1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the ELF-specific dumper for llvm-readobj.
11 ///
12 //===----------------------------------------------------------------------===//
13
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
16 #include "ObjDumper.h"
17 #include "StackMapPrinter.h"
18 #include "llvm-readobj.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/PointerIntPair.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
32 #include "llvm/BinaryFormat/ELF.h"
33 #include "llvm/BinaryFormat/MsgPackDocument.h"
34 #include "llvm/Demangle/Demangle.h"
35 #include "llvm/Object/Archive.h"
36 #include "llvm/Object/ELF.h"
37 #include "llvm/Object/ELFObjectFile.h"
38 #include "llvm/Object/ELFTypes.h"
39 #include "llvm/Object/Error.h"
40 #include "llvm/Object/ObjectFile.h"
41 #include "llvm/Object/RelocationResolver.h"
42 #include "llvm/Object/StackMapParser.h"
43 #include "llvm/Support/AMDGPUMetadata.h"
44 #include "llvm/Support/ARMAttributeParser.h"
45 #include "llvm/Support/ARMBuildAttributes.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/Compiler.h"
48 #include "llvm/Support/Endian.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/Format.h"
51 #include "llvm/Support/FormatVariadic.h"
52 #include "llvm/Support/FormattedStream.h"
53 #include "llvm/Support/LEB128.h"
54 #include "llvm/Support/MSP430AttributeParser.h"
55 #include "llvm/Support/MSP430Attributes.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/MipsABIFlags.h"
58 #include "llvm/Support/RISCVAttributeParser.h"
59 #include "llvm/Support/RISCVAttributes.h"
60 #include "llvm/Support/ScopedPrinter.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cinttypes>
64 #include <cstddef>
65 #include <cstdint>
66 #include <cstdlib>
67 #include <iterator>
68 #include <memory>
69 #include <optional>
70 #include <string>
71 #include <system_error>
72 #include <vector>
73
74 using namespace llvm;
75 using namespace llvm::object;
76 using namespace ELF;
77
78 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \
79 case ns::enum: \
80 return #enum;
81
82 #define ENUM_ENT(enum, altName) \
83 { #enum, altName, ELF::enum }
84
85 #define ENUM_ENT_1(enum) \
86 { #enum, #enum, ELF::enum }
87
88 namespace {
89
90 template <class ELFT> struct RelSymbol {
RelSymbol__anon28a7ad930111::RelSymbol91 RelSymbol(const typename ELFT::Sym *S, StringRef N)
92 : Sym(S), Name(N.str()) {}
93 const typename ELFT::Sym *Sym;
94 std::string Name;
95 };
96
97 /// Represents a contiguous uniform range in the file. We cannot just create a
98 /// range directly because when creating one of these from the .dynamic table
99 /// the size, entity size and virtual address are different entries in arbitrary
100 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
101 struct DynRegionInfo {
DynRegionInfo__anon28a7ad930111::DynRegionInfo102 DynRegionInfo(const Binary &Owner, const ObjDumper &D)
103 : Obj(&Owner), Dumper(&D) {}
DynRegionInfo__anon28a7ad930111::DynRegionInfo104 DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A,
105 uint64_t S, uint64_t ES)
106 : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {}
107
108 /// Address in current address space.
109 const uint8_t *Addr = nullptr;
110 /// Size in bytes of the region.
111 uint64_t Size = 0;
112 /// Size of each entity in the region.
113 uint64_t EntSize = 0;
114
115 /// Owner object. Used for error reporting.
116 const Binary *Obj;
117 /// Dumper used for error reporting.
118 const ObjDumper *Dumper;
119 /// Error prefix. Used for error reporting to provide more information.
120 std::string Context;
121 /// Region size name. Used for error reporting.
122 StringRef SizePrintName = "size";
123 /// Entry size name. Used for error reporting. If this field is empty, errors
124 /// will not mention the entry size.
125 StringRef EntSizePrintName = "entry size";
126
getAsArrayRef__anon28a7ad930111::DynRegionInfo127 template <typename Type> ArrayRef<Type> getAsArrayRef() const {
128 const Type *Start = reinterpret_cast<const Type *>(Addr);
129 if (!Start)
130 return {Start, Start};
131
132 const uint64_t Offset =
133 Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart();
134 const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize();
135
136 if (Size > ObjSize - Offset) {
137 Dumper->reportUniqueWarning(
138 "unable to read data at 0x" + Twine::utohexstr(Offset) +
139 " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName +
140 "): it goes past the end of the file of size 0x" +
141 Twine::utohexstr(ObjSize));
142 return {Start, Start};
143 }
144
145 if (EntSize == sizeof(Type) && (Size % EntSize == 0))
146 return {Start, Start + (Size / EntSize)};
147
148 std::string Msg;
149 if (!Context.empty())
150 Msg += Context + " has ";
151
152 Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")")
153 .str();
154 if (!EntSizePrintName.empty())
155 Msg +=
156 (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")")
157 .str();
158
159 Dumper->reportUniqueWarning(Msg);
160 return {Start, Start};
161 }
162 };
163
164 struct GroupMember {
165 StringRef Name;
166 uint64_t Index;
167 };
168
169 struct GroupSection {
170 StringRef Name;
171 std::string Signature;
172 uint64_t ShName;
173 uint64_t Index;
174 uint32_t Link;
175 uint32_t Info;
176 uint32_t Type;
177 std::vector<GroupMember> Members;
178 };
179
180 namespace {
181
182 struct NoteType {
183 uint32_t ID;
184 StringRef Name;
185 };
186
187 } // namespace
188
189 template <class ELFT> class Relocation {
190 public:
Relocation(const typename ELFT::Rel & R,bool IsMips64EL)191 Relocation(const typename ELFT::Rel &R, bool IsMips64EL)
192 : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)),
193 Offset(R.r_offset), Info(R.r_info) {}
194
Relocation(const typename ELFT::Rela & R,bool IsMips64EL)195 Relocation(const typename ELFT::Rela &R, bool IsMips64EL)
196 : Relocation((const typename ELFT::Rel &)R, IsMips64EL) {
197 Addend = R.r_addend;
198 }
199
200 uint32_t Type;
201 uint32_t Symbol;
202 typename ELFT::uint Offset;
203 typename ELFT::uint Info;
204 std::optional<int64_t> Addend;
205 };
206
207 template <class ELFT> class MipsGOTParser;
208
209 template <typename ELFT> class ELFDumper : public ObjDumper {
210 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
211
212 public:
213 ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer);
214
215 void printUnwindInfo() override;
216 void printNeededLibraries() override;
217 void printHashTable() override;
218 void printGnuHashTable() override;
219 void printLoadName() override;
220 void printVersionInfo() override;
221 void printArchSpecificInfo() override;
222 void printStackMap() const override;
223
getElfObject() const224 const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; };
225
226 std::string describe(const Elf_Shdr &Sec) const;
227
getHashTableEntSize() const228 unsigned getHashTableEntSize() const {
229 // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
230 // sections. This violates the ELF specification.
231 if (Obj.getHeader().e_machine == ELF::EM_S390 ||
232 Obj.getHeader().e_machine == ELF::EM_ALPHA)
233 return 8;
234 return 4;
235 }
236
dynamic_table() const237 Elf_Dyn_Range dynamic_table() const {
238 // A valid .dynamic section contains an array of entries terminated
239 // with a DT_NULL entry. However, sometimes the section content may
240 // continue past the DT_NULL entry, so to dump the section correctly,
241 // we first find the end of the entries by iterating over them.
242 Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>();
243
244 size_t Size = 0;
245 while (Size < Table.size())
246 if (Table[Size++].getTag() == DT_NULL)
247 break;
248
249 return Table.slice(0, Size);
250 }
251
dynamic_symbols() const252 Elf_Sym_Range dynamic_symbols() const {
253 if (!DynSymRegion)
254 return Elf_Sym_Range();
255 return DynSymRegion->template getAsArrayRef<Elf_Sym>();
256 }
257
258 const Elf_Shdr *findSectionByName(StringRef Name) const;
259
getDynamicStringTable() const260 StringRef getDynamicStringTable() const { return DynamicStringTable; }
261
262 protected:
263 virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0;
264 virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0;
265 virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0;
266
267 void
268 printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart,
269 function_ref<void(StringRef, uint64_t)> OnLibEntry);
270
271 virtual void printRelRelaReloc(const Relocation<ELFT> &R,
272 const RelSymbol<ELFT> &RelSym) = 0;
273 virtual void printRelrReloc(const Elf_Relr &R) = 0;
printDynamicRelocHeader(unsigned Type,StringRef Name,const DynRegionInfo & Reg)274 virtual void printDynamicRelocHeader(unsigned Type, StringRef Name,
275 const DynRegionInfo &Reg) {}
276 void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
277 const Elf_Shdr &Sec, const Elf_Shdr *SymTab);
278 void printDynamicReloc(const Relocation<ELFT> &R);
279 void printDynamicRelocationsHelper();
280 void printRelocationsHelper(const Elf_Shdr &Sec);
281 void forEachRelocationDo(
282 const Elf_Shdr &Sec, bool RawRelr,
283 llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
284 const Elf_Shdr &, const Elf_Shdr *)>
285 RelRelaFn,
286 llvm::function_ref<void(const Elf_Relr &)> RelrFn);
287
printSymtabMessage(const Elf_Shdr * Symtab,size_t Offset,bool NonVisibilityBitsUsed) const288 virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
289 bool NonVisibilityBitsUsed) const {};
290 virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
291 DataRegion<Elf_Word> ShndxTable,
292 std::optional<StringRef> StrTable, bool IsDynamic,
293 bool NonVisibilityBitsUsed) const = 0;
294
295 virtual void printMipsABIFlags() = 0;
296 virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
297 virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
298
299 Expected<ArrayRef<Elf_Versym>>
300 getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
301 StringRef *StrTab, const Elf_Shdr **SymTabSec) const;
302 StringRef getPrintableSectionName(const Elf_Shdr &Sec) const;
303
304 std::vector<GroupSection> getGroups();
305
306 // Returns the function symbol index for the given address. Matches the
307 // symbol's section with FunctionSec when specified.
308 // Returns std::nullopt if no function symbol can be found for the address or
309 // in case it is not defined in the specified section.
310 SmallVector<uint32_t> getSymbolIndexesForFunctionAddress(
311 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec);
312 bool printFunctionStackSize(uint64_t SymValue,
313 std::optional<const Elf_Shdr *> FunctionSec,
314 const Elf_Shdr &StackSizeSec, DataExtractor Data,
315 uint64_t *Offset);
316 void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec,
317 unsigned Ndx, const Elf_Shdr *SymTab,
318 const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec,
319 const RelocationResolver &Resolver, DataExtractor Data);
320 virtual void printStackSizeEntry(uint64_t Size,
321 ArrayRef<std::string> FuncNames) = 0;
322
323 void printRelocatableStackSizes(std::function<void()> PrintHeader);
324 void printNonRelocatableStackSizes(std::function<void()> PrintHeader);
325
326 /// Retrieves sections with corresponding relocation sections based on
327 /// IsMatch.
328 void getSectionAndRelocations(
329 std::function<bool(const Elf_Shdr &)> IsMatch,
330 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap);
331
332 const object::ELFObjectFile<ELFT> &ObjF;
333 const ELFFile<ELFT> &Obj;
334 StringRef FileName;
335
createDRI(uint64_t Offset,uint64_t Size,uint64_t EntSize)336 Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size,
337 uint64_t EntSize) {
338 if (Offset + Size < Offset || Offset + Size > Obj.getBufSize())
339 return createError("offset (0x" + Twine::utohexstr(Offset) +
340 ") + size (0x" + Twine::utohexstr(Size) +
341 ") is greater than the file size (0x" +
342 Twine::utohexstr(Obj.getBufSize()) + ")");
343 return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize);
344 }
345
346 void printAttributes(unsigned, std::unique_ptr<ELFAttributeParser>,
347 support::endianness);
348 void printMipsReginfo();
349 void printMipsOptions();
350
351 std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic();
352 void loadDynamicTable();
353 void parseDynamicTable();
354
355 Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym,
356 bool &IsDefault) const;
357 Expected<SmallVector<std::optional<VersionEntry>, 0> *> getVersionMap() const;
358
359 DynRegionInfo DynRelRegion;
360 DynRegionInfo DynRelaRegion;
361 DynRegionInfo DynRelrRegion;
362 DynRegionInfo DynPLTRelRegion;
363 std::optional<DynRegionInfo> DynSymRegion;
364 DynRegionInfo DynSymTabShndxRegion;
365 DynRegionInfo DynamicTable;
366 StringRef DynamicStringTable;
367 const Elf_Hash *HashTable = nullptr;
368 const Elf_GnuHash *GnuHashTable = nullptr;
369 const Elf_Shdr *DotSymtabSec = nullptr;
370 const Elf_Shdr *DotDynsymSec = nullptr;
371 const Elf_Shdr *DotAddrsigSec = nullptr;
372 DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables;
373 std::optional<uint64_t> SONameOffset;
374 std::optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap;
375
376 const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version
377 const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
378 const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
379
380 std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex,
381 DataRegion<Elf_Word> ShndxTable,
382 std::optional<StringRef> StrTable,
383 bool IsDynamic) const;
384 Expected<unsigned>
385 getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
386 DataRegion<Elf_Word> ShndxTable) const;
387 Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol,
388 unsigned SectionIndex) const;
389 std::string getStaticSymbolName(uint32_t Index) const;
390 StringRef getDynamicString(uint64_t Value) const;
391
392 void printSymbolsHelper(bool IsDynamic) const;
393 std::string getDynamicEntry(uint64_t Type, uint64_t Value) const;
394
395 Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R,
396 const Elf_Shdr *SymTab) const;
397
398 ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const;
399
400 private:
401 mutable SmallVector<std::optional<VersionEntry>, 0> VersionMap;
402 };
403
404 template <class ELFT>
describe(const Elf_Shdr & Sec) const405 std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const {
406 return ::describe(Obj, Sec);
407 }
408
409 namespace {
410
411 template <class ELFT> struct SymtabLink {
412 typename ELFT::SymRange Symbols;
413 StringRef StringTable;
414 const typename ELFT::Shdr *SymTab;
415 };
416
417 // Returns the linked symbol table, symbols and associated string table for a
418 // given section.
419 template <class ELFT>
getLinkAsSymtab(const ELFFile<ELFT> & Obj,const typename ELFT::Shdr & Sec,unsigned ExpectedType)420 Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj,
421 const typename ELFT::Shdr &Sec,
422 unsigned ExpectedType) {
423 Expected<const typename ELFT::Shdr *> SymtabOrErr =
424 Obj.getSection(Sec.sh_link);
425 if (!SymtabOrErr)
426 return createError("invalid section linked to " + describe(Obj, Sec) +
427 ": " + toString(SymtabOrErr.takeError()));
428
429 if ((*SymtabOrErr)->sh_type != ExpectedType)
430 return createError(
431 "invalid section linked to " + describe(Obj, Sec) + ": expected " +
432 object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) +
433 ", but got " +
434 object::getELFSectionTypeName(Obj.getHeader().e_machine,
435 (*SymtabOrErr)->sh_type));
436
437 Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr);
438 if (!StrTabOrErr)
439 return createError(
440 "can't get a string table for the symbol table linked to " +
441 describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError()));
442
443 Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr);
444 if (!SymsOrErr)
445 return createError("unable to read symbols from the " + describe(Obj, Sec) +
446 ": " + toString(SymsOrErr.takeError()));
447
448 return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr};
449 }
450
451 } // namespace
452
453 template <class ELFT>
454 Expected<ArrayRef<typename ELFT::Versym>>
getVersionTable(const Elf_Shdr & Sec,ArrayRef<Elf_Sym> * SymTab,StringRef * StrTab,const Elf_Shdr ** SymTabSec) const455 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
456 StringRef *StrTab,
457 const Elf_Shdr **SymTabSec) const {
458 assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec));
459 if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) %
460 sizeof(uint16_t) !=
461 0)
462 return createError("the " + describe(Sec) + " is misaligned");
463
464 Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
465 Obj.template getSectionContentsAsArray<Elf_Versym>(Sec);
466 if (!VersionsOrErr)
467 return createError("cannot read content of " + describe(Sec) + ": " +
468 toString(VersionsOrErr.takeError()));
469
470 Expected<SymtabLink<ELFT>> SymTabOrErr =
471 getLinkAsSymtab(Obj, Sec, SHT_DYNSYM);
472 if (!SymTabOrErr) {
473 reportUniqueWarning(SymTabOrErr.takeError());
474 return *VersionsOrErr;
475 }
476
477 if (SymTabOrErr->Symbols.size() != VersionsOrErr->size())
478 reportUniqueWarning(describe(Sec) + ": the number of entries (" +
479 Twine(VersionsOrErr->size()) +
480 ") does not match the number of symbols (" +
481 Twine(SymTabOrErr->Symbols.size()) +
482 ") in the symbol table with index " +
483 Twine(Sec.sh_link));
484
485 if (SymTab) {
486 *SymTab = SymTabOrErr->Symbols;
487 *StrTab = SymTabOrErr->StringTable;
488 *SymTabSec = SymTabOrErr->SymTab;
489 }
490 return *VersionsOrErr;
491 }
492
493 template <class ELFT>
printSymbolsHelper(bool IsDynamic) const494 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
495 std::optional<StringRef> StrTable;
496 size_t Entries = 0;
497 Elf_Sym_Range Syms(nullptr, nullptr);
498 const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec;
499
500 if (IsDynamic) {
501 StrTable = DynamicStringTable;
502 Syms = dynamic_symbols();
503 Entries = Syms.size();
504 } else if (DotSymtabSec) {
505 if (Expected<StringRef> StrTableOrErr =
506 Obj.getStringTableForSymtab(*DotSymtabSec))
507 StrTable = *StrTableOrErr;
508 else
509 reportUniqueWarning(
510 "unable to get the string table for the SHT_SYMTAB section: " +
511 toString(StrTableOrErr.takeError()));
512
513 if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec))
514 Syms = *SymsOrErr;
515 else
516 reportUniqueWarning(
517 "unable to read symbols from the SHT_SYMTAB section: " +
518 toString(SymsOrErr.takeError()));
519 Entries = DotSymtabSec->getEntityCount();
520 }
521 if (Syms.empty())
522 return;
523
524 // The st_other field has 2 logical parts. The first two bits hold the symbol
525 // visibility (STV_*) and the remainder hold other platform-specific values.
526 bool NonVisibilityBitsUsed =
527 llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; });
528
529 DataRegion<Elf_Word> ShndxTable =
530 IsDynamic ? DataRegion<Elf_Word>(
531 (const Elf_Word *)this->DynSymTabShndxRegion.Addr,
532 this->getElfObject().getELFFile().end())
533 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec));
534
535 printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed);
536 for (const Elf_Sym &Sym : Syms)
537 printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic,
538 NonVisibilityBitsUsed);
539 }
540
541 template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> {
542 formatted_raw_ostream &OS;
543
544 public:
545 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
546
GNUELFDumper(const object::ELFObjectFile<ELFT> & ObjF,ScopedPrinter & Writer)547 GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
548 : ELFDumper<ELFT>(ObjF, Writer),
549 OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) {
550 assert(&this->W.getOStream() == &llvm::fouts());
551 }
552
553 void printFileSummary(StringRef FileStr, ObjectFile &Obj,
554 ArrayRef<std::string> InputFilenames,
555 const Archive *A) override;
556 void printFileHeaders() override;
557 void printGroupSections() override;
558 void printRelocations() override;
559 void printSectionHeaders() override;
560 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
561 void printHashSymbols() override;
562 void printSectionDetails() override;
563 void printDependentLibs() override;
564 void printDynamicTable() override;
565 void printDynamicRelocations() override;
566 void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
567 bool NonVisibilityBitsUsed) const override;
568 void printProgramHeaders(bool PrintProgramHeaders,
569 cl::boolOrDefault PrintSectionMapping) override;
570 void printVersionSymbolSection(const Elf_Shdr *Sec) override;
571 void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
572 void printVersionDependencySection(const Elf_Shdr *Sec) override;
573 void printHashHistograms() override;
574 void printCGProfile() override;
575 void printBBAddrMaps() override;
576 void printAddrsig() override;
577 void printNotes() override;
578 void printELFLinkerOptions() override;
579 void printStackSizes() override;
580
581 private:
582 void printHashHistogram(const Elf_Hash &HashTable);
583 void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable);
584 void printHashTableSymbols(const Elf_Hash &HashTable);
585 void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable);
586
587 struct Field {
588 std::string Str;
589 unsigned Column;
590
Field__anon28a7ad930111::GNUELFDumper::Field591 Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {}
Field__anon28a7ad930111::GNUELFDumper::Field592 Field(unsigned Col) : Column(Col) {}
593 };
594
595 template <typename T, typename TEnum>
printFlags(T Value,ArrayRef<EnumEntry<TEnum>> EnumValues,TEnum EnumMask1={},TEnum EnumMask2={},TEnum EnumMask3={}) const596 std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
597 TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
598 TEnum EnumMask3 = {}) const {
599 std::string Str;
600 for (const EnumEntry<TEnum> &Flag : EnumValues) {
601 if (Flag.Value == 0)
602 continue;
603
604 TEnum EnumMask{};
605 if (Flag.Value & EnumMask1)
606 EnumMask = EnumMask1;
607 else if (Flag.Value & EnumMask2)
608 EnumMask = EnumMask2;
609 else if (Flag.Value & EnumMask3)
610 EnumMask = EnumMask3;
611 bool IsEnum = (Flag.Value & EnumMask) != 0;
612 if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
613 (IsEnum && (Value & EnumMask) == Flag.Value)) {
614 if (!Str.empty())
615 Str += ", ";
616 Str += Flag.AltName;
617 }
618 }
619 return Str;
620 }
621
printField(struct Field F) const622 formatted_raw_ostream &printField(struct Field F) const {
623 if (F.Column != 0)
624 OS.PadToColumn(F.Column);
625 OS << F.Str;
626 OS.flush();
627 return OS;
628 }
629 void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex,
630 DataRegion<Elf_Word> ShndxTable, StringRef StrTable,
631 uint32_t Bucket);
632 void printRelrReloc(const Elf_Relr &R) override;
633 void printRelRelaReloc(const Relocation<ELFT> &R,
634 const RelSymbol<ELFT> &RelSym) override;
635 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
636 DataRegion<Elf_Word> ShndxTable,
637 std::optional<StringRef> StrTable, bool IsDynamic,
638 bool NonVisibilityBitsUsed) const override;
639 void printDynamicRelocHeader(unsigned Type, StringRef Name,
640 const DynRegionInfo &Reg) override;
641
642 std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex,
643 DataRegion<Elf_Word> ShndxTable) const;
644 void printProgramHeaders() override;
645 void printSectionMapping() override;
646 void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec,
647 const Twine &Label, unsigned EntriesNum);
648
649 void printStackSizeEntry(uint64_t Size,
650 ArrayRef<std::string> FuncNames) override;
651
652 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
653 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
654 void printMipsABIFlags() override;
655 };
656
657 template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> {
658 public:
659 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
660
LLVMELFDumper(const object::ELFObjectFile<ELFT> & ObjF,ScopedPrinter & Writer)661 LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
662 : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {}
663
664 void printFileHeaders() override;
665 void printGroupSections() override;
666 void printRelocations() override;
667 void printSectionHeaders() override;
668 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
669 void printDependentLibs() override;
670 void printDynamicTable() override;
671 void printDynamicRelocations() override;
672 void printProgramHeaders(bool PrintProgramHeaders,
673 cl::boolOrDefault PrintSectionMapping) override;
674 void printVersionSymbolSection(const Elf_Shdr *Sec) override;
675 void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
676 void printVersionDependencySection(const Elf_Shdr *Sec) override;
677 void printHashHistograms() override;
678 void printCGProfile() override;
679 void printBBAddrMaps() override;
680 void printAddrsig() override;
681 void printNotes() override;
682 void printELFLinkerOptions() override;
683 void printStackSizes() override;
684
685 private:
686 void printRelrReloc(const Elf_Relr &R) override;
687 void printRelRelaReloc(const Relocation<ELFT> &R,
688 const RelSymbol<ELFT> &RelSym) override;
689
690 void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex,
691 DataRegion<Elf_Word> ShndxTable) const;
692 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
693 DataRegion<Elf_Word> ShndxTable,
694 std::optional<StringRef> StrTable, bool IsDynamic,
695 bool /*NonVisibilityBitsUsed*/) const override;
696 void printProgramHeaders() override;
printSectionMapping()697 void printSectionMapping() override {}
698 void printStackSizeEntry(uint64_t Size,
699 ArrayRef<std::string> FuncNames) override;
700
701 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
702 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
703 void printMipsABIFlags() override;
704
705 protected:
706 ScopedPrinter &W;
707 };
708
709 // JSONELFDumper shares most of the same implementation as LLVMELFDumper except
710 // it uses a JSONScopedPrinter.
711 template <typename ELFT> class JSONELFDumper : public LLVMELFDumper<ELFT> {
712 public:
713 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
714
JSONELFDumper(const object::ELFObjectFile<ELFT> & ObjF,ScopedPrinter & Writer)715 JSONELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
716 : LLVMELFDumper<ELFT>(ObjF, Writer) {}
717
718 void printFileSummary(StringRef FileStr, ObjectFile &Obj,
719 ArrayRef<std::string> InputFilenames,
720 const Archive *A) override;
721
722 private:
723 std::unique_ptr<DictScope> FileScope;
724 };
725
726 } // end anonymous namespace
727
728 namespace llvm {
729
730 template <class ELFT>
731 static std::unique_ptr<ObjDumper>
createELFDumper(const ELFObjectFile<ELFT> & Obj,ScopedPrinter & Writer)732 createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) {
733 if (opts::Output == opts::GNU)
734 return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer);
735 else if (opts::Output == opts::JSON)
736 return std::make_unique<JSONELFDumper<ELFT>>(Obj, Writer);
737 return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer);
738 }
739
createELFDumper(const object::ELFObjectFileBase & Obj,ScopedPrinter & Writer)740 std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj,
741 ScopedPrinter &Writer) {
742 // Little-endian 32-bit
743 if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj))
744 return createELFDumper(*ELFObj, Writer);
745
746 // Big-endian 32-bit
747 if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj))
748 return createELFDumper(*ELFObj, Writer);
749
750 // Little-endian 64-bit
751 if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj))
752 return createELFDumper(*ELFObj, Writer);
753
754 // Big-endian 64-bit
755 return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer);
756 }
757
758 } // end namespace llvm
759
760 template <class ELFT>
761 Expected<SmallVector<std::optional<VersionEntry>, 0> *>
getVersionMap() const762 ELFDumper<ELFT>::getVersionMap() const {
763 // If the VersionMap has already been loaded or if there is no dynamic symtab
764 // or version table, there is nothing to do.
765 if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection)
766 return &VersionMap;
767
768 Expected<SmallVector<std::optional<VersionEntry>, 0>> MapOrErr =
769 Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection);
770 if (MapOrErr)
771 VersionMap = *MapOrErr;
772 else
773 return MapOrErr.takeError();
774
775 return &VersionMap;
776 }
777
778 template <typename ELFT>
getSymbolVersion(const Elf_Sym & Sym,bool & IsDefault) const779 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym,
780 bool &IsDefault) const {
781 // This is a dynamic symbol. Look in the GNU symbol version table.
782 if (!SymbolVersionSection) {
783 // No version table.
784 IsDefault = false;
785 return "";
786 }
787
788 assert(DynSymRegion && "DynSymRegion has not been initialised");
789 // Determine the position in the symbol table of this entry.
790 size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) -
791 reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) /
792 sizeof(Elf_Sym);
793
794 // Get the corresponding version index entry.
795 Expected<const Elf_Versym *> EntryOrErr =
796 Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex);
797 if (!EntryOrErr)
798 return EntryOrErr.takeError();
799
800 unsigned Version = (*EntryOrErr)->vs_index;
801 if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) {
802 IsDefault = false;
803 return "";
804 }
805
806 Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr =
807 getVersionMap();
808 if (!MapOrErr)
809 return MapOrErr.takeError();
810
811 return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr,
812 Sym.st_shndx == ELF::SHN_UNDEF);
813 }
814
815 template <typename ELFT>
816 Expected<RelSymbol<ELFT>>
getRelocationTarget(const Relocation<ELFT> & R,const Elf_Shdr * SymTab) const817 ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R,
818 const Elf_Shdr *SymTab) const {
819 if (R.Symbol == 0)
820 return RelSymbol<ELFT>(nullptr, "");
821
822 Expected<const Elf_Sym *> SymOrErr =
823 Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol);
824 if (!SymOrErr)
825 return createError("unable to read an entry with index " + Twine(R.Symbol) +
826 " from " + describe(*SymTab) + ": " +
827 toString(SymOrErr.takeError()));
828 const Elf_Sym *Sym = *SymOrErr;
829 if (!Sym)
830 return RelSymbol<ELFT>(nullptr, "");
831
832 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab);
833 if (!StrTableOrErr)
834 return StrTableOrErr.takeError();
835
836 const Elf_Sym *FirstSym =
837 cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0));
838 std::string SymbolName =
839 getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab),
840 *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM);
841 return RelSymbol<ELFT>(Sym, SymbolName);
842 }
843
844 template <typename ELFT>
845 ArrayRef<typename ELFT::Word>
getShndxTable(const Elf_Shdr * Symtab) const846 ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const {
847 if (Symtab) {
848 auto It = ShndxTables.find(Symtab);
849 if (It != ShndxTables.end())
850 return It->second;
851 }
852 return {};
853 }
854
maybeDemangle(StringRef Name)855 static std::string maybeDemangle(StringRef Name) {
856 return opts::Demangle ? demangle(std::string(Name)) : Name.str();
857 }
858
859 template <typename ELFT>
getStaticSymbolName(uint32_t Index) const860 std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
861 auto Warn = [&](Error E) -> std::string {
862 reportUniqueWarning("unable to read the name of symbol with index " +
863 Twine(Index) + ": " + toString(std::move(E)));
864 return "<?>";
865 };
866
867 Expected<const typename ELFT::Sym *> SymOrErr =
868 Obj.getSymbol(DotSymtabSec, Index);
869 if (!SymOrErr)
870 return Warn(SymOrErr.takeError());
871
872 Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec);
873 if (!StrTabOrErr)
874 return Warn(StrTabOrErr.takeError());
875
876 Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
877 if (!NameOrErr)
878 return Warn(NameOrErr.takeError());
879 return maybeDemangle(*NameOrErr);
880 }
881
882 template <typename ELFT>
getFullSymbolName(const Elf_Sym & Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable,std::optional<StringRef> StrTable,bool IsDynamic) const883 std::string ELFDumper<ELFT>::getFullSymbolName(
884 const Elf_Sym &Symbol, unsigned SymIndex, DataRegion<Elf_Word> ShndxTable,
885 std::optional<StringRef> StrTable, bool IsDynamic) const {
886 if (!StrTable)
887 return "<?>";
888
889 std::string SymbolName;
890 if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) {
891 SymbolName = maybeDemangle(*NameOrErr);
892 } else {
893 reportUniqueWarning(NameOrErr.takeError());
894 return "<?>";
895 }
896
897 if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) {
898 Expected<unsigned> SectionIndex =
899 getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
900 if (!SectionIndex) {
901 reportUniqueWarning(SectionIndex.takeError());
902 return "<?>";
903 }
904 Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
905 if (!NameOrErr) {
906 reportUniqueWarning(NameOrErr.takeError());
907 return ("<section " + Twine(*SectionIndex) + ">").str();
908 }
909 return std::string(*NameOrErr);
910 }
911
912 if (!IsDynamic)
913 return SymbolName;
914
915 bool IsDefault;
916 Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault);
917 if (!VersionOrErr) {
918 reportUniqueWarning(VersionOrErr.takeError());
919 return SymbolName + "@<corrupt>";
920 }
921
922 if (!VersionOrErr->empty()) {
923 SymbolName += (IsDefault ? "@@" : "@");
924 SymbolName += *VersionOrErr;
925 }
926 return SymbolName;
927 }
928
929 template <typename ELFT>
930 Expected<unsigned>
getSymbolSectionIndex(const Elf_Sym & Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable) const931 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
932 DataRegion<Elf_Word> ShndxTable) const {
933 unsigned Ndx = Symbol.st_shndx;
934 if (Ndx == SHN_XINDEX)
935 return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex,
936 ShndxTable);
937 if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE)
938 return Ndx;
939
940 auto CreateErr = [&](const Twine &Name,
941 std::optional<unsigned> Offset = std::nullopt) {
942 std::string Desc;
943 if (Offset)
944 Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str();
945 else
946 Desc = Name.str();
947 return createError(
948 "unable to get section index for symbol with st_shndx = 0x" +
949 Twine::utohexstr(Ndx) + " (" + Desc + ")");
950 };
951
952 if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC)
953 return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC);
954 if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS)
955 return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS);
956 if (Ndx == ELF::SHN_UNDEF)
957 return CreateErr("SHN_UNDEF");
958 if (Ndx == ELF::SHN_ABS)
959 return CreateErr("SHN_ABS");
960 if (Ndx == ELF::SHN_COMMON)
961 return CreateErr("SHN_COMMON");
962 return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE);
963 }
964
965 template <typename ELFT>
966 Expected<StringRef>
getSymbolSectionName(const Elf_Sym & Symbol,unsigned SectionIndex) const967 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol,
968 unsigned SectionIndex) const {
969 Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex);
970 if (!SecOrErr)
971 return SecOrErr.takeError();
972 return Obj.getSectionName(**SecOrErr);
973 }
974
975 template <class ELFO>
976 static const typename ELFO::Elf_Shdr *
findNotEmptySectionByAddress(const ELFO & Obj,StringRef FileName,uint64_t Addr)977 findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName,
978 uint64_t Addr) {
979 for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections()))
980 if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
981 return &Shdr;
982 return nullptr;
983 }
984
985 const EnumEntry<unsigned> ElfClass[] = {
986 {"None", "none", ELF::ELFCLASSNONE},
987 {"32-bit", "ELF32", ELF::ELFCLASS32},
988 {"64-bit", "ELF64", ELF::ELFCLASS64},
989 };
990
991 const EnumEntry<unsigned> ElfDataEncoding[] = {
992 {"None", "none", ELF::ELFDATANONE},
993 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
994 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB},
995 };
996
997 const EnumEntry<unsigned> ElfObjectFileType[] = {
998 {"None", "NONE (none)", ELF::ET_NONE},
999 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL},
1000 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC},
1001 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
1002 {"Core", "CORE (Core file)", ELF::ET_CORE},
1003 };
1004
1005 const EnumEntry<unsigned> ElfOSABI[] = {
1006 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE},
1007 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX},
1008 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD},
1009 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX},
1010 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD},
1011 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS},
1012 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX},
1013 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX},
1014 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD},
1015 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64},
1016 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO},
1017 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD},
1018 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS},
1019 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
1020 {"AROS", "AROS", ELF::ELFOSABI_AROS},
1021 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS},
1022 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI},
1023 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE}
1024 };
1025
1026 const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
1027 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA},
1028 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL},
1029 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
1030 };
1031
1032 const EnumEntry<unsigned> ARMElfOSABI[] = {
1033 {"ARM", "ARM", ELF::ELFOSABI_ARM}
1034 };
1035
1036 const EnumEntry<unsigned> C6000ElfOSABI[] = {
1037 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
1038 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX}
1039 };
1040
1041 const EnumEntry<unsigned> ElfMachineType[] = {
1042 ENUM_ENT(EM_NONE, "None"),
1043 ENUM_ENT(EM_M32, "WE32100"),
1044 ENUM_ENT(EM_SPARC, "Sparc"),
1045 ENUM_ENT(EM_386, "Intel 80386"),
1046 ENUM_ENT(EM_68K, "MC68000"),
1047 ENUM_ENT(EM_88K, "MC88000"),
1048 ENUM_ENT(EM_IAMCU, "EM_IAMCU"),
1049 ENUM_ENT(EM_860, "Intel 80860"),
1050 ENUM_ENT(EM_MIPS, "MIPS R3000"),
1051 ENUM_ENT(EM_S370, "IBM System/370"),
1052 ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"),
1053 ENUM_ENT(EM_PARISC, "HPPA"),
1054 ENUM_ENT(EM_VPP500, "Fujitsu VPP500"),
1055 ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"),
1056 ENUM_ENT(EM_960, "Intel 80960"),
1057 ENUM_ENT(EM_PPC, "PowerPC"),
1058 ENUM_ENT(EM_PPC64, "PowerPC64"),
1059 ENUM_ENT(EM_S390, "IBM S/390"),
1060 ENUM_ENT(EM_SPU, "SPU"),
1061 ENUM_ENT(EM_V800, "NEC V800 series"),
1062 ENUM_ENT(EM_FR20, "Fujistsu FR20"),
1063 ENUM_ENT(EM_RH32, "TRW RH-32"),
1064 ENUM_ENT(EM_RCE, "Motorola RCE"),
1065 ENUM_ENT(EM_ARM, "ARM"),
1066 ENUM_ENT(EM_ALPHA, "EM_ALPHA"),
1067 ENUM_ENT(EM_SH, "Hitachi SH"),
1068 ENUM_ENT(EM_SPARCV9, "Sparc v9"),
1069 ENUM_ENT(EM_TRICORE, "Siemens Tricore"),
1070 ENUM_ENT(EM_ARC, "ARC"),
1071 ENUM_ENT(EM_H8_300, "Hitachi H8/300"),
1072 ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"),
1073 ENUM_ENT(EM_H8S, "Hitachi H8S"),
1074 ENUM_ENT(EM_H8_500, "Hitachi H8/500"),
1075 ENUM_ENT(EM_IA_64, "Intel IA-64"),
1076 ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"),
1077 ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"),
1078 ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"),
1079 ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"),
1080 ENUM_ENT(EM_PCP, "Siemens PCP"),
1081 ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"),
1082 ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"),
1083 ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"),
1084 ENUM_ENT(EM_ME16, "Toyota ME16 processor"),
1085 ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"),
1086 ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"),
1087 ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"),
1088 ENUM_ENT(EM_PDSP, "Sony DSP processor"),
1089 ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"),
1090 ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"),
1091 ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"),
1092 ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"),
1093 ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"),
1094 ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"),
1095 ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"),
1096 ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"),
1097 ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"),
1098 ENUM_ENT(EM_SVX, "Silicon Graphics SVx"),
1099 ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"),
1100 ENUM_ENT(EM_VAX, "Digital VAX"),
1101 ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"),
1102 ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"),
1103 ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"),
1104 ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"),
1105 ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"),
1106 ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"),
1107 ENUM_ENT(EM_PRISM, "Vitesse Prism"),
1108 ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"),
1109 ENUM_ENT(EM_FR30, "Fujitsu FR30"),
1110 ENUM_ENT(EM_D10V, "Mitsubishi D10V"),
1111 ENUM_ENT(EM_D30V, "Mitsubishi D30V"),
1112 ENUM_ENT(EM_V850, "NEC v850"),
1113 ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"),
1114 ENUM_ENT(EM_MN10300, "Matsushita MN10300"),
1115 ENUM_ENT(EM_MN10200, "Matsushita MN10200"),
1116 ENUM_ENT(EM_PJ, "picoJava"),
1117 ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"),
1118 ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"),
1119 ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"),
1120 ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"),
1121 ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"),
1122 ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"),
1123 ENUM_ENT(EM_TPC, "Tenor Network TPC processor"),
1124 ENUM_ENT(EM_SNP1K, "EM_SNP1K"),
1125 ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"),
1126 ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"),
1127 ENUM_ENT(EM_MAX, "MAX Processor"),
1128 ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"),
1129 ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"),
1130 ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"),
1131 ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"),
1132 ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"),
1133 ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"),
1134 ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"),
1135 ENUM_ENT(EM_UNICORE, "Unicore"),
1136 ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"),
1137 ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"),
1138 ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"),
1139 ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"),
1140 ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"),
1141 ENUM_ENT(EM_C166, "Infineon Technologies xc16x"),
1142 ENUM_ENT(EM_M16C, "Renesas M16C"),
1143 ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"),
1144 ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"),
1145 ENUM_ENT(EM_M32C, "Renesas M32C"),
1146 ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"),
1147 ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"),
1148 ENUM_ENT(EM_SHARC, "EM_SHARC"),
1149 ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"),
1150 ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"),
1151 ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"),
1152 ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"),
1153 ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
1154 ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"),
1155 ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"),
1156 ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"),
1157 ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"),
1158 ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"),
1159 ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"),
1160 ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"),
1161 ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"),
1162 ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"),
1163 ENUM_ENT(EM_8051, "Intel 8051 and variants"),
1164 ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"),
1165 ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"),
1166 ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"),
1167 // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1168 // an identical number to EM_ECOG1.
1169 ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"),
1170 ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1171 ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"),
1172 ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"),
1173 ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"),
1174 ENUM_ENT(EM_RX, "Renesas RX"),
1175 ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"),
1176 ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"),
1177 ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"),
1178 ENUM_ENT(EM_CR16, "National Semiconductor CompactRISC 16-bit processor"),
1179 ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"),
1180 ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"),
1181 ENUM_ENT(EM_L10M, "EM_L10M"),
1182 ENUM_ENT(EM_K10M, "EM_K10M"),
1183 ENUM_ENT(EM_AARCH64, "AArch64"),
1184 ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"),
1185 ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"),
1186 ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"),
1187 ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"),
1188 ENUM_ENT(EM_MICROBLAZE, "Xilinx MicroBlaze 32-bit RISC soft processor core"),
1189 ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"),
1190 ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"),
1191 ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"),
1192 ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"),
1193 ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"),
1194 ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"),
1195 ENUM_ENT(EM_OPEN8, "EM_OPEN8"),
1196 ENUM_ENT(EM_RL78, "Renesas RL78"),
1197 ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"),
1198 ENUM_ENT(EM_78KOR, "EM_78KOR"),
1199 ENUM_ENT(EM_56800EX, "EM_56800EX"),
1200 ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"),
1201 ENUM_ENT(EM_RISCV, "RISC-V"),
1202 ENUM_ENT(EM_LANAI, "EM_LANAI"),
1203 ENUM_ENT(EM_BPF, "EM_BPF"),
1204 ENUM_ENT(EM_VE, "NEC SX-Aurora Vector Engine"),
1205 ENUM_ENT(EM_LOONGARCH, "LoongArch"),
1206 };
1207
1208 const EnumEntry<unsigned> ElfSymbolBindings[] = {
1209 {"Local", "LOCAL", ELF::STB_LOCAL},
1210 {"Global", "GLOBAL", ELF::STB_GLOBAL},
1211 {"Weak", "WEAK", ELF::STB_WEAK},
1212 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1213
1214 const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1215 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT},
1216 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL},
1217 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN},
1218 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1219
1220 const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1221 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL }
1222 };
1223
getGroupType(uint32_t Flag)1224 static const char *getGroupType(uint32_t Flag) {
1225 if (Flag & ELF::GRP_COMDAT)
1226 return "COMDAT";
1227 else
1228 return "(unknown)";
1229 }
1230
1231 const EnumEntry<unsigned> ElfSectionFlags[] = {
1232 ENUM_ENT(SHF_WRITE, "W"),
1233 ENUM_ENT(SHF_ALLOC, "A"),
1234 ENUM_ENT(SHF_EXECINSTR, "X"),
1235 ENUM_ENT(SHF_MERGE, "M"),
1236 ENUM_ENT(SHF_STRINGS, "S"),
1237 ENUM_ENT(SHF_INFO_LINK, "I"),
1238 ENUM_ENT(SHF_LINK_ORDER, "L"),
1239 ENUM_ENT(SHF_OS_NONCONFORMING, "O"),
1240 ENUM_ENT(SHF_GROUP, "G"),
1241 ENUM_ENT(SHF_TLS, "T"),
1242 ENUM_ENT(SHF_COMPRESSED, "C"),
1243 ENUM_ENT(SHF_EXCLUDE, "E"),
1244 };
1245
1246 const EnumEntry<unsigned> ElfGNUSectionFlags[] = {
1247 ENUM_ENT(SHF_GNU_RETAIN, "R")
1248 };
1249
1250 const EnumEntry<unsigned> ElfSolarisSectionFlags[] = {
1251 ENUM_ENT(SHF_SUNW_NODISCARD, "R")
1252 };
1253
1254 const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1255 ENUM_ENT(XCORE_SHF_CP_SECTION, ""),
1256 ENUM_ENT(XCORE_SHF_DP_SECTION, "")
1257 };
1258
1259 const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1260 ENUM_ENT(SHF_ARM_PURECODE, "y")
1261 };
1262
1263 const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1264 ENUM_ENT(SHF_HEX_GPREL, "")
1265 };
1266
1267 const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1268 ENUM_ENT(SHF_MIPS_NODUPES, ""),
1269 ENUM_ENT(SHF_MIPS_NAMES, ""),
1270 ENUM_ENT(SHF_MIPS_LOCAL, ""),
1271 ENUM_ENT(SHF_MIPS_NOSTRIP, ""),
1272 ENUM_ENT(SHF_MIPS_GPREL, ""),
1273 ENUM_ENT(SHF_MIPS_MERGE, ""),
1274 ENUM_ENT(SHF_MIPS_ADDR, ""),
1275 ENUM_ENT(SHF_MIPS_STRING, "")
1276 };
1277
1278 const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1279 ENUM_ENT(SHF_X86_64_LARGE, "l")
1280 };
1281
1282 static std::vector<EnumEntry<unsigned>>
getSectionFlagsForTarget(unsigned EOSAbi,unsigned EMachine)1283 getSectionFlagsForTarget(unsigned EOSAbi, unsigned EMachine) {
1284 std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
1285 std::end(ElfSectionFlags));
1286 switch (EOSAbi) {
1287 case ELFOSABI_SOLARIS:
1288 Ret.insert(Ret.end(), std::begin(ElfSolarisSectionFlags),
1289 std::end(ElfSolarisSectionFlags));
1290 break;
1291 default:
1292 Ret.insert(Ret.end(), std::begin(ElfGNUSectionFlags),
1293 std::end(ElfGNUSectionFlags));
1294 break;
1295 }
1296 switch (EMachine) {
1297 case EM_ARM:
1298 Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
1299 std::end(ElfARMSectionFlags));
1300 break;
1301 case EM_HEXAGON:
1302 Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
1303 std::end(ElfHexagonSectionFlags));
1304 break;
1305 case EM_MIPS:
1306 Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
1307 std::end(ElfMipsSectionFlags));
1308 break;
1309 case EM_X86_64:
1310 Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
1311 std::end(ElfX86_64SectionFlags));
1312 break;
1313 case EM_XCORE:
1314 Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
1315 std::end(ElfXCoreSectionFlags));
1316 break;
1317 default:
1318 break;
1319 }
1320 return Ret;
1321 }
1322
getGNUFlags(unsigned EOSAbi,unsigned EMachine,uint64_t Flags)1323 static std::string getGNUFlags(unsigned EOSAbi, unsigned EMachine,
1324 uint64_t Flags) {
1325 // Here we are trying to build the flags string in the same way as GNU does.
1326 // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1327 // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1328 // GNU readelf will not print "E" or "Ep" in this case, but will print just
1329 // "p". It only will print "E" when no other processor flag is set.
1330 std::string Str;
1331 bool HasUnknownFlag = false;
1332 bool HasOSFlag = false;
1333 bool HasProcFlag = false;
1334 std::vector<EnumEntry<unsigned>> FlagsList =
1335 getSectionFlagsForTarget(EOSAbi, EMachine);
1336 while (Flags) {
1337 // Take the least significant bit as a flag.
1338 uint64_t Flag = Flags & -Flags;
1339 Flags -= Flag;
1340
1341 // Find the flag in the known flags list.
1342 auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
1343 // Flags with empty names are not printed in GNU style output.
1344 return E.Value == Flag && !E.AltName.empty();
1345 });
1346 if (I != FlagsList.end()) {
1347 Str += I->AltName;
1348 continue;
1349 }
1350
1351 // If we did not find a matching regular flag, then we deal with an OS
1352 // specific flag, processor specific flag or an unknown flag.
1353 if (Flag & ELF::SHF_MASKOS) {
1354 HasOSFlag = true;
1355 Flags &= ~ELF::SHF_MASKOS;
1356 } else if (Flag & ELF::SHF_MASKPROC) {
1357 HasProcFlag = true;
1358 // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1359 // bit if set so that it doesn't also get printed.
1360 Flags &= ~ELF::SHF_MASKPROC;
1361 } else {
1362 HasUnknownFlag = true;
1363 }
1364 }
1365
1366 // "o", "p" and "x" are printed last.
1367 if (HasOSFlag)
1368 Str += "o";
1369 if (HasProcFlag)
1370 Str += "p";
1371 if (HasUnknownFlag)
1372 Str += "x";
1373 return Str;
1374 }
1375
segmentTypeToString(unsigned Arch,unsigned Type)1376 static StringRef segmentTypeToString(unsigned Arch, unsigned Type) {
1377 // Check potentially overlapped processor-specific program header type.
1378 switch (Arch) {
1379 case ELF::EM_ARM:
1380 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
1381 break;
1382 case ELF::EM_MIPS:
1383 case ELF::EM_MIPS_RS3_LE:
1384 switch (Type) {
1385 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
1386 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
1387 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
1388 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
1389 }
1390 break;
1391 case ELF::EM_RISCV:
1392 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_RISCV_ATTRIBUTES); }
1393 }
1394
1395 switch (Type) {
1396 LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL);
1397 LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD);
1398 LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
1399 LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP);
1400 LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE);
1401 LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB);
1402 LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR);
1403 LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS);
1404
1405 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
1406 LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
1407
1408 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
1409 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
1410 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY);
1411
1412 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_MUTABLE);
1413 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
1414 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_SYSCALLS);
1415 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
1416 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_NOBTCFI);
1417 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
1418 default:
1419 return "";
1420 }
1421 }
1422
getGNUPtType(unsigned Arch,unsigned Type)1423 static std::string getGNUPtType(unsigned Arch, unsigned Type) {
1424 StringRef Seg = segmentTypeToString(Arch, Type);
1425 if (Seg.empty())
1426 return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1427
1428 // E.g. "PT_ARM_EXIDX" -> "EXIDX".
1429 if (Seg.consume_front("PT_ARM_"))
1430 return Seg.str();
1431
1432 // E.g. "PT_MIPS_REGINFO" -> "REGINFO".
1433 if (Seg.consume_front("PT_MIPS_"))
1434 return Seg.str();
1435
1436 // E.g. "PT_RISCV_ATTRIBUTES"
1437 if (Seg.consume_front("PT_RISCV_"))
1438 return Seg.str();
1439
1440 // E.g. "PT_LOAD" -> "LOAD".
1441 assert(Seg.startswith("PT_"));
1442 return Seg.drop_front(3).str();
1443 }
1444
1445 const EnumEntry<unsigned> ElfSegmentFlags[] = {
1446 LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
1447 LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
1448 LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
1449 };
1450
1451 const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1452 ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
1453 ENUM_ENT(EF_MIPS_PIC, "pic"),
1454 ENUM_ENT(EF_MIPS_CPIC, "cpic"),
1455 ENUM_ENT(EF_MIPS_ABI2, "abi2"),
1456 ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
1457 ENUM_ENT(EF_MIPS_FP64, "fp64"),
1458 ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
1459 ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
1460 ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
1461 ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
1462 ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
1463 ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
1464 ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
1465 ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
1466 ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
1467 ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
1468 ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
1469 ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
1470 ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
1471 ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
1472 ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
1473 ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
1474 ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
1475 ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
1476 ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
1477 ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
1478 ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
1479 ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
1480 ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
1481 ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
1482 ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
1483 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
1484 ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
1485 ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
1486 ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
1487 ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
1488 ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
1489 ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
1490 ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
1491 ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
1492 ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
1493 ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
1494 ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
1495 };
1496
1497 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = {
1498 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1499 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1500 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1501 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1502 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1503 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1504 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1505 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1506 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1507 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1508 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1509 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1510 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1511 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1512 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1513 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1514 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1515 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1516 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1517 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
1518 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1519 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1520 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1521 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1522 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1523 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
1524 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1525 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1526 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1527 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
1528 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1529 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1530 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1531 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1532 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1533 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1534 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1535 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
1536 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
1537 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940),
1538 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1539 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1540 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1541 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013),
1542 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1543 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
1544 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
1545 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
1546 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
1547 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035),
1548 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036),
1549 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1100),
1550 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1101),
1551 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1102),
1552 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1103),
1553 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_V3),
1554 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_V3)
1555 };
1556
1557 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = {
1558 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1559 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1560 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1561 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1562 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1563 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1564 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1565 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1566 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1567 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1568 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1569 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1570 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1571 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1572 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1573 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1574 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1575 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1576 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1577 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
1578 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1579 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1580 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1581 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1582 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1583 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
1584 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1585 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1586 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1587 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
1588 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1589 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1590 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1591 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1592 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1593 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1594 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1595 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
1596 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
1597 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940),
1598 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1599 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1600 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1601 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013),
1602 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1603 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
1604 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
1605 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
1606 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
1607 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035),
1608 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036),
1609 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1100),
1610 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1101),
1611 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1102),
1612 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1103),
1613 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ANY_V4),
1614 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_OFF_V4),
1615 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ON_V4),
1616 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ANY_V4),
1617 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_OFF_V4),
1618 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ON_V4)
1619 };
1620
1621 const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1622 ENUM_ENT(EF_RISCV_RVC, "RVC"),
1623 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
1624 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
1625 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
1626 ENUM_ENT(EF_RISCV_RVE, "RVE"),
1627 ENUM_ENT(EF_RISCV_TSO, "TSO"),
1628 };
1629
1630 const EnumEntry<unsigned> ElfHeaderAVRFlags[] = {
1631 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1),
1632 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2),
1633 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25),
1634 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3),
1635 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31),
1636 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35),
1637 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4),
1638 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5),
1639 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51),
1640 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6),
1641 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY),
1642 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1),
1643 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2),
1644 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3),
1645 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4),
1646 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5),
1647 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6),
1648 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7),
1649 ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"),
1650 };
1651
1652 const EnumEntry<unsigned> ElfHeaderLoongArchFlags[] = {
1653 ENUM_ENT(EF_LOONGARCH_ABI_SOFT_FLOAT, "SOFT-FLOAT"),
1654 ENUM_ENT(EF_LOONGARCH_ABI_SINGLE_FLOAT, "SINGLE-FLOAT"),
1655 ENUM_ENT(EF_LOONGARCH_ABI_DOUBLE_FLOAT, "DOUBLE-FLOAT"),
1656 ENUM_ENT(EF_LOONGARCH_OBJABI_V0, "OBJ-v0"),
1657 ENUM_ENT(EF_LOONGARCH_OBJABI_V1, "OBJ-v1"),
1658 };
1659
1660 static const EnumEntry<unsigned> ElfHeaderXtensaFlags[] = {
1661 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_MACH_NONE),
1662 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_INSN),
1663 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_LIT)
1664 };
1665
1666 const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1667 LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
1668 LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
1669 LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
1670 };
1671
1672 const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1673 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1674 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1675 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
1676 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
1677 };
1678
1679 const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = {
1680 LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS)
1681 };
1682
1683 const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1684 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1685 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1686 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
1687 };
1688
1689 const EnumEntry<unsigned> ElfRISCVSymOtherFlags[] = {
1690 LLVM_READOBJ_ENUM_ENT(ELF, STO_RISCV_VARIANT_CC)};
1691
getElfMipsOptionsOdkType(unsigned Odk)1692 static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1693 switch (Odk) {
1694 LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
1695 LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
1696 LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
1697 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
1698 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
1699 LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
1700 LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
1701 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
1702 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
1703 LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
1704 LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
1705 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
1706 default:
1707 return "Unknown";
1708 }
1709 }
1710
1711 template <typename ELFT>
1712 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
findDynamic()1713 ELFDumper<ELFT>::findDynamic() {
1714 // Try to locate the PT_DYNAMIC header.
1715 const Elf_Phdr *DynamicPhdr = nullptr;
1716 if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) {
1717 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
1718 if (Phdr.p_type != ELF::PT_DYNAMIC)
1719 continue;
1720 DynamicPhdr = &Phdr;
1721 break;
1722 }
1723 } else {
1724 reportUniqueWarning(
1725 "unable to read program headers to locate the PT_DYNAMIC segment: " +
1726 toString(PhdrsOrErr.takeError()));
1727 }
1728
1729 // Try to locate the .dynamic section in the sections header table.
1730 const Elf_Shdr *DynamicSec = nullptr;
1731 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
1732 if (Sec.sh_type != ELF::SHT_DYNAMIC)
1733 continue;
1734 DynamicSec = &Sec;
1735 break;
1736 }
1737
1738 if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
1739 ObjF.getMemoryBufferRef().getBufferSize()) ||
1740 (DynamicPhdr->p_offset + DynamicPhdr->p_filesz <
1741 DynamicPhdr->p_offset))) {
1742 reportUniqueWarning(
1743 "PT_DYNAMIC segment offset (0x" +
1744 Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" +
1745 Twine::utohexstr(DynamicPhdr->p_filesz) +
1746 ") exceeds the size of the file (0x" +
1747 Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")");
1748 // Don't use the broken dynamic header.
1749 DynamicPhdr = nullptr;
1750 }
1751
1752 if (DynamicPhdr && DynamicSec) {
1753 if (DynamicSec->sh_addr + DynamicSec->sh_size >
1754 DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
1755 DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
1756 reportUniqueWarning(describe(*DynamicSec) +
1757 " is not contained within the "
1758 "PT_DYNAMIC segment");
1759
1760 if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
1761 reportUniqueWarning(describe(*DynamicSec) + " is not at the start of "
1762 "PT_DYNAMIC segment");
1763 }
1764
1765 return std::make_pair(DynamicPhdr, DynamicSec);
1766 }
1767
1768 template <typename ELFT>
loadDynamicTable()1769 void ELFDumper<ELFT>::loadDynamicTable() {
1770 const Elf_Phdr *DynamicPhdr;
1771 const Elf_Shdr *DynamicSec;
1772 std::tie(DynamicPhdr, DynamicSec) = findDynamic();
1773 if (!DynamicPhdr && !DynamicSec)
1774 return;
1775
1776 DynRegionInfo FromPhdr(ObjF, *this);
1777 bool IsPhdrTableValid = false;
1778 if (DynamicPhdr) {
1779 // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
1780 // validated in findDynamic() and so createDRI() is not expected to fail.
1781 FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz,
1782 sizeof(Elf_Dyn)));
1783 FromPhdr.SizePrintName = "PT_DYNAMIC size";
1784 FromPhdr.EntSizePrintName = "";
1785 IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty();
1786 }
1787
1788 // Locate the dynamic table described in a section header.
1789 // Ignore sh_entsize and use the expected value for entry size explicitly.
1790 // This allows us to dump dynamic sections with a broken sh_entsize
1791 // field.
1792 DynRegionInfo FromSec(ObjF, *this);
1793 bool IsSecTableValid = false;
1794 if (DynamicSec) {
1795 Expected<DynRegionInfo> RegOrErr =
1796 createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn));
1797 if (RegOrErr) {
1798 FromSec = *RegOrErr;
1799 FromSec.Context = describe(*DynamicSec);
1800 FromSec.EntSizePrintName = "";
1801 IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty();
1802 } else {
1803 reportUniqueWarning("unable to read the dynamic table from " +
1804 describe(*DynamicSec) + ": " +
1805 toString(RegOrErr.takeError()));
1806 }
1807 }
1808
1809 // When we only have information from one of the SHT_DYNAMIC section header or
1810 // PT_DYNAMIC program header, just use that.
1811 if (!DynamicPhdr || !DynamicSec) {
1812 if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
1813 DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
1814 parseDynamicTable();
1815 } else {
1816 reportUniqueWarning("no valid dynamic table was found");
1817 }
1818 return;
1819 }
1820
1821 // At this point we have tables found from the section header and from the
1822 // dynamic segment. Usually they match, but we have to do sanity checks to
1823 // verify that.
1824
1825 if (FromPhdr.Addr != FromSec.Addr)
1826 reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
1827 "program header disagree about "
1828 "the location of the dynamic table");
1829
1830 if (!IsPhdrTableValid && !IsSecTableValid) {
1831 reportUniqueWarning("no valid dynamic table was found");
1832 return;
1833 }
1834
1835 // Information in the PT_DYNAMIC program header has priority over the
1836 // information in a section header.
1837 if (IsPhdrTableValid) {
1838 if (!IsSecTableValid)
1839 reportUniqueWarning(
1840 "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
1841 DynamicTable = FromPhdr;
1842 } else {
1843 reportUniqueWarning(
1844 "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
1845 DynamicTable = FromSec;
1846 }
1847
1848 parseDynamicTable();
1849 }
1850
1851 template <typename ELFT>
ELFDumper(const object::ELFObjectFile<ELFT> & O,ScopedPrinter & Writer)1852 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O,
1853 ScopedPrinter &Writer)
1854 : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()),
1855 FileName(O.getFileName()), DynRelRegion(O, *this),
1856 DynRelaRegion(O, *this), DynRelrRegion(O, *this),
1857 DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this),
1858 DynamicTable(O, *this) {
1859 if (!O.IsContentValid())
1860 return;
1861
1862 typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
1863 for (const Elf_Shdr &Sec : Sections) {
1864 switch (Sec.sh_type) {
1865 case ELF::SHT_SYMTAB:
1866 if (!DotSymtabSec)
1867 DotSymtabSec = &Sec;
1868 break;
1869 case ELF::SHT_DYNSYM:
1870 if (!DotDynsymSec)
1871 DotDynsymSec = &Sec;
1872
1873 if (!DynSymRegion) {
1874 Expected<DynRegionInfo> RegOrErr =
1875 createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize);
1876 if (RegOrErr) {
1877 DynSymRegion = *RegOrErr;
1878 DynSymRegion->Context = describe(Sec);
1879
1880 if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec))
1881 DynamicStringTable = *E;
1882 else
1883 reportUniqueWarning("unable to get the string table for the " +
1884 describe(Sec) + ": " + toString(E.takeError()));
1885 } else {
1886 reportUniqueWarning("unable to read dynamic symbols from " +
1887 describe(Sec) + ": " +
1888 toString(RegOrErr.takeError()));
1889 }
1890 }
1891 break;
1892 case ELF::SHT_SYMTAB_SHNDX: {
1893 uint32_t SymtabNdx = Sec.sh_link;
1894 if (SymtabNdx >= Sections.size()) {
1895 reportUniqueWarning(
1896 "unable to get the associated symbol table for " + describe(Sec) +
1897 ": sh_link (" + Twine(SymtabNdx) +
1898 ") is greater than or equal to the total number of sections (" +
1899 Twine(Sections.size()) + ")");
1900 continue;
1901 }
1902
1903 if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr =
1904 Obj.getSHNDXTable(Sec)) {
1905 if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr})
1906 .second)
1907 reportUniqueWarning(
1908 "multiple SHT_SYMTAB_SHNDX sections are linked to " +
1909 describe(Sec));
1910 } else {
1911 reportUniqueWarning(ShndxTableOrErr.takeError());
1912 }
1913 break;
1914 }
1915 case ELF::SHT_GNU_versym:
1916 if (!SymbolVersionSection)
1917 SymbolVersionSection = &Sec;
1918 break;
1919 case ELF::SHT_GNU_verdef:
1920 if (!SymbolVersionDefSection)
1921 SymbolVersionDefSection = &Sec;
1922 break;
1923 case ELF::SHT_GNU_verneed:
1924 if (!SymbolVersionNeedSection)
1925 SymbolVersionNeedSection = &Sec;
1926 break;
1927 case ELF::SHT_LLVM_ADDRSIG:
1928 if (!DotAddrsigSec)
1929 DotAddrsigSec = &Sec;
1930 break;
1931 }
1932 }
1933
1934 loadDynamicTable();
1935 }
1936
parseDynamicTable()1937 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
1938 auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
1939 auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) {
1940 this->reportUniqueWarning(Msg);
1941 return Error::success();
1942 });
1943 if (!MappedAddrOrError) {
1944 this->reportUniqueWarning("unable to parse DT_" +
1945 Obj.getDynamicTagAsString(Tag) + ": " +
1946 llvm::toString(MappedAddrOrError.takeError()));
1947 return nullptr;
1948 }
1949 return MappedAddrOrError.get();
1950 };
1951
1952 const char *StringTableBegin = nullptr;
1953 uint64_t StringTableSize = 0;
1954 std::optional<DynRegionInfo> DynSymFromTable;
1955 for (const Elf_Dyn &Dyn : dynamic_table()) {
1956 switch (Dyn.d_tag) {
1957 case ELF::DT_HASH:
1958 HashTable = reinterpret_cast<const Elf_Hash *>(
1959 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1960 break;
1961 case ELF::DT_GNU_HASH:
1962 GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
1963 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1964 break;
1965 case ELF::DT_STRTAB:
1966 StringTableBegin = reinterpret_cast<const char *>(
1967 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1968 break;
1969 case ELF::DT_STRSZ:
1970 StringTableSize = Dyn.getVal();
1971 break;
1972 case ELF::DT_SYMTAB: {
1973 // If we can't map the DT_SYMTAB value to an address (e.g. when there are
1974 // no program headers), we ignore its value.
1975 if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
1976 DynSymFromTable.emplace(ObjF, *this);
1977 DynSymFromTable->Addr = VA;
1978 DynSymFromTable->EntSize = sizeof(Elf_Sym);
1979 DynSymFromTable->EntSizePrintName = "";
1980 }
1981 break;
1982 }
1983 case ELF::DT_SYMENT: {
1984 uint64_t Val = Dyn.getVal();
1985 if (Val != sizeof(Elf_Sym))
1986 this->reportUniqueWarning("DT_SYMENT value of 0x" +
1987 Twine::utohexstr(Val) +
1988 " is not the size of a symbol (0x" +
1989 Twine::utohexstr(sizeof(Elf_Sym)) + ")");
1990 break;
1991 }
1992 case ELF::DT_RELA:
1993 DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1994 break;
1995 case ELF::DT_RELASZ:
1996 DynRelaRegion.Size = Dyn.getVal();
1997 DynRelaRegion.SizePrintName = "DT_RELASZ value";
1998 break;
1999 case ELF::DT_RELAENT:
2000 DynRelaRegion.EntSize = Dyn.getVal();
2001 DynRelaRegion.EntSizePrintName = "DT_RELAENT value";
2002 break;
2003 case ELF::DT_SONAME:
2004 SONameOffset = Dyn.getVal();
2005 break;
2006 case ELF::DT_REL:
2007 DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2008 break;
2009 case ELF::DT_RELSZ:
2010 DynRelRegion.Size = Dyn.getVal();
2011 DynRelRegion.SizePrintName = "DT_RELSZ value";
2012 break;
2013 case ELF::DT_RELENT:
2014 DynRelRegion.EntSize = Dyn.getVal();
2015 DynRelRegion.EntSizePrintName = "DT_RELENT value";
2016 break;
2017 case ELF::DT_RELR:
2018 case ELF::DT_ANDROID_RELR:
2019 DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2020 break;
2021 case ELF::DT_RELRSZ:
2022 case ELF::DT_ANDROID_RELRSZ:
2023 DynRelrRegion.Size = Dyn.getVal();
2024 DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ
2025 ? "DT_RELRSZ value"
2026 : "DT_ANDROID_RELRSZ value";
2027 break;
2028 case ELF::DT_RELRENT:
2029 case ELF::DT_ANDROID_RELRENT:
2030 DynRelrRegion.EntSize = Dyn.getVal();
2031 DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT
2032 ? "DT_RELRENT value"
2033 : "DT_ANDROID_RELRENT value";
2034 break;
2035 case ELF::DT_PLTREL:
2036 if (Dyn.getVal() == DT_REL)
2037 DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
2038 else if (Dyn.getVal() == DT_RELA)
2039 DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
2040 else
2041 reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
2042 Twine((uint64_t)Dyn.getVal()));
2043 DynPLTRelRegion.EntSizePrintName = "PLTREL entry size";
2044 break;
2045 case ELF::DT_JMPREL:
2046 DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2047 break;
2048 case ELF::DT_PLTRELSZ:
2049 DynPLTRelRegion.Size = Dyn.getVal();
2050 DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value";
2051 break;
2052 case ELF::DT_SYMTAB_SHNDX:
2053 DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2054 DynSymTabShndxRegion.EntSize = sizeof(Elf_Word);
2055 break;
2056 }
2057 }
2058
2059 if (StringTableBegin) {
2060 const uint64_t FileSize = Obj.getBufSize();
2061 const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base();
2062 if (StringTableSize > FileSize - Offset)
2063 reportUniqueWarning(
2064 "the dynamic string table at 0x" + Twine::utohexstr(Offset) +
2065 " goes past the end of the file (0x" + Twine::utohexstr(FileSize) +
2066 ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize));
2067 else
2068 DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
2069 }
2070
2071 const bool IsHashTableSupported = getHashTableEntSize() == 4;
2072 if (DynSymRegion) {
2073 // Often we find the information about the dynamic symbol table
2074 // location in the SHT_DYNSYM section header. However, the value in
2075 // DT_SYMTAB has priority, because it is used by dynamic loaders to
2076 // locate .dynsym at runtime. The location we find in the section header
2077 // and the location we find here should match.
2078 if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr)
2079 reportUniqueWarning(
2080 createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
2081 "the location of the dynamic symbol table"));
2082
2083 // According to the ELF gABI: "The number of symbol table entries should
2084 // equal nchain". Check to see if the DT_HASH hash table nchain value
2085 // conflicts with the number of symbols in the dynamic symbol table
2086 // according to the section header.
2087 if (HashTable && IsHashTableSupported) {
2088 if (DynSymRegion->EntSize == 0)
2089 reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
2090 else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize)
2091 reportUniqueWarning(
2092 "hash table nchain (" + Twine(HashTable->nchain) +
2093 ") differs from symbol count derived from SHT_DYNSYM section "
2094 "header (" +
2095 Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")");
2096 }
2097 }
2098
2099 // Delay the creation of the actual dynamic symbol table until now, so that
2100 // checks can always be made against the section header-based properties,
2101 // without worrying about tag order.
2102 if (DynSymFromTable) {
2103 if (!DynSymRegion) {
2104 DynSymRegion = DynSymFromTable;
2105 } else {
2106 DynSymRegion->Addr = DynSymFromTable->Addr;
2107 DynSymRegion->EntSize = DynSymFromTable->EntSize;
2108 DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName;
2109 }
2110 }
2111
2112 // Derive the dynamic symbol table size from the DT_HASH hash table, if
2113 // present.
2114 if (HashTable && IsHashTableSupported && DynSymRegion) {
2115 const uint64_t FileSize = Obj.getBufSize();
2116 const uint64_t DerivedSize =
2117 (uint64_t)HashTable->nchain * DynSymRegion->EntSize;
2118 const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base();
2119 if (DerivedSize > FileSize - Offset)
2120 reportUniqueWarning(
2121 "the size (0x" + Twine::utohexstr(DerivedSize) +
2122 ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) +
2123 ", derived from the hash table, goes past the end of the file (0x" +
2124 Twine::utohexstr(FileSize) + ") and will be ignored");
2125 else
2126 DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize;
2127 }
2128 }
2129
printVersionInfo()2130 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
2131 // Dump version symbol section.
2132 printVersionSymbolSection(SymbolVersionSection);
2133
2134 // Dump version definition section.
2135 printVersionDefinitionSection(SymbolVersionDefSection);
2136
2137 // Dump version dependency section.
2138 printVersionDependencySection(SymbolVersionNeedSection);
2139 }
2140
2141 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
2142 { #enum, prefix##_##enum }
2143
2144 const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
2145 LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
2146 LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
2147 LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
2148 LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
2149 LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
2150 };
2151
2152 const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
2153 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
2154 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
2155 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
2156 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
2157 LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
2158 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
2159 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
2160 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
2161 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
2162 LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
2163 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
2164 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
2165 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
2166 LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
2167 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
2168 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
2169 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
2170 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
2171 LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
2172 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
2173 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
2174 LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
2175 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
2176 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
2177 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
2178 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
2179 LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
2180 };
2181
2182 const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
2183 LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
2184 LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
2185 LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
2186 LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
2187 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
2188 LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
2189 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
2190 LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
2191 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
2192 LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
2193 LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
2194 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
2195 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
2196 LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
2197 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
2198 LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
2199 };
2200
2201 #undef LLVM_READOBJ_DT_FLAG_ENT
2202
2203 template <typename T, typename TFlag>
printFlags(T Value,ArrayRef<EnumEntry<TFlag>> Flags,raw_ostream & OS)2204 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
2205 SmallVector<EnumEntry<TFlag>, 10> SetFlags;
2206 for (const EnumEntry<TFlag> &Flag : Flags)
2207 if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value)
2208 SetFlags.push_back(Flag);
2209
2210 for (const EnumEntry<TFlag> &Flag : SetFlags)
2211 OS << Flag.Name << " ";
2212 }
2213
2214 template <class ELFT>
2215 const typename ELFT::Shdr *
findSectionByName(StringRef Name) const2216 ELFDumper<ELFT>::findSectionByName(StringRef Name) const {
2217 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
2218 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) {
2219 if (*NameOrErr == Name)
2220 return &Shdr;
2221 } else {
2222 reportUniqueWarning("unable to read the name of " + describe(Shdr) +
2223 ": " + toString(NameOrErr.takeError()));
2224 }
2225 }
2226 return nullptr;
2227 }
2228
2229 template <class ELFT>
getDynamicEntry(uint64_t Type,uint64_t Value) const2230 std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type,
2231 uint64_t Value) const {
2232 auto FormatHexValue = [](uint64_t V) {
2233 std::string Str;
2234 raw_string_ostream OS(Str);
2235 const char *ConvChar =
2236 (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
2237 OS << format(ConvChar, V);
2238 return OS.str();
2239 };
2240
2241 auto FormatFlags = [](uint64_t V,
2242 llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) {
2243 std::string Str;
2244 raw_string_ostream OS(Str);
2245 printFlags(V, Array, OS);
2246 return OS.str();
2247 };
2248
2249 // Handle custom printing of architecture specific tags
2250 switch (Obj.getHeader().e_machine) {
2251 case EM_AARCH64:
2252 switch (Type) {
2253 case DT_AARCH64_BTI_PLT:
2254 case DT_AARCH64_PAC_PLT:
2255 case DT_AARCH64_VARIANT_PCS:
2256 return std::to_string(Value);
2257 default:
2258 break;
2259 }
2260 break;
2261 case EM_HEXAGON:
2262 switch (Type) {
2263 case DT_HEXAGON_VER:
2264 return std::to_string(Value);
2265 case DT_HEXAGON_SYMSZ:
2266 case DT_HEXAGON_PLT:
2267 return FormatHexValue(Value);
2268 default:
2269 break;
2270 }
2271 break;
2272 case EM_MIPS:
2273 switch (Type) {
2274 case DT_MIPS_RLD_VERSION:
2275 case DT_MIPS_LOCAL_GOTNO:
2276 case DT_MIPS_SYMTABNO:
2277 case DT_MIPS_UNREFEXTNO:
2278 return std::to_string(Value);
2279 case DT_MIPS_TIME_STAMP:
2280 case DT_MIPS_ICHECKSUM:
2281 case DT_MIPS_IVERSION:
2282 case DT_MIPS_BASE_ADDRESS:
2283 case DT_MIPS_MSYM:
2284 case DT_MIPS_CONFLICT:
2285 case DT_MIPS_LIBLIST:
2286 case DT_MIPS_CONFLICTNO:
2287 case DT_MIPS_LIBLISTNO:
2288 case DT_MIPS_GOTSYM:
2289 case DT_MIPS_HIPAGENO:
2290 case DT_MIPS_RLD_MAP:
2291 case DT_MIPS_DELTA_CLASS:
2292 case DT_MIPS_DELTA_CLASS_NO:
2293 case DT_MIPS_DELTA_INSTANCE:
2294 case DT_MIPS_DELTA_RELOC:
2295 case DT_MIPS_DELTA_RELOC_NO:
2296 case DT_MIPS_DELTA_SYM:
2297 case DT_MIPS_DELTA_SYM_NO:
2298 case DT_MIPS_DELTA_CLASSSYM:
2299 case DT_MIPS_DELTA_CLASSSYM_NO:
2300 case DT_MIPS_CXX_FLAGS:
2301 case DT_MIPS_PIXIE_INIT:
2302 case DT_MIPS_SYMBOL_LIB:
2303 case DT_MIPS_LOCALPAGE_GOTIDX:
2304 case DT_MIPS_LOCAL_GOTIDX:
2305 case DT_MIPS_HIDDEN_GOTIDX:
2306 case DT_MIPS_PROTECTED_GOTIDX:
2307 case DT_MIPS_OPTIONS:
2308 case DT_MIPS_INTERFACE:
2309 case DT_MIPS_DYNSTR_ALIGN:
2310 case DT_MIPS_INTERFACE_SIZE:
2311 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2312 case DT_MIPS_PERF_SUFFIX:
2313 case DT_MIPS_COMPACT_SIZE:
2314 case DT_MIPS_GP_VALUE:
2315 case DT_MIPS_AUX_DYNAMIC:
2316 case DT_MIPS_PLTGOT:
2317 case DT_MIPS_RWPLT:
2318 case DT_MIPS_RLD_MAP_REL:
2319 case DT_MIPS_XHASH:
2320 return FormatHexValue(Value);
2321 case DT_MIPS_FLAGS:
2322 return FormatFlags(Value, ArrayRef(ElfDynamicDTMipsFlags));
2323 default:
2324 break;
2325 }
2326 break;
2327 default:
2328 break;
2329 }
2330
2331 switch (Type) {
2332 case DT_PLTREL:
2333 if (Value == DT_REL)
2334 return "REL";
2335 if (Value == DT_RELA)
2336 return "RELA";
2337 [[fallthrough]];
2338 case DT_PLTGOT:
2339 case DT_HASH:
2340 case DT_STRTAB:
2341 case DT_SYMTAB:
2342 case DT_RELA:
2343 case DT_INIT:
2344 case DT_FINI:
2345 case DT_REL:
2346 case DT_JMPREL:
2347 case DT_INIT_ARRAY:
2348 case DT_FINI_ARRAY:
2349 case DT_PREINIT_ARRAY:
2350 case DT_DEBUG:
2351 case DT_VERDEF:
2352 case DT_VERNEED:
2353 case DT_VERSYM:
2354 case DT_GNU_HASH:
2355 case DT_NULL:
2356 return FormatHexValue(Value);
2357 case DT_RELACOUNT:
2358 case DT_RELCOUNT:
2359 case DT_VERDEFNUM:
2360 case DT_VERNEEDNUM:
2361 return std::to_string(Value);
2362 case DT_PLTRELSZ:
2363 case DT_RELASZ:
2364 case DT_RELAENT:
2365 case DT_STRSZ:
2366 case DT_SYMENT:
2367 case DT_RELSZ:
2368 case DT_RELENT:
2369 case DT_INIT_ARRAYSZ:
2370 case DT_FINI_ARRAYSZ:
2371 case DT_PREINIT_ARRAYSZ:
2372 case DT_RELRSZ:
2373 case DT_RELRENT:
2374 case DT_ANDROID_RELSZ:
2375 case DT_ANDROID_RELASZ:
2376 return std::to_string(Value) + " (bytes)";
2377 case DT_NEEDED:
2378 case DT_SONAME:
2379 case DT_AUXILIARY:
2380 case DT_USED:
2381 case DT_FILTER:
2382 case DT_RPATH:
2383 case DT_RUNPATH: {
2384 const std::map<uint64_t, const char *> TagNames = {
2385 {DT_NEEDED, "Shared library"}, {DT_SONAME, "Library soname"},
2386 {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"},
2387 {DT_FILTER, "Filter library"}, {DT_RPATH, "Library rpath"},
2388 {DT_RUNPATH, "Library runpath"},
2389 };
2390
2391 return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]")
2392 .str();
2393 }
2394 case DT_FLAGS:
2395 return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags));
2396 case DT_FLAGS_1:
2397 return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags1));
2398 default:
2399 return FormatHexValue(Value);
2400 }
2401 }
2402
2403 template <class ELFT>
getDynamicString(uint64_t Value) const2404 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
2405 if (DynamicStringTable.empty() && !DynamicStringTable.data()) {
2406 reportUniqueWarning("string table was not found");
2407 return "<?>";
2408 }
2409
2410 auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) {
2411 reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) +
2412 Msg);
2413 return "<?>";
2414 };
2415
2416 const uint64_t FileSize = Obj.getBufSize();
2417 const uint64_t Offset =
2418 (const uint8_t *)DynamicStringTable.data() - Obj.base();
2419 if (DynamicStringTable.size() > FileSize - Offset)
2420 return WarnAndReturn(" with size 0x" +
2421 Twine::utohexstr(DynamicStringTable.size()) +
2422 " goes past the end of the file (0x" +
2423 Twine::utohexstr(FileSize) + ")",
2424 Offset);
2425
2426 if (Value >= DynamicStringTable.size())
2427 return WarnAndReturn(
2428 ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) +
2429 ": it goes past the end of the table (0x" +
2430 Twine::utohexstr(Offset + DynamicStringTable.size()) + ")",
2431 Offset);
2432
2433 if (DynamicStringTable.back() != '\0')
2434 return WarnAndReturn(": unable to read the string at 0x" +
2435 Twine::utohexstr(Offset + Value) +
2436 ": the string table is not null-terminated",
2437 Offset);
2438
2439 return DynamicStringTable.data() + Value;
2440 }
2441
printUnwindInfo()2442 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
2443 DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
2444 Ctx.printUnwindInformation();
2445 }
2446
2447 // The namespace is needed to fix the compilation with GCC older than 7.0+.
2448 namespace {
printUnwindInfo()2449 template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
2450 if (Obj.getHeader().e_machine == EM_ARM) {
2451 ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(),
2452 DotSymtabSec);
2453 Ctx.PrintUnwindInformation();
2454 }
2455 DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
2456 Ctx.printUnwindInformation();
2457 }
2458 } // namespace
2459
printNeededLibraries()2460 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
2461 ListScope D(W, "NeededLibraries");
2462
2463 std::vector<StringRef> Libs;
2464 for (const auto &Entry : dynamic_table())
2465 if (Entry.d_tag == ELF::DT_NEEDED)
2466 Libs.push_back(getDynamicString(Entry.d_un.d_val));
2467
2468 llvm::sort(Libs);
2469
2470 for (StringRef L : Libs)
2471 W.startLine() << L << "\n";
2472 }
2473
2474 template <class ELFT>
checkHashTable(const ELFDumper<ELFT> & Dumper,const typename ELFT::Hash * H,bool * IsHeaderValid=nullptr)2475 static Error checkHashTable(const ELFDumper<ELFT> &Dumper,
2476 const typename ELFT::Hash *H,
2477 bool *IsHeaderValid = nullptr) {
2478 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
2479 const uint64_t SecOffset = (const uint8_t *)H - Obj.base();
2480 if (Dumper.getHashTableEntSize() == 8) {
2481 auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) {
2482 return E.Value == Obj.getHeader().e_machine;
2483 });
2484 if (IsHeaderValid)
2485 *IsHeaderValid = false;
2486 return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) +
2487 " is not supported: it contains non-standard 8 "
2488 "byte entries on " +
2489 It->AltName + " platform");
2490 }
2491
2492 auto MakeError = [&](const Twine &Msg = "") {
2493 return createError("the hash table at offset 0x" +
2494 Twine::utohexstr(SecOffset) +
2495 " goes past the end of the file (0x" +
2496 Twine::utohexstr(Obj.getBufSize()) + ")" + Msg);
2497 };
2498
2499 // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2500 const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word);
2501
2502 if (IsHeaderValid)
2503 *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize;
2504
2505 if (Obj.getBufSize() - SecOffset < HeaderSize)
2506 return MakeError();
2507
2508 if (Obj.getBufSize() - SecOffset - HeaderSize <
2509 ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word))
2510 return MakeError(", nbucket = " + Twine(H->nbucket) +
2511 ", nchain = " + Twine(H->nchain));
2512 return Error::success();
2513 }
2514
2515 template <class ELFT>
checkGNUHashTable(const ELFFile<ELFT> & Obj,const typename ELFT::GnuHash * GnuHashTable,bool * IsHeaderValid=nullptr)2516 static Error checkGNUHashTable(const ELFFile<ELFT> &Obj,
2517 const typename ELFT::GnuHash *GnuHashTable,
2518 bool *IsHeaderValid = nullptr) {
2519 const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable);
2520 assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() &&
2521 "GnuHashTable must always point to a location inside the file");
2522
2523 uint64_t TableOffset = TableData - Obj.base();
2524 if (IsHeaderValid)
2525 *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize();
2526 if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 +
2527 (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >=
2528 Obj.getBufSize())
2529 return createError("unable to dump the SHT_GNU_HASH "
2530 "section at 0x" +
2531 Twine::utohexstr(TableOffset) +
2532 ": it goes past the end of the file");
2533 return Error::success();
2534 }
2535
printHashTable()2536 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
2537 DictScope D(W, "HashTable");
2538 if (!HashTable)
2539 return;
2540
2541 bool IsHeaderValid;
2542 Error Err = checkHashTable(*this, HashTable, &IsHeaderValid);
2543 if (IsHeaderValid) {
2544 W.printNumber("Num Buckets", HashTable->nbucket);
2545 W.printNumber("Num Chains", HashTable->nchain);
2546 }
2547
2548 if (Err) {
2549 reportUniqueWarning(std::move(Err));
2550 return;
2551 }
2552
2553 W.printList("Buckets", HashTable->buckets());
2554 W.printList("Chains", HashTable->chains());
2555 }
2556
2557 template <class ELFT>
2558 static Expected<ArrayRef<typename ELFT::Word>>
getGnuHashTableChains(std::optional<DynRegionInfo> DynSymRegion,const typename ELFT::GnuHash * GnuHashTable)2559 getGnuHashTableChains(std::optional<DynRegionInfo> DynSymRegion,
2560 const typename ELFT::GnuHash *GnuHashTable) {
2561 if (!DynSymRegion)
2562 return createError("no dynamic symbol table found");
2563
2564 ArrayRef<typename ELFT::Sym> DynSymTable =
2565 DynSymRegion->template getAsArrayRef<typename ELFT::Sym>();
2566 size_t NumSyms = DynSymTable.size();
2567 if (!NumSyms)
2568 return createError("the dynamic symbol table is empty");
2569
2570 if (GnuHashTable->symndx < NumSyms)
2571 return GnuHashTable->values(NumSyms);
2572
2573 // A normal empty GNU hash table section produced by linker might have
2574 // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2575 // and have dummy null values in the Bloom filter and in the buckets
2576 // vector (or no values at all). It happens because the value of symndx is not
2577 // important for dynamic loaders when the GNU hash table is empty. They just
2578 // skip the whole object during symbol lookup. In such cases, the symndx value
2579 // is irrelevant and we should not report a warning.
2580 ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets();
2581 if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; }))
2582 return createError(
2583 "the first hashed symbol index (" + Twine(GnuHashTable->symndx) +
2584 ") is greater than or equal to the number of dynamic symbols (" +
2585 Twine(NumSyms) + ")");
2586 // There is no way to represent an array of (dynamic symbols count - symndx)
2587 // length.
2588 return ArrayRef<typename ELFT::Word>();
2589 }
2590
2591 template <typename ELFT>
printGnuHashTable()2592 void ELFDumper<ELFT>::printGnuHashTable() {
2593 DictScope D(W, "GnuHashTable");
2594 if (!GnuHashTable)
2595 return;
2596
2597 bool IsHeaderValid;
2598 Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid);
2599 if (IsHeaderValid) {
2600 W.printNumber("Num Buckets", GnuHashTable->nbuckets);
2601 W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
2602 W.printNumber("Num Mask Words", GnuHashTable->maskwords);
2603 W.printNumber("Shift Count", GnuHashTable->shift2);
2604 }
2605
2606 if (Err) {
2607 reportUniqueWarning(std::move(Err));
2608 return;
2609 }
2610
2611 ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter();
2612 W.printHexList("Bloom Filter", BloomFilter);
2613
2614 ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
2615 W.printList("Buckets", Buckets);
2616
2617 Expected<ArrayRef<Elf_Word>> Chains =
2618 getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable);
2619 if (!Chains) {
2620 reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
2621 "section: " +
2622 toString(Chains.takeError()));
2623 return;
2624 }
2625
2626 W.printHexList("Values", *Chains);
2627 }
2628
printLoadName()2629 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
2630 StringRef SOName = "<Not found>";
2631 if (SONameOffset)
2632 SOName = getDynamicString(*SONameOffset);
2633 W.printString("LoadName", SOName);
2634 }
2635
printArchSpecificInfo()2636 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
2637 switch (Obj.getHeader().e_machine) {
2638 case EM_ARM:
2639 if (Obj.isLE())
2640 printAttributes(ELF::SHT_ARM_ATTRIBUTES,
2641 std::make_unique<ARMAttributeParser>(&W),
2642 support::little);
2643 else
2644 reportUniqueWarning("attribute printing not implemented for big-endian "
2645 "ARM objects");
2646 break;
2647 case EM_RISCV:
2648 if (Obj.isLE())
2649 printAttributes(ELF::SHT_RISCV_ATTRIBUTES,
2650 std::make_unique<RISCVAttributeParser>(&W),
2651 support::little);
2652 else
2653 reportUniqueWarning("attribute printing not implemented for big-endian "
2654 "RISC-V objects");
2655 break;
2656 case EM_MSP430:
2657 printAttributes(ELF::SHT_MSP430_ATTRIBUTES,
2658 std::make_unique<MSP430AttributeParser>(&W),
2659 support::little);
2660 break;
2661 case EM_MIPS: {
2662 printMipsABIFlags();
2663 printMipsOptions();
2664 printMipsReginfo();
2665 MipsGOTParser<ELFT> Parser(*this);
2666 if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols()))
2667 reportUniqueWarning(std::move(E));
2668 else if (!Parser.isGotEmpty())
2669 printMipsGOT(Parser);
2670
2671 if (Error E = Parser.findPLT(dynamic_table()))
2672 reportUniqueWarning(std::move(E));
2673 else if (!Parser.isPltEmpty())
2674 printMipsPLT(Parser);
2675 break;
2676 }
2677 default:
2678 break;
2679 }
2680 }
2681
2682 template <class ELFT>
printAttributes(unsigned AttrShType,std::unique_ptr<ELFAttributeParser> AttrParser,support::endianness Endianness)2683 void ELFDumper<ELFT>::printAttributes(
2684 unsigned AttrShType, std::unique_ptr<ELFAttributeParser> AttrParser,
2685 support::endianness Endianness) {
2686 assert((AttrShType != ELF::SHT_NULL) && AttrParser &&
2687 "Incomplete ELF attribute implementation");
2688 DictScope BA(W, "BuildAttributes");
2689 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
2690 if (Sec.sh_type != AttrShType)
2691 continue;
2692
2693 ArrayRef<uint8_t> Contents;
2694 if (Expected<ArrayRef<uint8_t>> ContentOrErr =
2695 Obj.getSectionContents(Sec)) {
2696 Contents = *ContentOrErr;
2697 if (Contents.empty()) {
2698 reportUniqueWarning("the " + describe(Sec) + " is empty");
2699 continue;
2700 }
2701 } else {
2702 reportUniqueWarning("unable to read the content of the " + describe(Sec) +
2703 ": " + toString(ContentOrErr.takeError()));
2704 continue;
2705 }
2706
2707 W.printHex("FormatVersion", Contents[0]);
2708
2709 if (Error E = AttrParser->parse(Contents, Endianness))
2710 reportUniqueWarning("unable to dump attributes from the " +
2711 describe(Sec) + ": " + toString(std::move(E)));
2712 }
2713 }
2714
2715 namespace {
2716
2717 template <class ELFT> class MipsGOTParser {
2718 public:
2719 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
2720 using Entry = typename ELFT::Addr;
2721 using Entries = ArrayRef<Entry>;
2722
2723 const bool IsStatic;
2724 const ELFFile<ELFT> &Obj;
2725 const ELFDumper<ELFT> &Dumper;
2726
2727 MipsGOTParser(const ELFDumper<ELFT> &D);
2728 Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
2729 Error findPLT(Elf_Dyn_Range DynTable);
2730
isGotEmpty() const2731 bool isGotEmpty() const { return GotEntries.empty(); }
isPltEmpty() const2732 bool isPltEmpty() const { return PltEntries.empty(); }
2733
2734 uint64_t getGp() const;
2735
2736 const Entry *getGotLazyResolver() const;
2737 const Entry *getGotModulePointer() const;
2738 const Entry *getPltLazyResolver() const;
2739 const Entry *getPltModulePointer() const;
2740
2741 Entries getLocalEntries() const;
2742 Entries getGlobalEntries() const;
2743 Entries getOtherEntries() const;
2744 Entries getPltEntries() const;
2745
2746 uint64_t getGotAddress(const Entry * E) const;
2747 int64_t getGotOffset(const Entry * E) const;
2748 const Elf_Sym *getGotSym(const Entry *E) const;
2749
2750 uint64_t getPltAddress(const Entry * E) const;
2751 const Elf_Sym *getPltSym(const Entry *E) const;
2752
getPltStrTable() const2753 StringRef getPltStrTable() const { return PltStrTable; }
getPltSymTable() const2754 const Elf_Shdr *getPltSymTable() const { return PltSymTable; }
2755
2756 private:
2757 const Elf_Shdr *GotSec;
2758 size_t LocalNum;
2759 size_t GlobalNum;
2760
2761 const Elf_Shdr *PltSec;
2762 const Elf_Shdr *PltRelSec;
2763 const Elf_Shdr *PltSymTable;
2764 StringRef FileName;
2765
2766 Elf_Sym_Range GotDynSyms;
2767 StringRef PltStrTable;
2768
2769 Entries GotEntries;
2770 Entries PltEntries;
2771 };
2772
2773 } // end anonymous namespace
2774
2775 template <class ELFT>
MipsGOTParser(const ELFDumper<ELFT> & D)2776 MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D)
2777 : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()),
2778 Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
2779 PltRelSec(nullptr), PltSymTable(nullptr),
2780 FileName(D.getElfObject().getFileName()) {}
2781
2782 template <class ELFT>
findGOT(Elf_Dyn_Range DynTable,Elf_Sym_Range DynSyms)2783 Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable,
2784 Elf_Sym_Range DynSyms) {
2785 // See "Global Offset Table" in Chapter 5 in the following document
2786 // for detailed GOT description.
2787 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2788
2789 // Find static GOT secton.
2790 if (IsStatic) {
2791 GotSec = Dumper.findSectionByName(".got");
2792 if (!GotSec)
2793 return Error::success();
2794
2795 ArrayRef<uint8_t> Content =
2796 unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2797 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2798 Content.size() / sizeof(Entry));
2799 LocalNum = GotEntries.size();
2800 return Error::success();
2801 }
2802
2803 // Lookup dynamic table tags which define the GOT layout.
2804 std::optional<uint64_t> DtPltGot;
2805 std::optional<uint64_t> DtLocalGotNum;
2806 std::optional<uint64_t> DtGotSym;
2807 for (const auto &Entry : DynTable) {
2808 switch (Entry.getTag()) {
2809 case ELF::DT_PLTGOT:
2810 DtPltGot = Entry.getVal();
2811 break;
2812 case ELF::DT_MIPS_LOCAL_GOTNO:
2813 DtLocalGotNum = Entry.getVal();
2814 break;
2815 case ELF::DT_MIPS_GOTSYM:
2816 DtGotSym = Entry.getVal();
2817 break;
2818 }
2819 }
2820
2821 if (!DtPltGot && !DtLocalGotNum && !DtGotSym)
2822 return Error::success();
2823
2824 if (!DtPltGot)
2825 return createError("cannot find PLTGOT dynamic tag");
2826 if (!DtLocalGotNum)
2827 return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
2828 if (!DtGotSym)
2829 return createError("cannot find MIPS_GOTSYM dynamic tag");
2830
2831 size_t DynSymTotal = DynSyms.size();
2832 if (*DtGotSym > DynSymTotal)
2833 return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) +
2834 ") exceeds the number of dynamic symbols (" +
2835 Twine(DynSymTotal) + ")");
2836
2837 GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
2838 if (!GotSec)
2839 return createError("there is no non-empty GOT section at 0x" +
2840 Twine::utohexstr(*DtPltGot));
2841
2842 LocalNum = *DtLocalGotNum;
2843 GlobalNum = DynSymTotal - *DtGotSym;
2844
2845 ArrayRef<uint8_t> Content =
2846 unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2847 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2848 Content.size() / sizeof(Entry));
2849 GotDynSyms = DynSyms.drop_front(*DtGotSym);
2850
2851 return Error::success();
2852 }
2853
2854 template <class ELFT>
findPLT(Elf_Dyn_Range DynTable)2855 Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) {
2856 // Lookup dynamic table tags which define the PLT layout.
2857 std::optional<uint64_t> DtMipsPltGot;
2858 std::optional<uint64_t> DtJmpRel;
2859 for (const auto &Entry : DynTable) {
2860 switch (Entry.getTag()) {
2861 case ELF::DT_MIPS_PLTGOT:
2862 DtMipsPltGot = Entry.getVal();
2863 break;
2864 case ELF::DT_JMPREL:
2865 DtJmpRel = Entry.getVal();
2866 break;
2867 }
2868 }
2869
2870 if (!DtMipsPltGot && !DtJmpRel)
2871 return Error::success();
2872
2873 // Find PLT section.
2874 if (!DtMipsPltGot)
2875 return createError("cannot find MIPS_PLTGOT dynamic tag");
2876 if (!DtJmpRel)
2877 return createError("cannot find JMPREL dynamic tag");
2878
2879 PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot);
2880 if (!PltSec)
2881 return createError("there is no non-empty PLTGOT section at 0x" +
2882 Twine::utohexstr(*DtMipsPltGot));
2883
2884 PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel);
2885 if (!PltRelSec)
2886 return createError("there is no non-empty RELPLT section at 0x" +
2887 Twine::utohexstr(*DtJmpRel));
2888
2889 if (Expected<ArrayRef<uint8_t>> PltContentOrErr =
2890 Obj.getSectionContents(*PltSec))
2891 PltEntries =
2892 Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()),
2893 PltContentOrErr->size() / sizeof(Entry));
2894 else
2895 return createError("unable to read PLTGOT section content: " +
2896 toString(PltContentOrErr.takeError()));
2897
2898 if (Expected<const Elf_Shdr *> PltSymTableOrErr =
2899 Obj.getSection(PltRelSec->sh_link))
2900 PltSymTable = *PltSymTableOrErr;
2901 else
2902 return createError("unable to get a symbol table linked to the " +
2903 describe(Obj, *PltRelSec) + ": " +
2904 toString(PltSymTableOrErr.takeError()));
2905
2906 if (Expected<StringRef> StrTabOrErr =
2907 Obj.getStringTableForSymtab(*PltSymTable))
2908 PltStrTable = *StrTabOrErr;
2909 else
2910 return createError("unable to get a string table for the " +
2911 describe(Obj, *PltSymTable) + ": " +
2912 toString(StrTabOrErr.takeError()));
2913
2914 return Error::success();
2915 }
2916
getGp() const2917 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
2918 return GotSec->sh_addr + 0x7ff0;
2919 }
2920
2921 template <class ELFT>
2922 const typename MipsGOTParser<ELFT>::Entry *
getGotLazyResolver() const2923 MipsGOTParser<ELFT>::getGotLazyResolver() const {
2924 return LocalNum > 0 ? &GotEntries[0] : nullptr;
2925 }
2926
2927 template <class ELFT>
2928 const typename MipsGOTParser<ELFT>::Entry *
getGotModulePointer() const2929 MipsGOTParser<ELFT>::getGotModulePointer() const {
2930 if (LocalNum < 2)
2931 return nullptr;
2932 const Entry &E = GotEntries[1];
2933 if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
2934 return nullptr;
2935 return &E;
2936 }
2937
2938 template <class ELFT>
2939 typename MipsGOTParser<ELFT>::Entries
getLocalEntries() const2940 MipsGOTParser<ELFT>::getLocalEntries() const {
2941 size_t Skip = getGotModulePointer() ? 2 : 1;
2942 if (LocalNum - Skip <= 0)
2943 return Entries();
2944 return GotEntries.slice(Skip, LocalNum - Skip);
2945 }
2946
2947 template <class ELFT>
2948 typename MipsGOTParser<ELFT>::Entries
getGlobalEntries() const2949 MipsGOTParser<ELFT>::getGlobalEntries() const {
2950 if (GlobalNum == 0)
2951 return Entries();
2952 return GotEntries.slice(LocalNum, GlobalNum);
2953 }
2954
2955 template <class ELFT>
2956 typename MipsGOTParser<ELFT>::Entries
getOtherEntries() const2957 MipsGOTParser<ELFT>::getOtherEntries() const {
2958 size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
2959 if (OtherNum == 0)
2960 return Entries();
2961 return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
2962 }
2963
2964 template <class ELFT>
getGotAddress(const Entry * E) const2965 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
2966 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2967 return GotSec->sh_addr + Offset;
2968 }
2969
2970 template <class ELFT>
getGotOffset(const Entry * E) const2971 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
2972 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2973 return Offset - 0x7ff0;
2974 }
2975
2976 template <class ELFT>
2977 const typename MipsGOTParser<ELFT>::Elf_Sym *
getGotSym(const Entry * E) const2978 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
2979 int64_t Offset = std::distance(GotEntries.data(), E);
2980 return &GotDynSyms[Offset - LocalNum];
2981 }
2982
2983 template <class ELFT>
2984 const typename MipsGOTParser<ELFT>::Entry *
getPltLazyResolver() const2985 MipsGOTParser<ELFT>::getPltLazyResolver() const {
2986 return PltEntries.empty() ? nullptr : &PltEntries[0];
2987 }
2988
2989 template <class ELFT>
2990 const typename MipsGOTParser<ELFT>::Entry *
getPltModulePointer() const2991 MipsGOTParser<ELFT>::getPltModulePointer() const {
2992 return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
2993 }
2994
2995 template <class ELFT>
2996 typename MipsGOTParser<ELFT>::Entries
getPltEntries() const2997 MipsGOTParser<ELFT>::getPltEntries() const {
2998 if (PltEntries.size() <= 2)
2999 return Entries();
3000 return PltEntries.slice(2, PltEntries.size() - 2);
3001 }
3002
3003 template <class ELFT>
getPltAddress(const Entry * E) const3004 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
3005 int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
3006 return PltSec->sh_addr + Offset;
3007 }
3008
3009 template <class ELFT>
3010 const typename MipsGOTParser<ELFT>::Elf_Sym *
getPltSym(const Entry * E) const3011 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
3012 int64_t Offset = std::distance(getPltEntries().data(), E);
3013 if (PltRelSec->sh_type == ELF::SHT_REL) {
3014 Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec));
3015 return unwrapOrError(FileName,
3016 Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3017 } else {
3018 Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec));
3019 return unwrapOrError(FileName,
3020 Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3021 }
3022 }
3023
3024 const EnumEntry<unsigned> ElfMipsISAExtType[] = {
3025 {"None", Mips::AFL_EXT_NONE},
3026 {"Broadcom SB-1", Mips::AFL_EXT_SB1},
3027 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON},
3028 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
3029 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
3030 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
3031 {"LSI R4010", Mips::AFL_EXT_4010},
3032 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E},
3033 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F},
3034 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A},
3035 {"MIPS R4650", Mips::AFL_EXT_4650},
3036 {"MIPS R5900", Mips::AFL_EXT_5900},
3037 {"MIPS R10000", Mips::AFL_EXT_10000},
3038 {"NEC VR4100", Mips::AFL_EXT_4100},
3039 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111},
3040 {"NEC VR4120", Mips::AFL_EXT_4120},
3041 {"NEC VR5400", Mips::AFL_EXT_5400},
3042 {"NEC VR5500", Mips::AFL_EXT_5500},
3043 {"RMI Xlr", Mips::AFL_EXT_XLR},
3044 {"Toshiba R3900", Mips::AFL_EXT_3900}
3045 };
3046
3047 const EnumEntry<unsigned> ElfMipsASEFlags[] = {
3048 {"DSP", Mips::AFL_ASE_DSP},
3049 {"DSPR2", Mips::AFL_ASE_DSPR2},
3050 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
3051 {"MCU", Mips::AFL_ASE_MCU},
3052 {"MDMX", Mips::AFL_ASE_MDMX},
3053 {"MIPS-3D", Mips::AFL_ASE_MIPS3D},
3054 {"MT", Mips::AFL_ASE_MT},
3055 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS},
3056 {"VZ", Mips::AFL_ASE_VIRT},
3057 {"MSA", Mips::AFL_ASE_MSA},
3058 {"MIPS16", Mips::AFL_ASE_MIPS16},
3059 {"microMIPS", Mips::AFL_ASE_MICROMIPS},
3060 {"XPA", Mips::AFL_ASE_XPA},
3061 {"CRC", Mips::AFL_ASE_CRC},
3062 {"GINV", Mips::AFL_ASE_GINV},
3063 };
3064
3065 const EnumEntry<unsigned> ElfMipsFpABIType[] = {
3066 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY},
3067 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
3068 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
3069 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT},
3070 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
3071 Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
3072 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX},
3073 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
3074 {"Hard float compat (32-bit CPU, 64-bit FPU)",
3075 Mips::Val_GNU_MIPS_ABI_FP_64A}
3076 };
3077
3078 static const EnumEntry<unsigned> ElfMipsFlags1[] {
3079 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
3080 };
3081
getMipsRegisterSize(uint8_t Flag)3082 static int getMipsRegisterSize(uint8_t Flag) {
3083 switch (Flag) {
3084 case Mips::AFL_REG_NONE:
3085 return 0;
3086 case Mips::AFL_REG_32:
3087 return 32;
3088 case Mips::AFL_REG_64:
3089 return 64;
3090 case Mips::AFL_REG_128:
3091 return 128;
3092 default:
3093 return -1;
3094 }
3095 }
3096
3097 template <class ELFT>
printMipsReginfoData(ScopedPrinter & W,const Elf_Mips_RegInfo<ELFT> & Reginfo)3098 static void printMipsReginfoData(ScopedPrinter &W,
3099 const Elf_Mips_RegInfo<ELFT> &Reginfo) {
3100 W.printHex("GP", Reginfo.ri_gp_value);
3101 W.printHex("General Mask", Reginfo.ri_gprmask);
3102 W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
3103 W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
3104 W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
3105 W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
3106 }
3107
printMipsReginfo()3108 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
3109 const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo");
3110 if (!RegInfoSec) {
3111 W.startLine() << "There is no .reginfo section in the file.\n";
3112 return;
3113 }
3114
3115 Expected<ArrayRef<uint8_t>> ContentsOrErr =
3116 Obj.getSectionContents(*RegInfoSec);
3117 if (!ContentsOrErr) {
3118 this->reportUniqueWarning(
3119 "unable to read the content of the .reginfo section (" +
3120 describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError()));
3121 return;
3122 }
3123
3124 if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) {
3125 this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
3126 Twine::utohexstr(ContentsOrErr->size()) + ")");
3127 return;
3128 }
3129
3130 DictScope GS(W, "MIPS RegInfo");
3131 printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(
3132 ContentsOrErr->data()));
3133 }
3134
3135 template <class ELFT>
3136 static Expected<const Elf_Mips_Options<ELFT> *>
readMipsOptions(const uint8_t * SecBegin,ArrayRef<uint8_t> & SecData,bool & IsSupported)3137 readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData,
3138 bool &IsSupported) {
3139 if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>))
3140 return createError("the .MIPS.options section has an invalid size (0x" +
3141 Twine::utohexstr(SecData.size()) + ")");
3142
3143 const Elf_Mips_Options<ELFT> *O =
3144 reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data());
3145 const uint8_t Size = O->size;
3146 if (Size > SecData.size()) {
3147 const uint64_t Offset = SecData.data() - SecBegin;
3148 const uint64_t SecSize = Offset + SecData.size();
3149 return createError("a descriptor of size 0x" + Twine::utohexstr(Size) +
3150 " at offset 0x" + Twine::utohexstr(Offset) +
3151 " goes past the end of the .MIPS.options "
3152 "section of size 0x" +
3153 Twine::utohexstr(SecSize));
3154 }
3155
3156 IsSupported = O->kind == ODK_REGINFO;
3157 const size_t ExpectedSize =
3158 sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
3159
3160 if (IsSupported)
3161 if (Size < ExpectedSize)
3162 return createError(
3163 "a .MIPS.options entry of kind " +
3164 Twine(getElfMipsOptionsOdkType(O->kind)) +
3165 " has an invalid size (0x" + Twine::utohexstr(Size) +
3166 "), the expected size is 0x" + Twine::utohexstr(ExpectedSize));
3167
3168 SecData = SecData.drop_front(Size);
3169 return O;
3170 }
3171
printMipsOptions()3172 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
3173 const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options");
3174 if (!MipsOpts) {
3175 W.startLine() << "There is no .MIPS.options section in the file.\n";
3176 return;
3177 }
3178
3179 DictScope GS(W, "MIPS Options");
3180
3181 ArrayRef<uint8_t> Data =
3182 unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts));
3183 const uint8_t *const SecBegin = Data.begin();
3184 while (!Data.empty()) {
3185 bool IsSupported;
3186 Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr =
3187 readMipsOptions<ELFT>(SecBegin, Data, IsSupported);
3188 if (!OptsOrErr) {
3189 reportUniqueWarning(OptsOrErr.takeError());
3190 break;
3191 }
3192
3193 unsigned Kind = (*OptsOrErr)->kind;
3194 const char *Type = getElfMipsOptionsOdkType(Kind);
3195 if (!IsSupported) {
3196 W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind
3197 << ")\n";
3198 continue;
3199 }
3200
3201 DictScope GS(W, Type);
3202 if (Kind == ODK_REGINFO)
3203 printMipsReginfoData(W, (*OptsOrErr)->getRegInfo());
3204 else
3205 llvm_unreachable("unexpected .MIPS.options section descriptor kind");
3206 }
3207 }
3208
printStackMap() const3209 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
3210 const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps");
3211 if (!StackMapSection)
3212 return;
3213
3214 auto Warn = [&](Error &&E) {
3215 this->reportUniqueWarning("unable to read the stack map from " +
3216 describe(*StackMapSection) + ": " +
3217 toString(std::move(E)));
3218 };
3219
3220 Expected<ArrayRef<uint8_t>> ContentOrErr =
3221 Obj.getSectionContents(*StackMapSection);
3222 if (!ContentOrErr) {
3223 Warn(ContentOrErr.takeError());
3224 return;
3225 }
3226
3227 if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader(
3228 *ContentOrErr)) {
3229 Warn(std::move(E));
3230 return;
3231 }
3232
3233 prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr));
3234 }
3235
3236 template <class ELFT>
printReloc(const Relocation<ELFT> & R,unsigned RelIndex,const Elf_Shdr & Sec,const Elf_Shdr * SymTab)3237 void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
3238 const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
3239 Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab);
3240 if (!Target)
3241 reportUniqueWarning("unable to print relocation " + Twine(RelIndex) +
3242 " in " + describe(Sec) + ": " +
3243 toString(Target.takeError()));
3244 else
3245 printRelRelaReloc(R, *Target);
3246 }
3247
printFields(formatted_raw_ostream & OS,StringRef Str1,StringRef Str2)3248 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
3249 StringRef Str2) {
3250 OS.PadToColumn(2u);
3251 OS << Str1;
3252 OS.PadToColumn(37u);
3253 OS << Str2 << "\n";
3254 OS.flush();
3255 }
3256
3257 template <class ELFT>
getSectionHeadersNumString(const ELFFile<ELFT> & Obj,StringRef FileName)3258 static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj,
3259 StringRef FileName) {
3260 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3261 if (ElfHeader.e_shnum != 0)
3262 return to_string(ElfHeader.e_shnum);
3263
3264 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3265 if (!ArrOrErr) {
3266 // In this case we can ignore an error, because we have already reported a
3267 // warning about the broken section header table earlier.
3268 consumeError(ArrOrErr.takeError());
3269 return "<?>";
3270 }
3271
3272 if (ArrOrErr->empty())
3273 return "0";
3274 return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")";
3275 }
3276
3277 template <class ELFT>
getSectionHeaderTableIndexString(const ELFFile<ELFT> & Obj,StringRef FileName)3278 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj,
3279 StringRef FileName) {
3280 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3281 if (ElfHeader.e_shstrndx != SHN_XINDEX)
3282 return to_string(ElfHeader.e_shstrndx);
3283
3284 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3285 if (!ArrOrErr) {
3286 // In this case we can ignore an error, because we have already reported a
3287 // warning about the broken section header table earlier.
3288 consumeError(ArrOrErr.takeError());
3289 return "<?>";
3290 }
3291
3292 if (ArrOrErr->empty())
3293 return "65535 (corrupt: out of range)";
3294 return to_string(ElfHeader.e_shstrndx) + " (" +
3295 to_string((*ArrOrErr)[0].sh_link) + ")";
3296 }
3297
getObjectFileEnumEntry(unsigned Type)3298 static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) {
3299 auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) {
3300 return E.Value == Type;
3301 });
3302 if (It != ArrayRef(ElfObjectFileType).end())
3303 return It;
3304 return nullptr;
3305 }
3306
3307 template <class ELFT>
printFileSummary(StringRef FileStr,ObjectFile & Obj,ArrayRef<std::string> InputFilenames,const Archive * A)3308 void GNUELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
3309 ArrayRef<std::string> InputFilenames,
3310 const Archive *A) {
3311 if (InputFilenames.size() > 1 || A) {
3312 this->W.startLine() << "\n";
3313 this->W.printString("File", FileStr);
3314 }
3315 }
3316
printFileHeaders()3317 template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() {
3318 const Elf_Ehdr &e = this->Obj.getHeader();
3319 OS << "ELF Header:\n";
3320 OS << " Magic: ";
3321 std::string Str;
3322 for (int i = 0; i < ELF::EI_NIDENT; i++)
3323 OS << format(" %02x", static_cast<int>(e.e_ident[i]));
3324 OS << "\n";
3325 Str = enumToString(e.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass));
3326 printFields(OS, "Class:", Str);
3327 Str = enumToString(e.e_ident[ELF::EI_DATA], ArrayRef(ElfDataEncoding));
3328 printFields(OS, "Data:", Str);
3329 OS.PadToColumn(2u);
3330 OS << "Version:";
3331 OS.PadToColumn(37u);
3332 OS << utohexstr(e.e_ident[ELF::EI_VERSION]);
3333 if (e.e_version == ELF::EV_CURRENT)
3334 OS << " (current)";
3335 OS << "\n";
3336 Str = enumToString(e.e_ident[ELF::EI_OSABI], ArrayRef(ElfOSABI));
3337 printFields(OS, "OS/ABI:", Str);
3338 printFields(OS,
3339 "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION]));
3340
3341 if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) {
3342 Str = E->AltName.str();
3343 } else {
3344 if (e.e_type >= ET_LOPROC)
3345 Str = "Processor Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3346 else if (e.e_type >= ET_LOOS)
3347 Str = "OS Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3348 else
3349 Str = "<unknown>: " + utohexstr(e.e_type, /*LowerCase=*/true);
3350 }
3351 printFields(OS, "Type:", Str);
3352
3353 Str = enumToString(e.e_machine, ArrayRef(ElfMachineType));
3354 printFields(OS, "Machine:", Str);
3355 Str = "0x" + utohexstr(e.e_version);
3356 printFields(OS, "Version:", Str);
3357 Str = "0x" + utohexstr(e.e_entry);
3358 printFields(OS, "Entry point address:", Str);
3359 Str = to_string(e.e_phoff) + " (bytes into file)";
3360 printFields(OS, "Start of program headers:", Str);
3361 Str = to_string(e.e_shoff) + " (bytes into file)";
3362 printFields(OS, "Start of section headers:", Str);
3363 std::string ElfFlags;
3364 if (e.e_machine == EM_MIPS)
3365 ElfFlags = printFlags(
3366 e.e_flags, ArrayRef(ElfHeaderMipsFlags), unsigned(ELF::EF_MIPS_ARCH),
3367 unsigned(ELF::EF_MIPS_ABI), unsigned(ELF::EF_MIPS_MACH));
3368 else if (e.e_machine == EM_RISCV)
3369 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderRISCVFlags));
3370 else if (e.e_machine == EM_AVR)
3371 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderAVRFlags),
3372 unsigned(ELF::EF_AVR_ARCH_MASK));
3373 else if (e.e_machine == EM_LOONGARCH)
3374 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderLoongArchFlags),
3375 unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK),
3376 unsigned(ELF::EF_LOONGARCH_OBJABI_MASK));
3377 else if (e.e_machine == EM_XTENSA)
3378 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderXtensaFlags),
3379 unsigned(ELF::EF_XTENSA_MACH));
3380 Str = "0x" + utohexstr(e.e_flags);
3381 if (!ElfFlags.empty())
3382 Str = Str + ", " + ElfFlags;
3383 printFields(OS, "Flags:", Str);
3384 Str = to_string(e.e_ehsize) + " (bytes)";
3385 printFields(OS, "Size of this header:", Str);
3386 Str = to_string(e.e_phentsize) + " (bytes)";
3387 printFields(OS, "Size of program headers:", Str);
3388 Str = to_string(e.e_phnum);
3389 printFields(OS, "Number of program headers:", Str);
3390 Str = to_string(e.e_shentsize) + " (bytes)";
3391 printFields(OS, "Size of section headers:", Str);
3392 Str = getSectionHeadersNumString(this->Obj, this->FileName);
3393 printFields(OS, "Number of section headers:", Str);
3394 Str = getSectionHeaderTableIndexString(this->Obj, this->FileName);
3395 printFields(OS, "Section header string table index:", Str);
3396 }
3397
getGroups()3398 template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() {
3399 auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx,
3400 const Elf_Shdr &Symtab) -> StringRef {
3401 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab);
3402 if (!StrTableOrErr) {
3403 reportUniqueWarning("unable to get the string table for " +
3404 describe(Symtab) + ": " +
3405 toString(StrTableOrErr.takeError()));
3406 return "<?>";
3407 }
3408
3409 StringRef Strings = *StrTableOrErr;
3410 if (Sym.st_name >= Strings.size()) {
3411 reportUniqueWarning("unable to get the name of the symbol with index " +
3412 Twine(SymNdx) + ": st_name (0x" +
3413 Twine::utohexstr(Sym.st_name) +
3414 ") is past the end of the string table of size 0x" +
3415 Twine::utohexstr(Strings.size()));
3416 return "<?>";
3417 }
3418
3419 return StrTableOrErr->data() + Sym.st_name;
3420 };
3421
3422 std::vector<GroupSection> Ret;
3423 uint64_t I = 0;
3424 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
3425 ++I;
3426 if (Sec.sh_type != ELF::SHT_GROUP)
3427 continue;
3428
3429 StringRef Signature = "<?>";
3430 if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) {
3431 if (Expected<const Elf_Sym *> SymOrErr =
3432 Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info))
3433 Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr);
3434 else
3435 reportUniqueWarning("unable to get the signature symbol for " +
3436 describe(Sec) + ": " +
3437 toString(SymOrErr.takeError()));
3438 } else {
3439 reportUniqueWarning("unable to get the symbol table for " +
3440 describe(Sec) + ": " +
3441 toString(SymtabOrErr.takeError()));
3442 }
3443
3444 ArrayRef<Elf_Word> Data;
3445 if (Expected<ArrayRef<Elf_Word>> ContentsOrErr =
3446 Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) {
3447 if (ContentsOrErr->empty())
3448 reportUniqueWarning("unable to read the section group flag from the " +
3449 describe(Sec) + ": the section is empty");
3450 else
3451 Data = *ContentsOrErr;
3452 } else {
3453 reportUniqueWarning("unable to get the content of the " + describe(Sec) +
3454 ": " + toString(ContentsOrErr.takeError()));
3455 }
3456
3457 Ret.push_back({getPrintableSectionName(Sec),
3458 maybeDemangle(Signature),
3459 Sec.sh_name,
3460 I - 1,
3461 Sec.sh_link,
3462 Sec.sh_info,
3463 Data.empty() ? Elf_Word(0) : Data[0],
3464 {}});
3465
3466 if (Data.empty())
3467 continue;
3468
3469 std::vector<GroupMember> &GM = Ret.back().Members;
3470 for (uint32_t Ndx : Data.slice(1)) {
3471 if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) {
3472 GM.push_back({getPrintableSectionName(**SecOrErr), Ndx});
3473 } else {
3474 reportUniqueWarning("unable to get the section with index " +
3475 Twine(Ndx) + " when dumping the " + describe(Sec) +
3476 ": " + toString(SecOrErr.takeError()));
3477 GM.push_back({"<?>", Ndx});
3478 }
3479 }
3480 }
3481 return Ret;
3482 }
3483
3484 static DenseMap<uint64_t, const GroupSection *>
mapSectionsToGroups(ArrayRef<GroupSection> Groups)3485 mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
3486 DenseMap<uint64_t, const GroupSection *> Ret;
3487 for (const GroupSection &G : Groups)
3488 for (const GroupMember &GM : G.Members)
3489 Ret.insert({GM.Index, &G});
3490 return Ret;
3491 }
3492
printGroupSections()3493 template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() {
3494 std::vector<GroupSection> V = this->getGroups();
3495 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
3496 for (const GroupSection &G : V) {
3497 OS << "\n"
3498 << getGroupType(G.Type) << " group section ["
3499 << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
3500 << "] contains " << G.Members.size() << " sections:\n"
3501 << " [Index] Name\n";
3502 for (const GroupMember &GM : G.Members) {
3503 const GroupSection *MainGroup = Map[GM.Index];
3504 if (MainGroup != &G)
3505 this->reportUniqueWarning(
3506 "section with index " + Twine(GM.Index) +
3507 ", included in the group section with index " +
3508 Twine(MainGroup->Index) +
3509 ", was also found in the group section with index " +
3510 Twine(G.Index));
3511 OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n";
3512 }
3513 }
3514
3515 if (V.empty())
3516 OS << "There are no section groups in this file.\n";
3517 }
3518
3519 template <class ELFT>
printRelrReloc(const Elf_Relr & R)3520 void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
3521 OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n";
3522 }
3523
3524 template <class ELFT>
printRelRelaReloc(const Relocation<ELFT> & R,const RelSymbol<ELFT> & RelSym)3525 void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
3526 const RelSymbol<ELFT> &RelSym) {
3527 // First two fields are bit width dependent. The rest of them are fixed width.
3528 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3529 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3530 unsigned Width = ELFT::Is64Bits ? 16 : 8;
3531
3532 Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width));
3533 Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width));
3534
3535 SmallString<32> RelocName;
3536 this->Obj.getRelocationTypeName(R.Type, RelocName);
3537 Fields[2].Str = RelocName.c_str();
3538
3539 if (RelSym.Sym)
3540 Fields[3].Str =
3541 to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width));
3542
3543 Fields[4].Str = std::string(RelSym.Name);
3544 for (const Field &F : Fields)
3545 printField(F);
3546
3547 std::string Addend;
3548 if (std::optional<int64_t> A = R.Addend) {
3549 int64_t RelAddend = *A;
3550 if (!RelSym.Name.empty()) {
3551 if (RelAddend < 0) {
3552 Addend = " - ";
3553 RelAddend = std::abs(RelAddend);
3554 } else {
3555 Addend = " + ";
3556 }
3557 }
3558 Addend += utohexstr(RelAddend, /*LowerCase=*/true);
3559 }
3560 OS << Addend << "\n";
3561 }
3562
3563 template <class ELFT>
printRelocHeaderFields(formatted_raw_ostream & OS,unsigned SType)3564 static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType) {
3565 bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
3566 bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
3567 if (ELFT::Is64Bits)
3568 OS << " ";
3569 else
3570 OS << " ";
3571 if (IsRelr && opts::RawRelr)
3572 OS << "Data ";
3573 else
3574 OS << "Offset";
3575 if (ELFT::Is64Bits)
3576 OS << " Info Type"
3577 << " Symbol's Value Symbol's Name";
3578 else
3579 OS << " Info Type Sym. Value Symbol's Name";
3580 if (IsRela)
3581 OS << " + Addend";
3582 OS << "\n";
3583 }
3584
3585 template <class ELFT>
printDynamicRelocHeader(unsigned Type,StringRef Name,const DynRegionInfo & Reg)3586 void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name,
3587 const DynRegionInfo &Reg) {
3588 uint64_t Offset = Reg.Addr - this->Obj.base();
3589 OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x"
3590 << utohexstr(Offset, /*LowerCase=*/true) << " contains " << Reg.Size << " bytes:\n";
3591 printRelocHeaderFields<ELFT>(OS, Type);
3592 }
3593
3594 template <class ELFT>
isRelocationSec(const typename ELFT::Shdr & Sec)3595 static bool isRelocationSec(const typename ELFT::Shdr &Sec) {
3596 return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA ||
3597 Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL ||
3598 Sec.sh_type == ELF::SHT_ANDROID_RELA ||
3599 Sec.sh_type == ELF::SHT_ANDROID_RELR;
3600 }
3601
printRelocations()3602 template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() {
3603 auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> {
3604 // Android's packed relocation section needs to be unpacked first
3605 // to get the actual number of entries.
3606 if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
3607 Sec.sh_type == ELF::SHT_ANDROID_RELA) {
3608 Expected<std::vector<typename ELFT::Rela>> RelasOrErr =
3609 this->Obj.android_relas(Sec);
3610 if (!RelasOrErr)
3611 return RelasOrErr.takeError();
3612 return RelasOrErr->size();
3613 }
3614
3615 if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
3616 Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
3617 Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec);
3618 if (!RelrsOrErr)
3619 return RelrsOrErr.takeError();
3620 return this->Obj.decode_relrs(*RelrsOrErr).size();
3621 }
3622
3623 return Sec.getEntityCount();
3624 };
3625
3626 bool HasRelocSections = false;
3627 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
3628 if (!isRelocationSec<ELFT>(Sec))
3629 continue;
3630 HasRelocSections = true;
3631
3632 std::string EntriesNum = "<?>";
3633 if (Expected<size_t> NumOrErr = GetEntriesNum(Sec))
3634 EntriesNum = std::to_string(*NumOrErr);
3635 else
3636 this->reportUniqueWarning("unable to get the number of relocations in " +
3637 this->describe(Sec) + ": " +
3638 toString(NumOrErr.takeError()));
3639
3640 uintX_t Offset = Sec.sh_offset;
3641 StringRef Name = this->getPrintableSectionName(Sec);
3642 OS << "\nRelocation section '" << Name << "' at offset 0x"
3643 << utohexstr(Offset, /*LowerCase=*/true) << " contains " << EntriesNum
3644 << " entries:\n";
3645 printRelocHeaderFields<ELFT>(OS, Sec.sh_type);
3646 this->printRelocationsHelper(Sec);
3647 }
3648 if (!HasRelocSections)
3649 OS << "\nThere are no relocations in this file.\n";
3650 }
3651
3652 // Print the offset of a particular section from anyone of the ranges:
3653 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3654 // If 'Type' does not fall within any of those ranges, then a string is
3655 // returned as '<unknown>' followed by the type value.
getSectionTypeOffsetString(unsigned Type)3656 static std::string getSectionTypeOffsetString(unsigned Type) {
3657 if (Type >= SHT_LOOS && Type <= SHT_HIOS)
3658 return "LOOS+0x" + utohexstr(Type - SHT_LOOS);
3659 else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
3660 return "LOPROC+0x" + utohexstr(Type - SHT_LOPROC);
3661 else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
3662 return "LOUSER+0x" + utohexstr(Type - SHT_LOUSER);
3663 return "0x" + utohexstr(Type) + ": <unknown>";
3664 }
3665
getSectionTypeString(unsigned Machine,unsigned Type)3666 static std::string getSectionTypeString(unsigned Machine, unsigned Type) {
3667 StringRef Name = getELFSectionTypeName(Machine, Type);
3668
3669 // Handle SHT_GNU_* type names.
3670 if (Name.consume_front("SHT_GNU_")) {
3671 if (Name == "HASH")
3672 return "GNU_HASH";
3673 // E.g. SHT_GNU_verneed -> VERNEED.
3674 return Name.upper();
3675 }
3676
3677 if (Name == "SHT_SYMTAB_SHNDX")
3678 return "SYMTAB SECTION INDICES";
3679
3680 if (Name.consume_front("SHT_"))
3681 return Name.str();
3682 return getSectionTypeOffsetString(Type);
3683 }
3684
printSectionDescription(formatted_raw_ostream & OS,unsigned EMachine)3685 static void printSectionDescription(formatted_raw_ostream &OS,
3686 unsigned EMachine) {
3687 OS << "Key to Flags:\n";
3688 OS << " W (write), A (alloc), X (execute), M (merge), S (strings), I "
3689 "(info),\n";
3690 OS << " L (link order), O (extra OS processing required), G (group), T "
3691 "(TLS),\n";
3692 OS << " C (compressed), x (unknown), o (OS specific), E (exclude),\n";
3693 OS << " R (retain)";
3694
3695 if (EMachine == EM_X86_64)
3696 OS << ", l (large)";
3697 else if (EMachine == EM_ARM)
3698 OS << ", y (purecode)";
3699
3700 OS << ", p (processor specific)\n";
3701 }
3702
printSectionHeaders()3703 template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() {
3704 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
3705 if (Sections.empty()) {
3706 OS << "\nThere are no sections in this file.\n";
3707 Expected<StringRef> SecStrTableOrErr =
3708 this->Obj.getSectionStringTable(Sections, this->WarningHandler);
3709 if (!SecStrTableOrErr)
3710 this->reportUniqueWarning(SecStrTableOrErr.takeError());
3711 return;
3712 }
3713 unsigned Bias = ELFT::Is64Bits ? 0 : 8;
3714 OS << "There are " << to_string(Sections.size())
3715 << " section headers, starting at offset "
3716 << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
3717 OS << "Section Headers:\n";
3718 Field Fields[11] = {
3719 {"[Nr]", 2}, {"Name", 7}, {"Type", 25},
3720 {"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias},
3721 {"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
3722 {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
3723 for (const Field &F : Fields)
3724 printField(F);
3725 OS << "\n";
3726
3727 StringRef SecStrTable;
3728 if (Expected<StringRef> SecStrTableOrErr =
3729 this->Obj.getSectionStringTable(Sections, this->WarningHandler))
3730 SecStrTable = *SecStrTableOrErr;
3731 else
3732 this->reportUniqueWarning(SecStrTableOrErr.takeError());
3733
3734 size_t SectionIndex = 0;
3735 for (const Elf_Shdr &Sec : Sections) {
3736 Fields[0].Str = to_string(SectionIndex);
3737 if (SecStrTable.empty())
3738 Fields[1].Str = "<no-strings>";
3739 else
3740 Fields[1].Str = std::string(unwrapOrError<StringRef>(
3741 this->FileName, this->Obj.getSectionName(Sec, SecStrTable)));
3742 Fields[2].Str =
3743 getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type);
3744 Fields[3].Str =
3745 to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
3746 Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
3747 Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
3748 Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
3749 Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
3750 this->Obj.getHeader().e_machine, Sec.sh_flags);
3751 Fields[8].Str = to_string(Sec.sh_link);
3752 Fields[9].Str = to_string(Sec.sh_info);
3753 Fields[10].Str = to_string(Sec.sh_addralign);
3754
3755 OS.PadToColumn(Fields[0].Column);
3756 OS << "[" << right_justify(Fields[0].Str, 2) << "]";
3757 for (int i = 1; i < 7; i++)
3758 printField(Fields[i]);
3759 OS.PadToColumn(Fields[7].Column);
3760 OS << right_justify(Fields[7].Str, 3);
3761 OS.PadToColumn(Fields[8].Column);
3762 OS << right_justify(Fields[8].Str, 2);
3763 OS.PadToColumn(Fields[9].Column);
3764 OS << right_justify(Fields[9].Str, 3);
3765 OS.PadToColumn(Fields[10].Column);
3766 OS << right_justify(Fields[10].Str, 2);
3767 OS << "\n";
3768 ++SectionIndex;
3769 }
3770 printSectionDescription(OS, this->Obj.getHeader().e_machine);
3771 }
3772
3773 template <class ELFT>
printSymtabMessage(const Elf_Shdr * Symtab,size_t Entries,bool NonVisibilityBitsUsed) const3774 void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab,
3775 size_t Entries,
3776 bool NonVisibilityBitsUsed) const {
3777 StringRef Name;
3778 if (Symtab)
3779 Name = this->getPrintableSectionName(*Symtab);
3780 if (!Name.empty())
3781 OS << "\nSymbol table '" << Name << "'";
3782 else
3783 OS << "\nSymbol table for image";
3784 OS << " contains " << Entries << " entries:\n";
3785
3786 if (ELFT::Is64Bits)
3787 OS << " Num: Value Size Type Bind Vis";
3788 else
3789 OS << " Num: Value Size Type Bind Vis";
3790
3791 if (NonVisibilityBitsUsed)
3792 OS << " ";
3793 OS << " Ndx Name\n";
3794 }
3795
3796 template <class ELFT>
3797 std::string
getSymbolSectionNdx(const Elf_Sym & Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable) const3798 GNUELFDumper<ELFT>::getSymbolSectionNdx(const Elf_Sym &Symbol,
3799 unsigned SymIndex,
3800 DataRegion<Elf_Word> ShndxTable) const {
3801 unsigned SectionIndex = Symbol.st_shndx;
3802 switch (SectionIndex) {
3803 case ELF::SHN_UNDEF:
3804 return "UND";
3805 case ELF::SHN_ABS:
3806 return "ABS";
3807 case ELF::SHN_COMMON:
3808 return "COM";
3809 case ELF::SHN_XINDEX: {
3810 Expected<uint32_t> IndexOrErr =
3811 object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable);
3812 if (!IndexOrErr) {
3813 assert(Symbol.st_shndx == SHN_XINDEX &&
3814 "getExtendedSymbolTableIndex should only fail due to an invalid "
3815 "SHT_SYMTAB_SHNDX table/reference");
3816 this->reportUniqueWarning(IndexOrErr.takeError());
3817 return "RSV[0xffff]";
3818 }
3819 return to_string(format_decimal(*IndexOrErr, 3));
3820 }
3821 default:
3822 // Find if:
3823 // Processor specific
3824 if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
3825 return std::string("PRC[0x") +
3826 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3827 // OS specific
3828 if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
3829 return std::string("OS[0x") +
3830 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3831 // Architecture reserved:
3832 if (SectionIndex >= ELF::SHN_LORESERVE &&
3833 SectionIndex <= ELF::SHN_HIRESERVE)
3834 return std::string("RSV[0x") +
3835 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3836 // A normal section with an index
3837 return to_string(format_decimal(SectionIndex, 3));
3838 }
3839 }
3840
3841 template <class ELFT>
printSymbol(const Elf_Sym & Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable,std::optional<StringRef> StrTable,bool IsDynamic,bool NonVisibilityBitsUsed) const3842 void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
3843 DataRegion<Elf_Word> ShndxTable,
3844 std::optional<StringRef> StrTable,
3845 bool IsDynamic,
3846 bool NonVisibilityBitsUsed) const {
3847 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3848 Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias,
3849 31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
3850 Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":";
3851 Fields[1].Str =
3852 to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8));
3853 Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5));
3854
3855 unsigned char SymbolType = Symbol.getType();
3856 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
3857 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3858 Fields[3].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes));
3859 else
3860 Fields[3].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes));
3861
3862 Fields[4].Str =
3863 enumToString(Symbol.getBinding(), ArrayRef(ElfSymbolBindings));
3864 Fields[5].Str =
3865 enumToString(Symbol.getVisibility(), ArrayRef(ElfSymbolVisibilities));
3866
3867 if (Symbol.st_other & ~0x3) {
3868 if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) {
3869 uint8_t Other = Symbol.st_other & ~0x3;
3870 if (Other & STO_AARCH64_VARIANT_PCS) {
3871 Other &= ~STO_AARCH64_VARIANT_PCS;
3872 Fields[5].Str += " [VARIANT_PCS";
3873 if (Other != 0)
3874 Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
3875 Fields[5].Str.append("]");
3876 }
3877 } else if (this->Obj.getHeader().e_machine == ELF::EM_RISCV) {
3878 uint8_t Other = Symbol.st_other & ~0x3;
3879 if (Other & STO_RISCV_VARIANT_CC) {
3880 Other &= ~STO_RISCV_VARIANT_CC;
3881 Fields[5].Str += " [VARIANT_CC";
3882 if (Other != 0)
3883 Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
3884 Fields[5].Str.append("]");
3885 }
3886 } else {
3887 Fields[5].Str +=
3888 " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]";
3889 }
3890 }
3891
3892 Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
3893 Fields[6].Str = getSymbolSectionNdx(Symbol, SymIndex, ShndxTable);
3894
3895 Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable,
3896 StrTable, IsDynamic);
3897 for (const Field &Entry : Fields)
3898 printField(Entry);
3899 OS << "\n";
3900 }
3901
3902 template <class ELFT>
printHashedSymbol(const Elf_Sym * Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable,StringRef StrTable,uint32_t Bucket)3903 void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol,
3904 unsigned SymIndex,
3905 DataRegion<Elf_Word> ShndxTable,
3906 StringRef StrTable,
3907 uint32_t Bucket) {
3908 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3909 Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias,
3910 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
3911 Fields[0].Str = to_string(format_decimal(SymIndex, 5));
3912 Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
3913
3914 Fields[2].Str = to_string(
3915 format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
3916 Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
3917
3918 unsigned char SymbolType = Symbol->getType();
3919 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
3920 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3921 Fields[4].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes));
3922 else
3923 Fields[4].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes));
3924
3925 Fields[5].Str =
3926 enumToString(Symbol->getBinding(), ArrayRef(ElfSymbolBindings));
3927 Fields[6].Str =
3928 enumToString(Symbol->getVisibility(), ArrayRef(ElfSymbolVisibilities));
3929 Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable);
3930 Fields[8].Str =
3931 this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true);
3932
3933 for (const Field &Entry : Fields)
3934 printField(Entry);
3935 OS << "\n";
3936 }
3937
3938 template <class ELFT>
printSymbols(bool PrintSymbols,bool PrintDynamicSymbols)3939 void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols,
3940 bool PrintDynamicSymbols) {
3941 if (!PrintSymbols && !PrintDynamicSymbols)
3942 return;
3943 // GNU readelf prints both the .dynsym and .symtab with --symbols.
3944 this->printSymbolsHelper(true);
3945 if (PrintSymbols)
3946 this->printSymbolsHelper(false);
3947 }
3948
3949 template <class ELFT>
printHashTableSymbols(const Elf_Hash & SysVHash)3950 void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) {
3951 if (this->DynamicStringTable.empty())
3952 return;
3953
3954 if (ELFT::Is64Bits)
3955 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3956 else
3957 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3958 OS << "\n";
3959
3960 Elf_Sym_Range DynSyms = this->dynamic_symbols();
3961 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
3962 if (!FirstSym) {
3963 this->reportUniqueWarning(
3964 Twine("unable to print symbols for the .hash table: the "
3965 "dynamic symbol table ") +
3966 (this->DynSymRegion ? "is empty" : "was not found"));
3967 return;
3968 }
3969
3970 DataRegion<Elf_Word> ShndxTable(
3971 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
3972 auto Buckets = SysVHash.buckets();
3973 auto Chains = SysVHash.chains();
3974 for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) {
3975 if (Buckets[Buc] == ELF::STN_UNDEF)
3976 continue;
3977 BitVector Visited(SysVHash.nchain);
3978 for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) {
3979 if (Ch == ELF::STN_UNDEF)
3980 break;
3981
3982 if (Visited[Ch]) {
3983 this->reportUniqueWarning(".hash section is invalid: bucket " +
3984 Twine(Ch) +
3985 ": a cycle was detected in the linked chain");
3986 break;
3987 }
3988
3989 printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable,
3990 Buc);
3991 Visited[Ch] = true;
3992 }
3993 }
3994 }
3995
3996 template <class ELFT>
printGnuHashTableSymbols(const Elf_GnuHash & GnuHash)3997 void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) {
3998 if (this->DynamicStringTable.empty())
3999 return;
4000
4001 Elf_Sym_Range DynSyms = this->dynamic_symbols();
4002 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
4003 if (!FirstSym) {
4004 this->reportUniqueWarning(
4005 Twine("unable to print symbols for the .gnu.hash table: the "
4006 "dynamic symbol table ") +
4007 (this->DynSymRegion ? "is empty" : "was not found"));
4008 return;
4009 }
4010
4011 auto GetSymbol = [&](uint64_t SymIndex,
4012 uint64_t SymsTotal) -> const Elf_Sym * {
4013 if (SymIndex >= SymsTotal) {
4014 this->reportUniqueWarning(
4015 "unable to print hashed symbol with index " + Twine(SymIndex) +
4016 ", which is greater than or equal to the number of dynamic symbols "
4017 "(" +
4018 Twine::utohexstr(SymsTotal) + ")");
4019 return nullptr;
4020 }
4021 return FirstSym + SymIndex;
4022 };
4023
4024 Expected<ArrayRef<Elf_Word>> ValuesOrErr =
4025 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash);
4026 ArrayRef<Elf_Word> Values;
4027 if (!ValuesOrErr)
4028 this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
4029 "section: " +
4030 toString(ValuesOrErr.takeError()));
4031 else
4032 Values = *ValuesOrErr;
4033
4034 DataRegion<Elf_Word> ShndxTable(
4035 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
4036 ArrayRef<Elf_Word> Buckets = GnuHash.buckets();
4037 for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) {
4038 if (Buckets[Buc] == ELF::STN_UNDEF)
4039 continue;
4040 uint32_t Index = Buckets[Buc];
4041 // Print whole chain.
4042 while (true) {
4043 uint32_t SymIndex = Index++;
4044 if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size()))
4045 printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable,
4046 Buc);
4047 else
4048 break;
4049
4050 if (SymIndex < GnuHash.symndx) {
4051 this->reportUniqueWarning(
4052 "unable to read the hash value for symbol with index " +
4053 Twine(SymIndex) +
4054 ", which is less than the index of the first hashed symbol (" +
4055 Twine(GnuHash.symndx) + ")");
4056 break;
4057 }
4058
4059 // Chain ends at symbol with stopper bit.
4060 if ((Values[SymIndex - GnuHash.symndx] & 1) == 1)
4061 break;
4062 }
4063 }
4064 }
4065
printHashSymbols()4066 template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() {
4067 if (this->HashTable) {
4068 OS << "\n Symbol table of .hash for image:\n";
4069 if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4070 this->reportUniqueWarning(std::move(E));
4071 else
4072 printHashTableSymbols(*this->HashTable);
4073 }
4074
4075 // Try printing the .gnu.hash table.
4076 if (this->GnuHashTable) {
4077 OS << "\n Symbol table of .gnu.hash for image:\n";
4078 if (ELFT::Is64Bits)
4079 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4080 else
4081 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4082 OS << "\n";
4083
4084 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4085 this->reportUniqueWarning(std::move(E));
4086 else
4087 printGnuHashTableSymbols(*this->GnuHashTable);
4088 }
4089 }
4090
printSectionDetails()4091 template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() {
4092 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
4093 if (Sections.empty()) {
4094 OS << "\nThere are no sections in this file.\n";
4095 Expected<StringRef> SecStrTableOrErr =
4096 this->Obj.getSectionStringTable(Sections, this->WarningHandler);
4097 if (!SecStrTableOrErr)
4098 this->reportUniqueWarning(SecStrTableOrErr.takeError());
4099 return;
4100 }
4101 OS << "There are " << to_string(Sections.size())
4102 << " section headers, starting at offset "
4103 << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
4104
4105 OS << "Section Headers:\n";
4106
4107 auto PrintFields = [&](ArrayRef<Field> V) {
4108 for (const Field &F : V)
4109 printField(F);
4110 OS << "\n";
4111 };
4112
4113 PrintFields({{"[Nr]", 2}, {"Name", 7}});
4114
4115 constexpr bool Is64 = ELFT::Is64Bits;
4116 PrintFields({{"Type", 7},
4117 {Is64 ? "Address" : "Addr", 23},
4118 {"Off", Is64 ? 40 : 32},
4119 {"Size", Is64 ? 47 : 39},
4120 {"ES", Is64 ? 54 : 46},
4121 {"Lk", Is64 ? 59 : 51},
4122 {"Inf", Is64 ? 62 : 54},
4123 {"Al", Is64 ? 66 : 57}});
4124 PrintFields({{"Flags", 7}});
4125
4126 StringRef SecStrTable;
4127 if (Expected<StringRef> SecStrTableOrErr =
4128 this->Obj.getSectionStringTable(Sections, this->WarningHandler))
4129 SecStrTable = *SecStrTableOrErr;
4130 else
4131 this->reportUniqueWarning(SecStrTableOrErr.takeError());
4132
4133 size_t SectionIndex = 0;
4134 const unsigned AddrSize = Is64 ? 16 : 8;
4135 for (const Elf_Shdr &S : Sections) {
4136 StringRef Name = "<?>";
4137 if (Expected<StringRef> NameOrErr =
4138 this->Obj.getSectionName(S, SecStrTable))
4139 Name = *NameOrErr;
4140 else
4141 this->reportUniqueWarning(NameOrErr.takeError());
4142
4143 OS.PadToColumn(2);
4144 OS << "[" << right_justify(to_string(SectionIndex), 2) << "]";
4145 PrintFields({{Name, 7}});
4146 PrintFields(
4147 {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7},
4148 {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23},
4149 {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32},
4150 {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39},
4151 {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46},
4152 {to_string(S.sh_link), Is64 ? 59 : 51},
4153 {to_string(S.sh_info), Is64 ? 63 : 55},
4154 {to_string(S.sh_addralign), Is64 ? 66 : 58}});
4155
4156 OS.PadToColumn(7);
4157 OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: ";
4158
4159 DenseMap<unsigned, StringRef> FlagToName = {
4160 {SHF_WRITE, "WRITE"}, {SHF_ALLOC, "ALLOC"},
4161 {SHF_EXECINSTR, "EXEC"}, {SHF_MERGE, "MERGE"},
4162 {SHF_STRINGS, "STRINGS"}, {SHF_INFO_LINK, "INFO LINK"},
4163 {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"},
4164 {SHF_GROUP, "GROUP"}, {SHF_TLS, "TLS"},
4165 {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}};
4166
4167 uint64_t Flags = S.sh_flags;
4168 uint64_t UnknownFlags = 0;
4169 ListSeparator LS;
4170 while (Flags) {
4171 // Take the least significant bit as a flag.
4172 uint64_t Flag = Flags & -Flags;
4173 Flags -= Flag;
4174
4175 auto It = FlagToName.find(Flag);
4176 if (It != FlagToName.end())
4177 OS << LS << It->second;
4178 else
4179 UnknownFlags |= Flag;
4180 }
4181
4182 auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) {
4183 uint64_t FlagsToPrint = UnknownFlags & Mask;
4184 if (!FlagsToPrint)
4185 return;
4186
4187 OS << LS << Name << " ("
4188 << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")";
4189 UnknownFlags &= ~Mask;
4190 };
4191
4192 PrintUnknownFlags(SHF_MASKOS, "OS");
4193 PrintUnknownFlags(SHF_MASKPROC, "PROC");
4194 PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
4195
4196 OS << "\n";
4197 ++SectionIndex;
4198
4199 if (!(S.sh_flags & SHF_COMPRESSED))
4200 continue;
4201 Expected<ArrayRef<uint8_t>> Data = this->Obj.getSectionContents(S);
4202 if (!Data || Data->size() < sizeof(Elf_Chdr)) {
4203 consumeError(Data.takeError());
4204 reportWarning(createError("SHF_COMPRESSED section '" + Name +
4205 "' does not have an Elf_Chdr header"),
4206 this->FileName);
4207 OS.indent(7);
4208 OS << "[<corrupt>]";
4209 } else {
4210 OS.indent(7);
4211 auto *Chdr = reinterpret_cast<const Elf_Chdr *>(Data->data());
4212 if (Chdr->ch_type == ELFCOMPRESS_ZLIB)
4213 OS << "ZLIB";
4214 else if (Chdr->ch_type == ELFCOMPRESS_ZSTD)
4215 OS << "ZSTD";
4216 else
4217 OS << format("[<unknown>: 0x%x]", unsigned(Chdr->ch_type));
4218 OS << ", " << format_hex_no_prefix(Chdr->ch_size, ELFT::Is64Bits ? 16 : 8)
4219 << ", " << Chdr->ch_addralign;
4220 }
4221 OS << '\n';
4222 }
4223 }
4224
printPhdrFlags(unsigned Flag)4225 static inline std::string printPhdrFlags(unsigned Flag) {
4226 std::string Str;
4227 Str = (Flag & PF_R) ? "R" : " ";
4228 Str += (Flag & PF_W) ? "W" : " ";
4229 Str += (Flag & PF_X) ? "E" : " ";
4230 return Str;
4231 }
4232
4233 template <class ELFT>
checkTLSSections(const typename ELFT::Phdr & Phdr,const typename ELFT::Shdr & Sec)4234 static bool checkTLSSections(const typename ELFT::Phdr &Phdr,
4235 const typename ELFT::Shdr &Sec) {
4236 if (Sec.sh_flags & ELF::SHF_TLS) {
4237 // .tbss must only be shown in the PT_TLS segment.
4238 if (Sec.sh_type == ELF::SHT_NOBITS)
4239 return Phdr.p_type == ELF::PT_TLS;
4240
4241 // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4242 // segments.
4243 return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
4244 (Phdr.p_type == ELF::PT_GNU_RELRO);
4245 }
4246
4247 // PT_TLS must only have SHF_TLS sections.
4248 return Phdr.p_type != ELF::PT_TLS;
4249 }
4250
4251 template <class ELFT>
checkOffsets(const typename ELFT::Phdr & Phdr,const typename ELFT::Shdr & Sec)4252 static bool checkOffsets(const typename ELFT::Phdr &Phdr,
4253 const typename ELFT::Shdr &Sec) {
4254 // SHT_NOBITS sections don't need to have an offset inside the segment.
4255 if (Sec.sh_type == ELF::SHT_NOBITS)
4256 return true;
4257
4258 if (Sec.sh_offset < Phdr.p_offset)
4259 return false;
4260
4261 // Only non-empty sections can be at the end of a segment.
4262 if (Sec.sh_size == 0)
4263 return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz);
4264 return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz;
4265 }
4266
4267 // Check that an allocatable section belongs to a virtual address
4268 // space of a segment.
4269 template <class ELFT>
checkVMA(const typename ELFT::Phdr & Phdr,const typename ELFT::Shdr & Sec)4270 static bool checkVMA(const typename ELFT::Phdr &Phdr,
4271 const typename ELFT::Shdr &Sec) {
4272 if (!(Sec.sh_flags & ELF::SHF_ALLOC))
4273 return true;
4274
4275 if (Sec.sh_addr < Phdr.p_vaddr)
4276 return false;
4277
4278 bool IsTbss =
4279 (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
4280 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties.
4281 bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS;
4282 // Only non-empty sections can be at the end of a segment.
4283 if (Sec.sh_size == 0 || IsTbssInNonTLS)
4284 return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz;
4285 return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz;
4286 }
4287
4288 template <class ELFT>
checkPTDynamic(const typename ELFT::Phdr & Phdr,const typename ELFT::Shdr & Sec)4289 static bool checkPTDynamic(const typename ELFT::Phdr &Phdr,
4290 const typename ELFT::Shdr &Sec) {
4291 if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0)
4292 return true;
4293
4294 // We get here when we have an empty section. Only non-empty sections can be
4295 // at the start or at the end of PT_DYNAMIC.
4296 // Is section within the phdr both based on offset and VMA?
4297 bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) ||
4298 (Sec.sh_offset > Phdr.p_offset &&
4299 Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz);
4300 bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) ||
4301 (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz);
4302 return CheckOffset && CheckVA;
4303 }
4304
4305 template <class ELFT>
printProgramHeaders(bool PrintProgramHeaders,cl::boolOrDefault PrintSectionMapping)4306 void GNUELFDumper<ELFT>::printProgramHeaders(
4307 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
4308 const bool ShouldPrintSectionMapping = (PrintSectionMapping != cl::BOU_FALSE);
4309 // Exit early if no program header or section mapping details were requested.
4310 if (!PrintProgramHeaders && !ShouldPrintSectionMapping)
4311 return;
4312
4313 if (PrintProgramHeaders) {
4314 const Elf_Ehdr &Header = this->Obj.getHeader();
4315 if (Header.e_phnum == 0) {
4316 OS << "\nThere are no program headers in this file.\n";
4317 } else {
4318 printProgramHeaders();
4319 }
4320 }
4321
4322 if (ShouldPrintSectionMapping)
4323 printSectionMapping();
4324 }
4325
printProgramHeaders()4326 template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() {
4327 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4328 const Elf_Ehdr &Header = this->Obj.getHeader();
4329 Field Fields[8] = {2, 17, 26, 37 + Bias,
4330 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
4331 OS << "\nElf file type is "
4332 << enumToString(Header.e_type, ArrayRef(ElfObjectFileType)) << "\n"
4333 << "Entry point " << format_hex(Header.e_entry, 3) << "\n"
4334 << "There are " << Header.e_phnum << " program headers,"
4335 << " starting at offset " << Header.e_phoff << "\n\n"
4336 << "Program Headers:\n";
4337 if (ELFT::Is64Bits)
4338 OS << " Type Offset VirtAddr PhysAddr "
4339 << " FileSiz MemSiz Flg Align\n";
4340 else
4341 OS << " Type Offset VirtAddr PhysAddr FileSiz "
4342 << "MemSiz Flg Align\n";
4343
4344 unsigned Width = ELFT::Is64Bits ? 18 : 10;
4345 unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
4346
4347 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4348 if (!PhdrsOrErr) {
4349 this->reportUniqueWarning("unable to dump program headers: " +
4350 toString(PhdrsOrErr.takeError()));
4351 return;
4352 }
4353
4354 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4355 Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type);
4356 Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
4357 Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
4358 Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
4359 Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
4360 Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
4361 Fields[6].Str = printPhdrFlags(Phdr.p_flags);
4362 Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
4363 for (const Field &F : Fields)
4364 printField(F);
4365 if (Phdr.p_type == ELF::PT_INTERP) {
4366 OS << "\n";
4367 auto ReportBadInterp = [&](const Twine &Msg) {
4368 this->reportUniqueWarning(
4369 "unable to read program interpreter name at offset 0x" +
4370 Twine::utohexstr(Phdr.p_offset) + ": " + Msg);
4371 };
4372
4373 if (Phdr.p_offset >= this->Obj.getBufSize()) {
4374 ReportBadInterp("it goes past the end of the file (0x" +
4375 Twine::utohexstr(this->Obj.getBufSize()) + ")");
4376 continue;
4377 }
4378
4379 const char *Data =
4380 reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset;
4381 size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset;
4382 size_t Len = strnlen(Data, MaxSize);
4383 if (Len == MaxSize) {
4384 ReportBadInterp("it is not null-terminated");
4385 continue;
4386 }
4387
4388 OS << " [Requesting program interpreter: ";
4389 OS << StringRef(Data, Len) << "]";
4390 }
4391 OS << "\n";
4392 }
4393 }
4394
printSectionMapping()4395 template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() {
4396 OS << "\n Section to Segment mapping:\n Segment Sections...\n";
4397 DenseSet<const Elf_Shdr *> BelongsToSegment;
4398 int Phnum = 0;
4399
4400 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4401 if (!PhdrsOrErr) {
4402 this->reportUniqueWarning(
4403 "can't read program headers to build section to segment mapping: " +
4404 toString(PhdrsOrErr.takeError()));
4405 return;
4406 }
4407
4408 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4409 std::string Sections;
4410 OS << format(" %2.2d ", Phnum++);
4411 // Check if each section is in a segment and then print mapping.
4412 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4413 if (Sec.sh_type == ELF::SHT_NULL)
4414 continue;
4415
4416 // readelf additionally makes sure it does not print zero sized sections
4417 // at end of segments and for PT_DYNAMIC both start and end of section
4418 // .tbss must only be shown in PT_TLS section.
4419 if (checkTLSSections<ELFT>(Phdr, Sec) && checkOffsets<ELFT>(Phdr, Sec) &&
4420 checkVMA<ELFT>(Phdr, Sec) && checkPTDynamic<ELFT>(Phdr, Sec)) {
4421 Sections +=
4422 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4423 " ";
4424 BelongsToSegment.insert(&Sec);
4425 }
4426 }
4427 OS << Sections << "\n";
4428 OS.flush();
4429 }
4430
4431 // Display sections that do not belong to a segment.
4432 std::string Sections;
4433 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4434 if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
4435 Sections +=
4436 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4437 ' ';
4438 }
4439 if (!Sections.empty()) {
4440 OS << " None " << Sections << '\n';
4441 OS.flush();
4442 }
4443 }
4444
4445 namespace {
4446
4447 template <class ELFT>
getSymbolForReloc(const ELFDumper<ELFT> & Dumper,const Relocation<ELFT> & Reloc)4448 RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper,
4449 const Relocation<ELFT> &Reloc) {
4450 using Elf_Sym = typename ELFT::Sym;
4451 auto WarnAndReturn = [&](const Elf_Sym *Sym,
4452 const Twine &Reason) -> RelSymbol<ELFT> {
4453 Dumper.reportUniqueWarning(
4454 "unable to get name of the dynamic symbol with index " +
4455 Twine(Reloc.Symbol) + ": " + Reason);
4456 return {Sym, "<corrupt>"};
4457 };
4458
4459 ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols();
4460 const Elf_Sym *FirstSym = Symbols.begin();
4461 if (!FirstSym)
4462 return WarnAndReturn(nullptr, "no dynamic symbol table found");
4463
4464 // We might have an object without a section header. In this case the size of
4465 // Symbols is zero, because there is no way to know the size of the dynamic
4466 // table. We should allow this case and not print a warning.
4467 if (!Symbols.empty() && Reloc.Symbol >= Symbols.size())
4468 return WarnAndReturn(
4469 nullptr,
4470 "index is greater than or equal to the number of dynamic symbols (" +
4471 Twine(Symbols.size()) + ")");
4472
4473 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
4474 const uint64_t FileSize = Obj.getBufSize();
4475 const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) +
4476 (uint64_t)Reloc.Symbol * sizeof(Elf_Sym);
4477 if (SymOffset + sizeof(Elf_Sym) > FileSize)
4478 return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) +
4479 " goes past the end of the file (0x" +
4480 Twine::utohexstr(FileSize) + ")");
4481
4482 const Elf_Sym *Sym = FirstSym + Reloc.Symbol;
4483 Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable());
4484 if (!ErrOrName)
4485 return WarnAndReturn(Sym, toString(ErrOrName.takeError()));
4486
4487 return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)};
4488 }
4489 } // namespace
4490
4491 template <class ELFT>
getMaxDynamicTagSize(const ELFFile<ELFT> & Obj,typename ELFT::DynRange Tags)4492 static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj,
4493 typename ELFT::DynRange Tags) {
4494 size_t Max = 0;
4495 for (const typename ELFT::Dyn &Dyn : Tags)
4496 Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size());
4497 return Max;
4498 }
4499
printDynamicTable()4500 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() {
4501 Elf_Dyn_Range Table = this->dynamic_table();
4502 if (Table.empty())
4503 return;
4504
4505 OS << "Dynamic section at offset "
4506 << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) -
4507 this->Obj.base(),
4508 1)
4509 << " contains " << Table.size() << " entries:\n";
4510
4511 // The type name is surrounded with round brackets, hence add 2.
4512 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2;
4513 // The "Name/Value" column should be indented from the "Type" column by N
4514 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4515 // space (1) = 3.
4516 OS << " Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type"
4517 << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
4518
4519 std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s ";
4520 for (auto Entry : Table) {
4521 uintX_t Tag = Entry.getTag();
4522 std::string Type =
4523 std::string("(") + this->Obj.getDynamicTagAsString(Tag) + ")";
4524 std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
4525 OS << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10)
4526 << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n";
4527 }
4528 }
4529
printDynamicRelocations()4530 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() {
4531 this->printDynamicRelocationsHelper();
4532 }
4533
4534 template <class ELFT>
printDynamicReloc(const Relocation<ELFT> & R)4535 void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) {
4536 printRelRelaReloc(R, getSymbolForReloc(*this, R));
4537 }
4538
4539 template <class ELFT>
printRelocationsHelper(const Elf_Shdr & Sec)4540 void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) {
4541 this->forEachRelocationDo(
4542 Sec, opts::RawRelr,
4543 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
4544 const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); },
4545 [&](const Elf_Relr &R) { printRelrReloc(R); });
4546 }
4547
printDynamicRelocationsHelper()4548 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() {
4549 const bool IsMips64EL = this->Obj.isMips64EL();
4550 if (this->DynRelaRegion.Size > 0) {
4551 printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion);
4552 for (const Elf_Rela &Rela :
4553 this->DynRelaRegion.template getAsArrayRef<Elf_Rela>())
4554 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4555 }
4556
4557 if (this->DynRelRegion.Size > 0) {
4558 printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion);
4559 for (const Elf_Rel &Rel :
4560 this->DynRelRegion.template getAsArrayRef<Elf_Rel>())
4561 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4562 }
4563
4564 if (this->DynRelrRegion.Size > 0) {
4565 printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion);
4566 Elf_Relr_Range Relrs =
4567 this->DynRelrRegion.template getAsArrayRef<Elf_Relr>();
4568 for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs))
4569 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4570 }
4571
4572 if (this->DynPLTRelRegion.Size) {
4573 if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
4574 printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion);
4575 for (const Elf_Rela &Rela :
4576 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>())
4577 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4578 } else {
4579 printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion);
4580 for (const Elf_Rel &Rel :
4581 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>())
4582 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4583 }
4584 }
4585 }
4586
4587 template <class ELFT>
printGNUVersionSectionProlog(const typename ELFT::Shdr & Sec,const Twine & Label,unsigned EntriesNum)4588 void GNUELFDumper<ELFT>::printGNUVersionSectionProlog(
4589 const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) {
4590 // Don't inline the SecName, because it might report a warning to stderr and
4591 // corrupt the output.
4592 StringRef SecName = this->getPrintableSectionName(Sec);
4593 OS << Label << " section '" << SecName << "' "
4594 << "contains " << EntriesNum << " entries:\n";
4595
4596 StringRef LinkedSecName = "<corrupt>";
4597 if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr =
4598 this->Obj.getSection(Sec.sh_link))
4599 LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr);
4600 else
4601 this->reportUniqueWarning("invalid section linked to " +
4602 this->describe(Sec) + ": " +
4603 toString(LinkedSecOrErr.takeError()));
4604
4605 OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16)
4606 << " Offset: " << format_hex(Sec.sh_offset, 8)
4607 << " Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n";
4608 }
4609
4610 template <class ELFT>
printVersionSymbolSection(const Elf_Shdr * Sec)4611 void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
4612 if (!Sec)
4613 return;
4614
4615 printGNUVersionSectionProlog(*Sec, "Version symbols",
4616 Sec->sh_size / sizeof(Elf_Versym));
4617 Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
4618 this->getVersionTable(*Sec, /*SymTab=*/nullptr,
4619 /*StrTab=*/nullptr, /*SymTabSec=*/nullptr);
4620 if (!VerTableOrErr) {
4621 this->reportUniqueWarning(VerTableOrErr.takeError());
4622 return;
4623 }
4624
4625 SmallVector<std::optional<VersionEntry>, 0> *VersionMap = nullptr;
4626 if (Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr =
4627 this->getVersionMap())
4628 VersionMap = *MapOrErr;
4629 else
4630 this->reportUniqueWarning(MapOrErr.takeError());
4631
4632 ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
4633 std::vector<StringRef> Versions;
4634 for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
4635 unsigned Ndx = VerTable[I].vs_index;
4636 if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
4637 Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
4638 continue;
4639 }
4640
4641 if (!VersionMap) {
4642 Versions.emplace_back("<corrupt>");
4643 continue;
4644 }
4645
4646 bool IsDefault;
4647 Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex(
4648 Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/std::nullopt);
4649 if (!NameOrErr) {
4650 this->reportUniqueWarning("unable to get a version for entry " +
4651 Twine(I) + " of " + this->describe(*Sec) +
4652 ": " + toString(NameOrErr.takeError()));
4653 Versions.emplace_back("<corrupt>");
4654 continue;
4655 }
4656 Versions.emplace_back(*NameOrErr);
4657 }
4658
4659 // readelf prints 4 entries per line.
4660 uint64_t Entries = VerTable.size();
4661 for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
4662 OS << " " << format_hex_no_prefix(VersymRow, 3) << ":";
4663 for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
4664 unsigned Ndx = VerTable[VersymRow + I].vs_index;
4665 OS << format("%4x%c", Ndx & VERSYM_VERSION,
4666 Ndx & VERSYM_HIDDEN ? 'h' : ' ');
4667 OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
4668 }
4669 OS << '\n';
4670 }
4671 OS << '\n';
4672 }
4673
versionFlagToString(unsigned Flags)4674 static std::string versionFlagToString(unsigned Flags) {
4675 if (Flags == 0)
4676 return "none";
4677
4678 std::string Ret;
4679 auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
4680 if (!(Flags & Flag))
4681 return;
4682 if (!Ret.empty())
4683 Ret += " | ";
4684 Ret += Name;
4685 Flags &= ~Flag;
4686 };
4687
4688 AddFlag(VER_FLG_BASE, "BASE");
4689 AddFlag(VER_FLG_WEAK, "WEAK");
4690 AddFlag(VER_FLG_INFO, "INFO");
4691 AddFlag(~0, "<unknown>");
4692 return Ret;
4693 }
4694
4695 template <class ELFT>
printVersionDefinitionSection(const Elf_Shdr * Sec)4696 void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
4697 if (!Sec)
4698 return;
4699
4700 printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info);
4701
4702 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
4703 if (!V) {
4704 this->reportUniqueWarning(V.takeError());
4705 return;
4706 }
4707
4708 for (const VerDef &Def : *V) {
4709 OS << format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u Name: %s\n",
4710 Def.Offset, Def.Version,
4711 versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
4712 Def.Name.data());
4713 unsigned I = 0;
4714 for (const VerdAux &Aux : Def.AuxV)
4715 OS << format(" 0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
4716 Aux.Name.data());
4717 }
4718
4719 OS << '\n';
4720 }
4721
4722 template <class ELFT>
printVersionDependencySection(const Elf_Shdr * Sec)4723 void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
4724 if (!Sec)
4725 return;
4726
4727 unsigned VerneedNum = Sec->sh_info;
4728 printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum);
4729
4730 Expected<std::vector<VerNeed>> V =
4731 this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
4732 if (!V) {
4733 this->reportUniqueWarning(V.takeError());
4734 return;
4735 }
4736
4737 for (const VerNeed &VN : *V) {
4738 OS << format(" 0x%04x: Version: %u File: %s Cnt: %u\n", VN.Offset,
4739 VN.Version, VN.File.data(), VN.Cnt);
4740 for (const VernAux &Aux : VN.AuxV)
4741 OS << format(" 0x%04x: Name: %s Flags: %s Version: %u\n", Aux.Offset,
4742 Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
4743 Aux.Other);
4744 }
4745 OS << '\n';
4746 }
4747
4748 template <class ELFT>
printHashHistogram(const Elf_Hash & HashTable)4749 void GNUELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) {
4750 size_t NBucket = HashTable.nbucket;
4751 size_t NChain = HashTable.nchain;
4752 ArrayRef<Elf_Word> Buckets = HashTable.buckets();
4753 ArrayRef<Elf_Word> Chains = HashTable.chains();
4754 size_t TotalSyms = 0;
4755 // If hash table is correct, we have at least chains with 0 length
4756 size_t MaxChain = 1;
4757 size_t CumulativeNonZero = 0;
4758
4759 if (NChain == 0 || NBucket == 0)
4760 return;
4761
4762 std::vector<size_t> ChainLen(NBucket, 0);
4763 // Go over all buckets and and note chain lengths of each bucket (total
4764 // unique chain lengths).
4765 for (size_t B = 0; B < NBucket; B++) {
4766 BitVector Visited(NChain);
4767 for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
4768 if (C == ELF::STN_UNDEF)
4769 break;
4770 if (Visited[C]) {
4771 this->reportUniqueWarning(".hash section is invalid: bucket " +
4772 Twine(C) +
4773 ": a cycle was detected in the linked chain");
4774 break;
4775 }
4776 Visited[C] = true;
4777 if (MaxChain <= ++ChainLen[B])
4778 MaxChain++;
4779 }
4780 TotalSyms += ChainLen[B];
4781 }
4782
4783 if (!TotalSyms)
4784 return;
4785
4786 std::vector<size_t> Count(MaxChain, 0);
4787 // Count how long is the chain for each bucket
4788 for (size_t B = 0; B < NBucket; B++)
4789 ++Count[ChainLen[B]];
4790 // Print Number of buckets with each chain lengths and their cumulative
4791 // coverage of the symbols
4792 OS << "Histogram for bucket list length (total of " << NBucket
4793 << " buckets)\n"
4794 << " Length Number % of total Coverage\n";
4795 for (size_t I = 0; I < MaxChain; I++) {
4796 CumulativeNonZero += Count[I] * I;
4797 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
4798 (Count[I] * 100.0) / NBucket,
4799 (CumulativeNonZero * 100.0) / TotalSyms);
4800 }
4801 }
4802
4803 template <class ELFT>
printGnuHashHistogram(const Elf_GnuHash & GnuHashTable)4804 void GNUELFDumper<ELFT>::printGnuHashHistogram(
4805 const Elf_GnuHash &GnuHashTable) {
4806 Expected<ArrayRef<Elf_Word>> ChainsOrErr =
4807 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable);
4808 if (!ChainsOrErr) {
4809 this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
4810 toString(ChainsOrErr.takeError()));
4811 return;
4812 }
4813
4814 ArrayRef<Elf_Word> Chains = *ChainsOrErr;
4815 size_t Symndx = GnuHashTable.symndx;
4816 size_t TotalSyms = 0;
4817 size_t MaxChain = 1;
4818 size_t CumulativeNonZero = 0;
4819
4820 size_t NBucket = GnuHashTable.nbuckets;
4821 if (Chains.empty() || NBucket == 0)
4822 return;
4823
4824 ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets();
4825 std::vector<size_t> ChainLen(NBucket, 0);
4826 for (size_t B = 0; B < NBucket; B++) {
4827 if (!Buckets[B])
4828 continue;
4829 size_t Len = 1;
4830 for (size_t C = Buckets[B] - Symndx;
4831 C < Chains.size() && (Chains[C] & 1) == 0; C++)
4832 if (MaxChain < ++Len)
4833 MaxChain++;
4834 ChainLen[B] = Len;
4835 TotalSyms += Len;
4836 }
4837 MaxChain++;
4838
4839 if (!TotalSyms)
4840 return;
4841
4842 std::vector<size_t> Count(MaxChain, 0);
4843 for (size_t B = 0; B < NBucket; B++)
4844 ++Count[ChainLen[B]];
4845 // Print Number of buckets with each chain lengths and their cumulative
4846 // coverage of the symbols
4847 OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
4848 << " buckets)\n"
4849 << " Length Number % of total Coverage\n";
4850 for (size_t I = 0; I < MaxChain; I++) {
4851 CumulativeNonZero += Count[I] * I;
4852 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
4853 (Count[I] * 100.0) / NBucket,
4854 (CumulativeNonZero * 100.0) / TotalSyms);
4855 }
4856 }
4857
4858 // Hash histogram shows statistics of how efficient the hash was for the
4859 // dynamic symbol table. The table shows the number of hash buckets for
4860 // different lengths of chains as an absolute number and percentage of the total
4861 // buckets, and the cumulative coverage of symbols for each set of buckets.
printHashHistograms()4862 template <class ELFT> void GNUELFDumper<ELFT>::printHashHistograms() {
4863 // Print histogram for the .hash section.
4864 if (this->HashTable) {
4865 if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4866 this->reportUniqueWarning(std::move(E));
4867 else
4868 printHashHistogram(*this->HashTable);
4869 }
4870
4871 // Print histogram for the .gnu.hash section.
4872 if (this->GnuHashTable) {
4873 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4874 this->reportUniqueWarning(std::move(E));
4875 else
4876 printGnuHashHistogram(*this->GnuHashTable);
4877 }
4878 }
4879
printCGProfile()4880 template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() {
4881 OS << "GNUStyle::printCGProfile not implemented\n";
4882 }
4883
printBBAddrMaps()4884 template <class ELFT> void GNUELFDumper<ELFT>::printBBAddrMaps() {
4885 OS << "GNUStyle::printBBAddrMaps not implemented\n";
4886 }
4887
toULEB128Array(ArrayRef<uint8_t> Data)4888 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
4889 std::vector<uint64_t> Ret;
4890 const uint8_t *Cur = Data.begin();
4891 const uint8_t *End = Data.end();
4892 while (Cur != End) {
4893 unsigned Size;
4894 const char *Err;
4895 Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
4896 if (Err)
4897 return createError(Err);
4898 Cur += Size;
4899 }
4900 return Ret;
4901 }
4902
4903 template <class ELFT>
4904 static Expected<std::vector<uint64_t>>
decodeAddrsigSection(const ELFFile<ELFT> & Obj,const typename ELFT::Shdr & Sec)4905 decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) {
4906 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
4907 if (!ContentsOrErr)
4908 return ContentsOrErr.takeError();
4909
4910 if (Expected<std::vector<uint64_t>> SymsOrErr =
4911 toULEB128Array(*ContentsOrErr))
4912 return *SymsOrErr;
4913 else
4914 return createError("unable to decode " + describe(Obj, Sec) + ": " +
4915 toString(SymsOrErr.takeError()));
4916 }
4917
printAddrsig()4918 template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() {
4919 if (!this->DotAddrsigSec)
4920 return;
4921
4922 Expected<std::vector<uint64_t>> SymsOrErr =
4923 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
4924 if (!SymsOrErr) {
4925 this->reportUniqueWarning(SymsOrErr.takeError());
4926 return;
4927 }
4928
4929 StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec);
4930 OS << "\nAddress-significant symbols section '" << Name << "'"
4931 << " contains " << SymsOrErr->size() << " entries:\n";
4932 OS << " Num: Name\n";
4933
4934 Field Fields[2] = {0, 8};
4935 size_t SymIndex = 0;
4936 for (uint64_t Sym : *SymsOrErr) {
4937 Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":";
4938 Fields[1].Str = this->getStaticSymbolName(Sym);
4939 for (const Field &Entry : Fields)
4940 printField(Entry);
4941 OS << "\n";
4942 }
4943 }
4944
4945 template <typename ELFT>
getGNUProperty(uint32_t Type,uint32_t DataSize,ArrayRef<uint8_t> Data)4946 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
4947 ArrayRef<uint8_t> Data) {
4948 std::string str;
4949 raw_string_ostream OS(str);
4950 uint32_t PrData;
4951 auto DumpBit = [&](uint32_t Flag, StringRef Name) {
4952 if (PrData & Flag) {
4953 PrData &= ~Flag;
4954 OS << Name;
4955 if (PrData)
4956 OS << ", ";
4957 }
4958 };
4959
4960 switch (Type) {
4961 default:
4962 OS << format("<application-specific type 0x%x>", Type);
4963 return OS.str();
4964 case GNU_PROPERTY_STACK_SIZE: {
4965 OS << "stack size: ";
4966 if (DataSize == sizeof(typename ELFT::uint))
4967 OS << formatv("{0:x}",
4968 (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
4969 else
4970 OS << format("<corrupt length: 0x%x>", DataSize);
4971 return OS.str();
4972 }
4973 case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
4974 OS << "no copy on protected";
4975 if (DataSize)
4976 OS << format(" <corrupt length: 0x%x>", DataSize);
4977 return OS.str();
4978 case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
4979 case GNU_PROPERTY_X86_FEATURE_1_AND:
4980 OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
4981 : "x86 feature: ");
4982 if (DataSize != 4) {
4983 OS << format("<corrupt length: 0x%x>", DataSize);
4984 return OS.str();
4985 }
4986 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4987 if (PrData == 0) {
4988 OS << "<None>";
4989 return OS.str();
4990 }
4991 if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
4992 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
4993 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
4994 } else {
4995 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
4996 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
4997 }
4998 if (PrData)
4999 OS << format("<unknown flags: 0x%x>", PrData);
5000 return OS.str();
5001 case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
5002 case GNU_PROPERTY_X86_FEATURE_2_USED:
5003 OS << "x86 feature "
5004 << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
5005 if (DataSize != 4) {
5006 OS << format("<corrupt length: 0x%x>", DataSize);
5007 return OS.str();
5008 }
5009 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5010 if (PrData == 0) {
5011 OS << "<None>";
5012 return OS.str();
5013 }
5014 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
5015 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
5016 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
5017 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
5018 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
5019 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
5020 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
5021 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
5022 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
5023 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
5024 if (PrData)
5025 OS << format("<unknown flags: 0x%x>", PrData);
5026 return OS.str();
5027 case GNU_PROPERTY_X86_ISA_1_NEEDED:
5028 case GNU_PROPERTY_X86_ISA_1_USED:
5029 OS << "x86 ISA "
5030 << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
5031 if (DataSize != 4) {
5032 OS << format("<corrupt length: 0x%x>", DataSize);
5033 return OS.str();
5034 }
5035 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5036 if (PrData == 0) {
5037 OS << "<None>";
5038 return OS.str();
5039 }
5040 DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline");
5041 DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2");
5042 DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3");
5043 DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4");
5044 if (PrData)
5045 OS << format("<unknown flags: 0x%x>", PrData);
5046 return OS.str();
5047 }
5048 }
5049
5050 template <typename ELFT>
getGNUPropertyList(ArrayRef<uint8_t> Arr)5051 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
5052 using Elf_Word = typename ELFT::Word;
5053
5054 SmallVector<std::string, 4> Properties;
5055 while (Arr.size() >= 8) {
5056 uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
5057 uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
5058 Arr = Arr.drop_front(8);
5059
5060 // Take padding size into account if present.
5061 uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
5062 std::string str;
5063 raw_string_ostream OS(str);
5064 if (Arr.size() < PaddedSize) {
5065 OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
5066 Properties.push_back(OS.str());
5067 break;
5068 }
5069 Properties.push_back(
5070 getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
5071 Arr = Arr.drop_front(PaddedSize);
5072 }
5073
5074 if (!Arr.empty())
5075 Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
5076
5077 return Properties;
5078 }
5079
5080 struct GNUAbiTag {
5081 std::string OSName;
5082 std::string ABI;
5083 bool IsValid;
5084 };
5085
getGNUAbiTag(ArrayRef<uint8_t> Desc)5086 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
5087 typedef typename ELFT::Word Elf_Word;
5088
5089 ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
5090 reinterpret_cast<const Elf_Word *>(Desc.end()));
5091
5092 if (Words.size() < 4)
5093 return {"", "", /*IsValid=*/false};
5094
5095 static const char *OSNames[] = {
5096 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
5097 };
5098 StringRef OSName = "Unknown";
5099 if (Words[0] < std::size(OSNames))
5100 OSName = OSNames[Words[0]];
5101 uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
5102 std::string str;
5103 raw_string_ostream ABI(str);
5104 ABI << Major << "." << Minor << "." << Patch;
5105 return {std::string(OSName), ABI.str(), /*IsValid=*/true};
5106 }
5107
getGNUBuildId(ArrayRef<uint8_t> Desc)5108 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
5109 std::string str;
5110 raw_string_ostream OS(str);
5111 for (uint8_t B : Desc)
5112 OS << format_hex_no_prefix(B, 2);
5113 return OS.str();
5114 }
5115
getDescAsStringRef(ArrayRef<uint8_t> Desc)5116 static StringRef getDescAsStringRef(ArrayRef<uint8_t> Desc) {
5117 return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5118 }
5119
5120 template <typename ELFT>
printGNUNote(raw_ostream & OS,uint32_t NoteType,ArrayRef<uint8_t> Desc)5121 static bool printGNUNote(raw_ostream &OS, uint32_t NoteType,
5122 ArrayRef<uint8_t> Desc) {
5123 // Return true if we were able to pretty-print the note, false otherwise.
5124 switch (NoteType) {
5125 default:
5126 return false;
5127 case ELF::NT_GNU_ABI_TAG: {
5128 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
5129 if (!AbiTag.IsValid)
5130 OS << " <corrupt GNU_ABI_TAG>";
5131 else
5132 OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
5133 break;
5134 }
5135 case ELF::NT_GNU_BUILD_ID: {
5136 OS << " Build ID: " << getGNUBuildId(Desc);
5137 break;
5138 }
5139 case ELF::NT_GNU_GOLD_VERSION:
5140 OS << " Version: " << getDescAsStringRef(Desc);
5141 break;
5142 case ELF::NT_GNU_PROPERTY_TYPE_0:
5143 OS << " Properties:";
5144 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
5145 OS << " " << Property << "\n";
5146 break;
5147 }
5148 OS << '\n';
5149 return true;
5150 }
5151
5152 using AndroidNoteProperties = std::vector<std::pair<StringRef, std::string>>;
getAndroidNoteProperties(uint32_t NoteType,ArrayRef<uint8_t> Desc)5153 static AndroidNoteProperties getAndroidNoteProperties(uint32_t NoteType,
5154 ArrayRef<uint8_t> Desc) {
5155 AndroidNoteProperties Props;
5156 switch (NoteType) {
5157 case ELF::NT_ANDROID_TYPE_MEMTAG:
5158 if (Desc.empty()) {
5159 Props.emplace_back("Invalid .note.android.memtag", "");
5160 return Props;
5161 }
5162
5163 switch (Desc[0] & NT_MEMTAG_LEVEL_MASK) {
5164 case NT_MEMTAG_LEVEL_NONE:
5165 Props.emplace_back("Tagging Mode", "NONE");
5166 break;
5167 case NT_MEMTAG_LEVEL_ASYNC:
5168 Props.emplace_back("Tagging Mode", "ASYNC");
5169 break;
5170 case NT_MEMTAG_LEVEL_SYNC:
5171 Props.emplace_back("Tagging Mode", "SYNC");
5172 break;
5173 default:
5174 Props.emplace_back(
5175 "Tagging Mode",
5176 ("Unknown (" + Twine::utohexstr(Desc[0] & NT_MEMTAG_LEVEL_MASK) + ")")
5177 .str());
5178 break;
5179 }
5180 Props.emplace_back("Heap",
5181 (Desc[0] & NT_MEMTAG_HEAP) ? "Enabled" : "Disabled");
5182 Props.emplace_back("Stack",
5183 (Desc[0] & NT_MEMTAG_STACK) ? "Enabled" : "Disabled");
5184 break;
5185 default:
5186 return Props;
5187 }
5188 return Props;
5189 }
5190
printAndroidNote(raw_ostream & OS,uint32_t NoteType,ArrayRef<uint8_t> Desc)5191 static bool printAndroidNote(raw_ostream &OS, uint32_t NoteType,
5192 ArrayRef<uint8_t> Desc) {
5193 // Return true if we were able to pretty-print the note, false otherwise.
5194 AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
5195 if (Props.empty())
5196 return false;
5197 for (const auto &KV : Props)
5198 OS << " " << KV.first << ": " << KV.second << '\n';
5199 OS << '\n';
5200 return true;
5201 }
5202
5203 template <typename ELFT>
printLLVMOMPOFFLOADNote(raw_ostream & OS,uint32_t NoteType,ArrayRef<uint8_t> Desc)5204 static bool printLLVMOMPOFFLOADNote(raw_ostream &OS, uint32_t NoteType,
5205 ArrayRef<uint8_t> Desc) {
5206 switch (NoteType) {
5207 default:
5208 return false;
5209 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
5210 OS << " Version: " << getDescAsStringRef(Desc);
5211 break;
5212 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
5213 OS << " Producer: " << getDescAsStringRef(Desc);
5214 break;
5215 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
5216 OS << " Producer version: " << getDescAsStringRef(Desc);
5217 break;
5218 }
5219 OS << '\n';
5220 return true;
5221 }
5222
5223 const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = {
5224 {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE},
5225 {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE},
5226 {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE},
5227 {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED},
5228 {"LA48", NT_FREEBSD_FCTL_LA48},
5229 {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE},
5230 };
5231
5232 struct FreeBSDNote {
5233 std::string Type;
5234 std::string Value;
5235 };
5236
5237 template <typename ELFT>
5238 static std::optional<FreeBSDNote>
getFreeBSDNote(uint32_t NoteType,ArrayRef<uint8_t> Desc,bool IsCore)5239 getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) {
5240 if (IsCore)
5241 return std::nullopt; // No pretty-printing yet.
5242 switch (NoteType) {
5243 case ELF::NT_FREEBSD_ABI_TAG:
5244 if (Desc.size() != 4)
5245 return std::nullopt;
5246 return FreeBSDNote{
5247 "ABI tag",
5248 utostr(support::endian::read32<ELFT::TargetEndianness>(Desc.data()))};
5249 case ELF::NT_FREEBSD_ARCH_TAG:
5250 return FreeBSDNote{"Arch tag", toStringRef(Desc).str()};
5251 case ELF::NT_FREEBSD_FEATURE_CTL: {
5252 if (Desc.size() != 4)
5253 return std::nullopt;
5254 unsigned Value =
5255 support::endian::read32<ELFT::TargetEndianness>(Desc.data());
5256 std::string FlagsStr;
5257 raw_string_ostream OS(FlagsStr);
5258 printFlags(Value, ArrayRef(FreeBSDFeatureCtlFlags), OS);
5259 if (OS.str().empty())
5260 OS << "0x" << utohexstr(Value);
5261 else
5262 OS << "(0x" << utohexstr(Value) << ")";
5263 return FreeBSDNote{"Feature flags", OS.str()};
5264 }
5265 default:
5266 return std::nullopt;
5267 }
5268 }
5269
5270 struct AMDNote {
5271 std::string Type;
5272 std::string Value;
5273 };
5274
5275 template <typename ELFT>
getAMDNote(uint32_t NoteType,ArrayRef<uint8_t> Desc)5276 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5277 switch (NoteType) {
5278 default:
5279 return {"", ""};
5280 case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: {
5281 struct CodeObjectVersion {
5282 uint32_t MajorVersion;
5283 uint32_t MinorVersion;
5284 };
5285 if (Desc.size() != sizeof(CodeObjectVersion))
5286 return {"AMD HSA Code Object Version",
5287 "Invalid AMD HSA Code Object Version"};
5288 std::string VersionString;
5289 raw_string_ostream StrOS(VersionString);
5290 auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data());
5291 StrOS << "[Major: " << Version->MajorVersion
5292 << ", Minor: " << Version->MinorVersion << "]";
5293 return {"AMD HSA Code Object Version", VersionString};
5294 }
5295 case ELF::NT_AMD_HSA_HSAIL: {
5296 struct HSAILProperties {
5297 uint32_t HSAILMajorVersion;
5298 uint32_t HSAILMinorVersion;
5299 uint8_t Profile;
5300 uint8_t MachineModel;
5301 uint8_t DefaultFloatRound;
5302 };
5303 if (Desc.size() != sizeof(HSAILProperties))
5304 return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"};
5305 auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data());
5306 std::string HSAILPropetiesString;
5307 raw_string_ostream StrOS(HSAILPropetiesString);
5308 StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion
5309 << ", HSAIL Minor: " << Properties->HSAILMinorVersion
5310 << ", Profile: " << uint32_t(Properties->Profile)
5311 << ", Machine Model: " << uint32_t(Properties->MachineModel)
5312 << ", Default Float Round: "
5313 << uint32_t(Properties->DefaultFloatRound) << "]";
5314 return {"AMD HSA HSAIL Properties", HSAILPropetiesString};
5315 }
5316 case ELF::NT_AMD_HSA_ISA_VERSION: {
5317 struct IsaVersion {
5318 uint16_t VendorNameSize;
5319 uint16_t ArchitectureNameSize;
5320 uint32_t Major;
5321 uint32_t Minor;
5322 uint32_t Stepping;
5323 };
5324 if (Desc.size() < sizeof(IsaVersion))
5325 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5326 auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data());
5327 if (Desc.size() < sizeof(IsaVersion) +
5328 Isa->VendorNameSize + Isa->ArchitectureNameSize ||
5329 Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0)
5330 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5331 std::string IsaString;
5332 raw_string_ostream StrOS(IsaString);
5333 StrOS << "[Vendor: "
5334 << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1)
5335 << ", Architecture: "
5336 << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize,
5337 Isa->ArchitectureNameSize - 1)
5338 << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor
5339 << ", Stepping: " << Isa->Stepping << "]";
5340 return {"AMD HSA ISA Version", IsaString};
5341 }
5342 case ELF::NT_AMD_HSA_METADATA: {
5343 if (Desc.size() == 0)
5344 return {"AMD HSA Metadata", ""};
5345 return {
5346 "AMD HSA Metadata",
5347 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)};
5348 }
5349 case ELF::NT_AMD_HSA_ISA_NAME: {
5350 if (Desc.size() == 0)
5351 return {"AMD HSA ISA Name", ""};
5352 return {
5353 "AMD HSA ISA Name",
5354 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
5355 }
5356 case ELF::NT_AMD_PAL_METADATA: {
5357 struct PALMetadata {
5358 uint32_t Key;
5359 uint32_t Value;
5360 };
5361 if (Desc.size() % sizeof(PALMetadata) != 0)
5362 return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"};
5363 auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data());
5364 std::string MetadataString;
5365 raw_string_ostream StrOS(MetadataString);
5366 for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) {
5367 StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]";
5368 }
5369 return {"AMD PAL Metadata", MetadataString};
5370 }
5371 }
5372 }
5373
5374 struct AMDGPUNote {
5375 std::string Type;
5376 std::string Value;
5377 };
5378
5379 template <typename ELFT>
getAMDGPUNote(uint32_t NoteType,ArrayRef<uint8_t> Desc)5380 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5381 switch (NoteType) {
5382 default:
5383 return {"", ""};
5384 case ELF::NT_AMDGPU_METADATA: {
5385 StringRef MsgPackString =
5386 StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5387 msgpack::Document MsgPackDoc;
5388 if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
5389 return {"", ""};
5390
5391 AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
5392 std::string MetadataString;
5393 if (!Verifier.verify(MsgPackDoc.getRoot()))
5394 MetadataString = "Invalid AMDGPU Metadata\n";
5395
5396 raw_string_ostream StrOS(MetadataString);
5397 if (MsgPackDoc.getRoot().isScalar()) {
5398 // TODO: passing a scalar root to toYAML() asserts:
5399 // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar &&
5400 // "plain scalar documents are not supported")
5401 // To avoid this crash we print the raw data instead.
5402 return {"", ""};
5403 }
5404 MsgPackDoc.toYAML(StrOS);
5405 return {"AMDGPU Metadata", StrOS.str()};
5406 }
5407 }
5408 }
5409
5410 struct CoreFileMapping {
5411 uint64_t Start, End, Offset;
5412 StringRef Filename;
5413 };
5414
5415 struct CoreNote {
5416 uint64_t PageSize;
5417 std::vector<CoreFileMapping> Mappings;
5418 };
5419
readCoreNote(DataExtractor Desc)5420 static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
5421 // Expected format of the NT_FILE note description:
5422 // 1. # of file mappings (call it N)
5423 // 2. Page size
5424 // 3. N (start, end, offset) triples
5425 // 4. N packed filenames (null delimited)
5426 // Each field is an Elf_Addr, except for filenames which are char* strings.
5427
5428 CoreNote Ret;
5429 const int Bytes = Desc.getAddressSize();
5430
5431 if (!Desc.isValidOffsetForAddress(2))
5432 return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) +
5433 " is too short, expected at least 0x" +
5434 Twine::utohexstr(Bytes * 2));
5435 if (Desc.getData().back() != 0)
5436 return createError("the note is not NUL terminated");
5437
5438 uint64_t DescOffset = 0;
5439 uint64_t FileCount = Desc.getAddress(&DescOffset);
5440 Ret.PageSize = Desc.getAddress(&DescOffset);
5441
5442 if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
5443 return createError("unable to read file mappings (found " +
5444 Twine(FileCount) + "): the note of size 0x" +
5445 Twine::utohexstr(Desc.size()) + " is too short");
5446
5447 uint64_t FilenamesOffset = 0;
5448 DataExtractor Filenames(
5449 Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
5450 Desc.isLittleEndian(), Desc.getAddressSize());
5451
5452 Ret.Mappings.resize(FileCount);
5453 size_t I = 0;
5454 for (CoreFileMapping &Mapping : Ret.Mappings) {
5455 ++I;
5456 if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
5457 return createError(
5458 "unable to read the file name for the mapping with index " +
5459 Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) +
5460 " is truncated");
5461 Mapping.Start = Desc.getAddress(&DescOffset);
5462 Mapping.End = Desc.getAddress(&DescOffset);
5463 Mapping.Offset = Desc.getAddress(&DescOffset);
5464 Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
5465 }
5466
5467 return Ret;
5468 }
5469
5470 template <typename ELFT>
printCoreNote(raw_ostream & OS,const CoreNote & Note)5471 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
5472 // Length of "0x<address>" string.
5473 const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
5474
5475 OS << " Page size: " << format_decimal(Note.PageSize, 0) << '\n';
5476 OS << " " << right_justify("Start", FieldWidth) << " "
5477 << right_justify("End", FieldWidth) << " "
5478 << right_justify("Page Offset", FieldWidth) << '\n';
5479 for (const CoreFileMapping &Mapping : Note.Mappings) {
5480 OS << " " << format_hex(Mapping.Start, FieldWidth) << " "
5481 << format_hex(Mapping.End, FieldWidth) << " "
5482 << format_hex(Mapping.Offset, FieldWidth) << "\n "
5483 << Mapping.Filename << '\n';
5484 }
5485 }
5486
5487 const NoteType GenericNoteTypes[] = {
5488 {ELF::NT_VERSION, "NT_VERSION (version)"},
5489 {ELF::NT_ARCH, "NT_ARCH (architecture)"},
5490 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
5491 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
5492 };
5493
5494 const NoteType GNUNoteTypes[] = {
5495 {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
5496 {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
5497 {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
5498 {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
5499 {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
5500 };
5501
5502 const NoteType FreeBSDCoreNoteTypes[] = {
5503 {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
5504 {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
5505 {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
5506 {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
5507 {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
5508 {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
5509 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
5510 {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
5511 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
5512 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
5513 {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
5514 };
5515
5516 const NoteType FreeBSDNoteTypes[] = {
5517 {ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"},
5518 {ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"},
5519 {ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"},
5520 {ELF::NT_FREEBSD_FEATURE_CTL,
5521 "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"},
5522 };
5523
5524 const NoteType NetBSDCoreNoteTypes[] = {
5525 {ELF::NT_NETBSDCORE_PROCINFO,
5526 "NT_NETBSDCORE_PROCINFO (procinfo structure)"},
5527 {ELF::NT_NETBSDCORE_AUXV, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"},
5528 {ELF::NT_NETBSDCORE_LWPSTATUS, "PT_LWPSTATUS (ptrace_lwpstatus structure)"},
5529 };
5530
5531 const NoteType OpenBSDCoreNoteTypes[] = {
5532 {ELF::NT_OPENBSD_PROCINFO, "NT_OPENBSD_PROCINFO (procinfo structure)"},
5533 {ELF::NT_OPENBSD_AUXV, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"},
5534 {ELF::NT_OPENBSD_REGS, "NT_OPENBSD_REGS (regular registers)"},
5535 {ELF::NT_OPENBSD_FPREGS, "NT_OPENBSD_FPREGS (floating point registers)"},
5536 {ELF::NT_OPENBSD_WCOOKIE, "NT_OPENBSD_WCOOKIE (window cookie)"},
5537 };
5538
5539 const NoteType AMDNoteTypes[] = {
5540 {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION,
5541 "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"},
5542 {ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"},
5543 {ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"},
5544 {ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"},
5545 {ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"},
5546 {ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"},
5547 };
5548
5549 const NoteType AMDGPUNoteTypes[] = {
5550 {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
5551 };
5552
5553 const NoteType LLVMOMPOFFLOADNoteTypes[] = {
5554 {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION,
5555 "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"},
5556 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER,
5557 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"},
5558 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION,
5559 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"},
5560 };
5561
5562 const NoteType AndroidNoteTypes[] = {
5563 {ELF::NT_ANDROID_TYPE_IDENT, "NT_ANDROID_TYPE_IDENT"},
5564 {ELF::NT_ANDROID_TYPE_KUSER, "NT_ANDROID_TYPE_KUSER"},
5565 {ELF::NT_ANDROID_TYPE_MEMTAG,
5566 "NT_ANDROID_TYPE_MEMTAG (Android memory tagging information)"},
5567 };
5568
5569 const NoteType CoreNoteTypes[] = {
5570 {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
5571 {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
5572 {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
5573 {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
5574 {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
5575 {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
5576 {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
5577 {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
5578 {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
5579 {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
5580 {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
5581
5582 {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
5583 {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
5584 {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
5585 {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
5586 {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
5587 {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
5588 {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
5589 {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
5590 {ELF::NT_PPC_TM_CFPR,
5591 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
5592 {ELF::NT_PPC_TM_CVMX,
5593 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
5594 {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
5595 {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
5596 {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
5597 {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
5598 {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
5599
5600 {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
5601 {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
5602 {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
5603
5604 {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
5605 {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
5606 {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
5607 {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"},
5608 {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
5609 {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
5610 {ELF::NT_S390_LAST_BREAK,
5611 "NT_S390_LAST_BREAK (s390 last breaking event address)"},
5612 {ELF::NT_S390_SYSTEM_CALL,
5613 "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
5614 {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
5615 {ELF::NT_S390_VXRS_LOW,
5616 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
5617 {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
5618 {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
5619 {ELF::NT_S390_GS_BC,
5620 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
5621
5622 {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
5623 {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
5624 {ELF::NT_ARM_HW_BREAK,
5625 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
5626 {ELF::NT_ARM_HW_WATCH,
5627 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
5628
5629 {ELF::NT_FILE, "NT_FILE (mapped files)"},
5630 {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
5631 {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
5632 };
5633
5634 template <class ELFT>
getNoteTypeName(const typename ELFT::Note & Note,unsigned ELFType)5635 StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) {
5636 uint32_t Type = Note.getType();
5637 auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef {
5638 for (const NoteType &N : V)
5639 if (N.ID == Type)
5640 return N.Name;
5641 return "";
5642 };
5643
5644 StringRef Name = Note.getName();
5645 if (Name == "GNU")
5646 return FindNote(GNUNoteTypes);
5647 if (Name == "FreeBSD") {
5648 if (ELFType == ELF::ET_CORE) {
5649 // FreeBSD also places the generic core notes in the FreeBSD namespace.
5650 StringRef Result = FindNote(FreeBSDCoreNoteTypes);
5651 if (!Result.empty())
5652 return Result;
5653 return FindNote(CoreNoteTypes);
5654 } else {
5655 return FindNote(FreeBSDNoteTypes);
5656 }
5657 }
5658 if (ELFType == ELF::ET_CORE && Name.startswith("NetBSD-CORE")) {
5659 StringRef Result = FindNote(NetBSDCoreNoteTypes);
5660 if (!Result.empty())
5661 return Result;
5662 return FindNote(CoreNoteTypes);
5663 }
5664 if (ELFType == ELF::ET_CORE && Name.startswith("OpenBSD")) {
5665 // OpenBSD also places the generic core notes in the OpenBSD namespace.
5666 StringRef Result = FindNote(OpenBSDCoreNoteTypes);
5667 if (!Result.empty())
5668 return Result;
5669 return FindNote(CoreNoteTypes);
5670 }
5671 if (Name == "AMD")
5672 return FindNote(AMDNoteTypes);
5673 if (Name == "AMDGPU")
5674 return FindNote(AMDGPUNoteTypes);
5675 if (Name == "LLVMOMPOFFLOAD")
5676 return FindNote(LLVMOMPOFFLOADNoteTypes);
5677 if (Name == "Android")
5678 return FindNote(AndroidNoteTypes);
5679
5680 if (ELFType == ELF::ET_CORE)
5681 return FindNote(CoreNoteTypes);
5682 return FindNote(GenericNoteTypes);
5683 }
5684
5685 template <class ELFT>
printNotesHelper(const ELFDumper<ELFT> & Dumper,llvm::function_ref<void (std::optional<StringRef>,typename ELFT::Off,typename ELFT::Addr)> StartNotesFn,llvm::function_ref<Error (const typename ELFT::Note &,bool)> ProcessNoteFn,llvm::function_ref<void ()> FinishNotesFn)5686 static void printNotesHelper(
5687 const ELFDumper<ELFT> &Dumper,
5688 llvm::function_ref<void(std::optional<StringRef>, typename ELFT::Off,
5689 typename ELFT::Addr)>
5690 StartNotesFn,
5691 llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn,
5692 llvm::function_ref<void()> FinishNotesFn) {
5693 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
5694 bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE;
5695
5696 ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections());
5697 if (!IsCoreFile && !Sections.empty()) {
5698 for (const typename ELFT::Shdr &S : Sections) {
5699 if (S.sh_type != SHT_NOTE)
5700 continue;
5701 StartNotesFn(expectedToStdOptional(Obj.getSectionName(S)), S.sh_offset,
5702 S.sh_size);
5703 Error Err = Error::success();
5704 size_t I = 0;
5705 for (const typename ELFT::Note Note : Obj.notes(S, Err)) {
5706 if (Error E = ProcessNoteFn(Note, IsCoreFile))
5707 Dumper.reportUniqueWarning(
5708 "unable to read note with index " + Twine(I) + " from the " +
5709 describe(Obj, S) + ": " + toString(std::move(E)));
5710 ++I;
5711 }
5712 if (Err)
5713 Dumper.reportUniqueWarning("unable to read notes from the " +
5714 describe(Obj, S) + ": " +
5715 toString(std::move(Err)));
5716 FinishNotesFn();
5717 }
5718 return;
5719 }
5720
5721 Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers();
5722 if (!PhdrsOrErr) {
5723 Dumper.reportUniqueWarning(
5724 "unable to read program headers to locate the PT_NOTE segment: " +
5725 toString(PhdrsOrErr.takeError()));
5726 return;
5727 }
5728
5729 for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) {
5730 const typename ELFT::Phdr &P = (*PhdrsOrErr)[I];
5731 if (P.p_type != PT_NOTE)
5732 continue;
5733 StartNotesFn(/*SecName=*/std::nullopt, P.p_offset, P.p_filesz);
5734 Error Err = Error::success();
5735 size_t Index = 0;
5736 for (const typename ELFT::Note Note : Obj.notes(P, Err)) {
5737 if (Error E = ProcessNoteFn(Note, IsCoreFile))
5738 Dumper.reportUniqueWarning("unable to read note with index " +
5739 Twine(Index) +
5740 " from the PT_NOTE segment with index " +
5741 Twine(I) + ": " + toString(std::move(E)));
5742 ++Index;
5743 }
5744 if (Err)
5745 Dumper.reportUniqueWarning(
5746 "unable to read notes from the PT_NOTE segment with index " +
5747 Twine(I) + ": " + toString(std::move(Err)));
5748 FinishNotesFn();
5749 }
5750 }
5751
printNotes()5752 template <class ELFT> void GNUELFDumper<ELFT>::printNotes() {
5753 bool IsFirstHeader = true;
5754 auto PrintHeader = [&](std::optional<StringRef> SecName,
5755 const typename ELFT::Off Offset,
5756 const typename ELFT::Addr Size) {
5757 // Print a newline between notes sections to match GNU readelf.
5758 if (!IsFirstHeader) {
5759 OS << '\n';
5760 } else {
5761 IsFirstHeader = false;
5762 }
5763
5764 OS << "Displaying notes found ";
5765
5766 if (SecName)
5767 OS << "in: " << *SecName << "\n";
5768 else
5769 OS << "at file offset " << format_hex(Offset, 10) << " with length "
5770 << format_hex(Size, 10) << ":\n";
5771
5772 OS << " Owner Data size \tDescription\n";
5773 };
5774
5775 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
5776 StringRef Name = Note.getName();
5777 ArrayRef<uint8_t> Descriptor = Note.getDesc();
5778 Elf_Word Type = Note.getType();
5779
5780 // Print the note owner/type.
5781 OS << " " << left_justify(Name, 20) << ' '
5782 << format_hex(Descriptor.size(), 10) << '\t';
5783
5784 StringRef NoteType =
5785 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
5786 if (!NoteType.empty())
5787 OS << NoteType << '\n';
5788 else
5789 OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
5790
5791 // Print the description, or fallback to printing raw bytes for unknown
5792 // owners/if we fail to pretty-print the contents.
5793 if (Name == "GNU") {
5794 if (printGNUNote<ELFT>(OS, Type, Descriptor))
5795 return Error::success();
5796 } else if (Name == "FreeBSD") {
5797 if (std::optional<FreeBSDNote> N =
5798 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
5799 OS << " " << N->Type << ": " << N->Value << '\n';
5800 return Error::success();
5801 }
5802 } else if (Name == "AMD") {
5803 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
5804 if (!N.Type.empty()) {
5805 OS << " " << N.Type << ":\n " << N.Value << '\n';
5806 return Error::success();
5807 }
5808 } else if (Name == "AMDGPU") {
5809 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
5810 if (!N.Type.empty()) {
5811 OS << " " << N.Type << ":\n " << N.Value << '\n';
5812 return Error::success();
5813 }
5814 } else if (Name == "LLVMOMPOFFLOAD") {
5815 if (printLLVMOMPOFFLOADNote<ELFT>(OS, Type, Descriptor))
5816 return Error::success();
5817 } else if (Name == "CORE") {
5818 if (Type == ELF::NT_FILE) {
5819 DataExtractor DescExtractor(Descriptor,
5820 ELFT::TargetEndianness == support::little,
5821 sizeof(Elf_Addr));
5822 if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) {
5823 printCoreNote<ELFT>(OS, *NoteOrErr);
5824 return Error::success();
5825 } else {
5826 return NoteOrErr.takeError();
5827 }
5828 }
5829 } else if (Name == "Android") {
5830 if (printAndroidNote(OS, Type, Descriptor))
5831 return Error::success();
5832 }
5833 if (!Descriptor.empty()) {
5834 OS << " description data:";
5835 for (uint8_t B : Descriptor)
5836 OS << " " << format("%02x", B);
5837 OS << '\n';
5838 }
5839 return Error::success();
5840 };
5841
5842 printNotesHelper(*this, PrintHeader, ProcessNote, []() {});
5843 }
5844
printELFLinkerOptions()5845 template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() {
5846 OS << "printELFLinkerOptions not implemented!\n";
5847 }
5848
5849 template <class ELFT>
printDependentLibsHelper(function_ref<void (const Elf_Shdr &)> OnSectionStart,function_ref<void (StringRef,uint64_t)> OnLibEntry)5850 void ELFDumper<ELFT>::printDependentLibsHelper(
5851 function_ref<void(const Elf_Shdr &)> OnSectionStart,
5852 function_ref<void(StringRef, uint64_t)> OnLibEntry) {
5853 auto Warn = [this](unsigned SecNdx, StringRef Msg) {
5854 this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
5855 Twine(SecNdx) + " is broken: " + Msg);
5856 };
5857
5858 unsigned I = -1;
5859 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
5860 ++I;
5861 if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
5862 continue;
5863
5864 OnSectionStart(Shdr);
5865
5866 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr);
5867 if (!ContentsOrErr) {
5868 Warn(I, toString(ContentsOrErr.takeError()));
5869 continue;
5870 }
5871
5872 ArrayRef<uint8_t> Contents = *ContentsOrErr;
5873 if (!Contents.empty() && Contents.back() != 0) {
5874 Warn(I, "the content is not null-terminated");
5875 continue;
5876 }
5877
5878 for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
5879 StringRef Lib((const char *)I);
5880 OnLibEntry(Lib, I - Contents.begin());
5881 I += Lib.size() + 1;
5882 }
5883 }
5884 }
5885
5886 template <class ELFT>
forEachRelocationDo(const Elf_Shdr & Sec,bool RawRelr,llvm::function_ref<void (const Relocation<ELFT> &,unsigned,const Elf_Shdr &,const Elf_Shdr *)> RelRelaFn,llvm::function_ref<void (const Elf_Relr &)> RelrFn)5887 void ELFDumper<ELFT>::forEachRelocationDo(
5888 const Elf_Shdr &Sec, bool RawRelr,
5889 llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
5890 const Elf_Shdr &, const Elf_Shdr *)>
5891 RelRelaFn,
5892 llvm::function_ref<void(const Elf_Relr &)> RelrFn) {
5893 auto Warn = [&](Error &&E,
5894 const Twine &Prefix = "unable to read relocations from") {
5895 this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " +
5896 toString(std::move(E)));
5897 };
5898
5899 // SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table.
5900 // For them we should not treat the value of the sh_link field as an index of
5901 // a symbol table.
5902 const Elf_Shdr *SymTab;
5903 if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR) {
5904 Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link);
5905 if (!SymTabOrErr) {
5906 Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for");
5907 return;
5908 }
5909 SymTab = *SymTabOrErr;
5910 }
5911
5912 unsigned RelNdx = 0;
5913 const bool IsMips64EL = this->Obj.isMips64EL();
5914 switch (Sec.sh_type) {
5915 case ELF::SHT_REL:
5916 if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) {
5917 for (const Elf_Rel &R : *RangeOrErr)
5918 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5919 } else {
5920 Warn(RangeOrErr.takeError());
5921 }
5922 break;
5923 case ELF::SHT_RELA:
5924 if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) {
5925 for (const Elf_Rela &R : *RangeOrErr)
5926 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5927 } else {
5928 Warn(RangeOrErr.takeError());
5929 }
5930 break;
5931 case ELF::SHT_RELR:
5932 case ELF::SHT_ANDROID_RELR: {
5933 Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec);
5934 if (!RangeOrErr) {
5935 Warn(RangeOrErr.takeError());
5936 break;
5937 }
5938 if (RawRelr) {
5939 for (const Elf_Relr &R : *RangeOrErr)
5940 RelrFn(R);
5941 break;
5942 }
5943
5944 for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr))
5945 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec,
5946 /*SymTab=*/nullptr);
5947 break;
5948 }
5949 case ELF::SHT_ANDROID_REL:
5950 case ELF::SHT_ANDROID_RELA:
5951 if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) {
5952 for (const Elf_Rela &R : *RelasOrErr)
5953 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5954 } else {
5955 Warn(RelasOrErr.takeError());
5956 }
5957 break;
5958 }
5959 }
5960
5961 template <class ELFT>
getPrintableSectionName(const Elf_Shdr & Sec) const5962 StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const {
5963 StringRef Name = "<?>";
5964 if (Expected<StringRef> SecNameOrErr =
5965 Obj.getSectionName(Sec, this->WarningHandler))
5966 Name = *SecNameOrErr;
5967 else
5968 this->reportUniqueWarning("unable to get the name of " + describe(Sec) +
5969 ": " + toString(SecNameOrErr.takeError()));
5970 return Name;
5971 }
5972
printDependentLibs()5973 template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() {
5974 bool SectionStarted = false;
5975 struct NameOffset {
5976 StringRef Name;
5977 uint64_t Offset;
5978 };
5979 std::vector<NameOffset> SecEntries;
5980 NameOffset Current;
5981 auto PrintSection = [&]() {
5982 OS << "Dependent libraries section " << Current.Name << " at offset "
5983 << format_hex(Current.Offset, 1) << " contains " << SecEntries.size()
5984 << " entries:\n";
5985 for (NameOffset Entry : SecEntries)
5986 OS << " [" << format("%6" PRIx64, Entry.Offset) << "] " << Entry.Name
5987 << "\n";
5988 OS << "\n";
5989 SecEntries.clear();
5990 };
5991
5992 auto OnSectionStart = [&](const Elf_Shdr &Shdr) {
5993 if (SectionStarted)
5994 PrintSection();
5995 SectionStarted = true;
5996 Current.Offset = Shdr.sh_offset;
5997 Current.Name = this->getPrintableSectionName(Shdr);
5998 };
5999 auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) {
6000 SecEntries.push_back(NameOffset{Lib, Offset});
6001 };
6002
6003 this->printDependentLibsHelper(OnSectionStart, OnLibEntry);
6004 if (SectionStarted)
6005 PrintSection();
6006 }
6007
6008 template <class ELFT>
getSymbolIndexesForFunctionAddress(uint64_t SymValue,std::optional<const Elf_Shdr * > FunctionSec)6009 SmallVector<uint32_t> ELFDumper<ELFT>::getSymbolIndexesForFunctionAddress(
6010 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec) {
6011 SmallVector<uint32_t> SymbolIndexes;
6012 if (!this->AddressToIndexMap) {
6013 // Populate the address to index map upon the first invocation of this
6014 // function.
6015 this->AddressToIndexMap.emplace();
6016 if (this->DotSymtabSec) {
6017 if (Expected<Elf_Sym_Range> SymsOrError =
6018 Obj.symbols(this->DotSymtabSec)) {
6019 uint32_t Index = (uint32_t)-1;
6020 for (const Elf_Sym &Sym : *SymsOrError) {
6021 ++Index;
6022
6023 if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC)
6024 continue;
6025
6026 Expected<uint64_t> SymAddrOrErr =
6027 ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress();
6028 if (!SymAddrOrErr) {
6029 std::string Name = this->getStaticSymbolName(Index);
6030 reportUniqueWarning("unable to get address of symbol '" + Name +
6031 "': " + toString(SymAddrOrErr.takeError()));
6032 return SymbolIndexes;
6033 }
6034
6035 (*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index);
6036 }
6037 } else {
6038 reportUniqueWarning("unable to read the symbol table: " +
6039 toString(SymsOrError.takeError()));
6040 }
6041 }
6042 }
6043
6044 auto Symbols = this->AddressToIndexMap->find(SymValue);
6045 if (Symbols == this->AddressToIndexMap->end())
6046 return SymbolIndexes;
6047
6048 for (uint32_t Index : Symbols->second) {
6049 // Check if the symbol is in the right section. FunctionSec == None
6050 // means "any section".
6051 if (FunctionSec) {
6052 const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index));
6053 if (Expected<const Elf_Shdr *> SecOrErr =
6054 Obj.getSection(Sym, this->DotSymtabSec,
6055 this->getShndxTable(this->DotSymtabSec))) {
6056 if (*FunctionSec != *SecOrErr)
6057 continue;
6058 } else {
6059 std::string Name = this->getStaticSymbolName(Index);
6060 // Note: it is impossible to trigger this error currently, it is
6061 // untested.
6062 reportUniqueWarning("unable to get section of symbol '" + Name +
6063 "': " + toString(SecOrErr.takeError()));
6064 return SymbolIndexes;
6065 }
6066 }
6067
6068 SymbolIndexes.push_back(Index);
6069 }
6070
6071 return SymbolIndexes;
6072 }
6073
6074 template <class ELFT>
printFunctionStackSize(uint64_t SymValue,std::optional<const Elf_Shdr * > FunctionSec,const Elf_Shdr & StackSizeSec,DataExtractor Data,uint64_t * Offset)6075 bool ELFDumper<ELFT>::printFunctionStackSize(
6076 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec,
6077 const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) {
6078 SmallVector<uint32_t> FuncSymIndexes =
6079 this->getSymbolIndexesForFunctionAddress(SymValue, FunctionSec);
6080 if (FuncSymIndexes.empty())
6081 reportUniqueWarning(
6082 "could not identify function symbol for stack size entry in " +
6083 describe(StackSizeSec));
6084
6085 // Extract the size. The expectation is that Offset is pointing to the right
6086 // place, i.e. past the function address.
6087 Error Err = Error::success();
6088 uint64_t StackSize = Data.getULEB128(Offset, &Err);
6089 if (Err) {
6090 reportUniqueWarning("could not extract a valid stack size from " +
6091 describe(StackSizeSec) + ": " +
6092 toString(std::move(Err)));
6093 return false;
6094 }
6095
6096 if (FuncSymIndexes.empty()) {
6097 printStackSizeEntry(StackSize, {"?"});
6098 } else {
6099 SmallVector<std::string> FuncSymNames;
6100 for (uint32_t Index : FuncSymIndexes)
6101 FuncSymNames.push_back(this->getStaticSymbolName(Index));
6102 printStackSizeEntry(StackSize, FuncSymNames);
6103 }
6104
6105 return true;
6106 }
6107
6108 template <class ELFT>
printStackSizeEntry(uint64_t Size,ArrayRef<std::string> FuncNames)6109 void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
6110 ArrayRef<std::string> FuncNames) {
6111 OS.PadToColumn(2);
6112 OS << format_decimal(Size, 11);
6113 OS.PadToColumn(18);
6114
6115 OS << join(FuncNames.begin(), FuncNames.end(), ", ") << "\n";
6116 }
6117
6118 template <class ELFT>
printStackSize(const Relocation<ELFT> & R,const Elf_Shdr & RelocSec,unsigned Ndx,const Elf_Shdr * SymTab,const Elf_Shdr * FunctionSec,const Elf_Shdr & StackSizeSec,const RelocationResolver & Resolver,DataExtractor Data)6119 void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R,
6120 const Elf_Shdr &RelocSec, unsigned Ndx,
6121 const Elf_Shdr *SymTab,
6122 const Elf_Shdr *FunctionSec,
6123 const Elf_Shdr &StackSizeSec,
6124 const RelocationResolver &Resolver,
6125 DataExtractor Data) {
6126 // This function ignores potentially erroneous input, unless it is directly
6127 // related to stack size reporting.
6128 const Elf_Sym *Sym = nullptr;
6129 Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab);
6130 if (!TargetOrErr)
6131 reportUniqueWarning("unable to get the target of relocation with index " +
6132 Twine(Ndx) + " in " + describe(RelocSec) + ": " +
6133 toString(TargetOrErr.takeError()));
6134 else
6135 Sym = TargetOrErr->Sym;
6136
6137 uint64_t RelocSymValue = 0;
6138 if (Sym) {
6139 Expected<const Elf_Shdr *> SectionOrErr =
6140 this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab));
6141 if (!SectionOrErr) {
6142 reportUniqueWarning(
6143 "cannot identify the section for relocation symbol '" +
6144 (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError()));
6145 } else if (*SectionOrErr != FunctionSec) {
6146 reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name +
6147 "' is not in the expected section");
6148 // Pretend that the symbol is in the correct section and report its
6149 // stack size anyway.
6150 FunctionSec = *SectionOrErr;
6151 }
6152
6153 RelocSymValue = Sym->st_value;
6154 }
6155
6156 uint64_t Offset = R.Offset;
6157 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6158 reportUniqueWarning("found invalid relocation offset (0x" +
6159 Twine::utohexstr(Offset) + ") into " +
6160 describe(StackSizeSec) +
6161 " while trying to extract a stack size entry");
6162 return;
6163 }
6164
6165 uint64_t SymValue = Resolver(R.Type, Offset, RelocSymValue,
6166 Data.getAddress(&Offset), R.Addend.value_or(0));
6167 this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data,
6168 &Offset);
6169 }
6170
6171 template <class ELFT>
printNonRelocatableStackSizes(std::function<void ()> PrintHeader)6172 void ELFDumper<ELFT>::printNonRelocatableStackSizes(
6173 std::function<void()> PrintHeader) {
6174 // This function ignores potentially erroneous input, unless it is directly
6175 // related to stack size reporting.
6176 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6177 if (this->getPrintableSectionName(Sec) != ".stack_sizes")
6178 continue;
6179 PrintHeader();
6180 ArrayRef<uint8_t> Contents =
6181 unwrapOrError(this->FileName, Obj.getSectionContents(Sec));
6182 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6183 uint64_t Offset = 0;
6184 while (Offset < Contents.size()) {
6185 // The function address is followed by a ULEB representing the stack
6186 // size. Check for an extra byte before we try to process the entry.
6187 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6188 reportUniqueWarning(
6189 describe(Sec) +
6190 " ended while trying to extract a stack size entry");
6191 break;
6192 }
6193 uint64_t SymValue = Data.getAddress(&Offset);
6194 if (!printFunctionStackSize(SymValue, /*FunctionSec=*/std::nullopt, Sec,
6195 Data, &Offset))
6196 break;
6197 }
6198 }
6199 }
6200
6201 template <class ELFT>
getSectionAndRelocations(std::function<bool (const Elf_Shdr &)> IsMatch,llvm::MapVector<const Elf_Shdr *,const Elf_Shdr * > & SecToRelocMap)6202 void ELFDumper<ELFT>::getSectionAndRelocations(
6203 std::function<bool(const Elf_Shdr &)> IsMatch,
6204 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap) {
6205 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6206 if (IsMatch(Sec))
6207 if (SecToRelocMap.insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr))
6208 .second)
6209 continue;
6210
6211 if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL)
6212 continue;
6213
6214 Expected<const Elf_Shdr *> RelSecOrErr = Obj.getSection(Sec.sh_info);
6215 if (!RelSecOrErr) {
6216 reportUniqueWarning(describe(Sec) +
6217 ": failed to get a relocated section: " +
6218 toString(RelSecOrErr.takeError()));
6219 continue;
6220 }
6221 const Elf_Shdr *ContentsSec = *RelSecOrErr;
6222 if (IsMatch(*ContentsSec))
6223 SecToRelocMap[ContentsSec] = &Sec;
6224 }
6225 }
6226
6227 template <class ELFT>
printRelocatableStackSizes(std::function<void ()> PrintHeader)6228 void ELFDumper<ELFT>::printRelocatableStackSizes(
6229 std::function<void()> PrintHeader) {
6230 // Build a map between stack size sections and their corresponding relocation
6231 // sections.
6232 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> StackSizeRelocMap;
6233 auto IsMatch = [&](const Elf_Shdr &Sec) -> bool {
6234 StringRef SectionName;
6235 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec))
6236 SectionName = *NameOrErr;
6237 else
6238 consumeError(NameOrErr.takeError());
6239
6240 return SectionName == ".stack_sizes";
6241 };
6242 getSectionAndRelocations(IsMatch, StackSizeRelocMap);
6243
6244 for (const auto &StackSizeMapEntry : StackSizeRelocMap) {
6245 PrintHeader();
6246 const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first;
6247 const Elf_Shdr *RelocSec = StackSizeMapEntry.second;
6248
6249 // Warn about stack size sections without a relocation section.
6250 if (!RelocSec) {
6251 reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) +
6252 ") does not have a corresponding "
6253 "relocation section"),
6254 FileName);
6255 continue;
6256 }
6257
6258 // A .stack_sizes section header's sh_link field is supposed to point
6259 // to the section that contains the functions whose stack sizes are
6260 // described in it.
6261 const Elf_Shdr *FunctionSec = unwrapOrError(
6262 this->FileName, Obj.getSection(StackSizesELFSec->sh_link));
6263
6264 SupportsRelocation IsSupportedFn;
6265 RelocationResolver Resolver;
6266 std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF);
6267 ArrayRef<uint8_t> Contents =
6268 unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec));
6269 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6270
6271 forEachRelocationDo(
6272 *RelocSec, /*RawRelr=*/false,
6273 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
6274 const Elf_Shdr *SymTab) {
6275 if (!IsSupportedFn || !IsSupportedFn(R.Type)) {
6276 reportUniqueWarning(
6277 describe(*RelocSec) +
6278 " contains an unsupported relocation with index " + Twine(Ndx) +
6279 ": " + Obj.getRelocationTypeName(R.Type));
6280 return;
6281 }
6282
6283 this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec,
6284 *StackSizesELFSec, Resolver, Data);
6285 },
6286 [](const Elf_Relr &) {
6287 llvm_unreachable("can't get here, because we only support "
6288 "SHT_REL/SHT_RELA sections");
6289 });
6290 }
6291 }
6292
6293 template <class ELFT>
printStackSizes()6294 void GNUELFDumper<ELFT>::printStackSizes() {
6295 bool HeaderHasBeenPrinted = false;
6296 auto PrintHeader = [&]() {
6297 if (HeaderHasBeenPrinted)
6298 return;
6299 OS << "\nStack Sizes:\n";
6300 OS.PadToColumn(9);
6301 OS << "Size";
6302 OS.PadToColumn(18);
6303 OS << "Functions\n";
6304 HeaderHasBeenPrinted = true;
6305 };
6306
6307 // For non-relocatable objects, look directly for sections whose name starts
6308 // with .stack_sizes and process the contents.
6309 if (this->Obj.getHeader().e_type == ELF::ET_REL)
6310 this->printRelocatableStackSizes(PrintHeader);
6311 else
6312 this->printNonRelocatableStackSizes(PrintHeader);
6313 }
6314
6315 template <class ELFT>
printMipsGOT(const MipsGOTParser<ELFT> & Parser)6316 void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
6317 size_t Bias = ELFT::Is64Bits ? 8 : 0;
6318 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6319 OS.PadToColumn(2);
6320 OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
6321 OS.PadToColumn(11 + Bias);
6322 OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
6323 OS.PadToColumn(22 + Bias);
6324 OS << format_hex_no_prefix(*E, 8 + Bias);
6325 OS.PadToColumn(31 + 2 * Bias);
6326 OS << Purpose << "\n";
6327 };
6328
6329 OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
6330 OS << " Canonical gp value: "
6331 << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
6332
6333 OS << " Reserved entries:\n";
6334 if (ELFT::Is64Bits)
6335 OS << " Address Access Initial Purpose\n";
6336 else
6337 OS << " Address Access Initial Purpose\n";
6338 PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
6339 if (Parser.getGotModulePointer())
6340 PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
6341
6342 if (!Parser.getLocalEntries().empty()) {
6343 OS << "\n";
6344 OS << " Local entries:\n";
6345 if (ELFT::Is64Bits)
6346 OS << " Address Access Initial\n";
6347 else
6348 OS << " Address Access Initial\n";
6349 for (auto &E : Parser.getLocalEntries())
6350 PrintEntry(&E, "");
6351 }
6352
6353 if (Parser.IsStatic)
6354 return;
6355
6356 if (!Parser.getGlobalEntries().empty()) {
6357 OS << "\n";
6358 OS << " Global entries:\n";
6359 if (ELFT::Is64Bits)
6360 OS << " Address Access Initial Sym.Val."
6361 << " Type Ndx Name\n";
6362 else
6363 OS << " Address Access Initial Sym.Val. Type Ndx Name\n";
6364
6365 DataRegion<Elf_Word> ShndxTable(
6366 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6367 for (auto &E : Parser.getGlobalEntries()) {
6368 const Elf_Sym &Sym = *Parser.getGotSym(&E);
6369 const Elf_Sym &FirstSym = this->dynamic_symbols()[0];
6370 std::string SymName = this->getFullSymbolName(
6371 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6372
6373 OS.PadToColumn(2);
6374 OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
6375 OS.PadToColumn(11 + Bias);
6376 OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
6377 OS.PadToColumn(22 + Bias);
6378 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6379 OS.PadToColumn(31 + 2 * Bias);
6380 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6381 OS.PadToColumn(40 + 3 * Bias);
6382 OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes));
6383 OS.PadToColumn(48 + 3 * Bias);
6384 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6385 ShndxTable);
6386 OS.PadToColumn(52 + 3 * Bias);
6387 OS << SymName << "\n";
6388 }
6389 }
6390
6391 if (!Parser.getOtherEntries().empty())
6392 OS << "\n Number of TLS and multi-GOT entries "
6393 << Parser.getOtherEntries().size() << "\n";
6394 }
6395
6396 template <class ELFT>
printMipsPLT(const MipsGOTParser<ELFT> & Parser)6397 void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6398 size_t Bias = ELFT::Is64Bits ? 8 : 0;
6399 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6400 OS.PadToColumn(2);
6401 OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
6402 OS.PadToColumn(11 + Bias);
6403 OS << format_hex_no_prefix(*E, 8 + Bias);
6404 OS.PadToColumn(20 + 2 * Bias);
6405 OS << Purpose << "\n";
6406 };
6407
6408 OS << "PLT GOT:\n\n";
6409
6410 OS << " Reserved entries:\n";
6411 OS << " Address Initial Purpose\n";
6412 PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
6413 if (Parser.getPltModulePointer())
6414 PrintEntry(Parser.getPltModulePointer(), "Module pointer");
6415
6416 if (!Parser.getPltEntries().empty()) {
6417 OS << "\n";
6418 OS << " Entries:\n";
6419 OS << " Address Initial Sym.Val. Type Ndx Name\n";
6420 DataRegion<Elf_Word> ShndxTable(
6421 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6422 for (auto &E : Parser.getPltEntries()) {
6423 const Elf_Sym &Sym = *Parser.getPltSym(&E);
6424 const Elf_Sym &FirstSym = *cantFail(
6425 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
6426 std::string SymName = this->getFullSymbolName(
6427 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6428
6429 OS.PadToColumn(2);
6430 OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
6431 OS.PadToColumn(11 + Bias);
6432 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6433 OS.PadToColumn(20 + 2 * Bias);
6434 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6435 OS.PadToColumn(29 + 3 * Bias);
6436 OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes));
6437 OS.PadToColumn(37 + 3 * Bias);
6438 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6439 ShndxTable);
6440 OS.PadToColumn(41 + 3 * Bias);
6441 OS << SymName << "\n";
6442 }
6443 }
6444 }
6445
6446 template <class ELFT>
6447 Expected<const Elf_Mips_ABIFlags<ELFT> *>
getMipsAbiFlagsSection(const ELFDumper<ELFT> & Dumper)6448 getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) {
6449 const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags");
6450 if (Sec == nullptr)
6451 return nullptr;
6452
6453 constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: ";
6454 Expected<ArrayRef<uint8_t>> DataOrErr =
6455 Dumper.getElfObject().getELFFile().getSectionContents(*Sec);
6456 if (!DataOrErr)
6457 return createError(ErrPrefix + toString(DataOrErr.takeError()));
6458
6459 if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
6460 return createError(ErrPrefix + "it has a wrong size (" +
6461 Twine(DataOrErr->size()) + ")");
6462 return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data());
6463 }
6464
printMipsABIFlags()6465 template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() {
6466 const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr;
6467 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
6468 getMipsAbiFlagsSection(*this))
6469 Flags = *SecOrErr;
6470 else
6471 this->reportUniqueWarning(SecOrErr.takeError());
6472 if (!Flags)
6473 return;
6474
6475 OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
6476 OS << "ISA: MIPS" << int(Flags->isa_level);
6477 if (Flags->isa_rev > 1)
6478 OS << "r" << int(Flags->isa_rev);
6479 OS << "\n";
6480 OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
6481 OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
6482 OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
6483 OS << "FP ABI: " << enumToString(Flags->fp_abi, ArrayRef(ElfMipsFpABIType))
6484 << "\n";
6485 OS << "ISA Extension: "
6486 << enumToString(Flags->isa_ext, ArrayRef(ElfMipsISAExtType)) << "\n";
6487 if (Flags->ases == 0)
6488 OS << "ASEs: None\n";
6489 else
6490 // FIXME: Print each flag on a separate line.
6491 OS << "ASEs: " << printFlags(Flags->ases, ArrayRef(ElfMipsASEFlags))
6492 << "\n";
6493 OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
6494 OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
6495 OS << "\n";
6496 }
6497
printFileHeaders()6498 template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() {
6499 const Elf_Ehdr &E = this->Obj.getHeader();
6500 {
6501 DictScope D(W, "ElfHeader");
6502 {
6503 DictScope D(W, "Ident");
6504 W.printBinary("Magic",
6505 ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_MAG0, 4));
6506 W.printEnum("Class", E.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass));
6507 W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA],
6508 ArrayRef(ElfDataEncoding));
6509 W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]);
6510
6511 auto OSABI = ArrayRef(ElfOSABI);
6512 if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
6513 E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
6514 switch (E.e_machine) {
6515 case ELF::EM_AMDGPU:
6516 OSABI = ArrayRef(AMDGPUElfOSABI);
6517 break;
6518 case ELF::EM_ARM:
6519 OSABI = ArrayRef(ARMElfOSABI);
6520 break;
6521 case ELF::EM_TI_C6000:
6522 OSABI = ArrayRef(C6000ElfOSABI);
6523 break;
6524 }
6525 }
6526 W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI);
6527 W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]);
6528 W.printBinary("Unused",
6529 ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_PAD));
6530 }
6531
6532 std::string TypeStr;
6533 if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) {
6534 TypeStr = Ent->Name.str();
6535 } else {
6536 if (E.e_type >= ET_LOPROC)
6537 TypeStr = "Processor Specific";
6538 else if (E.e_type >= ET_LOOS)
6539 TypeStr = "OS Specific";
6540 else
6541 TypeStr = "Unknown";
6542 }
6543 W.printString("Type", TypeStr + " (0x" + utohexstr(E.e_type) + ")");
6544
6545 W.printEnum("Machine", E.e_machine, ArrayRef(ElfMachineType));
6546 W.printNumber("Version", E.e_version);
6547 W.printHex("Entry", E.e_entry);
6548 W.printHex("ProgramHeaderOffset", E.e_phoff);
6549 W.printHex("SectionHeaderOffset", E.e_shoff);
6550 if (E.e_machine == EM_MIPS)
6551 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderMipsFlags),
6552 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
6553 unsigned(ELF::EF_MIPS_MACH));
6554 else if (E.e_machine == EM_AMDGPU) {
6555 switch (E.e_ident[ELF::EI_ABIVERSION]) {
6556 default:
6557 W.printHex("Flags", E.e_flags);
6558 break;
6559 case 0:
6560 // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
6561 [[fallthrough]];
6562 case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
6563 W.printFlags("Flags", E.e_flags,
6564 ArrayRef(ElfHeaderAMDGPUFlagsABIVersion3),
6565 unsigned(ELF::EF_AMDGPU_MACH));
6566 break;
6567 case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
6568 case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
6569 W.printFlags("Flags", E.e_flags,
6570 ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
6571 unsigned(ELF::EF_AMDGPU_MACH),
6572 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
6573 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4));
6574 break;
6575 }
6576 } else if (E.e_machine == EM_RISCV)
6577 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderRISCVFlags));
6578 else if (E.e_machine == EM_AVR)
6579 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderAVRFlags),
6580 unsigned(ELF::EF_AVR_ARCH_MASK));
6581 else if (E.e_machine == EM_LOONGARCH)
6582 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderLoongArchFlags),
6583 unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK),
6584 unsigned(ELF::EF_LOONGARCH_OBJABI_MASK));
6585 else if (E.e_machine == EM_XTENSA)
6586 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderXtensaFlags),
6587 unsigned(ELF::EF_XTENSA_MACH));
6588 else
6589 W.printFlags("Flags", E.e_flags);
6590 W.printNumber("HeaderSize", E.e_ehsize);
6591 W.printNumber("ProgramHeaderEntrySize", E.e_phentsize);
6592 W.printNumber("ProgramHeaderCount", E.e_phnum);
6593 W.printNumber("SectionHeaderEntrySize", E.e_shentsize);
6594 W.printString("SectionHeaderCount",
6595 getSectionHeadersNumString(this->Obj, this->FileName));
6596 W.printString("StringTableSectionIndex",
6597 getSectionHeaderTableIndexString(this->Obj, this->FileName));
6598 }
6599 }
6600
printGroupSections()6601 template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() {
6602 DictScope Lists(W, "Groups");
6603 std::vector<GroupSection> V = this->getGroups();
6604 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
6605 for (const GroupSection &G : V) {
6606 DictScope D(W, "Group");
6607 W.printNumber("Name", G.Name, G.ShName);
6608 W.printNumber("Index", G.Index);
6609 W.printNumber("Link", G.Link);
6610 W.printNumber("Info", G.Info);
6611 W.printHex("Type", getGroupType(G.Type), G.Type);
6612 W.startLine() << "Signature: " << G.Signature << "\n";
6613
6614 ListScope L(W, "Section(s) in group");
6615 for (const GroupMember &GM : G.Members) {
6616 const GroupSection *MainGroup = Map[GM.Index];
6617 if (MainGroup != &G)
6618 this->reportUniqueWarning(
6619 "section with index " + Twine(GM.Index) +
6620 ", included in the group section with index " +
6621 Twine(MainGroup->Index) +
6622 ", was also found in the group section with index " +
6623 Twine(G.Index));
6624 W.startLine() << GM.Name << " (" << GM.Index << ")\n";
6625 }
6626 }
6627
6628 if (V.empty())
6629 W.startLine() << "There are no group sections in the file.\n";
6630 }
6631
printRelocations()6632 template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() {
6633 ListScope D(W, "Relocations");
6634
6635 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6636 if (!isRelocationSec<ELFT>(Sec))
6637 continue;
6638
6639 StringRef Name = this->getPrintableSectionName(Sec);
6640 unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front();
6641 W.startLine() << "Section (" << SecNdx << ") " << Name << " {\n";
6642 W.indent();
6643 this->printRelocationsHelper(Sec);
6644 W.unindent();
6645 W.startLine() << "}\n";
6646 }
6647 }
6648
6649 template <class ELFT>
printRelrReloc(const Elf_Relr & R)6650 void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
6651 W.startLine() << W.hex(R) << "\n";
6652 }
6653
6654 template <class ELFT>
printRelRelaReloc(const Relocation<ELFT> & R,const RelSymbol<ELFT> & RelSym)6655 void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
6656 const RelSymbol<ELFT> &RelSym) {
6657 StringRef SymbolName = RelSym.Name;
6658 SmallString<32> RelocName;
6659 this->Obj.getRelocationTypeName(R.Type, RelocName);
6660
6661 if (opts::ExpandRelocs) {
6662 DictScope Group(W, "Relocation");
6663 W.printHex("Offset", R.Offset);
6664 W.printNumber("Type", RelocName, R.Type);
6665 W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol);
6666 if (R.Addend)
6667 W.printHex("Addend", (uintX_t)*R.Addend);
6668 } else {
6669 raw_ostream &OS = W.startLine();
6670 OS << W.hex(R.Offset) << " " << RelocName << " "
6671 << (!SymbolName.empty() ? SymbolName : "-");
6672 if (R.Addend)
6673 OS << " " << W.hex((uintX_t)*R.Addend);
6674 OS << "\n";
6675 }
6676 }
6677
printSectionHeaders()6678 template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() {
6679 ListScope SectionsD(W, "Sections");
6680
6681 int SectionIndex = -1;
6682 std::vector<EnumEntry<unsigned>> FlagsList =
6683 getSectionFlagsForTarget(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
6684 this->Obj.getHeader().e_machine);
6685 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6686 DictScope SectionD(W, "Section");
6687 W.printNumber("Index", ++SectionIndex);
6688 W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name);
6689 W.printHex("Type",
6690 object::getELFSectionTypeName(this->Obj.getHeader().e_machine,
6691 Sec.sh_type),
6692 Sec.sh_type);
6693 W.printFlags("Flags", Sec.sh_flags, ArrayRef(FlagsList));
6694 W.printHex("Address", Sec.sh_addr);
6695 W.printHex("Offset", Sec.sh_offset);
6696 W.printNumber("Size", Sec.sh_size);
6697 W.printNumber("Link", Sec.sh_link);
6698 W.printNumber("Info", Sec.sh_info);
6699 W.printNumber("AddressAlignment", Sec.sh_addralign);
6700 W.printNumber("EntrySize", Sec.sh_entsize);
6701
6702 if (opts::SectionRelocations) {
6703 ListScope D(W, "Relocations");
6704 this->printRelocationsHelper(Sec);
6705 }
6706
6707 if (opts::SectionSymbols) {
6708 ListScope D(W, "Symbols");
6709 if (this->DotSymtabSec) {
6710 StringRef StrTable = unwrapOrError(
6711 this->FileName,
6712 this->Obj.getStringTableForSymtab(*this->DotSymtabSec));
6713 ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec);
6714
6715 typename ELFT::SymRange Symbols = unwrapOrError(
6716 this->FileName, this->Obj.symbols(this->DotSymtabSec));
6717 for (const Elf_Sym &Sym : Symbols) {
6718 const Elf_Shdr *SymSec = unwrapOrError(
6719 this->FileName,
6720 this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable));
6721 if (SymSec == &Sec)
6722 printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false,
6723 false);
6724 }
6725 }
6726 }
6727
6728 if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
6729 ArrayRef<uint8_t> Data =
6730 unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec));
6731 W.printBinaryBlock(
6732 "SectionData",
6733 StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
6734 }
6735 }
6736 }
6737
6738 template <class ELFT>
printSymbolSection(const Elf_Sym & Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable) const6739 void LLVMELFDumper<ELFT>::printSymbolSection(
6740 const Elf_Sym &Symbol, unsigned SymIndex,
6741 DataRegion<Elf_Word> ShndxTable) const {
6742 auto GetSectionSpecialType = [&]() -> std::optional<StringRef> {
6743 if (Symbol.isUndefined())
6744 return StringRef("Undefined");
6745 if (Symbol.isProcessorSpecific())
6746 return StringRef("Processor Specific");
6747 if (Symbol.isOSSpecific())
6748 return StringRef("Operating System Specific");
6749 if (Symbol.isAbsolute())
6750 return StringRef("Absolute");
6751 if (Symbol.isCommon())
6752 return StringRef("Common");
6753 if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX)
6754 return StringRef("Reserved");
6755 return std::nullopt;
6756 };
6757
6758 if (std::optional<StringRef> Type = GetSectionSpecialType()) {
6759 W.printHex("Section", *Type, Symbol.st_shndx);
6760 return;
6761 }
6762
6763 Expected<unsigned> SectionIndex =
6764 this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
6765 if (!SectionIndex) {
6766 assert(Symbol.st_shndx == SHN_XINDEX &&
6767 "getSymbolSectionIndex should only fail due to an invalid "
6768 "SHT_SYMTAB_SHNDX table/reference");
6769 this->reportUniqueWarning(SectionIndex.takeError());
6770 W.printHex("Section", "Reserved", SHN_XINDEX);
6771 return;
6772 }
6773
6774 Expected<StringRef> SectionName =
6775 this->getSymbolSectionName(Symbol, *SectionIndex);
6776 if (!SectionName) {
6777 // Don't report an invalid section name if the section headers are missing.
6778 // In such situations, all sections will be "invalid".
6779 if (!this->ObjF.sections().empty())
6780 this->reportUniqueWarning(SectionName.takeError());
6781 else
6782 consumeError(SectionName.takeError());
6783 W.printHex("Section", "<?>", *SectionIndex);
6784 } else {
6785 W.printHex("Section", *SectionName, *SectionIndex);
6786 }
6787 }
6788
6789 template <class ELFT>
printSymbol(const Elf_Sym & Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable,std::optional<StringRef> StrTable,bool IsDynamic,bool) const6790 void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
6791 DataRegion<Elf_Word> ShndxTable,
6792 std::optional<StringRef> StrTable,
6793 bool IsDynamic,
6794 bool /*NonVisibilityBitsUsed*/) const {
6795 std::string FullSymbolName = this->getFullSymbolName(
6796 Symbol, SymIndex, ShndxTable, StrTable, IsDynamic);
6797 unsigned char SymbolType = Symbol.getType();
6798
6799 DictScope D(W, "Symbol");
6800 W.printNumber("Name", FullSymbolName, Symbol.st_name);
6801 W.printHex("Value", Symbol.st_value);
6802 W.printNumber("Size", Symbol.st_size);
6803 W.printEnum("Binding", Symbol.getBinding(), ArrayRef(ElfSymbolBindings));
6804 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
6805 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
6806 W.printEnum("Type", SymbolType, ArrayRef(AMDGPUSymbolTypes));
6807 else
6808 W.printEnum("Type", SymbolType, ArrayRef(ElfSymbolTypes));
6809 if (Symbol.st_other == 0)
6810 // Usually st_other flag is zero. Do not pollute the output
6811 // by flags enumeration in that case.
6812 W.printNumber("Other", 0);
6813 else {
6814 std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
6815 std::end(ElfSymOtherFlags));
6816 if (this->Obj.getHeader().e_machine == EM_MIPS) {
6817 // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
6818 // flag overlapped with other ST_MIPS_xxx flags. So consider both
6819 // cases separately.
6820 if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
6821 SymOtherFlags.insert(SymOtherFlags.end(),
6822 std::begin(ElfMips16SymOtherFlags),
6823 std::end(ElfMips16SymOtherFlags));
6824 else
6825 SymOtherFlags.insert(SymOtherFlags.end(),
6826 std::begin(ElfMipsSymOtherFlags),
6827 std::end(ElfMipsSymOtherFlags));
6828 } else if (this->Obj.getHeader().e_machine == EM_AARCH64) {
6829 SymOtherFlags.insert(SymOtherFlags.end(),
6830 std::begin(ElfAArch64SymOtherFlags),
6831 std::end(ElfAArch64SymOtherFlags));
6832 } else if (this->Obj.getHeader().e_machine == EM_RISCV) {
6833 SymOtherFlags.insert(SymOtherFlags.end(),
6834 std::begin(ElfRISCVSymOtherFlags),
6835 std::end(ElfRISCVSymOtherFlags));
6836 }
6837 W.printFlags("Other", Symbol.st_other, ArrayRef(SymOtherFlags), 0x3u);
6838 }
6839 printSymbolSection(Symbol, SymIndex, ShndxTable);
6840 }
6841
6842 template <class ELFT>
printSymbols(bool PrintSymbols,bool PrintDynamicSymbols)6843 void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols,
6844 bool PrintDynamicSymbols) {
6845 if (PrintSymbols) {
6846 ListScope Group(W, "Symbols");
6847 this->printSymbolsHelper(false);
6848 }
6849 if (PrintDynamicSymbols) {
6850 ListScope Group(W, "DynamicSymbols");
6851 this->printSymbolsHelper(true);
6852 }
6853 }
6854
printDynamicTable()6855 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() {
6856 Elf_Dyn_Range Table = this->dynamic_table();
6857 if (Table.empty())
6858 return;
6859
6860 W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
6861
6862 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table);
6863 // The "Name/Value" column should be indented from the "Type" column by N
6864 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
6865 // space (1) = -3.
6866 W.startLine() << " Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ')
6867 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
6868
6869 std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s ";
6870 for (auto Entry : Table) {
6871 uintX_t Tag = Entry.getTag();
6872 std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
6873 W.startLine() << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true)
6874 << " "
6875 << format(ValueFmt.c_str(),
6876 this->Obj.getDynamicTagAsString(Tag).c_str())
6877 << Value << "\n";
6878 }
6879 W.startLine() << "]\n";
6880 }
6881
printDynamicRelocations()6882 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() {
6883 W.startLine() << "Dynamic Relocations {\n";
6884 W.indent();
6885 this->printDynamicRelocationsHelper();
6886 W.unindent();
6887 W.startLine() << "}\n";
6888 }
6889
6890 template <class ELFT>
printProgramHeaders(bool PrintProgramHeaders,cl::boolOrDefault PrintSectionMapping)6891 void LLVMELFDumper<ELFT>::printProgramHeaders(
6892 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
6893 if (PrintProgramHeaders)
6894 printProgramHeaders();
6895 if (PrintSectionMapping == cl::BOU_TRUE)
6896 printSectionMapping();
6897 }
6898
printProgramHeaders()6899 template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() {
6900 ListScope L(W, "ProgramHeaders");
6901
6902 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
6903 if (!PhdrsOrErr) {
6904 this->reportUniqueWarning("unable to dump program headers: " +
6905 toString(PhdrsOrErr.takeError()));
6906 return;
6907 }
6908
6909 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
6910 DictScope P(W, "ProgramHeader");
6911 StringRef Type =
6912 segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type);
6913
6914 W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type);
6915 W.printHex("Offset", Phdr.p_offset);
6916 W.printHex("VirtualAddress", Phdr.p_vaddr);
6917 W.printHex("PhysicalAddress", Phdr.p_paddr);
6918 W.printNumber("FileSize", Phdr.p_filesz);
6919 W.printNumber("MemSize", Phdr.p_memsz);
6920 W.printFlags("Flags", Phdr.p_flags, ArrayRef(ElfSegmentFlags));
6921 W.printNumber("Alignment", Phdr.p_align);
6922 }
6923 }
6924
6925 template <class ELFT>
printVersionSymbolSection(const Elf_Shdr * Sec)6926 void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
6927 ListScope SS(W, "VersionSymbols");
6928 if (!Sec)
6929 return;
6930
6931 StringRef StrTable;
6932 ArrayRef<Elf_Sym> Syms;
6933 const Elf_Shdr *SymTabSec;
6934 Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
6935 this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec);
6936 if (!VerTableOrErr) {
6937 this->reportUniqueWarning(VerTableOrErr.takeError());
6938 return;
6939 }
6940
6941 if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
6942 return;
6943
6944 ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec);
6945 for (size_t I = 0, E = Syms.size(); I < E; ++I) {
6946 DictScope S(W, "Symbol");
6947 W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
6948 W.printString("Name",
6949 this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable,
6950 /*IsDynamic=*/true));
6951 }
6952 }
6953
6954 const EnumEntry<unsigned> SymVersionFlags[] = {
6955 {"Base", "BASE", VER_FLG_BASE},
6956 {"Weak", "WEAK", VER_FLG_WEAK},
6957 {"Info", "INFO", VER_FLG_INFO}};
6958
6959 template <class ELFT>
printVersionDefinitionSection(const Elf_Shdr * Sec)6960 void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
6961 ListScope SD(W, "VersionDefinitions");
6962 if (!Sec)
6963 return;
6964
6965 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
6966 if (!V) {
6967 this->reportUniqueWarning(V.takeError());
6968 return;
6969 }
6970
6971 for (const VerDef &D : *V) {
6972 DictScope Def(W, "Definition");
6973 W.printNumber("Version", D.Version);
6974 W.printFlags("Flags", D.Flags, ArrayRef(SymVersionFlags));
6975 W.printNumber("Index", D.Ndx);
6976 W.printNumber("Hash", D.Hash);
6977 W.printString("Name", D.Name.c_str());
6978 W.printList(
6979 "Predecessors", D.AuxV,
6980 [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
6981 }
6982 }
6983
6984 template <class ELFT>
printVersionDependencySection(const Elf_Shdr * Sec)6985 void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
6986 ListScope SD(W, "VersionRequirements");
6987 if (!Sec)
6988 return;
6989
6990 Expected<std::vector<VerNeed>> V =
6991 this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
6992 if (!V) {
6993 this->reportUniqueWarning(V.takeError());
6994 return;
6995 }
6996
6997 for (const VerNeed &VN : *V) {
6998 DictScope Entry(W, "Dependency");
6999 W.printNumber("Version", VN.Version);
7000 W.printNumber("Count", VN.Cnt);
7001 W.printString("FileName", VN.File.c_str());
7002
7003 ListScope L(W, "Entries");
7004 for (const VernAux &Aux : VN.AuxV) {
7005 DictScope Entry(W, "Entry");
7006 W.printNumber("Hash", Aux.Hash);
7007 W.printFlags("Flags", Aux.Flags, ArrayRef(SymVersionFlags));
7008 W.printNumber("Index", Aux.Other);
7009 W.printString("Name", Aux.Name.c_str());
7010 }
7011 }
7012 }
7013
printHashHistograms()7014 template <class ELFT> void LLVMELFDumper<ELFT>::printHashHistograms() {
7015 W.startLine() << "Hash Histogram not implemented!\n";
7016 }
7017
7018 // Returns true if rel/rela section exists, and populates SymbolIndices.
7019 // Otherwise returns false.
7020 template <class ELFT>
getSymbolIndices(const typename ELFT::Shdr * CGRelSection,const ELFFile<ELFT> & Obj,const LLVMELFDumper<ELFT> * Dumper,SmallVector<uint32_t,128> & SymbolIndices)7021 static bool getSymbolIndices(const typename ELFT::Shdr *CGRelSection,
7022 const ELFFile<ELFT> &Obj,
7023 const LLVMELFDumper<ELFT> *Dumper,
7024 SmallVector<uint32_t, 128> &SymbolIndices) {
7025 if (!CGRelSection) {
7026 Dumper->reportUniqueWarning(
7027 "relocation section for a call graph section doesn't exist");
7028 return false;
7029 }
7030
7031 if (CGRelSection->sh_type == SHT_REL) {
7032 typename ELFT::RelRange CGProfileRel;
7033 Expected<typename ELFT::RelRange> CGProfileRelOrError =
7034 Obj.rels(*CGRelSection);
7035 if (!CGProfileRelOrError) {
7036 Dumper->reportUniqueWarning("unable to load relocations for "
7037 "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7038 toString(CGProfileRelOrError.takeError()));
7039 return false;
7040 }
7041
7042 CGProfileRel = *CGProfileRelOrError;
7043 for (const typename ELFT::Rel &Rel : CGProfileRel)
7044 SymbolIndices.push_back(Rel.getSymbol(Obj.isMips64EL()));
7045 } else {
7046 // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert
7047 // the format to SHT_RELA
7048 // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035)
7049 typename ELFT::RelaRange CGProfileRela;
7050 Expected<typename ELFT::RelaRange> CGProfileRelaOrError =
7051 Obj.relas(*CGRelSection);
7052 if (!CGProfileRelaOrError) {
7053 Dumper->reportUniqueWarning("unable to load relocations for "
7054 "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7055 toString(CGProfileRelaOrError.takeError()));
7056 return false;
7057 }
7058
7059 CGProfileRela = *CGProfileRelaOrError;
7060 for (const typename ELFT::Rela &Rela : CGProfileRela)
7061 SymbolIndices.push_back(Rela.getSymbol(Obj.isMips64EL()));
7062 }
7063
7064 return true;
7065 }
7066
printCGProfile()7067 template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() {
7068 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> SecToRelocMap;
7069
7070 auto IsMatch = [](const Elf_Shdr &Sec) -> bool {
7071 return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE;
7072 };
7073 this->getSectionAndRelocations(IsMatch, SecToRelocMap);
7074
7075 for (const auto &CGMapEntry : SecToRelocMap) {
7076 const Elf_Shdr *CGSection = CGMapEntry.first;
7077 const Elf_Shdr *CGRelSection = CGMapEntry.second;
7078
7079 Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr =
7080 this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection);
7081 if (!CGProfileOrErr) {
7082 this->reportUniqueWarning(
7083 "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7084 toString(CGProfileOrErr.takeError()));
7085 return;
7086 }
7087
7088 SmallVector<uint32_t, 128> SymbolIndices;
7089 bool UseReloc =
7090 getSymbolIndices<ELFT>(CGRelSection, this->Obj, this, SymbolIndices);
7091 if (UseReloc && SymbolIndices.size() != CGProfileOrErr->size() * 2) {
7092 this->reportUniqueWarning(
7093 "number of from/to pairs does not match number of frequencies");
7094 UseReloc = false;
7095 }
7096
7097 ListScope L(W, "CGProfile");
7098 for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) {
7099 const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I];
7100 DictScope D(W, "CGProfileEntry");
7101 if (UseReloc) {
7102 uint32_t From = SymbolIndices[I * 2];
7103 uint32_t To = SymbolIndices[I * 2 + 1];
7104 W.printNumber("From", this->getStaticSymbolName(From), From);
7105 W.printNumber("To", this->getStaticSymbolName(To), To);
7106 }
7107 W.printNumber("Weight", CGPE.cgp_weight);
7108 }
7109 }
7110 }
7111
printBBAddrMaps()7112 template <class ELFT> void LLVMELFDumper<ELFT>::printBBAddrMaps() {
7113 bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL;
7114 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
7115 if (Sec.sh_type != SHT_LLVM_BB_ADDR_MAP &&
7116 Sec.sh_type != SHT_LLVM_BB_ADDR_MAP_V0) {
7117 continue;
7118 }
7119 std::optional<const Elf_Shdr *> FunctionSec;
7120 if (IsRelocatable)
7121 FunctionSec =
7122 unwrapOrError(this->FileName, this->Obj.getSection(Sec.sh_link));
7123 ListScope L(W, "BBAddrMap");
7124 Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
7125 this->Obj.decodeBBAddrMap(Sec);
7126 if (!BBAddrMapOrErr) {
7127 this->reportUniqueWarning("unable to dump " + this->describe(Sec) + ": " +
7128 toString(BBAddrMapOrErr.takeError()));
7129 continue;
7130 }
7131 for (const BBAddrMap &AM : *BBAddrMapOrErr) {
7132 DictScope D(W, "Function");
7133 W.printHex("At", AM.Addr);
7134 SmallVector<uint32_t> FuncSymIndex =
7135 this->getSymbolIndexesForFunctionAddress(AM.Addr, FunctionSec);
7136 std::string FuncName = "<?>";
7137 if (FuncSymIndex.empty())
7138 this->reportUniqueWarning(
7139 "could not identify function symbol for address (0x" +
7140 Twine::utohexstr(AM.Addr) + ") in " + this->describe(Sec));
7141 else
7142 FuncName = this->getStaticSymbolName(FuncSymIndex.front());
7143 W.printString("Name", FuncName);
7144
7145 ListScope L(W, "BB entries");
7146 for (const BBAddrMap::BBEntry &BBE : AM.BBEntries) {
7147 DictScope L(W);
7148 W.printNumber("ID", BBE.ID);
7149 W.printHex("Offset", BBE.Offset);
7150 W.printHex("Size", BBE.Size);
7151 W.printBoolean("HasReturn", BBE.HasReturn);
7152 W.printBoolean("HasTailCall", BBE.HasTailCall);
7153 W.printBoolean("IsEHPad", BBE.IsEHPad);
7154 W.printBoolean("CanFallThrough", BBE.CanFallThrough);
7155 }
7156 }
7157 }
7158 }
7159
printAddrsig()7160 template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() {
7161 ListScope L(W, "Addrsig");
7162 if (!this->DotAddrsigSec)
7163 return;
7164
7165 Expected<std::vector<uint64_t>> SymsOrErr =
7166 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
7167 if (!SymsOrErr) {
7168 this->reportUniqueWarning(SymsOrErr.takeError());
7169 return;
7170 }
7171
7172 for (uint64_t Sym : *SymsOrErr)
7173 W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym);
7174 }
7175
7176 template <typename ELFT>
printGNUNoteLLVMStyle(uint32_t NoteType,ArrayRef<uint8_t> Desc,ScopedPrinter & W)7177 static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7178 ScopedPrinter &W) {
7179 // Return true if we were able to pretty-print the note, false otherwise.
7180 switch (NoteType) {
7181 default:
7182 return false;
7183 case ELF::NT_GNU_ABI_TAG: {
7184 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
7185 if (!AbiTag.IsValid) {
7186 W.printString("ABI", "<corrupt GNU_ABI_TAG>");
7187 return false;
7188 } else {
7189 W.printString("OS", AbiTag.OSName);
7190 W.printString("ABI", AbiTag.ABI);
7191 }
7192 break;
7193 }
7194 case ELF::NT_GNU_BUILD_ID: {
7195 W.printString("Build ID", getGNUBuildId(Desc));
7196 break;
7197 }
7198 case ELF::NT_GNU_GOLD_VERSION:
7199 W.printString("Version", getDescAsStringRef(Desc));
7200 break;
7201 case ELF::NT_GNU_PROPERTY_TYPE_0:
7202 ListScope D(W, "Property");
7203 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
7204 W.printString(Property);
7205 break;
7206 }
7207 return true;
7208 }
7209
printAndroidNoteLLVMStyle(uint32_t NoteType,ArrayRef<uint8_t> Desc,ScopedPrinter & W)7210 static bool printAndroidNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7211 ScopedPrinter &W) {
7212 // Return true if we were able to pretty-print the note, false otherwise.
7213 AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
7214 if (Props.empty())
7215 return false;
7216 for (const auto &KV : Props)
7217 W.printString(KV.first, KV.second);
7218 return true;
7219 }
7220
7221 template <typename ELFT>
printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType,ArrayRef<uint8_t> Desc,ScopedPrinter & W)7222 static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType,
7223 ArrayRef<uint8_t> Desc,
7224 ScopedPrinter &W) {
7225 switch (NoteType) {
7226 default:
7227 return false;
7228 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
7229 W.printString("Version", getDescAsStringRef(Desc));
7230 break;
7231 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
7232 W.printString("Producer", getDescAsStringRef(Desc));
7233 break;
7234 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
7235 W.printString("Producer version", getDescAsStringRef(Desc));
7236 break;
7237 }
7238 return true;
7239 }
7240
printCoreNoteLLVMStyle(const CoreNote & Note,ScopedPrinter & W)7241 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
7242 W.printNumber("Page Size", Note.PageSize);
7243 for (const CoreFileMapping &Mapping : Note.Mappings) {
7244 ListScope D(W, "Mapping");
7245 W.printHex("Start", Mapping.Start);
7246 W.printHex("End", Mapping.End);
7247 W.printHex("Offset", Mapping.Offset);
7248 W.printString("Filename", Mapping.Filename);
7249 }
7250 }
7251
printNotes()7252 template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() {
7253 ListScope L(W, "Notes");
7254
7255 std::unique_ptr<DictScope> NoteScope;
7256 auto StartNotes = [&](std::optional<StringRef> SecName,
7257 const typename ELFT::Off Offset,
7258 const typename ELFT::Addr Size) {
7259 NoteScope = std::make_unique<DictScope>(W, "NoteSection");
7260 W.printString("Name", SecName ? *SecName : "<?>");
7261 W.printHex("Offset", Offset);
7262 W.printHex("Size", Size);
7263 };
7264
7265 auto EndNotes = [&] { NoteScope.reset(); };
7266
7267 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
7268 DictScope D2(W, "Note");
7269 StringRef Name = Note.getName();
7270 ArrayRef<uint8_t> Descriptor = Note.getDesc();
7271 Elf_Word Type = Note.getType();
7272
7273 // Print the note owner/type.
7274 W.printString("Owner", Name);
7275 W.printHex("Data size", Descriptor.size());
7276
7277 StringRef NoteType =
7278 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
7279 if (!NoteType.empty())
7280 W.printString("Type", NoteType);
7281 else
7282 W.printString("Type",
7283 "Unknown (" + to_string(format_hex(Type, 10)) + ")");
7284
7285 // Print the description, or fallback to printing raw bytes for unknown
7286 // owners/if we fail to pretty-print the contents.
7287 if (Name == "GNU") {
7288 if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7289 return Error::success();
7290 } else if (Name == "FreeBSD") {
7291 if (std::optional<FreeBSDNote> N =
7292 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
7293 W.printString(N->Type, N->Value);
7294 return Error::success();
7295 }
7296 } else if (Name == "AMD") {
7297 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
7298 if (!N.Type.empty()) {
7299 W.printString(N.Type, N.Value);
7300 return Error::success();
7301 }
7302 } else if (Name == "AMDGPU") {
7303 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
7304 if (!N.Type.empty()) {
7305 W.printString(N.Type, N.Value);
7306 return Error::success();
7307 }
7308 } else if (Name == "LLVMOMPOFFLOAD") {
7309 if (printLLVMOMPOFFLOADNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7310 return Error::success();
7311 } else if (Name == "CORE") {
7312 if (Type == ELF::NT_FILE) {
7313 DataExtractor DescExtractor(Descriptor,
7314 ELFT::TargetEndianness == support::little,
7315 sizeof(Elf_Addr));
7316 if (Expected<CoreNote> N = readCoreNote(DescExtractor)) {
7317 printCoreNoteLLVMStyle(*N, W);
7318 return Error::success();
7319 } else {
7320 return N.takeError();
7321 }
7322 }
7323 } else if (Name == "Android") {
7324 if (printAndroidNoteLLVMStyle(Type, Descriptor, W))
7325 return Error::success();
7326 }
7327 if (!Descriptor.empty()) {
7328 W.printBinaryBlock("Description data", Descriptor);
7329 }
7330 return Error::success();
7331 };
7332
7333 printNotesHelper(*this, StartNotes, ProcessNote, EndNotes);
7334 }
7335
printELFLinkerOptions()7336 template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() {
7337 ListScope L(W, "LinkerOptions");
7338
7339 unsigned I = -1;
7340 for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) {
7341 ++I;
7342 if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
7343 continue;
7344
7345 Expected<ArrayRef<uint8_t>> ContentsOrErr =
7346 this->Obj.getSectionContents(Shdr);
7347 if (!ContentsOrErr) {
7348 this->reportUniqueWarning("unable to read the content of the "
7349 "SHT_LLVM_LINKER_OPTIONS section: " +
7350 toString(ContentsOrErr.takeError()));
7351 continue;
7352 }
7353 if (ContentsOrErr->empty())
7354 continue;
7355
7356 if (ContentsOrErr->back() != 0) {
7357 this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
7358 Twine(I) +
7359 " is broken: the "
7360 "content is not null-terminated");
7361 continue;
7362 }
7363
7364 SmallVector<StringRef, 16> Strings;
7365 toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0');
7366 if (Strings.size() % 2 != 0) {
7367 this->reportUniqueWarning(
7368 "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
7369 " is broken: an incomplete "
7370 "key-value pair was found. The last possible key was: \"" +
7371 Strings.back() + "\"");
7372 continue;
7373 }
7374
7375 for (size_t I = 0; I < Strings.size(); I += 2)
7376 W.printString(Strings[I], Strings[I + 1]);
7377 }
7378 }
7379
printDependentLibs()7380 template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() {
7381 ListScope L(W, "DependentLibs");
7382 this->printDependentLibsHelper(
7383 [](const Elf_Shdr &) {},
7384 [this](StringRef Lib, uint64_t) { W.printString(Lib); });
7385 }
7386
printStackSizes()7387 template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() {
7388 ListScope L(W, "StackSizes");
7389 if (this->Obj.getHeader().e_type == ELF::ET_REL)
7390 this->printRelocatableStackSizes([]() {});
7391 else
7392 this->printNonRelocatableStackSizes([]() {});
7393 }
7394
7395 template <class ELFT>
printStackSizeEntry(uint64_t Size,ArrayRef<std::string> FuncNames)7396 void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
7397 ArrayRef<std::string> FuncNames) {
7398 DictScope D(W, "Entry");
7399 W.printList("Functions", FuncNames);
7400 W.printHex("Size", Size);
7401 }
7402
7403 template <class ELFT>
printMipsGOT(const MipsGOTParser<ELFT> & Parser)7404 void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
7405 auto PrintEntry = [&](const Elf_Addr *E) {
7406 W.printHex("Address", Parser.getGotAddress(E));
7407 W.printNumber("Access", Parser.getGotOffset(E));
7408 W.printHex("Initial", *E);
7409 };
7410
7411 DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
7412
7413 W.printHex("Canonical gp value", Parser.getGp());
7414 {
7415 ListScope RS(W, "Reserved entries");
7416 {
7417 DictScope D(W, "Entry");
7418 PrintEntry(Parser.getGotLazyResolver());
7419 W.printString("Purpose", StringRef("Lazy resolver"));
7420 }
7421
7422 if (Parser.getGotModulePointer()) {
7423 DictScope D(W, "Entry");
7424 PrintEntry(Parser.getGotModulePointer());
7425 W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
7426 }
7427 }
7428 {
7429 ListScope LS(W, "Local entries");
7430 for (auto &E : Parser.getLocalEntries()) {
7431 DictScope D(W, "Entry");
7432 PrintEntry(&E);
7433 }
7434 }
7435
7436 if (Parser.IsStatic)
7437 return;
7438
7439 {
7440 ListScope GS(W, "Global entries");
7441 for (auto &E : Parser.getGlobalEntries()) {
7442 DictScope D(W, "Entry");
7443
7444 PrintEntry(&E);
7445
7446 const Elf_Sym &Sym = *Parser.getGotSym(&E);
7447 W.printHex("Value", Sym.st_value);
7448 W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes));
7449
7450 const unsigned SymIndex = &Sym - this->dynamic_symbols().begin();
7451 DataRegion<Elf_Word> ShndxTable(
7452 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7453 printSymbolSection(Sym, SymIndex, ShndxTable);
7454
7455 std::string SymName = this->getFullSymbolName(
7456 Sym, SymIndex, ShndxTable, this->DynamicStringTable, true);
7457 W.printNumber("Name", SymName, Sym.st_name);
7458 }
7459 }
7460
7461 W.printNumber("Number of TLS and multi-GOT entries",
7462 uint64_t(Parser.getOtherEntries().size()));
7463 }
7464
7465 template <class ELFT>
printMipsPLT(const MipsGOTParser<ELFT> & Parser)7466 void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
7467 auto PrintEntry = [&](const Elf_Addr *E) {
7468 W.printHex("Address", Parser.getPltAddress(E));
7469 W.printHex("Initial", *E);
7470 };
7471
7472 DictScope GS(W, "PLT GOT");
7473
7474 {
7475 ListScope RS(W, "Reserved entries");
7476 {
7477 DictScope D(W, "Entry");
7478 PrintEntry(Parser.getPltLazyResolver());
7479 W.printString("Purpose", StringRef("PLT lazy resolver"));
7480 }
7481
7482 if (auto E = Parser.getPltModulePointer()) {
7483 DictScope D(W, "Entry");
7484 PrintEntry(E);
7485 W.printString("Purpose", StringRef("Module pointer"));
7486 }
7487 }
7488 {
7489 ListScope LS(W, "Entries");
7490 DataRegion<Elf_Word> ShndxTable(
7491 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7492 for (auto &E : Parser.getPltEntries()) {
7493 DictScope D(W, "Entry");
7494 PrintEntry(&E);
7495
7496 const Elf_Sym &Sym = *Parser.getPltSym(&E);
7497 W.printHex("Value", Sym.st_value);
7498 W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes));
7499 printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(),
7500 ShndxTable);
7501
7502 const Elf_Sym *FirstSym = cantFail(
7503 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
7504 std::string SymName = this->getFullSymbolName(
7505 Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true);
7506 W.printNumber("Name", SymName, Sym.st_name);
7507 }
7508 }
7509 }
7510
printMipsABIFlags()7511 template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() {
7512 const Elf_Mips_ABIFlags<ELFT> *Flags;
7513 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
7514 getMipsAbiFlagsSection(*this)) {
7515 Flags = *SecOrErr;
7516 if (!Flags) {
7517 W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
7518 return;
7519 }
7520 } else {
7521 this->reportUniqueWarning(SecOrErr.takeError());
7522 return;
7523 }
7524
7525 raw_ostream &OS = W.getOStream();
7526 DictScope GS(W, "MIPS ABI Flags");
7527
7528 W.printNumber("Version", Flags->version);
7529 W.startLine() << "ISA: ";
7530 if (Flags->isa_rev <= 1)
7531 OS << format("MIPS%u", Flags->isa_level);
7532 else
7533 OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
7534 OS << "\n";
7535 W.printEnum("ISA Extension", Flags->isa_ext, ArrayRef(ElfMipsISAExtType));
7536 W.printFlags("ASEs", Flags->ases, ArrayRef(ElfMipsASEFlags));
7537 W.printEnum("FP ABI", Flags->fp_abi, ArrayRef(ElfMipsFpABIType));
7538 W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
7539 W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
7540 W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
7541 W.printFlags("Flags 1", Flags->flags1, ArrayRef(ElfMipsFlags1));
7542 W.printHex("Flags 2", Flags->flags2);
7543 }
7544
7545 template <class ELFT>
printFileSummary(StringRef FileStr,ObjectFile & Obj,ArrayRef<std::string> InputFilenames,const Archive * A)7546 void JSONELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
7547 ArrayRef<std::string> InputFilenames,
7548 const Archive *A) {
7549 FileScope = std::make_unique<DictScope>(this->W);
7550 DictScope D(this->W, "FileSummary");
7551 this->W.printString("File", FileStr);
7552 this->W.printString("Format", Obj.getFileFormatName());
7553 this->W.printString("Arch", Triple::getArchTypeName(Obj.getArch()));
7554 this->W.printString(
7555 "AddressSize",
7556 std::string(formatv("{0}bit", 8 * Obj.getBytesInAddress())));
7557 this->printLoadName();
7558 }
7559