1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SampleProfileLoader transformation. This pass
10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
12 // profile information in the given profile.
13 //
14 // This pass generates branch weight annotations on the IR:
15 //
16 // - prof: Represents branch weights. This annotation is added to branches
17 // to indicate the weights of each edge coming out of the branch.
18 // The weight of each edge is the weight of the target block for
19 // that edge. The weight of a block B is computed as the maximum
20 // number of samples found in B.
21 //
22 //===----------------------------------------------------------------------===//
23
24 #include "llvm/Transforms/IPO/SampleProfile.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/None.h"
29 #include "llvm/ADT/PriorityQueue.h"
30 #include "llvm/ADT/SCCIterator.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringMap.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/ADT/Twine.h"
38 #include "llvm/Analysis/AssumptionCache.h"
39 #include "llvm/Analysis/CallGraph.h"
40 #include "llvm/Analysis/CallGraphSCCPass.h"
41 #include "llvm/Analysis/InlineAdvisor.h"
42 #include "llvm/Analysis/InlineCost.h"
43 #include "llvm/Analysis/LoopInfo.h"
44 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
45 #include "llvm/Analysis/PostDominators.h"
46 #include "llvm/Analysis/ProfileSummaryInfo.h"
47 #include "llvm/Analysis/ReplayInlineAdvisor.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/Analysis/TargetTransformInfo.h"
50 #include "llvm/IR/BasicBlock.h"
51 #include "llvm/IR/CFG.h"
52 #include "llvm/IR/DebugInfoMetadata.h"
53 #include "llvm/IR/DebugLoc.h"
54 #include "llvm/IR/DiagnosticInfo.h"
55 #include "llvm/IR/Dominators.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/GlobalValue.h"
58 #include "llvm/IR/InstrTypes.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/PassManager.h"
66 #include "llvm/IR/ValueSymbolTable.h"
67 #include "llvm/InitializePasses.h"
68 #include "llvm/Pass.h"
69 #include "llvm/ProfileData/InstrProf.h"
70 #include "llvm/ProfileData/SampleProf.h"
71 #include "llvm/ProfileData/SampleProfReader.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/ErrorOr.h"
77 #include "llvm/Support/GenericDomTree.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include "llvm/Transforms/IPO.h"
80 #include "llvm/Transforms/IPO/ProfiledCallGraph.h"
81 #include "llvm/Transforms/IPO/SampleContextTracker.h"
82 #include "llvm/Transforms/IPO/SampleProfileProbe.h"
83 #include "llvm/Transforms/Instrumentation.h"
84 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
85 #include "llvm/Transforms/Utils/Cloning.h"
86 #include "llvm/Transforms/Utils/SampleProfileLoaderBaseImpl.h"
87 #include "llvm/Transforms/Utils/SampleProfileLoaderBaseUtil.h"
88 #include <algorithm>
89 #include <cassert>
90 #include <cstdint>
91 #include <functional>
92 #include <limits>
93 #include <map>
94 #include <memory>
95 #include <queue>
96 #include <string>
97 #include <system_error>
98 #include <utility>
99 #include <vector>
100
101 using namespace llvm;
102 using namespace sampleprof;
103 using namespace llvm::sampleprofutil;
104 using ProfileCount = Function::ProfileCount;
105 #define DEBUG_TYPE "sample-profile"
106 #define CSINLINE_DEBUG DEBUG_TYPE "-inline"
107
108 STATISTIC(NumCSInlined,
109 "Number of functions inlined with context sensitive profile");
110 STATISTIC(NumCSNotInlined,
111 "Number of functions not inlined with context sensitive profile");
112 STATISTIC(NumMismatchedProfile,
113 "Number of functions with CFG mismatched profile");
114 STATISTIC(NumMatchedProfile, "Number of functions with CFG matched profile");
115 STATISTIC(NumDuplicatedInlinesite,
116 "Number of inlined callsites with a partial distribution factor");
117
118 STATISTIC(NumCSInlinedHitMinLimit,
119 "Number of functions with FDO inline stopped due to min size limit");
120 STATISTIC(NumCSInlinedHitMaxLimit,
121 "Number of functions with FDO inline stopped due to max size limit");
122 STATISTIC(
123 NumCSInlinedHitGrowthLimit,
124 "Number of functions with FDO inline stopped due to growth size limit");
125
126 // Command line option to specify the file to read samples from. This is
127 // mainly used for debugging.
128 static cl::opt<std::string> SampleProfileFile(
129 "sample-profile-file", cl::init(""), cl::value_desc("filename"),
130 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
131
132 // The named file contains a set of transformations that may have been applied
133 // to the symbol names between the program from which the sample data was
134 // collected and the current program's symbols.
135 static cl::opt<std::string> SampleProfileRemappingFile(
136 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
137 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);
138
139 static cl::opt<bool> ProfileSampleAccurate(
140 "profile-sample-accurate", cl::Hidden, cl::init(false),
141 cl::desc("If the sample profile is accurate, we will mark all un-sampled "
142 "callsite and function as having 0 samples. Otherwise, treat "
143 "un-sampled callsites and functions conservatively as unknown. "));
144
145 static cl::opt<bool> ProfileAccurateForSymsInList(
146 "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore,
147 cl::init(true),
148 cl::desc("For symbols in profile symbol list, regard their profiles to "
149 "be accurate. It may be overriden by profile-sample-accurate. "));
150
151 static cl::opt<bool> ProfileMergeInlinee(
152 "sample-profile-merge-inlinee", cl::Hidden, cl::init(true),
153 cl::desc("Merge past inlinee's profile to outline version if sample "
154 "profile loader decided not to inline a call site. It will "
155 "only be enabled when top-down order of profile loading is "
156 "enabled. "));
157
158 static cl::opt<bool> ProfileTopDownLoad(
159 "sample-profile-top-down-load", cl::Hidden, cl::init(true),
160 cl::desc("Do profile annotation and inlining for functions in top-down "
161 "order of call graph during sample profile loading. It only "
162 "works for new pass manager. "));
163
164 static cl::opt<bool>
165 UseProfiledCallGraph("use-profiled-call-graph", cl::init(true), cl::Hidden,
166 cl::desc("Process functions in a top-down order "
167 "defined by the profiled call graph when "
168 "-sample-profile-top-down-load is on."));
169
170 static cl::opt<bool> ProfileSizeInline(
171 "sample-profile-inline-size", cl::Hidden, cl::init(false),
172 cl::desc("Inline cold call sites in profile loader if it's beneficial "
173 "for code size."));
174
175 cl::opt<int> ProfileInlineGrowthLimit(
176 "sample-profile-inline-growth-limit", cl::Hidden, cl::init(12),
177 cl::desc("The size growth ratio limit for proirity-based sample profile "
178 "loader inlining."));
179
180 cl::opt<int> ProfileInlineLimitMin(
181 "sample-profile-inline-limit-min", cl::Hidden, cl::init(100),
182 cl::desc("The lower bound of size growth limit for "
183 "proirity-based sample profile loader inlining."));
184
185 cl::opt<int> ProfileInlineLimitMax(
186 "sample-profile-inline-limit-max", cl::Hidden, cl::init(10000),
187 cl::desc("The upper bound of size growth limit for "
188 "proirity-based sample profile loader inlining."));
189
190 cl::opt<int> SampleHotCallSiteThreshold(
191 "sample-profile-hot-inline-threshold", cl::Hidden, cl::init(3000),
192 cl::desc("Hot callsite threshold for proirity-based sample profile loader "
193 "inlining."));
194
195 cl::opt<int> SampleColdCallSiteThreshold(
196 "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45),
197 cl::desc("Threshold for inlining cold callsites"));
198
199 static cl::opt<int> ProfileICPThreshold(
200 "sample-profile-icp-threshold", cl::Hidden, cl::init(5),
201 cl::desc(
202 "Relative hotness threshold for indirect "
203 "call promotion in proirity-based sample profile loader inlining."));
204
205 static cl::opt<bool> CallsitePrioritizedInline(
206 "sample-profile-prioritized-inline", cl::Hidden, cl::ZeroOrMore,
207 cl::init(false),
208 cl::desc("Use call site prioritized inlining for sample profile loader."
209 "Currently only CSSPGO is supported."));
210
211 static cl::opt<std::string> ProfileInlineReplayFile(
212 "sample-profile-inline-replay", cl::init(""), cl::value_desc("filename"),
213 cl::desc(
214 "Optimization remarks file containing inline remarks to be replayed "
215 "by inlining from sample profile loader."),
216 cl::Hidden);
217
218 static cl::opt<unsigned>
219 MaxNumPromotions("sample-profile-icp-max-prom", cl::init(3), cl::Hidden,
220 cl::ZeroOrMore,
221 cl::desc("Max number of promotions for a single indirect "
222 "call callsite in sample profile loader"));
223
224 static cl::opt<bool> OverwriteExistingWeights(
225 "overwrite-existing-weights", cl::Hidden, cl::init(false),
226 cl::desc("Ignore existing branch weights on IR and always overwrite."));
227
228 namespace {
229
230 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
231 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
232 using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
233 using EdgeWeightMap = DenseMap<Edge, uint64_t>;
234 using BlockEdgeMap =
235 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
236
237 class GUIDToFuncNameMapper {
238 public:
GUIDToFuncNameMapper(Module & M,SampleProfileReader & Reader,DenseMap<uint64_t,StringRef> & GUIDToFuncNameMap)239 GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader,
240 DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap)
241 : CurrentReader(Reader), CurrentModule(M),
242 CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) {
243 if (!CurrentReader.useMD5())
244 return;
245
246 for (const auto &F : CurrentModule) {
247 StringRef OrigName = F.getName();
248 CurrentGUIDToFuncNameMap.insert(
249 {Function::getGUID(OrigName), OrigName});
250
251 // Local to global var promotion used by optimization like thinlto
252 // will rename the var and add suffix like ".llvm.xxx" to the
253 // original local name. In sample profile, the suffixes of function
254 // names are all stripped. Since it is possible that the mapper is
255 // built in post-thin-link phase and var promotion has been done,
256 // we need to add the substring of function name without the suffix
257 // into the GUIDToFuncNameMap.
258 StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
259 if (CanonName != OrigName)
260 CurrentGUIDToFuncNameMap.insert(
261 {Function::getGUID(CanonName), CanonName});
262 }
263
264 // Update GUIDToFuncNameMap for each function including inlinees.
265 SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap);
266 }
267
~GUIDToFuncNameMapper()268 ~GUIDToFuncNameMapper() {
269 if (!CurrentReader.useMD5())
270 return;
271
272 CurrentGUIDToFuncNameMap.clear();
273
274 // Reset GUIDToFuncNameMap for of each function as they're no
275 // longer valid at this point.
276 SetGUIDToFuncNameMapForAll(nullptr);
277 }
278
279 private:
SetGUIDToFuncNameMapForAll(DenseMap<uint64_t,StringRef> * Map)280 void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) {
281 std::queue<FunctionSamples *> FSToUpdate;
282 for (auto &IFS : CurrentReader.getProfiles()) {
283 FSToUpdate.push(&IFS.second);
284 }
285
286 while (!FSToUpdate.empty()) {
287 FunctionSamples *FS = FSToUpdate.front();
288 FSToUpdate.pop();
289 FS->GUIDToFuncNameMap = Map;
290 for (const auto &ICS : FS->getCallsiteSamples()) {
291 const FunctionSamplesMap &FSMap = ICS.second;
292 for (auto &IFS : FSMap) {
293 FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second);
294 FSToUpdate.push(&FS);
295 }
296 }
297 }
298 }
299
300 SampleProfileReader &CurrentReader;
301 Module &CurrentModule;
302 DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap;
303 };
304
305 // Inline candidate used by iterative callsite prioritized inliner
306 struct InlineCandidate {
307 CallBase *CallInstr;
308 const FunctionSamples *CalleeSamples;
309 // Prorated callsite count, which will be used to guide inlining. For example,
310 // if a callsite is duplicated in LTO prelink, then in LTO postlink the two
311 // copies will get their own distribution factors and their prorated counts
312 // will be used to decide if they should be inlined independently.
313 uint64_t CallsiteCount;
314 // Call site distribution factor to prorate the profile samples for a
315 // duplicated callsite. Default value is 1.0.
316 float CallsiteDistribution;
317 };
318
319 // Inline candidate comparer using call site weight
320 struct CandidateComparer {
operator ()__anon1e220fe30111::CandidateComparer321 bool operator()(const InlineCandidate &LHS, const InlineCandidate &RHS) {
322 if (LHS.CallsiteCount != RHS.CallsiteCount)
323 return LHS.CallsiteCount < RHS.CallsiteCount;
324
325 const FunctionSamples *LCS = LHS.CalleeSamples;
326 const FunctionSamples *RCS = RHS.CalleeSamples;
327 assert(LCS && RCS && "Expect non-null FunctionSamples");
328
329 // Tie breaker using number of samples try to favor smaller functions first
330 if (LCS->getBodySamples().size() != RCS->getBodySamples().size())
331 return LCS->getBodySamples().size() > RCS->getBodySamples().size();
332
333 // Tie breaker using GUID so we have stable/deterministic inlining order
334 return LCS->getGUID(LCS->getName()) < RCS->getGUID(RCS->getName());
335 }
336 };
337
338 using CandidateQueue =
339 PriorityQueue<InlineCandidate, std::vector<InlineCandidate>,
340 CandidateComparer>;
341
342 /// Sample profile pass.
343 ///
344 /// This pass reads profile data from the file specified by
345 /// -sample-profile-file and annotates every affected function with the
346 /// profile information found in that file.
347 class SampleProfileLoader final
348 : public SampleProfileLoaderBaseImpl<BasicBlock> {
349 public:
SampleProfileLoader(StringRef Name,StringRef RemapName,ThinOrFullLTOPhase LTOPhase,std::function<AssumptionCache & (Function &)> GetAssumptionCache,std::function<TargetTransformInfo & (Function &)> GetTargetTransformInfo,std::function<const TargetLibraryInfo & (Function &)> GetTLI)350 SampleProfileLoader(
351 StringRef Name, StringRef RemapName, ThinOrFullLTOPhase LTOPhase,
352 std::function<AssumptionCache &(Function &)> GetAssumptionCache,
353 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo,
354 std::function<const TargetLibraryInfo &(Function &)> GetTLI)
355 : SampleProfileLoaderBaseImpl(std::string(Name)),
356 GetAC(std::move(GetAssumptionCache)),
357 GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)),
358 RemappingFilename(std::string(RemapName)), LTOPhase(LTOPhase) {}
359
360 bool doInitialization(Module &M, FunctionAnalysisManager *FAM = nullptr);
361 bool runOnModule(Module &M, ModuleAnalysisManager *AM,
362 ProfileSummaryInfo *_PSI, CallGraph *CG);
363
364 protected:
365 bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
366 bool emitAnnotations(Function &F);
367 ErrorOr<uint64_t> getInstWeight(const Instruction &I) override;
368 ErrorOr<uint64_t> getProbeWeight(const Instruction &I);
369 const FunctionSamples *findCalleeFunctionSamples(const CallBase &I) const;
370 const FunctionSamples *
371 findFunctionSamples(const Instruction &I) const override;
372 std::vector<const FunctionSamples *>
373 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
374 void findExternalInlineCandidate(const FunctionSamples *Samples,
375 DenseSet<GlobalValue::GUID> &InlinedGUIDs,
376 const StringMap<Function *> &SymbolMap,
377 uint64_t Threshold);
378 // Attempt to promote indirect call and also inline the promoted call
379 bool tryPromoteAndInlineCandidate(
380 Function &F, InlineCandidate &Candidate, uint64_t SumOrigin,
381 uint64_t &Sum, SmallVector<CallBase *, 8> *InlinedCallSites = nullptr);
382 bool inlineHotFunctions(Function &F,
383 DenseSet<GlobalValue::GUID> &InlinedGUIDs);
384 InlineCost shouldInlineCandidate(InlineCandidate &Candidate);
385 bool getInlineCandidate(InlineCandidate *NewCandidate, CallBase *CB);
386 bool
387 tryInlineCandidate(InlineCandidate &Candidate,
388 SmallVector<CallBase *, 8> *InlinedCallSites = nullptr);
389 bool
390 inlineHotFunctionsWithPriority(Function &F,
391 DenseSet<GlobalValue::GUID> &InlinedGUIDs);
392 // Inline cold/small functions in addition to hot ones
393 bool shouldInlineColdCallee(CallBase &CallInst);
394 void emitOptimizationRemarksForInlineCandidates(
395 const SmallVectorImpl<CallBase *> &Candidates, const Function &F,
396 bool Hot);
397 std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG);
398 std::unique_ptr<ProfiledCallGraph> buildProfiledCallGraph(CallGraph &CG);
399 void generateMDProfMetadata(Function &F);
400
401 /// Map from function name to Function *. Used to find the function from
402 /// the function name. If the function name contains suffix, additional
403 /// entry is added to map from the stripped name to the function if there
404 /// is one-to-one mapping.
405 StringMap<Function *> SymbolMap;
406
407 std::function<AssumptionCache &(Function &)> GetAC;
408 std::function<TargetTransformInfo &(Function &)> GetTTI;
409 std::function<const TargetLibraryInfo &(Function &)> GetTLI;
410
411 /// Profile tracker for different context.
412 std::unique_ptr<SampleContextTracker> ContextTracker;
413
414 /// Name of the profile remapping file to load.
415 std::string RemappingFilename;
416
417 /// Flag indicating whether the profile input loaded successfully.
418 bool ProfileIsValid = false;
419
420 /// Flag indicating whether input profile is context-sensitive
421 bool ProfileIsCS = false;
422
423 /// Flag indicating which LTO/ThinLTO phase the pass is invoked in.
424 ///
425 /// We need to know the LTO phase because for example in ThinLTOPrelink
426 /// phase, in annotation, we should not promote indirect calls. Instead,
427 /// we will mark GUIDs that needs to be annotated to the function.
428 ThinOrFullLTOPhase LTOPhase;
429
430 /// Profle Symbol list tells whether a function name appears in the binary
431 /// used to generate the current profile.
432 std::unique_ptr<ProfileSymbolList> PSL;
433
434 /// Total number of samples collected in this profile.
435 ///
436 /// This is the sum of all the samples collected in all the functions executed
437 /// at runtime.
438 uint64_t TotalCollectedSamples = 0;
439
440 // Information recorded when we declined to inline a call site
441 // because we have determined it is too cold is accumulated for
442 // each callee function. Initially this is just the entry count.
443 struct NotInlinedProfileInfo {
444 uint64_t entryCount;
445 };
446 DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo;
447
448 // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
449 // all the function symbols defined or declared in current module.
450 DenseMap<uint64_t, StringRef> GUIDToFuncNameMap;
451
452 // All the Names used in FunctionSamples including outline function
453 // names, inline instance names and call target names.
454 StringSet<> NamesInProfile;
455
456 // For symbol in profile symbol list, whether to regard their profiles
457 // to be accurate. It is mainly decided by existance of profile symbol
458 // list and -profile-accurate-for-symsinlist flag, but it can be
459 // overriden by -profile-sample-accurate or profile-sample-accurate
460 // attribute.
461 bool ProfAccForSymsInList;
462
463 // External inline advisor used to replay inline decision from remarks.
464 std::unique_ptr<ReplayInlineAdvisor> ExternalInlineAdvisor;
465
466 // A pseudo probe helper to correlate the imported sample counts.
467 std::unique_ptr<PseudoProbeManager> ProbeManager;
468 };
469
470 class SampleProfileLoaderLegacyPass : public ModulePass {
471 public:
472 // Class identification, replacement for typeinfo
473 static char ID;
474
SampleProfileLoaderLegacyPass(StringRef Name=SampleProfileFile,ThinOrFullLTOPhase LTOPhase=ThinOrFullLTOPhase::None)475 SampleProfileLoaderLegacyPass(
476 StringRef Name = SampleProfileFile,
477 ThinOrFullLTOPhase LTOPhase = ThinOrFullLTOPhase::None)
478 : ModulePass(ID), SampleLoader(
479 Name, SampleProfileRemappingFile, LTOPhase,
480 [&](Function &F) -> AssumptionCache & {
481 return ACT->getAssumptionCache(F);
482 },
__anon1e220fe30302(Function &F) 483 [&](Function &F) -> TargetTransformInfo & {
484 return TTIWP->getTTI(F);
485 },
__anon1e220fe30402(Function &F) 486 [&](Function &F) -> TargetLibraryInfo & {
487 return TLIWP->getTLI(F);
488 }) {
489 initializeSampleProfileLoaderLegacyPassPass(
490 *PassRegistry::getPassRegistry());
491 }
492
dump()493 void dump() { SampleLoader.dump(); }
494
doInitialization(Module & M)495 bool doInitialization(Module &M) override {
496 return SampleLoader.doInitialization(M);
497 }
498
getPassName() const499 StringRef getPassName() const override { return "Sample profile pass"; }
500 bool runOnModule(Module &M) override;
501
getAnalysisUsage(AnalysisUsage & AU) const502 void getAnalysisUsage(AnalysisUsage &AU) const override {
503 AU.addRequired<AssumptionCacheTracker>();
504 AU.addRequired<TargetTransformInfoWrapperPass>();
505 AU.addRequired<TargetLibraryInfoWrapperPass>();
506 AU.addRequired<ProfileSummaryInfoWrapperPass>();
507 }
508
509 private:
510 SampleProfileLoader SampleLoader;
511 AssumptionCacheTracker *ACT = nullptr;
512 TargetTransformInfoWrapperPass *TTIWP = nullptr;
513 TargetLibraryInfoWrapperPass *TLIWP = nullptr;
514 };
515
516 } // end anonymous namespace
517
getInstWeight(const Instruction & Inst)518 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
519 if (FunctionSamples::ProfileIsProbeBased)
520 return getProbeWeight(Inst);
521
522 const DebugLoc &DLoc = Inst.getDebugLoc();
523 if (!DLoc)
524 return std::error_code();
525
526 // Ignore all intrinsics, phinodes and branch instructions.
527 // Branch and phinodes instruction usually contains debug info from sources
528 // outside of the residing basic block, thus we ignore them during annotation.
529 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
530 return std::error_code();
531
532 // For non-CS profile, if a direct call/invoke instruction is inlined in
533 // profile (findCalleeFunctionSamples returns non-empty result), but not
534 // inlined here, it means that the inlined callsite has no sample, thus the
535 // call instruction should have 0 count.
536 // For CS profile, the callsite count of previously inlined callees is
537 // populated with the entry count of the callees.
538 if (!ProfileIsCS)
539 if (const auto *CB = dyn_cast<CallBase>(&Inst))
540 if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB))
541 return 0;
542
543 return getInstWeightImpl(Inst);
544 }
545
546 // Here use error_code to represent: 1) The dangling probe. 2) Ignore the weight
547 // of non-probe instruction. So if all instructions of the BB give error_code,
548 // tell the inference algorithm to infer the BB weight.
getProbeWeight(const Instruction & Inst)549 ErrorOr<uint64_t> SampleProfileLoader::getProbeWeight(const Instruction &Inst) {
550 assert(FunctionSamples::ProfileIsProbeBased &&
551 "Profile is not pseudo probe based");
552 Optional<PseudoProbe> Probe = extractProbe(Inst);
553 // Ignore the non-probe instruction. If none of the instruction in the BB is
554 // probe, we choose to infer the BB's weight.
555 if (!Probe)
556 return std::error_code();
557
558 // This is not the dangling probe from the training pass but generated by the
559 // current compilation. Ignore this since they are logically deleted and
560 // should not consume any profile samples.
561 if (Probe->isDangling())
562 return std::error_code();
563
564 const FunctionSamples *FS = findFunctionSamples(Inst);
565 // If none of the instruction has FunctionSample, we choose to return zero
566 // value sample to indicate the BB is cold. This could happen when the
567 // instruction is from inlinee and no profile data is found.
568 // FIXME: This should not be affected by the source drift issue as 1) if the
569 // newly added function is top-level inliner, it won't match the CFG checksum
570 // in the function profile or 2) if it's the inlinee, the inlinee should have
571 // a profile, otherwise it wouldn't be inlined. For non-probe based profile,
572 // we can improve it by adding a switch for profile-sample-block-accurate for
573 // block level counts in the future.
574 if (!FS)
575 return 0;
576
577 // For non-CS profile, If a direct call/invoke instruction is inlined in
578 // profile (findCalleeFunctionSamples returns non-empty result), but not
579 // inlined here, it means that the inlined callsite has no sample, thus the
580 // call instruction should have 0 count.
581 // For CS profile, the callsite count of previously inlined callees is
582 // populated with the entry count of the callees.
583 if (!ProfileIsCS)
584 if (const auto *CB = dyn_cast<CallBase>(&Inst))
585 if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB))
586 return 0;
587
588 const ErrorOr<uint64_t> &R = FS->findSamplesAt(Probe->Id, 0);
589 if (R) {
590 uint64_t Samples = R.get() * Probe->Factor;
591 bool FirstMark = CoverageTracker.markSamplesUsed(FS, Probe->Id, 0, Samples);
592 if (FirstMark) {
593 ORE->emit([&]() {
594 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
595 Remark << "Applied " << ore::NV("NumSamples", Samples);
596 Remark << " samples from profile (ProbeId=";
597 Remark << ore::NV("ProbeId", Probe->Id);
598 Remark << ", Factor=";
599 Remark << ore::NV("Factor", Probe->Factor);
600 Remark << ", OriginalSamples=";
601 Remark << ore::NV("OriginalSamples", R.get());
602 Remark << ")";
603 return Remark;
604 });
605 }
606 LLVM_DEBUG(dbgs() << " " << Probe->Id << ":" << Inst
607 << " - weight: " << R.get() << " - factor: "
608 << format("%0.2f", Probe->Factor) << ")\n");
609 return Samples;
610 }
611 return R;
612 }
613
614 /// Get the FunctionSamples for a call instruction.
615 ///
616 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
617 /// instance in which that call instruction is calling to. It contains
618 /// all samples that resides in the inlined instance. We first find the
619 /// inlined instance in which the call instruction is from, then we
620 /// traverse its children to find the callsite with the matching
621 /// location.
622 ///
623 /// \param Inst Call/Invoke instruction to query.
624 ///
625 /// \returns The FunctionSamples pointer to the inlined instance.
626 const FunctionSamples *
findCalleeFunctionSamples(const CallBase & Inst) const627 SampleProfileLoader::findCalleeFunctionSamples(const CallBase &Inst) const {
628 const DILocation *DIL = Inst.getDebugLoc();
629 if (!DIL) {
630 return nullptr;
631 }
632
633 StringRef CalleeName;
634 if (Function *Callee = Inst.getCalledFunction())
635 CalleeName = Callee->getName();
636
637 if (ProfileIsCS)
638 return ContextTracker->getCalleeContextSamplesFor(Inst, CalleeName);
639
640 const FunctionSamples *FS = findFunctionSamples(Inst);
641 if (FS == nullptr)
642 return nullptr;
643
644 return FS->findFunctionSamplesAt(FunctionSamples::getCallSiteIdentifier(DIL),
645 CalleeName, Reader->getRemapper());
646 }
647
648 /// Returns a vector of FunctionSamples that are the indirect call targets
649 /// of \p Inst. The vector is sorted by the total number of samples. Stores
650 /// the total call count of the indirect call in \p Sum.
651 std::vector<const FunctionSamples *>
findIndirectCallFunctionSamples(const Instruction & Inst,uint64_t & Sum) const652 SampleProfileLoader::findIndirectCallFunctionSamples(
653 const Instruction &Inst, uint64_t &Sum) const {
654 const DILocation *DIL = Inst.getDebugLoc();
655 std::vector<const FunctionSamples *> R;
656
657 if (!DIL) {
658 return R;
659 }
660
661 auto FSCompare = [](const FunctionSamples *L, const FunctionSamples *R) {
662 assert(L && R && "Expect non-null FunctionSamples");
663 if (L->getEntrySamples() != R->getEntrySamples())
664 return L->getEntrySamples() > R->getEntrySamples();
665 return FunctionSamples::getGUID(L->getName()) <
666 FunctionSamples::getGUID(R->getName());
667 };
668
669 if (ProfileIsCS) {
670 auto CalleeSamples =
671 ContextTracker->getIndirectCalleeContextSamplesFor(DIL);
672 if (CalleeSamples.empty())
673 return R;
674
675 // For CSSPGO, we only use target context profile's entry count
676 // as that already includes both inlined callee and non-inlined ones..
677 Sum = 0;
678 for (const auto *const FS : CalleeSamples) {
679 Sum += FS->getEntrySamples();
680 R.push_back(FS);
681 }
682 llvm::sort(R, FSCompare);
683 return R;
684 }
685
686 const FunctionSamples *FS = findFunctionSamples(Inst);
687 if (FS == nullptr)
688 return R;
689
690 auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL);
691 auto T = FS->findCallTargetMapAt(CallSite);
692 Sum = 0;
693 if (T)
694 for (const auto &T_C : T.get())
695 Sum += T_C.second;
696 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(CallSite)) {
697 if (M->empty())
698 return R;
699 for (const auto &NameFS : *M) {
700 Sum += NameFS.second.getEntrySamples();
701 R.push_back(&NameFS.second);
702 }
703 llvm::sort(R, FSCompare);
704 }
705 return R;
706 }
707
708 const FunctionSamples *
findFunctionSamples(const Instruction & Inst) const709 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
710 if (FunctionSamples::ProfileIsProbeBased) {
711 Optional<PseudoProbe> Probe = extractProbe(Inst);
712 if (!Probe)
713 return nullptr;
714 }
715
716 const DILocation *DIL = Inst.getDebugLoc();
717 if (!DIL)
718 return Samples;
719
720 auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
721 if (it.second) {
722 if (ProfileIsCS)
723 it.first->second = ContextTracker->getContextSamplesFor(DIL);
724 else
725 it.first->second =
726 Samples->findFunctionSamples(DIL, Reader->getRemapper());
727 }
728 return it.first->second;
729 }
730
731 /// Check whether the indirect call promotion history of \p Inst allows
732 /// the promotion for \p Candidate.
733 /// If the profile count for the promotion candidate \p Candidate is
734 /// NOMORE_ICP_MAGICNUM, it means \p Candidate has already been promoted
735 /// for \p Inst. If we already have at least MaxNumPromotions
736 /// NOMORE_ICP_MAGICNUM count values in the value profile of \p Inst, we
737 /// cannot promote for \p Inst anymore.
doesHistoryAllowICP(const Instruction & Inst,StringRef Candidate)738 static bool doesHistoryAllowICP(const Instruction &Inst, StringRef Candidate) {
739 uint32_t NumVals = 0;
740 uint64_t TotalCount = 0;
741 std::unique_ptr<InstrProfValueData[]> ValueData =
742 std::make_unique<InstrProfValueData[]>(MaxNumPromotions);
743 bool Valid =
744 getValueProfDataFromInst(Inst, IPVK_IndirectCallTarget, MaxNumPromotions,
745 ValueData.get(), NumVals, TotalCount, true);
746 // No valid value profile so no promoted targets have been recorded
747 // before. Ok to do ICP.
748 if (!Valid)
749 return true;
750
751 unsigned NumPromoted = 0;
752 for (uint32_t I = 0; I < NumVals; I++) {
753 if (ValueData[I].Count != NOMORE_ICP_MAGICNUM)
754 continue;
755
756 // If the promotion candidate has NOMORE_ICP_MAGICNUM count in the
757 // metadata, it means the candidate has been promoted for this
758 // indirect call.
759 if (ValueData[I].Value == Function::getGUID(Candidate))
760 return false;
761 NumPromoted++;
762 // If already have MaxNumPromotions promotion, don't do it anymore.
763 if (NumPromoted == MaxNumPromotions)
764 return false;
765 }
766 return true;
767 }
768
769 /// Update indirect call target profile metadata for \p Inst.
770 /// Usually \p Sum is the sum of counts of all the targets for \p Inst.
771 /// If it is 0, it means updateIDTMetaData is used to mark a
772 /// certain target to be promoted already. If it is not zero,
773 /// we expect to use it to update the total count in the value profile.
774 static void
updateIDTMetaData(Instruction & Inst,const SmallVectorImpl<InstrProfValueData> & CallTargets,uint64_t Sum)775 updateIDTMetaData(Instruction &Inst,
776 const SmallVectorImpl<InstrProfValueData> &CallTargets,
777 uint64_t Sum) {
778 uint32_t NumVals = 0;
779 // OldSum is the existing total count in the value profile data.
780 uint64_t OldSum = 0;
781 std::unique_ptr<InstrProfValueData[]> ValueData =
782 std::make_unique<InstrProfValueData[]>(MaxNumPromotions);
783 bool Valid =
784 getValueProfDataFromInst(Inst, IPVK_IndirectCallTarget, MaxNumPromotions,
785 ValueData.get(), NumVals, OldSum, true);
786
787 DenseMap<uint64_t, uint64_t> ValueCountMap;
788 if (Sum == 0) {
789 assert((CallTargets.size() == 1 &&
790 CallTargets[0].Count == NOMORE_ICP_MAGICNUM) &&
791 "If sum is 0, assume only one element in CallTargets "
792 "with count being NOMORE_ICP_MAGICNUM");
793 // Initialize ValueCountMap with existing value profile data.
794 if (Valid) {
795 for (uint32_t I = 0; I < NumVals; I++)
796 ValueCountMap[ValueData[I].Value] = ValueData[I].Count;
797 }
798 auto Pair =
799 ValueCountMap.try_emplace(CallTargets[0].Value, CallTargets[0].Count);
800 // If the target already exists in value profile, decrease the total
801 // count OldSum and reset the target's count to NOMORE_ICP_MAGICNUM.
802 if (!Pair.second) {
803 OldSum -= Pair.first->second;
804 Pair.first->second = NOMORE_ICP_MAGICNUM;
805 }
806 Sum = OldSum;
807 } else {
808 // Initialize ValueCountMap with existing NOMORE_ICP_MAGICNUM
809 // counts in the value profile.
810 if (Valid) {
811 for (uint32_t I = 0; I < NumVals; I++) {
812 if (ValueData[I].Count == NOMORE_ICP_MAGICNUM)
813 ValueCountMap[ValueData[I].Value] = ValueData[I].Count;
814 }
815 }
816
817 for (const auto &Data : CallTargets) {
818 auto Pair = ValueCountMap.try_emplace(Data.Value, Data.Count);
819 if (Pair.second)
820 continue;
821 // The target represented by Data.Value has already been promoted.
822 // Keep the count as NOMORE_ICP_MAGICNUM in the profile and decrease
823 // Sum by Data.Count.
824 assert(Sum >= Data.Count && "Sum should never be less than Data.Count");
825 Sum -= Data.Count;
826 }
827 }
828
829 SmallVector<InstrProfValueData, 8> NewCallTargets;
830 for (const auto &ValueCount : ValueCountMap) {
831 NewCallTargets.emplace_back(
832 InstrProfValueData{ValueCount.first, ValueCount.second});
833 }
834
835 llvm::sort(NewCallTargets,
836 [](const InstrProfValueData &L, const InstrProfValueData &R) {
837 if (L.Count != R.Count)
838 return L.Count > R.Count;
839 return L.Value > R.Value;
840 });
841
842 uint32_t MaxMDCount =
843 std::min(NewCallTargets.size(), static_cast<size_t>(MaxNumPromotions));
844 annotateValueSite(*Inst.getParent()->getParent()->getParent(), Inst,
845 NewCallTargets, Sum, IPVK_IndirectCallTarget, MaxMDCount);
846 }
847
848 /// Attempt to promote indirect call and also inline the promoted call.
849 ///
850 /// \param F Caller function.
851 /// \param Candidate ICP and inline candidate.
852 /// \param SumOrigin Original sum of target counts for indirect call before
853 /// promoting given candidate.
854 /// \param Sum Prorated sum of remaining target counts for indirect call
855 /// after promoting given candidate.
856 /// \param InlinedCallSite Output vector for new call sites exposed after
857 /// inlining.
tryPromoteAndInlineCandidate(Function & F,InlineCandidate & Candidate,uint64_t SumOrigin,uint64_t & Sum,SmallVector<CallBase *,8> * InlinedCallSite)858 bool SampleProfileLoader::tryPromoteAndInlineCandidate(
859 Function &F, InlineCandidate &Candidate, uint64_t SumOrigin, uint64_t &Sum,
860 SmallVector<CallBase *, 8> *InlinedCallSite) {
861 auto CalleeFunctionName = Candidate.CalleeSamples->getFuncName();
862 auto R = SymbolMap.find(CalleeFunctionName);
863 if (R == SymbolMap.end() || !R->getValue())
864 return false;
865
866 auto &CI = *Candidate.CallInstr;
867 if (!doesHistoryAllowICP(CI, R->getValue()->getName()))
868 return false;
869
870 const char *Reason = "Callee function not available";
871 // R->getValue() != &F is to prevent promoting a recursive call.
872 // If it is a recursive call, we do not inline it as it could bloat
873 // the code exponentially. There is way to better handle this, e.g.
874 // clone the caller first, and inline the cloned caller if it is
875 // recursive. As llvm does not inline recursive calls, we will
876 // simply ignore it instead of handling it explicitly.
877 if (!R->getValue()->isDeclaration() && R->getValue()->getSubprogram() &&
878 R->getValue()->hasFnAttribute("use-sample-profile") &&
879 R->getValue() != &F && isLegalToPromote(CI, R->getValue(), &Reason)) {
880 // For promoted target, set its value with NOMORE_ICP_MAGICNUM count
881 // in the value profile metadata so the target won't be promoted again.
882 SmallVector<InstrProfValueData, 1> SortedCallTargets = {InstrProfValueData{
883 Function::getGUID(R->getValue()->getName()), NOMORE_ICP_MAGICNUM}};
884 updateIDTMetaData(CI, SortedCallTargets, 0);
885
886 auto *DI = &pgo::promoteIndirectCall(
887 CI, R->getValue(), Candidate.CallsiteCount, Sum, false, ORE);
888 if (DI) {
889 Sum -= Candidate.CallsiteCount;
890 // Do not prorate the indirect callsite distribution since the original
891 // distribution will be used to scale down non-promoted profile target
892 // counts later. By doing this we lose track of the real callsite count
893 // for the leftover indirect callsite as a trade off for accurate call
894 // target counts.
895 // TODO: Ideally we would have two separate factors, one for call site
896 // counts and one is used to prorate call target counts.
897 // Do not update the promoted direct callsite distribution at this
898 // point since the original distribution combined with the callee profile
899 // will be used to prorate callsites from the callee if inlined. Once not
900 // inlined, the direct callsite distribution should be prorated so that
901 // the it will reflect the real callsite counts.
902 Candidate.CallInstr = DI;
903 if (isa<CallInst>(DI) || isa<InvokeInst>(DI)) {
904 bool Inlined = tryInlineCandidate(Candidate, InlinedCallSite);
905 if (!Inlined) {
906 // Prorate the direct callsite distribution so that it reflects real
907 // callsite counts.
908 setProbeDistributionFactor(
909 *DI, static_cast<float>(Candidate.CallsiteCount) / SumOrigin);
910 }
911 return Inlined;
912 }
913 }
914 } else {
915 LLVM_DEBUG(dbgs() << "\nFailed to promote indirect call to "
916 << Candidate.CalleeSamples->getFuncName() << " because "
917 << Reason << "\n");
918 }
919 return false;
920 }
921
shouldInlineColdCallee(CallBase & CallInst)922 bool SampleProfileLoader::shouldInlineColdCallee(CallBase &CallInst) {
923 if (!ProfileSizeInline)
924 return false;
925
926 Function *Callee = CallInst.getCalledFunction();
927 if (Callee == nullptr)
928 return false;
929
930 InlineCost Cost = getInlineCost(CallInst, getInlineParams(), GetTTI(*Callee),
931 GetAC, GetTLI);
932
933 if (Cost.isNever())
934 return false;
935
936 if (Cost.isAlways())
937 return true;
938
939 return Cost.getCost() <= SampleColdCallSiteThreshold;
940 }
941
emitOptimizationRemarksForInlineCandidates(const SmallVectorImpl<CallBase * > & Candidates,const Function & F,bool Hot)942 void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates(
943 const SmallVectorImpl<CallBase *> &Candidates, const Function &F,
944 bool Hot) {
945 for (auto I : Candidates) {
946 Function *CalledFunction = I->getCalledFunction();
947 if (CalledFunction) {
948 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt",
949 I->getDebugLoc(), I->getParent())
950 << "previous inlining reattempted for "
951 << (Hot ? "hotness: '" : "size: '")
952 << ore::NV("Callee", CalledFunction) << "' into '"
953 << ore::NV("Caller", &F) << "'");
954 }
955 }
956 }
957
findExternalInlineCandidate(const FunctionSamples * Samples,DenseSet<GlobalValue::GUID> & InlinedGUIDs,const StringMap<Function * > & SymbolMap,uint64_t Threshold)958 void SampleProfileLoader::findExternalInlineCandidate(
959 const FunctionSamples *Samples, DenseSet<GlobalValue::GUID> &InlinedGUIDs,
960 const StringMap<Function *> &SymbolMap, uint64_t Threshold) {
961 assert(Samples && "expect non-null caller profile");
962
963 // For AutoFDO profile, retrieve candidate profiles by walking over
964 // the nested inlinee profiles.
965 if (!ProfileIsCS) {
966 Samples->findInlinedFunctions(InlinedGUIDs, SymbolMap, Threshold);
967 return;
968 }
969
970 ContextTrieNode *Caller =
971 ContextTracker->getContextFor(Samples->getContext());
972 std::queue<ContextTrieNode *> CalleeList;
973 CalleeList.push(Caller);
974 while (!CalleeList.empty()) {
975 ContextTrieNode *Node = CalleeList.front();
976 CalleeList.pop();
977 FunctionSamples *CalleeSample = Node->getFunctionSamples();
978 // For CSSPGO profile, retrieve candidate profile by walking over the
979 // trie built for context profile. Note that also take call targets
980 // even if callee doesn't have a corresponding context profile.
981 if (!CalleeSample || CalleeSample->getEntrySamples() < Threshold)
982 continue;
983
984 StringRef Name = CalleeSample->getFuncName();
985 Function *Func = SymbolMap.lookup(Name);
986 // Add to the import list only when it's defined out of module.
987 if (!Func || Func->isDeclaration())
988 InlinedGUIDs.insert(FunctionSamples::getGUID(Name));
989
990 // Import hot CallTargets, which may not be available in IR because full
991 // profile annotation cannot be done until backend compilation in ThinLTO.
992 for (const auto &BS : CalleeSample->getBodySamples())
993 for (const auto &TS : BS.second.getCallTargets())
994 if (TS.getValue() > Threshold) {
995 StringRef CalleeName = CalleeSample->getFuncName(TS.getKey());
996 const Function *Callee = SymbolMap.lookup(CalleeName);
997 if (!Callee || Callee->isDeclaration())
998 InlinedGUIDs.insert(FunctionSamples::getGUID(CalleeName));
999 }
1000
1001 // Import hot child context profile associted with callees. Note that this
1002 // may have some overlap with the call target loop above, but doing this
1003 // based child context profile again effectively allow us to use the max of
1004 // entry count and call target count to determine importing.
1005 for (auto &Child : Node->getAllChildContext()) {
1006 ContextTrieNode *CalleeNode = &Child.second;
1007 CalleeList.push(CalleeNode);
1008 }
1009 }
1010 }
1011
1012 /// Iteratively inline hot callsites of a function.
1013 ///
1014 /// Iteratively traverse all callsites of the function \p F, and find if
1015 /// the corresponding inlined instance exists and is hot in profile. If
1016 /// it is hot enough, inline the callsites and adds new callsites of the
1017 /// callee into the caller. If the call is an indirect call, first promote
1018 /// it to direct call. Each indirect call is limited with a single target.
1019 ///
1020 /// \param F function to perform iterative inlining.
1021 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are
1022 /// inlined in the profiled binary.
1023 ///
1024 /// \returns True if there is any inline happened.
inlineHotFunctions(Function & F,DenseSet<GlobalValue::GUID> & InlinedGUIDs)1025 bool SampleProfileLoader::inlineHotFunctions(
1026 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
1027 // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure
1028 // Profile symbol list is ignored when profile-sample-accurate is on.
1029 assert((!ProfAccForSymsInList ||
1030 (!ProfileSampleAccurate &&
1031 !F.hasFnAttribute("profile-sample-accurate"))) &&
1032 "ProfAccForSymsInList should be false when profile-sample-accurate "
1033 "is enabled");
1034
1035 DenseMap<CallBase *, const FunctionSamples *> LocalNotInlinedCallSites;
1036 bool Changed = false;
1037 bool LocalChanged = true;
1038 while (LocalChanged) {
1039 LocalChanged = false;
1040 SmallVector<CallBase *, 10> CIS;
1041 for (auto &BB : F) {
1042 bool Hot = false;
1043 SmallVector<CallBase *, 10> AllCandidates;
1044 SmallVector<CallBase *, 10> ColdCandidates;
1045 for (auto &I : BB.getInstList()) {
1046 const FunctionSamples *FS = nullptr;
1047 if (auto *CB = dyn_cast<CallBase>(&I)) {
1048 if (!isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(*CB))) {
1049 assert((!FunctionSamples::UseMD5 || FS->GUIDToFuncNameMap) &&
1050 "GUIDToFuncNameMap has to be populated");
1051 AllCandidates.push_back(CB);
1052 if (FS->getEntrySamples() > 0 || ProfileIsCS)
1053 LocalNotInlinedCallSites.try_emplace(CB, FS);
1054 if (callsiteIsHot(FS, PSI, ProfAccForSymsInList))
1055 Hot = true;
1056 else if (shouldInlineColdCallee(*CB))
1057 ColdCandidates.push_back(CB);
1058 }
1059 }
1060 }
1061 if (Hot || ExternalInlineAdvisor) {
1062 CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end());
1063 emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true);
1064 } else {
1065 CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end());
1066 emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false);
1067 }
1068 }
1069 for (CallBase *I : CIS) {
1070 Function *CalledFunction = I->getCalledFunction();
1071 InlineCandidate Candidate = {
1072 I,
1073 LocalNotInlinedCallSites.count(I) ? LocalNotInlinedCallSites[I]
1074 : nullptr,
1075 0 /* dummy count */, 1.0 /* dummy distribution factor */};
1076 // Do not inline recursive calls.
1077 if (CalledFunction == &F)
1078 continue;
1079 if (I->isIndirectCall()) {
1080 uint64_t Sum;
1081 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
1082 uint64_t SumOrigin = Sum;
1083 if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) {
1084 findExternalInlineCandidate(FS, InlinedGUIDs, SymbolMap,
1085 PSI->getOrCompHotCountThreshold());
1086 continue;
1087 }
1088 if (!callsiteIsHot(FS, PSI, ProfAccForSymsInList))
1089 continue;
1090
1091 Candidate = {I, FS, FS->getEntrySamples(), 1.0};
1092 if (tryPromoteAndInlineCandidate(F, Candidate, SumOrigin, Sum)) {
1093 LocalNotInlinedCallSites.erase(I);
1094 LocalChanged = true;
1095 }
1096 }
1097 } else if (CalledFunction && CalledFunction->getSubprogram() &&
1098 !CalledFunction->isDeclaration()) {
1099 if (tryInlineCandidate(Candidate)) {
1100 LocalNotInlinedCallSites.erase(I);
1101 LocalChanged = true;
1102 }
1103 } else if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) {
1104 findExternalInlineCandidate(findCalleeFunctionSamples(*I), InlinedGUIDs,
1105 SymbolMap,
1106 PSI->getOrCompHotCountThreshold());
1107 }
1108 }
1109 Changed |= LocalChanged;
1110 }
1111
1112 // For CS profile, profile for not inlined context will be merged when
1113 // base profile is being trieved
1114 if (ProfileIsCS)
1115 return Changed;
1116
1117 // Accumulate not inlined callsite information into notInlinedSamples
1118 for (const auto &Pair : LocalNotInlinedCallSites) {
1119 CallBase *I = Pair.getFirst();
1120 Function *Callee = I->getCalledFunction();
1121 if (!Callee || Callee->isDeclaration())
1122 continue;
1123
1124 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline",
1125 I->getDebugLoc(), I->getParent())
1126 << "previous inlining not repeated: '"
1127 << ore::NV("Callee", Callee) << "' into '"
1128 << ore::NV("Caller", &F) << "'");
1129
1130 ++NumCSNotInlined;
1131 const FunctionSamples *FS = Pair.getSecond();
1132 if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) {
1133 continue;
1134 }
1135
1136 if (ProfileMergeInlinee) {
1137 // A function call can be replicated by optimizations like callsite
1138 // splitting or jump threading and the replicates end up sharing the
1139 // sample nested callee profile instead of slicing the original inlinee's
1140 // profile. We want to do merge exactly once by filtering out callee
1141 // profiles with a non-zero head sample count.
1142 if (FS->getHeadSamples() == 0) {
1143 // Use entry samples as head samples during the merge, as inlinees
1144 // don't have head samples.
1145 const_cast<FunctionSamples *>(FS)->addHeadSamples(
1146 FS->getEntrySamples());
1147
1148 // Note that we have to do the merge right after processing function.
1149 // This allows OutlineFS's profile to be used for annotation during
1150 // top-down processing of functions' annotation.
1151 FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee);
1152 OutlineFS->merge(*FS);
1153 }
1154 } else {
1155 auto pair =
1156 notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0});
1157 pair.first->second.entryCount += FS->getEntrySamples();
1158 }
1159 }
1160 return Changed;
1161 }
1162
tryInlineCandidate(InlineCandidate & Candidate,SmallVector<CallBase *,8> * InlinedCallSites)1163 bool SampleProfileLoader::tryInlineCandidate(
1164 InlineCandidate &Candidate, SmallVector<CallBase *, 8> *InlinedCallSites) {
1165
1166 CallBase &CB = *Candidate.CallInstr;
1167 Function *CalledFunction = CB.getCalledFunction();
1168 assert(CalledFunction && "Expect a callee with definition");
1169 DebugLoc DLoc = CB.getDebugLoc();
1170 BasicBlock *BB = CB.getParent();
1171
1172 InlineCost Cost = shouldInlineCandidate(Candidate);
1173 if (Cost.isNever()) {
1174 ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB)
1175 << "incompatible inlining");
1176 return false;
1177 }
1178
1179 if (!Cost)
1180 return false;
1181
1182 InlineFunctionInfo IFI(nullptr, GetAC);
1183 IFI.UpdateProfile = false;
1184 if (InlineFunction(CB, IFI).isSuccess()) {
1185 // The call to InlineFunction erases I, so we can't pass it here.
1186 emitInlinedInto(*ORE, DLoc, BB, *CalledFunction, *BB->getParent(), Cost,
1187 true, CSINLINE_DEBUG);
1188
1189 // Now populate the list of newly exposed call sites.
1190 if (InlinedCallSites) {
1191 InlinedCallSites->clear();
1192 for (auto &I : IFI.InlinedCallSites)
1193 InlinedCallSites->push_back(I);
1194 }
1195
1196 if (ProfileIsCS)
1197 ContextTracker->markContextSamplesInlined(Candidate.CalleeSamples);
1198 ++NumCSInlined;
1199
1200 // Prorate inlined probes for a duplicated inlining callsite which probably
1201 // has a distribution less than 100%. Samples for an inlinee should be
1202 // distributed among the copies of the original callsite based on each
1203 // callsite's distribution factor for counts accuracy. Note that an inlined
1204 // probe may come with its own distribution factor if it has been duplicated
1205 // in the inlinee body. The two factor are multiplied to reflect the
1206 // aggregation of duplication.
1207 if (Candidate.CallsiteDistribution < 1) {
1208 for (auto &I : IFI.InlinedCallSites) {
1209 if (Optional<PseudoProbe> Probe = extractProbe(*I))
1210 setProbeDistributionFactor(*I, Probe->Factor *
1211 Candidate.CallsiteDistribution);
1212 }
1213 NumDuplicatedInlinesite++;
1214 }
1215
1216 return true;
1217 }
1218 return false;
1219 }
1220
getInlineCandidate(InlineCandidate * NewCandidate,CallBase * CB)1221 bool SampleProfileLoader::getInlineCandidate(InlineCandidate *NewCandidate,
1222 CallBase *CB) {
1223 assert(CB && "Expect non-null call instruction");
1224
1225 if (isa<IntrinsicInst>(CB))
1226 return false;
1227
1228 // Find the callee's profile. For indirect call, find hottest target profile.
1229 const FunctionSamples *CalleeSamples = findCalleeFunctionSamples(*CB);
1230 if (!CalleeSamples)
1231 return false;
1232
1233 float Factor = 1.0;
1234 if (Optional<PseudoProbe> Probe = extractProbe(*CB))
1235 Factor = Probe->Factor;
1236
1237 uint64_t CallsiteCount = 0;
1238 ErrorOr<uint64_t> Weight = getBlockWeight(CB->getParent());
1239 if (Weight)
1240 CallsiteCount = Weight.get();
1241 if (CalleeSamples)
1242 CallsiteCount = std::max(
1243 CallsiteCount, uint64_t(CalleeSamples->getEntrySamples() * Factor));
1244
1245 *NewCandidate = {CB, CalleeSamples, CallsiteCount, Factor};
1246 return true;
1247 }
1248
1249 InlineCost
shouldInlineCandidate(InlineCandidate & Candidate)1250 SampleProfileLoader::shouldInlineCandidate(InlineCandidate &Candidate) {
1251 std::unique_ptr<InlineAdvice> Advice = nullptr;
1252 if (ExternalInlineAdvisor) {
1253 Advice = ExternalInlineAdvisor->getAdvice(*Candidate.CallInstr);
1254 if (!Advice->isInliningRecommended()) {
1255 Advice->recordUnattemptedInlining();
1256 return InlineCost::getNever("not previously inlined");
1257 }
1258 Advice->recordInlining();
1259 return InlineCost::getAlways("previously inlined");
1260 }
1261
1262 // Adjust threshold based on call site hotness, only do this for callsite
1263 // prioritized inliner because otherwise cost-benefit check is done earlier.
1264 int SampleThreshold = SampleColdCallSiteThreshold;
1265 if (CallsitePrioritizedInline) {
1266 if (Candidate.CallsiteCount > PSI->getHotCountThreshold())
1267 SampleThreshold = SampleHotCallSiteThreshold;
1268 else if (!ProfileSizeInline)
1269 return InlineCost::getNever("cold callsite");
1270 }
1271
1272 Function *Callee = Candidate.CallInstr->getCalledFunction();
1273 assert(Callee && "Expect a definition for inline candidate of direct call");
1274
1275 InlineParams Params = getInlineParams();
1276 Params.ComputeFullInlineCost = true;
1277 // Checks if there is anything in the reachable portion of the callee at
1278 // this callsite that makes this inlining potentially illegal. Need to
1279 // set ComputeFullInlineCost, otherwise getInlineCost may return early
1280 // when cost exceeds threshold without checking all IRs in the callee.
1281 // The acutal cost does not matter because we only checks isNever() to
1282 // see if it is legal to inline the callsite.
1283 InlineCost Cost = getInlineCost(*Candidate.CallInstr, Callee, Params,
1284 GetTTI(*Callee), GetAC, GetTLI);
1285
1286 // Honor always inline and never inline from call analyzer
1287 if (Cost.isNever() || Cost.isAlways())
1288 return Cost;
1289
1290 // For old FDO inliner, we inline the call site as long as cost is not
1291 // "Never". The cost-benefit check is done earlier.
1292 if (!CallsitePrioritizedInline) {
1293 return InlineCost::get(Cost.getCost(), INT_MAX);
1294 }
1295
1296 // Otherwise only use the cost from call analyzer, but overwite threshold with
1297 // Sample PGO threshold.
1298 return InlineCost::get(Cost.getCost(), SampleThreshold);
1299 }
1300
inlineHotFunctionsWithPriority(Function & F,DenseSet<GlobalValue::GUID> & InlinedGUIDs)1301 bool SampleProfileLoader::inlineHotFunctionsWithPriority(
1302 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
1303 assert(ProfileIsCS && "Prioritiy based inliner only works with CSSPGO now");
1304
1305 // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure
1306 // Profile symbol list is ignored when profile-sample-accurate is on.
1307 assert((!ProfAccForSymsInList ||
1308 (!ProfileSampleAccurate &&
1309 !F.hasFnAttribute("profile-sample-accurate"))) &&
1310 "ProfAccForSymsInList should be false when profile-sample-accurate "
1311 "is enabled");
1312
1313 // Populating worklist with initial call sites from root inliner, along
1314 // with call site weights.
1315 CandidateQueue CQueue;
1316 InlineCandidate NewCandidate;
1317 for (auto &BB : F) {
1318 for (auto &I : BB.getInstList()) {
1319 auto *CB = dyn_cast<CallBase>(&I);
1320 if (!CB)
1321 continue;
1322 if (getInlineCandidate(&NewCandidate, CB))
1323 CQueue.push(NewCandidate);
1324 }
1325 }
1326
1327 // Cap the size growth from profile guided inlining. This is needed even
1328 // though cost of each inline candidate already accounts for callee size,
1329 // because with top-down inlining, we can grow inliner size significantly
1330 // with large number of smaller inlinees each pass the cost check.
1331 assert(ProfileInlineLimitMax >= ProfileInlineLimitMin &&
1332 "Max inline size limit should not be smaller than min inline size "
1333 "limit.");
1334 unsigned SizeLimit = F.getInstructionCount() * ProfileInlineGrowthLimit;
1335 SizeLimit = std::min(SizeLimit, (unsigned)ProfileInlineLimitMax);
1336 SizeLimit = std::max(SizeLimit, (unsigned)ProfileInlineLimitMin);
1337 if (ExternalInlineAdvisor)
1338 SizeLimit = std::numeric_limits<unsigned>::max();
1339
1340 // Perform iterative BFS call site prioritized inlining
1341 bool Changed = false;
1342 while (!CQueue.empty() && F.getInstructionCount() < SizeLimit) {
1343 InlineCandidate Candidate = CQueue.top();
1344 CQueue.pop();
1345 CallBase *I = Candidate.CallInstr;
1346 Function *CalledFunction = I->getCalledFunction();
1347
1348 if (CalledFunction == &F)
1349 continue;
1350 if (I->isIndirectCall()) {
1351 uint64_t Sum = 0;
1352 auto CalleeSamples = findIndirectCallFunctionSamples(*I, Sum);
1353 uint64_t SumOrigin = Sum;
1354 Sum *= Candidate.CallsiteDistribution;
1355 for (const auto *FS : CalleeSamples) {
1356 // TODO: Consider disable pre-lTO ICP for MonoLTO as well
1357 if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) {
1358 findExternalInlineCandidate(FS, InlinedGUIDs, SymbolMap,
1359 PSI->getOrCompHotCountThreshold());
1360 continue;
1361 }
1362 uint64_t EntryCountDistributed =
1363 FS->getEntrySamples() * Candidate.CallsiteDistribution;
1364 // In addition to regular inline cost check, we also need to make sure
1365 // ICP isn't introducing excessive speculative checks even if individual
1366 // target looks beneficial to promote and inline. That means we should
1367 // only do ICP when there's a small number dominant targets.
1368 if (EntryCountDistributed < SumOrigin / ProfileICPThreshold)
1369 break;
1370 // TODO: Fix CallAnalyzer to handle all indirect calls.
1371 // For indirect call, we don't run CallAnalyzer to get InlineCost
1372 // before actual inlining. This is because we could see two different
1373 // types from the same definition, which makes CallAnalyzer choke as
1374 // it's expecting matching parameter type on both caller and callee
1375 // side. See example from PR18962 for the triggering cases (the bug was
1376 // fixed, but we generate different types).
1377 if (!PSI->isHotCount(EntryCountDistributed))
1378 break;
1379 SmallVector<CallBase *, 8> InlinedCallSites;
1380 // Attach function profile for promoted indirect callee, and update
1381 // call site count for the promoted inline candidate too.
1382 Candidate = {I, FS, EntryCountDistributed,
1383 Candidate.CallsiteDistribution};
1384 if (tryPromoteAndInlineCandidate(F, Candidate, SumOrigin, Sum,
1385 &InlinedCallSites)) {
1386 for (auto *CB : InlinedCallSites) {
1387 if (getInlineCandidate(&NewCandidate, CB))
1388 CQueue.emplace(NewCandidate);
1389 }
1390 Changed = true;
1391 }
1392 }
1393 } else if (CalledFunction && CalledFunction->getSubprogram() &&
1394 !CalledFunction->isDeclaration()) {
1395 SmallVector<CallBase *, 8> InlinedCallSites;
1396 if (tryInlineCandidate(Candidate, &InlinedCallSites)) {
1397 for (auto *CB : InlinedCallSites) {
1398 if (getInlineCandidate(&NewCandidate, CB))
1399 CQueue.emplace(NewCandidate);
1400 }
1401 Changed = true;
1402 }
1403 } else if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) {
1404 findExternalInlineCandidate(Candidate.CalleeSamples, InlinedGUIDs,
1405 SymbolMap, PSI->getOrCompHotCountThreshold());
1406 }
1407 }
1408
1409 if (!CQueue.empty()) {
1410 if (SizeLimit == (unsigned)ProfileInlineLimitMax)
1411 ++NumCSInlinedHitMaxLimit;
1412 else if (SizeLimit == (unsigned)ProfileInlineLimitMin)
1413 ++NumCSInlinedHitMinLimit;
1414 else
1415 ++NumCSInlinedHitGrowthLimit;
1416 }
1417
1418 return Changed;
1419 }
1420
1421 /// Returns the sorted CallTargetMap \p M by count in descending order.
1422 static SmallVector<InstrProfValueData, 2>
GetSortedValueDataFromCallTargets(const SampleRecord::CallTargetMap & M)1423 GetSortedValueDataFromCallTargets(const SampleRecord::CallTargetMap &M) {
1424 SmallVector<InstrProfValueData, 2> R;
1425 for (const auto &I : SampleRecord::SortCallTargets(M)) {
1426 R.emplace_back(
1427 InstrProfValueData{FunctionSamples::getGUID(I.first), I.second});
1428 }
1429 return R;
1430 }
1431
1432 // Generate MD_prof metadata for every branch instruction using the
1433 // edge weights computed during propagation.
generateMDProfMetadata(Function & F)1434 void SampleProfileLoader::generateMDProfMetadata(Function &F) {
1435 // Generate MD_prof metadata for every branch instruction using the
1436 // edge weights computed during propagation.
1437 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1438 LLVMContext &Ctx = F.getContext();
1439 MDBuilder MDB(Ctx);
1440 for (auto &BI : F) {
1441 BasicBlock *BB = &BI;
1442
1443 if (BlockWeights[BB]) {
1444 for (auto &I : BB->getInstList()) {
1445 if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1446 continue;
1447 if (!cast<CallBase>(I).getCalledFunction()) {
1448 const DebugLoc &DLoc = I.getDebugLoc();
1449 if (!DLoc)
1450 continue;
1451 const DILocation *DIL = DLoc;
1452 const FunctionSamples *FS = findFunctionSamples(I);
1453 if (!FS)
1454 continue;
1455 auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL);
1456 auto T = FS->findCallTargetMapAt(CallSite);
1457 if (!T || T.get().empty())
1458 continue;
1459 if (FunctionSamples::ProfileIsProbeBased) {
1460 // Prorate the callsite counts based on the pre-ICP distribution
1461 // factor to reflect what is already done to the callsite before
1462 // ICP, such as calliste cloning.
1463 if (Optional<PseudoProbe> Probe = extractProbe(I)) {
1464 if (Probe->Factor < 1)
1465 T = SampleRecord::adjustCallTargets(T.get(), Probe->Factor);
1466 }
1467 }
1468 SmallVector<InstrProfValueData, 2> SortedCallTargets =
1469 GetSortedValueDataFromCallTargets(T.get());
1470 uint64_t Sum = 0;
1471 for (const auto &C : T.get())
1472 Sum += C.second;
1473 // With CSSPGO all indirect call targets are counted torwards the
1474 // original indirect call site in the profile, including both
1475 // inlined and non-inlined targets.
1476 if (!FunctionSamples::ProfileIsCS) {
1477 if (const FunctionSamplesMap *M =
1478 FS->findFunctionSamplesMapAt(CallSite)) {
1479 for (const auto &NameFS : *M)
1480 Sum += NameFS.second.getEntrySamples();
1481 }
1482 }
1483 if (Sum)
1484 updateIDTMetaData(I, SortedCallTargets, Sum);
1485 else if (OverwriteExistingWeights)
1486 I.setMetadata(LLVMContext::MD_prof, nullptr);
1487 } else if (!isa<IntrinsicInst>(&I)) {
1488 I.setMetadata(LLVMContext::MD_prof,
1489 MDB.createBranchWeights(
1490 {static_cast<uint32_t>(BlockWeights[BB])}));
1491 }
1492 }
1493 } else if (OverwriteExistingWeights) {
1494 // Set profile metadata (possibly annotated by LTO prelink) to zero or
1495 // clear it for cold code.
1496 for (auto &I : BB->getInstList()) {
1497 if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
1498 if (cast<CallBase>(I).isIndirectCall())
1499 I.setMetadata(LLVMContext::MD_prof, nullptr);
1500 else
1501 I.setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(0));
1502 }
1503 }
1504 }
1505
1506 Instruction *TI = BB->getTerminator();
1507 if (TI->getNumSuccessors() == 1)
1508 continue;
1509 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI) &&
1510 !isa<IndirectBrInst>(TI))
1511 continue;
1512
1513 DebugLoc BranchLoc = TI->getDebugLoc();
1514 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
1515 << ((BranchLoc) ? Twine(BranchLoc.getLine())
1516 : Twine("<UNKNOWN LOCATION>"))
1517 << ".\n");
1518 SmallVector<uint32_t, 4> Weights;
1519 uint32_t MaxWeight = 0;
1520 Instruction *MaxDestInst;
1521 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1522 BasicBlock *Succ = TI->getSuccessor(I);
1523 Edge E = std::make_pair(BB, Succ);
1524 uint64_t Weight = EdgeWeights[E];
1525 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1526 // Use uint32_t saturated arithmetic to adjust the incoming weights,
1527 // if needed. Sample counts in profiles are 64-bit unsigned values,
1528 // but internally branch weights are expressed as 32-bit values.
1529 if (Weight > std::numeric_limits<uint32_t>::max()) {
1530 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1531 Weight = std::numeric_limits<uint32_t>::max();
1532 }
1533 // Weight is added by one to avoid propagation errors introduced by
1534 // 0 weights.
1535 Weights.push_back(static_cast<uint32_t>(Weight + 1));
1536 if (Weight != 0) {
1537 if (Weight > MaxWeight) {
1538 MaxWeight = Weight;
1539 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1540 }
1541 }
1542 }
1543
1544 uint64_t TempWeight;
1545 // Only set weights if there is at least one non-zero weight.
1546 // In any other case, let the analyzer set weights.
1547 // Do not set weights if the weights are present unless under
1548 // OverwriteExistingWeights. In ThinLTO, the profile annotation is done
1549 // twice. If the first annotation already set the weights, the second pass
1550 // does not need to set it. With OverwriteExistingWeights, Blocks with zero
1551 // weight should have their existing metadata (possibly annotated by LTO
1552 // prelink) cleared.
1553 if (MaxWeight > 0 &&
1554 (!TI->extractProfTotalWeight(TempWeight) || OverwriteExistingWeights)) {
1555 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1556 TI->setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
1557 ORE->emit([&]() {
1558 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1559 << "most popular destination for conditional branches at "
1560 << ore::NV("CondBranchesLoc", BranchLoc);
1561 });
1562 } else {
1563 if (OverwriteExistingWeights) {
1564 TI->setMetadata(LLVMContext::MD_prof, nullptr);
1565 LLVM_DEBUG(dbgs() << "CLEARED. All branch weights are zero.\n");
1566 } else {
1567 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1568 }
1569 }
1570 }
1571 }
1572
1573 /// Once all the branch weights are computed, we emit the MD_prof
1574 /// metadata on BB using the computed values for each of its branches.
1575 ///
1576 /// \param F The function to query.
1577 ///
1578 /// \returns true if \p F was modified. Returns false, otherwise.
emitAnnotations(Function & F)1579 bool SampleProfileLoader::emitAnnotations(Function &F) {
1580 bool Changed = false;
1581
1582 if (FunctionSamples::ProfileIsProbeBased) {
1583 if (!ProbeManager->profileIsValid(F, *Samples)) {
1584 LLVM_DEBUG(
1585 dbgs() << "Profile is invalid due to CFG mismatch for Function "
1586 << F.getName());
1587 ++NumMismatchedProfile;
1588 return false;
1589 }
1590 ++NumMatchedProfile;
1591 } else {
1592 if (getFunctionLoc(F) == 0)
1593 return false;
1594
1595 LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
1596 << F.getName() << ": " << getFunctionLoc(F) << "\n");
1597 }
1598
1599 DenseSet<GlobalValue::GUID> InlinedGUIDs;
1600 if (ProfileIsCS && CallsitePrioritizedInline)
1601 Changed |= inlineHotFunctionsWithPriority(F, InlinedGUIDs);
1602 else
1603 Changed |= inlineHotFunctions(F, InlinedGUIDs);
1604
1605 Changed |= computeAndPropagateWeights(F, InlinedGUIDs);
1606
1607 if (Changed)
1608 generateMDProfMetadata(F);
1609
1610 emitCoverageRemarks(F);
1611 return Changed;
1612 }
1613
1614 char SampleProfileLoaderLegacyPass::ID = 0;
1615
1616 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1617 "Sample Profile loader", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)1618 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1619 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1620 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1621 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1622 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1623 "Sample Profile loader", false, false)
1624
1625 std::unique_ptr<ProfiledCallGraph>
1626 SampleProfileLoader::buildProfiledCallGraph(CallGraph &CG) {
1627 std::unique_ptr<ProfiledCallGraph> ProfiledCG;
1628 if (ProfileIsCS)
1629 ProfiledCG = std::make_unique<ProfiledCallGraph>(*ContextTracker);
1630 else
1631 ProfiledCG = std::make_unique<ProfiledCallGraph>(Reader->getProfiles());
1632
1633 // Add all functions into the profiled call graph even if they are not in
1634 // the profile. This makes sure functions missing from the profile still
1635 // gets a chance to be processed.
1636 for (auto &Node : CG) {
1637 const auto *F = Node.first;
1638 if (!F || F->isDeclaration() || !F->hasFnAttribute("use-sample-profile"))
1639 continue;
1640 ProfiledCG->addProfiledFunction(FunctionSamples::getCanonicalFnName(*F));
1641 }
1642
1643 return ProfiledCG;
1644 }
1645
1646 std::vector<Function *>
buildFunctionOrder(Module & M,CallGraph * CG)1647 SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) {
1648 std::vector<Function *> FunctionOrderList;
1649 FunctionOrderList.reserve(M.size());
1650
1651 if (!ProfileTopDownLoad && UseProfiledCallGraph)
1652 errs() << "WARNING: -use-profiled-call-graph ignored, should be used "
1653 "together with -sample-profile-top-down-load.\n";
1654
1655 if (!ProfileTopDownLoad || CG == nullptr) {
1656 if (ProfileMergeInlinee) {
1657 // Disable ProfileMergeInlinee if profile is not loaded in top down order,
1658 // because the profile for a function may be used for the profile
1659 // annotation of its outline copy before the profile merging of its
1660 // non-inlined inline instances, and that is not the way how
1661 // ProfileMergeInlinee is supposed to work.
1662 ProfileMergeInlinee = false;
1663 }
1664
1665 for (Function &F : M)
1666 if (!F.isDeclaration() && F.hasFnAttribute("use-sample-profile"))
1667 FunctionOrderList.push_back(&F);
1668 return FunctionOrderList;
1669 }
1670
1671 assert(&CG->getModule() == &M);
1672
1673 if (UseProfiledCallGraph ||
1674 (ProfileIsCS && !UseProfiledCallGraph.getNumOccurrences())) {
1675 // Use profiled call edges to augment the top-down order. There are cases
1676 // that the top-down order computed based on the static call graph doesn't
1677 // reflect real execution order. For example
1678 //
1679 // 1. Incomplete static call graph due to unknown indirect call targets.
1680 // Adjusting the order by considering indirect call edges from the
1681 // profile can enable the inlining of indirect call targets by allowing
1682 // the caller processed before them.
1683 // 2. Mutual call edges in an SCC. The static processing order computed for
1684 // an SCC may not reflect the call contexts in the context-sensitive
1685 // profile, thus may cause potential inlining to be overlooked. The
1686 // function order in one SCC is being adjusted to a top-down order based
1687 // on the profile to favor more inlining. This is only a problem with CS
1688 // profile.
1689 // 3. Transitive indirect call edges due to inlining. When a callee function
1690 // (say B) is inlined into into a caller function (say A) in LTO prelink,
1691 // every call edge originated from the callee B will be transferred to
1692 // the caller A. If any transferred edge (say A->C) is indirect, the
1693 // original profiled indirect edge B->C, even if considered, would not
1694 // enforce a top-down order from the caller A to the potential indirect
1695 // call target C in LTO postlink since the inlined callee B is gone from
1696 // the static call graph.
1697 // 4. #3 can happen even for direct call targets, due to functions defined
1698 // in header files. A header function (say A), when included into source
1699 // files, is defined multiple times but only one definition survives due
1700 // to ODR. Therefore, the LTO prelink inlining done on those dropped
1701 // definitions can be useless based on a local file scope. More
1702 // importantly, the inlinee (say B), once fully inlined to a
1703 // to-be-dropped A, will have no profile to consume when its outlined
1704 // version is compiled. This can lead to a profile-less prelink
1705 // compilation for the outlined version of B which may be called from
1706 // external modules. while this isn't easy to fix, we rely on the
1707 // postlink AutoFDO pipeline to optimize B. Since the survived copy of
1708 // the A can be inlined in its local scope in prelink, it may not exist
1709 // in the merged IR in postlink, and we'll need the profiled call edges
1710 // to enforce a top-down order for the rest of the functions.
1711 //
1712 // Considering those cases, a profiled call graph completely independent of
1713 // the static call graph is constructed based on profile data, where
1714 // function objects are not even needed to handle case #3 and case 4.
1715 //
1716 // Note that static callgraph edges are completely ignored since they
1717 // can be conflicting with profiled edges for cyclic SCCs and may result in
1718 // an SCC order incompatible with profile-defined one. Using strictly
1719 // profile order ensures a maximum inlining experience. On the other hand,
1720 // static call edges are not so important when they don't correspond to a
1721 // context in the profile.
1722
1723 std::unique_ptr<ProfiledCallGraph> ProfiledCG = buildProfiledCallGraph(*CG);
1724 scc_iterator<ProfiledCallGraph *> CGI = scc_begin(ProfiledCG.get());
1725 while (!CGI.isAtEnd()) {
1726 for (ProfiledCallGraphNode *Node : *CGI) {
1727 Function *F = SymbolMap.lookup(Node->Name);
1728 if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile"))
1729 FunctionOrderList.push_back(F);
1730 }
1731 ++CGI;
1732 }
1733 } else {
1734 scc_iterator<CallGraph *> CGI = scc_begin(CG);
1735 while (!CGI.isAtEnd()) {
1736 for (CallGraphNode *Node : *CGI) {
1737 auto *F = Node->getFunction();
1738 if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile"))
1739 FunctionOrderList.push_back(F);
1740 }
1741 ++CGI;
1742 }
1743 }
1744
1745 LLVM_DEBUG({
1746 dbgs() << "Function processing order:\n";
1747 for (auto F : reverse(FunctionOrderList)) {
1748 dbgs() << F->getName() << "\n";
1749 }
1750 });
1751
1752 std::reverse(FunctionOrderList.begin(), FunctionOrderList.end());
1753 return FunctionOrderList;
1754 }
1755
doInitialization(Module & M,FunctionAnalysisManager * FAM)1756 bool SampleProfileLoader::doInitialization(Module &M,
1757 FunctionAnalysisManager *FAM) {
1758 auto &Ctx = M.getContext();
1759
1760 auto ReaderOrErr =
1761 SampleProfileReader::create(Filename, Ctx, RemappingFilename);
1762 if (std::error_code EC = ReaderOrErr.getError()) {
1763 std::string Msg = "Could not open profile: " + EC.message();
1764 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1765 return false;
1766 }
1767 Reader = std::move(ReaderOrErr.get());
1768 Reader->setSkipFlatProf(LTOPhase == ThinOrFullLTOPhase::ThinLTOPostLink);
1769 // set module before reading the profile so reader may be able to only
1770 // read the function profiles which are used by the current module.
1771 Reader->setModule(&M);
1772 if (std::error_code EC = Reader->read()) {
1773 std::string Msg = "profile reading failed: " + EC.message();
1774 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1775 return false;
1776 }
1777
1778 PSL = Reader->getProfileSymbolList();
1779
1780 // While profile-sample-accurate is on, ignore symbol list.
1781 ProfAccForSymsInList =
1782 ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate;
1783 if (ProfAccForSymsInList) {
1784 NamesInProfile.clear();
1785 if (auto NameTable = Reader->getNameTable())
1786 NamesInProfile.insert(NameTable->begin(), NameTable->end());
1787 CoverageTracker.setProfAccForSymsInList(true);
1788 }
1789
1790 if (FAM && !ProfileInlineReplayFile.empty()) {
1791 ExternalInlineAdvisor = std::make_unique<ReplayInlineAdvisor>(
1792 M, *FAM, Ctx, /*OriginalAdvisor=*/nullptr, ProfileInlineReplayFile,
1793 /*EmitRemarks=*/false);
1794 if (!ExternalInlineAdvisor->areReplayRemarksLoaded())
1795 ExternalInlineAdvisor.reset();
1796 }
1797
1798 // Apply tweaks if context-sensitive profile is available.
1799 if (Reader->profileIsCS()) {
1800 ProfileIsCS = true;
1801 FunctionSamples::ProfileIsCS = true;
1802
1803 // Enable priority-base inliner and size inline by default for CSSPGO.
1804 if (!ProfileSizeInline.getNumOccurrences())
1805 ProfileSizeInline = true;
1806 if (!CallsitePrioritizedInline.getNumOccurrences())
1807 CallsitePrioritizedInline = true;
1808
1809 // Tracker for profiles under different context
1810 ContextTracker =
1811 std::make_unique<SampleContextTracker>(Reader->getProfiles());
1812 }
1813
1814 // Load pseudo probe descriptors for probe-based function samples.
1815 if (Reader->profileIsProbeBased()) {
1816 ProbeManager = std::make_unique<PseudoProbeManager>(M);
1817 if (!ProbeManager->moduleIsProbed(M)) {
1818 const char *Msg =
1819 "Pseudo-probe-based profile requires SampleProfileProbePass";
1820 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1821 return false;
1822 }
1823 }
1824
1825 return true;
1826 }
1827
createSampleProfileLoaderPass()1828 ModulePass *llvm::createSampleProfileLoaderPass() {
1829 return new SampleProfileLoaderLegacyPass();
1830 }
1831
createSampleProfileLoaderPass(StringRef Name)1832 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1833 return new SampleProfileLoaderLegacyPass(Name);
1834 }
1835
runOnModule(Module & M,ModuleAnalysisManager * AM,ProfileSummaryInfo * _PSI,CallGraph * CG)1836 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
1837 ProfileSummaryInfo *_PSI, CallGraph *CG) {
1838 GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap);
1839
1840 PSI = _PSI;
1841 if (M.getProfileSummary(/* IsCS */ false) == nullptr) {
1842 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()),
1843 ProfileSummary::PSK_Sample);
1844 PSI->refresh();
1845 }
1846 // Compute the total number of samples collected in this profile.
1847 for (const auto &I : Reader->getProfiles())
1848 TotalCollectedSamples += I.second.getTotalSamples();
1849
1850 auto Remapper = Reader->getRemapper();
1851 // Populate the symbol map.
1852 for (const auto &N_F : M.getValueSymbolTable()) {
1853 StringRef OrigName = N_F.getKey();
1854 Function *F = dyn_cast<Function>(N_F.getValue());
1855 if (F == nullptr || OrigName.empty())
1856 continue;
1857 SymbolMap[OrigName] = F;
1858 StringRef NewName = FunctionSamples::getCanonicalFnName(*F);
1859 if (OrigName != NewName && !NewName.empty()) {
1860 auto r = SymbolMap.insert(std::make_pair(NewName, F));
1861 // Failiing to insert means there is already an entry in SymbolMap,
1862 // thus there are multiple functions that are mapped to the same
1863 // stripped name. In this case of name conflicting, set the value
1864 // to nullptr to avoid confusion.
1865 if (!r.second)
1866 r.first->second = nullptr;
1867 OrigName = NewName;
1868 }
1869 // Insert the remapped names into SymbolMap.
1870 if (Remapper) {
1871 if (auto MapName = Remapper->lookUpNameInProfile(OrigName)) {
1872 if (*MapName != OrigName && !MapName->empty())
1873 SymbolMap.insert(std::make_pair(*MapName, F));
1874 }
1875 }
1876 }
1877 assert(SymbolMap.count(StringRef()) == 0 &&
1878 "No empty StringRef should be added in SymbolMap");
1879
1880 bool retval = false;
1881 for (auto F : buildFunctionOrder(M, CG)) {
1882 assert(!F->isDeclaration());
1883 clearFunctionData();
1884 retval |= runOnFunction(*F, AM);
1885 }
1886
1887 // Account for cold calls not inlined....
1888 if (!ProfileIsCS)
1889 for (const std::pair<Function *, NotInlinedProfileInfo> &pair :
1890 notInlinedCallInfo)
1891 updateProfileCallee(pair.first, pair.second.entryCount);
1892
1893 return retval;
1894 }
1895
runOnModule(Module & M)1896 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1897 ACT = &getAnalysis<AssumptionCacheTracker>();
1898 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1899 TLIWP = &getAnalysis<TargetLibraryInfoWrapperPass>();
1900 ProfileSummaryInfo *PSI =
1901 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1902 return SampleLoader.runOnModule(M, nullptr, PSI, nullptr);
1903 }
1904
runOnFunction(Function & F,ModuleAnalysisManager * AM)1905 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1906 LLVM_DEBUG(dbgs() << "\n\nProcessing Function " << F.getName() << "\n");
1907 DILocation2SampleMap.clear();
1908 // By default the entry count is initialized to -1, which will be treated
1909 // conservatively by getEntryCount as the same as unknown (None). This is
1910 // to avoid newly added code to be treated as cold. If we have samples
1911 // this will be overwritten in emitAnnotations.
1912 uint64_t initialEntryCount = -1;
1913
1914 ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL;
1915 if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) {
1916 // initialize all the function entry counts to 0. It means all the
1917 // functions without profile will be regarded as cold.
1918 initialEntryCount = 0;
1919 // profile-sample-accurate is a user assertion which has a higher precedence
1920 // than symbol list. When profile-sample-accurate is on, ignore symbol list.
1921 ProfAccForSymsInList = false;
1922 }
1923 CoverageTracker.setProfAccForSymsInList(ProfAccForSymsInList);
1924
1925 // PSL -- profile symbol list include all the symbols in sampled binary.
1926 // If ProfileAccurateForSymsInList is enabled, PSL is used to treat
1927 // old functions without samples being cold, without having to worry
1928 // about new and hot functions being mistakenly treated as cold.
1929 if (ProfAccForSymsInList) {
1930 // Initialize the entry count to 0 for functions in the list.
1931 if (PSL->contains(F.getName()))
1932 initialEntryCount = 0;
1933
1934 // Function in the symbol list but without sample will be regarded as
1935 // cold. To minimize the potential negative performance impact it could
1936 // have, we want to be a little conservative here saying if a function
1937 // shows up in the profile, no matter as outline function, inline instance
1938 // or call targets, treat the function as not being cold. This will handle
1939 // the cases such as most callsites of a function are inlined in sampled
1940 // binary but not inlined in current build (because of source code drift,
1941 // imprecise debug information, or the callsites are all cold individually
1942 // but not cold accumulatively...), so the outline function showing up as
1943 // cold in sampled binary will actually not be cold after current build.
1944 StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
1945 if (NamesInProfile.count(CanonName))
1946 initialEntryCount = -1;
1947 }
1948
1949 // Initialize entry count when the function has no existing entry
1950 // count value.
1951 if (!F.getEntryCount().hasValue())
1952 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
1953 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1954 if (AM) {
1955 auto &FAM =
1956 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1957 .getManager();
1958 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1959 } else {
1960 OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F);
1961 ORE = OwnedORE.get();
1962 }
1963
1964 if (ProfileIsCS)
1965 Samples = ContextTracker->getBaseSamplesFor(F);
1966 else
1967 Samples = Reader->getSamplesFor(F);
1968
1969 if (Samples && !Samples->empty())
1970 return emitAnnotations(F);
1971 return false;
1972 }
1973
run(Module & M,ModuleAnalysisManager & AM)1974 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1975 ModuleAnalysisManager &AM) {
1976 FunctionAnalysisManager &FAM =
1977 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1978
1979 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1980 return FAM.getResult<AssumptionAnalysis>(F);
1981 };
1982 auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1983 return FAM.getResult<TargetIRAnalysis>(F);
1984 };
1985 auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
1986 return FAM.getResult<TargetLibraryAnalysis>(F);
1987 };
1988
1989 SampleProfileLoader SampleLoader(
1990 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1991 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
1992 : ProfileRemappingFileName,
1993 LTOPhase, GetAssumptionCache, GetTTI, GetTLI);
1994
1995 if (!SampleLoader.doInitialization(M, &FAM))
1996 return PreservedAnalyses::all();
1997
1998 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
1999 CallGraph &CG = AM.getResult<CallGraphAnalysis>(M);
2000 if (!SampleLoader.runOnModule(M, &AM, PSI, &CG))
2001 return PreservedAnalyses::all();
2002
2003 return PreservedAnalyses::none();
2004 }
2005