2919   //  The live on entry def gets put into it's own class
2920   MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2921       createMemoryClass(MSSA->getLiveOnEntryDef());
2922 
2923   for (auto *DTN : nodes(DT)) {
2924     BasicBlock *BB = DTN->getBlock();
2925     // All MemoryAccesses are equivalent to live on entry to start. They must
2926     // be initialized to something so that initial changes are noticed. For
2927     // the maximal answer, we initialize them all to be the same as
2928     // liveOnEntry.
2929     auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
2930     if (MemoryBlockDefs)
2931       for (const auto &Def : *MemoryBlockDefs) {
2932         MemoryAccessToClass[&Def] = TOPClass;
2933         auto *MD = dyn_cast<MemoryDef>(&Def);
2934         // Insert the memory phis into the member list.
2935         if (!MD) {
2936           const MemoryPhi *MP = cast<MemoryPhi>(&Def);
2937           TOPClass->memory_insert(MP);
2938           MemoryPhiState.insert({MP, MPS_TOP});
2939         }
2940 
2941         if (MD && isa<StoreInst>(MD->getMemoryInst()))
2942           TOPClass->incStoreCount();
2943       }
2944 
2945     // FIXME: This is trying to discover which instructions are uses of phi
2946     // nodes.  We should move this into one of the myriad of places that walk
2947     // all the operands already.
2948     for (auto &I : *BB) {
2949       if (isa<PHINode>(&I))
2950         for (auto *U : I.users())
2951           if (auto *UInst = dyn_cast<Instruction>(U))
2952             if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
2953               PHINodeUses.insert(UInst);
2954       // Don't insert void terminators into the class. We don't value number
2955       // them, and they just end up sitting in TOP.
2956       if (I.isTerminator() && I.getType()->isVoidTy())
2957         continue;
2958       TOPClass->insert(&I);
2959       ValueToClass[&I] = TOPClass;
2960     }
2961   }
2962 
2963   // Initialize arguments to be in their own unique congruence classes
2964   for (auto &FA : F.args())
2965     createSingletonCongruenceClass(&FA);
2966 }
2967 
2968 void NewGVN::cleanupTables() {
2969   for (CongruenceClass *&CC : CongruenceClasses) {
2970     LLVM_DEBUG(dbgs() << "Congruence class " << CC->getID() << " has "
2971                       << CC->size() << " members\n");
2972     // Make sure we delete the congruence class (probably worth switching to
2973     // a unique_ptr at some point.
2974     delete CC;
2975     CC = nullptr;
2976   }
2977 
2978   // Destroy the value expressions
2979   SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
2980                                          AllTempInstructions.end());
2981   AllTempInstructions.clear();
2982 
2983   // We have to drop all references for everything first, so there are no uses
2984   // left as we delete them.
2985   for (auto *I : TempInst) {
2986     I->dropAllReferences();
2987   }
2988 
2989   while (!TempInst.empty()) {
2990     auto *I = TempInst.pop_back_val();
2991     I->deleteValue();
2992   }
2993 
2994   ValueToClass.clear();
2995   ArgRecycler.clear(ExpressionAllocator);
2996   ExpressionAllocator.Reset();
2997   CongruenceClasses.clear();
2998   ExpressionToClass.clear();
2999   ValueToExpression.clear();
3000   RealToTemp.clear();
3001   AdditionalUsers.clear();
3002   ExpressionToPhiOfOps.clear();
3003   TempToBlock.clear();
3004   TempToMemory.clear();
3005   PHINodeUses.clear();
3006   OpSafeForPHIOfOps.clear();
3007   ReachableBlocks.clear();
3008   ReachableEdges.clear();
3009 #ifndef NDEBUG
3010   ProcessedCount.clear();
3011 #endif
3012   InstrDFS.clear();
3013   InstructionsToErase.clear();
3014   DFSToInstr.clear();
3015   BlockInstRange.clear();
3016   TouchedInstructions.clear();
3017   MemoryAccessToClass.clear();
3018   PredicateToUsers.clear();
3019   MemoryToUsers.clear();
3020   RevisitOnReachabilityChange.clear();
3021   IntrinsicInstPred.clear();
3022 }
3023 
3024 // Assign local DFS number mapping to instructions, and leave space for Value
3025 // PHI's.
3026 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
3027                                                        unsigned Start) {
3028   unsigned End = Start;
3029   if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
3030     InstrDFS[MemPhi] = End++;
3031     DFSToInstr.emplace_back(MemPhi);
3032   }
3033 
3034   // Then the real block goes next.
3035   for (auto &I : *B) {
3036     // There's no need to call isInstructionTriviallyDead more than once on
3037     // an instruction. Therefore, once we know that an instruction is dead
3038     // we change its DFS number so that it doesn't get value numbered.
3039     if (isInstructionTriviallyDead(&I, TLI)) {
3040       InstrDFS[&I] = 0;
3041       LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
3042       markInstructionForDeletion(&I);
3043       continue;
3044     }
3045     if (isa<PHINode>(&I))
3046       RevisitOnReachabilityChange[B].set(End);
3047     InstrDFS[&I] = End++;
3048     DFSToInstr.emplace_back(&I);
3049   }
3050 
3051   // All of the range functions taken half-open ranges (open on the end side).
3052   // So we do not subtract one from count, because at this point it is one
3053   // greater than the last instruction.
3054   return std::make_pair(Start, End);
3055 }
3056 
3057 void NewGVN::updateProcessedCount(const Value *V) {
3058 #ifndef NDEBUG
3059   if (ProcessedCount.count(V) == 0) {
3060     ProcessedCount.insert({V, 1});
3061   } else {
3062     ++ProcessedCount[V];
3063     assert(ProcessedCount[V] < 100 &&
3064            "Seem to have processed the same Value a lot");
3065   }
3066 #endif
3067 }
3068 
3069 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes
3070 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
3071   // If all the arguments are the same, the MemoryPhi has the same value as the
3072   // argument.  Filter out unreachable blocks and self phis from our operands.
3073   // TODO: We could do cycle-checking on the memory phis to allow valueizing for
3074   // self-phi checking.
3075   const BasicBlock *PHIBlock = MP->getBlock();
3076   auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
3077     return cast<MemoryAccess>(U) != MP &&
3078            !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
3079            ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
3080   });
3081   // If all that is left is nothing, our memoryphi is poison. We keep it as
3082   // InitialClass.  Note: The only case this should happen is if we have at
3083   // least one self-argument.
3084   if (Filtered.begin() == Filtered.end()) {
3085     if (setMemoryClass(MP, TOPClass))
3086       markMemoryUsersTouched(MP);
3087     return;
3088   }
3089 
3090   // Transform the remaining operands into operand leaders.
3091   // FIXME: mapped_iterator should have a range version.
3092   auto LookupFunc = [&](const Use &U) {
3093     return lookupMemoryLeader(cast<MemoryAccess>(U));
3094   };
3095   auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
3096   auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
3097 
3098   // and now check if all the elements are equal.
3099   // Sadly, we can't use std::equals since these are random access iterators.
3100   const auto *AllSameValue = *MappedBegin;
3101   ++MappedBegin;
3102   bool AllEqual = std::all_of(
3103       MappedBegin, MappedEnd,
3104       [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
3105 
3106   if (AllEqual)
3107     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
3108                       << "\n");
3109   else
3110     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
3111   // If it's equal to something, it's in that class. Otherwise, it has to be in
3112   // a class where it is the leader (other things may be equivalent to it, but
3113   // it needs to start off in its own class, which means it must have been the
3114   // leader, and it can't have stopped being the leader because it was never
3115   // removed).
3116   CongruenceClass *CC =
3117       AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
3118   auto OldState = MemoryPhiState.lookup(MP);
3119   assert(OldState != MPS_Invalid && "Invalid memory phi state");
3120   auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
3121   MemoryPhiState[MP] = NewState;
3122   if (setMemoryClass(MP, CC) || OldState != NewState)
3123     markMemoryUsersTouched(MP);
3124 }
3125 
3126 // Value number a single instruction, symbolically evaluating, performing
3127 // congruence finding, and updating mappings.
3128 void NewGVN::valueNumberInstruction(Instruction *I) {
3129   LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n");
3130   if (!I->isTerminator()) {
3131     const Expression *Symbolized = nullptr;
3132     SmallPtrSet<Value *, 2> Visited;
3133     if (DebugCounter::shouldExecute(VNCounter)) {
3134       auto Res = performSymbolicEvaluation(I, Visited);
3135       Symbolized = Res.Expr;
3136       addAdditionalUsers(Res, I);
3137 
3138       // Make a phi of ops if necessary
3139       if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
3140           !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
3141         auto *PHIE = makePossiblePHIOfOps(I, Visited);
3142         // If we created a phi of ops, use it.
3143         // If we couldn't create one, make sure we don't leave one lying around
3144         if (PHIE) {
3145           Symbolized = PHIE;
3146         } else if (auto *Op = RealToTemp.lookup(I)) {
3147           removePhiOfOps(I, Op);
3148         }
3149       }
3150     } else {
3151       // Mark the instruction as unused so we don't value number it again.
3152       InstrDFS[I] = 0;
3153     }
3154     // If we couldn't come up with a symbolic expression, use the unknown
3155     // expression
3156     if (Symbolized == nullptr)
3157       Symbolized = createUnknownExpression(I);
3158     performCongruenceFinding(I, Symbolized);
3159   } else {
3160     // Handle terminators that return values. All of them produce values we
3161     // don't currently understand.  We don't place non-value producing
3162     // terminators in a class.
3163     if (!I->getType()->isVoidTy()) {
3164       auto *Symbolized = createUnknownExpression(I);
3165       performCongruenceFinding(I, Symbolized);
3166     }
3167     processOutgoingEdges(I, I->getParent());
3168   }
3169 }
3170 
3171 // Check if there is a path, using single or equal argument phi nodes, from
3172 // First to Second.
3173 bool NewGVN::singleReachablePHIPath(
3174     SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
3175     const MemoryAccess *Second) const {
3176   if (First == Second)
3177     return true;
3178   if (MSSA->isLiveOnEntryDef(First))
3179     return false;
3180 
3181   // This is not perfect, but as we're just verifying here, we can live with
3182   // the loss of precision. The real solution would be that of doing strongly
3183   // connected component finding in this routine, and it's probably not worth
3184   // the complexity for the time being. So, we just keep a set of visited
3185   // MemoryAccess and return true when we hit a cycle.
3186   if (!Visited.insert(First).second)
3187     return true;
3188 
3189   const auto *EndDef = First;
3190   for (const auto *ChainDef : optimized_def_chain(First)) {
3191     if (ChainDef == Second)
3192       return true;
3193     if (MSSA->isLiveOnEntryDef(ChainDef))
3194       return false;
3195     EndDef = ChainDef;
3196   }
3197   auto *MP = cast<MemoryPhi>(EndDef);
3198   auto ReachableOperandPred = [&](const Use &U) {
3199     return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
3200   };
3201   auto FilteredPhiArgs =
3202       make_filter_range(MP->operands(), ReachableOperandPred);
3203   SmallVector<const Value *, 32> OperandList;
3204   llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList));
3205   bool Okay = all_equal(OperandList);
3206   if (Okay)
3207     return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
3208                                   Second);
3209   return false;
3210 }
3211 
3212 // Verify the that the memory equivalence table makes sense relative to the
3213 // congruence classes.  Note that this checking is not perfect, and is currently
3214 // subject to very rare false negatives. It is only useful for
3215 // testing/debugging.
3216 void NewGVN::verifyMemoryCongruency() const {
3217 #ifndef NDEBUG
3218   // Verify that the memory table equivalence and memory member set match
3219   for (const auto *CC : CongruenceClasses) {
3220     if (CC == TOPClass || CC->isDead())
3221       continue;
3222     if (CC->getStoreCount() != 0) {
3223       assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
3224              "Any class with a store as a leader should have a "
3225              "representative stored value");
3226       assert(CC->getMemoryLeader() &&
3227              "Any congruence class with a store should have a "
3228              "representative access");
3229     }
3230 
3231     if (CC->getMemoryLeader())
3232       assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
3233              "Representative MemoryAccess does not appear to be reverse "
3234              "mapped properly");
3235     for (const auto *M : CC->memory())
3236       assert(MemoryAccessToClass.lookup(M) == CC &&
3237              "Memory member does not appear to be reverse mapped properly");
3238   }
3239 
3240   // Anything equivalent in the MemoryAccess table should be in the same
3241   // congruence class.
3242 
3243   // Filter out the unreachable and trivially dead entries, because they may
3244   // never have been updated if the instructions were not processed.
3245   auto ReachableAccessPred =
3246       [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
3247         bool Result = ReachableBlocks.count(Pair.first->getBlock());
3248         if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
3249             MemoryToDFSNum(Pair.first) == 0)
3250           return false;
3251         if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
3252           return !isInstructionTriviallyDead(MemDef->getMemoryInst());
3253 
3254         // We could have phi nodes which operands are all trivially dead,
3255         // so we don't process them.
3256         if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
3257           for (const auto &U : MemPHI->incoming_values()) {
3258             if (auto *I = dyn_cast<Instruction>(&*U)) {
3259               if (!isInstructionTriviallyDead(I))
3260                 return true;
3261             }
3262           }
3263           return false;
3264         }
3265 
3266         return true;
3267       };
3268 
3269   auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
3270   for (auto KV : Filtered) {
3271     if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
3272       auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
3273       if (FirstMUD && SecondMUD) {
3274         SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
3275         assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
3276                 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
3277                     ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
3278                "The instructions for these memory operations should have "
3279                "been in the same congruence class or reachable through"
3280                "a single argument phi");
3281       }
3282     } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
3283       // We can only sanely verify that MemoryDefs in the operand list all have
3284       // the same class.
3285       auto ReachableOperandPred = [&](const Use &U) {
3286         return ReachableEdges.count(
3287                    {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
3288                isa<MemoryDef>(U);
3289       };
3290       // All arguments should in the same class, ignoring unreachable arguments
3291       auto FilteredPhiArgs =
3292           make_filter_range(FirstMP->operands(), ReachableOperandPred);
3293       SmallVector<const CongruenceClass *, 16> PhiOpClasses;
3294       std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
3295                      std::back_inserter(PhiOpClasses), [&](const Use &U) {
3296                        const MemoryDef *MD = cast<MemoryDef>(U);
3297                        return ValueToClass.lookup(MD->getMemoryInst());
3298                      });
3299       assert(all_equal(PhiOpClasses) &&
3300              "All MemoryPhi arguments should be in the same class");
3301     }
3302   }
3303 #endif
3304 }
3305 
3306 // Verify that the sparse propagation we did actually found the maximal fixpoint
3307 // We do this by storing the value to class mapping, touching all instructions,
3308 // and redoing the iteration to see if anything changed.
3309 void NewGVN::verifyIterationSettled(Function &F) {
3310 #ifndef NDEBUG
3311   LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
3312   if (DebugCounter::isCounterSet(VNCounter))
3313     DebugCounter::setCounterState(VNCounter, StartingVNCounter);
3314 
3315   // Note that we have to store the actual classes, as we may change existing
3316   // classes during iteration.  This is because our memory iteration propagation
3317   // is not perfect, and so may waste a little work.  But it should generate
3318   // exactly the same congruence classes we have now, with different IDs.
3319   std::map<const Value *, CongruenceClass> BeforeIteration;
3320 
3321   for (auto &KV : ValueToClass) {
3322     if (auto *I = dyn_cast<Instruction>(KV.first))
3323       // Skip unused/dead instructions.
3324       if (InstrToDFSNum(I) == 0)
3325         continue;
3326     BeforeIteration.insert({KV.first, *KV.second});
3327   }
3328 
3329   TouchedInstructions.set();
3330   TouchedInstructions.reset(0);
3331   OpSafeForPHIOfOps.clear();
3332   CacheIdx = 0;
3333   iterateTouchedInstructions();
3334   DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
3335       EqualClasses;
3336   for (const auto &KV : ValueToClass) {
3337     if (auto *I = dyn_cast<Instruction>(KV.first))
3338       // Skip unused/dead instructions.
3339       if (InstrToDFSNum(I) == 0)
3340         continue;
3341     // We could sink these uses, but i think this adds a bit of clarity here as
3342     // to what we are comparing.
3343     auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
3344     auto *AfterCC = KV.second;
3345     // Note that the classes can't change at this point, so we memoize the set
3346     // that are equal.
3347     if (!EqualClasses.count({BeforeCC, AfterCC})) {
3348       assert(BeforeCC->isEquivalentTo(AfterCC) &&
3349              "Value number changed after main loop completed!");
3350       EqualClasses.insert({BeforeCC, AfterCC});
3351     }
3352   }
3353 #endif
3354 }
3355 
3356 // Verify that for each store expression in the expression to class mapping,
3357 // only the latest appears, and multiple ones do not appear.
3358 // Because loads do not use the stored value when doing equality with stores,
3359 // if we don't erase the old store expressions from the table, a load can find
3360 // a no-longer valid StoreExpression.
3361 void NewGVN::verifyStoreExpressions() const {
3362 #ifndef NDEBUG
3363   // This is the only use of this, and it's not worth defining a complicated
3364   // densemapinfo hash/equality function for it.
3365   std::set<
3366       std::pair<const Value *,
3367                 std::tuple<const Value *, const CongruenceClass *, Value *>>>
3368       StoreExpressionSet;
3369   for (const auto &KV : ExpressionToClass) {
3370     if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
3371       // Make sure a version that will conflict with loads is not already there
3372       auto Res = StoreExpressionSet.insert(
3373           {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
3374                                               SE->getStoredValue())});
3375       bool Okay = Res.second;
3376       // It's okay to have the same expression already in there if it is
3377       // identical in nature.
3378       // This can happen when the leader of the stored value changes over time.
3379       if (!Okay)
3380         Okay = (std::get<1>(Res.first->second) == KV.second) &&
3381                (lookupOperandLeader(std::get<2>(Res.first->second)) ==
3382                 lookupOperandLeader(SE->getStoredValue()));
3383       assert(Okay && "Stored expression conflict exists in expression table");
3384       auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
3385       assert(ValueExpr && ValueExpr->equals(*SE) &&
3386              "StoreExpression in ExpressionToClass is not latest "
3387              "StoreExpression for value");
3388     }
3389   }
3390 #endif
3391 }
3392 
3393 // This is the main value numbering loop, it iterates over the initial touched
3394 // instruction set, propagating value numbers, marking things touched, etc,
3395 // until the set of touched instructions is completely empty.
3396 void NewGVN::iterateTouchedInstructions() {
3397   uint64_t Iterations = 0;
3398   // Figure out where touchedinstructions starts
3399   int FirstInstr = TouchedInstructions.find_first();
3400   // Nothing set, nothing to iterate, just return.
3401   if (FirstInstr == -1)
3402     return;
3403   const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
3404   while (TouchedInstructions.any()) {
3405     ++Iterations;
3406     // Walk through all the instructions in all the blocks in RPO.
3407     // TODO: As we hit a new block, we should push and pop equalities into a
3408     // table lookupOperandLeader can use, to catch things PredicateInfo
3409     // might miss, like edge-only equivalences.
3410     for (unsigned InstrNum : TouchedInstructions.set_bits()) {
3411 
3412       // This instruction was found to be dead. We don't bother looking
3413       // at it again.
3414       if (InstrNum == 0) {
3415         TouchedInstructions.reset(InstrNum);
3416         continue;
3417       }
3418 
3419       Value *V = InstrFromDFSNum(InstrNum);
3420       const BasicBlock *CurrBlock = getBlockForValue(V);
3421 
3422       // If we hit a new block, do reachability processing.
3423       if (CurrBlock != LastBlock) {
3424         LastBlock = CurrBlock;
3425         bool BlockReachable = ReachableBlocks.count(CurrBlock);
3426         const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
3427 
3428         // If it's not reachable, erase any touched instructions and move on.
3429         if (!BlockReachable) {
3430           TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
3431           LLVM_DEBUG(dbgs() << "Skipping instructions in block "
3432                             << getBlockName(CurrBlock)
3433                             << " because it is unreachable\n");
3434           continue;
3435         }
3436         // Use the appropriate cache for "OpIsSafeForPHIOfOps".
3437         CacheIdx = RPOOrdering.lookup(DT->getNode(CurrBlock)) - 1;
3438         updateProcessedCount(CurrBlock);
3439       }
3440       // Reset after processing (because we may mark ourselves as touched when
3441       // we propagate equalities).
3442       TouchedInstructions.reset(InstrNum);
3443 
3444       if (auto *MP = dyn_cast<MemoryPhi>(V)) {
3445         LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
3446         valueNumberMemoryPhi(MP);
3447       } else if (auto *I = dyn_cast<Instruction>(V)) {
3448         valueNumberInstruction(I);
3449       } else {
3450         llvm_unreachable("Should have been a MemoryPhi or Instruction");
3451       }
3452       updateProcessedCount(V);
3453     }
3454   }
3455   NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
3456 }
3457 
3458 // This is the main transformation entry point.
3459 bool NewGVN::runGVN() {
3460   if (DebugCounter::isCounterSet(VNCounter))
3461     StartingVNCounter = DebugCounter::getCounterState(VNCounter);
3462   bool Changed = false;
3463   NumFuncArgs = F.arg_size();
3464   MSSAWalker = MSSA->getWalker();
3465   SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();
3466 
3467   // Count number of instructions for sizing of hash tables, and come
3468   // up with a global dfs numbering for instructions.
3469   unsigned ICount = 1;
3470   // Add an empty instruction to account for the fact that we start at 1
3471   DFSToInstr.emplace_back(nullptr);
3472   // Note: We want ideal RPO traversal of the blocks, which is not quite the
3473   // same as dominator tree order, particularly with regard whether backedges
3474   // get visited first or second, given a block with multiple successors.
3475   // If we visit in the wrong order, we will end up performing N times as many
3476   // iterations.
3477   // The dominator tree does guarantee that, for a given dom tree node, it's
3478   // parent must occur before it in the RPO ordering. Thus, we only need to sort
3479   // the siblings.
3480   ReversePostOrderTraversal<Function *> RPOT(&F);
3481   unsigned Counter = 0;
3482   for (auto &B : RPOT) {
3483     auto *Node = DT->getNode(B);
3484     assert(Node && "RPO and Dominator tree should have same reachability");
3485     RPOOrdering[Node] = ++Counter;
3486   }
3487   // Sort dominator tree children arrays into RPO.
3488   for (auto &B : RPOT) {
3489     auto *Node = DT->getNode(B);
3490     if (Node->getNumChildren() > 1)
3491       llvm::sort(*Node, [&](const DomTreeNode *A, const DomTreeNode *B) {
3492         return RPOOrdering[A] < RPOOrdering[B];
3493       });
3494   }
3495 
3496   // Now a standard depth first ordering of the domtree is equivalent to RPO.
3497   for (auto *DTN : depth_first(DT->getRootNode())) {
3498     BasicBlock *B = DTN->getBlock();
3499     const auto &BlockRange = assignDFSNumbers(B, ICount);
3500     BlockInstRange.insert({B, BlockRange});
3501     ICount += BlockRange.second - BlockRange.first;
3502   }
3503   initializeCongruenceClasses(F);
3504 
3505   TouchedInstructions.resize(ICount);
3506   // Ensure we don't end up resizing the expressionToClass map, as
3507   // that can be quite expensive. At most, we have one expression per
3508   // instruction.
3509   ExpressionToClass.reserve(ICount);
3510 
3511   // Initialize the touched instructions to include the entry block.
3512   const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
3513   TouchedInstructions.set(InstRange.first, InstRange.second);
3514   LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
3515                     << " marked reachable\n");
3516   ReachableBlocks.insert(&F.getEntryBlock());
3517   // Use index corresponding to entry block.
3518   CacheIdx = 0;
3519 
3520   iterateTouchedInstructions();
3521   verifyMemoryCongruency();
3522   verifyIterationSettled(F);
3523   verifyStoreExpressions();
3524 
3525   Changed |= eliminateInstructions(F);
3526 
3527   // Delete all instructions marked for deletion.
3528   for (Instruction *ToErase : InstructionsToErase) {
3529     if (!ToErase->use_empty())
3530       ToErase->replaceAllUsesWith(PoisonValue::get(ToErase->getType()));
3531 
3532     assert(ToErase->getParent() &&
3533            "BB containing ToErase deleted unexpectedly!");
3534     ToErase->eraseFromParent();
3535   }
3536   Changed |= !InstructionsToErase.empty();
3537 
3538   // Delete all unreachable blocks.
3539   auto UnreachableBlockPred = [&](const BasicBlock &BB) {
3540     return !ReachableBlocks.count(&BB);
3541   };
3542 
3543   for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
3544     LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
3545                       << " is unreachable\n");
3546     deleteInstructionsInBlock(&BB);
3547     Changed = true;
3548   }
3549 
3550   cleanupTables();
3551   return Changed;
3552 }
3553 
3554 struct NewGVN::ValueDFS {
3555   int DFSIn = 0;
3556   int DFSOut = 0;
3557   int LocalNum = 0;
3558 
3559   // Only one of Def and U will be set.
3560   // The bool in the Def tells us whether the Def is the stored value of a
3561   // store.
3562   PointerIntPair<Value *, 1, bool> Def;
3563   Use *U = nullptr;
3564 
3565   bool operator<(const ValueDFS &Other) const {
3566     // It's not enough that any given field be less than - we have sets
3567     // of fields that need to be evaluated together to give a proper ordering.
3568     // For example, if you have;
3569     // DFS (1, 3)
3570     // Val 0
3571     // DFS (1, 2)
3572     // Val 50
3573     // We want the second to be less than the first, but if we just go field
3574     // by field, we will get to Val 0 < Val 50 and say the first is less than
3575     // the second. We only want it to be less than if the DFS orders are equal.
3576     //
3577     // Each LLVM instruction only produces one value, and thus the lowest-level
3578     // differentiator that really matters for the stack (and what we use as a
3579     // replacement) is the local dfs number.
3580     // Everything else in the structure is instruction level, and only affects
3581     // the order in which we will replace operands of a given instruction.
3582     //
3583     // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3584     // the order of replacement of uses does not matter.
3585     // IE given,
3586     //  a = 5
3587     //  b = a + a
3588     // When you hit b, you will have two valuedfs with the same dfsin, out, and
3589     // localnum.
3590     // The .val will be the same as well.
3591     // The .u's will be different.
3592     // You will replace both, and it does not matter what order you replace them
3593     // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3594     // operand 2).
3595     // Similarly for the case of same dfsin, dfsout, localnum, but different
3596     // .val's
3597     //  a = 5
3598     //  b  = 6
3599     //  c = a + b
3600     // in c, we will a valuedfs for a, and one for b,with everything the same
3601     // but .val  and .u.
3602     // It does not matter what order we replace these operands in.
3603     // You will always end up with the same IR, and this is guaranteed.
3604     return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
3605            std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
3606                     Other.U);
3607   }
3608 };
3609 
3610 // This function converts the set of members for a congruence class from values,
3611 // to sets of defs and uses with associated DFS info.  The total number of
3612 // reachable uses for each value is stored in UseCount, and instructions that
3613 // seem
3614 // dead (have no non-dead uses) are stored in ProbablyDead.
3615 void NewGVN::convertClassToDFSOrdered(
3616     const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
3617     DenseMap<const Value *, unsigned int> &UseCounts,
3618     SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
3619   for (auto *D : Dense) {
3620     // First add the value.
3621     BasicBlock *BB = getBlockForValue(D);
3622     // Constants are handled prior to ever calling this function, so
3623     // we should only be left with instructions as members.
3624     assert(BB && "Should have figured out a basic block for value");
3625     ValueDFS VDDef;
3626     DomTreeNode *DomNode = DT->getNode(BB);
3627     VDDef.DFSIn = DomNode->getDFSNumIn();
3628     VDDef.DFSOut = DomNode->getDFSNumOut();
3629     // If it's a store, use the leader of the value operand, if it's always
3630     // available, or the value operand.  TODO: We could do dominance checks to
3631     // find a dominating leader, but not worth it ATM.
3632     if (auto *SI = dyn_cast<StoreInst>(D)) {
3633       auto Leader = lookupOperandLeader(SI->getValueOperand());
3634       if (alwaysAvailable(Leader)) {
3635         VDDef.Def.setPointer(Leader);
3636       } else {
3637         VDDef.Def.setPointer(SI->getValueOperand());
3638         VDDef.Def.setInt(true);
3639       }
3640     } else {
3641       VDDef.Def.setPointer(D);
3642     }
3643     assert(isa<Instruction>(D) &&
3644            "The dense set member should always be an instruction");
3645     Instruction *Def = cast<Instruction>(D);
3646     VDDef.LocalNum = InstrToDFSNum(D);
3647     DFSOrderedSet.push_back(VDDef);
3648     // If there is a phi node equivalent, add it
3649     if (auto *PN = RealToTemp.lookup(Def)) {
3650       auto *PHIE =
3651           dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
3652       if (PHIE) {
3653         VDDef.Def.setInt(false);
3654         VDDef.Def.setPointer(PN);
3655         VDDef.LocalNum = 0;
3656         DFSOrderedSet.push_back(VDDef);
3657       }
3658     }
3659 
3660     unsigned int UseCount = 0;
3661     // Now add the uses.
3662     for (auto &U : Def->uses()) {
3663       if (auto *I = dyn_cast<Instruction>(U.getUser())) {
3664         // Don't try to replace into dead uses
3665         if (InstructionsToErase.count(I))
3666           continue;
3667         ValueDFS VDUse;
3668         // Put the phi node uses in the incoming block.
3669         BasicBlock *IBlock;
3670         if (auto *P = dyn_cast<PHINode>(I)) {
3671           IBlock = P->getIncomingBlock(U);
3672           // Make phi node users appear last in the incoming block
3673           // they are from.
3674           VDUse.LocalNum = InstrDFS.size() + 1;
3675         } else {
3676           IBlock = getBlockForValue(I);
3677           VDUse.LocalNum = InstrToDFSNum(I);
3678         }
3679 
3680         // Skip uses in unreachable blocks, as we're going
3681         // to delete them.
3682         if (!ReachableBlocks.contains(IBlock))
3683           continue;
3684 
3685         DomTreeNode *DomNode = DT->getNode(IBlock);
3686         VDUse.DFSIn = DomNode->getDFSNumIn();
3687         VDUse.DFSOut = DomNode->getDFSNumOut();
3688         VDUse.U = &U;
3689         ++UseCount;
3690         DFSOrderedSet.emplace_back(VDUse);
3691       }
3692     }
3693 
3694     // If there are no uses, it's probably dead (but it may have side-effects,
3695     // so not definitely dead. Otherwise, store the number of uses so we can
3696     // track if it becomes dead later).
3697     if (UseCount == 0)
3698       ProbablyDead.insert(Def);
3699     else
3700       UseCounts[Def] = UseCount;
3701   }
3702 }
3703 
3704 // This function converts the set of members for a congruence class from values,
3705 // to the set of defs for loads and stores, with associated DFS info.
3706 void NewGVN::convertClassToLoadsAndStores(
3707     const CongruenceClass &Dense,
3708     SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
3709   for (auto *D : Dense) {
3710     if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
3711       continue;
3712 
3713     BasicBlock *BB = getBlockForValue(D);
3714     ValueDFS VD;
3715     DomTreeNode *DomNode = DT->getNode(BB);
3716     VD.DFSIn = DomNode->getDFSNumIn();
3717     VD.DFSOut = DomNode->getDFSNumOut();
3718     VD.Def.setPointer(D);
3719 
3720     // If it's an instruction, use the real local dfs number.
3721     if (auto *I = dyn_cast<Instruction>(D))
3722       VD.LocalNum = InstrToDFSNum(I);
3723     else
3724       llvm_unreachable("Should have been an instruction");
3725 
3726     LoadsAndStores.emplace_back(VD);
3727   }
3728 }
3729 
3730 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
3731   patchReplacementInstruction(I, Repl);
3732   I->replaceAllUsesWith(Repl);
3733 }
3734 
3735 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
3736   LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
3737   ++NumGVNBlocksDeleted;
3738 
3739   // Delete the instructions backwards, as it has a reduced likelihood of having
3740   // to update as many def-use and use-def chains. Start after the terminator.
3741   auto StartPoint = BB->rbegin();
3742   ++StartPoint;
3743   // Note that we explicitly recalculate BB->rend() on each iteration,
3744   // as it may change when we remove the first instruction.
3745   for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
3746     Instruction &Inst = *I++;
3747     if (!Inst.use_empty())
3748       Inst.replaceAllUsesWith(PoisonValue::get(Inst.getType()));
3749     if (isa<LandingPadInst>(Inst))
3750       continue;
3751     salvageKnowledge(&Inst, AC);
3752 
3753     Inst.eraseFromParent();
3754     ++NumGVNInstrDeleted;
3755   }
3756   // Now insert something that simplifycfg will turn into an unreachable.
3757   Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3758   new StoreInst(
3759       PoisonValue::get(Int8Ty),
3760       Constant::getNullValue(PointerType::getUnqual(BB->getContext())),
3761       BB->getTerminator()->getIterator());
3762 }
3763 
3764 void NewGVN::markInstructionForDeletion(Instruction *I) {
3765   LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
3766   InstructionsToErase.insert(I);
3767 }
3768 
3769 void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3770   LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
3771   patchAndReplaceAllUsesWith(I, V);
3772   // We save the actual erasing to avoid invalidating memory
3773   // dependencies until we are done with everything.
3774   markInstructionForDeletion(I);
3775 }
3776 
3777 namespace {
3778 
3779 // This is a stack that contains both the value and dfs info of where
3780 // that value is valid.
3781 class ValueDFSStack {
3782 public:
3783   Value *back() const { return ValueStack.back(); }
3784   std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3785 
3786   void push_back(Value *V, int DFSIn, int DFSOut) {
3787     ValueStack.emplace_back(V);
3788     DFSStack.emplace_back(DFSIn, DFSOut);
3789   }
3790 
3791   bool empty() const { return DFSStack.empty(); }
3792 
3793   bool isInScope(int DFSIn, int DFSOut) const {
3794     if (empty())
3795       return false;
3796     return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3797   }
3798 
3799   void popUntilDFSScope(int DFSIn, int DFSOut) {
3800 
3801     // These two should always be in sync at this point.
3802     assert(ValueStack.size() == DFSStack.size() &&
3803            "Mismatch between ValueStack and DFSStack");
3804     while (
3805         !DFSStack.empty() &&
3806         !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3807       DFSStack.pop_back();
3808       ValueStack.pop_back();
3809     }
3810   }
3811 
3812 private:
3813   SmallVector<Value *, 8> ValueStack;
3814   SmallVector<std::pair<int, int>, 8> DFSStack;
3815 };
3816 
3817 } // end anonymous namespace
3818 
3819 // Given an expression, get the congruence class for it.
3820 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const {
3821   if (auto *VE = dyn_cast<VariableExpression>(E))
3822     return ValueToClass.lookup(VE->getVariableValue());
3823   else if (isa<DeadExpression>(E))
3824     return TOPClass;
3825   return ExpressionToClass.lookup(E);
3826 }
3827 
3828 // Given a value and a basic block we are trying to see if it is available in,
3829 // see if the value has a leader available in that block.
3830 Value *NewGVN::findPHIOfOpsLeader(const Expression *E,
3831                                   const Instruction *OrigInst,
3832                                   const BasicBlock *BB) const {
3833   // It would already be constant if we could make it constant
3834   if (auto *CE = dyn_cast<ConstantExpression>(E))
3835     return CE->getConstantValue();
3836   if (auto *VE = dyn_cast<VariableExpression>(E)) {
3837     auto *V = VE->getVariableValue();
3838     if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB))
3839       return VE->getVariableValue();
3840   }
3841 
3842   auto *CC = getClassForExpression(E);
3843   if (!CC)
3844     return nullptr;
3845   if (alwaysAvailable(CC->getLeader()))
3846     return CC->getLeader();
3847 
3848   for (auto *Member : *CC) {
3849     auto *MemberInst = dyn_cast<Instruction>(Member);
3850     if (MemberInst == OrigInst)
3851       continue;
3852     // Anything that isn't an instruction is always available.
3853     if (!MemberInst)
3854       return Member;
3855     if (DT->dominates(getBlockForValue(MemberInst), BB))
3856       return Member;
3857   }
3858   return nullptr;
3859 }
3860 
3861 bool NewGVN::eliminateInstructions(Function &F) {
3862   // This is a non-standard eliminator. The normal way to eliminate is
3863   // to walk the dominator tree in order, keeping track of available
3864   // values, and eliminating them.  However, this is mildly
3865   // pointless. It requires doing lookups on every instruction,
3866   // regardless of whether we will ever eliminate it.  For
3867   // instructions part of most singleton congruence classes, we know we
3868   // will never eliminate them.
3869 
3870   // Instead, this eliminator looks at the congruence classes directly, sorts
3871   // them into a DFS ordering of the dominator tree, and then we just
3872   // perform elimination straight on the sets by walking the congruence
3873   // class member uses in order, and eliminate the ones dominated by the
3874   // last member.   This is worst case O(E log E) where E = number of
3875   // instructions in a single congruence class.  In theory, this is all
3876   // instructions.   In practice, it is much faster, as most instructions are
3877   // either in singleton congruence classes or can't possibly be eliminated
3878   // anyway (if there are no overlapping DFS ranges in class).
3879   // When we find something not dominated, it becomes the new leader
3880   // for elimination purposes.
3881   // TODO: If we wanted to be faster, We could remove any members with no
3882   // overlapping ranges while sorting, as we will never eliminate anything
3883   // with those members, as they don't dominate anything else in our set.
3884 
3885   bool AnythingReplaced = false;
3886 
3887   // Since we are going to walk the domtree anyway, and we can't guarantee the
3888   // DFS numbers are updated, we compute some ourselves.
3889   DT->updateDFSNumbers();
3890 
3891   // Go through all of our phi nodes, and kill the arguments associated with
3892   // unreachable edges.
3893   auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) {
3894     for (auto &Operand : PHI->incoming_values())
3895       if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) {
3896         LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
3897                           << " for block "
3898                           << getBlockName(PHI->getIncomingBlock(Operand))
3899                           << " with poison due to it being unreachable\n");
3900         Operand.set(PoisonValue::get(PHI->getType()));
3901       }
3902   };
3903   // Replace unreachable phi arguments.
3904   // At this point, RevisitOnReachabilityChange only contains:
3905   //
3906   // 1. PHIs
3907   // 2. Temporaries that will convert to PHIs
3908   // 3. Operations that are affected by an unreachable edge but do not fit into
3909   // 1 or 2 (rare).
3910   // So it is a slight overshoot of what we want. We could make it exact by
3911   // using two SparseBitVectors per block.
3912   DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
3913   for (auto &KV : ReachableEdges)
3914     ReachablePredCount[KV.getEnd()]++;
3915   for (auto &BBPair : RevisitOnReachabilityChange) {
3916     for (auto InstNum : BBPair.second) {
3917       auto *Inst = InstrFromDFSNum(InstNum);
3918       auto *PHI = dyn_cast<PHINode>(Inst);
3919       PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst));
3920       if (!PHI)
3921         continue;
3922       auto *BB = BBPair.first;
3923       if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues())
3924         ReplaceUnreachablePHIArgs(PHI, BB);
3925     }
3926   }
3927 
3928   // Map to store the use counts
3929   DenseMap<const Value *, unsigned int> UseCounts;
3930   for (auto *CC : reverse(CongruenceClasses)) {
3931     LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
3932                       << "\n");
3933     // Track the equivalent store info so we can decide whether to try
3934     // dead store elimination.
3935     SmallVector<ValueDFS, 8> PossibleDeadStores;
3936     SmallPtrSet<Instruction *, 8> ProbablyDead;
3937     if (CC->isDead() || CC->empty())
3938       continue;
3939     // Everything still in the TOP class is unreachable or dead.
3940     if (CC == TOPClass) {
3941       for (auto *M : *CC) {
3942         auto *VTE = ValueToExpression.lookup(M);
3943         if (VTE && isa<DeadExpression>(VTE))
3944           markInstructionForDeletion(cast<Instruction>(M));
3945         assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
3946                 InstructionsToErase.count(cast<Instruction>(M))) &&
3947                "Everything in TOP should be unreachable or dead at this "
3948                "point");
3949       }
3950       continue;
3951     }
3952 
3953     assert(CC->getLeader() && "We should have had a leader");
3954     // If this is a leader that is always available, and it's a
3955     // constant or has no equivalences, just replace everything with
3956     // it. We then update the congruence class with whatever members
3957     // are left.
3958     Value *Leader =
3959         CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
3960     if (alwaysAvailable(Leader)) {
3961       CongruenceClass::MemberSet MembersLeft;
3962       for (auto *M : *CC) {
3963         Value *Member = M;
3964         // Void things have no uses we can replace.
3965         if (Member == Leader || !isa<Instruction>(Member) ||
3966             Member->getType()->isVoidTy()) {
3967           MembersLeft.insert(Member);
3968           continue;
3969         }
3970 
3971         LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for "
3972                           << *Member << "\n");
3973         auto *I = cast<Instruction>(Member);
3974         assert(Leader != I && "About to accidentally remove our leader");
3975         replaceInstruction(I, Leader);
3976         AnythingReplaced = true;
3977       }
3978       CC->swap(MembersLeft);
3979     } else {
3980       // If this is a singleton, we can skip it.
3981       if (CC->size() != 1 || RealToTemp.count(Leader)) {
3982         // This is a stack because equality replacement/etc may place
3983         // constants in the middle of the member list, and we want to use
3984         // those constant values in preference to the current leader, over
3985         // the scope of those constants.
3986         ValueDFSStack EliminationStack;
3987 
3988         // Convert the members to DFS ordered sets and then merge them.
3989         SmallVector<ValueDFS, 8> DFSOrderedSet;
3990         convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
3991 
3992         // Sort the whole thing.
3993         llvm::sort(DFSOrderedSet);
3994         for (auto &VD : DFSOrderedSet) {
3995           int MemberDFSIn = VD.DFSIn;
3996           int MemberDFSOut = VD.DFSOut;
3997           Value *Def = VD.Def.getPointer();
3998           bool FromStore = VD.Def.getInt();
3999           Use *U = VD.U;
4000           // We ignore void things because we can't get a value from them.
4001           if (Def && Def->getType()->isVoidTy())
4002             continue;
4003           auto *DefInst = dyn_cast_or_null<Instruction>(Def);
4004           if (DefInst && AllTempInstructions.count(DefInst)) {
4005             auto *PN = cast<PHINode>(DefInst);
4006 
4007             // If this is a value phi and that's the expression we used, insert
4008             // it into the program
4009             // remove from temp instruction list.
4010             AllTempInstructions.erase(PN);
4011             auto *DefBlock = getBlockForValue(Def);
4012             LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
4013                               << " into block "
4014                               << getBlockName(getBlockForValue(Def)) << "\n");
4015             PN->insertBefore(DefBlock->begin());
4016             Def = PN;
4017             NumGVNPHIOfOpsEliminations++;
4018           }
4019 
4020           if (EliminationStack.empty()) {
4021             LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
4022           } else {
4023             LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
4024                               << EliminationStack.dfs_back().first << ","
4025                               << EliminationStack.dfs_back().second << ")\n");
4026           }
4027 
4028           LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
4029                             << MemberDFSOut << ")\n");
4030           // First, we see if we are out of scope or empty.  If so,
4031           // and there equivalences, we try to replace the top of
4032           // stack with equivalences (if it's on the stack, it must
4033           // not have been eliminated yet).
4034           // Then we synchronize to our current scope, by
4035           // popping until we are back within a DFS scope that
4036           // dominates the current member.
4037           // Then, what happens depends on a few factors
4038           // If the stack is now empty, we need to push
4039           // If we have a constant or a local equivalence we want to
4040           // start using, we also push.
4041           // Otherwise, we walk along, processing members who are
4042           // dominated by this scope, and eliminate them.
4043           bool ShouldPush = Def && EliminationStack.empty();
4044           bool OutOfScope =
4045               !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
4046 
4047           if (OutOfScope || ShouldPush) {
4048             // Sync to our current scope.
4049             EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4050             bool ShouldPush = Def && EliminationStack.empty();
4051             if (ShouldPush) {
4052               EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
4053             }
4054           }
4055 
4056           // Skip the Def's, we only want to eliminate on their uses.  But mark
4057           // dominated defs as dead.
4058           if (Def) {
4059             // For anything in this case, what and how we value number
4060             // guarantees that any side-effects that would have occurred (ie
4061             // throwing, etc) can be proven to either still occur (because it's
4062             // dominated by something that has the same side-effects), or never
4063             // occur.  Otherwise, we would not have been able to prove it value
4064             // equivalent to something else. For these things, we can just mark
4065             // it all dead.  Note that this is different from the "ProbablyDead"
4066             // set, which may not be dominated by anything, and thus, are only
4067             // easy to prove dead if they are also side-effect free. Note that
4068             // because stores are put in terms of the stored value, we skip
4069             // stored values here. If the stored value is really dead, it will
4070             // still be marked for deletion when we process it in its own class.
4071             auto *DefI = dyn_cast<Instruction>(Def);
4072             if (!EliminationStack.empty() && DefI && !FromStore) {
4073               Value *DominatingLeader = EliminationStack.back();
4074               if (DominatingLeader != Def) {
4075                 // Even if the instruction is removed, we still need to update
4076                 // flags/metadata due to downstreams users of the leader.
4077                 if (!match(DefI, m_Intrinsic<Intrinsic::ssa_copy>()))
4078                   patchReplacementInstruction(DefI, DominatingLeader);
4079 
4080                 markInstructionForDeletion(DefI);
4081               }
4082             }
4083             continue;
4084           }
4085           // At this point, we know it is a Use we are trying to possibly
4086           // replace.
4087 
4088           assert(isa<Instruction>(U->get()) &&
4089                  "Current def should have been an instruction");
4090           assert(isa<Instruction>(U->getUser()) &&
4091                  "Current user should have been an instruction");
4092 
4093           // If the thing we are replacing into is already marked to be dead,
4094           // this use is dead.  Note that this is true regardless of whether
4095           // we have anything dominating the use or not.  We do this here
4096           // because we are already walking all the uses anyway.
4097           Instruction *InstUse = cast<Instruction>(U->getUser());
4098           if (InstructionsToErase.count(InstUse)) {
4099             auto &UseCount = UseCounts[U->get()];
4100             if (--UseCount == 0) {
4101               ProbablyDead.insert(cast<Instruction>(U->get()));
4102             }
4103           }
4104 
4105           // If we get to this point, and the stack is empty we must have a use
4106           // with nothing we can use to eliminate this use, so just skip it.
4107           if (EliminationStack.empty())
4108             continue;
4109 
4110           Value *DominatingLeader = EliminationStack.back();
4111 
4112           auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
4113           bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy;
4114           if (isSSACopy)
4115             DominatingLeader = II->getOperand(0);
4116 
4117           // Don't replace our existing users with ourselves.
4118           if (U->get() == DominatingLeader)
4119             continue;
4120 
4121           // If we replaced something in an instruction, handle the patching of
4122           // metadata.  Skip this if we are replacing predicateinfo with its
4123           // original operand, as we already know we can just drop it.
4124           auto *ReplacedInst = cast<Instruction>(U->get());
4125           auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
4126           if (!PI || DominatingLeader != PI->OriginalOp)
4127             patchReplacementInstruction(ReplacedInst, DominatingLeader);
4128 
4129           LLVM_DEBUG(dbgs()
4130                      << "Found replacement " << *DominatingLeader << " for "
4131                      << *U->get() << " in " << *(U->getUser()) << "\n");
4132           U->set(DominatingLeader);
4133           // This is now a use of the dominating leader, which means if the
4134           // dominating leader was dead, it's now live!
4135           auto &LeaderUseCount = UseCounts[DominatingLeader];
4136           // It's about to be alive again.
4137           if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
4138             ProbablyDead.erase(cast<Instruction>(DominatingLeader));
4139           // For copy instructions, we use their operand as a leader,
4140           // which means we remove a user of the copy and it may become dead.
4141           if (isSSACopy) {
4142             auto It = UseCounts.find(II);
4143             if (It != UseCounts.end()) {
4144               unsigned &IIUseCount = It->second;
4145               if (--IIUseCount == 0)
4146                 ProbablyDead.insert(II);
4147             }
4148           }
4149           ++LeaderUseCount;
4150           AnythingReplaced = true;
4151         }
4152       }
4153     }
4154 
4155     // At this point, anything still in the ProbablyDead set is actually dead if
4156     // would be trivially dead.
4157     for (auto *I : ProbablyDead)
4158       if (wouldInstructionBeTriviallyDead(I))
4159         markInstructionForDeletion(I);
4160 
4161     // Cleanup the congruence class.
4162     CongruenceClass::MemberSet MembersLeft;
4163     for (auto *Member : *CC)
4164       if (!isa<Instruction>(Member) ||
4165           !InstructionsToErase.count(cast<Instruction>(Member)))
4166         MembersLeft.insert(Member);
4167     CC->swap(MembersLeft);
4168 
4169     // If we have possible dead stores to look at, try to eliminate them.
4170     if (CC->getStoreCount() > 0) {
4171       convertClassToLoadsAndStores(*CC, PossibleDeadStores);
4172       llvm::sort(PossibleDeadStores);
4173       ValueDFSStack EliminationStack;
4174       for (auto &VD : PossibleDeadStores) {
4175         int MemberDFSIn = VD.DFSIn;
4176         int MemberDFSOut = VD.DFSOut;
4177         Instruction *Member = cast<Instruction>(VD.Def.getPointer());
4178         if (EliminationStack.empty() ||
4179             !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
4180           // Sync to our current scope.
4181           EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4182           if (EliminationStack.empty()) {
4183             EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
4184             continue;
4185           }
4186         }
4187         // We already did load elimination, so nothing to do here.
4188         if (isa<LoadInst>(Member))
4189           continue;
4190         assert(!EliminationStack.empty());
4191         Instruction *Leader = cast<Instruction>(EliminationStack.back());
4192         (void)Leader;
4193         assert(DT->dominates(Leader->getParent(), Member->getParent()));
4194         // Member is dominater by Leader, and thus dead
4195         LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
4196                           << " that is dominated by " << *Leader << "\n");
4197         markInstructionForDeletion(Member);
4198         CC->erase(Member);
4199         ++NumGVNDeadStores;
4200       }
4201     }
4202   }
4203   return AnythingReplaced;
4204 }
4205 
4206 // This function provides global ranking of operations so that we can place them
4207 // in a canonical order.  Note that rank alone is not necessarily enough for a
4208 // complete ordering, as constants all have the same rank.  However, generally,
4209 // we will simplify an operation with all constants so that it doesn't matter
4210 // what order they appear in.
4211 unsigned int NewGVN::getRank(const Value *V) const {
4212   // Prefer constants to undef to anything else
4213   // Undef is a constant, have to check it first.
4214   // Prefer poison to undef as it's less defined.
4215   // Prefer smaller constants to constantexprs
4216   // Note that the order here matters because of class inheritance
4217   if (isa<ConstantExpr>(V))
4218     return 3;
4219   if (isa<PoisonValue>(V))
4220     return 1;
4221   if (isa<UndefValue>(V))
4222     return 2;
4223   if (isa<Constant>(V))
4224     return 0;
4225   if (auto *A = dyn_cast<Argument>(V))
4226     return 4 + A->getArgNo();
4227 
4228   // Need to shift the instruction DFS by number of arguments + 5 to account for
4229   // the constant and argument ranking above.
4230   unsigned Result = InstrToDFSNum(V);
4231   if (Result > 0)
4232     return 5 + NumFuncArgs + Result;
4233   // Unreachable or something else, just return a really large number.
4234   return ~0;
4235 }
4236 
4237 // This is a function that says whether two commutative operations should
4238 // have their order swapped when canonicalizing.
4239 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
4240   // Because we only care about a total ordering, and don't rewrite expressions
4241   // in this order, we order by rank, which will give a strict weak ordering to
4242   // everything but constants, and then we order by pointer address.
4243   return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
4244 }
4245 
4246 bool NewGVN::shouldSwapOperandsForIntrinsic(const Value *A, const Value *B,
4247                                             const IntrinsicInst *I) const {
4248   auto LookupResult = IntrinsicInstPred.find(I);
4249   if (shouldSwapOperands(A, B)) {
4250     if (LookupResult == IntrinsicInstPred.end())
4251       IntrinsicInstPred.insert({I, B});
4252     else
4253       LookupResult->second = B;
4254     return true;
4255   }
4256 
4257   if (LookupResult != IntrinsicInstPred.end()) {
4258     auto *SeenPredicate = LookupResult->second;
4259     if (SeenPredicate) {
4260       if (SeenPredicate == B)
4261         return true;
4262       else
4263         LookupResult->second = nullptr;
4264     }
4265   }
4266   return false;
4267 }
4268 
4269 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
4270   // Apparently the order in which we get these results matter for
4271   // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
4272   // the same order here, just in case.
4273   auto &AC = AM.getResult<AssumptionAnalysis>(F);
4274   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4275   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4276   auto &AA = AM.getResult<AAManager>(F);
4277   auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
4278   bool Changed =
4279       NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getDataLayout())
4280           .runGVN();
4281   if (!Changed)
4282     return PreservedAnalyses::all();
4283   PreservedAnalyses PA;
4284   PA.preserve<DominatorTreeAnalysis>();
4285   return PA;
4286 }
4287