xref: /openbsd-src/gnu/llvm/llvm/tools/llvm-readobj/ELFDumper.cpp (revision 42a61acefa8b3288ff2163fb55e934a3fee39974)
1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the ELF-specific dumper for llvm-readobj.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
16 #include "ObjDumper.h"
17 #include "StackMapPrinter.h"
18 #include "llvm-readobj.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/PointerIntPair.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
32 #include "llvm/BinaryFormat/ELF.h"
33 #include "llvm/BinaryFormat/MsgPackDocument.h"
34 #include "llvm/Demangle/Demangle.h"
35 #include "llvm/Object/Archive.h"
36 #include "llvm/Object/ELF.h"
37 #include "llvm/Object/ELFObjectFile.h"
38 #include "llvm/Object/ELFTypes.h"
39 #include "llvm/Object/Error.h"
40 #include "llvm/Object/ObjectFile.h"
41 #include "llvm/Object/RelocationResolver.h"
42 #include "llvm/Object/StackMapParser.h"
43 #include "llvm/Support/AMDGPUMetadata.h"
44 #include "llvm/Support/ARMAttributeParser.h"
45 #include "llvm/Support/ARMBuildAttributes.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/Compiler.h"
48 #include "llvm/Support/Endian.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/Format.h"
51 #include "llvm/Support/FormatVariadic.h"
52 #include "llvm/Support/FormattedStream.h"
53 #include "llvm/Support/LEB128.h"
54 #include "llvm/Support/MSP430AttributeParser.h"
55 #include "llvm/Support/MSP430Attributes.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/MipsABIFlags.h"
58 #include "llvm/Support/RISCVAttributeParser.h"
59 #include "llvm/Support/RISCVAttributes.h"
60 #include "llvm/Support/ScopedPrinter.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cinttypes>
64 #include <cstddef>
65 #include <cstdint>
66 #include <cstdlib>
67 #include <iterator>
68 #include <memory>
69 #include <optional>
70 #include <string>
71 #include <system_error>
72 #include <vector>
73 
74 using namespace llvm;
75 using namespace llvm::object;
76 using namespace ELF;
77 
78 #define LLVM_READOBJ_ENUM_CASE(ns, enum)                                       \
79   case ns::enum:                                                               \
80     return #enum;
81 
82 #define ENUM_ENT(enum, altName)                                                \
83   { #enum, altName, ELF::enum }
84 
85 #define ENUM_ENT_1(enum)                                                       \
86   { #enum, #enum, ELF::enum }
87 
88 namespace {
89 
90 template <class ELFT> struct RelSymbol {
RelSymbol__anon28a7ad930111::RelSymbol91   RelSymbol(const typename ELFT::Sym *S, StringRef N)
92       : Sym(S), Name(N.str()) {}
93   const typename ELFT::Sym *Sym;
94   std::string Name;
95 };
96 
97 /// Represents a contiguous uniform range in the file. We cannot just create a
98 /// range directly because when creating one of these from the .dynamic table
99 /// the size, entity size and virtual address are different entries in arbitrary
100 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
101 struct DynRegionInfo {
DynRegionInfo__anon28a7ad930111::DynRegionInfo102   DynRegionInfo(const Binary &Owner, const ObjDumper &D)
103       : Obj(&Owner), Dumper(&D) {}
DynRegionInfo__anon28a7ad930111::DynRegionInfo104   DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A,
105                 uint64_t S, uint64_t ES)
106       : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {}
107 
108   /// Address in current address space.
109   const uint8_t *Addr = nullptr;
110   /// Size in bytes of the region.
111   uint64_t Size = 0;
112   /// Size of each entity in the region.
113   uint64_t EntSize = 0;
114 
115   /// Owner object. Used for error reporting.
116   const Binary *Obj;
117   /// Dumper used for error reporting.
118   const ObjDumper *Dumper;
119   /// Error prefix. Used for error reporting to provide more information.
120   std::string Context;
121   /// Region size name. Used for error reporting.
122   StringRef SizePrintName = "size";
123   /// Entry size name. Used for error reporting. If this field is empty, errors
124   /// will not mention the entry size.
125   StringRef EntSizePrintName = "entry size";
126 
getAsArrayRef__anon28a7ad930111::DynRegionInfo127   template <typename Type> ArrayRef<Type> getAsArrayRef() const {
128     const Type *Start = reinterpret_cast<const Type *>(Addr);
129     if (!Start)
130       return {Start, Start};
131 
132     const uint64_t Offset =
133         Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart();
134     const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize();
135 
136     if (Size > ObjSize - Offset) {
137       Dumper->reportUniqueWarning(
138           "unable to read data at 0x" + Twine::utohexstr(Offset) +
139           " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName +
140           "): it goes past the end of the file of size 0x" +
141           Twine::utohexstr(ObjSize));
142       return {Start, Start};
143     }
144 
145     if (EntSize == sizeof(Type) && (Size % EntSize == 0))
146       return {Start, Start + (Size / EntSize)};
147 
148     std::string Msg;
149     if (!Context.empty())
150       Msg += Context + " has ";
151 
152     Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")")
153                .str();
154     if (!EntSizePrintName.empty())
155       Msg +=
156           (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")")
157               .str();
158 
159     Dumper->reportUniqueWarning(Msg);
160     return {Start, Start};
161   }
162 };
163 
164 struct GroupMember {
165   StringRef Name;
166   uint64_t Index;
167 };
168 
169 struct GroupSection {
170   StringRef Name;
171   std::string Signature;
172   uint64_t ShName;
173   uint64_t Index;
174   uint32_t Link;
175   uint32_t Info;
176   uint32_t Type;
177   std::vector<GroupMember> Members;
178 };
179 
180 namespace {
181 
182 struct NoteType {
183   uint32_t ID;
184   StringRef Name;
185 };
186 
187 } // namespace
188 
189 template <class ELFT> class Relocation {
190 public:
Relocation(const typename ELFT::Rel & R,bool IsMips64EL)191   Relocation(const typename ELFT::Rel &R, bool IsMips64EL)
192       : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)),
193         Offset(R.r_offset), Info(R.r_info) {}
194 
Relocation(const typename ELFT::Rela & R,bool IsMips64EL)195   Relocation(const typename ELFT::Rela &R, bool IsMips64EL)
196       : Relocation((const typename ELFT::Rel &)R, IsMips64EL) {
197     Addend = R.r_addend;
198   }
199 
200   uint32_t Type;
201   uint32_t Symbol;
202   typename ELFT::uint Offset;
203   typename ELFT::uint Info;
204   std::optional<int64_t> Addend;
205 };
206 
207 template <class ELFT> class MipsGOTParser;
208 
209 template <typename ELFT> class ELFDumper : public ObjDumper {
210   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
211 
212 public:
213   ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer);
214 
215   void printUnwindInfo() override;
216   void printNeededLibraries() override;
217   void printHashTable() override;
218   void printGnuHashTable() override;
219   void printLoadName() override;
220   void printVersionInfo() override;
221   void printArchSpecificInfo() override;
222   void printStackMap() const override;
223 
getElfObject() const224   const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; };
225 
226   std::string describe(const Elf_Shdr &Sec) const;
227 
getHashTableEntSize() const228   unsigned getHashTableEntSize() const {
229     // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
230     // sections. This violates the ELF specification.
231     if (Obj.getHeader().e_machine == ELF::EM_S390 ||
232         Obj.getHeader().e_machine == ELF::EM_ALPHA)
233       return 8;
234     return 4;
235   }
236 
dynamic_table() const237   Elf_Dyn_Range dynamic_table() const {
238     // A valid .dynamic section contains an array of entries terminated
239     // with a DT_NULL entry. However, sometimes the section content may
240     // continue past the DT_NULL entry, so to dump the section correctly,
241     // we first find the end of the entries by iterating over them.
242     Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>();
243 
244     size_t Size = 0;
245     while (Size < Table.size())
246       if (Table[Size++].getTag() == DT_NULL)
247         break;
248 
249     return Table.slice(0, Size);
250   }
251 
dynamic_symbols() const252   Elf_Sym_Range dynamic_symbols() const {
253     if (!DynSymRegion)
254       return Elf_Sym_Range();
255     return DynSymRegion->template getAsArrayRef<Elf_Sym>();
256   }
257 
258   const Elf_Shdr *findSectionByName(StringRef Name) const;
259 
getDynamicStringTable() const260   StringRef getDynamicStringTable() const { return DynamicStringTable; }
261 
262 protected:
263   virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0;
264   virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0;
265   virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0;
266 
267   void
268   printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart,
269                            function_ref<void(StringRef, uint64_t)> OnLibEntry);
270 
271   virtual void printRelRelaReloc(const Relocation<ELFT> &R,
272                                  const RelSymbol<ELFT> &RelSym) = 0;
273   virtual void printRelrReloc(const Elf_Relr &R) = 0;
printDynamicRelocHeader(unsigned Type,StringRef Name,const DynRegionInfo & Reg)274   virtual void printDynamicRelocHeader(unsigned Type, StringRef Name,
275                                        const DynRegionInfo &Reg) {}
276   void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
277                   const Elf_Shdr &Sec, const Elf_Shdr *SymTab);
278   void printDynamicReloc(const Relocation<ELFT> &R);
279   void printDynamicRelocationsHelper();
280   void printRelocationsHelper(const Elf_Shdr &Sec);
281   void forEachRelocationDo(
282       const Elf_Shdr &Sec, bool RawRelr,
283       llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
284                               const Elf_Shdr &, const Elf_Shdr *)>
285           RelRelaFn,
286       llvm::function_ref<void(const Elf_Relr &)> RelrFn);
287 
printSymtabMessage(const Elf_Shdr * Symtab,size_t Offset,bool NonVisibilityBitsUsed) const288   virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
289                                   bool NonVisibilityBitsUsed) const {};
290   virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
291                            DataRegion<Elf_Word> ShndxTable,
292                            std::optional<StringRef> StrTable, bool IsDynamic,
293                            bool NonVisibilityBitsUsed) const = 0;
294 
295   virtual void printMipsABIFlags() = 0;
296   virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
297   virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
298 
299   Expected<ArrayRef<Elf_Versym>>
300   getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
301                   StringRef *StrTab, const Elf_Shdr **SymTabSec) const;
302   StringRef getPrintableSectionName(const Elf_Shdr &Sec) const;
303 
304   std::vector<GroupSection> getGroups();
305 
306   // Returns the function symbol index for the given address. Matches the
307   // symbol's section with FunctionSec when specified.
308   // Returns std::nullopt if no function symbol can be found for the address or
309   // in case it is not defined in the specified section.
310   SmallVector<uint32_t> getSymbolIndexesForFunctionAddress(
311       uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec);
312   bool printFunctionStackSize(uint64_t SymValue,
313                               std::optional<const Elf_Shdr *> FunctionSec,
314                               const Elf_Shdr &StackSizeSec, DataExtractor Data,
315                               uint64_t *Offset);
316   void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec,
317                       unsigned Ndx, const Elf_Shdr *SymTab,
318                       const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec,
319                       const RelocationResolver &Resolver, DataExtractor Data);
320   virtual void printStackSizeEntry(uint64_t Size,
321                                    ArrayRef<std::string> FuncNames) = 0;
322 
323   void printRelocatableStackSizes(std::function<void()> PrintHeader);
324   void printNonRelocatableStackSizes(std::function<void()> PrintHeader);
325 
326   /// Retrieves sections with corresponding relocation sections based on
327   /// IsMatch.
328   void getSectionAndRelocations(
329       std::function<bool(const Elf_Shdr &)> IsMatch,
330       llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap);
331 
332   const object::ELFObjectFile<ELFT> &ObjF;
333   const ELFFile<ELFT> &Obj;
334   StringRef FileName;
335 
createDRI(uint64_t Offset,uint64_t Size,uint64_t EntSize)336   Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size,
337                                     uint64_t EntSize) {
338     if (Offset + Size < Offset || Offset + Size > Obj.getBufSize())
339       return createError("offset (0x" + Twine::utohexstr(Offset) +
340                          ") + size (0x" + Twine::utohexstr(Size) +
341                          ") is greater than the file size (0x" +
342                          Twine::utohexstr(Obj.getBufSize()) + ")");
343     return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize);
344   }
345 
346   void printAttributes(unsigned, std::unique_ptr<ELFAttributeParser>,
347                        support::endianness);
348   void printMipsReginfo();
349   void printMipsOptions();
350 
351   std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic();
352   void loadDynamicTable();
353   void parseDynamicTable();
354 
355   Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym,
356                                        bool &IsDefault) const;
357   Expected<SmallVector<std::optional<VersionEntry>, 0> *> getVersionMap() const;
358 
359   DynRegionInfo DynRelRegion;
360   DynRegionInfo DynRelaRegion;
361   DynRegionInfo DynRelrRegion;
362   DynRegionInfo DynPLTRelRegion;
363   std::optional<DynRegionInfo> DynSymRegion;
364   DynRegionInfo DynSymTabShndxRegion;
365   DynRegionInfo DynamicTable;
366   StringRef DynamicStringTable;
367   const Elf_Hash *HashTable = nullptr;
368   const Elf_GnuHash *GnuHashTable = nullptr;
369   const Elf_Shdr *DotSymtabSec = nullptr;
370   const Elf_Shdr *DotDynsymSec = nullptr;
371   const Elf_Shdr *DotAddrsigSec = nullptr;
372   DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables;
373   std::optional<uint64_t> SONameOffset;
374   std::optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap;
375 
376   const Elf_Shdr *SymbolVersionSection = nullptr;   // .gnu.version
377   const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
378   const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
379 
380   std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex,
381                                 DataRegion<Elf_Word> ShndxTable,
382                                 std::optional<StringRef> StrTable,
383                                 bool IsDynamic) const;
384   Expected<unsigned>
385   getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
386                         DataRegion<Elf_Word> ShndxTable) const;
387   Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol,
388                                            unsigned SectionIndex) const;
389   std::string getStaticSymbolName(uint32_t Index) const;
390   StringRef getDynamicString(uint64_t Value) const;
391 
392   void printSymbolsHelper(bool IsDynamic) const;
393   std::string getDynamicEntry(uint64_t Type, uint64_t Value) const;
394 
395   Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R,
396                                                 const Elf_Shdr *SymTab) const;
397 
398   ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const;
399 
400 private:
401   mutable SmallVector<std::optional<VersionEntry>, 0> VersionMap;
402 };
403 
404 template <class ELFT>
describe(const Elf_Shdr & Sec) const405 std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const {
406   return ::describe(Obj, Sec);
407 }
408 
409 namespace {
410 
411 template <class ELFT> struct SymtabLink {
412   typename ELFT::SymRange Symbols;
413   StringRef StringTable;
414   const typename ELFT::Shdr *SymTab;
415 };
416 
417 // Returns the linked symbol table, symbols and associated string table for a
418 // given section.
419 template <class ELFT>
getLinkAsSymtab(const ELFFile<ELFT> & Obj,const typename ELFT::Shdr & Sec,unsigned ExpectedType)420 Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj,
421                                            const typename ELFT::Shdr &Sec,
422                                            unsigned ExpectedType) {
423   Expected<const typename ELFT::Shdr *> SymtabOrErr =
424       Obj.getSection(Sec.sh_link);
425   if (!SymtabOrErr)
426     return createError("invalid section linked to " + describe(Obj, Sec) +
427                        ": " + toString(SymtabOrErr.takeError()));
428 
429   if ((*SymtabOrErr)->sh_type != ExpectedType)
430     return createError(
431         "invalid section linked to " + describe(Obj, Sec) + ": expected " +
432         object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) +
433         ", but got " +
434         object::getELFSectionTypeName(Obj.getHeader().e_machine,
435                                       (*SymtabOrErr)->sh_type));
436 
437   Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr);
438   if (!StrTabOrErr)
439     return createError(
440         "can't get a string table for the symbol table linked to " +
441         describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError()));
442 
443   Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr);
444   if (!SymsOrErr)
445     return createError("unable to read symbols from the " + describe(Obj, Sec) +
446                        ": " + toString(SymsOrErr.takeError()));
447 
448   return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr};
449 }
450 
451 } // namespace
452 
453 template <class ELFT>
454 Expected<ArrayRef<typename ELFT::Versym>>
getVersionTable(const Elf_Shdr & Sec,ArrayRef<Elf_Sym> * SymTab,StringRef * StrTab,const Elf_Shdr ** SymTabSec) const455 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
456                                  StringRef *StrTab,
457                                  const Elf_Shdr **SymTabSec) const {
458   assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec));
459   if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) %
460           sizeof(uint16_t) !=
461       0)
462     return createError("the " + describe(Sec) + " is misaligned");
463 
464   Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
465       Obj.template getSectionContentsAsArray<Elf_Versym>(Sec);
466   if (!VersionsOrErr)
467     return createError("cannot read content of " + describe(Sec) + ": " +
468                        toString(VersionsOrErr.takeError()));
469 
470   Expected<SymtabLink<ELFT>> SymTabOrErr =
471       getLinkAsSymtab(Obj, Sec, SHT_DYNSYM);
472   if (!SymTabOrErr) {
473     reportUniqueWarning(SymTabOrErr.takeError());
474     return *VersionsOrErr;
475   }
476 
477   if (SymTabOrErr->Symbols.size() != VersionsOrErr->size())
478     reportUniqueWarning(describe(Sec) + ": the number of entries (" +
479                         Twine(VersionsOrErr->size()) +
480                         ") does not match the number of symbols (" +
481                         Twine(SymTabOrErr->Symbols.size()) +
482                         ") in the symbol table with index " +
483                         Twine(Sec.sh_link));
484 
485   if (SymTab) {
486     *SymTab = SymTabOrErr->Symbols;
487     *StrTab = SymTabOrErr->StringTable;
488     *SymTabSec = SymTabOrErr->SymTab;
489   }
490   return *VersionsOrErr;
491 }
492 
493 template <class ELFT>
printSymbolsHelper(bool IsDynamic) const494 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
495   std::optional<StringRef> StrTable;
496   size_t Entries = 0;
497   Elf_Sym_Range Syms(nullptr, nullptr);
498   const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec;
499 
500   if (IsDynamic) {
501     StrTable = DynamicStringTable;
502     Syms = dynamic_symbols();
503     Entries = Syms.size();
504   } else if (DotSymtabSec) {
505     if (Expected<StringRef> StrTableOrErr =
506             Obj.getStringTableForSymtab(*DotSymtabSec))
507       StrTable = *StrTableOrErr;
508     else
509       reportUniqueWarning(
510           "unable to get the string table for the SHT_SYMTAB section: " +
511           toString(StrTableOrErr.takeError()));
512 
513     if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec))
514       Syms = *SymsOrErr;
515     else
516       reportUniqueWarning(
517           "unable to read symbols from the SHT_SYMTAB section: " +
518           toString(SymsOrErr.takeError()));
519     Entries = DotSymtabSec->getEntityCount();
520   }
521   if (Syms.empty())
522     return;
523 
524   // The st_other field has 2 logical parts. The first two bits hold the symbol
525   // visibility (STV_*) and the remainder hold other platform-specific values.
526   bool NonVisibilityBitsUsed =
527       llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; });
528 
529   DataRegion<Elf_Word> ShndxTable =
530       IsDynamic ? DataRegion<Elf_Word>(
531                       (const Elf_Word *)this->DynSymTabShndxRegion.Addr,
532                       this->getElfObject().getELFFile().end())
533                 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec));
534 
535   printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed);
536   for (const Elf_Sym &Sym : Syms)
537     printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic,
538                 NonVisibilityBitsUsed);
539 }
540 
541 template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> {
542   formatted_raw_ostream &OS;
543 
544 public:
545   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
546 
GNUELFDumper(const object::ELFObjectFile<ELFT> & ObjF,ScopedPrinter & Writer)547   GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
548       : ELFDumper<ELFT>(ObjF, Writer),
549         OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) {
550     assert(&this->W.getOStream() == &llvm::fouts());
551   }
552 
553   void printFileSummary(StringRef FileStr, ObjectFile &Obj,
554                         ArrayRef<std::string> InputFilenames,
555                         const Archive *A) override;
556   void printFileHeaders() override;
557   void printGroupSections() override;
558   void printRelocations() override;
559   void printSectionHeaders() override;
560   void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
561   void printHashSymbols() override;
562   void printSectionDetails() override;
563   void printDependentLibs() override;
564   void printDynamicTable() override;
565   void printDynamicRelocations() override;
566   void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
567                           bool NonVisibilityBitsUsed) const override;
568   void printProgramHeaders(bool PrintProgramHeaders,
569                            cl::boolOrDefault PrintSectionMapping) override;
570   void printVersionSymbolSection(const Elf_Shdr *Sec) override;
571   void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
572   void printVersionDependencySection(const Elf_Shdr *Sec) override;
573   void printHashHistograms() override;
574   void printCGProfile() override;
575   void printBBAddrMaps() override;
576   void printAddrsig() override;
577   void printNotes() override;
578   void printELFLinkerOptions() override;
579   void printStackSizes() override;
580 
581 private:
582   void printHashHistogram(const Elf_Hash &HashTable);
583   void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable);
584   void printHashTableSymbols(const Elf_Hash &HashTable);
585   void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable);
586 
587   struct Field {
588     std::string Str;
589     unsigned Column;
590 
Field__anon28a7ad930111::GNUELFDumper::Field591     Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {}
Field__anon28a7ad930111::GNUELFDumper::Field592     Field(unsigned Col) : Column(Col) {}
593   };
594 
595   template <typename T, typename TEnum>
printFlags(T Value,ArrayRef<EnumEntry<TEnum>> EnumValues,TEnum EnumMask1={},TEnum EnumMask2={},TEnum EnumMask3={}) const596   std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
597                          TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
598                          TEnum EnumMask3 = {}) const {
599     std::string Str;
600     for (const EnumEntry<TEnum> &Flag : EnumValues) {
601       if (Flag.Value == 0)
602         continue;
603 
604       TEnum EnumMask{};
605       if (Flag.Value & EnumMask1)
606         EnumMask = EnumMask1;
607       else if (Flag.Value & EnumMask2)
608         EnumMask = EnumMask2;
609       else if (Flag.Value & EnumMask3)
610         EnumMask = EnumMask3;
611       bool IsEnum = (Flag.Value & EnumMask) != 0;
612       if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
613           (IsEnum && (Value & EnumMask) == Flag.Value)) {
614         if (!Str.empty())
615           Str += ", ";
616         Str += Flag.AltName;
617       }
618     }
619     return Str;
620   }
621 
printField(struct Field F) const622   formatted_raw_ostream &printField(struct Field F) const {
623     if (F.Column != 0)
624       OS.PadToColumn(F.Column);
625     OS << F.Str;
626     OS.flush();
627     return OS;
628   }
629   void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex,
630                          DataRegion<Elf_Word> ShndxTable, StringRef StrTable,
631                          uint32_t Bucket);
632   void printRelrReloc(const Elf_Relr &R) override;
633   void printRelRelaReloc(const Relocation<ELFT> &R,
634                          const RelSymbol<ELFT> &RelSym) override;
635   void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
636                    DataRegion<Elf_Word> ShndxTable,
637                    std::optional<StringRef> StrTable, bool IsDynamic,
638                    bool NonVisibilityBitsUsed) const override;
639   void printDynamicRelocHeader(unsigned Type, StringRef Name,
640                                const DynRegionInfo &Reg) override;
641 
642   std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex,
643                                   DataRegion<Elf_Word> ShndxTable) const;
644   void printProgramHeaders() override;
645   void printSectionMapping() override;
646   void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec,
647                                     const Twine &Label, unsigned EntriesNum);
648 
649   void printStackSizeEntry(uint64_t Size,
650                            ArrayRef<std::string> FuncNames) override;
651 
652   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
653   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
654   void printMipsABIFlags() override;
655 };
656 
657 template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> {
658 public:
659   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
660 
LLVMELFDumper(const object::ELFObjectFile<ELFT> & ObjF,ScopedPrinter & Writer)661   LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
662       : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {}
663 
664   void printFileHeaders() override;
665   void printGroupSections() override;
666   void printRelocations() override;
667   void printSectionHeaders() override;
668   void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
669   void printDependentLibs() override;
670   void printDynamicTable() override;
671   void printDynamicRelocations() override;
672   void printProgramHeaders(bool PrintProgramHeaders,
673                            cl::boolOrDefault PrintSectionMapping) override;
674   void printVersionSymbolSection(const Elf_Shdr *Sec) override;
675   void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
676   void printVersionDependencySection(const Elf_Shdr *Sec) override;
677   void printHashHistograms() override;
678   void printCGProfile() override;
679   void printBBAddrMaps() override;
680   void printAddrsig() override;
681   void printNotes() override;
682   void printELFLinkerOptions() override;
683   void printStackSizes() override;
684 
685 private:
686   void printRelrReloc(const Elf_Relr &R) override;
687   void printRelRelaReloc(const Relocation<ELFT> &R,
688                          const RelSymbol<ELFT> &RelSym) override;
689 
690   void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex,
691                           DataRegion<Elf_Word> ShndxTable) const;
692   void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
693                    DataRegion<Elf_Word> ShndxTable,
694                    std::optional<StringRef> StrTable, bool IsDynamic,
695                    bool /*NonVisibilityBitsUsed*/) const override;
696   void printProgramHeaders() override;
printSectionMapping()697   void printSectionMapping() override {}
698   void printStackSizeEntry(uint64_t Size,
699                            ArrayRef<std::string> FuncNames) override;
700 
701   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
702   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
703   void printMipsABIFlags() override;
704 
705 protected:
706   ScopedPrinter &W;
707 };
708 
709 // JSONELFDumper shares most of the same implementation as LLVMELFDumper except
710 // it uses a JSONScopedPrinter.
711 template <typename ELFT> class JSONELFDumper : public LLVMELFDumper<ELFT> {
712 public:
713   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
714 
JSONELFDumper(const object::ELFObjectFile<ELFT> & ObjF,ScopedPrinter & Writer)715   JSONELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
716       : LLVMELFDumper<ELFT>(ObjF, Writer) {}
717 
718   void printFileSummary(StringRef FileStr, ObjectFile &Obj,
719                         ArrayRef<std::string> InputFilenames,
720                         const Archive *A) override;
721 
722 private:
723   std::unique_ptr<DictScope> FileScope;
724 };
725 
726 } // end anonymous namespace
727 
728 namespace llvm {
729 
730 template <class ELFT>
731 static std::unique_ptr<ObjDumper>
createELFDumper(const ELFObjectFile<ELFT> & Obj,ScopedPrinter & Writer)732 createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) {
733   if (opts::Output == opts::GNU)
734     return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer);
735   else if (opts::Output == opts::JSON)
736     return std::make_unique<JSONELFDumper<ELFT>>(Obj, Writer);
737   return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer);
738 }
739 
createELFDumper(const object::ELFObjectFileBase & Obj,ScopedPrinter & Writer)740 std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj,
741                                            ScopedPrinter &Writer) {
742   // Little-endian 32-bit
743   if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj))
744     return createELFDumper(*ELFObj, Writer);
745 
746   // Big-endian 32-bit
747   if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj))
748     return createELFDumper(*ELFObj, Writer);
749 
750   // Little-endian 64-bit
751   if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj))
752     return createELFDumper(*ELFObj, Writer);
753 
754   // Big-endian 64-bit
755   return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer);
756 }
757 
758 } // end namespace llvm
759 
760 template <class ELFT>
761 Expected<SmallVector<std::optional<VersionEntry>, 0> *>
getVersionMap() const762 ELFDumper<ELFT>::getVersionMap() const {
763   // If the VersionMap has already been loaded or if there is no dynamic symtab
764   // or version table, there is nothing to do.
765   if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection)
766     return &VersionMap;
767 
768   Expected<SmallVector<std::optional<VersionEntry>, 0>> MapOrErr =
769       Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection);
770   if (MapOrErr)
771     VersionMap = *MapOrErr;
772   else
773     return MapOrErr.takeError();
774 
775   return &VersionMap;
776 }
777 
778 template <typename ELFT>
getSymbolVersion(const Elf_Sym & Sym,bool & IsDefault) const779 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym,
780                                                       bool &IsDefault) const {
781   // This is a dynamic symbol. Look in the GNU symbol version table.
782   if (!SymbolVersionSection) {
783     // No version table.
784     IsDefault = false;
785     return "";
786   }
787 
788   assert(DynSymRegion && "DynSymRegion has not been initialised");
789   // Determine the position in the symbol table of this entry.
790   size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) -
791                        reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) /
792                       sizeof(Elf_Sym);
793 
794   // Get the corresponding version index entry.
795   Expected<const Elf_Versym *> EntryOrErr =
796       Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex);
797   if (!EntryOrErr)
798     return EntryOrErr.takeError();
799 
800   unsigned Version = (*EntryOrErr)->vs_index;
801   if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) {
802     IsDefault = false;
803     return "";
804   }
805 
806   Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr =
807       getVersionMap();
808   if (!MapOrErr)
809     return MapOrErr.takeError();
810 
811   return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr,
812                                      Sym.st_shndx == ELF::SHN_UNDEF);
813 }
814 
815 template <typename ELFT>
816 Expected<RelSymbol<ELFT>>
getRelocationTarget(const Relocation<ELFT> & R,const Elf_Shdr * SymTab) const817 ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R,
818                                      const Elf_Shdr *SymTab) const {
819   if (R.Symbol == 0)
820     return RelSymbol<ELFT>(nullptr, "");
821 
822   Expected<const Elf_Sym *> SymOrErr =
823       Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol);
824   if (!SymOrErr)
825     return createError("unable to read an entry with index " + Twine(R.Symbol) +
826                        " from " + describe(*SymTab) + ": " +
827                        toString(SymOrErr.takeError()));
828   const Elf_Sym *Sym = *SymOrErr;
829   if (!Sym)
830     return RelSymbol<ELFT>(nullptr, "");
831 
832   Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab);
833   if (!StrTableOrErr)
834     return StrTableOrErr.takeError();
835 
836   const Elf_Sym *FirstSym =
837       cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0));
838   std::string SymbolName =
839       getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab),
840                         *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM);
841   return RelSymbol<ELFT>(Sym, SymbolName);
842 }
843 
844 template <typename ELFT>
845 ArrayRef<typename ELFT::Word>
getShndxTable(const Elf_Shdr * Symtab) const846 ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const {
847   if (Symtab) {
848     auto It = ShndxTables.find(Symtab);
849     if (It != ShndxTables.end())
850       return It->second;
851   }
852   return {};
853 }
854 
maybeDemangle(StringRef Name)855 static std::string maybeDemangle(StringRef Name) {
856   return opts::Demangle ? demangle(std::string(Name)) : Name.str();
857 }
858 
859 template <typename ELFT>
getStaticSymbolName(uint32_t Index) const860 std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
861   auto Warn = [&](Error E) -> std::string {
862     reportUniqueWarning("unable to read the name of symbol with index " +
863                         Twine(Index) + ": " + toString(std::move(E)));
864     return "<?>";
865   };
866 
867   Expected<const typename ELFT::Sym *> SymOrErr =
868       Obj.getSymbol(DotSymtabSec, Index);
869   if (!SymOrErr)
870     return Warn(SymOrErr.takeError());
871 
872   Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec);
873   if (!StrTabOrErr)
874     return Warn(StrTabOrErr.takeError());
875 
876   Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
877   if (!NameOrErr)
878     return Warn(NameOrErr.takeError());
879   return maybeDemangle(*NameOrErr);
880 }
881 
882 template <typename ELFT>
getFullSymbolName(const Elf_Sym & Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable,std::optional<StringRef> StrTable,bool IsDynamic) const883 std::string ELFDumper<ELFT>::getFullSymbolName(
884     const Elf_Sym &Symbol, unsigned SymIndex, DataRegion<Elf_Word> ShndxTable,
885     std::optional<StringRef> StrTable, bool IsDynamic) const {
886   if (!StrTable)
887     return "<?>";
888 
889   std::string SymbolName;
890   if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) {
891     SymbolName = maybeDemangle(*NameOrErr);
892   } else {
893     reportUniqueWarning(NameOrErr.takeError());
894     return "<?>";
895   }
896 
897   if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) {
898     Expected<unsigned> SectionIndex =
899         getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
900     if (!SectionIndex) {
901       reportUniqueWarning(SectionIndex.takeError());
902       return "<?>";
903     }
904     Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
905     if (!NameOrErr) {
906       reportUniqueWarning(NameOrErr.takeError());
907       return ("<section " + Twine(*SectionIndex) + ">").str();
908     }
909     return std::string(*NameOrErr);
910   }
911 
912   if (!IsDynamic)
913     return SymbolName;
914 
915   bool IsDefault;
916   Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault);
917   if (!VersionOrErr) {
918     reportUniqueWarning(VersionOrErr.takeError());
919     return SymbolName + "@<corrupt>";
920   }
921 
922   if (!VersionOrErr->empty()) {
923     SymbolName += (IsDefault ? "@@" : "@");
924     SymbolName += *VersionOrErr;
925   }
926   return SymbolName;
927 }
928 
929 template <typename ELFT>
930 Expected<unsigned>
getSymbolSectionIndex(const Elf_Sym & Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable) const931 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
932                                        DataRegion<Elf_Word> ShndxTable) const {
933   unsigned Ndx = Symbol.st_shndx;
934   if (Ndx == SHN_XINDEX)
935     return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex,
936                                                      ShndxTable);
937   if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE)
938     return Ndx;
939 
940   auto CreateErr = [&](const Twine &Name,
941                        std::optional<unsigned> Offset = std::nullopt) {
942     std::string Desc;
943     if (Offset)
944       Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str();
945     else
946       Desc = Name.str();
947     return createError(
948         "unable to get section index for symbol with st_shndx = 0x" +
949         Twine::utohexstr(Ndx) + " (" + Desc + ")");
950   };
951 
952   if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC)
953     return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC);
954   if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS)
955     return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS);
956   if (Ndx == ELF::SHN_UNDEF)
957     return CreateErr("SHN_UNDEF");
958   if (Ndx == ELF::SHN_ABS)
959     return CreateErr("SHN_ABS");
960   if (Ndx == ELF::SHN_COMMON)
961     return CreateErr("SHN_COMMON");
962   return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE);
963 }
964 
965 template <typename ELFT>
966 Expected<StringRef>
getSymbolSectionName(const Elf_Sym & Symbol,unsigned SectionIndex) const967 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol,
968                                       unsigned SectionIndex) const {
969   Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex);
970   if (!SecOrErr)
971     return SecOrErr.takeError();
972   return Obj.getSectionName(**SecOrErr);
973 }
974 
975 template <class ELFO>
976 static const typename ELFO::Elf_Shdr *
findNotEmptySectionByAddress(const ELFO & Obj,StringRef FileName,uint64_t Addr)977 findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName,
978                              uint64_t Addr) {
979   for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections()))
980     if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
981       return &Shdr;
982   return nullptr;
983 }
984 
985 const EnumEntry<unsigned> ElfClass[] = {
986   {"None",   "none",   ELF::ELFCLASSNONE},
987   {"32-bit", "ELF32",  ELF::ELFCLASS32},
988   {"64-bit", "ELF64",  ELF::ELFCLASS64},
989 };
990 
991 const EnumEntry<unsigned> ElfDataEncoding[] = {
992   {"None",         "none",                          ELF::ELFDATANONE},
993   {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
994   {"BigEndian",    "2's complement, big endian",    ELF::ELFDATA2MSB},
995 };
996 
997 const EnumEntry<unsigned> ElfObjectFileType[] = {
998   {"None",         "NONE (none)",              ELF::ET_NONE},
999   {"Relocatable",  "REL (Relocatable file)",   ELF::ET_REL},
1000   {"Executable",   "EXEC (Executable file)",   ELF::ET_EXEC},
1001   {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
1002   {"Core",         "CORE (Core file)",         ELF::ET_CORE},
1003 };
1004 
1005 const EnumEntry<unsigned> ElfOSABI[] = {
1006   {"SystemV",      "UNIX - System V",      ELF::ELFOSABI_NONE},
1007   {"HPUX",         "UNIX - HP-UX",         ELF::ELFOSABI_HPUX},
1008   {"NetBSD",       "UNIX - NetBSD",        ELF::ELFOSABI_NETBSD},
1009   {"GNU/Linux",    "UNIX - GNU",           ELF::ELFOSABI_LINUX},
1010   {"GNU/Hurd",     "GNU/Hurd",             ELF::ELFOSABI_HURD},
1011   {"Solaris",      "UNIX - Solaris",       ELF::ELFOSABI_SOLARIS},
1012   {"AIX",          "UNIX - AIX",           ELF::ELFOSABI_AIX},
1013   {"IRIX",         "UNIX - IRIX",          ELF::ELFOSABI_IRIX},
1014   {"FreeBSD",      "UNIX - FreeBSD",       ELF::ELFOSABI_FREEBSD},
1015   {"TRU64",        "UNIX - TRU64",         ELF::ELFOSABI_TRU64},
1016   {"Modesto",      "Novell - Modesto",     ELF::ELFOSABI_MODESTO},
1017   {"OpenBSD",      "UNIX - OpenBSD",       ELF::ELFOSABI_OPENBSD},
1018   {"OpenVMS",      "VMS - OpenVMS",        ELF::ELFOSABI_OPENVMS},
1019   {"NSK",          "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
1020   {"AROS",         "AROS",                 ELF::ELFOSABI_AROS},
1021   {"FenixOS",      "FenixOS",              ELF::ELFOSABI_FENIXOS},
1022   {"CloudABI",     "CloudABI",             ELF::ELFOSABI_CLOUDABI},
1023   {"Standalone",   "Standalone App",       ELF::ELFOSABI_STANDALONE}
1024 };
1025 
1026 const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
1027   {"AMDGPU_HSA",    "AMDGPU - HSA",    ELF::ELFOSABI_AMDGPU_HSA},
1028   {"AMDGPU_PAL",    "AMDGPU - PAL",    ELF::ELFOSABI_AMDGPU_PAL},
1029   {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
1030 };
1031 
1032 const EnumEntry<unsigned> ARMElfOSABI[] = {
1033   {"ARM", "ARM", ELF::ELFOSABI_ARM}
1034 };
1035 
1036 const EnumEntry<unsigned> C6000ElfOSABI[] = {
1037   {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
1038   {"C6000_LINUX",  "Linux C6000",      ELF::ELFOSABI_C6000_LINUX}
1039 };
1040 
1041 const EnumEntry<unsigned> ElfMachineType[] = {
1042   ENUM_ENT(EM_NONE,          "None"),
1043   ENUM_ENT(EM_M32,           "WE32100"),
1044   ENUM_ENT(EM_SPARC,         "Sparc"),
1045   ENUM_ENT(EM_386,           "Intel 80386"),
1046   ENUM_ENT(EM_68K,           "MC68000"),
1047   ENUM_ENT(EM_88K,           "MC88000"),
1048   ENUM_ENT(EM_IAMCU,         "EM_IAMCU"),
1049   ENUM_ENT(EM_860,           "Intel 80860"),
1050   ENUM_ENT(EM_MIPS,          "MIPS R3000"),
1051   ENUM_ENT(EM_S370,          "IBM System/370"),
1052   ENUM_ENT(EM_MIPS_RS3_LE,   "MIPS R3000 little-endian"),
1053   ENUM_ENT(EM_PARISC,        "HPPA"),
1054   ENUM_ENT(EM_VPP500,        "Fujitsu VPP500"),
1055   ENUM_ENT(EM_SPARC32PLUS,   "Sparc v8+"),
1056   ENUM_ENT(EM_960,           "Intel 80960"),
1057   ENUM_ENT(EM_PPC,           "PowerPC"),
1058   ENUM_ENT(EM_PPC64,         "PowerPC64"),
1059   ENUM_ENT(EM_S390,          "IBM S/390"),
1060   ENUM_ENT(EM_SPU,           "SPU"),
1061   ENUM_ENT(EM_V800,          "NEC V800 series"),
1062   ENUM_ENT(EM_FR20,          "Fujistsu FR20"),
1063   ENUM_ENT(EM_RH32,          "TRW RH-32"),
1064   ENUM_ENT(EM_RCE,           "Motorola RCE"),
1065   ENUM_ENT(EM_ARM,           "ARM"),
1066   ENUM_ENT(EM_ALPHA,         "EM_ALPHA"),
1067   ENUM_ENT(EM_SH,            "Hitachi SH"),
1068   ENUM_ENT(EM_SPARCV9,       "Sparc v9"),
1069   ENUM_ENT(EM_TRICORE,       "Siemens Tricore"),
1070   ENUM_ENT(EM_ARC,           "ARC"),
1071   ENUM_ENT(EM_H8_300,        "Hitachi H8/300"),
1072   ENUM_ENT(EM_H8_300H,       "Hitachi H8/300H"),
1073   ENUM_ENT(EM_H8S,           "Hitachi H8S"),
1074   ENUM_ENT(EM_H8_500,        "Hitachi H8/500"),
1075   ENUM_ENT(EM_IA_64,         "Intel IA-64"),
1076   ENUM_ENT(EM_MIPS_X,        "Stanford MIPS-X"),
1077   ENUM_ENT(EM_COLDFIRE,      "Motorola Coldfire"),
1078   ENUM_ENT(EM_68HC12,        "Motorola MC68HC12 Microcontroller"),
1079   ENUM_ENT(EM_MMA,           "Fujitsu Multimedia Accelerator"),
1080   ENUM_ENT(EM_PCP,           "Siemens PCP"),
1081   ENUM_ENT(EM_NCPU,          "Sony nCPU embedded RISC processor"),
1082   ENUM_ENT(EM_NDR1,          "Denso NDR1 microprocesspr"),
1083   ENUM_ENT(EM_STARCORE,      "Motorola Star*Core processor"),
1084   ENUM_ENT(EM_ME16,          "Toyota ME16 processor"),
1085   ENUM_ENT(EM_ST100,         "STMicroelectronics ST100 processor"),
1086   ENUM_ENT(EM_TINYJ,         "Advanced Logic Corp. TinyJ embedded processor"),
1087   ENUM_ENT(EM_X86_64,        "Advanced Micro Devices X86-64"),
1088   ENUM_ENT(EM_PDSP,          "Sony DSP processor"),
1089   ENUM_ENT(EM_PDP10,         "Digital Equipment Corp. PDP-10"),
1090   ENUM_ENT(EM_PDP11,         "Digital Equipment Corp. PDP-11"),
1091   ENUM_ENT(EM_FX66,          "Siemens FX66 microcontroller"),
1092   ENUM_ENT(EM_ST9PLUS,       "STMicroelectronics ST9+ 8/16 bit microcontroller"),
1093   ENUM_ENT(EM_ST7,           "STMicroelectronics ST7 8-bit microcontroller"),
1094   ENUM_ENT(EM_68HC16,        "Motorola MC68HC16 Microcontroller"),
1095   ENUM_ENT(EM_68HC11,        "Motorola MC68HC11 Microcontroller"),
1096   ENUM_ENT(EM_68HC08,        "Motorola MC68HC08 Microcontroller"),
1097   ENUM_ENT(EM_68HC05,        "Motorola MC68HC05 Microcontroller"),
1098   ENUM_ENT(EM_SVX,           "Silicon Graphics SVx"),
1099   ENUM_ENT(EM_ST19,          "STMicroelectronics ST19 8-bit microcontroller"),
1100   ENUM_ENT(EM_VAX,           "Digital VAX"),
1101   ENUM_ENT(EM_CRIS,          "Axis Communications 32-bit embedded processor"),
1102   ENUM_ENT(EM_JAVELIN,       "Infineon Technologies 32-bit embedded cpu"),
1103   ENUM_ENT(EM_FIREPATH,      "Element 14 64-bit DSP processor"),
1104   ENUM_ENT(EM_ZSP,           "LSI Logic's 16-bit DSP processor"),
1105   ENUM_ENT(EM_MMIX,          "Donald Knuth's educational 64-bit processor"),
1106   ENUM_ENT(EM_HUANY,         "Harvard Universitys's machine-independent object format"),
1107   ENUM_ENT(EM_PRISM,         "Vitesse Prism"),
1108   ENUM_ENT(EM_AVR,           "Atmel AVR 8-bit microcontroller"),
1109   ENUM_ENT(EM_FR30,          "Fujitsu FR30"),
1110   ENUM_ENT(EM_D10V,          "Mitsubishi D10V"),
1111   ENUM_ENT(EM_D30V,          "Mitsubishi D30V"),
1112   ENUM_ENT(EM_V850,          "NEC v850"),
1113   ENUM_ENT(EM_M32R,          "Renesas M32R (formerly Mitsubishi M32r)"),
1114   ENUM_ENT(EM_MN10300,       "Matsushita MN10300"),
1115   ENUM_ENT(EM_MN10200,       "Matsushita MN10200"),
1116   ENUM_ENT(EM_PJ,            "picoJava"),
1117   ENUM_ENT(EM_OPENRISC,      "OpenRISC 32-bit embedded processor"),
1118   ENUM_ENT(EM_ARC_COMPACT,   "EM_ARC_COMPACT"),
1119   ENUM_ENT(EM_XTENSA,        "Tensilica Xtensa Processor"),
1120   ENUM_ENT(EM_VIDEOCORE,     "Alphamosaic VideoCore processor"),
1121   ENUM_ENT(EM_TMM_GPP,       "Thompson Multimedia General Purpose Processor"),
1122   ENUM_ENT(EM_NS32K,         "National Semiconductor 32000 series"),
1123   ENUM_ENT(EM_TPC,           "Tenor Network TPC processor"),
1124   ENUM_ENT(EM_SNP1K,         "EM_SNP1K"),
1125   ENUM_ENT(EM_ST200,         "STMicroelectronics ST200 microcontroller"),
1126   ENUM_ENT(EM_IP2K,          "Ubicom IP2xxx 8-bit microcontrollers"),
1127   ENUM_ENT(EM_MAX,           "MAX Processor"),
1128   ENUM_ENT(EM_CR,            "National Semiconductor CompactRISC"),
1129   ENUM_ENT(EM_F2MC16,        "Fujitsu F2MC16"),
1130   ENUM_ENT(EM_MSP430,        "Texas Instruments msp430 microcontroller"),
1131   ENUM_ENT(EM_BLACKFIN,      "Analog Devices Blackfin"),
1132   ENUM_ENT(EM_SE_C33,        "S1C33 Family of Seiko Epson processors"),
1133   ENUM_ENT(EM_SEP,           "Sharp embedded microprocessor"),
1134   ENUM_ENT(EM_ARCA,          "Arca RISC microprocessor"),
1135   ENUM_ENT(EM_UNICORE,       "Unicore"),
1136   ENUM_ENT(EM_EXCESS,        "eXcess 16/32/64-bit configurable embedded CPU"),
1137   ENUM_ENT(EM_DXP,           "Icera Semiconductor Inc. Deep Execution Processor"),
1138   ENUM_ENT(EM_ALTERA_NIOS2,  "Altera Nios"),
1139   ENUM_ENT(EM_CRX,           "National Semiconductor CRX microprocessor"),
1140   ENUM_ENT(EM_XGATE,         "Motorola XGATE embedded processor"),
1141   ENUM_ENT(EM_C166,          "Infineon Technologies xc16x"),
1142   ENUM_ENT(EM_M16C,          "Renesas M16C"),
1143   ENUM_ENT(EM_DSPIC30F,      "Microchip Technology dsPIC30F Digital Signal Controller"),
1144   ENUM_ENT(EM_CE,            "Freescale Communication Engine RISC core"),
1145   ENUM_ENT(EM_M32C,          "Renesas M32C"),
1146   ENUM_ENT(EM_TSK3000,       "Altium TSK3000 core"),
1147   ENUM_ENT(EM_RS08,          "Freescale RS08 embedded processor"),
1148   ENUM_ENT(EM_SHARC,         "EM_SHARC"),
1149   ENUM_ENT(EM_ECOG2,         "Cyan Technology eCOG2 microprocessor"),
1150   ENUM_ENT(EM_SCORE7,        "SUNPLUS S+Core"),
1151   ENUM_ENT(EM_DSP24,         "New Japan Radio (NJR) 24-bit DSP Processor"),
1152   ENUM_ENT(EM_VIDEOCORE3,    "Broadcom VideoCore III processor"),
1153   ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
1154   ENUM_ENT(EM_SE_C17,        "Seiko Epson C17 family"),
1155   ENUM_ENT(EM_TI_C6000,      "Texas Instruments TMS320C6000 DSP family"),
1156   ENUM_ENT(EM_TI_C2000,      "Texas Instruments TMS320C2000 DSP family"),
1157   ENUM_ENT(EM_TI_C5500,      "Texas Instruments TMS320C55x DSP family"),
1158   ENUM_ENT(EM_MMDSP_PLUS,    "STMicroelectronics 64bit VLIW Data Signal Processor"),
1159   ENUM_ENT(EM_CYPRESS_M8C,   "Cypress M8C microprocessor"),
1160   ENUM_ENT(EM_R32C,          "Renesas R32C series microprocessors"),
1161   ENUM_ENT(EM_TRIMEDIA,      "NXP Semiconductors TriMedia architecture family"),
1162   ENUM_ENT(EM_HEXAGON,       "Qualcomm Hexagon"),
1163   ENUM_ENT(EM_8051,          "Intel 8051 and variants"),
1164   ENUM_ENT(EM_STXP7X,        "STMicroelectronics STxP7x family"),
1165   ENUM_ENT(EM_NDS32,         "Andes Technology compact code size embedded RISC processor family"),
1166   ENUM_ENT(EM_ECOG1,         "Cyan Technology eCOG1 microprocessor"),
1167   // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1168   //        an identical number to EM_ECOG1.
1169   ENUM_ENT(EM_ECOG1X,        "Cyan Technology eCOG1X family"),
1170   ENUM_ENT(EM_MAXQ30,        "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1171   ENUM_ENT(EM_XIMO16,        "New Japan Radio (NJR) 16-bit DSP Processor"),
1172   ENUM_ENT(EM_MANIK,         "M2000 Reconfigurable RISC Microprocessor"),
1173   ENUM_ENT(EM_CRAYNV2,       "Cray Inc. NV2 vector architecture"),
1174   ENUM_ENT(EM_RX,            "Renesas RX"),
1175   ENUM_ENT(EM_METAG,         "Imagination Technologies Meta processor architecture"),
1176   ENUM_ENT(EM_MCST_ELBRUS,   "MCST Elbrus general purpose hardware architecture"),
1177   ENUM_ENT(EM_ECOG16,        "Cyan Technology eCOG16 family"),
1178   ENUM_ENT(EM_CR16,          "National Semiconductor CompactRISC 16-bit processor"),
1179   ENUM_ENT(EM_ETPU,          "Freescale Extended Time Processing Unit"),
1180   ENUM_ENT(EM_SLE9X,         "Infineon Technologies SLE9X core"),
1181   ENUM_ENT(EM_L10M,          "EM_L10M"),
1182   ENUM_ENT(EM_K10M,          "EM_K10M"),
1183   ENUM_ENT(EM_AARCH64,       "AArch64"),
1184   ENUM_ENT(EM_AVR32,         "Atmel Corporation 32-bit microprocessor family"),
1185   ENUM_ENT(EM_STM8,          "STMicroeletronics STM8 8-bit microcontroller"),
1186   ENUM_ENT(EM_TILE64,        "Tilera TILE64 multicore architecture family"),
1187   ENUM_ENT(EM_TILEPRO,       "Tilera TILEPro multicore architecture family"),
1188   ENUM_ENT(EM_MICROBLAZE,    "Xilinx MicroBlaze 32-bit RISC soft processor core"),
1189   ENUM_ENT(EM_CUDA,          "NVIDIA CUDA architecture"),
1190   ENUM_ENT(EM_TILEGX,        "Tilera TILE-Gx multicore architecture family"),
1191   ENUM_ENT(EM_CLOUDSHIELD,   "EM_CLOUDSHIELD"),
1192   ENUM_ENT(EM_COREA_1ST,     "EM_COREA_1ST"),
1193   ENUM_ENT(EM_COREA_2ND,     "EM_COREA_2ND"),
1194   ENUM_ENT(EM_ARC_COMPACT2,  "EM_ARC_COMPACT2"),
1195   ENUM_ENT(EM_OPEN8,         "EM_OPEN8"),
1196   ENUM_ENT(EM_RL78,          "Renesas RL78"),
1197   ENUM_ENT(EM_VIDEOCORE5,    "Broadcom VideoCore V processor"),
1198   ENUM_ENT(EM_78KOR,         "EM_78KOR"),
1199   ENUM_ENT(EM_56800EX,       "EM_56800EX"),
1200   ENUM_ENT(EM_AMDGPU,        "EM_AMDGPU"),
1201   ENUM_ENT(EM_RISCV,         "RISC-V"),
1202   ENUM_ENT(EM_LANAI,         "EM_LANAI"),
1203   ENUM_ENT(EM_BPF,           "EM_BPF"),
1204   ENUM_ENT(EM_VE,            "NEC SX-Aurora Vector Engine"),
1205   ENUM_ENT(EM_LOONGARCH,     "LoongArch"),
1206 };
1207 
1208 const EnumEntry<unsigned> ElfSymbolBindings[] = {
1209     {"Local",  "LOCAL",  ELF::STB_LOCAL},
1210     {"Global", "GLOBAL", ELF::STB_GLOBAL},
1211     {"Weak",   "WEAK",   ELF::STB_WEAK},
1212     {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1213 
1214 const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1215     {"DEFAULT",   "DEFAULT",   ELF::STV_DEFAULT},
1216     {"INTERNAL",  "INTERNAL",  ELF::STV_INTERNAL},
1217     {"HIDDEN",    "HIDDEN",    ELF::STV_HIDDEN},
1218     {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1219 
1220 const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1221   { "AMDGPU_HSA_KERNEL",            ELF::STT_AMDGPU_HSA_KERNEL }
1222 };
1223 
getGroupType(uint32_t Flag)1224 static const char *getGroupType(uint32_t Flag) {
1225   if (Flag & ELF::GRP_COMDAT)
1226     return "COMDAT";
1227   else
1228     return "(unknown)";
1229 }
1230 
1231 const EnumEntry<unsigned> ElfSectionFlags[] = {
1232   ENUM_ENT(SHF_WRITE,            "W"),
1233   ENUM_ENT(SHF_ALLOC,            "A"),
1234   ENUM_ENT(SHF_EXECINSTR,        "X"),
1235   ENUM_ENT(SHF_MERGE,            "M"),
1236   ENUM_ENT(SHF_STRINGS,          "S"),
1237   ENUM_ENT(SHF_INFO_LINK,        "I"),
1238   ENUM_ENT(SHF_LINK_ORDER,       "L"),
1239   ENUM_ENT(SHF_OS_NONCONFORMING, "O"),
1240   ENUM_ENT(SHF_GROUP,            "G"),
1241   ENUM_ENT(SHF_TLS,              "T"),
1242   ENUM_ENT(SHF_COMPRESSED,       "C"),
1243   ENUM_ENT(SHF_EXCLUDE,          "E"),
1244 };
1245 
1246 const EnumEntry<unsigned> ElfGNUSectionFlags[] = {
1247   ENUM_ENT(SHF_GNU_RETAIN, "R")
1248 };
1249 
1250 const EnumEntry<unsigned> ElfSolarisSectionFlags[] = {
1251   ENUM_ENT(SHF_SUNW_NODISCARD, "R")
1252 };
1253 
1254 const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1255   ENUM_ENT(XCORE_SHF_CP_SECTION, ""),
1256   ENUM_ENT(XCORE_SHF_DP_SECTION, "")
1257 };
1258 
1259 const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1260   ENUM_ENT(SHF_ARM_PURECODE, "y")
1261 };
1262 
1263 const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1264   ENUM_ENT(SHF_HEX_GPREL, "")
1265 };
1266 
1267 const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1268   ENUM_ENT(SHF_MIPS_NODUPES, ""),
1269   ENUM_ENT(SHF_MIPS_NAMES,   ""),
1270   ENUM_ENT(SHF_MIPS_LOCAL,   ""),
1271   ENUM_ENT(SHF_MIPS_NOSTRIP, ""),
1272   ENUM_ENT(SHF_MIPS_GPREL,   ""),
1273   ENUM_ENT(SHF_MIPS_MERGE,   ""),
1274   ENUM_ENT(SHF_MIPS_ADDR,    ""),
1275   ENUM_ENT(SHF_MIPS_STRING,  "")
1276 };
1277 
1278 const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1279   ENUM_ENT(SHF_X86_64_LARGE, "l")
1280 };
1281 
1282 static std::vector<EnumEntry<unsigned>>
getSectionFlagsForTarget(unsigned EOSAbi,unsigned EMachine)1283 getSectionFlagsForTarget(unsigned EOSAbi, unsigned EMachine) {
1284   std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
1285                                        std::end(ElfSectionFlags));
1286   switch (EOSAbi) {
1287   case ELFOSABI_SOLARIS:
1288     Ret.insert(Ret.end(), std::begin(ElfSolarisSectionFlags),
1289                std::end(ElfSolarisSectionFlags));
1290     break;
1291   default:
1292     Ret.insert(Ret.end(), std::begin(ElfGNUSectionFlags),
1293                std::end(ElfGNUSectionFlags));
1294     break;
1295   }
1296   switch (EMachine) {
1297   case EM_ARM:
1298     Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
1299                std::end(ElfARMSectionFlags));
1300     break;
1301   case EM_HEXAGON:
1302     Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
1303                std::end(ElfHexagonSectionFlags));
1304     break;
1305   case EM_MIPS:
1306     Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
1307                std::end(ElfMipsSectionFlags));
1308     break;
1309   case EM_X86_64:
1310     Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
1311                std::end(ElfX86_64SectionFlags));
1312     break;
1313   case EM_XCORE:
1314     Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
1315                std::end(ElfXCoreSectionFlags));
1316     break;
1317   default:
1318     break;
1319   }
1320   return Ret;
1321 }
1322 
getGNUFlags(unsigned EOSAbi,unsigned EMachine,uint64_t Flags)1323 static std::string getGNUFlags(unsigned EOSAbi, unsigned EMachine,
1324                                uint64_t Flags) {
1325   // Here we are trying to build the flags string in the same way as GNU does.
1326   // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1327   // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1328   // GNU readelf will not print "E" or "Ep" in this case, but will print just
1329   // "p". It only will print "E" when no other processor flag is set.
1330   std::string Str;
1331   bool HasUnknownFlag = false;
1332   bool HasOSFlag = false;
1333   bool HasProcFlag = false;
1334   std::vector<EnumEntry<unsigned>> FlagsList =
1335       getSectionFlagsForTarget(EOSAbi, EMachine);
1336   while (Flags) {
1337     // Take the least significant bit as a flag.
1338     uint64_t Flag = Flags & -Flags;
1339     Flags -= Flag;
1340 
1341     // Find the flag in the known flags list.
1342     auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
1343       // Flags with empty names are not printed in GNU style output.
1344       return E.Value == Flag && !E.AltName.empty();
1345     });
1346     if (I != FlagsList.end()) {
1347       Str += I->AltName;
1348       continue;
1349     }
1350 
1351     // If we did not find a matching regular flag, then we deal with an OS
1352     // specific flag, processor specific flag or an unknown flag.
1353     if (Flag & ELF::SHF_MASKOS) {
1354       HasOSFlag = true;
1355       Flags &= ~ELF::SHF_MASKOS;
1356     } else if (Flag & ELF::SHF_MASKPROC) {
1357       HasProcFlag = true;
1358       // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1359       // bit if set so that it doesn't also get printed.
1360       Flags &= ~ELF::SHF_MASKPROC;
1361     } else {
1362       HasUnknownFlag = true;
1363     }
1364   }
1365 
1366   // "o", "p" and "x" are printed last.
1367   if (HasOSFlag)
1368     Str += "o";
1369   if (HasProcFlag)
1370     Str += "p";
1371   if (HasUnknownFlag)
1372     Str += "x";
1373   return Str;
1374 }
1375 
segmentTypeToString(unsigned Arch,unsigned Type)1376 static StringRef segmentTypeToString(unsigned Arch, unsigned Type) {
1377   // Check potentially overlapped processor-specific program header type.
1378   switch (Arch) {
1379   case ELF::EM_ARM:
1380     switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
1381     break;
1382   case ELF::EM_MIPS:
1383   case ELF::EM_MIPS_RS3_LE:
1384     switch (Type) {
1385       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
1386       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
1387       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
1388       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
1389     }
1390     break;
1391   case ELF::EM_RISCV:
1392     switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_RISCV_ATTRIBUTES); }
1393   }
1394 
1395   switch (Type) {
1396     LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL);
1397     LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD);
1398     LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
1399     LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP);
1400     LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE);
1401     LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB);
1402     LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR);
1403     LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS);
1404 
1405     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
1406     LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
1407 
1408     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
1409     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
1410     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY);
1411 
1412     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_MUTABLE);
1413     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
1414     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_SYSCALLS);
1415     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
1416     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_NOBTCFI);
1417     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
1418   default:
1419     return "";
1420   }
1421 }
1422 
getGNUPtType(unsigned Arch,unsigned Type)1423 static std::string getGNUPtType(unsigned Arch, unsigned Type) {
1424   StringRef Seg = segmentTypeToString(Arch, Type);
1425   if (Seg.empty())
1426     return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1427 
1428   // E.g. "PT_ARM_EXIDX" -> "EXIDX".
1429   if (Seg.consume_front("PT_ARM_"))
1430     return Seg.str();
1431 
1432   // E.g. "PT_MIPS_REGINFO" -> "REGINFO".
1433   if (Seg.consume_front("PT_MIPS_"))
1434     return Seg.str();
1435 
1436   // E.g. "PT_RISCV_ATTRIBUTES"
1437   if (Seg.consume_front("PT_RISCV_"))
1438     return Seg.str();
1439 
1440   // E.g. "PT_LOAD" -> "LOAD".
1441   assert(Seg.startswith("PT_"));
1442   return Seg.drop_front(3).str();
1443 }
1444 
1445 const EnumEntry<unsigned> ElfSegmentFlags[] = {
1446   LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
1447   LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
1448   LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
1449 };
1450 
1451 const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1452   ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
1453   ENUM_ENT(EF_MIPS_PIC, "pic"),
1454   ENUM_ENT(EF_MIPS_CPIC, "cpic"),
1455   ENUM_ENT(EF_MIPS_ABI2, "abi2"),
1456   ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
1457   ENUM_ENT(EF_MIPS_FP64, "fp64"),
1458   ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
1459   ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
1460   ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
1461   ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
1462   ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
1463   ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
1464   ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
1465   ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
1466   ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
1467   ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
1468   ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
1469   ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
1470   ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
1471   ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
1472   ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
1473   ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
1474   ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
1475   ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
1476   ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
1477   ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
1478   ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
1479   ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
1480   ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
1481   ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
1482   ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
1483   ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
1484   ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
1485   ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
1486   ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
1487   ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
1488   ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
1489   ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
1490   ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
1491   ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
1492   ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
1493   ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
1494   ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
1495 };
1496 
1497 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = {
1498   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1499   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1500   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1501   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1502   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1503   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1504   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1505   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1506   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1507   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1508   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1509   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1510   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1511   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1512   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1513   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1514   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1515   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1516   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1517   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
1518   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1519   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1520   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1521   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1522   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1523   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
1524   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1525   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1526   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1527   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
1528   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1529   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1530   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1531   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1532   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1533   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1534   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1535   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
1536   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
1537   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940),
1538   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1539   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1540   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1541   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013),
1542   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1543   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
1544   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
1545   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
1546   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
1547   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035),
1548   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036),
1549   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1100),
1550   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1101),
1551   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1102),
1552   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1103),
1553   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_V3),
1554   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_V3)
1555 };
1556 
1557 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = {
1558   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1559   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1560   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1561   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1562   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1563   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1564   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1565   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1566   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1567   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1568   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1569   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1570   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1571   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1572   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1573   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1574   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1575   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1576   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1577   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
1578   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1579   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1580   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1581   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1582   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1583   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
1584   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1585   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1586   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1587   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
1588   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1589   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1590   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1591   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1592   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1593   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1594   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1595   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
1596   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
1597   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940),
1598   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1599   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1600   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1601   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013),
1602   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1603   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
1604   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
1605   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
1606   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
1607   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035),
1608   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036),
1609   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1100),
1610   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1101),
1611   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1102),
1612   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1103),
1613   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ANY_V4),
1614   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_OFF_V4),
1615   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ON_V4),
1616   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ANY_V4),
1617   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_OFF_V4),
1618   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ON_V4)
1619 };
1620 
1621 const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1622   ENUM_ENT(EF_RISCV_RVC, "RVC"),
1623   ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
1624   ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
1625   ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
1626   ENUM_ENT(EF_RISCV_RVE, "RVE"),
1627   ENUM_ENT(EF_RISCV_TSO, "TSO"),
1628 };
1629 
1630 const EnumEntry<unsigned> ElfHeaderAVRFlags[] = {
1631   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1),
1632   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2),
1633   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25),
1634   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3),
1635   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31),
1636   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35),
1637   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4),
1638   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5),
1639   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51),
1640   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6),
1641   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY),
1642   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1),
1643   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2),
1644   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3),
1645   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4),
1646   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5),
1647   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6),
1648   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7),
1649   ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"),
1650 };
1651 
1652 const EnumEntry<unsigned> ElfHeaderLoongArchFlags[] = {
1653   ENUM_ENT(EF_LOONGARCH_ABI_SOFT_FLOAT, "SOFT-FLOAT"),
1654   ENUM_ENT(EF_LOONGARCH_ABI_SINGLE_FLOAT, "SINGLE-FLOAT"),
1655   ENUM_ENT(EF_LOONGARCH_ABI_DOUBLE_FLOAT, "DOUBLE-FLOAT"),
1656   ENUM_ENT(EF_LOONGARCH_OBJABI_V0, "OBJ-v0"),
1657   ENUM_ENT(EF_LOONGARCH_OBJABI_V1, "OBJ-v1"),
1658 };
1659 
1660 static const EnumEntry<unsigned> ElfHeaderXtensaFlags[] = {
1661   LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_MACH_NONE),
1662   LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_INSN),
1663   LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_LIT)
1664 };
1665 
1666 const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1667   LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
1668   LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
1669   LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
1670 };
1671 
1672 const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1673   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1674   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1675   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
1676   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
1677 };
1678 
1679 const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = {
1680   LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS)
1681 };
1682 
1683 const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1684   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1685   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1686   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
1687 };
1688 
1689 const EnumEntry<unsigned> ElfRISCVSymOtherFlags[] = {
1690     LLVM_READOBJ_ENUM_ENT(ELF, STO_RISCV_VARIANT_CC)};
1691 
getElfMipsOptionsOdkType(unsigned Odk)1692 static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1693   switch (Odk) {
1694   LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
1695   LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
1696   LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
1697   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
1698   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
1699   LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
1700   LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
1701   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
1702   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
1703   LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
1704   LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
1705   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
1706   default:
1707     return "Unknown";
1708   }
1709 }
1710 
1711 template <typename ELFT>
1712 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
findDynamic()1713 ELFDumper<ELFT>::findDynamic() {
1714   // Try to locate the PT_DYNAMIC header.
1715   const Elf_Phdr *DynamicPhdr = nullptr;
1716   if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) {
1717     for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
1718       if (Phdr.p_type != ELF::PT_DYNAMIC)
1719         continue;
1720       DynamicPhdr = &Phdr;
1721       break;
1722     }
1723   } else {
1724     reportUniqueWarning(
1725         "unable to read program headers to locate the PT_DYNAMIC segment: " +
1726         toString(PhdrsOrErr.takeError()));
1727   }
1728 
1729   // Try to locate the .dynamic section in the sections header table.
1730   const Elf_Shdr *DynamicSec = nullptr;
1731   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
1732     if (Sec.sh_type != ELF::SHT_DYNAMIC)
1733       continue;
1734     DynamicSec = &Sec;
1735     break;
1736   }
1737 
1738   if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
1739                        ObjF.getMemoryBufferRef().getBufferSize()) ||
1740                       (DynamicPhdr->p_offset + DynamicPhdr->p_filesz <
1741                        DynamicPhdr->p_offset))) {
1742     reportUniqueWarning(
1743         "PT_DYNAMIC segment offset (0x" +
1744         Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" +
1745         Twine::utohexstr(DynamicPhdr->p_filesz) +
1746         ") exceeds the size of the file (0x" +
1747         Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")");
1748     // Don't use the broken dynamic header.
1749     DynamicPhdr = nullptr;
1750   }
1751 
1752   if (DynamicPhdr && DynamicSec) {
1753     if (DynamicSec->sh_addr + DynamicSec->sh_size >
1754             DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
1755         DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
1756       reportUniqueWarning(describe(*DynamicSec) +
1757                           " is not contained within the "
1758                           "PT_DYNAMIC segment");
1759 
1760     if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
1761       reportUniqueWarning(describe(*DynamicSec) + " is not at the start of "
1762                                                   "PT_DYNAMIC segment");
1763   }
1764 
1765   return std::make_pair(DynamicPhdr, DynamicSec);
1766 }
1767 
1768 template <typename ELFT>
loadDynamicTable()1769 void ELFDumper<ELFT>::loadDynamicTable() {
1770   const Elf_Phdr *DynamicPhdr;
1771   const Elf_Shdr *DynamicSec;
1772   std::tie(DynamicPhdr, DynamicSec) = findDynamic();
1773   if (!DynamicPhdr && !DynamicSec)
1774     return;
1775 
1776   DynRegionInfo FromPhdr(ObjF, *this);
1777   bool IsPhdrTableValid = false;
1778   if (DynamicPhdr) {
1779     // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
1780     // validated in findDynamic() and so createDRI() is not expected to fail.
1781     FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz,
1782                                   sizeof(Elf_Dyn)));
1783     FromPhdr.SizePrintName = "PT_DYNAMIC size";
1784     FromPhdr.EntSizePrintName = "";
1785     IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty();
1786   }
1787 
1788   // Locate the dynamic table described in a section header.
1789   // Ignore sh_entsize and use the expected value for entry size explicitly.
1790   // This allows us to dump dynamic sections with a broken sh_entsize
1791   // field.
1792   DynRegionInfo FromSec(ObjF, *this);
1793   bool IsSecTableValid = false;
1794   if (DynamicSec) {
1795     Expected<DynRegionInfo> RegOrErr =
1796         createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn));
1797     if (RegOrErr) {
1798       FromSec = *RegOrErr;
1799       FromSec.Context = describe(*DynamicSec);
1800       FromSec.EntSizePrintName = "";
1801       IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty();
1802     } else {
1803       reportUniqueWarning("unable to read the dynamic table from " +
1804                           describe(*DynamicSec) + ": " +
1805                           toString(RegOrErr.takeError()));
1806     }
1807   }
1808 
1809   // When we only have information from one of the SHT_DYNAMIC section header or
1810   // PT_DYNAMIC program header, just use that.
1811   if (!DynamicPhdr || !DynamicSec) {
1812     if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
1813       DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
1814       parseDynamicTable();
1815     } else {
1816       reportUniqueWarning("no valid dynamic table was found");
1817     }
1818     return;
1819   }
1820 
1821   // At this point we have tables found from the section header and from the
1822   // dynamic segment. Usually they match, but we have to do sanity checks to
1823   // verify that.
1824 
1825   if (FromPhdr.Addr != FromSec.Addr)
1826     reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
1827                         "program header disagree about "
1828                         "the location of the dynamic table");
1829 
1830   if (!IsPhdrTableValid && !IsSecTableValid) {
1831     reportUniqueWarning("no valid dynamic table was found");
1832     return;
1833   }
1834 
1835   // Information in the PT_DYNAMIC program header has priority over the
1836   // information in a section header.
1837   if (IsPhdrTableValid) {
1838     if (!IsSecTableValid)
1839       reportUniqueWarning(
1840           "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
1841     DynamicTable = FromPhdr;
1842   } else {
1843     reportUniqueWarning(
1844         "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
1845     DynamicTable = FromSec;
1846   }
1847 
1848   parseDynamicTable();
1849 }
1850 
1851 template <typename ELFT>
ELFDumper(const object::ELFObjectFile<ELFT> & O,ScopedPrinter & Writer)1852 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O,
1853                            ScopedPrinter &Writer)
1854     : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()),
1855       FileName(O.getFileName()), DynRelRegion(O, *this),
1856       DynRelaRegion(O, *this), DynRelrRegion(O, *this),
1857       DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this),
1858       DynamicTable(O, *this) {
1859   if (!O.IsContentValid())
1860     return;
1861 
1862   typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
1863   for (const Elf_Shdr &Sec : Sections) {
1864     switch (Sec.sh_type) {
1865     case ELF::SHT_SYMTAB:
1866       if (!DotSymtabSec)
1867         DotSymtabSec = &Sec;
1868       break;
1869     case ELF::SHT_DYNSYM:
1870       if (!DotDynsymSec)
1871         DotDynsymSec = &Sec;
1872 
1873       if (!DynSymRegion) {
1874         Expected<DynRegionInfo> RegOrErr =
1875             createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize);
1876         if (RegOrErr) {
1877           DynSymRegion = *RegOrErr;
1878           DynSymRegion->Context = describe(Sec);
1879 
1880           if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec))
1881             DynamicStringTable = *E;
1882           else
1883             reportUniqueWarning("unable to get the string table for the " +
1884                                 describe(Sec) + ": " + toString(E.takeError()));
1885         } else {
1886           reportUniqueWarning("unable to read dynamic symbols from " +
1887                               describe(Sec) + ": " +
1888                               toString(RegOrErr.takeError()));
1889         }
1890       }
1891       break;
1892     case ELF::SHT_SYMTAB_SHNDX: {
1893       uint32_t SymtabNdx = Sec.sh_link;
1894       if (SymtabNdx >= Sections.size()) {
1895         reportUniqueWarning(
1896             "unable to get the associated symbol table for " + describe(Sec) +
1897             ": sh_link (" + Twine(SymtabNdx) +
1898             ") is greater than or equal to the total number of sections (" +
1899             Twine(Sections.size()) + ")");
1900         continue;
1901       }
1902 
1903       if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr =
1904               Obj.getSHNDXTable(Sec)) {
1905         if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr})
1906                  .second)
1907           reportUniqueWarning(
1908               "multiple SHT_SYMTAB_SHNDX sections are linked to " +
1909               describe(Sec));
1910       } else {
1911         reportUniqueWarning(ShndxTableOrErr.takeError());
1912       }
1913       break;
1914     }
1915     case ELF::SHT_GNU_versym:
1916       if (!SymbolVersionSection)
1917         SymbolVersionSection = &Sec;
1918       break;
1919     case ELF::SHT_GNU_verdef:
1920       if (!SymbolVersionDefSection)
1921         SymbolVersionDefSection = &Sec;
1922       break;
1923     case ELF::SHT_GNU_verneed:
1924       if (!SymbolVersionNeedSection)
1925         SymbolVersionNeedSection = &Sec;
1926       break;
1927     case ELF::SHT_LLVM_ADDRSIG:
1928       if (!DotAddrsigSec)
1929         DotAddrsigSec = &Sec;
1930       break;
1931     }
1932   }
1933 
1934   loadDynamicTable();
1935 }
1936 
parseDynamicTable()1937 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
1938   auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
1939     auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) {
1940       this->reportUniqueWarning(Msg);
1941       return Error::success();
1942     });
1943     if (!MappedAddrOrError) {
1944       this->reportUniqueWarning("unable to parse DT_" +
1945                                 Obj.getDynamicTagAsString(Tag) + ": " +
1946                                 llvm::toString(MappedAddrOrError.takeError()));
1947       return nullptr;
1948     }
1949     return MappedAddrOrError.get();
1950   };
1951 
1952   const char *StringTableBegin = nullptr;
1953   uint64_t StringTableSize = 0;
1954   std::optional<DynRegionInfo> DynSymFromTable;
1955   for (const Elf_Dyn &Dyn : dynamic_table()) {
1956     switch (Dyn.d_tag) {
1957     case ELF::DT_HASH:
1958       HashTable = reinterpret_cast<const Elf_Hash *>(
1959           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1960       break;
1961     case ELF::DT_GNU_HASH:
1962       GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
1963           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1964       break;
1965     case ELF::DT_STRTAB:
1966       StringTableBegin = reinterpret_cast<const char *>(
1967           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1968       break;
1969     case ELF::DT_STRSZ:
1970       StringTableSize = Dyn.getVal();
1971       break;
1972     case ELF::DT_SYMTAB: {
1973       // If we can't map the DT_SYMTAB value to an address (e.g. when there are
1974       // no program headers), we ignore its value.
1975       if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
1976         DynSymFromTable.emplace(ObjF, *this);
1977         DynSymFromTable->Addr = VA;
1978         DynSymFromTable->EntSize = sizeof(Elf_Sym);
1979         DynSymFromTable->EntSizePrintName = "";
1980       }
1981       break;
1982     }
1983     case ELF::DT_SYMENT: {
1984       uint64_t Val = Dyn.getVal();
1985       if (Val != sizeof(Elf_Sym))
1986         this->reportUniqueWarning("DT_SYMENT value of 0x" +
1987                                   Twine::utohexstr(Val) +
1988                                   " is not the size of a symbol (0x" +
1989                                   Twine::utohexstr(sizeof(Elf_Sym)) + ")");
1990       break;
1991     }
1992     case ELF::DT_RELA:
1993       DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1994       break;
1995     case ELF::DT_RELASZ:
1996       DynRelaRegion.Size = Dyn.getVal();
1997       DynRelaRegion.SizePrintName = "DT_RELASZ value";
1998       break;
1999     case ELF::DT_RELAENT:
2000       DynRelaRegion.EntSize = Dyn.getVal();
2001       DynRelaRegion.EntSizePrintName = "DT_RELAENT value";
2002       break;
2003     case ELF::DT_SONAME:
2004       SONameOffset = Dyn.getVal();
2005       break;
2006     case ELF::DT_REL:
2007       DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2008       break;
2009     case ELF::DT_RELSZ:
2010       DynRelRegion.Size = Dyn.getVal();
2011       DynRelRegion.SizePrintName = "DT_RELSZ value";
2012       break;
2013     case ELF::DT_RELENT:
2014       DynRelRegion.EntSize = Dyn.getVal();
2015       DynRelRegion.EntSizePrintName = "DT_RELENT value";
2016       break;
2017     case ELF::DT_RELR:
2018     case ELF::DT_ANDROID_RELR:
2019       DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2020       break;
2021     case ELF::DT_RELRSZ:
2022     case ELF::DT_ANDROID_RELRSZ:
2023       DynRelrRegion.Size = Dyn.getVal();
2024       DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ
2025                                         ? "DT_RELRSZ value"
2026                                         : "DT_ANDROID_RELRSZ value";
2027       break;
2028     case ELF::DT_RELRENT:
2029     case ELF::DT_ANDROID_RELRENT:
2030       DynRelrRegion.EntSize = Dyn.getVal();
2031       DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT
2032                                            ? "DT_RELRENT value"
2033                                            : "DT_ANDROID_RELRENT value";
2034       break;
2035     case ELF::DT_PLTREL:
2036       if (Dyn.getVal() == DT_REL)
2037         DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
2038       else if (Dyn.getVal() == DT_RELA)
2039         DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
2040       else
2041         reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
2042                             Twine((uint64_t)Dyn.getVal()));
2043       DynPLTRelRegion.EntSizePrintName = "PLTREL entry size";
2044       break;
2045     case ELF::DT_JMPREL:
2046       DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2047       break;
2048     case ELF::DT_PLTRELSZ:
2049       DynPLTRelRegion.Size = Dyn.getVal();
2050       DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value";
2051       break;
2052     case ELF::DT_SYMTAB_SHNDX:
2053       DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2054       DynSymTabShndxRegion.EntSize = sizeof(Elf_Word);
2055       break;
2056     }
2057   }
2058 
2059   if (StringTableBegin) {
2060     const uint64_t FileSize = Obj.getBufSize();
2061     const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base();
2062     if (StringTableSize > FileSize - Offset)
2063       reportUniqueWarning(
2064           "the dynamic string table at 0x" + Twine::utohexstr(Offset) +
2065           " goes past the end of the file (0x" + Twine::utohexstr(FileSize) +
2066           ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize));
2067     else
2068       DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
2069   }
2070 
2071   const bool IsHashTableSupported = getHashTableEntSize() == 4;
2072   if (DynSymRegion) {
2073     // Often we find the information about the dynamic symbol table
2074     // location in the SHT_DYNSYM section header. However, the value in
2075     // DT_SYMTAB has priority, because it is used by dynamic loaders to
2076     // locate .dynsym at runtime. The location we find in the section header
2077     // and the location we find here should match.
2078     if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr)
2079       reportUniqueWarning(
2080           createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
2081                       "the location of the dynamic symbol table"));
2082 
2083     // According to the ELF gABI: "The number of symbol table entries should
2084     // equal nchain". Check to see if the DT_HASH hash table nchain value
2085     // conflicts with the number of symbols in the dynamic symbol table
2086     // according to the section header.
2087     if (HashTable && IsHashTableSupported) {
2088       if (DynSymRegion->EntSize == 0)
2089         reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
2090       else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize)
2091         reportUniqueWarning(
2092             "hash table nchain (" + Twine(HashTable->nchain) +
2093             ") differs from symbol count derived from SHT_DYNSYM section "
2094             "header (" +
2095             Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")");
2096     }
2097   }
2098 
2099   // Delay the creation of the actual dynamic symbol table until now, so that
2100   // checks can always be made against the section header-based properties,
2101   // without worrying about tag order.
2102   if (DynSymFromTable) {
2103     if (!DynSymRegion) {
2104       DynSymRegion = DynSymFromTable;
2105     } else {
2106       DynSymRegion->Addr = DynSymFromTable->Addr;
2107       DynSymRegion->EntSize = DynSymFromTable->EntSize;
2108       DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName;
2109     }
2110   }
2111 
2112   // Derive the dynamic symbol table size from the DT_HASH hash table, if
2113   // present.
2114   if (HashTable && IsHashTableSupported && DynSymRegion) {
2115     const uint64_t FileSize = Obj.getBufSize();
2116     const uint64_t DerivedSize =
2117         (uint64_t)HashTable->nchain * DynSymRegion->EntSize;
2118     const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base();
2119     if (DerivedSize > FileSize - Offset)
2120       reportUniqueWarning(
2121           "the size (0x" + Twine::utohexstr(DerivedSize) +
2122           ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) +
2123           ", derived from the hash table, goes past the end of the file (0x" +
2124           Twine::utohexstr(FileSize) + ") and will be ignored");
2125     else
2126       DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize;
2127   }
2128 }
2129 
printVersionInfo()2130 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
2131   // Dump version symbol section.
2132   printVersionSymbolSection(SymbolVersionSection);
2133 
2134   // Dump version definition section.
2135   printVersionDefinitionSection(SymbolVersionDefSection);
2136 
2137   // Dump version dependency section.
2138   printVersionDependencySection(SymbolVersionNeedSection);
2139 }
2140 
2141 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum)                                 \
2142   { #enum, prefix##_##enum }
2143 
2144 const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
2145   LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
2146   LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
2147   LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
2148   LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
2149   LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
2150 };
2151 
2152 const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
2153   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
2154   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
2155   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
2156   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
2157   LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
2158   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
2159   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
2160   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
2161   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
2162   LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
2163   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
2164   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
2165   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
2166   LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
2167   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
2168   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
2169   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
2170   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
2171   LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
2172   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
2173   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
2174   LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
2175   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
2176   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
2177   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
2178   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
2179   LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
2180 };
2181 
2182 const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
2183   LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
2184   LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
2185   LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
2186   LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
2187   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
2188   LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
2189   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
2190   LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
2191   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
2192   LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
2193   LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
2194   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
2195   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
2196   LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
2197   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
2198   LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
2199 };
2200 
2201 #undef LLVM_READOBJ_DT_FLAG_ENT
2202 
2203 template <typename T, typename TFlag>
printFlags(T Value,ArrayRef<EnumEntry<TFlag>> Flags,raw_ostream & OS)2204 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
2205   SmallVector<EnumEntry<TFlag>, 10> SetFlags;
2206   for (const EnumEntry<TFlag> &Flag : Flags)
2207     if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value)
2208       SetFlags.push_back(Flag);
2209 
2210   for (const EnumEntry<TFlag> &Flag : SetFlags)
2211     OS << Flag.Name << " ";
2212 }
2213 
2214 template <class ELFT>
2215 const typename ELFT::Shdr *
findSectionByName(StringRef Name) const2216 ELFDumper<ELFT>::findSectionByName(StringRef Name) const {
2217   for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
2218     if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) {
2219       if (*NameOrErr == Name)
2220         return &Shdr;
2221     } else {
2222       reportUniqueWarning("unable to read the name of " + describe(Shdr) +
2223                           ": " + toString(NameOrErr.takeError()));
2224     }
2225   }
2226   return nullptr;
2227 }
2228 
2229 template <class ELFT>
getDynamicEntry(uint64_t Type,uint64_t Value) const2230 std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type,
2231                                              uint64_t Value) const {
2232   auto FormatHexValue = [](uint64_t V) {
2233     std::string Str;
2234     raw_string_ostream OS(Str);
2235     const char *ConvChar =
2236         (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
2237     OS << format(ConvChar, V);
2238     return OS.str();
2239   };
2240 
2241   auto FormatFlags = [](uint64_t V,
2242                         llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) {
2243     std::string Str;
2244     raw_string_ostream OS(Str);
2245     printFlags(V, Array, OS);
2246     return OS.str();
2247   };
2248 
2249   // Handle custom printing of architecture specific tags
2250   switch (Obj.getHeader().e_machine) {
2251   case EM_AARCH64:
2252     switch (Type) {
2253     case DT_AARCH64_BTI_PLT:
2254     case DT_AARCH64_PAC_PLT:
2255     case DT_AARCH64_VARIANT_PCS:
2256       return std::to_string(Value);
2257     default:
2258       break;
2259     }
2260     break;
2261   case EM_HEXAGON:
2262     switch (Type) {
2263     case DT_HEXAGON_VER:
2264       return std::to_string(Value);
2265     case DT_HEXAGON_SYMSZ:
2266     case DT_HEXAGON_PLT:
2267       return FormatHexValue(Value);
2268     default:
2269       break;
2270     }
2271     break;
2272   case EM_MIPS:
2273     switch (Type) {
2274     case DT_MIPS_RLD_VERSION:
2275     case DT_MIPS_LOCAL_GOTNO:
2276     case DT_MIPS_SYMTABNO:
2277     case DT_MIPS_UNREFEXTNO:
2278       return std::to_string(Value);
2279     case DT_MIPS_TIME_STAMP:
2280     case DT_MIPS_ICHECKSUM:
2281     case DT_MIPS_IVERSION:
2282     case DT_MIPS_BASE_ADDRESS:
2283     case DT_MIPS_MSYM:
2284     case DT_MIPS_CONFLICT:
2285     case DT_MIPS_LIBLIST:
2286     case DT_MIPS_CONFLICTNO:
2287     case DT_MIPS_LIBLISTNO:
2288     case DT_MIPS_GOTSYM:
2289     case DT_MIPS_HIPAGENO:
2290     case DT_MIPS_RLD_MAP:
2291     case DT_MIPS_DELTA_CLASS:
2292     case DT_MIPS_DELTA_CLASS_NO:
2293     case DT_MIPS_DELTA_INSTANCE:
2294     case DT_MIPS_DELTA_RELOC:
2295     case DT_MIPS_DELTA_RELOC_NO:
2296     case DT_MIPS_DELTA_SYM:
2297     case DT_MIPS_DELTA_SYM_NO:
2298     case DT_MIPS_DELTA_CLASSSYM:
2299     case DT_MIPS_DELTA_CLASSSYM_NO:
2300     case DT_MIPS_CXX_FLAGS:
2301     case DT_MIPS_PIXIE_INIT:
2302     case DT_MIPS_SYMBOL_LIB:
2303     case DT_MIPS_LOCALPAGE_GOTIDX:
2304     case DT_MIPS_LOCAL_GOTIDX:
2305     case DT_MIPS_HIDDEN_GOTIDX:
2306     case DT_MIPS_PROTECTED_GOTIDX:
2307     case DT_MIPS_OPTIONS:
2308     case DT_MIPS_INTERFACE:
2309     case DT_MIPS_DYNSTR_ALIGN:
2310     case DT_MIPS_INTERFACE_SIZE:
2311     case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2312     case DT_MIPS_PERF_SUFFIX:
2313     case DT_MIPS_COMPACT_SIZE:
2314     case DT_MIPS_GP_VALUE:
2315     case DT_MIPS_AUX_DYNAMIC:
2316     case DT_MIPS_PLTGOT:
2317     case DT_MIPS_RWPLT:
2318     case DT_MIPS_RLD_MAP_REL:
2319     case DT_MIPS_XHASH:
2320       return FormatHexValue(Value);
2321     case DT_MIPS_FLAGS:
2322       return FormatFlags(Value, ArrayRef(ElfDynamicDTMipsFlags));
2323     default:
2324       break;
2325     }
2326     break;
2327   default:
2328     break;
2329   }
2330 
2331   switch (Type) {
2332   case DT_PLTREL:
2333     if (Value == DT_REL)
2334       return "REL";
2335     if (Value == DT_RELA)
2336       return "RELA";
2337     [[fallthrough]];
2338   case DT_PLTGOT:
2339   case DT_HASH:
2340   case DT_STRTAB:
2341   case DT_SYMTAB:
2342   case DT_RELA:
2343   case DT_INIT:
2344   case DT_FINI:
2345   case DT_REL:
2346   case DT_JMPREL:
2347   case DT_INIT_ARRAY:
2348   case DT_FINI_ARRAY:
2349   case DT_PREINIT_ARRAY:
2350   case DT_DEBUG:
2351   case DT_VERDEF:
2352   case DT_VERNEED:
2353   case DT_VERSYM:
2354   case DT_GNU_HASH:
2355   case DT_NULL:
2356     return FormatHexValue(Value);
2357   case DT_RELACOUNT:
2358   case DT_RELCOUNT:
2359   case DT_VERDEFNUM:
2360   case DT_VERNEEDNUM:
2361     return std::to_string(Value);
2362   case DT_PLTRELSZ:
2363   case DT_RELASZ:
2364   case DT_RELAENT:
2365   case DT_STRSZ:
2366   case DT_SYMENT:
2367   case DT_RELSZ:
2368   case DT_RELENT:
2369   case DT_INIT_ARRAYSZ:
2370   case DT_FINI_ARRAYSZ:
2371   case DT_PREINIT_ARRAYSZ:
2372   case DT_RELRSZ:
2373   case DT_RELRENT:
2374   case DT_ANDROID_RELSZ:
2375   case DT_ANDROID_RELASZ:
2376     return std::to_string(Value) + " (bytes)";
2377   case DT_NEEDED:
2378   case DT_SONAME:
2379   case DT_AUXILIARY:
2380   case DT_USED:
2381   case DT_FILTER:
2382   case DT_RPATH:
2383   case DT_RUNPATH: {
2384     const std::map<uint64_t, const char *> TagNames = {
2385         {DT_NEEDED, "Shared library"},       {DT_SONAME, "Library soname"},
2386         {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"},
2387         {DT_FILTER, "Filter library"},       {DT_RPATH, "Library rpath"},
2388         {DT_RUNPATH, "Library runpath"},
2389     };
2390 
2391     return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]")
2392         .str();
2393   }
2394   case DT_FLAGS:
2395     return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags));
2396   case DT_FLAGS_1:
2397     return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags1));
2398   default:
2399     return FormatHexValue(Value);
2400   }
2401 }
2402 
2403 template <class ELFT>
getDynamicString(uint64_t Value) const2404 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
2405   if (DynamicStringTable.empty() && !DynamicStringTable.data()) {
2406     reportUniqueWarning("string table was not found");
2407     return "<?>";
2408   }
2409 
2410   auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) {
2411     reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) +
2412                         Msg);
2413     return "<?>";
2414   };
2415 
2416   const uint64_t FileSize = Obj.getBufSize();
2417   const uint64_t Offset =
2418       (const uint8_t *)DynamicStringTable.data() - Obj.base();
2419   if (DynamicStringTable.size() > FileSize - Offset)
2420     return WarnAndReturn(" with size 0x" +
2421                              Twine::utohexstr(DynamicStringTable.size()) +
2422                              " goes past the end of the file (0x" +
2423                              Twine::utohexstr(FileSize) + ")",
2424                          Offset);
2425 
2426   if (Value >= DynamicStringTable.size())
2427     return WarnAndReturn(
2428         ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) +
2429             ": it goes past the end of the table (0x" +
2430             Twine::utohexstr(Offset + DynamicStringTable.size()) + ")",
2431         Offset);
2432 
2433   if (DynamicStringTable.back() != '\0')
2434     return WarnAndReturn(": unable to read the string at 0x" +
2435                              Twine::utohexstr(Offset + Value) +
2436                              ": the string table is not null-terminated",
2437                          Offset);
2438 
2439   return DynamicStringTable.data() + Value;
2440 }
2441 
printUnwindInfo()2442 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
2443   DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
2444   Ctx.printUnwindInformation();
2445 }
2446 
2447 // The namespace is needed to fix the compilation with GCC older than 7.0+.
2448 namespace {
printUnwindInfo()2449 template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
2450   if (Obj.getHeader().e_machine == EM_ARM) {
2451     ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(),
2452                                             DotSymtabSec);
2453     Ctx.PrintUnwindInformation();
2454   }
2455   DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
2456   Ctx.printUnwindInformation();
2457 }
2458 } // namespace
2459 
printNeededLibraries()2460 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
2461   ListScope D(W, "NeededLibraries");
2462 
2463   std::vector<StringRef> Libs;
2464   for (const auto &Entry : dynamic_table())
2465     if (Entry.d_tag == ELF::DT_NEEDED)
2466       Libs.push_back(getDynamicString(Entry.d_un.d_val));
2467 
2468   llvm::sort(Libs);
2469 
2470   for (StringRef L : Libs)
2471     W.startLine() << L << "\n";
2472 }
2473 
2474 template <class ELFT>
checkHashTable(const ELFDumper<ELFT> & Dumper,const typename ELFT::Hash * H,bool * IsHeaderValid=nullptr)2475 static Error checkHashTable(const ELFDumper<ELFT> &Dumper,
2476                             const typename ELFT::Hash *H,
2477                             bool *IsHeaderValid = nullptr) {
2478   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
2479   const uint64_t SecOffset = (const uint8_t *)H - Obj.base();
2480   if (Dumper.getHashTableEntSize() == 8) {
2481     auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) {
2482       return E.Value == Obj.getHeader().e_machine;
2483     });
2484     if (IsHeaderValid)
2485       *IsHeaderValid = false;
2486     return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) +
2487                        " is not supported: it contains non-standard 8 "
2488                        "byte entries on " +
2489                        It->AltName + " platform");
2490   }
2491 
2492   auto MakeError = [&](const Twine &Msg = "") {
2493     return createError("the hash table at offset 0x" +
2494                        Twine::utohexstr(SecOffset) +
2495                        " goes past the end of the file (0x" +
2496                        Twine::utohexstr(Obj.getBufSize()) + ")" + Msg);
2497   };
2498 
2499   // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2500   const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word);
2501 
2502   if (IsHeaderValid)
2503     *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize;
2504 
2505   if (Obj.getBufSize() - SecOffset < HeaderSize)
2506     return MakeError();
2507 
2508   if (Obj.getBufSize() - SecOffset - HeaderSize <
2509       ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word))
2510     return MakeError(", nbucket = " + Twine(H->nbucket) +
2511                      ", nchain = " + Twine(H->nchain));
2512   return Error::success();
2513 }
2514 
2515 template <class ELFT>
checkGNUHashTable(const ELFFile<ELFT> & Obj,const typename ELFT::GnuHash * GnuHashTable,bool * IsHeaderValid=nullptr)2516 static Error checkGNUHashTable(const ELFFile<ELFT> &Obj,
2517                                const typename ELFT::GnuHash *GnuHashTable,
2518                                bool *IsHeaderValid = nullptr) {
2519   const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable);
2520   assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() &&
2521          "GnuHashTable must always point to a location inside the file");
2522 
2523   uint64_t TableOffset = TableData - Obj.base();
2524   if (IsHeaderValid)
2525     *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize();
2526   if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 +
2527           (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >=
2528       Obj.getBufSize())
2529     return createError("unable to dump the SHT_GNU_HASH "
2530                        "section at 0x" +
2531                        Twine::utohexstr(TableOffset) +
2532                        ": it goes past the end of the file");
2533   return Error::success();
2534 }
2535 
printHashTable()2536 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
2537   DictScope D(W, "HashTable");
2538   if (!HashTable)
2539     return;
2540 
2541   bool IsHeaderValid;
2542   Error Err = checkHashTable(*this, HashTable, &IsHeaderValid);
2543   if (IsHeaderValid) {
2544     W.printNumber("Num Buckets", HashTable->nbucket);
2545     W.printNumber("Num Chains", HashTable->nchain);
2546   }
2547 
2548   if (Err) {
2549     reportUniqueWarning(std::move(Err));
2550     return;
2551   }
2552 
2553   W.printList("Buckets", HashTable->buckets());
2554   W.printList("Chains", HashTable->chains());
2555 }
2556 
2557 template <class ELFT>
2558 static Expected<ArrayRef<typename ELFT::Word>>
getGnuHashTableChains(std::optional<DynRegionInfo> DynSymRegion,const typename ELFT::GnuHash * GnuHashTable)2559 getGnuHashTableChains(std::optional<DynRegionInfo> DynSymRegion,
2560                       const typename ELFT::GnuHash *GnuHashTable) {
2561   if (!DynSymRegion)
2562     return createError("no dynamic symbol table found");
2563 
2564   ArrayRef<typename ELFT::Sym> DynSymTable =
2565       DynSymRegion->template getAsArrayRef<typename ELFT::Sym>();
2566   size_t NumSyms = DynSymTable.size();
2567   if (!NumSyms)
2568     return createError("the dynamic symbol table is empty");
2569 
2570   if (GnuHashTable->symndx < NumSyms)
2571     return GnuHashTable->values(NumSyms);
2572 
2573   // A normal empty GNU hash table section produced by linker might have
2574   // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2575   // and have dummy null values in the Bloom filter and in the buckets
2576   // vector (or no values at all). It happens because the value of symndx is not
2577   // important for dynamic loaders when the GNU hash table is empty. They just
2578   // skip the whole object during symbol lookup. In such cases, the symndx value
2579   // is irrelevant and we should not report a warning.
2580   ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets();
2581   if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; }))
2582     return createError(
2583         "the first hashed symbol index (" + Twine(GnuHashTable->symndx) +
2584         ") is greater than or equal to the number of dynamic symbols (" +
2585         Twine(NumSyms) + ")");
2586   // There is no way to represent an array of (dynamic symbols count - symndx)
2587   // length.
2588   return ArrayRef<typename ELFT::Word>();
2589 }
2590 
2591 template <typename ELFT>
printGnuHashTable()2592 void ELFDumper<ELFT>::printGnuHashTable() {
2593   DictScope D(W, "GnuHashTable");
2594   if (!GnuHashTable)
2595     return;
2596 
2597   bool IsHeaderValid;
2598   Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid);
2599   if (IsHeaderValid) {
2600     W.printNumber("Num Buckets", GnuHashTable->nbuckets);
2601     W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
2602     W.printNumber("Num Mask Words", GnuHashTable->maskwords);
2603     W.printNumber("Shift Count", GnuHashTable->shift2);
2604   }
2605 
2606   if (Err) {
2607     reportUniqueWarning(std::move(Err));
2608     return;
2609   }
2610 
2611   ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter();
2612   W.printHexList("Bloom Filter", BloomFilter);
2613 
2614   ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
2615   W.printList("Buckets", Buckets);
2616 
2617   Expected<ArrayRef<Elf_Word>> Chains =
2618       getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable);
2619   if (!Chains) {
2620     reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
2621                         "section: " +
2622                         toString(Chains.takeError()));
2623     return;
2624   }
2625 
2626   W.printHexList("Values", *Chains);
2627 }
2628 
printLoadName()2629 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
2630   StringRef SOName = "<Not found>";
2631   if (SONameOffset)
2632     SOName = getDynamicString(*SONameOffset);
2633   W.printString("LoadName", SOName);
2634 }
2635 
printArchSpecificInfo()2636 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
2637   switch (Obj.getHeader().e_machine) {
2638   case EM_ARM:
2639     if (Obj.isLE())
2640       printAttributes(ELF::SHT_ARM_ATTRIBUTES,
2641                       std::make_unique<ARMAttributeParser>(&W),
2642                       support::little);
2643     else
2644       reportUniqueWarning("attribute printing not implemented for big-endian "
2645                           "ARM objects");
2646     break;
2647   case EM_RISCV:
2648     if (Obj.isLE())
2649       printAttributes(ELF::SHT_RISCV_ATTRIBUTES,
2650                       std::make_unique<RISCVAttributeParser>(&W),
2651                       support::little);
2652     else
2653       reportUniqueWarning("attribute printing not implemented for big-endian "
2654                           "RISC-V objects");
2655     break;
2656   case EM_MSP430:
2657     printAttributes(ELF::SHT_MSP430_ATTRIBUTES,
2658                     std::make_unique<MSP430AttributeParser>(&W),
2659                     support::little);
2660     break;
2661   case EM_MIPS: {
2662     printMipsABIFlags();
2663     printMipsOptions();
2664     printMipsReginfo();
2665     MipsGOTParser<ELFT> Parser(*this);
2666     if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols()))
2667       reportUniqueWarning(std::move(E));
2668     else if (!Parser.isGotEmpty())
2669       printMipsGOT(Parser);
2670 
2671     if (Error E = Parser.findPLT(dynamic_table()))
2672       reportUniqueWarning(std::move(E));
2673     else if (!Parser.isPltEmpty())
2674       printMipsPLT(Parser);
2675     break;
2676   }
2677   default:
2678     break;
2679   }
2680 }
2681 
2682 template <class ELFT>
printAttributes(unsigned AttrShType,std::unique_ptr<ELFAttributeParser> AttrParser,support::endianness Endianness)2683 void ELFDumper<ELFT>::printAttributes(
2684     unsigned AttrShType, std::unique_ptr<ELFAttributeParser> AttrParser,
2685     support::endianness Endianness) {
2686   assert((AttrShType != ELF::SHT_NULL) && AttrParser &&
2687          "Incomplete ELF attribute implementation");
2688   DictScope BA(W, "BuildAttributes");
2689   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
2690     if (Sec.sh_type != AttrShType)
2691       continue;
2692 
2693     ArrayRef<uint8_t> Contents;
2694     if (Expected<ArrayRef<uint8_t>> ContentOrErr =
2695             Obj.getSectionContents(Sec)) {
2696       Contents = *ContentOrErr;
2697       if (Contents.empty()) {
2698         reportUniqueWarning("the " + describe(Sec) + " is empty");
2699         continue;
2700       }
2701     } else {
2702       reportUniqueWarning("unable to read the content of the " + describe(Sec) +
2703                           ": " + toString(ContentOrErr.takeError()));
2704       continue;
2705     }
2706 
2707     W.printHex("FormatVersion", Contents[0]);
2708 
2709     if (Error E = AttrParser->parse(Contents, Endianness))
2710       reportUniqueWarning("unable to dump attributes from the " +
2711                           describe(Sec) + ": " + toString(std::move(E)));
2712   }
2713 }
2714 
2715 namespace {
2716 
2717 template <class ELFT> class MipsGOTParser {
2718 public:
2719   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
2720   using Entry = typename ELFT::Addr;
2721   using Entries = ArrayRef<Entry>;
2722 
2723   const bool IsStatic;
2724   const ELFFile<ELFT> &Obj;
2725   const ELFDumper<ELFT> &Dumper;
2726 
2727   MipsGOTParser(const ELFDumper<ELFT> &D);
2728   Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
2729   Error findPLT(Elf_Dyn_Range DynTable);
2730 
isGotEmpty() const2731   bool isGotEmpty() const { return GotEntries.empty(); }
isPltEmpty() const2732   bool isPltEmpty() const { return PltEntries.empty(); }
2733 
2734   uint64_t getGp() const;
2735 
2736   const Entry *getGotLazyResolver() const;
2737   const Entry *getGotModulePointer() const;
2738   const Entry *getPltLazyResolver() const;
2739   const Entry *getPltModulePointer() const;
2740 
2741   Entries getLocalEntries() const;
2742   Entries getGlobalEntries() const;
2743   Entries getOtherEntries() const;
2744   Entries getPltEntries() const;
2745 
2746   uint64_t getGotAddress(const Entry * E) const;
2747   int64_t getGotOffset(const Entry * E) const;
2748   const Elf_Sym *getGotSym(const Entry *E) const;
2749 
2750   uint64_t getPltAddress(const Entry * E) const;
2751   const Elf_Sym *getPltSym(const Entry *E) const;
2752 
getPltStrTable() const2753   StringRef getPltStrTable() const { return PltStrTable; }
getPltSymTable() const2754   const Elf_Shdr *getPltSymTable() const { return PltSymTable; }
2755 
2756 private:
2757   const Elf_Shdr *GotSec;
2758   size_t LocalNum;
2759   size_t GlobalNum;
2760 
2761   const Elf_Shdr *PltSec;
2762   const Elf_Shdr *PltRelSec;
2763   const Elf_Shdr *PltSymTable;
2764   StringRef FileName;
2765 
2766   Elf_Sym_Range GotDynSyms;
2767   StringRef PltStrTable;
2768 
2769   Entries GotEntries;
2770   Entries PltEntries;
2771 };
2772 
2773 } // end anonymous namespace
2774 
2775 template <class ELFT>
MipsGOTParser(const ELFDumper<ELFT> & D)2776 MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D)
2777     : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()),
2778       Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
2779       PltRelSec(nullptr), PltSymTable(nullptr),
2780       FileName(D.getElfObject().getFileName()) {}
2781 
2782 template <class ELFT>
findGOT(Elf_Dyn_Range DynTable,Elf_Sym_Range DynSyms)2783 Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable,
2784                                    Elf_Sym_Range DynSyms) {
2785   // See "Global Offset Table" in Chapter 5 in the following document
2786   // for detailed GOT description.
2787   // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2788 
2789   // Find static GOT secton.
2790   if (IsStatic) {
2791     GotSec = Dumper.findSectionByName(".got");
2792     if (!GotSec)
2793       return Error::success();
2794 
2795     ArrayRef<uint8_t> Content =
2796         unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2797     GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2798                          Content.size() / sizeof(Entry));
2799     LocalNum = GotEntries.size();
2800     return Error::success();
2801   }
2802 
2803   // Lookup dynamic table tags which define the GOT layout.
2804   std::optional<uint64_t> DtPltGot;
2805   std::optional<uint64_t> DtLocalGotNum;
2806   std::optional<uint64_t> DtGotSym;
2807   for (const auto &Entry : DynTable) {
2808     switch (Entry.getTag()) {
2809     case ELF::DT_PLTGOT:
2810       DtPltGot = Entry.getVal();
2811       break;
2812     case ELF::DT_MIPS_LOCAL_GOTNO:
2813       DtLocalGotNum = Entry.getVal();
2814       break;
2815     case ELF::DT_MIPS_GOTSYM:
2816       DtGotSym = Entry.getVal();
2817       break;
2818     }
2819   }
2820 
2821   if (!DtPltGot && !DtLocalGotNum && !DtGotSym)
2822     return Error::success();
2823 
2824   if (!DtPltGot)
2825     return createError("cannot find PLTGOT dynamic tag");
2826   if (!DtLocalGotNum)
2827     return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
2828   if (!DtGotSym)
2829     return createError("cannot find MIPS_GOTSYM dynamic tag");
2830 
2831   size_t DynSymTotal = DynSyms.size();
2832   if (*DtGotSym > DynSymTotal)
2833     return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) +
2834                        ") exceeds the number of dynamic symbols (" +
2835                        Twine(DynSymTotal) + ")");
2836 
2837   GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
2838   if (!GotSec)
2839     return createError("there is no non-empty GOT section at 0x" +
2840                        Twine::utohexstr(*DtPltGot));
2841 
2842   LocalNum = *DtLocalGotNum;
2843   GlobalNum = DynSymTotal - *DtGotSym;
2844 
2845   ArrayRef<uint8_t> Content =
2846       unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2847   GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2848                        Content.size() / sizeof(Entry));
2849   GotDynSyms = DynSyms.drop_front(*DtGotSym);
2850 
2851   return Error::success();
2852 }
2853 
2854 template <class ELFT>
findPLT(Elf_Dyn_Range DynTable)2855 Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) {
2856   // Lookup dynamic table tags which define the PLT layout.
2857   std::optional<uint64_t> DtMipsPltGot;
2858   std::optional<uint64_t> DtJmpRel;
2859   for (const auto &Entry : DynTable) {
2860     switch (Entry.getTag()) {
2861     case ELF::DT_MIPS_PLTGOT:
2862       DtMipsPltGot = Entry.getVal();
2863       break;
2864     case ELF::DT_JMPREL:
2865       DtJmpRel = Entry.getVal();
2866       break;
2867     }
2868   }
2869 
2870   if (!DtMipsPltGot && !DtJmpRel)
2871     return Error::success();
2872 
2873   // Find PLT section.
2874   if (!DtMipsPltGot)
2875     return createError("cannot find MIPS_PLTGOT dynamic tag");
2876   if (!DtJmpRel)
2877     return createError("cannot find JMPREL dynamic tag");
2878 
2879   PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot);
2880   if (!PltSec)
2881     return createError("there is no non-empty PLTGOT section at 0x" +
2882                        Twine::utohexstr(*DtMipsPltGot));
2883 
2884   PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel);
2885   if (!PltRelSec)
2886     return createError("there is no non-empty RELPLT section at 0x" +
2887                        Twine::utohexstr(*DtJmpRel));
2888 
2889   if (Expected<ArrayRef<uint8_t>> PltContentOrErr =
2890           Obj.getSectionContents(*PltSec))
2891     PltEntries =
2892         Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()),
2893                 PltContentOrErr->size() / sizeof(Entry));
2894   else
2895     return createError("unable to read PLTGOT section content: " +
2896                        toString(PltContentOrErr.takeError()));
2897 
2898   if (Expected<const Elf_Shdr *> PltSymTableOrErr =
2899           Obj.getSection(PltRelSec->sh_link))
2900     PltSymTable = *PltSymTableOrErr;
2901   else
2902     return createError("unable to get a symbol table linked to the " +
2903                        describe(Obj, *PltRelSec) + ": " +
2904                        toString(PltSymTableOrErr.takeError()));
2905 
2906   if (Expected<StringRef> StrTabOrErr =
2907           Obj.getStringTableForSymtab(*PltSymTable))
2908     PltStrTable = *StrTabOrErr;
2909   else
2910     return createError("unable to get a string table for the " +
2911                        describe(Obj, *PltSymTable) + ": " +
2912                        toString(StrTabOrErr.takeError()));
2913 
2914   return Error::success();
2915 }
2916 
getGp() const2917 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
2918   return GotSec->sh_addr + 0x7ff0;
2919 }
2920 
2921 template <class ELFT>
2922 const typename MipsGOTParser<ELFT>::Entry *
getGotLazyResolver() const2923 MipsGOTParser<ELFT>::getGotLazyResolver() const {
2924   return LocalNum > 0 ? &GotEntries[0] : nullptr;
2925 }
2926 
2927 template <class ELFT>
2928 const typename MipsGOTParser<ELFT>::Entry *
getGotModulePointer() const2929 MipsGOTParser<ELFT>::getGotModulePointer() const {
2930   if (LocalNum < 2)
2931     return nullptr;
2932   const Entry &E = GotEntries[1];
2933   if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
2934     return nullptr;
2935   return &E;
2936 }
2937 
2938 template <class ELFT>
2939 typename MipsGOTParser<ELFT>::Entries
getLocalEntries() const2940 MipsGOTParser<ELFT>::getLocalEntries() const {
2941   size_t Skip = getGotModulePointer() ? 2 : 1;
2942   if (LocalNum - Skip <= 0)
2943     return Entries();
2944   return GotEntries.slice(Skip, LocalNum - Skip);
2945 }
2946 
2947 template <class ELFT>
2948 typename MipsGOTParser<ELFT>::Entries
getGlobalEntries() const2949 MipsGOTParser<ELFT>::getGlobalEntries() const {
2950   if (GlobalNum == 0)
2951     return Entries();
2952   return GotEntries.slice(LocalNum, GlobalNum);
2953 }
2954 
2955 template <class ELFT>
2956 typename MipsGOTParser<ELFT>::Entries
getOtherEntries() const2957 MipsGOTParser<ELFT>::getOtherEntries() const {
2958   size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
2959   if (OtherNum == 0)
2960     return Entries();
2961   return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
2962 }
2963 
2964 template <class ELFT>
getGotAddress(const Entry * E) const2965 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
2966   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2967   return GotSec->sh_addr + Offset;
2968 }
2969 
2970 template <class ELFT>
getGotOffset(const Entry * E) const2971 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
2972   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2973   return Offset - 0x7ff0;
2974 }
2975 
2976 template <class ELFT>
2977 const typename MipsGOTParser<ELFT>::Elf_Sym *
getGotSym(const Entry * E) const2978 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
2979   int64_t Offset = std::distance(GotEntries.data(), E);
2980   return &GotDynSyms[Offset - LocalNum];
2981 }
2982 
2983 template <class ELFT>
2984 const typename MipsGOTParser<ELFT>::Entry *
getPltLazyResolver() const2985 MipsGOTParser<ELFT>::getPltLazyResolver() const {
2986   return PltEntries.empty() ? nullptr : &PltEntries[0];
2987 }
2988 
2989 template <class ELFT>
2990 const typename MipsGOTParser<ELFT>::Entry *
getPltModulePointer() const2991 MipsGOTParser<ELFT>::getPltModulePointer() const {
2992   return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
2993 }
2994 
2995 template <class ELFT>
2996 typename MipsGOTParser<ELFT>::Entries
getPltEntries() const2997 MipsGOTParser<ELFT>::getPltEntries() const {
2998   if (PltEntries.size() <= 2)
2999     return Entries();
3000   return PltEntries.slice(2, PltEntries.size() - 2);
3001 }
3002 
3003 template <class ELFT>
getPltAddress(const Entry * E) const3004 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
3005   int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
3006   return PltSec->sh_addr + Offset;
3007 }
3008 
3009 template <class ELFT>
3010 const typename MipsGOTParser<ELFT>::Elf_Sym *
getPltSym(const Entry * E) const3011 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
3012   int64_t Offset = std::distance(getPltEntries().data(), E);
3013   if (PltRelSec->sh_type == ELF::SHT_REL) {
3014     Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec));
3015     return unwrapOrError(FileName,
3016                          Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3017   } else {
3018     Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec));
3019     return unwrapOrError(FileName,
3020                          Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3021   }
3022 }
3023 
3024 const EnumEntry<unsigned> ElfMipsISAExtType[] = {
3025   {"None",                    Mips::AFL_EXT_NONE},
3026   {"Broadcom SB-1",           Mips::AFL_EXT_SB1},
3027   {"Cavium Networks Octeon",  Mips::AFL_EXT_OCTEON},
3028   {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
3029   {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
3030   {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
3031   {"LSI R4010",               Mips::AFL_EXT_4010},
3032   {"Loongson 2E",             Mips::AFL_EXT_LOONGSON_2E},
3033   {"Loongson 2F",             Mips::AFL_EXT_LOONGSON_2F},
3034   {"Loongson 3A",             Mips::AFL_EXT_LOONGSON_3A},
3035   {"MIPS R4650",              Mips::AFL_EXT_4650},
3036   {"MIPS R5900",              Mips::AFL_EXT_5900},
3037   {"MIPS R10000",             Mips::AFL_EXT_10000},
3038   {"NEC VR4100",              Mips::AFL_EXT_4100},
3039   {"NEC VR4111/VR4181",       Mips::AFL_EXT_4111},
3040   {"NEC VR4120",              Mips::AFL_EXT_4120},
3041   {"NEC VR5400",              Mips::AFL_EXT_5400},
3042   {"NEC VR5500",              Mips::AFL_EXT_5500},
3043   {"RMI Xlr",                 Mips::AFL_EXT_XLR},
3044   {"Toshiba R3900",           Mips::AFL_EXT_3900}
3045 };
3046 
3047 const EnumEntry<unsigned> ElfMipsASEFlags[] = {
3048   {"DSP",                Mips::AFL_ASE_DSP},
3049   {"DSPR2",              Mips::AFL_ASE_DSPR2},
3050   {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
3051   {"MCU",                Mips::AFL_ASE_MCU},
3052   {"MDMX",               Mips::AFL_ASE_MDMX},
3053   {"MIPS-3D",            Mips::AFL_ASE_MIPS3D},
3054   {"MT",                 Mips::AFL_ASE_MT},
3055   {"SmartMIPS",          Mips::AFL_ASE_SMARTMIPS},
3056   {"VZ",                 Mips::AFL_ASE_VIRT},
3057   {"MSA",                Mips::AFL_ASE_MSA},
3058   {"MIPS16",             Mips::AFL_ASE_MIPS16},
3059   {"microMIPS",          Mips::AFL_ASE_MICROMIPS},
3060   {"XPA",                Mips::AFL_ASE_XPA},
3061   {"CRC",                Mips::AFL_ASE_CRC},
3062   {"GINV",               Mips::AFL_ASE_GINV},
3063 };
3064 
3065 const EnumEntry<unsigned> ElfMipsFpABIType[] = {
3066   {"Hard or soft float",                  Mips::Val_GNU_MIPS_ABI_FP_ANY},
3067   {"Hard float (double precision)",       Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
3068   {"Hard float (single precision)",       Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
3069   {"Soft float",                          Mips::Val_GNU_MIPS_ABI_FP_SOFT},
3070   {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
3071    Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
3072   {"Hard float (32-bit CPU, Any FPU)",    Mips::Val_GNU_MIPS_ABI_FP_XX},
3073   {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
3074   {"Hard float compat (32-bit CPU, 64-bit FPU)",
3075    Mips::Val_GNU_MIPS_ABI_FP_64A}
3076 };
3077 
3078 static const EnumEntry<unsigned> ElfMipsFlags1[] {
3079   {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
3080 };
3081 
getMipsRegisterSize(uint8_t Flag)3082 static int getMipsRegisterSize(uint8_t Flag) {
3083   switch (Flag) {
3084   case Mips::AFL_REG_NONE:
3085     return 0;
3086   case Mips::AFL_REG_32:
3087     return 32;
3088   case Mips::AFL_REG_64:
3089     return 64;
3090   case Mips::AFL_REG_128:
3091     return 128;
3092   default:
3093     return -1;
3094   }
3095 }
3096 
3097 template <class ELFT>
printMipsReginfoData(ScopedPrinter & W,const Elf_Mips_RegInfo<ELFT> & Reginfo)3098 static void printMipsReginfoData(ScopedPrinter &W,
3099                                  const Elf_Mips_RegInfo<ELFT> &Reginfo) {
3100   W.printHex("GP", Reginfo.ri_gp_value);
3101   W.printHex("General Mask", Reginfo.ri_gprmask);
3102   W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
3103   W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
3104   W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
3105   W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
3106 }
3107 
printMipsReginfo()3108 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
3109   const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo");
3110   if (!RegInfoSec) {
3111     W.startLine() << "There is no .reginfo section in the file.\n";
3112     return;
3113   }
3114 
3115   Expected<ArrayRef<uint8_t>> ContentsOrErr =
3116       Obj.getSectionContents(*RegInfoSec);
3117   if (!ContentsOrErr) {
3118     this->reportUniqueWarning(
3119         "unable to read the content of the .reginfo section (" +
3120         describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError()));
3121     return;
3122   }
3123 
3124   if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) {
3125     this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
3126                               Twine::utohexstr(ContentsOrErr->size()) + ")");
3127     return;
3128   }
3129 
3130   DictScope GS(W, "MIPS RegInfo");
3131   printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(
3132                               ContentsOrErr->data()));
3133 }
3134 
3135 template <class ELFT>
3136 static Expected<const Elf_Mips_Options<ELFT> *>
readMipsOptions(const uint8_t * SecBegin,ArrayRef<uint8_t> & SecData,bool & IsSupported)3137 readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData,
3138                 bool &IsSupported) {
3139   if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>))
3140     return createError("the .MIPS.options section has an invalid size (0x" +
3141                        Twine::utohexstr(SecData.size()) + ")");
3142 
3143   const Elf_Mips_Options<ELFT> *O =
3144       reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data());
3145   const uint8_t Size = O->size;
3146   if (Size > SecData.size()) {
3147     const uint64_t Offset = SecData.data() - SecBegin;
3148     const uint64_t SecSize = Offset + SecData.size();
3149     return createError("a descriptor of size 0x" + Twine::utohexstr(Size) +
3150                        " at offset 0x" + Twine::utohexstr(Offset) +
3151                        " goes past the end of the .MIPS.options "
3152                        "section of size 0x" +
3153                        Twine::utohexstr(SecSize));
3154   }
3155 
3156   IsSupported = O->kind == ODK_REGINFO;
3157   const size_t ExpectedSize =
3158       sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
3159 
3160   if (IsSupported)
3161     if (Size < ExpectedSize)
3162       return createError(
3163           "a .MIPS.options entry of kind " +
3164           Twine(getElfMipsOptionsOdkType(O->kind)) +
3165           " has an invalid size (0x" + Twine::utohexstr(Size) +
3166           "), the expected size is 0x" + Twine::utohexstr(ExpectedSize));
3167 
3168   SecData = SecData.drop_front(Size);
3169   return O;
3170 }
3171 
printMipsOptions()3172 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
3173   const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options");
3174   if (!MipsOpts) {
3175     W.startLine() << "There is no .MIPS.options section in the file.\n";
3176     return;
3177   }
3178 
3179   DictScope GS(W, "MIPS Options");
3180 
3181   ArrayRef<uint8_t> Data =
3182       unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts));
3183   const uint8_t *const SecBegin = Data.begin();
3184   while (!Data.empty()) {
3185     bool IsSupported;
3186     Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr =
3187         readMipsOptions<ELFT>(SecBegin, Data, IsSupported);
3188     if (!OptsOrErr) {
3189       reportUniqueWarning(OptsOrErr.takeError());
3190       break;
3191     }
3192 
3193     unsigned Kind = (*OptsOrErr)->kind;
3194     const char *Type = getElfMipsOptionsOdkType(Kind);
3195     if (!IsSupported) {
3196       W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind
3197                     << ")\n";
3198       continue;
3199     }
3200 
3201     DictScope GS(W, Type);
3202     if (Kind == ODK_REGINFO)
3203       printMipsReginfoData(W, (*OptsOrErr)->getRegInfo());
3204     else
3205       llvm_unreachable("unexpected .MIPS.options section descriptor kind");
3206   }
3207 }
3208 
printStackMap() const3209 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
3210   const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps");
3211   if (!StackMapSection)
3212     return;
3213 
3214   auto Warn = [&](Error &&E) {
3215     this->reportUniqueWarning("unable to read the stack map from " +
3216                               describe(*StackMapSection) + ": " +
3217                               toString(std::move(E)));
3218   };
3219 
3220   Expected<ArrayRef<uint8_t>> ContentOrErr =
3221       Obj.getSectionContents(*StackMapSection);
3222   if (!ContentOrErr) {
3223     Warn(ContentOrErr.takeError());
3224     return;
3225   }
3226 
3227   if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader(
3228           *ContentOrErr)) {
3229     Warn(std::move(E));
3230     return;
3231   }
3232 
3233   prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr));
3234 }
3235 
3236 template <class ELFT>
printReloc(const Relocation<ELFT> & R,unsigned RelIndex,const Elf_Shdr & Sec,const Elf_Shdr * SymTab)3237 void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
3238                                  const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
3239   Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab);
3240   if (!Target)
3241     reportUniqueWarning("unable to print relocation " + Twine(RelIndex) +
3242                         " in " + describe(Sec) + ": " +
3243                         toString(Target.takeError()));
3244   else
3245     printRelRelaReloc(R, *Target);
3246 }
3247 
printFields(formatted_raw_ostream & OS,StringRef Str1,StringRef Str2)3248 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
3249                                StringRef Str2) {
3250   OS.PadToColumn(2u);
3251   OS << Str1;
3252   OS.PadToColumn(37u);
3253   OS << Str2 << "\n";
3254   OS.flush();
3255 }
3256 
3257 template <class ELFT>
getSectionHeadersNumString(const ELFFile<ELFT> & Obj,StringRef FileName)3258 static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj,
3259                                               StringRef FileName) {
3260   const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3261   if (ElfHeader.e_shnum != 0)
3262     return to_string(ElfHeader.e_shnum);
3263 
3264   Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3265   if (!ArrOrErr) {
3266     // In this case we can ignore an error, because we have already reported a
3267     // warning about the broken section header table earlier.
3268     consumeError(ArrOrErr.takeError());
3269     return "<?>";
3270   }
3271 
3272   if (ArrOrErr->empty())
3273     return "0";
3274   return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")";
3275 }
3276 
3277 template <class ELFT>
getSectionHeaderTableIndexString(const ELFFile<ELFT> & Obj,StringRef FileName)3278 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj,
3279                                                     StringRef FileName) {
3280   const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3281   if (ElfHeader.e_shstrndx != SHN_XINDEX)
3282     return to_string(ElfHeader.e_shstrndx);
3283 
3284   Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3285   if (!ArrOrErr) {
3286     // In this case we can ignore an error, because we have already reported a
3287     // warning about the broken section header table earlier.
3288     consumeError(ArrOrErr.takeError());
3289     return "<?>";
3290   }
3291 
3292   if (ArrOrErr->empty())
3293     return "65535 (corrupt: out of range)";
3294   return to_string(ElfHeader.e_shstrndx) + " (" +
3295          to_string((*ArrOrErr)[0].sh_link) + ")";
3296 }
3297 
getObjectFileEnumEntry(unsigned Type)3298 static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) {
3299   auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) {
3300     return E.Value == Type;
3301   });
3302   if (It != ArrayRef(ElfObjectFileType).end())
3303     return It;
3304   return nullptr;
3305 }
3306 
3307 template <class ELFT>
printFileSummary(StringRef FileStr,ObjectFile & Obj,ArrayRef<std::string> InputFilenames,const Archive * A)3308 void GNUELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
3309                                           ArrayRef<std::string> InputFilenames,
3310                                           const Archive *A) {
3311   if (InputFilenames.size() > 1 || A) {
3312     this->W.startLine() << "\n";
3313     this->W.printString("File", FileStr);
3314   }
3315 }
3316 
printFileHeaders()3317 template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() {
3318   const Elf_Ehdr &e = this->Obj.getHeader();
3319   OS << "ELF Header:\n";
3320   OS << "  Magic:  ";
3321   std::string Str;
3322   for (int i = 0; i < ELF::EI_NIDENT; i++)
3323     OS << format(" %02x", static_cast<int>(e.e_ident[i]));
3324   OS << "\n";
3325   Str = enumToString(e.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass));
3326   printFields(OS, "Class:", Str);
3327   Str = enumToString(e.e_ident[ELF::EI_DATA], ArrayRef(ElfDataEncoding));
3328   printFields(OS, "Data:", Str);
3329   OS.PadToColumn(2u);
3330   OS << "Version:";
3331   OS.PadToColumn(37u);
3332   OS << utohexstr(e.e_ident[ELF::EI_VERSION]);
3333   if (e.e_version == ELF::EV_CURRENT)
3334     OS << " (current)";
3335   OS << "\n";
3336   Str = enumToString(e.e_ident[ELF::EI_OSABI], ArrayRef(ElfOSABI));
3337   printFields(OS, "OS/ABI:", Str);
3338   printFields(OS,
3339               "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION]));
3340 
3341   if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) {
3342     Str = E->AltName.str();
3343   } else {
3344     if (e.e_type >= ET_LOPROC)
3345       Str = "Processor Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3346     else if (e.e_type >= ET_LOOS)
3347       Str = "OS Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3348     else
3349       Str = "<unknown>: " + utohexstr(e.e_type, /*LowerCase=*/true);
3350   }
3351   printFields(OS, "Type:", Str);
3352 
3353   Str = enumToString(e.e_machine, ArrayRef(ElfMachineType));
3354   printFields(OS, "Machine:", Str);
3355   Str = "0x" + utohexstr(e.e_version);
3356   printFields(OS, "Version:", Str);
3357   Str = "0x" + utohexstr(e.e_entry);
3358   printFields(OS, "Entry point address:", Str);
3359   Str = to_string(e.e_phoff) + " (bytes into file)";
3360   printFields(OS, "Start of program headers:", Str);
3361   Str = to_string(e.e_shoff) + " (bytes into file)";
3362   printFields(OS, "Start of section headers:", Str);
3363   std::string ElfFlags;
3364   if (e.e_machine == EM_MIPS)
3365     ElfFlags = printFlags(
3366         e.e_flags, ArrayRef(ElfHeaderMipsFlags), unsigned(ELF::EF_MIPS_ARCH),
3367         unsigned(ELF::EF_MIPS_ABI), unsigned(ELF::EF_MIPS_MACH));
3368   else if (e.e_machine == EM_RISCV)
3369     ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderRISCVFlags));
3370   else if (e.e_machine == EM_AVR)
3371     ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderAVRFlags),
3372                           unsigned(ELF::EF_AVR_ARCH_MASK));
3373   else if (e.e_machine == EM_LOONGARCH)
3374     ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderLoongArchFlags),
3375                           unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK),
3376                           unsigned(ELF::EF_LOONGARCH_OBJABI_MASK));
3377   else if (e.e_machine == EM_XTENSA)
3378     ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderXtensaFlags),
3379                           unsigned(ELF::EF_XTENSA_MACH));
3380   Str = "0x" + utohexstr(e.e_flags);
3381   if (!ElfFlags.empty())
3382     Str = Str + ", " + ElfFlags;
3383   printFields(OS, "Flags:", Str);
3384   Str = to_string(e.e_ehsize) + " (bytes)";
3385   printFields(OS, "Size of this header:", Str);
3386   Str = to_string(e.e_phentsize) + " (bytes)";
3387   printFields(OS, "Size of program headers:", Str);
3388   Str = to_string(e.e_phnum);
3389   printFields(OS, "Number of program headers:", Str);
3390   Str = to_string(e.e_shentsize) + " (bytes)";
3391   printFields(OS, "Size of section headers:", Str);
3392   Str = getSectionHeadersNumString(this->Obj, this->FileName);
3393   printFields(OS, "Number of section headers:", Str);
3394   Str = getSectionHeaderTableIndexString(this->Obj, this->FileName);
3395   printFields(OS, "Section header string table index:", Str);
3396 }
3397 
getGroups()3398 template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() {
3399   auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx,
3400                           const Elf_Shdr &Symtab) -> StringRef {
3401     Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab);
3402     if (!StrTableOrErr) {
3403       reportUniqueWarning("unable to get the string table for " +
3404                           describe(Symtab) + ": " +
3405                           toString(StrTableOrErr.takeError()));
3406       return "<?>";
3407     }
3408 
3409     StringRef Strings = *StrTableOrErr;
3410     if (Sym.st_name >= Strings.size()) {
3411       reportUniqueWarning("unable to get the name of the symbol with index " +
3412                           Twine(SymNdx) + ": st_name (0x" +
3413                           Twine::utohexstr(Sym.st_name) +
3414                           ") is past the end of the string table of size 0x" +
3415                           Twine::utohexstr(Strings.size()));
3416       return "<?>";
3417     }
3418 
3419     return StrTableOrErr->data() + Sym.st_name;
3420   };
3421 
3422   std::vector<GroupSection> Ret;
3423   uint64_t I = 0;
3424   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
3425     ++I;
3426     if (Sec.sh_type != ELF::SHT_GROUP)
3427       continue;
3428 
3429     StringRef Signature = "<?>";
3430     if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) {
3431       if (Expected<const Elf_Sym *> SymOrErr =
3432               Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info))
3433         Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr);
3434       else
3435         reportUniqueWarning("unable to get the signature symbol for " +
3436                             describe(Sec) + ": " +
3437                             toString(SymOrErr.takeError()));
3438     } else {
3439       reportUniqueWarning("unable to get the symbol table for " +
3440                           describe(Sec) + ": " +
3441                           toString(SymtabOrErr.takeError()));
3442     }
3443 
3444     ArrayRef<Elf_Word> Data;
3445     if (Expected<ArrayRef<Elf_Word>> ContentsOrErr =
3446             Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) {
3447       if (ContentsOrErr->empty())
3448         reportUniqueWarning("unable to read the section group flag from the " +
3449                             describe(Sec) + ": the section is empty");
3450       else
3451         Data = *ContentsOrErr;
3452     } else {
3453       reportUniqueWarning("unable to get the content of the " + describe(Sec) +
3454                           ": " + toString(ContentsOrErr.takeError()));
3455     }
3456 
3457     Ret.push_back({getPrintableSectionName(Sec),
3458                    maybeDemangle(Signature),
3459                    Sec.sh_name,
3460                    I - 1,
3461                    Sec.sh_link,
3462                    Sec.sh_info,
3463                    Data.empty() ? Elf_Word(0) : Data[0],
3464                    {}});
3465 
3466     if (Data.empty())
3467       continue;
3468 
3469     std::vector<GroupMember> &GM = Ret.back().Members;
3470     for (uint32_t Ndx : Data.slice(1)) {
3471       if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) {
3472         GM.push_back({getPrintableSectionName(**SecOrErr), Ndx});
3473       } else {
3474         reportUniqueWarning("unable to get the section with index " +
3475                             Twine(Ndx) + " when dumping the " + describe(Sec) +
3476                             ": " + toString(SecOrErr.takeError()));
3477         GM.push_back({"<?>", Ndx});
3478       }
3479     }
3480   }
3481   return Ret;
3482 }
3483 
3484 static DenseMap<uint64_t, const GroupSection *>
mapSectionsToGroups(ArrayRef<GroupSection> Groups)3485 mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
3486   DenseMap<uint64_t, const GroupSection *> Ret;
3487   for (const GroupSection &G : Groups)
3488     for (const GroupMember &GM : G.Members)
3489       Ret.insert({GM.Index, &G});
3490   return Ret;
3491 }
3492 
printGroupSections()3493 template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() {
3494   std::vector<GroupSection> V = this->getGroups();
3495   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
3496   for (const GroupSection &G : V) {
3497     OS << "\n"
3498        << getGroupType(G.Type) << " group section ["
3499        << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
3500        << "] contains " << G.Members.size() << " sections:\n"
3501        << "   [Index]    Name\n";
3502     for (const GroupMember &GM : G.Members) {
3503       const GroupSection *MainGroup = Map[GM.Index];
3504       if (MainGroup != &G)
3505         this->reportUniqueWarning(
3506             "section with index " + Twine(GM.Index) +
3507             ", included in the group section with index " +
3508             Twine(MainGroup->Index) +
3509             ", was also found in the group section with index " +
3510             Twine(G.Index));
3511       OS << "   [" << format_decimal(GM.Index, 5) << "]   " << GM.Name << "\n";
3512     }
3513   }
3514 
3515   if (V.empty())
3516     OS << "There are no section groups in this file.\n";
3517 }
3518 
3519 template <class ELFT>
printRelrReloc(const Elf_Relr & R)3520 void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
3521   OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n";
3522 }
3523 
3524 template <class ELFT>
printRelRelaReloc(const Relocation<ELFT> & R,const RelSymbol<ELFT> & RelSym)3525 void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
3526                                            const RelSymbol<ELFT> &RelSym) {
3527   // First two fields are bit width dependent. The rest of them are fixed width.
3528   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3529   Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3530   unsigned Width = ELFT::Is64Bits ? 16 : 8;
3531 
3532   Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width));
3533   Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width));
3534 
3535   SmallString<32> RelocName;
3536   this->Obj.getRelocationTypeName(R.Type, RelocName);
3537   Fields[2].Str = RelocName.c_str();
3538 
3539   if (RelSym.Sym)
3540     Fields[3].Str =
3541         to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width));
3542 
3543   Fields[4].Str = std::string(RelSym.Name);
3544   for (const Field &F : Fields)
3545     printField(F);
3546 
3547   std::string Addend;
3548   if (std::optional<int64_t> A = R.Addend) {
3549     int64_t RelAddend = *A;
3550     if (!RelSym.Name.empty()) {
3551       if (RelAddend < 0) {
3552         Addend = " - ";
3553         RelAddend = std::abs(RelAddend);
3554       } else {
3555         Addend = " + ";
3556       }
3557     }
3558     Addend += utohexstr(RelAddend, /*LowerCase=*/true);
3559   }
3560   OS << Addend << "\n";
3561 }
3562 
3563 template <class ELFT>
printRelocHeaderFields(formatted_raw_ostream & OS,unsigned SType)3564 static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType) {
3565   bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
3566   bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
3567   if (ELFT::Is64Bits)
3568     OS << "    ";
3569   else
3570     OS << " ";
3571   if (IsRelr && opts::RawRelr)
3572     OS << "Data  ";
3573   else
3574     OS << "Offset";
3575   if (ELFT::Is64Bits)
3576     OS << "             Info             Type"
3577        << "               Symbol's Value  Symbol's Name";
3578   else
3579     OS << "     Info    Type                Sym. Value  Symbol's Name";
3580   if (IsRela)
3581     OS << " + Addend";
3582   OS << "\n";
3583 }
3584 
3585 template <class ELFT>
printDynamicRelocHeader(unsigned Type,StringRef Name,const DynRegionInfo & Reg)3586 void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name,
3587                                                  const DynRegionInfo &Reg) {
3588   uint64_t Offset = Reg.Addr - this->Obj.base();
3589   OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x"
3590      << utohexstr(Offset, /*LowerCase=*/true) << " contains " << Reg.Size << " bytes:\n";
3591   printRelocHeaderFields<ELFT>(OS, Type);
3592 }
3593 
3594 template <class ELFT>
isRelocationSec(const typename ELFT::Shdr & Sec)3595 static bool isRelocationSec(const typename ELFT::Shdr &Sec) {
3596   return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA ||
3597          Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL ||
3598          Sec.sh_type == ELF::SHT_ANDROID_RELA ||
3599          Sec.sh_type == ELF::SHT_ANDROID_RELR;
3600 }
3601 
printRelocations()3602 template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() {
3603   auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> {
3604     // Android's packed relocation section needs to be unpacked first
3605     // to get the actual number of entries.
3606     if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
3607         Sec.sh_type == ELF::SHT_ANDROID_RELA) {
3608       Expected<std::vector<typename ELFT::Rela>> RelasOrErr =
3609           this->Obj.android_relas(Sec);
3610       if (!RelasOrErr)
3611         return RelasOrErr.takeError();
3612       return RelasOrErr->size();
3613     }
3614 
3615     if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
3616                            Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
3617       Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec);
3618       if (!RelrsOrErr)
3619         return RelrsOrErr.takeError();
3620       return this->Obj.decode_relrs(*RelrsOrErr).size();
3621     }
3622 
3623     return Sec.getEntityCount();
3624   };
3625 
3626   bool HasRelocSections = false;
3627   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
3628     if (!isRelocationSec<ELFT>(Sec))
3629       continue;
3630     HasRelocSections = true;
3631 
3632     std::string EntriesNum = "<?>";
3633     if (Expected<size_t> NumOrErr = GetEntriesNum(Sec))
3634       EntriesNum = std::to_string(*NumOrErr);
3635     else
3636       this->reportUniqueWarning("unable to get the number of relocations in " +
3637                                 this->describe(Sec) + ": " +
3638                                 toString(NumOrErr.takeError()));
3639 
3640     uintX_t Offset = Sec.sh_offset;
3641     StringRef Name = this->getPrintableSectionName(Sec);
3642     OS << "\nRelocation section '" << Name << "' at offset 0x"
3643        << utohexstr(Offset, /*LowerCase=*/true) << " contains " << EntriesNum
3644        << " entries:\n";
3645     printRelocHeaderFields<ELFT>(OS, Sec.sh_type);
3646     this->printRelocationsHelper(Sec);
3647   }
3648   if (!HasRelocSections)
3649     OS << "\nThere are no relocations in this file.\n";
3650 }
3651 
3652 // Print the offset of a particular section from anyone of the ranges:
3653 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3654 // If 'Type' does not fall within any of those ranges, then a string is
3655 // returned as '<unknown>' followed by the type value.
getSectionTypeOffsetString(unsigned Type)3656 static std::string getSectionTypeOffsetString(unsigned Type) {
3657   if (Type >= SHT_LOOS && Type <= SHT_HIOS)
3658     return "LOOS+0x" + utohexstr(Type - SHT_LOOS);
3659   else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
3660     return "LOPROC+0x" + utohexstr(Type - SHT_LOPROC);
3661   else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
3662     return "LOUSER+0x" + utohexstr(Type - SHT_LOUSER);
3663   return "0x" + utohexstr(Type) + ": <unknown>";
3664 }
3665 
getSectionTypeString(unsigned Machine,unsigned Type)3666 static std::string getSectionTypeString(unsigned Machine, unsigned Type) {
3667   StringRef Name = getELFSectionTypeName(Machine, Type);
3668 
3669   // Handle SHT_GNU_* type names.
3670   if (Name.consume_front("SHT_GNU_")) {
3671     if (Name == "HASH")
3672       return "GNU_HASH";
3673     // E.g. SHT_GNU_verneed -> VERNEED.
3674     return Name.upper();
3675   }
3676 
3677   if (Name == "SHT_SYMTAB_SHNDX")
3678     return "SYMTAB SECTION INDICES";
3679 
3680   if (Name.consume_front("SHT_"))
3681     return Name.str();
3682   return getSectionTypeOffsetString(Type);
3683 }
3684 
printSectionDescription(formatted_raw_ostream & OS,unsigned EMachine)3685 static void printSectionDescription(formatted_raw_ostream &OS,
3686                                     unsigned EMachine) {
3687   OS << "Key to Flags:\n";
3688   OS << "  W (write), A (alloc), X (execute), M (merge), S (strings), I "
3689         "(info),\n";
3690   OS << "  L (link order), O (extra OS processing required), G (group), T "
3691         "(TLS),\n";
3692   OS << "  C (compressed), x (unknown), o (OS specific), E (exclude),\n";
3693   OS << "  R (retain)";
3694 
3695   if (EMachine == EM_X86_64)
3696     OS << ", l (large)";
3697   else if (EMachine == EM_ARM)
3698     OS << ", y (purecode)";
3699 
3700   OS << ", p (processor specific)\n";
3701 }
3702 
printSectionHeaders()3703 template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() {
3704   ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
3705   if (Sections.empty()) {
3706     OS << "\nThere are no sections in this file.\n";
3707     Expected<StringRef> SecStrTableOrErr =
3708         this->Obj.getSectionStringTable(Sections, this->WarningHandler);
3709     if (!SecStrTableOrErr)
3710       this->reportUniqueWarning(SecStrTableOrErr.takeError());
3711     return;
3712   }
3713   unsigned Bias = ELFT::Is64Bits ? 0 : 8;
3714   OS << "There are " << to_string(Sections.size())
3715      << " section headers, starting at offset "
3716      << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
3717   OS << "Section Headers:\n";
3718   Field Fields[11] = {
3719       {"[Nr]", 2},        {"Name", 7},        {"Type", 25},
3720       {"Address", 41},    {"Off", 58 - Bias}, {"Size", 65 - Bias},
3721       {"ES", 72 - Bias},  {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
3722       {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
3723   for (const Field &F : Fields)
3724     printField(F);
3725   OS << "\n";
3726 
3727   StringRef SecStrTable;
3728   if (Expected<StringRef> SecStrTableOrErr =
3729           this->Obj.getSectionStringTable(Sections, this->WarningHandler))
3730     SecStrTable = *SecStrTableOrErr;
3731   else
3732     this->reportUniqueWarning(SecStrTableOrErr.takeError());
3733 
3734   size_t SectionIndex = 0;
3735   for (const Elf_Shdr &Sec : Sections) {
3736     Fields[0].Str = to_string(SectionIndex);
3737     if (SecStrTable.empty())
3738       Fields[1].Str = "<no-strings>";
3739     else
3740       Fields[1].Str = std::string(unwrapOrError<StringRef>(
3741           this->FileName, this->Obj.getSectionName(Sec, SecStrTable)));
3742     Fields[2].Str =
3743         getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type);
3744     Fields[3].Str =
3745         to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
3746     Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
3747     Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
3748     Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
3749     Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
3750                                 this->Obj.getHeader().e_machine, Sec.sh_flags);
3751     Fields[8].Str = to_string(Sec.sh_link);
3752     Fields[9].Str = to_string(Sec.sh_info);
3753     Fields[10].Str = to_string(Sec.sh_addralign);
3754 
3755     OS.PadToColumn(Fields[0].Column);
3756     OS << "[" << right_justify(Fields[0].Str, 2) << "]";
3757     for (int i = 1; i < 7; i++)
3758       printField(Fields[i]);
3759     OS.PadToColumn(Fields[7].Column);
3760     OS << right_justify(Fields[7].Str, 3);
3761     OS.PadToColumn(Fields[8].Column);
3762     OS << right_justify(Fields[8].Str, 2);
3763     OS.PadToColumn(Fields[9].Column);
3764     OS << right_justify(Fields[9].Str, 3);
3765     OS.PadToColumn(Fields[10].Column);
3766     OS << right_justify(Fields[10].Str, 2);
3767     OS << "\n";
3768     ++SectionIndex;
3769   }
3770   printSectionDescription(OS, this->Obj.getHeader().e_machine);
3771 }
3772 
3773 template <class ELFT>
printSymtabMessage(const Elf_Shdr * Symtab,size_t Entries,bool NonVisibilityBitsUsed) const3774 void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab,
3775                                             size_t Entries,
3776                                             bool NonVisibilityBitsUsed) const {
3777   StringRef Name;
3778   if (Symtab)
3779     Name = this->getPrintableSectionName(*Symtab);
3780   if (!Name.empty())
3781     OS << "\nSymbol table '" << Name << "'";
3782   else
3783     OS << "\nSymbol table for image";
3784   OS << " contains " << Entries << " entries:\n";
3785 
3786   if (ELFT::Is64Bits)
3787     OS << "   Num:    Value          Size Type    Bind   Vis";
3788   else
3789     OS << "   Num:    Value  Size Type    Bind   Vis";
3790 
3791   if (NonVisibilityBitsUsed)
3792     OS << "             ";
3793   OS << "       Ndx Name\n";
3794 }
3795 
3796 template <class ELFT>
3797 std::string
getSymbolSectionNdx(const Elf_Sym & Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable) const3798 GNUELFDumper<ELFT>::getSymbolSectionNdx(const Elf_Sym &Symbol,
3799                                         unsigned SymIndex,
3800                                         DataRegion<Elf_Word> ShndxTable) const {
3801   unsigned SectionIndex = Symbol.st_shndx;
3802   switch (SectionIndex) {
3803   case ELF::SHN_UNDEF:
3804     return "UND";
3805   case ELF::SHN_ABS:
3806     return "ABS";
3807   case ELF::SHN_COMMON:
3808     return "COM";
3809   case ELF::SHN_XINDEX: {
3810     Expected<uint32_t> IndexOrErr =
3811         object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable);
3812     if (!IndexOrErr) {
3813       assert(Symbol.st_shndx == SHN_XINDEX &&
3814              "getExtendedSymbolTableIndex should only fail due to an invalid "
3815              "SHT_SYMTAB_SHNDX table/reference");
3816       this->reportUniqueWarning(IndexOrErr.takeError());
3817       return "RSV[0xffff]";
3818     }
3819     return to_string(format_decimal(*IndexOrErr, 3));
3820   }
3821   default:
3822     // Find if:
3823     // Processor specific
3824     if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
3825       return std::string("PRC[0x") +
3826              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3827     // OS specific
3828     if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
3829       return std::string("OS[0x") +
3830              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3831     // Architecture reserved:
3832     if (SectionIndex >= ELF::SHN_LORESERVE &&
3833         SectionIndex <= ELF::SHN_HIRESERVE)
3834       return std::string("RSV[0x") +
3835              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3836     // A normal section with an index
3837     return to_string(format_decimal(SectionIndex, 3));
3838   }
3839 }
3840 
3841 template <class ELFT>
printSymbol(const Elf_Sym & Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable,std::optional<StringRef> StrTable,bool IsDynamic,bool NonVisibilityBitsUsed) const3842 void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
3843                                      DataRegion<Elf_Word> ShndxTable,
3844                                      std::optional<StringRef> StrTable,
3845                                      bool IsDynamic,
3846                                      bool NonVisibilityBitsUsed) const {
3847   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3848   Field Fields[8] = {0,         8,         17 + Bias, 23 + Bias,
3849                      31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
3850   Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":";
3851   Fields[1].Str =
3852       to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8));
3853   Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5));
3854 
3855   unsigned char SymbolType = Symbol.getType();
3856   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
3857       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3858     Fields[3].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes));
3859   else
3860     Fields[3].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes));
3861 
3862   Fields[4].Str =
3863       enumToString(Symbol.getBinding(), ArrayRef(ElfSymbolBindings));
3864   Fields[5].Str =
3865       enumToString(Symbol.getVisibility(), ArrayRef(ElfSymbolVisibilities));
3866 
3867   if (Symbol.st_other & ~0x3) {
3868     if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) {
3869       uint8_t Other = Symbol.st_other & ~0x3;
3870       if (Other & STO_AARCH64_VARIANT_PCS) {
3871         Other &= ~STO_AARCH64_VARIANT_PCS;
3872         Fields[5].Str += " [VARIANT_PCS";
3873         if (Other != 0)
3874           Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
3875         Fields[5].Str.append("]");
3876       }
3877     } else if (this->Obj.getHeader().e_machine == ELF::EM_RISCV) {
3878       uint8_t Other = Symbol.st_other & ~0x3;
3879       if (Other & STO_RISCV_VARIANT_CC) {
3880         Other &= ~STO_RISCV_VARIANT_CC;
3881         Fields[5].Str += " [VARIANT_CC";
3882         if (Other != 0)
3883           Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
3884         Fields[5].Str.append("]");
3885       }
3886     } else {
3887       Fields[5].Str +=
3888           " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]";
3889     }
3890   }
3891 
3892   Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
3893   Fields[6].Str = getSymbolSectionNdx(Symbol, SymIndex, ShndxTable);
3894 
3895   Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable,
3896                                           StrTable, IsDynamic);
3897   for (const Field &Entry : Fields)
3898     printField(Entry);
3899   OS << "\n";
3900 }
3901 
3902 template <class ELFT>
printHashedSymbol(const Elf_Sym * Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable,StringRef StrTable,uint32_t Bucket)3903 void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol,
3904                                            unsigned SymIndex,
3905                                            DataRegion<Elf_Word> ShndxTable,
3906                                            StringRef StrTable,
3907                                            uint32_t Bucket) {
3908   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3909   Field Fields[9] = {0,         6,         11,        20 + Bias, 25 + Bias,
3910                      34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
3911   Fields[0].Str = to_string(format_decimal(SymIndex, 5));
3912   Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
3913 
3914   Fields[2].Str = to_string(
3915       format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
3916   Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
3917 
3918   unsigned char SymbolType = Symbol->getType();
3919   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
3920       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3921     Fields[4].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes));
3922   else
3923     Fields[4].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes));
3924 
3925   Fields[5].Str =
3926       enumToString(Symbol->getBinding(), ArrayRef(ElfSymbolBindings));
3927   Fields[6].Str =
3928       enumToString(Symbol->getVisibility(), ArrayRef(ElfSymbolVisibilities));
3929   Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable);
3930   Fields[8].Str =
3931       this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true);
3932 
3933   for (const Field &Entry : Fields)
3934     printField(Entry);
3935   OS << "\n";
3936 }
3937 
3938 template <class ELFT>
printSymbols(bool PrintSymbols,bool PrintDynamicSymbols)3939 void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols,
3940                                       bool PrintDynamicSymbols) {
3941   if (!PrintSymbols && !PrintDynamicSymbols)
3942     return;
3943   // GNU readelf prints both the .dynsym and .symtab with --symbols.
3944   this->printSymbolsHelper(true);
3945   if (PrintSymbols)
3946     this->printSymbolsHelper(false);
3947 }
3948 
3949 template <class ELFT>
printHashTableSymbols(const Elf_Hash & SysVHash)3950 void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) {
3951   if (this->DynamicStringTable.empty())
3952     return;
3953 
3954   if (ELFT::Is64Bits)
3955     OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
3956   else
3957     OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
3958   OS << "\n";
3959 
3960   Elf_Sym_Range DynSyms = this->dynamic_symbols();
3961   const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
3962   if (!FirstSym) {
3963     this->reportUniqueWarning(
3964         Twine("unable to print symbols for the .hash table: the "
3965               "dynamic symbol table ") +
3966         (this->DynSymRegion ? "is empty" : "was not found"));
3967     return;
3968   }
3969 
3970   DataRegion<Elf_Word> ShndxTable(
3971       (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
3972   auto Buckets = SysVHash.buckets();
3973   auto Chains = SysVHash.chains();
3974   for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) {
3975     if (Buckets[Buc] == ELF::STN_UNDEF)
3976       continue;
3977     BitVector Visited(SysVHash.nchain);
3978     for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) {
3979       if (Ch == ELF::STN_UNDEF)
3980         break;
3981 
3982       if (Visited[Ch]) {
3983         this->reportUniqueWarning(".hash section is invalid: bucket " +
3984                                   Twine(Ch) +
3985                                   ": a cycle was detected in the linked chain");
3986         break;
3987       }
3988 
3989       printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable,
3990                         Buc);
3991       Visited[Ch] = true;
3992     }
3993   }
3994 }
3995 
3996 template <class ELFT>
printGnuHashTableSymbols(const Elf_GnuHash & GnuHash)3997 void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) {
3998   if (this->DynamicStringTable.empty())
3999     return;
4000 
4001   Elf_Sym_Range DynSyms = this->dynamic_symbols();
4002   const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
4003   if (!FirstSym) {
4004     this->reportUniqueWarning(
4005         Twine("unable to print symbols for the .gnu.hash table: the "
4006               "dynamic symbol table ") +
4007         (this->DynSymRegion ? "is empty" : "was not found"));
4008     return;
4009   }
4010 
4011   auto GetSymbol = [&](uint64_t SymIndex,
4012                        uint64_t SymsTotal) -> const Elf_Sym * {
4013     if (SymIndex >= SymsTotal) {
4014       this->reportUniqueWarning(
4015           "unable to print hashed symbol with index " + Twine(SymIndex) +
4016           ", which is greater than or equal to the number of dynamic symbols "
4017           "(" +
4018           Twine::utohexstr(SymsTotal) + ")");
4019       return nullptr;
4020     }
4021     return FirstSym + SymIndex;
4022   };
4023 
4024   Expected<ArrayRef<Elf_Word>> ValuesOrErr =
4025       getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash);
4026   ArrayRef<Elf_Word> Values;
4027   if (!ValuesOrErr)
4028     this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
4029                               "section: " +
4030                               toString(ValuesOrErr.takeError()));
4031   else
4032     Values = *ValuesOrErr;
4033 
4034   DataRegion<Elf_Word> ShndxTable(
4035       (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
4036   ArrayRef<Elf_Word> Buckets = GnuHash.buckets();
4037   for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) {
4038     if (Buckets[Buc] == ELF::STN_UNDEF)
4039       continue;
4040     uint32_t Index = Buckets[Buc];
4041     // Print whole chain.
4042     while (true) {
4043       uint32_t SymIndex = Index++;
4044       if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size()))
4045         printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable,
4046                           Buc);
4047       else
4048         break;
4049 
4050       if (SymIndex < GnuHash.symndx) {
4051         this->reportUniqueWarning(
4052             "unable to read the hash value for symbol with index " +
4053             Twine(SymIndex) +
4054             ", which is less than the index of the first hashed symbol (" +
4055             Twine(GnuHash.symndx) + ")");
4056         break;
4057       }
4058 
4059        // Chain ends at symbol with stopper bit.
4060       if ((Values[SymIndex - GnuHash.symndx] & 1) == 1)
4061         break;
4062     }
4063   }
4064 }
4065 
printHashSymbols()4066 template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() {
4067   if (this->HashTable) {
4068     OS << "\n Symbol table of .hash for image:\n";
4069     if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4070       this->reportUniqueWarning(std::move(E));
4071     else
4072       printHashTableSymbols(*this->HashTable);
4073   }
4074 
4075   // Try printing the .gnu.hash table.
4076   if (this->GnuHashTable) {
4077     OS << "\n Symbol table of .gnu.hash for image:\n";
4078     if (ELFT::Is64Bits)
4079       OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
4080     else
4081       OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
4082     OS << "\n";
4083 
4084     if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4085       this->reportUniqueWarning(std::move(E));
4086     else
4087       printGnuHashTableSymbols(*this->GnuHashTable);
4088   }
4089 }
4090 
printSectionDetails()4091 template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() {
4092   ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
4093   if (Sections.empty()) {
4094     OS << "\nThere are no sections in this file.\n";
4095     Expected<StringRef> SecStrTableOrErr =
4096         this->Obj.getSectionStringTable(Sections, this->WarningHandler);
4097     if (!SecStrTableOrErr)
4098       this->reportUniqueWarning(SecStrTableOrErr.takeError());
4099     return;
4100   }
4101   OS << "There are " << to_string(Sections.size())
4102      << " section headers, starting at offset "
4103      << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
4104 
4105   OS << "Section Headers:\n";
4106 
4107   auto PrintFields = [&](ArrayRef<Field> V) {
4108     for (const Field &F : V)
4109       printField(F);
4110     OS << "\n";
4111   };
4112 
4113   PrintFields({{"[Nr]", 2}, {"Name", 7}});
4114 
4115   constexpr bool Is64 = ELFT::Is64Bits;
4116   PrintFields({{"Type", 7},
4117                {Is64 ? "Address" : "Addr", 23},
4118                {"Off", Is64 ? 40 : 32},
4119                {"Size", Is64 ? 47 : 39},
4120                {"ES", Is64 ? 54 : 46},
4121                {"Lk", Is64 ? 59 : 51},
4122                {"Inf", Is64 ? 62 : 54},
4123                {"Al", Is64 ? 66 : 57}});
4124   PrintFields({{"Flags", 7}});
4125 
4126   StringRef SecStrTable;
4127   if (Expected<StringRef> SecStrTableOrErr =
4128           this->Obj.getSectionStringTable(Sections, this->WarningHandler))
4129     SecStrTable = *SecStrTableOrErr;
4130   else
4131     this->reportUniqueWarning(SecStrTableOrErr.takeError());
4132 
4133   size_t SectionIndex = 0;
4134   const unsigned AddrSize = Is64 ? 16 : 8;
4135   for (const Elf_Shdr &S : Sections) {
4136     StringRef Name = "<?>";
4137     if (Expected<StringRef> NameOrErr =
4138             this->Obj.getSectionName(S, SecStrTable))
4139       Name = *NameOrErr;
4140     else
4141       this->reportUniqueWarning(NameOrErr.takeError());
4142 
4143     OS.PadToColumn(2);
4144     OS << "[" << right_justify(to_string(SectionIndex), 2) << "]";
4145     PrintFields({{Name, 7}});
4146     PrintFields(
4147         {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7},
4148          {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23},
4149          {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32},
4150          {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39},
4151          {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46},
4152          {to_string(S.sh_link), Is64 ? 59 : 51},
4153          {to_string(S.sh_info), Is64 ? 63 : 55},
4154          {to_string(S.sh_addralign), Is64 ? 66 : 58}});
4155 
4156     OS.PadToColumn(7);
4157     OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: ";
4158 
4159     DenseMap<unsigned, StringRef> FlagToName = {
4160         {SHF_WRITE, "WRITE"},           {SHF_ALLOC, "ALLOC"},
4161         {SHF_EXECINSTR, "EXEC"},        {SHF_MERGE, "MERGE"},
4162         {SHF_STRINGS, "STRINGS"},       {SHF_INFO_LINK, "INFO LINK"},
4163         {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"},
4164         {SHF_GROUP, "GROUP"},           {SHF_TLS, "TLS"},
4165         {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}};
4166 
4167     uint64_t Flags = S.sh_flags;
4168     uint64_t UnknownFlags = 0;
4169     ListSeparator LS;
4170     while (Flags) {
4171       // Take the least significant bit as a flag.
4172       uint64_t Flag = Flags & -Flags;
4173       Flags -= Flag;
4174 
4175       auto It = FlagToName.find(Flag);
4176       if (It != FlagToName.end())
4177         OS << LS << It->second;
4178       else
4179         UnknownFlags |= Flag;
4180     }
4181 
4182     auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) {
4183       uint64_t FlagsToPrint = UnknownFlags & Mask;
4184       if (!FlagsToPrint)
4185         return;
4186 
4187       OS << LS << Name << " ("
4188          << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")";
4189       UnknownFlags &= ~Mask;
4190     };
4191 
4192     PrintUnknownFlags(SHF_MASKOS, "OS");
4193     PrintUnknownFlags(SHF_MASKPROC, "PROC");
4194     PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
4195 
4196     OS << "\n";
4197     ++SectionIndex;
4198 
4199     if (!(S.sh_flags & SHF_COMPRESSED))
4200       continue;
4201     Expected<ArrayRef<uint8_t>> Data = this->Obj.getSectionContents(S);
4202     if (!Data || Data->size() < sizeof(Elf_Chdr)) {
4203       consumeError(Data.takeError());
4204       reportWarning(createError("SHF_COMPRESSED section '" + Name +
4205                                 "' does not have an Elf_Chdr header"),
4206                     this->FileName);
4207       OS.indent(7);
4208       OS << "[<corrupt>]";
4209     } else {
4210       OS.indent(7);
4211       auto *Chdr = reinterpret_cast<const Elf_Chdr *>(Data->data());
4212       if (Chdr->ch_type == ELFCOMPRESS_ZLIB)
4213         OS << "ZLIB";
4214       else if (Chdr->ch_type == ELFCOMPRESS_ZSTD)
4215         OS << "ZSTD";
4216       else
4217         OS << format("[<unknown>: 0x%x]", unsigned(Chdr->ch_type));
4218       OS << ", " << format_hex_no_prefix(Chdr->ch_size, ELFT::Is64Bits ? 16 : 8)
4219          << ", " << Chdr->ch_addralign;
4220     }
4221     OS << '\n';
4222   }
4223 }
4224 
printPhdrFlags(unsigned Flag)4225 static inline std::string printPhdrFlags(unsigned Flag) {
4226   std::string Str;
4227   Str = (Flag & PF_R) ? "R" : " ";
4228   Str += (Flag & PF_W) ? "W" : " ";
4229   Str += (Flag & PF_X) ? "E" : " ";
4230   return Str;
4231 }
4232 
4233 template <class ELFT>
checkTLSSections(const typename ELFT::Phdr & Phdr,const typename ELFT::Shdr & Sec)4234 static bool checkTLSSections(const typename ELFT::Phdr &Phdr,
4235                              const typename ELFT::Shdr &Sec) {
4236   if (Sec.sh_flags & ELF::SHF_TLS) {
4237     // .tbss must only be shown in the PT_TLS segment.
4238     if (Sec.sh_type == ELF::SHT_NOBITS)
4239       return Phdr.p_type == ELF::PT_TLS;
4240 
4241     // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4242     // segments.
4243     return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
4244            (Phdr.p_type == ELF::PT_GNU_RELRO);
4245   }
4246 
4247   // PT_TLS must only have SHF_TLS sections.
4248   return Phdr.p_type != ELF::PT_TLS;
4249 }
4250 
4251 template <class ELFT>
checkOffsets(const typename ELFT::Phdr & Phdr,const typename ELFT::Shdr & Sec)4252 static bool checkOffsets(const typename ELFT::Phdr &Phdr,
4253                          const typename ELFT::Shdr &Sec) {
4254   // SHT_NOBITS sections don't need to have an offset inside the segment.
4255   if (Sec.sh_type == ELF::SHT_NOBITS)
4256     return true;
4257 
4258   if (Sec.sh_offset < Phdr.p_offset)
4259     return false;
4260 
4261   // Only non-empty sections can be at the end of a segment.
4262   if (Sec.sh_size == 0)
4263     return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz);
4264   return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz;
4265 }
4266 
4267 // Check that an allocatable section belongs to a virtual address
4268 // space of a segment.
4269 template <class ELFT>
checkVMA(const typename ELFT::Phdr & Phdr,const typename ELFT::Shdr & Sec)4270 static bool checkVMA(const typename ELFT::Phdr &Phdr,
4271                      const typename ELFT::Shdr &Sec) {
4272   if (!(Sec.sh_flags & ELF::SHF_ALLOC))
4273     return true;
4274 
4275   if (Sec.sh_addr < Phdr.p_vaddr)
4276     return false;
4277 
4278   bool IsTbss =
4279       (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
4280   // .tbss is special, it only has memory in PT_TLS and has NOBITS properties.
4281   bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS;
4282   // Only non-empty sections can be at the end of a segment.
4283   if (Sec.sh_size == 0 || IsTbssInNonTLS)
4284     return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz;
4285   return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz;
4286 }
4287 
4288 template <class ELFT>
checkPTDynamic(const typename ELFT::Phdr & Phdr,const typename ELFT::Shdr & Sec)4289 static bool checkPTDynamic(const typename ELFT::Phdr &Phdr,
4290                            const typename ELFT::Shdr &Sec) {
4291   if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0)
4292     return true;
4293 
4294   // We get here when we have an empty section. Only non-empty sections can be
4295   // at the start or at the end of PT_DYNAMIC.
4296   // Is section within the phdr both based on offset and VMA?
4297   bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) ||
4298                      (Sec.sh_offset > Phdr.p_offset &&
4299                       Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz);
4300   bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) ||
4301                  (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz);
4302   return CheckOffset && CheckVA;
4303 }
4304 
4305 template <class ELFT>
printProgramHeaders(bool PrintProgramHeaders,cl::boolOrDefault PrintSectionMapping)4306 void GNUELFDumper<ELFT>::printProgramHeaders(
4307     bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
4308   const bool ShouldPrintSectionMapping = (PrintSectionMapping != cl::BOU_FALSE);
4309   // Exit early if no program header or section mapping details were requested.
4310   if (!PrintProgramHeaders && !ShouldPrintSectionMapping)
4311     return;
4312 
4313   if (PrintProgramHeaders) {
4314     const Elf_Ehdr &Header = this->Obj.getHeader();
4315     if (Header.e_phnum == 0) {
4316       OS << "\nThere are no program headers in this file.\n";
4317     } else {
4318       printProgramHeaders();
4319     }
4320   }
4321 
4322   if (ShouldPrintSectionMapping)
4323     printSectionMapping();
4324 }
4325 
printProgramHeaders()4326 template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() {
4327   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4328   const Elf_Ehdr &Header = this->Obj.getHeader();
4329   Field Fields[8] = {2,         17,        26,        37 + Bias,
4330                      48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
4331   OS << "\nElf file type is "
4332      << enumToString(Header.e_type, ArrayRef(ElfObjectFileType)) << "\n"
4333      << "Entry point " << format_hex(Header.e_entry, 3) << "\n"
4334      << "There are " << Header.e_phnum << " program headers,"
4335      << " starting at offset " << Header.e_phoff << "\n\n"
4336      << "Program Headers:\n";
4337   if (ELFT::Is64Bits)
4338     OS << "  Type           Offset   VirtAddr           PhysAddr         "
4339        << "  FileSiz  MemSiz   Flg Align\n";
4340   else
4341     OS << "  Type           Offset   VirtAddr   PhysAddr   FileSiz "
4342        << "MemSiz  Flg Align\n";
4343 
4344   unsigned Width = ELFT::Is64Bits ? 18 : 10;
4345   unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
4346 
4347   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4348   if (!PhdrsOrErr) {
4349     this->reportUniqueWarning("unable to dump program headers: " +
4350                               toString(PhdrsOrErr.takeError()));
4351     return;
4352   }
4353 
4354   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4355     Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type);
4356     Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
4357     Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
4358     Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
4359     Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
4360     Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
4361     Fields[6].Str = printPhdrFlags(Phdr.p_flags);
4362     Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
4363     for (const Field &F : Fields)
4364       printField(F);
4365     if (Phdr.p_type == ELF::PT_INTERP) {
4366       OS << "\n";
4367       auto ReportBadInterp = [&](const Twine &Msg) {
4368         this->reportUniqueWarning(
4369             "unable to read program interpreter name at offset 0x" +
4370             Twine::utohexstr(Phdr.p_offset) + ": " + Msg);
4371       };
4372 
4373       if (Phdr.p_offset >= this->Obj.getBufSize()) {
4374         ReportBadInterp("it goes past the end of the file (0x" +
4375                         Twine::utohexstr(this->Obj.getBufSize()) + ")");
4376         continue;
4377       }
4378 
4379       const char *Data =
4380           reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset;
4381       size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset;
4382       size_t Len = strnlen(Data, MaxSize);
4383       if (Len == MaxSize) {
4384         ReportBadInterp("it is not null-terminated");
4385         continue;
4386       }
4387 
4388       OS << "      [Requesting program interpreter: ";
4389       OS << StringRef(Data, Len) << "]";
4390     }
4391     OS << "\n";
4392   }
4393 }
4394 
printSectionMapping()4395 template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() {
4396   OS << "\n Section to Segment mapping:\n  Segment Sections...\n";
4397   DenseSet<const Elf_Shdr *> BelongsToSegment;
4398   int Phnum = 0;
4399 
4400   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4401   if (!PhdrsOrErr) {
4402     this->reportUniqueWarning(
4403         "can't read program headers to build section to segment mapping: " +
4404         toString(PhdrsOrErr.takeError()));
4405     return;
4406   }
4407 
4408   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4409     std::string Sections;
4410     OS << format("   %2.2d     ", Phnum++);
4411     // Check if each section is in a segment and then print mapping.
4412     for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4413       if (Sec.sh_type == ELF::SHT_NULL)
4414         continue;
4415 
4416       // readelf additionally makes sure it does not print zero sized sections
4417       // at end of segments and for PT_DYNAMIC both start and end of section
4418       // .tbss must only be shown in PT_TLS section.
4419       if (checkTLSSections<ELFT>(Phdr, Sec) && checkOffsets<ELFT>(Phdr, Sec) &&
4420           checkVMA<ELFT>(Phdr, Sec) && checkPTDynamic<ELFT>(Phdr, Sec)) {
4421         Sections +=
4422             unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4423             " ";
4424         BelongsToSegment.insert(&Sec);
4425       }
4426     }
4427     OS << Sections << "\n";
4428     OS.flush();
4429   }
4430 
4431   // Display sections that do not belong to a segment.
4432   std::string Sections;
4433   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4434     if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
4435       Sections +=
4436           unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4437           ' ';
4438   }
4439   if (!Sections.empty()) {
4440     OS << "   None  " << Sections << '\n';
4441     OS.flush();
4442   }
4443 }
4444 
4445 namespace {
4446 
4447 template <class ELFT>
getSymbolForReloc(const ELFDumper<ELFT> & Dumper,const Relocation<ELFT> & Reloc)4448 RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper,
4449                                   const Relocation<ELFT> &Reloc) {
4450   using Elf_Sym = typename ELFT::Sym;
4451   auto WarnAndReturn = [&](const Elf_Sym *Sym,
4452                            const Twine &Reason) -> RelSymbol<ELFT> {
4453     Dumper.reportUniqueWarning(
4454         "unable to get name of the dynamic symbol with index " +
4455         Twine(Reloc.Symbol) + ": " + Reason);
4456     return {Sym, "<corrupt>"};
4457   };
4458 
4459   ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols();
4460   const Elf_Sym *FirstSym = Symbols.begin();
4461   if (!FirstSym)
4462     return WarnAndReturn(nullptr, "no dynamic symbol table found");
4463 
4464   // We might have an object without a section header. In this case the size of
4465   // Symbols is zero, because there is no way to know the size of the dynamic
4466   // table. We should allow this case and not print a warning.
4467   if (!Symbols.empty() && Reloc.Symbol >= Symbols.size())
4468     return WarnAndReturn(
4469         nullptr,
4470         "index is greater than or equal to the number of dynamic symbols (" +
4471             Twine(Symbols.size()) + ")");
4472 
4473   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
4474   const uint64_t FileSize = Obj.getBufSize();
4475   const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) +
4476                              (uint64_t)Reloc.Symbol * sizeof(Elf_Sym);
4477   if (SymOffset + sizeof(Elf_Sym) > FileSize)
4478     return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) +
4479                                       " goes past the end of the file (0x" +
4480                                       Twine::utohexstr(FileSize) + ")");
4481 
4482   const Elf_Sym *Sym = FirstSym + Reloc.Symbol;
4483   Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable());
4484   if (!ErrOrName)
4485     return WarnAndReturn(Sym, toString(ErrOrName.takeError()));
4486 
4487   return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)};
4488 }
4489 } // namespace
4490 
4491 template <class ELFT>
getMaxDynamicTagSize(const ELFFile<ELFT> & Obj,typename ELFT::DynRange Tags)4492 static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj,
4493                                    typename ELFT::DynRange Tags) {
4494   size_t Max = 0;
4495   for (const typename ELFT::Dyn &Dyn : Tags)
4496     Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size());
4497   return Max;
4498 }
4499 
printDynamicTable()4500 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() {
4501   Elf_Dyn_Range Table = this->dynamic_table();
4502   if (Table.empty())
4503     return;
4504 
4505   OS << "Dynamic section at offset "
4506      << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) -
4507                        this->Obj.base(),
4508                    1)
4509      << " contains " << Table.size() << " entries:\n";
4510 
4511   // The type name is surrounded with round brackets, hence add 2.
4512   size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2;
4513   // The "Name/Value" column should be indented from the "Type" column by N
4514   // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4515   // space (1) = 3.
4516   OS << "  Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type"
4517      << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
4518 
4519   std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s ";
4520   for (auto Entry : Table) {
4521     uintX_t Tag = Entry.getTag();
4522     std::string Type =
4523         std::string("(") + this->Obj.getDynamicTagAsString(Tag) + ")";
4524     std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
4525     OS << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10)
4526        << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n";
4527   }
4528 }
4529 
printDynamicRelocations()4530 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() {
4531   this->printDynamicRelocationsHelper();
4532 }
4533 
4534 template <class ELFT>
printDynamicReloc(const Relocation<ELFT> & R)4535 void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) {
4536   printRelRelaReloc(R, getSymbolForReloc(*this, R));
4537 }
4538 
4539 template <class ELFT>
printRelocationsHelper(const Elf_Shdr & Sec)4540 void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) {
4541   this->forEachRelocationDo(
4542       Sec, opts::RawRelr,
4543       [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
4544           const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); },
4545       [&](const Elf_Relr &R) { printRelrReloc(R); });
4546 }
4547 
printDynamicRelocationsHelper()4548 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() {
4549   const bool IsMips64EL = this->Obj.isMips64EL();
4550   if (this->DynRelaRegion.Size > 0) {
4551     printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion);
4552     for (const Elf_Rela &Rela :
4553          this->DynRelaRegion.template getAsArrayRef<Elf_Rela>())
4554       printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4555   }
4556 
4557   if (this->DynRelRegion.Size > 0) {
4558     printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion);
4559     for (const Elf_Rel &Rel :
4560          this->DynRelRegion.template getAsArrayRef<Elf_Rel>())
4561       printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4562   }
4563 
4564   if (this->DynRelrRegion.Size > 0) {
4565     printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion);
4566     Elf_Relr_Range Relrs =
4567         this->DynRelrRegion.template getAsArrayRef<Elf_Relr>();
4568     for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs))
4569       printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4570   }
4571 
4572   if (this->DynPLTRelRegion.Size) {
4573     if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
4574       printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion);
4575       for (const Elf_Rela &Rela :
4576            this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>())
4577         printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4578     } else {
4579       printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion);
4580       for (const Elf_Rel &Rel :
4581            this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>())
4582         printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4583     }
4584   }
4585 }
4586 
4587 template <class ELFT>
printGNUVersionSectionProlog(const typename ELFT::Shdr & Sec,const Twine & Label,unsigned EntriesNum)4588 void GNUELFDumper<ELFT>::printGNUVersionSectionProlog(
4589     const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) {
4590   // Don't inline the SecName, because it might report a warning to stderr and
4591   // corrupt the output.
4592   StringRef SecName = this->getPrintableSectionName(Sec);
4593   OS << Label << " section '" << SecName << "' "
4594      << "contains " << EntriesNum << " entries:\n";
4595 
4596   StringRef LinkedSecName = "<corrupt>";
4597   if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr =
4598           this->Obj.getSection(Sec.sh_link))
4599     LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr);
4600   else
4601     this->reportUniqueWarning("invalid section linked to " +
4602                               this->describe(Sec) + ": " +
4603                               toString(LinkedSecOrErr.takeError()));
4604 
4605   OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16)
4606      << "  Offset: " << format_hex(Sec.sh_offset, 8)
4607      << "  Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n";
4608 }
4609 
4610 template <class ELFT>
printVersionSymbolSection(const Elf_Shdr * Sec)4611 void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
4612   if (!Sec)
4613     return;
4614 
4615   printGNUVersionSectionProlog(*Sec, "Version symbols",
4616                                Sec->sh_size / sizeof(Elf_Versym));
4617   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
4618       this->getVersionTable(*Sec, /*SymTab=*/nullptr,
4619                             /*StrTab=*/nullptr, /*SymTabSec=*/nullptr);
4620   if (!VerTableOrErr) {
4621     this->reportUniqueWarning(VerTableOrErr.takeError());
4622     return;
4623   }
4624 
4625   SmallVector<std::optional<VersionEntry>, 0> *VersionMap = nullptr;
4626   if (Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr =
4627           this->getVersionMap())
4628     VersionMap = *MapOrErr;
4629   else
4630     this->reportUniqueWarning(MapOrErr.takeError());
4631 
4632   ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
4633   std::vector<StringRef> Versions;
4634   for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
4635     unsigned Ndx = VerTable[I].vs_index;
4636     if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
4637       Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
4638       continue;
4639     }
4640 
4641     if (!VersionMap) {
4642       Versions.emplace_back("<corrupt>");
4643       continue;
4644     }
4645 
4646     bool IsDefault;
4647     Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex(
4648         Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/std::nullopt);
4649     if (!NameOrErr) {
4650       this->reportUniqueWarning("unable to get a version for entry " +
4651                                 Twine(I) + " of " + this->describe(*Sec) +
4652                                 ": " + toString(NameOrErr.takeError()));
4653       Versions.emplace_back("<corrupt>");
4654       continue;
4655     }
4656     Versions.emplace_back(*NameOrErr);
4657   }
4658 
4659   // readelf prints 4 entries per line.
4660   uint64_t Entries = VerTable.size();
4661   for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
4662     OS << "  " << format_hex_no_prefix(VersymRow, 3) << ":";
4663     for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
4664       unsigned Ndx = VerTable[VersymRow + I].vs_index;
4665       OS << format("%4x%c", Ndx & VERSYM_VERSION,
4666                    Ndx & VERSYM_HIDDEN ? 'h' : ' ');
4667       OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
4668     }
4669     OS << '\n';
4670   }
4671   OS << '\n';
4672 }
4673 
versionFlagToString(unsigned Flags)4674 static std::string versionFlagToString(unsigned Flags) {
4675   if (Flags == 0)
4676     return "none";
4677 
4678   std::string Ret;
4679   auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
4680     if (!(Flags & Flag))
4681       return;
4682     if (!Ret.empty())
4683       Ret += " | ";
4684     Ret += Name;
4685     Flags &= ~Flag;
4686   };
4687 
4688   AddFlag(VER_FLG_BASE, "BASE");
4689   AddFlag(VER_FLG_WEAK, "WEAK");
4690   AddFlag(VER_FLG_INFO, "INFO");
4691   AddFlag(~0, "<unknown>");
4692   return Ret;
4693 }
4694 
4695 template <class ELFT>
printVersionDefinitionSection(const Elf_Shdr * Sec)4696 void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
4697   if (!Sec)
4698     return;
4699 
4700   printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info);
4701 
4702   Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
4703   if (!V) {
4704     this->reportUniqueWarning(V.takeError());
4705     return;
4706   }
4707 
4708   for (const VerDef &Def : *V) {
4709     OS << format("  0x%04x: Rev: %u  Flags: %s  Index: %u  Cnt: %u  Name: %s\n",
4710                  Def.Offset, Def.Version,
4711                  versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
4712                  Def.Name.data());
4713     unsigned I = 0;
4714     for (const VerdAux &Aux : Def.AuxV)
4715       OS << format("  0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
4716                    Aux.Name.data());
4717   }
4718 
4719   OS << '\n';
4720 }
4721 
4722 template <class ELFT>
printVersionDependencySection(const Elf_Shdr * Sec)4723 void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
4724   if (!Sec)
4725     return;
4726 
4727   unsigned VerneedNum = Sec->sh_info;
4728   printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum);
4729 
4730   Expected<std::vector<VerNeed>> V =
4731       this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
4732   if (!V) {
4733     this->reportUniqueWarning(V.takeError());
4734     return;
4735   }
4736 
4737   for (const VerNeed &VN : *V) {
4738     OS << format("  0x%04x: Version: %u  File: %s  Cnt: %u\n", VN.Offset,
4739                  VN.Version, VN.File.data(), VN.Cnt);
4740     for (const VernAux &Aux : VN.AuxV)
4741       OS << format("  0x%04x:   Name: %s  Flags: %s  Version: %u\n", Aux.Offset,
4742                    Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
4743                    Aux.Other);
4744   }
4745   OS << '\n';
4746 }
4747 
4748 template <class ELFT>
printHashHistogram(const Elf_Hash & HashTable)4749 void GNUELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) {
4750   size_t NBucket = HashTable.nbucket;
4751   size_t NChain = HashTable.nchain;
4752   ArrayRef<Elf_Word> Buckets = HashTable.buckets();
4753   ArrayRef<Elf_Word> Chains = HashTable.chains();
4754   size_t TotalSyms = 0;
4755   // If hash table is correct, we have at least chains with 0 length
4756   size_t MaxChain = 1;
4757   size_t CumulativeNonZero = 0;
4758 
4759   if (NChain == 0 || NBucket == 0)
4760     return;
4761 
4762   std::vector<size_t> ChainLen(NBucket, 0);
4763   // Go over all buckets and and note chain lengths of each bucket (total
4764   // unique chain lengths).
4765   for (size_t B = 0; B < NBucket; B++) {
4766     BitVector Visited(NChain);
4767     for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
4768       if (C == ELF::STN_UNDEF)
4769         break;
4770       if (Visited[C]) {
4771         this->reportUniqueWarning(".hash section is invalid: bucket " +
4772                                   Twine(C) +
4773                                   ": a cycle was detected in the linked chain");
4774         break;
4775       }
4776       Visited[C] = true;
4777       if (MaxChain <= ++ChainLen[B])
4778         MaxChain++;
4779     }
4780     TotalSyms += ChainLen[B];
4781   }
4782 
4783   if (!TotalSyms)
4784     return;
4785 
4786   std::vector<size_t> Count(MaxChain, 0);
4787   // Count how long is the chain for each bucket
4788   for (size_t B = 0; B < NBucket; B++)
4789     ++Count[ChainLen[B]];
4790   // Print Number of buckets with each chain lengths and their cumulative
4791   // coverage of the symbols
4792   OS << "Histogram for bucket list length (total of " << NBucket
4793      << " buckets)\n"
4794      << " Length  Number     % of total  Coverage\n";
4795   for (size_t I = 0; I < MaxChain; I++) {
4796     CumulativeNonZero += Count[I] * I;
4797     OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
4798                  (Count[I] * 100.0) / NBucket,
4799                  (CumulativeNonZero * 100.0) / TotalSyms);
4800   }
4801 }
4802 
4803 template <class ELFT>
printGnuHashHistogram(const Elf_GnuHash & GnuHashTable)4804 void GNUELFDumper<ELFT>::printGnuHashHistogram(
4805     const Elf_GnuHash &GnuHashTable) {
4806   Expected<ArrayRef<Elf_Word>> ChainsOrErr =
4807       getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable);
4808   if (!ChainsOrErr) {
4809     this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
4810                               toString(ChainsOrErr.takeError()));
4811     return;
4812   }
4813 
4814   ArrayRef<Elf_Word> Chains = *ChainsOrErr;
4815   size_t Symndx = GnuHashTable.symndx;
4816   size_t TotalSyms = 0;
4817   size_t MaxChain = 1;
4818   size_t CumulativeNonZero = 0;
4819 
4820   size_t NBucket = GnuHashTable.nbuckets;
4821   if (Chains.empty() || NBucket == 0)
4822     return;
4823 
4824   ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets();
4825   std::vector<size_t> ChainLen(NBucket, 0);
4826   for (size_t B = 0; B < NBucket; B++) {
4827     if (!Buckets[B])
4828       continue;
4829     size_t Len = 1;
4830     for (size_t C = Buckets[B] - Symndx;
4831          C < Chains.size() && (Chains[C] & 1) == 0; C++)
4832       if (MaxChain < ++Len)
4833         MaxChain++;
4834     ChainLen[B] = Len;
4835     TotalSyms += Len;
4836   }
4837   MaxChain++;
4838 
4839   if (!TotalSyms)
4840     return;
4841 
4842   std::vector<size_t> Count(MaxChain, 0);
4843   for (size_t B = 0; B < NBucket; B++)
4844     ++Count[ChainLen[B]];
4845   // Print Number of buckets with each chain lengths and their cumulative
4846   // coverage of the symbols
4847   OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
4848      << " buckets)\n"
4849      << " Length  Number     % of total  Coverage\n";
4850   for (size_t I = 0; I < MaxChain; I++) {
4851     CumulativeNonZero += Count[I] * I;
4852     OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
4853                  (Count[I] * 100.0) / NBucket,
4854                  (CumulativeNonZero * 100.0) / TotalSyms);
4855   }
4856 }
4857 
4858 // Hash histogram shows statistics of how efficient the hash was for the
4859 // dynamic symbol table. The table shows the number of hash buckets for
4860 // different lengths of chains as an absolute number and percentage of the total
4861 // buckets, and the cumulative coverage of symbols for each set of buckets.
printHashHistograms()4862 template <class ELFT> void GNUELFDumper<ELFT>::printHashHistograms() {
4863   // Print histogram for the .hash section.
4864   if (this->HashTable) {
4865     if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4866       this->reportUniqueWarning(std::move(E));
4867     else
4868       printHashHistogram(*this->HashTable);
4869   }
4870 
4871   // Print histogram for the .gnu.hash section.
4872   if (this->GnuHashTable) {
4873     if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4874       this->reportUniqueWarning(std::move(E));
4875     else
4876       printGnuHashHistogram(*this->GnuHashTable);
4877   }
4878 }
4879 
printCGProfile()4880 template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() {
4881   OS << "GNUStyle::printCGProfile not implemented\n";
4882 }
4883 
printBBAddrMaps()4884 template <class ELFT> void GNUELFDumper<ELFT>::printBBAddrMaps() {
4885   OS << "GNUStyle::printBBAddrMaps not implemented\n";
4886 }
4887 
toULEB128Array(ArrayRef<uint8_t> Data)4888 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
4889   std::vector<uint64_t> Ret;
4890   const uint8_t *Cur = Data.begin();
4891   const uint8_t *End = Data.end();
4892   while (Cur != End) {
4893     unsigned Size;
4894     const char *Err;
4895     Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
4896     if (Err)
4897       return createError(Err);
4898     Cur += Size;
4899   }
4900   return Ret;
4901 }
4902 
4903 template <class ELFT>
4904 static Expected<std::vector<uint64_t>>
decodeAddrsigSection(const ELFFile<ELFT> & Obj,const typename ELFT::Shdr & Sec)4905 decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) {
4906   Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
4907   if (!ContentsOrErr)
4908     return ContentsOrErr.takeError();
4909 
4910   if (Expected<std::vector<uint64_t>> SymsOrErr =
4911           toULEB128Array(*ContentsOrErr))
4912     return *SymsOrErr;
4913   else
4914     return createError("unable to decode " + describe(Obj, Sec) + ": " +
4915                        toString(SymsOrErr.takeError()));
4916 }
4917 
printAddrsig()4918 template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() {
4919   if (!this->DotAddrsigSec)
4920     return;
4921 
4922   Expected<std::vector<uint64_t>> SymsOrErr =
4923       decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
4924   if (!SymsOrErr) {
4925     this->reportUniqueWarning(SymsOrErr.takeError());
4926     return;
4927   }
4928 
4929   StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec);
4930   OS << "\nAddress-significant symbols section '" << Name << "'"
4931      << " contains " << SymsOrErr->size() << " entries:\n";
4932   OS << "   Num: Name\n";
4933 
4934   Field Fields[2] = {0, 8};
4935   size_t SymIndex = 0;
4936   for (uint64_t Sym : *SymsOrErr) {
4937     Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":";
4938     Fields[1].Str = this->getStaticSymbolName(Sym);
4939     for (const Field &Entry : Fields)
4940       printField(Entry);
4941     OS << "\n";
4942   }
4943 }
4944 
4945 template <typename ELFT>
getGNUProperty(uint32_t Type,uint32_t DataSize,ArrayRef<uint8_t> Data)4946 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
4947                                   ArrayRef<uint8_t> Data) {
4948   std::string str;
4949   raw_string_ostream OS(str);
4950   uint32_t PrData;
4951   auto DumpBit = [&](uint32_t Flag, StringRef Name) {
4952     if (PrData & Flag) {
4953       PrData &= ~Flag;
4954       OS << Name;
4955       if (PrData)
4956         OS << ", ";
4957     }
4958   };
4959 
4960   switch (Type) {
4961   default:
4962     OS << format("<application-specific type 0x%x>", Type);
4963     return OS.str();
4964   case GNU_PROPERTY_STACK_SIZE: {
4965     OS << "stack size: ";
4966     if (DataSize == sizeof(typename ELFT::uint))
4967       OS << formatv("{0:x}",
4968                     (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
4969     else
4970       OS << format("<corrupt length: 0x%x>", DataSize);
4971     return OS.str();
4972   }
4973   case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
4974     OS << "no copy on protected";
4975     if (DataSize)
4976       OS << format(" <corrupt length: 0x%x>", DataSize);
4977     return OS.str();
4978   case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
4979   case GNU_PROPERTY_X86_FEATURE_1_AND:
4980     OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
4981                                                         : "x86 feature: ");
4982     if (DataSize != 4) {
4983       OS << format("<corrupt length: 0x%x>", DataSize);
4984       return OS.str();
4985     }
4986     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4987     if (PrData == 0) {
4988       OS << "<None>";
4989       return OS.str();
4990     }
4991     if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
4992       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
4993       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
4994     } else {
4995       DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
4996       DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
4997     }
4998     if (PrData)
4999       OS << format("<unknown flags: 0x%x>", PrData);
5000     return OS.str();
5001   case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
5002   case GNU_PROPERTY_X86_FEATURE_2_USED:
5003     OS << "x86 feature "
5004        << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
5005     if (DataSize != 4) {
5006       OS << format("<corrupt length: 0x%x>", DataSize);
5007       return OS.str();
5008     }
5009     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5010     if (PrData == 0) {
5011       OS << "<None>";
5012       return OS.str();
5013     }
5014     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
5015     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
5016     DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
5017     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
5018     DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
5019     DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
5020     DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
5021     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
5022     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
5023     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
5024     if (PrData)
5025       OS << format("<unknown flags: 0x%x>", PrData);
5026     return OS.str();
5027   case GNU_PROPERTY_X86_ISA_1_NEEDED:
5028   case GNU_PROPERTY_X86_ISA_1_USED:
5029     OS << "x86 ISA "
5030        << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
5031     if (DataSize != 4) {
5032       OS << format("<corrupt length: 0x%x>", DataSize);
5033       return OS.str();
5034     }
5035     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5036     if (PrData == 0) {
5037       OS << "<None>";
5038       return OS.str();
5039     }
5040     DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline");
5041     DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2");
5042     DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3");
5043     DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4");
5044     if (PrData)
5045       OS << format("<unknown flags: 0x%x>", PrData);
5046     return OS.str();
5047   }
5048 }
5049 
5050 template <typename ELFT>
getGNUPropertyList(ArrayRef<uint8_t> Arr)5051 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
5052   using Elf_Word = typename ELFT::Word;
5053 
5054   SmallVector<std::string, 4> Properties;
5055   while (Arr.size() >= 8) {
5056     uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
5057     uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
5058     Arr = Arr.drop_front(8);
5059 
5060     // Take padding size into account if present.
5061     uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
5062     std::string str;
5063     raw_string_ostream OS(str);
5064     if (Arr.size() < PaddedSize) {
5065       OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
5066       Properties.push_back(OS.str());
5067       break;
5068     }
5069     Properties.push_back(
5070         getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
5071     Arr = Arr.drop_front(PaddedSize);
5072   }
5073 
5074   if (!Arr.empty())
5075     Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
5076 
5077   return Properties;
5078 }
5079 
5080 struct GNUAbiTag {
5081   std::string OSName;
5082   std::string ABI;
5083   bool IsValid;
5084 };
5085 
getGNUAbiTag(ArrayRef<uint8_t> Desc)5086 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
5087   typedef typename ELFT::Word Elf_Word;
5088 
5089   ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
5090                            reinterpret_cast<const Elf_Word *>(Desc.end()));
5091 
5092   if (Words.size() < 4)
5093     return {"", "", /*IsValid=*/false};
5094 
5095   static const char *OSNames[] = {
5096       "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
5097   };
5098   StringRef OSName = "Unknown";
5099   if (Words[0] < std::size(OSNames))
5100     OSName = OSNames[Words[0]];
5101   uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
5102   std::string str;
5103   raw_string_ostream ABI(str);
5104   ABI << Major << "." << Minor << "." << Patch;
5105   return {std::string(OSName), ABI.str(), /*IsValid=*/true};
5106 }
5107 
getGNUBuildId(ArrayRef<uint8_t> Desc)5108 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
5109   std::string str;
5110   raw_string_ostream OS(str);
5111   for (uint8_t B : Desc)
5112     OS << format_hex_no_prefix(B, 2);
5113   return OS.str();
5114 }
5115 
getDescAsStringRef(ArrayRef<uint8_t> Desc)5116 static StringRef getDescAsStringRef(ArrayRef<uint8_t> Desc) {
5117   return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5118 }
5119 
5120 template <typename ELFT>
printGNUNote(raw_ostream & OS,uint32_t NoteType,ArrayRef<uint8_t> Desc)5121 static bool printGNUNote(raw_ostream &OS, uint32_t NoteType,
5122                          ArrayRef<uint8_t> Desc) {
5123   // Return true if we were able to pretty-print the note, false otherwise.
5124   switch (NoteType) {
5125   default:
5126     return false;
5127   case ELF::NT_GNU_ABI_TAG: {
5128     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
5129     if (!AbiTag.IsValid)
5130       OS << "    <corrupt GNU_ABI_TAG>";
5131     else
5132       OS << "    OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
5133     break;
5134   }
5135   case ELF::NT_GNU_BUILD_ID: {
5136     OS << "    Build ID: " << getGNUBuildId(Desc);
5137     break;
5138   }
5139   case ELF::NT_GNU_GOLD_VERSION:
5140     OS << "    Version: " << getDescAsStringRef(Desc);
5141     break;
5142   case ELF::NT_GNU_PROPERTY_TYPE_0:
5143     OS << "    Properties:";
5144     for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
5145       OS << "    " << Property << "\n";
5146     break;
5147   }
5148   OS << '\n';
5149   return true;
5150 }
5151 
5152 using AndroidNoteProperties = std::vector<std::pair<StringRef, std::string>>;
getAndroidNoteProperties(uint32_t NoteType,ArrayRef<uint8_t> Desc)5153 static AndroidNoteProperties getAndroidNoteProperties(uint32_t NoteType,
5154                                                       ArrayRef<uint8_t> Desc) {
5155   AndroidNoteProperties Props;
5156   switch (NoteType) {
5157   case ELF::NT_ANDROID_TYPE_MEMTAG:
5158     if (Desc.empty()) {
5159       Props.emplace_back("Invalid .note.android.memtag", "");
5160       return Props;
5161     }
5162 
5163     switch (Desc[0] & NT_MEMTAG_LEVEL_MASK) {
5164     case NT_MEMTAG_LEVEL_NONE:
5165       Props.emplace_back("Tagging Mode", "NONE");
5166       break;
5167     case NT_MEMTAG_LEVEL_ASYNC:
5168       Props.emplace_back("Tagging Mode", "ASYNC");
5169       break;
5170     case NT_MEMTAG_LEVEL_SYNC:
5171       Props.emplace_back("Tagging Mode", "SYNC");
5172       break;
5173     default:
5174       Props.emplace_back(
5175           "Tagging Mode",
5176           ("Unknown (" + Twine::utohexstr(Desc[0] & NT_MEMTAG_LEVEL_MASK) + ")")
5177               .str());
5178       break;
5179     }
5180     Props.emplace_back("Heap",
5181                        (Desc[0] & NT_MEMTAG_HEAP) ? "Enabled" : "Disabled");
5182     Props.emplace_back("Stack",
5183                        (Desc[0] & NT_MEMTAG_STACK) ? "Enabled" : "Disabled");
5184     break;
5185   default:
5186     return Props;
5187   }
5188   return Props;
5189 }
5190 
printAndroidNote(raw_ostream & OS,uint32_t NoteType,ArrayRef<uint8_t> Desc)5191 static bool printAndroidNote(raw_ostream &OS, uint32_t NoteType,
5192                              ArrayRef<uint8_t> Desc) {
5193   // Return true if we were able to pretty-print the note, false otherwise.
5194   AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
5195   if (Props.empty())
5196     return false;
5197   for (const auto &KV : Props)
5198     OS << "    " << KV.first << ": " << KV.second << '\n';
5199   OS << '\n';
5200   return true;
5201 }
5202 
5203 template <typename ELFT>
printLLVMOMPOFFLOADNote(raw_ostream & OS,uint32_t NoteType,ArrayRef<uint8_t> Desc)5204 static bool printLLVMOMPOFFLOADNote(raw_ostream &OS, uint32_t NoteType,
5205                                     ArrayRef<uint8_t> Desc) {
5206   switch (NoteType) {
5207   default:
5208     return false;
5209   case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
5210     OS << "    Version: " << getDescAsStringRef(Desc);
5211     break;
5212   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
5213     OS << "    Producer: " << getDescAsStringRef(Desc);
5214     break;
5215   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
5216     OS << "    Producer version: " << getDescAsStringRef(Desc);
5217     break;
5218   }
5219   OS << '\n';
5220   return true;
5221 }
5222 
5223 const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = {
5224     {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE},
5225     {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE},
5226     {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE},
5227     {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED},
5228     {"LA48", NT_FREEBSD_FCTL_LA48},
5229     {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE},
5230 };
5231 
5232 struct FreeBSDNote {
5233   std::string Type;
5234   std::string Value;
5235 };
5236 
5237 template <typename ELFT>
5238 static std::optional<FreeBSDNote>
getFreeBSDNote(uint32_t NoteType,ArrayRef<uint8_t> Desc,bool IsCore)5239 getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) {
5240   if (IsCore)
5241     return std::nullopt; // No pretty-printing yet.
5242   switch (NoteType) {
5243   case ELF::NT_FREEBSD_ABI_TAG:
5244     if (Desc.size() != 4)
5245       return std::nullopt;
5246     return FreeBSDNote{
5247         "ABI tag",
5248         utostr(support::endian::read32<ELFT::TargetEndianness>(Desc.data()))};
5249   case ELF::NT_FREEBSD_ARCH_TAG:
5250     return FreeBSDNote{"Arch tag", toStringRef(Desc).str()};
5251   case ELF::NT_FREEBSD_FEATURE_CTL: {
5252     if (Desc.size() != 4)
5253       return std::nullopt;
5254     unsigned Value =
5255         support::endian::read32<ELFT::TargetEndianness>(Desc.data());
5256     std::string FlagsStr;
5257     raw_string_ostream OS(FlagsStr);
5258     printFlags(Value, ArrayRef(FreeBSDFeatureCtlFlags), OS);
5259     if (OS.str().empty())
5260       OS << "0x" << utohexstr(Value);
5261     else
5262       OS << "(0x" << utohexstr(Value) << ")";
5263     return FreeBSDNote{"Feature flags", OS.str()};
5264   }
5265   default:
5266     return std::nullopt;
5267   }
5268 }
5269 
5270 struct AMDNote {
5271   std::string Type;
5272   std::string Value;
5273 };
5274 
5275 template <typename ELFT>
getAMDNote(uint32_t NoteType,ArrayRef<uint8_t> Desc)5276 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5277   switch (NoteType) {
5278   default:
5279     return {"", ""};
5280   case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: {
5281     struct CodeObjectVersion {
5282       uint32_t MajorVersion;
5283       uint32_t MinorVersion;
5284     };
5285     if (Desc.size() != sizeof(CodeObjectVersion))
5286       return {"AMD HSA Code Object Version",
5287               "Invalid AMD HSA Code Object Version"};
5288     std::string VersionString;
5289     raw_string_ostream StrOS(VersionString);
5290     auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data());
5291     StrOS << "[Major: " << Version->MajorVersion
5292           << ", Minor: " << Version->MinorVersion << "]";
5293     return {"AMD HSA Code Object Version", VersionString};
5294   }
5295   case ELF::NT_AMD_HSA_HSAIL: {
5296     struct HSAILProperties {
5297       uint32_t HSAILMajorVersion;
5298       uint32_t HSAILMinorVersion;
5299       uint8_t Profile;
5300       uint8_t MachineModel;
5301       uint8_t DefaultFloatRound;
5302     };
5303     if (Desc.size() != sizeof(HSAILProperties))
5304       return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"};
5305     auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data());
5306     std::string HSAILPropetiesString;
5307     raw_string_ostream StrOS(HSAILPropetiesString);
5308     StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion
5309           << ", HSAIL Minor: " << Properties->HSAILMinorVersion
5310           << ", Profile: " << uint32_t(Properties->Profile)
5311           << ", Machine Model: " << uint32_t(Properties->MachineModel)
5312           << ", Default Float Round: "
5313           << uint32_t(Properties->DefaultFloatRound) << "]";
5314     return {"AMD HSA HSAIL Properties", HSAILPropetiesString};
5315   }
5316   case ELF::NT_AMD_HSA_ISA_VERSION: {
5317     struct IsaVersion {
5318       uint16_t VendorNameSize;
5319       uint16_t ArchitectureNameSize;
5320       uint32_t Major;
5321       uint32_t Minor;
5322       uint32_t Stepping;
5323     };
5324     if (Desc.size() < sizeof(IsaVersion))
5325       return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5326     auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data());
5327     if (Desc.size() < sizeof(IsaVersion) +
5328                           Isa->VendorNameSize + Isa->ArchitectureNameSize ||
5329         Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0)
5330       return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5331     std::string IsaString;
5332     raw_string_ostream StrOS(IsaString);
5333     StrOS << "[Vendor: "
5334           << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1)
5335           << ", Architecture: "
5336           << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize,
5337                        Isa->ArchitectureNameSize - 1)
5338           << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor
5339           << ", Stepping: " << Isa->Stepping << "]";
5340     return {"AMD HSA ISA Version", IsaString};
5341   }
5342   case ELF::NT_AMD_HSA_METADATA: {
5343     if (Desc.size() == 0)
5344       return {"AMD HSA Metadata", ""};
5345     return {
5346         "AMD HSA Metadata",
5347         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)};
5348   }
5349   case ELF::NT_AMD_HSA_ISA_NAME: {
5350     if (Desc.size() == 0)
5351       return {"AMD HSA ISA Name", ""};
5352     return {
5353         "AMD HSA ISA Name",
5354         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
5355   }
5356   case ELF::NT_AMD_PAL_METADATA: {
5357     struct PALMetadata {
5358       uint32_t Key;
5359       uint32_t Value;
5360     };
5361     if (Desc.size() % sizeof(PALMetadata) != 0)
5362       return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"};
5363     auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data());
5364     std::string MetadataString;
5365     raw_string_ostream StrOS(MetadataString);
5366     for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) {
5367       StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]";
5368     }
5369     return {"AMD PAL Metadata", MetadataString};
5370   }
5371   }
5372 }
5373 
5374 struct AMDGPUNote {
5375   std::string Type;
5376   std::string Value;
5377 };
5378 
5379 template <typename ELFT>
getAMDGPUNote(uint32_t NoteType,ArrayRef<uint8_t> Desc)5380 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5381   switch (NoteType) {
5382   default:
5383     return {"", ""};
5384   case ELF::NT_AMDGPU_METADATA: {
5385     StringRef MsgPackString =
5386         StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5387     msgpack::Document MsgPackDoc;
5388     if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
5389       return {"", ""};
5390 
5391     AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
5392     std::string MetadataString;
5393     if (!Verifier.verify(MsgPackDoc.getRoot()))
5394       MetadataString = "Invalid AMDGPU Metadata\n";
5395 
5396     raw_string_ostream StrOS(MetadataString);
5397     if (MsgPackDoc.getRoot().isScalar()) {
5398       // TODO: passing a scalar root to toYAML() asserts:
5399       // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar &&
5400       //    "plain scalar documents are not supported")
5401       // To avoid this crash we print the raw data instead.
5402       return {"", ""};
5403     }
5404     MsgPackDoc.toYAML(StrOS);
5405     return {"AMDGPU Metadata", StrOS.str()};
5406   }
5407   }
5408 }
5409 
5410 struct CoreFileMapping {
5411   uint64_t Start, End, Offset;
5412   StringRef Filename;
5413 };
5414 
5415 struct CoreNote {
5416   uint64_t PageSize;
5417   std::vector<CoreFileMapping> Mappings;
5418 };
5419 
readCoreNote(DataExtractor Desc)5420 static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
5421   // Expected format of the NT_FILE note description:
5422   // 1. # of file mappings (call it N)
5423   // 2. Page size
5424   // 3. N (start, end, offset) triples
5425   // 4. N packed filenames (null delimited)
5426   // Each field is an Elf_Addr, except for filenames which are char* strings.
5427 
5428   CoreNote Ret;
5429   const int Bytes = Desc.getAddressSize();
5430 
5431   if (!Desc.isValidOffsetForAddress(2))
5432     return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) +
5433                        " is too short, expected at least 0x" +
5434                        Twine::utohexstr(Bytes * 2));
5435   if (Desc.getData().back() != 0)
5436     return createError("the note is not NUL terminated");
5437 
5438   uint64_t DescOffset = 0;
5439   uint64_t FileCount = Desc.getAddress(&DescOffset);
5440   Ret.PageSize = Desc.getAddress(&DescOffset);
5441 
5442   if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
5443     return createError("unable to read file mappings (found " +
5444                        Twine(FileCount) + "): the note of size 0x" +
5445                        Twine::utohexstr(Desc.size()) + " is too short");
5446 
5447   uint64_t FilenamesOffset = 0;
5448   DataExtractor Filenames(
5449       Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
5450       Desc.isLittleEndian(), Desc.getAddressSize());
5451 
5452   Ret.Mappings.resize(FileCount);
5453   size_t I = 0;
5454   for (CoreFileMapping &Mapping : Ret.Mappings) {
5455     ++I;
5456     if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
5457       return createError(
5458           "unable to read the file name for the mapping with index " +
5459           Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) +
5460           " is truncated");
5461     Mapping.Start = Desc.getAddress(&DescOffset);
5462     Mapping.End = Desc.getAddress(&DescOffset);
5463     Mapping.Offset = Desc.getAddress(&DescOffset);
5464     Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
5465   }
5466 
5467   return Ret;
5468 }
5469 
5470 template <typename ELFT>
printCoreNote(raw_ostream & OS,const CoreNote & Note)5471 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
5472   // Length of "0x<address>" string.
5473   const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
5474 
5475   OS << "    Page size: " << format_decimal(Note.PageSize, 0) << '\n';
5476   OS << "    " << right_justify("Start", FieldWidth) << "  "
5477      << right_justify("End", FieldWidth) << "  "
5478      << right_justify("Page Offset", FieldWidth) << '\n';
5479   for (const CoreFileMapping &Mapping : Note.Mappings) {
5480     OS << "    " << format_hex(Mapping.Start, FieldWidth) << "  "
5481        << format_hex(Mapping.End, FieldWidth) << "  "
5482        << format_hex(Mapping.Offset, FieldWidth) << "\n        "
5483        << Mapping.Filename << '\n';
5484   }
5485 }
5486 
5487 const NoteType GenericNoteTypes[] = {
5488     {ELF::NT_VERSION, "NT_VERSION (version)"},
5489     {ELF::NT_ARCH, "NT_ARCH (architecture)"},
5490     {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
5491     {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
5492 };
5493 
5494 const NoteType GNUNoteTypes[] = {
5495     {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
5496     {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
5497     {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
5498     {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
5499     {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
5500 };
5501 
5502 const NoteType FreeBSDCoreNoteTypes[] = {
5503     {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
5504     {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
5505     {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
5506     {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
5507     {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
5508     {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
5509     {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
5510     {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
5511     {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
5512      "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
5513     {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
5514 };
5515 
5516 const NoteType FreeBSDNoteTypes[] = {
5517     {ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"},
5518     {ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"},
5519     {ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"},
5520     {ELF::NT_FREEBSD_FEATURE_CTL,
5521      "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"},
5522 };
5523 
5524 const NoteType NetBSDCoreNoteTypes[] = {
5525     {ELF::NT_NETBSDCORE_PROCINFO,
5526      "NT_NETBSDCORE_PROCINFO (procinfo structure)"},
5527     {ELF::NT_NETBSDCORE_AUXV, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"},
5528     {ELF::NT_NETBSDCORE_LWPSTATUS, "PT_LWPSTATUS (ptrace_lwpstatus structure)"},
5529 };
5530 
5531 const NoteType OpenBSDCoreNoteTypes[] = {
5532     {ELF::NT_OPENBSD_PROCINFO, "NT_OPENBSD_PROCINFO (procinfo structure)"},
5533     {ELF::NT_OPENBSD_AUXV, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"},
5534     {ELF::NT_OPENBSD_REGS, "NT_OPENBSD_REGS (regular registers)"},
5535     {ELF::NT_OPENBSD_FPREGS, "NT_OPENBSD_FPREGS (floating point registers)"},
5536     {ELF::NT_OPENBSD_WCOOKIE, "NT_OPENBSD_WCOOKIE (window cookie)"},
5537 };
5538 
5539 const NoteType AMDNoteTypes[] = {
5540     {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION,
5541      "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"},
5542     {ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"},
5543     {ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"},
5544     {ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"},
5545     {ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"},
5546     {ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"},
5547 };
5548 
5549 const NoteType AMDGPUNoteTypes[] = {
5550     {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
5551 };
5552 
5553 const NoteType LLVMOMPOFFLOADNoteTypes[] = {
5554     {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION,
5555      "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"},
5556     {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER,
5557      "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"},
5558     {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION,
5559      "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"},
5560 };
5561 
5562 const NoteType AndroidNoteTypes[] = {
5563     {ELF::NT_ANDROID_TYPE_IDENT, "NT_ANDROID_TYPE_IDENT"},
5564     {ELF::NT_ANDROID_TYPE_KUSER, "NT_ANDROID_TYPE_KUSER"},
5565     {ELF::NT_ANDROID_TYPE_MEMTAG,
5566      "NT_ANDROID_TYPE_MEMTAG (Android memory tagging information)"},
5567 };
5568 
5569 const NoteType CoreNoteTypes[] = {
5570     {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
5571     {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
5572     {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
5573     {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
5574     {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
5575     {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
5576     {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
5577     {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
5578     {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
5579     {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
5580     {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
5581 
5582     {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
5583     {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
5584     {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
5585     {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
5586     {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
5587     {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
5588     {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
5589     {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
5590     {ELF::NT_PPC_TM_CFPR,
5591      "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
5592     {ELF::NT_PPC_TM_CVMX,
5593      "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
5594     {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
5595     {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
5596     {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
5597     {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
5598     {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
5599 
5600     {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
5601     {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
5602     {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
5603 
5604     {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
5605     {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
5606     {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
5607     {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"},
5608     {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
5609     {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
5610     {ELF::NT_S390_LAST_BREAK,
5611      "NT_S390_LAST_BREAK (s390 last breaking event address)"},
5612     {ELF::NT_S390_SYSTEM_CALL,
5613      "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
5614     {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
5615     {ELF::NT_S390_VXRS_LOW,
5616      "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
5617     {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
5618     {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
5619     {ELF::NT_S390_GS_BC,
5620      "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
5621 
5622     {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
5623     {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
5624     {ELF::NT_ARM_HW_BREAK,
5625      "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
5626     {ELF::NT_ARM_HW_WATCH,
5627      "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
5628 
5629     {ELF::NT_FILE, "NT_FILE (mapped files)"},
5630     {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
5631     {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
5632 };
5633 
5634 template <class ELFT>
getNoteTypeName(const typename ELFT::Note & Note,unsigned ELFType)5635 StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) {
5636   uint32_t Type = Note.getType();
5637   auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef {
5638     for (const NoteType &N : V)
5639       if (N.ID == Type)
5640         return N.Name;
5641     return "";
5642   };
5643 
5644   StringRef Name = Note.getName();
5645   if (Name == "GNU")
5646     return FindNote(GNUNoteTypes);
5647   if (Name == "FreeBSD") {
5648     if (ELFType == ELF::ET_CORE) {
5649       // FreeBSD also places the generic core notes in the FreeBSD namespace.
5650       StringRef Result = FindNote(FreeBSDCoreNoteTypes);
5651       if (!Result.empty())
5652         return Result;
5653       return FindNote(CoreNoteTypes);
5654     } else {
5655       return FindNote(FreeBSDNoteTypes);
5656     }
5657   }
5658   if (ELFType == ELF::ET_CORE && Name.startswith("NetBSD-CORE")) {
5659     StringRef Result = FindNote(NetBSDCoreNoteTypes);
5660     if (!Result.empty())
5661       return Result;
5662     return FindNote(CoreNoteTypes);
5663   }
5664   if (ELFType == ELF::ET_CORE && Name.startswith("OpenBSD")) {
5665     // OpenBSD also places the generic core notes in the OpenBSD namespace.
5666     StringRef Result = FindNote(OpenBSDCoreNoteTypes);
5667     if (!Result.empty())
5668       return Result;
5669     return FindNote(CoreNoteTypes);
5670   }
5671   if (Name == "AMD")
5672     return FindNote(AMDNoteTypes);
5673   if (Name == "AMDGPU")
5674     return FindNote(AMDGPUNoteTypes);
5675   if (Name == "LLVMOMPOFFLOAD")
5676     return FindNote(LLVMOMPOFFLOADNoteTypes);
5677   if (Name == "Android")
5678     return FindNote(AndroidNoteTypes);
5679 
5680   if (ELFType == ELF::ET_CORE)
5681     return FindNote(CoreNoteTypes);
5682   return FindNote(GenericNoteTypes);
5683 }
5684 
5685 template <class ELFT>
printNotesHelper(const ELFDumper<ELFT> & Dumper,llvm::function_ref<void (std::optional<StringRef>,typename ELFT::Off,typename ELFT::Addr)> StartNotesFn,llvm::function_ref<Error (const typename ELFT::Note &,bool)> ProcessNoteFn,llvm::function_ref<void ()> FinishNotesFn)5686 static void printNotesHelper(
5687     const ELFDumper<ELFT> &Dumper,
5688     llvm::function_ref<void(std::optional<StringRef>, typename ELFT::Off,
5689                             typename ELFT::Addr)>
5690         StartNotesFn,
5691     llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn,
5692     llvm::function_ref<void()> FinishNotesFn) {
5693   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
5694   bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE;
5695 
5696   ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections());
5697   if (!IsCoreFile && !Sections.empty()) {
5698     for (const typename ELFT::Shdr &S : Sections) {
5699       if (S.sh_type != SHT_NOTE)
5700         continue;
5701       StartNotesFn(expectedToStdOptional(Obj.getSectionName(S)), S.sh_offset,
5702                    S.sh_size);
5703       Error Err = Error::success();
5704       size_t I = 0;
5705       for (const typename ELFT::Note Note : Obj.notes(S, Err)) {
5706         if (Error E = ProcessNoteFn(Note, IsCoreFile))
5707           Dumper.reportUniqueWarning(
5708               "unable to read note with index " + Twine(I) + " from the " +
5709               describe(Obj, S) + ": " + toString(std::move(E)));
5710         ++I;
5711       }
5712       if (Err)
5713         Dumper.reportUniqueWarning("unable to read notes from the " +
5714                                    describe(Obj, S) + ": " +
5715                                    toString(std::move(Err)));
5716       FinishNotesFn();
5717     }
5718     return;
5719   }
5720 
5721   Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers();
5722   if (!PhdrsOrErr) {
5723     Dumper.reportUniqueWarning(
5724         "unable to read program headers to locate the PT_NOTE segment: " +
5725         toString(PhdrsOrErr.takeError()));
5726     return;
5727   }
5728 
5729   for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) {
5730     const typename ELFT::Phdr &P = (*PhdrsOrErr)[I];
5731     if (P.p_type != PT_NOTE)
5732       continue;
5733     StartNotesFn(/*SecName=*/std::nullopt, P.p_offset, P.p_filesz);
5734     Error Err = Error::success();
5735     size_t Index = 0;
5736     for (const typename ELFT::Note Note : Obj.notes(P, Err)) {
5737       if (Error E = ProcessNoteFn(Note, IsCoreFile))
5738         Dumper.reportUniqueWarning("unable to read note with index " +
5739                                    Twine(Index) +
5740                                    " from the PT_NOTE segment with index " +
5741                                    Twine(I) + ": " + toString(std::move(E)));
5742       ++Index;
5743     }
5744     if (Err)
5745       Dumper.reportUniqueWarning(
5746           "unable to read notes from the PT_NOTE segment with index " +
5747           Twine(I) + ": " + toString(std::move(Err)));
5748     FinishNotesFn();
5749   }
5750 }
5751 
printNotes()5752 template <class ELFT> void GNUELFDumper<ELFT>::printNotes() {
5753   bool IsFirstHeader = true;
5754   auto PrintHeader = [&](std::optional<StringRef> SecName,
5755                          const typename ELFT::Off Offset,
5756                          const typename ELFT::Addr Size) {
5757     // Print a newline between notes sections to match GNU readelf.
5758     if (!IsFirstHeader) {
5759       OS << '\n';
5760     } else {
5761       IsFirstHeader = false;
5762     }
5763 
5764     OS << "Displaying notes found ";
5765 
5766     if (SecName)
5767       OS << "in: " << *SecName << "\n";
5768     else
5769       OS << "at file offset " << format_hex(Offset, 10) << " with length "
5770          << format_hex(Size, 10) << ":\n";
5771 
5772     OS << "  Owner                Data size \tDescription\n";
5773   };
5774 
5775   auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
5776     StringRef Name = Note.getName();
5777     ArrayRef<uint8_t> Descriptor = Note.getDesc();
5778     Elf_Word Type = Note.getType();
5779 
5780     // Print the note owner/type.
5781     OS << "  " << left_justify(Name, 20) << ' '
5782        << format_hex(Descriptor.size(), 10) << '\t';
5783 
5784     StringRef NoteType =
5785         getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
5786     if (!NoteType.empty())
5787       OS << NoteType << '\n';
5788     else
5789       OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
5790 
5791     // Print the description, or fallback to printing raw bytes for unknown
5792     // owners/if we fail to pretty-print the contents.
5793     if (Name == "GNU") {
5794       if (printGNUNote<ELFT>(OS, Type, Descriptor))
5795         return Error::success();
5796     } else if (Name == "FreeBSD") {
5797       if (std::optional<FreeBSDNote> N =
5798               getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
5799         OS << "    " << N->Type << ": " << N->Value << '\n';
5800         return Error::success();
5801       }
5802     } else if (Name == "AMD") {
5803       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
5804       if (!N.Type.empty()) {
5805         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
5806         return Error::success();
5807       }
5808     } else if (Name == "AMDGPU") {
5809       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
5810       if (!N.Type.empty()) {
5811         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
5812         return Error::success();
5813       }
5814     } else if (Name == "LLVMOMPOFFLOAD") {
5815       if (printLLVMOMPOFFLOADNote<ELFT>(OS, Type, Descriptor))
5816         return Error::success();
5817     } else if (Name == "CORE") {
5818       if (Type == ELF::NT_FILE) {
5819         DataExtractor DescExtractor(Descriptor,
5820                                     ELFT::TargetEndianness == support::little,
5821                                     sizeof(Elf_Addr));
5822         if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) {
5823           printCoreNote<ELFT>(OS, *NoteOrErr);
5824           return Error::success();
5825         } else {
5826           return NoteOrErr.takeError();
5827         }
5828       }
5829     } else if (Name == "Android") {
5830       if (printAndroidNote(OS, Type, Descriptor))
5831         return Error::success();
5832     }
5833     if (!Descriptor.empty()) {
5834       OS << "   description data:";
5835       for (uint8_t B : Descriptor)
5836         OS << " " << format("%02x", B);
5837       OS << '\n';
5838     }
5839     return Error::success();
5840   };
5841 
5842   printNotesHelper(*this, PrintHeader, ProcessNote, []() {});
5843 }
5844 
printELFLinkerOptions()5845 template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() {
5846   OS << "printELFLinkerOptions not implemented!\n";
5847 }
5848 
5849 template <class ELFT>
printDependentLibsHelper(function_ref<void (const Elf_Shdr &)> OnSectionStart,function_ref<void (StringRef,uint64_t)> OnLibEntry)5850 void ELFDumper<ELFT>::printDependentLibsHelper(
5851     function_ref<void(const Elf_Shdr &)> OnSectionStart,
5852     function_ref<void(StringRef, uint64_t)> OnLibEntry) {
5853   auto Warn = [this](unsigned SecNdx, StringRef Msg) {
5854     this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
5855                               Twine(SecNdx) + " is broken: " + Msg);
5856   };
5857 
5858   unsigned I = -1;
5859   for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
5860     ++I;
5861     if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
5862       continue;
5863 
5864     OnSectionStart(Shdr);
5865 
5866     Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr);
5867     if (!ContentsOrErr) {
5868       Warn(I, toString(ContentsOrErr.takeError()));
5869       continue;
5870     }
5871 
5872     ArrayRef<uint8_t> Contents = *ContentsOrErr;
5873     if (!Contents.empty() && Contents.back() != 0) {
5874       Warn(I, "the content is not null-terminated");
5875       continue;
5876     }
5877 
5878     for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
5879       StringRef Lib((const char *)I);
5880       OnLibEntry(Lib, I - Contents.begin());
5881       I += Lib.size() + 1;
5882     }
5883   }
5884 }
5885 
5886 template <class ELFT>
forEachRelocationDo(const Elf_Shdr & Sec,bool RawRelr,llvm::function_ref<void (const Relocation<ELFT> &,unsigned,const Elf_Shdr &,const Elf_Shdr *)> RelRelaFn,llvm::function_ref<void (const Elf_Relr &)> RelrFn)5887 void ELFDumper<ELFT>::forEachRelocationDo(
5888     const Elf_Shdr &Sec, bool RawRelr,
5889     llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
5890                             const Elf_Shdr &, const Elf_Shdr *)>
5891         RelRelaFn,
5892     llvm::function_ref<void(const Elf_Relr &)> RelrFn) {
5893   auto Warn = [&](Error &&E,
5894                   const Twine &Prefix = "unable to read relocations from") {
5895     this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " +
5896                               toString(std::move(E)));
5897   };
5898 
5899   // SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table.
5900   // For them we should not treat the value of the sh_link field as an index of
5901   // a symbol table.
5902   const Elf_Shdr *SymTab;
5903   if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR) {
5904     Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link);
5905     if (!SymTabOrErr) {
5906       Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for");
5907       return;
5908     }
5909     SymTab = *SymTabOrErr;
5910   }
5911 
5912   unsigned RelNdx = 0;
5913   const bool IsMips64EL = this->Obj.isMips64EL();
5914   switch (Sec.sh_type) {
5915   case ELF::SHT_REL:
5916     if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) {
5917       for (const Elf_Rel &R : *RangeOrErr)
5918         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5919     } else {
5920       Warn(RangeOrErr.takeError());
5921     }
5922     break;
5923   case ELF::SHT_RELA:
5924     if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) {
5925       for (const Elf_Rela &R : *RangeOrErr)
5926         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5927     } else {
5928       Warn(RangeOrErr.takeError());
5929     }
5930     break;
5931   case ELF::SHT_RELR:
5932   case ELF::SHT_ANDROID_RELR: {
5933     Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec);
5934     if (!RangeOrErr) {
5935       Warn(RangeOrErr.takeError());
5936       break;
5937     }
5938     if (RawRelr) {
5939       for (const Elf_Relr &R : *RangeOrErr)
5940         RelrFn(R);
5941       break;
5942     }
5943 
5944     for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr))
5945       RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec,
5946                 /*SymTab=*/nullptr);
5947     break;
5948   }
5949   case ELF::SHT_ANDROID_REL:
5950   case ELF::SHT_ANDROID_RELA:
5951     if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) {
5952       for (const Elf_Rela &R : *RelasOrErr)
5953         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5954     } else {
5955       Warn(RelasOrErr.takeError());
5956     }
5957     break;
5958   }
5959 }
5960 
5961 template <class ELFT>
getPrintableSectionName(const Elf_Shdr & Sec) const5962 StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const {
5963   StringRef Name = "<?>";
5964   if (Expected<StringRef> SecNameOrErr =
5965           Obj.getSectionName(Sec, this->WarningHandler))
5966     Name = *SecNameOrErr;
5967   else
5968     this->reportUniqueWarning("unable to get the name of " + describe(Sec) +
5969                               ": " + toString(SecNameOrErr.takeError()));
5970   return Name;
5971 }
5972 
printDependentLibs()5973 template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() {
5974   bool SectionStarted = false;
5975   struct NameOffset {
5976     StringRef Name;
5977     uint64_t Offset;
5978   };
5979   std::vector<NameOffset> SecEntries;
5980   NameOffset Current;
5981   auto PrintSection = [&]() {
5982     OS << "Dependent libraries section " << Current.Name << " at offset "
5983        << format_hex(Current.Offset, 1) << " contains " << SecEntries.size()
5984        << " entries:\n";
5985     for (NameOffset Entry : SecEntries)
5986       OS << "  [" << format("%6" PRIx64, Entry.Offset) << "]  " << Entry.Name
5987          << "\n";
5988     OS << "\n";
5989     SecEntries.clear();
5990   };
5991 
5992   auto OnSectionStart = [&](const Elf_Shdr &Shdr) {
5993     if (SectionStarted)
5994       PrintSection();
5995     SectionStarted = true;
5996     Current.Offset = Shdr.sh_offset;
5997     Current.Name = this->getPrintableSectionName(Shdr);
5998   };
5999   auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) {
6000     SecEntries.push_back(NameOffset{Lib, Offset});
6001   };
6002 
6003   this->printDependentLibsHelper(OnSectionStart, OnLibEntry);
6004   if (SectionStarted)
6005     PrintSection();
6006 }
6007 
6008 template <class ELFT>
getSymbolIndexesForFunctionAddress(uint64_t SymValue,std::optional<const Elf_Shdr * > FunctionSec)6009 SmallVector<uint32_t> ELFDumper<ELFT>::getSymbolIndexesForFunctionAddress(
6010     uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec) {
6011   SmallVector<uint32_t> SymbolIndexes;
6012   if (!this->AddressToIndexMap) {
6013     // Populate the address to index map upon the first invocation of this
6014     // function.
6015     this->AddressToIndexMap.emplace();
6016     if (this->DotSymtabSec) {
6017       if (Expected<Elf_Sym_Range> SymsOrError =
6018               Obj.symbols(this->DotSymtabSec)) {
6019         uint32_t Index = (uint32_t)-1;
6020         for (const Elf_Sym &Sym : *SymsOrError) {
6021           ++Index;
6022 
6023           if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC)
6024             continue;
6025 
6026           Expected<uint64_t> SymAddrOrErr =
6027               ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress();
6028           if (!SymAddrOrErr) {
6029             std::string Name = this->getStaticSymbolName(Index);
6030             reportUniqueWarning("unable to get address of symbol '" + Name +
6031                                 "': " + toString(SymAddrOrErr.takeError()));
6032             return SymbolIndexes;
6033           }
6034 
6035           (*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index);
6036         }
6037       } else {
6038         reportUniqueWarning("unable to read the symbol table: " +
6039                             toString(SymsOrError.takeError()));
6040       }
6041     }
6042   }
6043 
6044   auto Symbols = this->AddressToIndexMap->find(SymValue);
6045   if (Symbols == this->AddressToIndexMap->end())
6046     return SymbolIndexes;
6047 
6048   for (uint32_t Index : Symbols->second) {
6049     // Check if the symbol is in the right section. FunctionSec == None
6050     // means "any section".
6051     if (FunctionSec) {
6052       const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index));
6053       if (Expected<const Elf_Shdr *> SecOrErr =
6054               Obj.getSection(Sym, this->DotSymtabSec,
6055                              this->getShndxTable(this->DotSymtabSec))) {
6056         if (*FunctionSec != *SecOrErr)
6057           continue;
6058       } else {
6059         std::string Name = this->getStaticSymbolName(Index);
6060         // Note: it is impossible to trigger this error currently, it is
6061         // untested.
6062         reportUniqueWarning("unable to get section of symbol '" + Name +
6063                             "': " + toString(SecOrErr.takeError()));
6064         return SymbolIndexes;
6065       }
6066     }
6067 
6068     SymbolIndexes.push_back(Index);
6069   }
6070 
6071   return SymbolIndexes;
6072 }
6073 
6074 template <class ELFT>
printFunctionStackSize(uint64_t SymValue,std::optional<const Elf_Shdr * > FunctionSec,const Elf_Shdr & StackSizeSec,DataExtractor Data,uint64_t * Offset)6075 bool ELFDumper<ELFT>::printFunctionStackSize(
6076     uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec,
6077     const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) {
6078   SmallVector<uint32_t> FuncSymIndexes =
6079       this->getSymbolIndexesForFunctionAddress(SymValue, FunctionSec);
6080   if (FuncSymIndexes.empty())
6081     reportUniqueWarning(
6082         "could not identify function symbol for stack size entry in " +
6083         describe(StackSizeSec));
6084 
6085   // Extract the size. The expectation is that Offset is pointing to the right
6086   // place, i.e. past the function address.
6087   Error Err = Error::success();
6088   uint64_t StackSize = Data.getULEB128(Offset, &Err);
6089   if (Err) {
6090     reportUniqueWarning("could not extract a valid stack size from " +
6091                         describe(StackSizeSec) + ": " +
6092                         toString(std::move(Err)));
6093     return false;
6094   }
6095 
6096   if (FuncSymIndexes.empty()) {
6097     printStackSizeEntry(StackSize, {"?"});
6098   } else {
6099     SmallVector<std::string> FuncSymNames;
6100     for (uint32_t Index : FuncSymIndexes)
6101       FuncSymNames.push_back(this->getStaticSymbolName(Index));
6102     printStackSizeEntry(StackSize, FuncSymNames);
6103   }
6104 
6105   return true;
6106 }
6107 
6108 template <class ELFT>
printStackSizeEntry(uint64_t Size,ArrayRef<std::string> FuncNames)6109 void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
6110                                              ArrayRef<std::string> FuncNames) {
6111   OS.PadToColumn(2);
6112   OS << format_decimal(Size, 11);
6113   OS.PadToColumn(18);
6114 
6115   OS << join(FuncNames.begin(), FuncNames.end(), ", ") << "\n";
6116 }
6117 
6118 template <class ELFT>
printStackSize(const Relocation<ELFT> & R,const Elf_Shdr & RelocSec,unsigned Ndx,const Elf_Shdr * SymTab,const Elf_Shdr * FunctionSec,const Elf_Shdr & StackSizeSec,const RelocationResolver & Resolver,DataExtractor Data)6119 void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R,
6120                                      const Elf_Shdr &RelocSec, unsigned Ndx,
6121                                      const Elf_Shdr *SymTab,
6122                                      const Elf_Shdr *FunctionSec,
6123                                      const Elf_Shdr &StackSizeSec,
6124                                      const RelocationResolver &Resolver,
6125                                      DataExtractor Data) {
6126   // This function ignores potentially erroneous input, unless it is directly
6127   // related to stack size reporting.
6128   const Elf_Sym *Sym = nullptr;
6129   Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab);
6130   if (!TargetOrErr)
6131     reportUniqueWarning("unable to get the target of relocation with index " +
6132                         Twine(Ndx) + " in " + describe(RelocSec) + ": " +
6133                         toString(TargetOrErr.takeError()));
6134   else
6135     Sym = TargetOrErr->Sym;
6136 
6137   uint64_t RelocSymValue = 0;
6138   if (Sym) {
6139     Expected<const Elf_Shdr *> SectionOrErr =
6140         this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab));
6141     if (!SectionOrErr) {
6142       reportUniqueWarning(
6143           "cannot identify the section for relocation symbol '" +
6144           (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError()));
6145     } else if (*SectionOrErr != FunctionSec) {
6146       reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name +
6147                           "' is not in the expected section");
6148       // Pretend that the symbol is in the correct section and report its
6149       // stack size anyway.
6150       FunctionSec = *SectionOrErr;
6151     }
6152 
6153     RelocSymValue = Sym->st_value;
6154   }
6155 
6156   uint64_t Offset = R.Offset;
6157   if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6158     reportUniqueWarning("found invalid relocation offset (0x" +
6159                         Twine::utohexstr(Offset) + ") into " +
6160                         describe(StackSizeSec) +
6161                         " while trying to extract a stack size entry");
6162     return;
6163   }
6164 
6165   uint64_t SymValue = Resolver(R.Type, Offset, RelocSymValue,
6166                                Data.getAddress(&Offset), R.Addend.value_or(0));
6167   this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data,
6168                                &Offset);
6169 }
6170 
6171 template <class ELFT>
printNonRelocatableStackSizes(std::function<void ()> PrintHeader)6172 void ELFDumper<ELFT>::printNonRelocatableStackSizes(
6173     std::function<void()> PrintHeader) {
6174   // This function ignores potentially erroneous input, unless it is directly
6175   // related to stack size reporting.
6176   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6177     if (this->getPrintableSectionName(Sec) != ".stack_sizes")
6178       continue;
6179     PrintHeader();
6180     ArrayRef<uint8_t> Contents =
6181         unwrapOrError(this->FileName, Obj.getSectionContents(Sec));
6182     DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6183     uint64_t Offset = 0;
6184     while (Offset < Contents.size()) {
6185       // The function address is followed by a ULEB representing the stack
6186       // size. Check for an extra byte before we try to process the entry.
6187       if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6188         reportUniqueWarning(
6189             describe(Sec) +
6190             " ended while trying to extract a stack size entry");
6191         break;
6192       }
6193       uint64_t SymValue = Data.getAddress(&Offset);
6194       if (!printFunctionStackSize(SymValue, /*FunctionSec=*/std::nullopt, Sec,
6195                                   Data, &Offset))
6196         break;
6197     }
6198   }
6199 }
6200 
6201 template <class ELFT>
getSectionAndRelocations(std::function<bool (const Elf_Shdr &)> IsMatch,llvm::MapVector<const Elf_Shdr *,const Elf_Shdr * > & SecToRelocMap)6202 void ELFDumper<ELFT>::getSectionAndRelocations(
6203     std::function<bool(const Elf_Shdr &)> IsMatch,
6204     llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap) {
6205   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6206     if (IsMatch(Sec))
6207       if (SecToRelocMap.insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr))
6208               .second)
6209         continue;
6210 
6211     if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL)
6212       continue;
6213 
6214     Expected<const Elf_Shdr *> RelSecOrErr = Obj.getSection(Sec.sh_info);
6215     if (!RelSecOrErr) {
6216       reportUniqueWarning(describe(Sec) +
6217                           ": failed to get a relocated section: " +
6218                           toString(RelSecOrErr.takeError()));
6219       continue;
6220     }
6221     const Elf_Shdr *ContentsSec = *RelSecOrErr;
6222     if (IsMatch(*ContentsSec))
6223       SecToRelocMap[ContentsSec] = &Sec;
6224   }
6225 }
6226 
6227 template <class ELFT>
printRelocatableStackSizes(std::function<void ()> PrintHeader)6228 void ELFDumper<ELFT>::printRelocatableStackSizes(
6229     std::function<void()> PrintHeader) {
6230   // Build a map between stack size sections and their corresponding relocation
6231   // sections.
6232   llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> StackSizeRelocMap;
6233   auto IsMatch = [&](const Elf_Shdr &Sec) -> bool {
6234     StringRef SectionName;
6235     if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec))
6236       SectionName = *NameOrErr;
6237     else
6238       consumeError(NameOrErr.takeError());
6239 
6240     return SectionName == ".stack_sizes";
6241   };
6242   getSectionAndRelocations(IsMatch, StackSizeRelocMap);
6243 
6244   for (const auto &StackSizeMapEntry : StackSizeRelocMap) {
6245     PrintHeader();
6246     const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first;
6247     const Elf_Shdr *RelocSec = StackSizeMapEntry.second;
6248 
6249     // Warn about stack size sections without a relocation section.
6250     if (!RelocSec) {
6251       reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) +
6252                                 ") does not have a corresponding "
6253                                 "relocation section"),
6254                     FileName);
6255       continue;
6256     }
6257 
6258     // A .stack_sizes section header's sh_link field is supposed to point
6259     // to the section that contains the functions whose stack sizes are
6260     // described in it.
6261     const Elf_Shdr *FunctionSec = unwrapOrError(
6262         this->FileName, Obj.getSection(StackSizesELFSec->sh_link));
6263 
6264     SupportsRelocation IsSupportedFn;
6265     RelocationResolver Resolver;
6266     std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF);
6267     ArrayRef<uint8_t> Contents =
6268         unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec));
6269     DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6270 
6271     forEachRelocationDo(
6272         *RelocSec, /*RawRelr=*/false,
6273         [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
6274             const Elf_Shdr *SymTab) {
6275           if (!IsSupportedFn || !IsSupportedFn(R.Type)) {
6276             reportUniqueWarning(
6277                 describe(*RelocSec) +
6278                 " contains an unsupported relocation with index " + Twine(Ndx) +
6279                 ": " + Obj.getRelocationTypeName(R.Type));
6280             return;
6281           }
6282 
6283           this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec,
6284                                *StackSizesELFSec, Resolver, Data);
6285         },
6286         [](const Elf_Relr &) {
6287           llvm_unreachable("can't get here, because we only support "
6288                            "SHT_REL/SHT_RELA sections");
6289         });
6290   }
6291 }
6292 
6293 template <class ELFT>
printStackSizes()6294 void GNUELFDumper<ELFT>::printStackSizes() {
6295   bool HeaderHasBeenPrinted = false;
6296   auto PrintHeader = [&]() {
6297     if (HeaderHasBeenPrinted)
6298       return;
6299     OS << "\nStack Sizes:\n";
6300     OS.PadToColumn(9);
6301     OS << "Size";
6302     OS.PadToColumn(18);
6303     OS << "Functions\n";
6304     HeaderHasBeenPrinted = true;
6305   };
6306 
6307   // For non-relocatable objects, look directly for sections whose name starts
6308   // with .stack_sizes and process the contents.
6309   if (this->Obj.getHeader().e_type == ELF::ET_REL)
6310     this->printRelocatableStackSizes(PrintHeader);
6311   else
6312     this->printNonRelocatableStackSizes(PrintHeader);
6313 }
6314 
6315 template <class ELFT>
printMipsGOT(const MipsGOTParser<ELFT> & Parser)6316 void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
6317   size_t Bias = ELFT::Is64Bits ? 8 : 0;
6318   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6319     OS.PadToColumn(2);
6320     OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
6321     OS.PadToColumn(11 + Bias);
6322     OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
6323     OS.PadToColumn(22 + Bias);
6324     OS << format_hex_no_prefix(*E, 8 + Bias);
6325     OS.PadToColumn(31 + 2 * Bias);
6326     OS << Purpose << "\n";
6327   };
6328 
6329   OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
6330   OS << " Canonical gp value: "
6331      << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
6332 
6333   OS << " Reserved entries:\n";
6334   if (ELFT::Is64Bits)
6335     OS << "           Address     Access          Initial Purpose\n";
6336   else
6337     OS << "   Address     Access  Initial Purpose\n";
6338   PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
6339   if (Parser.getGotModulePointer())
6340     PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
6341 
6342   if (!Parser.getLocalEntries().empty()) {
6343     OS << "\n";
6344     OS << " Local entries:\n";
6345     if (ELFT::Is64Bits)
6346       OS << "           Address     Access          Initial\n";
6347     else
6348       OS << "   Address     Access  Initial\n";
6349     for (auto &E : Parser.getLocalEntries())
6350       PrintEntry(&E, "");
6351   }
6352 
6353   if (Parser.IsStatic)
6354     return;
6355 
6356   if (!Parser.getGlobalEntries().empty()) {
6357     OS << "\n";
6358     OS << " Global entries:\n";
6359     if (ELFT::Is64Bits)
6360       OS << "           Address     Access          Initial         Sym.Val."
6361          << " Type    Ndx Name\n";
6362     else
6363       OS << "   Address     Access  Initial Sym.Val. Type    Ndx Name\n";
6364 
6365     DataRegion<Elf_Word> ShndxTable(
6366         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6367     for (auto &E : Parser.getGlobalEntries()) {
6368       const Elf_Sym &Sym = *Parser.getGotSym(&E);
6369       const Elf_Sym &FirstSym = this->dynamic_symbols()[0];
6370       std::string SymName = this->getFullSymbolName(
6371           Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6372 
6373       OS.PadToColumn(2);
6374       OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
6375       OS.PadToColumn(11 + Bias);
6376       OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
6377       OS.PadToColumn(22 + Bias);
6378       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6379       OS.PadToColumn(31 + 2 * Bias);
6380       OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6381       OS.PadToColumn(40 + 3 * Bias);
6382       OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes));
6383       OS.PadToColumn(48 + 3 * Bias);
6384       OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6385                                 ShndxTable);
6386       OS.PadToColumn(52 + 3 * Bias);
6387       OS << SymName << "\n";
6388     }
6389   }
6390 
6391   if (!Parser.getOtherEntries().empty())
6392     OS << "\n Number of TLS and multi-GOT entries "
6393        << Parser.getOtherEntries().size() << "\n";
6394 }
6395 
6396 template <class ELFT>
printMipsPLT(const MipsGOTParser<ELFT> & Parser)6397 void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6398   size_t Bias = ELFT::Is64Bits ? 8 : 0;
6399   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6400     OS.PadToColumn(2);
6401     OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
6402     OS.PadToColumn(11 + Bias);
6403     OS << format_hex_no_prefix(*E, 8 + Bias);
6404     OS.PadToColumn(20 + 2 * Bias);
6405     OS << Purpose << "\n";
6406   };
6407 
6408   OS << "PLT GOT:\n\n";
6409 
6410   OS << " Reserved entries:\n";
6411   OS << "   Address  Initial Purpose\n";
6412   PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
6413   if (Parser.getPltModulePointer())
6414     PrintEntry(Parser.getPltModulePointer(), "Module pointer");
6415 
6416   if (!Parser.getPltEntries().empty()) {
6417     OS << "\n";
6418     OS << " Entries:\n";
6419     OS << "   Address  Initial Sym.Val. Type    Ndx Name\n";
6420     DataRegion<Elf_Word> ShndxTable(
6421         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6422     for (auto &E : Parser.getPltEntries()) {
6423       const Elf_Sym &Sym = *Parser.getPltSym(&E);
6424       const Elf_Sym &FirstSym = *cantFail(
6425           this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
6426       std::string SymName = this->getFullSymbolName(
6427           Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6428 
6429       OS.PadToColumn(2);
6430       OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
6431       OS.PadToColumn(11 + Bias);
6432       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6433       OS.PadToColumn(20 + 2 * Bias);
6434       OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6435       OS.PadToColumn(29 + 3 * Bias);
6436       OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes));
6437       OS.PadToColumn(37 + 3 * Bias);
6438       OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6439                                 ShndxTable);
6440       OS.PadToColumn(41 + 3 * Bias);
6441       OS << SymName << "\n";
6442     }
6443   }
6444 }
6445 
6446 template <class ELFT>
6447 Expected<const Elf_Mips_ABIFlags<ELFT> *>
getMipsAbiFlagsSection(const ELFDumper<ELFT> & Dumper)6448 getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) {
6449   const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags");
6450   if (Sec == nullptr)
6451     return nullptr;
6452 
6453   constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: ";
6454   Expected<ArrayRef<uint8_t>> DataOrErr =
6455       Dumper.getElfObject().getELFFile().getSectionContents(*Sec);
6456   if (!DataOrErr)
6457     return createError(ErrPrefix + toString(DataOrErr.takeError()));
6458 
6459   if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
6460     return createError(ErrPrefix + "it has a wrong size (" +
6461         Twine(DataOrErr->size()) + ")");
6462   return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data());
6463 }
6464 
printMipsABIFlags()6465 template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() {
6466   const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr;
6467   if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
6468           getMipsAbiFlagsSection(*this))
6469     Flags = *SecOrErr;
6470   else
6471     this->reportUniqueWarning(SecOrErr.takeError());
6472   if (!Flags)
6473     return;
6474 
6475   OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
6476   OS << "ISA: MIPS" << int(Flags->isa_level);
6477   if (Flags->isa_rev > 1)
6478     OS << "r" << int(Flags->isa_rev);
6479   OS << "\n";
6480   OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
6481   OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
6482   OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
6483   OS << "FP ABI: " << enumToString(Flags->fp_abi, ArrayRef(ElfMipsFpABIType))
6484      << "\n";
6485   OS << "ISA Extension: "
6486      << enumToString(Flags->isa_ext, ArrayRef(ElfMipsISAExtType)) << "\n";
6487   if (Flags->ases == 0)
6488     OS << "ASEs: None\n";
6489   else
6490     // FIXME: Print each flag on a separate line.
6491     OS << "ASEs: " << printFlags(Flags->ases, ArrayRef(ElfMipsASEFlags))
6492        << "\n";
6493   OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
6494   OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
6495   OS << "\n";
6496 }
6497 
printFileHeaders()6498 template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() {
6499   const Elf_Ehdr &E = this->Obj.getHeader();
6500   {
6501     DictScope D(W, "ElfHeader");
6502     {
6503       DictScope D(W, "Ident");
6504       W.printBinary("Magic",
6505                     ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_MAG0, 4));
6506       W.printEnum("Class", E.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass));
6507       W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA],
6508                   ArrayRef(ElfDataEncoding));
6509       W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]);
6510 
6511       auto OSABI = ArrayRef(ElfOSABI);
6512       if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
6513           E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
6514         switch (E.e_machine) {
6515         case ELF::EM_AMDGPU:
6516           OSABI = ArrayRef(AMDGPUElfOSABI);
6517           break;
6518         case ELF::EM_ARM:
6519           OSABI = ArrayRef(ARMElfOSABI);
6520           break;
6521         case ELF::EM_TI_C6000:
6522           OSABI = ArrayRef(C6000ElfOSABI);
6523           break;
6524         }
6525       }
6526       W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI);
6527       W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]);
6528       W.printBinary("Unused",
6529                     ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_PAD));
6530     }
6531 
6532     std::string TypeStr;
6533     if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) {
6534       TypeStr = Ent->Name.str();
6535     } else {
6536       if (E.e_type >= ET_LOPROC)
6537         TypeStr = "Processor Specific";
6538       else if (E.e_type >= ET_LOOS)
6539         TypeStr = "OS Specific";
6540       else
6541         TypeStr = "Unknown";
6542     }
6543     W.printString("Type", TypeStr + " (0x" + utohexstr(E.e_type) + ")");
6544 
6545     W.printEnum("Machine", E.e_machine, ArrayRef(ElfMachineType));
6546     W.printNumber("Version", E.e_version);
6547     W.printHex("Entry", E.e_entry);
6548     W.printHex("ProgramHeaderOffset", E.e_phoff);
6549     W.printHex("SectionHeaderOffset", E.e_shoff);
6550     if (E.e_machine == EM_MIPS)
6551       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderMipsFlags),
6552                    unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
6553                    unsigned(ELF::EF_MIPS_MACH));
6554     else if (E.e_machine == EM_AMDGPU) {
6555       switch (E.e_ident[ELF::EI_ABIVERSION]) {
6556       default:
6557         W.printHex("Flags", E.e_flags);
6558         break;
6559       case 0:
6560         // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
6561         [[fallthrough]];
6562       case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
6563         W.printFlags("Flags", E.e_flags,
6564                      ArrayRef(ElfHeaderAMDGPUFlagsABIVersion3),
6565                      unsigned(ELF::EF_AMDGPU_MACH));
6566         break;
6567       case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
6568       case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
6569         W.printFlags("Flags", E.e_flags,
6570                      ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
6571                      unsigned(ELF::EF_AMDGPU_MACH),
6572                      unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
6573                      unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4));
6574         break;
6575       }
6576     } else if (E.e_machine == EM_RISCV)
6577       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderRISCVFlags));
6578     else if (E.e_machine == EM_AVR)
6579       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderAVRFlags),
6580                    unsigned(ELF::EF_AVR_ARCH_MASK));
6581     else if (E.e_machine == EM_LOONGARCH)
6582       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderLoongArchFlags),
6583                    unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK),
6584                    unsigned(ELF::EF_LOONGARCH_OBJABI_MASK));
6585     else if (E.e_machine == EM_XTENSA)
6586       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderXtensaFlags),
6587                    unsigned(ELF::EF_XTENSA_MACH));
6588     else
6589       W.printFlags("Flags", E.e_flags);
6590     W.printNumber("HeaderSize", E.e_ehsize);
6591     W.printNumber("ProgramHeaderEntrySize", E.e_phentsize);
6592     W.printNumber("ProgramHeaderCount", E.e_phnum);
6593     W.printNumber("SectionHeaderEntrySize", E.e_shentsize);
6594     W.printString("SectionHeaderCount",
6595                   getSectionHeadersNumString(this->Obj, this->FileName));
6596     W.printString("StringTableSectionIndex",
6597                   getSectionHeaderTableIndexString(this->Obj, this->FileName));
6598   }
6599 }
6600 
printGroupSections()6601 template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() {
6602   DictScope Lists(W, "Groups");
6603   std::vector<GroupSection> V = this->getGroups();
6604   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
6605   for (const GroupSection &G : V) {
6606     DictScope D(W, "Group");
6607     W.printNumber("Name", G.Name, G.ShName);
6608     W.printNumber("Index", G.Index);
6609     W.printNumber("Link", G.Link);
6610     W.printNumber("Info", G.Info);
6611     W.printHex("Type", getGroupType(G.Type), G.Type);
6612     W.startLine() << "Signature: " << G.Signature << "\n";
6613 
6614     ListScope L(W, "Section(s) in group");
6615     for (const GroupMember &GM : G.Members) {
6616       const GroupSection *MainGroup = Map[GM.Index];
6617       if (MainGroup != &G)
6618         this->reportUniqueWarning(
6619             "section with index " + Twine(GM.Index) +
6620             ", included in the group section with index " +
6621             Twine(MainGroup->Index) +
6622             ", was also found in the group section with index " +
6623             Twine(G.Index));
6624       W.startLine() << GM.Name << " (" << GM.Index << ")\n";
6625     }
6626   }
6627 
6628   if (V.empty())
6629     W.startLine() << "There are no group sections in the file.\n";
6630 }
6631 
printRelocations()6632 template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() {
6633   ListScope D(W, "Relocations");
6634 
6635   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6636     if (!isRelocationSec<ELFT>(Sec))
6637       continue;
6638 
6639     StringRef Name = this->getPrintableSectionName(Sec);
6640     unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front();
6641     W.startLine() << "Section (" << SecNdx << ") " << Name << " {\n";
6642     W.indent();
6643     this->printRelocationsHelper(Sec);
6644     W.unindent();
6645     W.startLine() << "}\n";
6646   }
6647 }
6648 
6649 template <class ELFT>
printRelrReloc(const Elf_Relr & R)6650 void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
6651   W.startLine() << W.hex(R) << "\n";
6652 }
6653 
6654 template <class ELFT>
printRelRelaReloc(const Relocation<ELFT> & R,const RelSymbol<ELFT> & RelSym)6655 void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
6656                                             const RelSymbol<ELFT> &RelSym) {
6657   StringRef SymbolName = RelSym.Name;
6658   SmallString<32> RelocName;
6659   this->Obj.getRelocationTypeName(R.Type, RelocName);
6660 
6661   if (opts::ExpandRelocs) {
6662     DictScope Group(W, "Relocation");
6663     W.printHex("Offset", R.Offset);
6664     W.printNumber("Type", RelocName, R.Type);
6665     W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol);
6666     if (R.Addend)
6667       W.printHex("Addend", (uintX_t)*R.Addend);
6668   } else {
6669     raw_ostream &OS = W.startLine();
6670     OS << W.hex(R.Offset) << " " << RelocName << " "
6671        << (!SymbolName.empty() ? SymbolName : "-");
6672     if (R.Addend)
6673       OS << " " << W.hex((uintX_t)*R.Addend);
6674     OS << "\n";
6675   }
6676 }
6677 
printSectionHeaders()6678 template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() {
6679   ListScope SectionsD(W, "Sections");
6680 
6681   int SectionIndex = -1;
6682   std::vector<EnumEntry<unsigned>> FlagsList =
6683       getSectionFlagsForTarget(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
6684                                this->Obj.getHeader().e_machine);
6685   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6686     DictScope SectionD(W, "Section");
6687     W.printNumber("Index", ++SectionIndex);
6688     W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name);
6689     W.printHex("Type",
6690                object::getELFSectionTypeName(this->Obj.getHeader().e_machine,
6691                                              Sec.sh_type),
6692                Sec.sh_type);
6693     W.printFlags("Flags", Sec.sh_flags, ArrayRef(FlagsList));
6694     W.printHex("Address", Sec.sh_addr);
6695     W.printHex("Offset", Sec.sh_offset);
6696     W.printNumber("Size", Sec.sh_size);
6697     W.printNumber("Link", Sec.sh_link);
6698     W.printNumber("Info", Sec.sh_info);
6699     W.printNumber("AddressAlignment", Sec.sh_addralign);
6700     W.printNumber("EntrySize", Sec.sh_entsize);
6701 
6702     if (opts::SectionRelocations) {
6703       ListScope D(W, "Relocations");
6704       this->printRelocationsHelper(Sec);
6705     }
6706 
6707     if (opts::SectionSymbols) {
6708       ListScope D(W, "Symbols");
6709       if (this->DotSymtabSec) {
6710         StringRef StrTable = unwrapOrError(
6711             this->FileName,
6712             this->Obj.getStringTableForSymtab(*this->DotSymtabSec));
6713         ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec);
6714 
6715         typename ELFT::SymRange Symbols = unwrapOrError(
6716             this->FileName, this->Obj.symbols(this->DotSymtabSec));
6717         for (const Elf_Sym &Sym : Symbols) {
6718           const Elf_Shdr *SymSec = unwrapOrError(
6719               this->FileName,
6720               this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable));
6721           if (SymSec == &Sec)
6722             printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false,
6723                         false);
6724         }
6725       }
6726     }
6727 
6728     if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
6729       ArrayRef<uint8_t> Data =
6730           unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec));
6731       W.printBinaryBlock(
6732           "SectionData",
6733           StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
6734     }
6735   }
6736 }
6737 
6738 template <class ELFT>
printSymbolSection(const Elf_Sym & Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable) const6739 void LLVMELFDumper<ELFT>::printSymbolSection(
6740     const Elf_Sym &Symbol, unsigned SymIndex,
6741     DataRegion<Elf_Word> ShndxTable) const {
6742   auto GetSectionSpecialType = [&]() -> std::optional<StringRef> {
6743     if (Symbol.isUndefined())
6744       return StringRef("Undefined");
6745     if (Symbol.isProcessorSpecific())
6746       return StringRef("Processor Specific");
6747     if (Symbol.isOSSpecific())
6748       return StringRef("Operating System Specific");
6749     if (Symbol.isAbsolute())
6750       return StringRef("Absolute");
6751     if (Symbol.isCommon())
6752       return StringRef("Common");
6753     if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX)
6754       return StringRef("Reserved");
6755     return std::nullopt;
6756   };
6757 
6758   if (std::optional<StringRef> Type = GetSectionSpecialType()) {
6759     W.printHex("Section", *Type, Symbol.st_shndx);
6760     return;
6761   }
6762 
6763   Expected<unsigned> SectionIndex =
6764       this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
6765   if (!SectionIndex) {
6766     assert(Symbol.st_shndx == SHN_XINDEX &&
6767            "getSymbolSectionIndex should only fail due to an invalid "
6768            "SHT_SYMTAB_SHNDX table/reference");
6769     this->reportUniqueWarning(SectionIndex.takeError());
6770     W.printHex("Section", "Reserved", SHN_XINDEX);
6771     return;
6772   }
6773 
6774   Expected<StringRef> SectionName =
6775       this->getSymbolSectionName(Symbol, *SectionIndex);
6776   if (!SectionName) {
6777     // Don't report an invalid section name if the section headers are missing.
6778     // In such situations, all sections will be "invalid".
6779     if (!this->ObjF.sections().empty())
6780       this->reportUniqueWarning(SectionName.takeError());
6781     else
6782       consumeError(SectionName.takeError());
6783     W.printHex("Section", "<?>", *SectionIndex);
6784   } else {
6785     W.printHex("Section", *SectionName, *SectionIndex);
6786   }
6787 }
6788 
6789 template <class ELFT>
printSymbol(const Elf_Sym & Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable,std::optional<StringRef> StrTable,bool IsDynamic,bool) const6790 void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
6791                                       DataRegion<Elf_Word> ShndxTable,
6792                                       std::optional<StringRef> StrTable,
6793                                       bool IsDynamic,
6794                                       bool /*NonVisibilityBitsUsed*/) const {
6795   std::string FullSymbolName = this->getFullSymbolName(
6796       Symbol, SymIndex, ShndxTable, StrTable, IsDynamic);
6797   unsigned char SymbolType = Symbol.getType();
6798 
6799   DictScope D(W, "Symbol");
6800   W.printNumber("Name", FullSymbolName, Symbol.st_name);
6801   W.printHex("Value", Symbol.st_value);
6802   W.printNumber("Size", Symbol.st_size);
6803   W.printEnum("Binding", Symbol.getBinding(), ArrayRef(ElfSymbolBindings));
6804   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
6805       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
6806     W.printEnum("Type", SymbolType, ArrayRef(AMDGPUSymbolTypes));
6807   else
6808     W.printEnum("Type", SymbolType, ArrayRef(ElfSymbolTypes));
6809   if (Symbol.st_other == 0)
6810     // Usually st_other flag is zero. Do not pollute the output
6811     // by flags enumeration in that case.
6812     W.printNumber("Other", 0);
6813   else {
6814     std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
6815                                                    std::end(ElfSymOtherFlags));
6816     if (this->Obj.getHeader().e_machine == EM_MIPS) {
6817       // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
6818       // flag overlapped with other ST_MIPS_xxx flags. So consider both
6819       // cases separately.
6820       if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
6821         SymOtherFlags.insert(SymOtherFlags.end(),
6822                              std::begin(ElfMips16SymOtherFlags),
6823                              std::end(ElfMips16SymOtherFlags));
6824       else
6825         SymOtherFlags.insert(SymOtherFlags.end(),
6826                              std::begin(ElfMipsSymOtherFlags),
6827                              std::end(ElfMipsSymOtherFlags));
6828     } else if (this->Obj.getHeader().e_machine == EM_AARCH64) {
6829       SymOtherFlags.insert(SymOtherFlags.end(),
6830                            std::begin(ElfAArch64SymOtherFlags),
6831                            std::end(ElfAArch64SymOtherFlags));
6832     } else if (this->Obj.getHeader().e_machine == EM_RISCV) {
6833       SymOtherFlags.insert(SymOtherFlags.end(),
6834                            std::begin(ElfRISCVSymOtherFlags),
6835                            std::end(ElfRISCVSymOtherFlags));
6836     }
6837     W.printFlags("Other", Symbol.st_other, ArrayRef(SymOtherFlags), 0x3u);
6838   }
6839   printSymbolSection(Symbol, SymIndex, ShndxTable);
6840 }
6841 
6842 template <class ELFT>
printSymbols(bool PrintSymbols,bool PrintDynamicSymbols)6843 void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols,
6844                                        bool PrintDynamicSymbols) {
6845   if (PrintSymbols) {
6846     ListScope Group(W, "Symbols");
6847     this->printSymbolsHelper(false);
6848   }
6849   if (PrintDynamicSymbols) {
6850     ListScope Group(W, "DynamicSymbols");
6851     this->printSymbolsHelper(true);
6852   }
6853 }
6854 
printDynamicTable()6855 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() {
6856   Elf_Dyn_Range Table = this->dynamic_table();
6857   if (Table.empty())
6858     return;
6859 
6860   W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
6861 
6862   size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table);
6863   // The "Name/Value" column should be indented from the "Type" column by N
6864   // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
6865   // space (1) = -3.
6866   W.startLine() << "  Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ')
6867                 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
6868 
6869   std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s ";
6870   for (auto Entry : Table) {
6871     uintX_t Tag = Entry.getTag();
6872     std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
6873     W.startLine() << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true)
6874                   << " "
6875                   << format(ValueFmt.c_str(),
6876                             this->Obj.getDynamicTagAsString(Tag).c_str())
6877                   << Value << "\n";
6878   }
6879   W.startLine() << "]\n";
6880 }
6881 
printDynamicRelocations()6882 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() {
6883   W.startLine() << "Dynamic Relocations {\n";
6884   W.indent();
6885   this->printDynamicRelocationsHelper();
6886   W.unindent();
6887   W.startLine() << "}\n";
6888 }
6889 
6890 template <class ELFT>
printProgramHeaders(bool PrintProgramHeaders,cl::boolOrDefault PrintSectionMapping)6891 void LLVMELFDumper<ELFT>::printProgramHeaders(
6892     bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
6893   if (PrintProgramHeaders)
6894     printProgramHeaders();
6895   if (PrintSectionMapping == cl::BOU_TRUE)
6896     printSectionMapping();
6897 }
6898 
printProgramHeaders()6899 template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() {
6900   ListScope L(W, "ProgramHeaders");
6901 
6902   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
6903   if (!PhdrsOrErr) {
6904     this->reportUniqueWarning("unable to dump program headers: " +
6905                               toString(PhdrsOrErr.takeError()));
6906     return;
6907   }
6908 
6909   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
6910     DictScope P(W, "ProgramHeader");
6911     StringRef Type =
6912         segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type);
6913 
6914     W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type);
6915     W.printHex("Offset", Phdr.p_offset);
6916     W.printHex("VirtualAddress", Phdr.p_vaddr);
6917     W.printHex("PhysicalAddress", Phdr.p_paddr);
6918     W.printNumber("FileSize", Phdr.p_filesz);
6919     W.printNumber("MemSize", Phdr.p_memsz);
6920     W.printFlags("Flags", Phdr.p_flags, ArrayRef(ElfSegmentFlags));
6921     W.printNumber("Alignment", Phdr.p_align);
6922   }
6923 }
6924 
6925 template <class ELFT>
printVersionSymbolSection(const Elf_Shdr * Sec)6926 void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
6927   ListScope SS(W, "VersionSymbols");
6928   if (!Sec)
6929     return;
6930 
6931   StringRef StrTable;
6932   ArrayRef<Elf_Sym> Syms;
6933   const Elf_Shdr *SymTabSec;
6934   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
6935       this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec);
6936   if (!VerTableOrErr) {
6937     this->reportUniqueWarning(VerTableOrErr.takeError());
6938     return;
6939   }
6940 
6941   if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
6942     return;
6943 
6944   ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec);
6945   for (size_t I = 0, E = Syms.size(); I < E; ++I) {
6946     DictScope S(W, "Symbol");
6947     W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
6948     W.printString("Name",
6949                   this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable,
6950                                           /*IsDynamic=*/true));
6951   }
6952 }
6953 
6954 const EnumEntry<unsigned> SymVersionFlags[] = {
6955     {"Base", "BASE", VER_FLG_BASE},
6956     {"Weak", "WEAK", VER_FLG_WEAK},
6957     {"Info", "INFO", VER_FLG_INFO}};
6958 
6959 template <class ELFT>
printVersionDefinitionSection(const Elf_Shdr * Sec)6960 void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
6961   ListScope SD(W, "VersionDefinitions");
6962   if (!Sec)
6963     return;
6964 
6965   Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
6966   if (!V) {
6967     this->reportUniqueWarning(V.takeError());
6968     return;
6969   }
6970 
6971   for (const VerDef &D : *V) {
6972     DictScope Def(W, "Definition");
6973     W.printNumber("Version", D.Version);
6974     W.printFlags("Flags", D.Flags, ArrayRef(SymVersionFlags));
6975     W.printNumber("Index", D.Ndx);
6976     W.printNumber("Hash", D.Hash);
6977     W.printString("Name", D.Name.c_str());
6978     W.printList(
6979         "Predecessors", D.AuxV,
6980         [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
6981   }
6982 }
6983 
6984 template <class ELFT>
printVersionDependencySection(const Elf_Shdr * Sec)6985 void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
6986   ListScope SD(W, "VersionRequirements");
6987   if (!Sec)
6988     return;
6989 
6990   Expected<std::vector<VerNeed>> V =
6991       this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
6992   if (!V) {
6993     this->reportUniqueWarning(V.takeError());
6994     return;
6995   }
6996 
6997   for (const VerNeed &VN : *V) {
6998     DictScope Entry(W, "Dependency");
6999     W.printNumber("Version", VN.Version);
7000     W.printNumber("Count", VN.Cnt);
7001     W.printString("FileName", VN.File.c_str());
7002 
7003     ListScope L(W, "Entries");
7004     for (const VernAux &Aux : VN.AuxV) {
7005       DictScope Entry(W, "Entry");
7006       W.printNumber("Hash", Aux.Hash);
7007       W.printFlags("Flags", Aux.Flags, ArrayRef(SymVersionFlags));
7008       W.printNumber("Index", Aux.Other);
7009       W.printString("Name", Aux.Name.c_str());
7010     }
7011   }
7012 }
7013 
printHashHistograms()7014 template <class ELFT> void LLVMELFDumper<ELFT>::printHashHistograms() {
7015   W.startLine() << "Hash Histogram not implemented!\n";
7016 }
7017 
7018 // Returns true if rel/rela section exists, and populates SymbolIndices.
7019 // Otherwise returns false.
7020 template <class ELFT>
getSymbolIndices(const typename ELFT::Shdr * CGRelSection,const ELFFile<ELFT> & Obj,const LLVMELFDumper<ELFT> * Dumper,SmallVector<uint32_t,128> & SymbolIndices)7021 static bool getSymbolIndices(const typename ELFT::Shdr *CGRelSection,
7022                              const ELFFile<ELFT> &Obj,
7023                              const LLVMELFDumper<ELFT> *Dumper,
7024                              SmallVector<uint32_t, 128> &SymbolIndices) {
7025   if (!CGRelSection) {
7026     Dumper->reportUniqueWarning(
7027         "relocation section for a call graph section doesn't exist");
7028     return false;
7029   }
7030 
7031   if (CGRelSection->sh_type == SHT_REL) {
7032     typename ELFT::RelRange CGProfileRel;
7033     Expected<typename ELFT::RelRange> CGProfileRelOrError =
7034         Obj.rels(*CGRelSection);
7035     if (!CGProfileRelOrError) {
7036       Dumper->reportUniqueWarning("unable to load relocations for "
7037                                   "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7038                                   toString(CGProfileRelOrError.takeError()));
7039       return false;
7040     }
7041 
7042     CGProfileRel = *CGProfileRelOrError;
7043     for (const typename ELFT::Rel &Rel : CGProfileRel)
7044       SymbolIndices.push_back(Rel.getSymbol(Obj.isMips64EL()));
7045   } else {
7046     // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert
7047     // the format to SHT_RELA
7048     // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035)
7049     typename ELFT::RelaRange CGProfileRela;
7050     Expected<typename ELFT::RelaRange> CGProfileRelaOrError =
7051         Obj.relas(*CGRelSection);
7052     if (!CGProfileRelaOrError) {
7053       Dumper->reportUniqueWarning("unable to load relocations for "
7054                                   "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7055                                   toString(CGProfileRelaOrError.takeError()));
7056       return false;
7057     }
7058 
7059     CGProfileRela = *CGProfileRelaOrError;
7060     for (const typename ELFT::Rela &Rela : CGProfileRela)
7061       SymbolIndices.push_back(Rela.getSymbol(Obj.isMips64EL()));
7062   }
7063 
7064   return true;
7065 }
7066 
printCGProfile()7067 template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() {
7068   llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> SecToRelocMap;
7069 
7070   auto IsMatch = [](const Elf_Shdr &Sec) -> bool {
7071     return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE;
7072   };
7073   this->getSectionAndRelocations(IsMatch, SecToRelocMap);
7074 
7075   for (const auto &CGMapEntry : SecToRelocMap) {
7076     const Elf_Shdr *CGSection = CGMapEntry.first;
7077     const Elf_Shdr *CGRelSection = CGMapEntry.second;
7078 
7079     Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr =
7080         this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection);
7081     if (!CGProfileOrErr) {
7082       this->reportUniqueWarning(
7083           "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7084           toString(CGProfileOrErr.takeError()));
7085       return;
7086     }
7087 
7088     SmallVector<uint32_t, 128> SymbolIndices;
7089     bool UseReloc =
7090         getSymbolIndices<ELFT>(CGRelSection, this->Obj, this, SymbolIndices);
7091     if (UseReloc && SymbolIndices.size() != CGProfileOrErr->size() * 2) {
7092       this->reportUniqueWarning(
7093           "number of from/to pairs does not match number of frequencies");
7094       UseReloc = false;
7095     }
7096 
7097     ListScope L(W, "CGProfile");
7098     for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) {
7099       const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I];
7100       DictScope D(W, "CGProfileEntry");
7101       if (UseReloc) {
7102         uint32_t From = SymbolIndices[I * 2];
7103         uint32_t To = SymbolIndices[I * 2 + 1];
7104         W.printNumber("From", this->getStaticSymbolName(From), From);
7105         W.printNumber("To", this->getStaticSymbolName(To), To);
7106       }
7107       W.printNumber("Weight", CGPE.cgp_weight);
7108     }
7109   }
7110 }
7111 
printBBAddrMaps()7112 template <class ELFT> void LLVMELFDumper<ELFT>::printBBAddrMaps() {
7113   bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL;
7114   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
7115     if (Sec.sh_type != SHT_LLVM_BB_ADDR_MAP &&
7116         Sec.sh_type != SHT_LLVM_BB_ADDR_MAP_V0) {
7117       continue;
7118     }
7119     std::optional<const Elf_Shdr *> FunctionSec;
7120     if (IsRelocatable)
7121       FunctionSec =
7122           unwrapOrError(this->FileName, this->Obj.getSection(Sec.sh_link));
7123     ListScope L(W, "BBAddrMap");
7124     Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
7125         this->Obj.decodeBBAddrMap(Sec);
7126     if (!BBAddrMapOrErr) {
7127       this->reportUniqueWarning("unable to dump " + this->describe(Sec) + ": " +
7128                                 toString(BBAddrMapOrErr.takeError()));
7129       continue;
7130     }
7131     for (const BBAddrMap &AM : *BBAddrMapOrErr) {
7132       DictScope D(W, "Function");
7133       W.printHex("At", AM.Addr);
7134       SmallVector<uint32_t> FuncSymIndex =
7135           this->getSymbolIndexesForFunctionAddress(AM.Addr, FunctionSec);
7136       std::string FuncName = "<?>";
7137       if (FuncSymIndex.empty())
7138         this->reportUniqueWarning(
7139             "could not identify function symbol for address (0x" +
7140             Twine::utohexstr(AM.Addr) + ") in " + this->describe(Sec));
7141       else
7142         FuncName = this->getStaticSymbolName(FuncSymIndex.front());
7143       W.printString("Name", FuncName);
7144 
7145       ListScope L(W, "BB entries");
7146       for (const BBAddrMap::BBEntry &BBE : AM.BBEntries) {
7147         DictScope L(W);
7148         W.printNumber("ID", BBE.ID);
7149         W.printHex("Offset", BBE.Offset);
7150         W.printHex("Size", BBE.Size);
7151         W.printBoolean("HasReturn", BBE.HasReturn);
7152         W.printBoolean("HasTailCall", BBE.HasTailCall);
7153         W.printBoolean("IsEHPad", BBE.IsEHPad);
7154         W.printBoolean("CanFallThrough", BBE.CanFallThrough);
7155       }
7156     }
7157   }
7158 }
7159 
printAddrsig()7160 template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() {
7161   ListScope L(W, "Addrsig");
7162   if (!this->DotAddrsigSec)
7163     return;
7164 
7165   Expected<std::vector<uint64_t>> SymsOrErr =
7166       decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
7167   if (!SymsOrErr) {
7168     this->reportUniqueWarning(SymsOrErr.takeError());
7169     return;
7170   }
7171 
7172   for (uint64_t Sym : *SymsOrErr)
7173     W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym);
7174 }
7175 
7176 template <typename ELFT>
printGNUNoteLLVMStyle(uint32_t NoteType,ArrayRef<uint8_t> Desc,ScopedPrinter & W)7177 static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7178                                   ScopedPrinter &W) {
7179   // Return true if we were able to pretty-print the note, false otherwise.
7180   switch (NoteType) {
7181   default:
7182     return false;
7183   case ELF::NT_GNU_ABI_TAG: {
7184     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
7185     if (!AbiTag.IsValid) {
7186       W.printString("ABI", "<corrupt GNU_ABI_TAG>");
7187       return false;
7188     } else {
7189       W.printString("OS", AbiTag.OSName);
7190       W.printString("ABI", AbiTag.ABI);
7191     }
7192     break;
7193   }
7194   case ELF::NT_GNU_BUILD_ID: {
7195     W.printString("Build ID", getGNUBuildId(Desc));
7196     break;
7197   }
7198   case ELF::NT_GNU_GOLD_VERSION:
7199     W.printString("Version", getDescAsStringRef(Desc));
7200     break;
7201   case ELF::NT_GNU_PROPERTY_TYPE_0:
7202     ListScope D(W, "Property");
7203     for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
7204       W.printString(Property);
7205     break;
7206   }
7207   return true;
7208 }
7209 
printAndroidNoteLLVMStyle(uint32_t NoteType,ArrayRef<uint8_t> Desc,ScopedPrinter & W)7210 static bool printAndroidNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7211                                       ScopedPrinter &W) {
7212   // Return true if we were able to pretty-print the note, false otherwise.
7213   AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
7214   if (Props.empty())
7215     return false;
7216   for (const auto &KV : Props)
7217     W.printString(KV.first, KV.second);
7218   return true;
7219 }
7220 
7221 template <typename ELFT>
printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType,ArrayRef<uint8_t> Desc,ScopedPrinter & W)7222 static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType,
7223                                              ArrayRef<uint8_t> Desc,
7224                                              ScopedPrinter &W) {
7225   switch (NoteType) {
7226   default:
7227     return false;
7228   case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
7229     W.printString("Version", getDescAsStringRef(Desc));
7230     break;
7231   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
7232     W.printString("Producer", getDescAsStringRef(Desc));
7233     break;
7234   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
7235     W.printString("Producer version", getDescAsStringRef(Desc));
7236     break;
7237   }
7238   return true;
7239 }
7240 
printCoreNoteLLVMStyle(const CoreNote & Note,ScopedPrinter & W)7241 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
7242   W.printNumber("Page Size", Note.PageSize);
7243   for (const CoreFileMapping &Mapping : Note.Mappings) {
7244     ListScope D(W, "Mapping");
7245     W.printHex("Start", Mapping.Start);
7246     W.printHex("End", Mapping.End);
7247     W.printHex("Offset", Mapping.Offset);
7248     W.printString("Filename", Mapping.Filename);
7249   }
7250 }
7251 
printNotes()7252 template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() {
7253   ListScope L(W, "Notes");
7254 
7255   std::unique_ptr<DictScope> NoteScope;
7256   auto StartNotes = [&](std::optional<StringRef> SecName,
7257                         const typename ELFT::Off Offset,
7258                         const typename ELFT::Addr Size) {
7259     NoteScope = std::make_unique<DictScope>(W, "NoteSection");
7260     W.printString("Name", SecName ? *SecName : "<?>");
7261     W.printHex("Offset", Offset);
7262     W.printHex("Size", Size);
7263   };
7264 
7265   auto EndNotes = [&] { NoteScope.reset(); };
7266 
7267   auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
7268     DictScope D2(W, "Note");
7269     StringRef Name = Note.getName();
7270     ArrayRef<uint8_t> Descriptor = Note.getDesc();
7271     Elf_Word Type = Note.getType();
7272 
7273     // Print the note owner/type.
7274     W.printString("Owner", Name);
7275     W.printHex("Data size", Descriptor.size());
7276 
7277     StringRef NoteType =
7278         getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
7279     if (!NoteType.empty())
7280       W.printString("Type", NoteType);
7281     else
7282       W.printString("Type",
7283                     "Unknown (" + to_string(format_hex(Type, 10)) + ")");
7284 
7285     // Print the description, or fallback to printing raw bytes for unknown
7286     // owners/if we fail to pretty-print the contents.
7287     if (Name == "GNU") {
7288       if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7289         return Error::success();
7290     } else if (Name == "FreeBSD") {
7291       if (std::optional<FreeBSDNote> N =
7292               getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
7293         W.printString(N->Type, N->Value);
7294         return Error::success();
7295       }
7296     } else if (Name == "AMD") {
7297       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
7298       if (!N.Type.empty()) {
7299         W.printString(N.Type, N.Value);
7300         return Error::success();
7301       }
7302     } else if (Name == "AMDGPU") {
7303       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
7304       if (!N.Type.empty()) {
7305         W.printString(N.Type, N.Value);
7306         return Error::success();
7307       }
7308     } else if (Name == "LLVMOMPOFFLOAD") {
7309       if (printLLVMOMPOFFLOADNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7310         return Error::success();
7311     } else if (Name == "CORE") {
7312       if (Type == ELF::NT_FILE) {
7313         DataExtractor DescExtractor(Descriptor,
7314                                     ELFT::TargetEndianness == support::little,
7315                                     sizeof(Elf_Addr));
7316         if (Expected<CoreNote> N = readCoreNote(DescExtractor)) {
7317           printCoreNoteLLVMStyle(*N, W);
7318           return Error::success();
7319         } else {
7320           return N.takeError();
7321         }
7322       }
7323     } else if (Name == "Android") {
7324       if (printAndroidNoteLLVMStyle(Type, Descriptor, W))
7325         return Error::success();
7326     }
7327     if (!Descriptor.empty()) {
7328       W.printBinaryBlock("Description data", Descriptor);
7329     }
7330     return Error::success();
7331   };
7332 
7333   printNotesHelper(*this, StartNotes, ProcessNote, EndNotes);
7334 }
7335 
printELFLinkerOptions()7336 template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() {
7337   ListScope L(W, "LinkerOptions");
7338 
7339   unsigned I = -1;
7340   for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) {
7341     ++I;
7342     if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
7343       continue;
7344 
7345     Expected<ArrayRef<uint8_t>> ContentsOrErr =
7346         this->Obj.getSectionContents(Shdr);
7347     if (!ContentsOrErr) {
7348       this->reportUniqueWarning("unable to read the content of the "
7349                                 "SHT_LLVM_LINKER_OPTIONS section: " +
7350                                 toString(ContentsOrErr.takeError()));
7351       continue;
7352     }
7353     if (ContentsOrErr->empty())
7354       continue;
7355 
7356     if (ContentsOrErr->back() != 0) {
7357       this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
7358                                 Twine(I) +
7359                                 " is broken: the "
7360                                 "content is not null-terminated");
7361       continue;
7362     }
7363 
7364     SmallVector<StringRef, 16> Strings;
7365     toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0');
7366     if (Strings.size() % 2 != 0) {
7367       this->reportUniqueWarning(
7368           "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
7369           " is broken: an incomplete "
7370           "key-value pair was found. The last possible key was: \"" +
7371           Strings.back() + "\"");
7372       continue;
7373     }
7374 
7375     for (size_t I = 0; I < Strings.size(); I += 2)
7376       W.printString(Strings[I], Strings[I + 1]);
7377   }
7378 }
7379 
printDependentLibs()7380 template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() {
7381   ListScope L(W, "DependentLibs");
7382   this->printDependentLibsHelper(
7383       [](const Elf_Shdr &) {},
7384       [this](StringRef Lib, uint64_t) { W.printString(Lib); });
7385 }
7386 
printStackSizes()7387 template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() {
7388   ListScope L(W, "StackSizes");
7389   if (this->Obj.getHeader().e_type == ELF::ET_REL)
7390     this->printRelocatableStackSizes([]() {});
7391   else
7392     this->printNonRelocatableStackSizes([]() {});
7393 }
7394 
7395 template <class ELFT>
printStackSizeEntry(uint64_t Size,ArrayRef<std::string> FuncNames)7396 void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
7397                                               ArrayRef<std::string> FuncNames) {
7398   DictScope D(W, "Entry");
7399   W.printList("Functions", FuncNames);
7400   W.printHex("Size", Size);
7401 }
7402 
7403 template <class ELFT>
printMipsGOT(const MipsGOTParser<ELFT> & Parser)7404 void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
7405   auto PrintEntry = [&](const Elf_Addr *E) {
7406     W.printHex("Address", Parser.getGotAddress(E));
7407     W.printNumber("Access", Parser.getGotOffset(E));
7408     W.printHex("Initial", *E);
7409   };
7410 
7411   DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
7412 
7413   W.printHex("Canonical gp value", Parser.getGp());
7414   {
7415     ListScope RS(W, "Reserved entries");
7416     {
7417       DictScope D(W, "Entry");
7418       PrintEntry(Parser.getGotLazyResolver());
7419       W.printString("Purpose", StringRef("Lazy resolver"));
7420     }
7421 
7422     if (Parser.getGotModulePointer()) {
7423       DictScope D(W, "Entry");
7424       PrintEntry(Parser.getGotModulePointer());
7425       W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
7426     }
7427   }
7428   {
7429     ListScope LS(W, "Local entries");
7430     for (auto &E : Parser.getLocalEntries()) {
7431       DictScope D(W, "Entry");
7432       PrintEntry(&E);
7433     }
7434   }
7435 
7436   if (Parser.IsStatic)
7437     return;
7438 
7439   {
7440     ListScope GS(W, "Global entries");
7441     for (auto &E : Parser.getGlobalEntries()) {
7442       DictScope D(W, "Entry");
7443 
7444       PrintEntry(&E);
7445 
7446       const Elf_Sym &Sym = *Parser.getGotSym(&E);
7447       W.printHex("Value", Sym.st_value);
7448       W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes));
7449 
7450       const unsigned SymIndex = &Sym - this->dynamic_symbols().begin();
7451       DataRegion<Elf_Word> ShndxTable(
7452           (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7453       printSymbolSection(Sym, SymIndex, ShndxTable);
7454 
7455       std::string SymName = this->getFullSymbolName(
7456           Sym, SymIndex, ShndxTable, this->DynamicStringTable, true);
7457       W.printNumber("Name", SymName, Sym.st_name);
7458     }
7459   }
7460 
7461   W.printNumber("Number of TLS and multi-GOT entries",
7462                 uint64_t(Parser.getOtherEntries().size()));
7463 }
7464 
7465 template <class ELFT>
printMipsPLT(const MipsGOTParser<ELFT> & Parser)7466 void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
7467   auto PrintEntry = [&](const Elf_Addr *E) {
7468     W.printHex("Address", Parser.getPltAddress(E));
7469     W.printHex("Initial", *E);
7470   };
7471 
7472   DictScope GS(W, "PLT GOT");
7473 
7474   {
7475     ListScope RS(W, "Reserved entries");
7476     {
7477       DictScope D(W, "Entry");
7478       PrintEntry(Parser.getPltLazyResolver());
7479       W.printString("Purpose", StringRef("PLT lazy resolver"));
7480     }
7481 
7482     if (auto E = Parser.getPltModulePointer()) {
7483       DictScope D(W, "Entry");
7484       PrintEntry(E);
7485       W.printString("Purpose", StringRef("Module pointer"));
7486     }
7487   }
7488   {
7489     ListScope LS(W, "Entries");
7490     DataRegion<Elf_Word> ShndxTable(
7491         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7492     for (auto &E : Parser.getPltEntries()) {
7493       DictScope D(W, "Entry");
7494       PrintEntry(&E);
7495 
7496       const Elf_Sym &Sym = *Parser.getPltSym(&E);
7497       W.printHex("Value", Sym.st_value);
7498       W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes));
7499       printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(),
7500                          ShndxTable);
7501 
7502       const Elf_Sym *FirstSym = cantFail(
7503           this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
7504       std::string SymName = this->getFullSymbolName(
7505           Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true);
7506       W.printNumber("Name", SymName, Sym.st_name);
7507     }
7508   }
7509 }
7510 
printMipsABIFlags()7511 template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() {
7512   const Elf_Mips_ABIFlags<ELFT> *Flags;
7513   if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
7514           getMipsAbiFlagsSection(*this)) {
7515     Flags = *SecOrErr;
7516     if (!Flags) {
7517       W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
7518       return;
7519     }
7520   } else {
7521     this->reportUniqueWarning(SecOrErr.takeError());
7522     return;
7523   }
7524 
7525   raw_ostream &OS = W.getOStream();
7526   DictScope GS(W, "MIPS ABI Flags");
7527 
7528   W.printNumber("Version", Flags->version);
7529   W.startLine() << "ISA: ";
7530   if (Flags->isa_rev <= 1)
7531     OS << format("MIPS%u", Flags->isa_level);
7532   else
7533     OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
7534   OS << "\n";
7535   W.printEnum("ISA Extension", Flags->isa_ext, ArrayRef(ElfMipsISAExtType));
7536   W.printFlags("ASEs", Flags->ases, ArrayRef(ElfMipsASEFlags));
7537   W.printEnum("FP ABI", Flags->fp_abi, ArrayRef(ElfMipsFpABIType));
7538   W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
7539   W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
7540   W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
7541   W.printFlags("Flags 1", Flags->flags1, ArrayRef(ElfMipsFlags1));
7542   W.printHex("Flags 2", Flags->flags2);
7543 }
7544 
7545 template <class ELFT>
printFileSummary(StringRef FileStr,ObjectFile & Obj,ArrayRef<std::string> InputFilenames,const Archive * A)7546 void JSONELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
7547                                            ArrayRef<std::string> InputFilenames,
7548                                            const Archive *A) {
7549   FileScope = std::make_unique<DictScope>(this->W);
7550   DictScope D(this->W, "FileSummary");
7551   this->W.printString("File", FileStr);
7552   this->W.printString("Format", Obj.getFileFormatName());
7553   this->W.printString("Arch", Triple::getArchTypeName(Obj.getArch()));
7554   this->W.printString(
7555       "AddressSize",
7556       std::string(formatv("{0}bit", 8 * Obj.getBytesInAddress())));
7557   this->printLoadName();
7558 }
7559