1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the ELF-specific dumper for llvm-readobj.
11 ///
12 //===----------------------------------------------------------------------===//
13
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
16 #include "ObjDumper.h"
17 #include "StackMapPrinter.h"
18 #include "llvm-readobj.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/MapVector.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/PointerIntPair.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
32 #include "llvm/BinaryFormat/ELF.h"
33 #include "llvm/Demangle/Demangle.h"
34 #include "llvm/Object/ELF.h"
35 #include "llvm/Object/ELFObjectFile.h"
36 #include "llvm/Object/ELFTypes.h"
37 #include "llvm/Object/Error.h"
38 #include "llvm/Object/ObjectFile.h"
39 #include "llvm/Object/RelocationResolver.h"
40 #include "llvm/Object/StackMapParser.h"
41 #include "llvm/Support/AMDGPUMetadata.h"
42 #include "llvm/Support/ARMAttributeParser.h"
43 #include "llvm/Support/ARMBuildAttributes.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Endian.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/Format.h"
49 #include "llvm/Support/FormatVariadic.h"
50 #include "llvm/Support/FormattedStream.h"
51 #include "llvm/Support/LEB128.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/MipsABIFlags.h"
54 #include "llvm/Support/RISCVAttributeParser.h"
55 #include "llvm/Support/RISCVAttributes.h"
56 #include "llvm/Support/ScopedPrinter.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cinttypes>
60 #include <cstddef>
61 #include <cstdint>
62 #include <cstdlib>
63 #include <iterator>
64 #include <memory>
65 #include <string>
66 #include <system_error>
67 #include <vector>
68
69 using namespace llvm;
70 using namespace llvm::object;
71 using namespace ELF;
72
73 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \
74 case ns::enum: \
75 return #enum;
76
77 #define ENUM_ENT(enum, altName) \
78 { #enum, altName, ELF::enum }
79
80 #define ENUM_ENT_1(enum) \
81 { #enum, #enum, ELF::enum }
82
83 namespace {
84
85 template <class ELFT> struct RelSymbol {
RelSymbol__anond60e1ac70111::RelSymbol86 RelSymbol(const typename ELFT::Sym *S, StringRef N)
87 : Sym(S), Name(N.str()) {}
88 const typename ELFT::Sym *Sym;
89 std::string Name;
90 };
91
92 /// Represents a contiguous uniform range in the file. We cannot just create a
93 /// range directly because when creating one of these from the .dynamic table
94 /// the size, entity size and virtual address are different entries in arbitrary
95 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
96 struct DynRegionInfo {
DynRegionInfo__anond60e1ac70111::DynRegionInfo97 DynRegionInfo(const Binary &Owner, const ObjDumper &D)
98 : Obj(&Owner), Dumper(&D) {}
DynRegionInfo__anond60e1ac70111::DynRegionInfo99 DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A,
100 uint64_t S, uint64_t ES)
101 : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {}
102
103 /// Address in current address space.
104 const uint8_t *Addr = nullptr;
105 /// Size in bytes of the region.
106 uint64_t Size = 0;
107 /// Size of each entity in the region.
108 uint64_t EntSize = 0;
109
110 /// Owner object. Used for error reporting.
111 const Binary *Obj;
112 /// Dumper used for error reporting.
113 const ObjDumper *Dumper;
114 /// Error prefix. Used for error reporting to provide more information.
115 std::string Context;
116 /// Region size name. Used for error reporting.
117 StringRef SizePrintName = "size";
118 /// Entry size name. Used for error reporting. If this field is empty, errors
119 /// will not mention the entry size.
120 StringRef EntSizePrintName = "entry size";
121
getAsArrayRef__anond60e1ac70111::DynRegionInfo122 template <typename Type> ArrayRef<Type> getAsArrayRef() const {
123 const Type *Start = reinterpret_cast<const Type *>(Addr);
124 if (!Start)
125 return {Start, Start};
126
127 const uint64_t Offset =
128 Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart();
129 const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize();
130
131 if (Size > ObjSize - Offset) {
132 Dumper->reportUniqueWarning(
133 "unable to read data at 0x" + Twine::utohexstr(Offset) +
134 " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName +
135 "): it goes past the end of the file of size 0x" +
136 Twine::utohexstr(ObjSize));
137 return {Start, Start};
138 }
139
140 if (EntSize == sizeof(Type) && (Size % EntSize == 0))
141 return {Start, Start + (Size / EntSize)};
142
143 std::string Msg;
144 if (!Context.empty())
145 Msg += Context + " has ";
146
147 Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")")
148 .str();
149 if (!EntSizePrintName.empty())
150 Msg +=
151 (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")")
152 .str();
153
154 Dumper->reportUniqueWarning(Msg);
155 return {Start, Start};
156 }
157 };
158
159 struct GroupMember {
160 StringRef Name;
161 uint64_t Index;
162 };
163
164 struct GroupSection {
165 StringRef Name;
166 std::string Signature;
167 uint64_t ShName;
168 uint64_t Index;
169 uint32_t Link;
170 uint32_t Info;
171 uint32_t Type;
172 std::vector<GroupMember> Members;
173 };
174
175 namespace {
176
177 struct NoteType {
178 uint32_t ID;
179 StringRef Name;
180 };
181
182 } // namespace
183
184 template <class ELFT> class Relocation {
185 public:
Relocation(const typename ELFT::Rel & R,bool IsMips64EL)186 Relocation(const typename ELFT::Rel &R, bool IsMips64EL)
187 : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)),
188 Offset(R.r_offset), Info(R.r_info) {}
189
Relocation(const typename ELFT::Rela & R,bool IsMips64EL)190 Relocation(const typename ELFT::Rela &R, bool IsMips64EL)
191 : Relocation((const typename ELFT::Rel &)R, IsMips64EL) {
192 Addend = R.r_addend;
193 }
194
195 uint32_t Type;
196 uint32_t Symbol;
197 typename ELFT::uint Offset;
198 typename ELFT::uint Info;
199 Optional<int64_t> Addend;
200 };
201
202 template <class ELFT> class MipsGOTParser;
203
204 template <typename ELFT> class ELFDumper : public ObjDumper {
205 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
206
207 public:
208 ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer);
209
210 void printUnwindInfo() override;
211 void printNeededLibraries() override;
212 void printHashTable() override;
213 void printGnuHashTable() override;
214 void printLoadName() override;
215 void printVersionInfo() override;
216 void printArchSpecificInfo() override;
217 void printStackMap() const override;
218
getElfObject() const219 const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; };
220
221 std::string describe(const Elf_Shdr &Sec) const;
222
getHashTableEntSize() const223 unsigned getHashTableEntSize() const {
224 // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
225 // sections. This violates the ELF specification.
226 if (Obj.getHeader().e_machine == ELF::EM_S390 ||
227 Obj.getHeader().e_machine == ELF::EM_ALPHA)
228 return 8;
229 return 4;
230 }
231
dynamic_table() const232 Elf_Dyn_Range dynamic_table() const {
233 // A valid .dynamic section contains an array of entries terminated
234 // with a DT_NULL entry. However, sometimes the section content may
235 // continue past the DT_NULL entry, so to dump the section correctly,
236 // we first find the end of the entries by iterating over them.
237 Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>();
238
239 size_t Size = 0;
240 while (Size < Table.size())
241 if (Table[Size++].getTag() == DT_NULL)
242 break;
243
244 return Table.slice(0, Size);
245 }
246
dynamic_symbols() const247 Elf_Sym_Range dynamic_symbols() const {
248 if (!DynSymRegion)
249 return Elf_Sym_Range();
250 return DynSymRegion->template getAsArrayRef<Elf_Sym>();
251 }
252
253 const Elf_Shdr *findSectionByName(StringRef Name) const;
254
getDynamicStringTable() const255 StringRef getDynamicStringTable() const { return DynamicStringTable; }
256
257 protected:
258 virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0;
259 virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0;
260 virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0;
261
262 void
263 printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart,
264 function_ref<void(StringRef, uint64_t)> OnLibEntry);
265
266 virtual void printRelRelaReloc(const Relocation<ELFT> &R,
267 const RelSymbol<ELFT> &RelSym) = 0;
268 virtual void printRelrReloc(const Elf_Relr &R) = 0;
printDynamicRelocHeader(unsigned Type,StringRef Name,const DynRegionInfo & Reg)269 virtual void printDynamicRelocHeader(unsigned Type, StringRef Name,
270 const DynRegionInfo &Reg) {}
271 void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
272 const Elf_Shdr &Sec, const Elf_Shdr *SymTab);
273 void printDynamicReloc(const Relocation<ELFT> &R);
274 void printDynamicRelocationsHelper();
275 void printRelocationsHelper(const Elf_Shdr &Sec);
276 void forEachRelocationDo(
277 const Elf_Shdr &Sec, bool RawRelr,
278 llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
279 const Elf_Shdr &, const Elf_Shdr *)>
280 RelRelaFn,
281 llvm::function_ref<void(const Elf_Relr &)> RelrFn);
282
printSymtabMessage(const Elf_Shdr * Symtab,size_t Offset,bool NonVisibilityBitsUsed) const283 virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
284 bool NonVisibilityBitsUsed) const {};
285 virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
286 DataRegion<Elf_Word> ShndxTable,
287 Optional<StringRef> StrTable, bool IsDynamic,
288 bool NonVisibilityBitsUsed) const = 0;
289
290 virtual void printMipsABIFlags() = 0;
291 virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
292 virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
293
294 Expected<ArrayRef<Elf_Versym>>
295 getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
296 StringRef *StrTab, const Elf_Shdr **SymTabSec) const;
297 StringRef getPrintableSectionName(const Elf_Shdr &Sec) const;
298
299 std::vector<GroupSection> getGroups();
300
301 bool printFunctionStackSize(uint64_t SymValue,
302 Optional<const Elf_Shdr *> FunctionSec,
303 const Elf_Shdr &StackSizeSec, DataExtractor Data,
304 uint64_t *Offset);
305 void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec,
306 unsigned Ndx, const Elf_Shdr *SymTab,
307 const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec,
308 const RelocationResolver &Resolver, DataExtractor Data);
309 virtual void printStackSizeEntry(uint64_t Size, StringRef FuncName) = 0;
310
311 void printRelocatableStackSizes(std::function<void()> PrintHeader);
312 void printNonRelocatableStackSizes(std::function<void()> PrintHeader);
313
314 const object::ELFObjectFile<ELFT> &ObjF;
315 const ELFFile<ELFT> &Obj;
316 StringRef FileName;
317
createDRI(uint64_t Offset,uint64_t Size,uint64_t EntSize)318 Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size,
319 uint64_t EntSize) {
320 if (Offset + Size < Offset || Offset + Size > Obj.getBufSize())
321 return createError("offset (0x" + Twine::utohexstr(Offset) +
322 ") + size (0x" + Twine::utohexstr(Size) +
323 ") is greater than the file size (0x" +
324 Twine::utohexstr(Obj.getBufSize()) + ")");
325 return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize);
326 }
327
328 void printAttributes();
329 void printMipsReginfo();
330 void printMipsOptions();
331
332 std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic();
333 void loadDynamicTable();
334 void parseDynamicTable();
335
336 Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym,
337 bool &IsDefault) const;
338 Expected<SmallVector<Optional<VersionEntry>, 0> *> getVersionMap() const;
339
340 DynRegionInfo DynRelRegion;
341 DynRegionInfo DynRelaRegion;
342 DynRegionInfo DynRelrRegion;
343 DynRegionInfo DynPLTRelRegion;
344 Optional<DynRegionInfo> DynSymRegion;
345 DynRegionInfo DynSymTabShndxRegion;
346 DynRegionInfo DynamicTable;
347 StringRef DynamicStringTable;
348 const Elf_Hash *HashTable = nullptr;
349 const Elf_GnuHash *GnuHashTable = nullptr;
350 const Elf_Shdr *DotSymtabSec = nullptr;
351 const Elf_Shdr *DotDynsymSec = nullptr;
352 const Elf_Shdr *DotCGProfileSec = nullptr;
353 const Elf_Shdr *DotAddrsigSec = nullptr;
354 DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables;
355 Optional<uint64_t> SONameOffset;
356
357 const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version
358 const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
359 const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
360
361 std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex,
362 DataRegion<Elf_Word> ShndxTable,
363 Optional<StringRef> StrTable,
364 bool IsDynamic) const;
365 Expected<unsigned>
366 getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
367 DataRegion<Elf_Word> ShndxTable) const;
368 Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol,
369 unsigned SectionIndex) const;
370 std::string getStaticSymbolName(uint32_t Index) const;
371 StringRef getDynamicString(uint64_t Value) const;
372
373 void printSymbolsHelper(bool IsDynamic) const;
374 std::string getDynamicEntry(uint64_t Type, uint64_t Value) const;
375
376 Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R,
377 const Elf_Shdr *SymTab) const;
378
379 ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const;
380
381 private:
382 mutable SmallVector<Optional<VersionEntry>, 0> VersionMap;
383 };
384
385 template <class ELFT>
describe(const Elf_Shdr & Sec) const386 std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const {
387 return ::describe(Obj, Sec);
388 }
389
390 namespace {
391
392 template <class ELFT> struct SymtabLink {
393 typename ELFT::SymRange Symbols;
394 StringRef StringTable;
395 const typename ELFT::Shdr *SymTab;
396 };
397
398 // Returns the linked symbol table, symbols and associated string table for a
399 // given section.
400 template <class ELFT>
getLinkAsSymtab(const ELFFile<ELFT> & Obj,const typename ELFT::Shdr & Sec,unsigned ExpectedType)401 Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj,
402 const typename ELFT::Shdr &Sec,
403 unsigned ExpectedType) {
404 Expected<const typename ELFT::Shdr *> SymtabOrErr =
405 Obj.getSection(Sec.sh_link);
406 if (!SymtabOrErr)
407 return createError("invalid section linked to " + describe(Obj, Sec) +
408 ": " + toString(SymtabOrErr.takeError()));
409
410 if ((*SymtabOrErr)->sh_type != ExpectedType)
411 return createError(
412 "invalid section linked to " + describe(Obj, Sec) + ": expected " +
413 object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) +
414 ", but got " +
415 object::getELFSectionTypeName(Obj.getHeader().e_machine,
416 (*SymtabOrErr)->sh_type));
417
418 Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr);
419 if (!StrTabOrErr)
420 return createError(
421 "can't get a string table for the symbol table linked to " +
422 describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError()));
423
424 Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr);
425 if (!SymsOrErr)
426 return createError("unable to read symbols from the " + describe(Obj, Sec) +
427 ": " + toString(SymsOrErr.takeError()));
428
429 return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr};
430 }
431
432 } // namespace
433
434 template <class ELFT>
435 Expected<ArrayRef<typename ELFT::Versym>>
getVersionTable(const Elf_Shdr & Sec,ArrayRef<Elf_Sym> * SymTab,StringRef * StrTab,const Elf_Shdr ** SymTabSec) const436 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
437 StringRef *StrTab,
438 const Elf_Shdr **SymTabSec) const {
439 assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec));
440 if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) %
441 sizeof(uint16_t) !=
442 0)
443 return createError("the " + describe(Sec) + " is misaligned");
444
445 Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
446 Obj.template getSectionContentsAsArray<Elf_Versym>(Sec);
447 if (!VersionsOrErr)
448 return createError("cannot read content of " + describe(Sec) + ": " +
449 toString(VersionsOrErr.takeError()));
450
451 Expected<SymtabLink<ELFT>> SymTabOrErr =
452 getLinkAsSymtab(Obj, Sec, SHT_DYNSYM);
453 if (!SymTabOrErr) {
454 reportUniqueWarning(SymTabOrErr.takeError());
455 return *VersionsOrErr;
456 }
457
458 if (SymTabOrErr->Symbols.size() != VersionsOrErr->size())
459 reportUniqueWarning(describe(Sec) + ": the number of entries (" +
460 Twine(VersionsOrErr->size()) +
461 ") does not match the number of symbols (" +
462 Twine(SymTabOrErr->Symbols.size()) +
463 ") in the symbol table with index " +
464 Twine(Sec.sh_link));
465
466 if (SymTab) {
467 *SymTab = SymTabOrErr->Symbols;
468 *StrTab = SymTabOrErr->StringTable;
469 *SymTabSec = SymTabOrErr->SymTab;
470 }
471 return *VersionsOrErr;
472 }
473
474 template <class ELFT>
printSymbolsHelper(bool IsDynamic) const475 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
476 Optional<StringRef> StrTable;
477 size_t Entries = 0;
478 Elf_Sym_Range Syms(nullptr, nullptr);
479 const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec;
480
481 if (IsDynamic) {
482 StrTable = DynamicStringTable;
483 Syms = dynamic_symbols();
484 Entries = Syms.size();
485 } else if (DotSymtabSec) {
486 if (Expected<StringRef> StrTableOrErr =
487 Obj.getStringTableForSymtab(*DotSymtabSec))
488 StrTable = *StrTableOrErr;
489 else
490 reportUniqueWarning(
491 "unable to get the string table for the SHT_SYMTAB section: " +
492 toString(StrTableOrErr.takeError()));
493
494 if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec))
495 Syms = *SymsOrErr;
496 else
497 reportUniqueWarning(
498 "unable to read symbols from the SHT_SYMTAB section: " +
499 toString(SymsOrErr.takeError()));
500 Entries = DotSymtabSec->getEntityCount();
501 }
502 if (Syms.empty())
503 return;
504
505 // The st_other field has 2 logical parts. The first two bits hold the symbol
506 // visibility (STV_*) and the remainder hold other platform-specific values.
507 bool NonVisibilityBitsUsed =
508 llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; });
509
510 DataRegion<Elf_Word> ShndxTable =
511 IsDynamic ? DataRegion<Elf_Word>(
512 (const Elf_Word *)this->DynSymTabShndxRegion.Addr,
513 this->getElfObject().getELFFile().end())
514 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec));
515
516 printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed);
517 for (const Elf_Sym &Sym : Syms)
518 printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic,
519 NonVisibilityBitsUsed);
520 }
521
522 template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> {
523 formatted_raw_ostream &OS;
524
525 public:
526 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
527
GNUELFDumper(const object::ELFObjectFile<ELFT> & ObjF,ScopedPrinter & Writer)528 GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
529 : ELFDumper<ELFT>(ObjF, Writer),
530 OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) {
531 assert(&this->W.getOStream() == &llvm::fouts());
532 }
533
534 void printFileHeaders() override;
535 void printGroupSections() override;
536 void printRelocations() override;
537 void printSectionHeaders() override;
538 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
539 void printHashSymbols() override;
540 void printSectionDetails() override;
541 void printDependentLibs() override;
542 void printDynamicTable() override;
543 void printDynamicRelocations() override;
544 void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
545 bool NonVisibilityBitsUsed) const override;
546 void printProgramHeaders(bool PrintProgramHeaders,
547 cl::boolOrDefault PrintSectionMapping) override;
548 void printVersionSymbolSection(const Elf_Shdr *Sec) override;
549 void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
550 void printVersionDependencySection(const Elf_Shdr *Sec) override;
551 void printHashHistograms() override;
552 void printCGProfile() override;
553 void printBBAddrMaps() override;
554 void printAddrsig() override;
555 void printNotes() override;
556 void printELFLinkerOptions() override;
557 void printStackSizes() override;
558
559 private:
560 void printHashHistogram(const Elf_Hash &HashTable);
561 void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable);
562 void printHashTableSymbols(const Elf_Hash &HashTable);
563 void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable);
564
565 struct Field {
566 std::string Str;
567 unsigned Column;
568
Field__anond60e1ac70111::GNUELFDumper::Field569 Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {}
Field__anond60e1ac70111::GNUELFDumper::Field570 Field(unsigned Col) : Column(Col) {}
571 };
572
573 template <typename T, typename TEnum>
printEnum(T Value,ArrayRef<EnumEntry<TEnum>> EnumValues) const574 std::string printEnum(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues) const {
575 for (const EnumEntry<TEnum> &EnumItem : EnumValues)
576 if (EnumItem.Value == Value)
577 return std::string(EnumItem.AltName);
578 return to_hexString(Value, false);
579 }
580
581 template <typename T, typename TEnum>
printFlags(T Value,ArrayRef<EnumEntry<TEnum>> EnumValues,TEnum EnumMask1={},TEnum EnumMask2={},TEnum EnumMask3={}) const582 std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
583 TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
584 TEnum EnumMask3 = {}) const {
585 std::string Str;
586 for (const EnumEntry<TEnum> &Flag : EnumValues) {
587 if (Flag.Value == 0)
588 continue;
589
590 TEnum EnumMask{};
591 if (Flag.Value & EnumMask1)
592 EnumMask = EnumMask1;
593 else if (Flag.Value & EnumMask2)
594 EnumMask = EnumMask2;
595 else if (Flag.Value & EnumMask3)
596 EnumMask = EnumMask3;
597 bool IsEnum = (Flag.Value & EnumMask) != 0;
598 if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
599 (IsEnum && (Value & EnumMask) == Flag.Value)) {
600 if (!Str.empty())
601 Str += ", ";
602 Str += Flag.AltName;
603 }
604 }
605 return Str;
606 }
607
printField(struct Field F) const608 formatted_raw_ostream &printField(struct Field F) const {
609 if (F.Column != 0)
610 OS.PadToColumn(F.Column);
611 OS << F.Str;
612 OS.flush();
613 return OS;
614 }
615 void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex,
616 DataRegion<Elf_Word> ShndxTable, StringRef StrTable,
617 uint32_t Bucket);
618 void printRelrReloc(const Elf_Relr &R) override;
619 void printRelRelaReloc(const Relocation<ELFT> &R,
620 const RelSymbol<ELFT> &RelSym) override;
621 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
622 DataRegion<Elf_Word> ShndxTable,
623 Optional<StringRef> StrTable, bool IsDynamic,
624 bool NonVisibilityBitsUsed) const override;
625 void printDynamicRelocHeader(unsigned Type, StringRef Name,
626 const DynRegionInfo &Reg) override;
627
628 std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex,
629 DataRegion<Elf_Word> ShndxTable) const;
630 void printProgramHeaders() override;
631 void printSectionMapping() override;
632 void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec,
633 const Twine &Label, unsigned EntriesNum);
634
635 void printStackSizeEntry(uint64_t Size, StringRef FuncName) override;
636
637 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
638 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
639 void printMipsABIFlags() override;
640 };
641
642 template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> {
643 public:
644 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
645
LLVMELFDumper(const object::ELFObjectFile<ELFT> & ObjF,ScopedPrinter & Writer)646 LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
647 : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {}
648
649 void printFileHeaders() override;
650 void printGroupSections() override;
651 void printRelocations() override;
652 void printSectionHeaders() override;
653 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
654 void printDependentLibs() override;
655 void printDynamicTable() override;
656 void printDynamicRelocations() override;
657 void printProgramHeaders(bool PrintProgramHeaders,
658 cl::boolOrDefault PrintSectionMapping) override;
659 void printVersionSymbolSection(const Elf_Shdr *Sec) override;
660 void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
661 void printVersionDependencySection(const Elf_Shdr *Sec) override;
662 void printHashHistograms() override;
663 void printCGProfile() override;
664 void printBBAddrMaps() override;
665 void printAddrsig() override;
666 void printNotes() override;
667 void printELFLinkerOptions() override;
668 void printStackSizes() override;
669
670 private:
671 void printRelrReloc(const Elf_Relr &R) override;
672 void printRelRelaReloc(const Relocation<ELFT> &R,
673 const RelSymbol<ELFT> &RelSym) override;
674
675 void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex,
676 DataRegion<Elf_Word> ShndxTable) const;
677 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
678 DataRegion<Elf_Word> ShndxTable,
679 Optional<StringRef> StrTable, bool IsDynamic,
680 bool /*NonVisibilityBitsUsed*/) const override;
681 void printProgramHeaders() override;
printSectionMapping()682 void printSectionMapping() override {}
683 void printStackSizeEntry(uint64_t Size, StringRef FuncName) override;
684
685 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
686 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
687 void printMipsABIFlags() override;
688
689 ScopedPrinter &W;
690 };
691
692 } // end anonymous namespace
693
694 namespace llvm {
695
696 template <class ELFT>
697 static std::unique_ptr<ObjDumper>
createELFDumper(const ELFObjectFile<ELFT> & Obj,ScopedPrinter & Writer)698 createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) {
699 if (opts::Output == opts::GNU)
700 return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer);
701 return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer);
702 }
703
createELFDumper(const object::ELFObjectFileBase & Obj,ScopedPrinter & Writer)704 std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj,
705 ScopedPrinter &Writer) {
706 // Little-endian 32-bit
707 if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj))
708 return createELFDumper(*ELFObj, Writer);
709
710 // Big-endian 32-bit
711 if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj))
712 return createELFDumper(*ELFObj, Writer);
713
714 // Little-endian 64-bit
715 if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj))
716 return createELFDumper(*ELFObj, Writer);
717
718 // Big-endian 64-bit
719 return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer);
720 }
721
722 } // end namespace llvm
723
724 template <class ELFT>
725 Expected<SmallVector<Optional<VersionEntry>, 0> *>
getVersionMap() const726 ELFDumper<ELFT>::getVersionMap() const {
727 // If the VersionMap has already been loaded or if there is no dynamic symtab
728 // or version table, there is nothing to do.
729 if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection)
730 return &VersionMap;
731
732 Expected<SmallVector<Optional<VersionEntry>, 0>> MapOrErr =
733 Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection);
734 if (MapOrErr)
735 VersionMap = *MapOrErr;
736 else
737 return MapOrErr.takeError();
738
739 return &VersionMap;
740 }
741
742 template <typename ELFT>
getSymbolVersion(const Elf_Sym & Sym,bool & IsDefault) const743 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym,
744 bool &IsDefault) const {
745 // This is a dynamic symbol. Look in the GNU symbol version table.
746 if (!SymbolVersionSection) {
747 // No version table.
748 IsDefault = false;
749 return "";
750 }
751
752 assert(DynSymRegion && "DynSymRegion has not been initialised");
753 // Determine the position in the symbol table of this entry.
754 size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) -
755 reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) /
756 sizeof(Elf_Sym);
757
758 // Get the corresponding version index entry.
759 Expected<const Elf_Versym *> EntryOrErr =
760 Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex);
761 if (!EntryOrErr)
762 return EntryOrErr.takeError();
763
764 unsigned Version = (*EntryOrErr)->vs_index;
765 if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) {
766 IsDefault = false;
767 return "";
768 }
769
770 Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr =
771 getVersionMap();
772 if (!MapOrErr)
773 return MapOrErr.takeError();
774
775 return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr,
776 Sym.st_shndx == ELF::SHN_UNDEF);
777 }
778
779 template <typename ELFT>
780 Expected<RelSymbol<ELFT>>
getRelocationTarget(const Relocation<ELFT> & R,const Elf_Shdr * SymTab) const781 ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R,
782 const Elf_Shdr *SymTab) const {
783 if (R.Symbol == 0)
784 return RelSymbol<ELFT>(nullptr, "");
785
786 Expected<const Elf_Sym *> SymOrErr =
787 Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol);
788 if (!SymOrErr)
789 return createError("unable to read an entry with index " + Twine(R.Symbol) +
790 " from " + describe(*SymTab) + ": " +
791 toString(SymOrErr.takeError()));
792 const Elf_Sym *Sym = *SymOrErr;
793 if (!Sym)
794 return RelSymbol<ELFT>(nullptr, "");
795
796 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab);
797 if (!StrTableOrErr)
798 return StrTableOrErr.takeError();
799
800 const Elf_Sym *FirstSym =
801 cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0));
802 std::string SymbolName =
803 getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab),
804 *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM);
805 return RelSymbol<ELFT>(Sym, SymbolName);
806 }
807
808 template <typename ELFT>
809 ArrayRef<typename ELFT::Word>
getShndxTable(const Elf_Shdr * Symtab) const810 ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const {
811 if (Symtab) {
812 auto It = ShndxTables.find(Symtab);
813 if (It != ShndxTables.end())
814 return It->second;
815 }
816 return {};
817 }
818
maybeDemangle(StringRef Name)819 static std::string maybeDemangle(StringRef Name) {
820 return opts::Demangle ? demangle(std::string(Name)) : Name.str();
821 }
822
823 template <typename ELFT>
getStaticSymbolName(uint32_t Index) const824 std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
825 auto Warn = [&](Error E) -> std::string {
826 reportUniqueWarning("unable to read the name of symbol with index " +
827 Twine(Index) + ": " + toString(std::move(E)));
828 return "<?>";
829 };
830
831 Expected<const typename ELFT::Sym *> SymOrErr =
832 Obj.getSymbol(DotSymtabSec, Index);
833 if (!SymOrErr)
834 return Warn(SymOrErr.takeError());
835
836 Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec);
837 if (!StrTabOrErr)
838 return Warn(StrTabOrErr.takeError());
839
840 Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
841 if (!NameOrErr)
842 return Warn(NameOrErr.takeError());
843 return maybeDemangle(*NameOrErr);
844 }
845
846 template <typename ELFT>
getFullSymbolName(const Elf_Sym & Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable,Optional<StringRef> StrTable,bool IsDynamic) const847 std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym &Symbol,
848 unsigned SymIndex,
849 DataRegion<Elf_Word> ShndxTable,
850 Optional<StringRef> StrTable,
851 bool IsDynamic) const {
852 if (!StrTable)
853 return "<?>";
854
855 std::string SymbolName;
856 if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) {
857 SymbolName = maybeDemangle(*NameOrErr);
858 } else {
859 reportUniqueWarning(NameOrErr.takeError());
860 return "<?>";
861 }
862
863 if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) {
864 Expected<unsigned> SectionIndex =
865 getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
866 if (!SectionIndex) {
867 reportUniqueWarning(SectionIndex.takeError());
868 return "<?>";
869 }
870 Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
871 if (!NameOrErr) {
872 reportUniqueWarning(NameOrErr.takeError());
873 return ("<section " + Twine(*SectionIndex) + ">").str();
874 }
875 return std::string(*NameOrErr);
876 }
877
878 if (!IsDynamic)
879 return SymbolName;
880
881 bool IsDefault;
882 Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault);
883 if (!VersionOrErr) {
884 reportUniqueWarning(VersionOrErr.takeError());
885 return SymbolName + "@<corrupt>";
886 }
887
888 if (!VersionOrErr->empty()) {
889 SymbolName += (IsDefault ? "@@" : "@");
890 SymbolName += *VersionOrErr;
891 }
892 return SymbolName;
893 }
894
895 template <typename ELFT>
896 Expected<unsigned>
getSymbolSectionIndex(const Elf_Sym & Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable) const897 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
898 DataRegion<Elf_Word> ShndxTable) const {
899 unsigned Ndx = Symbol.st_shndx;
900 if (Ndx == SHN_XINDEX)
901 return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex,
902 ShndxTable);
903 if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE)
904 return Ndx;
905
906 auto CreateErr = [&](const Twine &Name, Optional<unsigned> Offset = None) {
907 std::string Desc;
908 if (Offset)
909 Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str();
910 else
911 Desc = Name.str();
912 return createError(
913 "unable to get section index for symbol with st_shndx = 0x" +
914 Twine::utohexstr(Ndx) + " (" + Desc + ")");
915 };
916
917 if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC)
918 return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC);
919 if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS)
920 return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS);
921 if (Ndx == ELF::SHN_UNDEF)
922 return CreateErr("SHN_UNDEF");
923 if (Ndx == ELF::SHN_ABS)
924 return CreateErr("SHN_ABS");
925 if (Ndx == ELF::SHN_COMMON)
926 return CreateErr("SHN_COMMON");
927 return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE);
928 }
929
930 template <typename ELFT>
931 Expected<StringRef>
getSymbolSectionName(const Elf_Sym & Symbol,unsigned SectionIndex) const932 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol,
933 unsigned SectionIndex) const {
934 Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex);
935 if (!SecOrErr)
936 return SecOrErr.takeError();
937 return Obj.getSectionName(**SecOrErr);
938 }
939
940 template <class ELFO>
941 static const typename ELFO::Elf_Shdr *
findNotEmptySectionByAddress(const ELFO & Obj,StringRef FileName,uint64_t Addr)942 findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName,
943 uint64_t Addr) {
944 for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections()))
945 if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
946 return &Shdr;
947 return nullptr;
948 }
949
950 static const EnumEntry<unsigned> ElfClass[] = {
951 {"None", "none", ELF::ELFCLASSNONE},
952 {"32-bit", "ELF32", ELF::ELFCLASS32},
953 {"64-bit", "ELF64", ELF::ELFCLASS64},
954 };
955
956 static const EnumEntry<unsigned> ElfDataEncoding[] = {
957 {"None", "none", ELF::ELFDATANONE},
958 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
959 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB},
960 };
961
962 static const EnumEntry<unsigned> ElfObjectFileType[] = {
963 {"None", "NONE (none)", ELF::ET_NONE},
964 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL},
965 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC},
966 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
967 {"Core", "CORE (Core file)", ELF::ET_CORE},
968 };
969
970 static const EnumEntry<unsigned> ElfOSABI[] = {
971 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE},
972 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX},
973 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD},
974 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX},
975 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD},
976 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS},
977 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX},
978 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX},
979 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD},
980 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64},
981 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO},
982 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD},
983 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS},
984 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
985 {"AROS", "AROS", ELF::ELFOSABI_AROS},
986 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS},
987 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI},
988 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE}
989 };
990
991 static const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
992 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA},
993 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL},
994 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
995 };
996
997 static const EnumEntry<unsigned> ARMElfOSABI[] = {
998 {"ARM", "ARM", ELF::ELFOSABI_ARM}
999 };
1000
1001 static const EnumEntry<unsigned> C6000ElfOSABI[] = {
1002 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
1003 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX}
1004 };
1005
1006 static const EnumEntry<unsigned> ElfMachineType[] = {
1007 ENUM_ENT(EM_NONE, "None"),
1008 ENUM_ENT(EM_M32, "WE32100"),
1009 ENUM_ENT(EM_SPARC, "Sparc"),
1010 ENUM_ENT(EM_386, "Intel 80386"),
1011 ENUM_ENT(EM_68K, "MC68000"),
1012 ENUM_ENT(EM_88K, "MC88000"),
1013 ENUM_ENT(EM_IAMCU, "EM_IAMCU"),
1014 ENUM_ENT(EM_860, "Intel 80860"),
1015 ENUM_ENT(EM_MIPS, "MIPS R3000"),
1016 ENUM_ENT(EM_S370, "IBM System/370"),
1017 ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"),
1018 ENUM_ENT(EM_PARISC, "HPPA"),
1019 ENUM_ENT(EM_VPP500, "Fujitsu VPP500"),
1020 ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"),
1021 ENUM_ENT(EM_960, "Intel 80960"),
1022 ENUM_ENT(EM_PPC, "PowerPC"),
1023 ENUM_ENT(EM_PPC64, "PowerPC64"),
1024 ENUM_ENT(EM_S390, "IBM S/390"),
1025 ENUM_ENT(EM_SPU, "SPU"),
1026 ENUM_ENT(EM_V800, "NEC V800 series"),
1027 ENUM_ENT(EM_FR20, "Fujistsu FR20"),
1028 ENUM_ENT(EM_RH32, "TRW RH-32"),
1029 ENUM_ENT(EM_RCE, "Motorola RCE"),
1030 ENUM_ENT(EM_ARM, "ARM"),
1031 ENUM_ENT(EM_ALPHA, "EM_ALPHA"),
1032 ENUM_ENT(EM_SH, "Hitachi SH"),
1033 ENUM_ENT(EM_SPARCV9, "Sparc v9"),
1034 ENUM_ENT(EM_TRICORE, "Siemens Tricore"),
1035 ENUM_ENT(EM_ARC, "ARC"),
1036 ENUM_ENT(EM_H8_300, "Hitachi H8/300"),
1037 ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"),
1038 ENUM_ENT(EM_H8S, "Hitachi H8S"),
1039 ENUM_ENT(EM_H8_500, "Hitachi H8/500"),
1040 ENUM_ENT(EM_IA_64, "Intel IA-64"),
1041 ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"),
1042 ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"),
1043 ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"),
1044 ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"),
1045 ENUM_ENT(EM_PCP, "Siemens PCP"),
1046 ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"),
1047 ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"),
1048 ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"),
1049 ENUM_ENT(EM_ME16, "Toyota ME16 processor"),
1050 ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"),
1051 ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"),
1052 ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"),
1053 ENUM_ENT(EM_PDSP, "Sony DSP processor"),
1054 ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"),
1055 ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"),
1056 ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"),
1057 ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"),
1058 ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"),
1059 ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"),
1060 ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"),
1061 ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"),
1062 ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"),
1063 ENUM_ENT(EM_SVX, "Silicon Graphics SVx"),
1064 ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"),
1065 ENUM_ENT(EM_VAX, "Digital VAX"),
1066 ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"),
1067 ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"),
1068 ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"),
1069 ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"),
1070 ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"),
1071 ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"),
1072 ENUM_ENT(EM_PRISM, "Vitesse Prism"),
1073 ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"),
1074 ENUM_ENT(EM_FR30, "Fujitsu FR30"),
1075 ENUM_ENT(EM_D10V, "Mitsubishi D10V"),
1076 ENUM_ENT(EM_D30V, "Mitsubishi D30V"),
1077 ENUM_ENT(EM_V850, "NEC v850"),
1078 ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"),
1079 ENUM_ENT(EM_MN10300, "Matsushita MN10300"),
1080 ENUM_ENT(EM_MN10200, "Matsushita MN10200"),
1081 ENUM_ENT(EM_PJ, "picoJava"),
1082 ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"),
1083 ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"),
1084 ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"),
1085 ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"),
1086 ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"),
1087 ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"),
1088 ENUM_ENT(EM_TPC, "Tenor Network TPC processor"),
1089 ENUM_ENT(EM_SNP1K, "EM_SNP1K"),
1090 ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"),
1091 ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"),
1092 ENUM_ENT(EM_MAX, "MAX Processor"),
1093 ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"),
1094 ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"),
1095 ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"),
1096 ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"),
1097 ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"),
1098 ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"),
1099 ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"),
1100 ENUM_ENT(EM_UNICORE, "Unicore"),
1101 ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"),
1102 ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"),
1103 ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"),
1104 ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"),
1105 ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"),
1106 ENUM_ENT(EM_C166, "Infineon Technologies xc16x"),
1107 ENUM_ENT(EM_M16C, "Renesas M16C"),
1108 ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"),
1109 ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"),
1110 ENUM_ENT(EM_M32C, "Renesas M32C"),
1111 ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"),
1112 ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"),
1113 ENUM_ENT(EM_SHARC, "EM_SHARC"),
1114 ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"),
1115 ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"),
1116 ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"),
1117 ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"),
1118 ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
1119 ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"),
1120 ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"),
1121 ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"),
1122 ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"),
1123 ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"),
1124 ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"),
1125 ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"),
1126 ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"),
1127 ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"),
1128 ENUM_ENT(EM_8051, "Intel 8051 and variants"),
1129 ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"),
1130 ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"),
1131 ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"),
1132 // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1133 // an identical number to EM_ECOG1.
1134 ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"),
1135 ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1136 ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"),
1137 ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"),
1138 ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"),
1139 ENUM_ENT(EM_RX, "Renesas RX"),
1140 ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"),
1141 ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"),
1142 ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"),
1143 ENUM_ENT(EM_CR16, "National Semiconductor CompactRISC 16-bit processor"),
1144 ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"),
1145 ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"),
1146 ENUM_ENT(EM_L10M, "EM_L10M"),
1147 ENUM_ENT(EM_K10M, "EM_K10M"),
1148 ENUM_ENT(EM_AARCH64, "AArch64"),
1149 ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"),
1150 ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"),
1151 ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"),
1152 ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"),
1153 ENUM_ENT(EM_MICROBLAZE, "Xilinx MicroBlaze 32-bit RISC soft processor core"),
1154 ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"),
1155 ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"),
1156 ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"),
1157 ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"),
1158 ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"),
1159 ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"),
1160 ENUM_ENT(EM_OPEN8, "EM_OPEN8"),
1161 ENUM_ENT(EM_RL78, "Renesas RL78"),
1162 ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"),
1163 ENUM_ENT(EM_78KOR, "EM_78KOR"),
1164 ENUM_ENT(EM_56800EX, "EM_56800EX"),
1165 ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"),
1166 ENUM_ENT(EM_RISCV, "RISC-V"),
1167 ENUM_ENT(EM_LANAI, "EM_LANAI"),
1168 ENUM_ENT(EM_BPF, "EM_BPF"),
1169 ENUM_ENT(EM_VE, "NEC SX-Aurora Vector Engine"),
1170 };
1171
1172 static const EnumEntry<unsigned> ElfSymbolBindings[] = {
1173 {"Local", "LOCAL", ELF::STB_LOCAL},
1174 {"Global", "GLOBAL", ELF::STB_GLOBAL},
1175 {"Weak", "WEAK", ELF::STB_WEAK},
1176 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1177
1178 static const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1179 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT},
1180 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL},
1181 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN},
1182 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1183
1184 static const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1185 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL }
1186 };
1187
getGroupType(uint32_t Flag)1188 static const char *getGroupType(uint32_t Flag) {
1189 if (Flag & ELF::GRP_COMDAT)
1190 return "COMDAT";
1191 else
1192 return "(unknown)";
1193 }
1194
1195 static const EnumEntry<unsigned> ElfSectionFlags[] = {
1196 ENUM_ENT(SHF_WRITE, "W"),
1197 ENUM_ENT(SHF_ALLOC, "A"),
1198 ENUM_ENT(SHF_EXECINSTR, "X"),
1199 ENUM_ENT(SHF_MERGE, "M"),
1200 ENUM_ENT(SHF_STRINGS, "S"),
1201 ENUM_ENT(SHF_INFO_LINK, "I"),
1202 ENUM_ENT(SHF_LINK_ORDER, "L"),
1203 ENUM_ENT(SHF_OS_NONCONFORMING, "O"),
1204 ENUM_ENT(SHF_GROUP, "G"),
1205 ENUM_ENT(SHF_TLS, "T"),
1206 ENUM_ENT(SHF_COMPRESSED, "C"),
1207 ENUM_ENT(SHF_GNU_RETAIN, "R"),
1208 ENUM_ENT(SHF_EXCLUDE, "E"),
1209 };
1210
1211 static const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1212 ENUM_ENT(XCORE_SHF_CP_SECTION, ""),
1213 ENUM_ENT(XCORE_SHF_DP_SECTION, "")
1214 };
1215
1216 static const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1217 ENUM_ENT(SHF_ARM_PURECODE, "y")
1218 };
1219
1220 static const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1221 ENUM_ENT(SHF_HEX_GPREL, "")
1222 };
1223
1224 static const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1225 ENUM_ENT(SHF_MIPS_NODUPES, ""),
1226 ENUM_ENT(SHF_MIPS_NAMES, ""),
1227 ENUM_ENT(SHF_MIPS_LOCAL, ""),
1228 ENUM_ENT(SHF_MIPS_NOSTRIP, ""),
1229 ENUM_ENT(SHF_MIPS_GPREL, ""),
1230 ENUM_ENT(SHF_MIPS_MERGE, ""),
1231 ENUM_ENT(SHF_MIPS_ADDR, ""),
1232 ENUM_ENT(SHF_MIPS_STRING, "")
1233 };
1234
1235 static const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1236 ENUM_ENT(SHF_X86_64_LARGE, "l")
1237 };
1238
1239 static std::vector<EnumEntry<unsigned>>
getSectionFlagsForTarget(unsigned EMachine)1240 getSectionFlagsForTarget(unsigned EMachine) {
1241 std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
1242 std::end(ElfSectionFlags));
1243 switch (EMachine) {
1244 case EM_ARM:
1245 Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
1246 std::end(ElfARMSectionFlags));
1247 break;
1248 case EM_HEXAGON:
1249 Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
1250 std::end(ElfHexagonSectionFlags));
1251 break;
1252 case EM_MIPS:
1253 Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
1254 std::end(ElfMipsSectionFlags));
1255 break;
1256 case EM_X86_64:
1257 Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
1258 std::end(ElfX86_64SectionFlags));
1259 break;
1260 case EM_XCORE:
1261 Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
1262 std::end(ElfXCoreSectionFlags));
1263 break;
1264 default:
1265 break;
1266 }
1267 return Ret;
1268 }
1269
getGNUFlags(unsigned EMachine,uint64_t Flags)1270 static std::string getGNUFlags(unsigned EMachine, uint64_t Flags) {
1271 // Here we are trying to build the flags string in the same way as GNU does.
1272 // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1273 // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1274 // GNU readelf will not print "E" or "Ep" in this case, but will print just
1275 // "p". It only will print "E" when no other processor flag is set.
1276 std::string Str;
1277 bool HasUnknownFlag = false;
1278 bool HasOSFlag = false;
1279 bool HasProcFlag = false;
1280 std::vector<EnumEntry<unsigned>> FlagsList =
1281 getSectionFlagsForTarget(EMachine);
1282 while (Flags) {
1283 // Take the least significant bit as a flag.
1284 uint64_t Flag = Flags & -Flags;
1285 Flags -= Flag;
1286
1287 // Find the flag in the known flags list.
1288 auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
1289 // Flags with empty names are not printed in GNU style output.
1290 return E.Value == Flag && !E.AltName.empty();
1291 });
1292 if (I != FlagsList.end()) {
1293 Str += I->AltName;
1294 continue;
1295 }
1296
1297 // If we did not find a matching regular flag, then we deal with an OS
1298 // specific flag, processor specific flag or an unknown flag.
1299 if (Flag & ELF::SHF_MASKOS) {
1300 HasOSFlag = true;
1301 Flags &= ~ELF::SHF_MASKOS;
1302 } else if (Flag & ELF::SHF_MASKPROC) {
1303 HasProcFlag = true;
1304 // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1305 // bit if set so that it doesn't also get printed.
1306 Flags &= ~ELF::SHF_MASKPROC;
1307 } else {
1308 HasUnknownFlag = true;
1309 }
1310 }
1311
1312 // "o", "p" and "x" are printed last.
1313 if (HasOSFlag)
1314 Str += "o";
1315 if (HasProcFlag)
1316 Str += "p";
1317 if (HasUnknownFlag)
1318 Str += "x";
1319 return Str;
1320 }
1321
segmentTypeToString(unsigned Arch,unsigned Type)1322 static StringRef segmentTypeToString(unsigned Arch, unsigned Type) {
1323 // Check potentially overlapped processor-specific program header type.
1324 switch (Arch) {
1325 case ELF::EM_ARM:
1326 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
1327 break;
1328 case ELF::EM_MIPS:
1329 case ELF::EM_MIPS_RS3_LE:
1330 switch (Type) {
1331 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
1332 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
1333 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
1334 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
1335 }
1336 break;
1337 }
1338
1339 switch (Type) {
1340 LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL);
1341 LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD);
1342 LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
1343 LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP);
1344 LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE);
1345 LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB);
1346 LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR);
1347 LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS);
1348
1349 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
1350 LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
1351
1352 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
1353 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
1354 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY);
1355
1356 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
1357 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
1358 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
1359 default:
1360 return "";
1361 }
1362 }
1363
getGNUPtType(unsigned Arch,unsigned Type)1364 static std::string getGNUPtType(unsigned Arch, unsigned Type) {
1365 StringRef Seg = segmentTypeToString(Arch, Type);
1366 if (Seg.empty())
1367 return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1368
1369 // E.g. "PT_ARM_EXIDX" -> "EXIDX".
1370 if (Seg.startswith("PT_ARM_"))
1371 return Seg.drop_front(7).str();
1372
1373 // E.g. "PT_MIPS_REGINFO" -> "REGINFO".
1374 if (Seg.startswith("PT_MIPS_"))
1375 return Seg.drop_front(8).str();
1376
1377 // E.g. "PT_LOAD" -> "LOAD".
1378 assert(Seg.startswith("PT_"));
1379 return Seg.drop_front(3).str();
1380 }
1381
1382 static const EnumEntry<unsigned> ElfSegmentFlags[] = {
1383 LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
1384 LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
1385 LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
1386 };
1387
1388 static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1389 ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
1390 ENUM_ENT(EF_MIPS_PIC, "pic"),
1391 ENUM_ENT(EF_MIPS_CPIC, "cpic"),
1392 ENUM_ENT(EF_MIPS_ABI2, "abi2"),
1393 ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
1394 ENUM_ENT(EF_MIPS_FP64, "fp64"),
1395 ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
1396 ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
1397 ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
1398 ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
1399 ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
1400 ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
1401 ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
1402 ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
1403 ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
1404 ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
1405 ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
1406 ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
1407 ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
1408 ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
1409 ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
1410 ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
1411 ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
1412 ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
1413 ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
1414 ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
1415 ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
1416 ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
1417 ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
1418 ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
1419 ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
1420 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
1421 ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
1422 ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
1423 ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
1424 ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
1425 ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
1426 ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
1427 ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
1428 ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
1429 ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
1430 ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
1431 ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
1432 };
1433
1434 static const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = {
1435 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1436 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1437 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1438 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1439 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1440 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1441 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1442 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1443 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1444 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1445 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1446 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1447 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1448 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1449 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1450 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1451 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1452 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1453 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1454 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
1455 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1456 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1457 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1458 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1459 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1460 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
1461 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1462 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1463 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1464 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
1465 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1466 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1467 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1468 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1469 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1470 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1471 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1472 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
1473 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
1474 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1475 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1476 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1477 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1478 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
1479 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
1480 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
1481 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
1482 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_V3),
1483 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_V3)
1484 };
1485
1486 static const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = {
1487 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1488 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1489 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1490 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1491 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1492 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1493 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1494 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1495 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1496 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1497 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1498 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1499 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1500 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1501 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1502 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1503 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1504 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1505 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1506 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
1507 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1508 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1509 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1510 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1511 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1512 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
1513 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1514 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1515 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1516 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
1517 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1518 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1519 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1520 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1521 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1522 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1523 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1524 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
1525 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
1526 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1527 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1528 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1529 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1530 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
1531 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
1532 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
1533 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
1534 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ANY_V4),
1535 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_OFF_V4),
1536 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ON_V4),
1537 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ANY_V4),
1538 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_OFF_V4),
1539 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ON_V4)
1540 };
1541
1542 static const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1543 ENUM_ENT(EF_RISCV_RVC, "RVC"),
1544 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
1545 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
1546 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
1547 ENUM_ENT(EF_RISCV_RVE, "RVE")
1548 };
1549
1550 static const EnumEntry<unsigned> ElfHeaderAVRFlags[] = {
1551 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1),
1552 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2),
1553 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25),
1554 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3),
1555 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31),
1556 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35),
1557 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4),
1558 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5),
1559 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51),
1560 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6),
1561 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY),
1562 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1),
1563 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2),
1564 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3),
1565 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4),
1566 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5),
1567 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6),
1568 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7),
1569 ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"),
1570 };
1571
1572
1573 static const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1574 LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
1575 LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
1576 LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
1577 };
1578
1579 static const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1580 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1581 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1582 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
1583 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
1584 };
1585
1586 static const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = {
1587 LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS)
1588 };
1589
1590 static const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1591 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1592 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1593 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
1594 };
1595
getElfMipsOptionsOdkType(unsigned Odk)1596 static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1597 switch (Odk) {
1598 LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
1599 LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
1600 LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
1601 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
1602 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
1603 LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
1604 LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
1605 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
1606 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
1607 LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
1608 LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
1609 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
1610 default:
1611 return "Unknown";
1612 }
1613 }
1614
1615 template <typename ELFT>
1616 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
findDynamic()1617 ELFDumper<ELFT>::findDynamic() {
1618 // Try to locate the PT_DYNAMIC header.
1619 const Elf_Phdr *DynamicPhdr = nullptr;
1620 if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) {
1621 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
1622 if (Phdr.p_type != ELF::PT_DYNAMIC)
1623 continue;
1624 DynamicPhdr = &Phdr;
1625 break;
1626 }
1627 } else {
1628 reportUniqueWarning(
1629 "unable to read program headers to locate the PT_DYNAMIC segment: " +
1630 toString(PhdrsOrErr.takeError()));
1631 }
1632
1633 // Try to locate the .dynamic section in the sections header table.
1634 const Elf_Shdr *DynamicSec = nullptr;
1635 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
1636 if (Sec.sh_type != ELF::SHT_DYNAMIC)
1637 continue;
1638 DynamicSec = &Sec;
1639 break;
1640 }
1641
1642 if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
1643 ObjF.getMemoryBufferRef().getBufferSize()) ||
1644 (DynamicPhdr->p_offset + DynamicPhdr->p_filesz <
1645 DynamicPhdr->p_offset))) {
1646 reportUniqueWarning(
1647 "PT_DYNAMIC segment offset (0x" +
1648 Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" +
1649 Twine::utohexstr(DynamicPhdr->p_filesz) +
1650 ") exceeds the size of the file (0x" +
1651 Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")");
1652 // Don't use the broken dynamic header.
1653 DynamicPhdr = nullptr;
1654 }
1655
1656 if (DynamicPhdr && DynamicSec) {
1657 if (DynamicSec->sh_addr + DynamicSec->sh_size >
1658 DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
1659 DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
1660 reportUniqueWarning(describe(*DynamicSec) +
1661 " is not contained within the "
1662 "PT_DYNAMIC segment");
1663
1664 if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
1665 reportUniqueWarning(describe(*DynamicSec) + " is not at the start of "
1666 "PT_DYNAMIC segment");
1667 }
1668
1669 return std::make_pair(DynamicPhdr, DynamicSec);
1670 }
1671
1672 template <typename ELFT>
loadDynamicTable()1673 void ELFDumper<ELFT>::loadDynamicTable() {
1674 const Elf_Phdr *DynamicPhdr;
1675 const Elf_Shdr *DynamicSec;
1676 std::tie(DynamicPhdr, DynamicSec) = findDynamic();
1677 if (!DynamicPhdr && !DynamicSec)
1678 return;
1679
1680 DynRegionInfo FromPhdr(ObjF, *this);
1681 bool IsPhdrTableValid = false;
1682 if (DynamicPhdr) {
1683 // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
1684 // validated in findDynamic() and so createDRI() is not expected to fail.
1685 FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz,
1686 sizeof(Elf_Dyn)));
1687 FromPhdr.SizePrintName = "PT_DYNAMIC size";
1688 FromPhdr.EntSizePrintName = "";
1689 IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty();
1690 }
1691
1692 // Locate the dynamic table described in a section header.
1693 // Ignore sh_entsize and use the expected value for entry size explicitly.
1694 // This allows us to dump dynamic sections with a broken sh_entsize
1695 // field.
1696 DynRegionInfo FromSec(ObjF, *this);
1697 bool IsSecTableValid = false;
1698 if (DynamicSec) {
1699 Expected<DynRegionInfo> RegOrErr =
1700 createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn));
1701 if (RegOrErr) {
1702 FromSec = *RegOrErr;
1703 FromSec.Context = describe(*DynamicSec);
1704 FromSec.EntSizePrintName = "";
1705 IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty();
1706 } else {
1707 reportUniqueWarning("unable to read the dynamic table from " +
1708 describe(*DynamicSec) + ": " +
1709 toString(RegOrErr.takeError()));
1710 }
1711 }
1712
1713 // When we only have information from one of the SHT_DYNAMIC section header or
1714 // PT_DYNAMIC program header, just use that.
1715 if (!DynamicPhdr || !DynamicSec) {
1716 if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
1717 DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
1718 parseDynamicTable();
1719 } else {
1720 reportUniqueWarning("no valid dynamic table was found");
1721 }
1722 return;
1723 }
1724
1725 // At this point we have tables found from the section header and from the
1726 // dynamic segment. Usually they match, but we have to do sanity checks to
1727 // verify that.
1728
1729 if (FromPhdr.Addr != FromSec.Addr)
1730 reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
1731 "program header disagree about "
1732 "the location of the dynamic table");
1733
1734 if (!IsPhdrTableValid && !IsSecTableValid) {
1735 reportUniqueWarning("no valid dynamic table was found");
1736 return;
1737 }
1738
1739 // Information in the PT_DYNAMIC program header has priority over the
1740 // information in a section header.
1741 if (IsPhdrTableValid) {
1742 if (!IsSecTableValid)
1743 reportUniqueWarning(
1744 "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
1745 DynamicTable = FromPhdr;
1746 } else {
1747 reportUniqueWarning(
1748 "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
1749 DynamicTable = FromSec;
1750 }
1751
1752 parseDynamicTable();
1753 }
1754
1755 template <typename ELFT>
ELFDumper(const object::ELFObjectFile<ELFT> & O,ScopedPrinter & Writer)1756 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O,
1757 ScopedPrinter &Writer)
1758 : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()),
1759 FileName(O.getFileName()), DynRelRegion(O, *this),
1760 DynRelaRegion(O, *this), DynRelrRegion(O, *this),
1761 DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this),
1762 DynamicTable(O, *this) {
1763 if (!O.IsContentValid())
1764 return;
1765
1766 typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
1767 for (const Elf_Shdr &Sec : Sections) {
1768 switch (Sec.sh_type) {
1769 case ELF::SHT_SYMTAB:
1770 if (!DotSymtabSec)
1771 DotSymtabSec = &Sec;
1772 break;
1773 case ELF::SHT_DYNSYM:
1774 if (!DotDynsymSec)
1775 DotDynsymSec = &Sec;
1776
1777 if (!DynSymRegion) {
1778 Expected<DynRegionInfo> RegOrErr =
1779 createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize);
1780 if (RegOrErr) {
1781 DynSymRegion = *RegOrErr;
1782 DynSymRegion->Context = describe(Sec);
1783
1784 if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec))
1785 DynamicStringTable = *E;
1786 else
1787 reportUniqueWarning("unable to get the string table for the " +
1788 describe(Sec) + ": " + toString(E.takeError()));
1789 } else {
1790 reportUniqueWarning("unable to read dynamic symbols from " +
1791 describe(Sec) + ": " +
1792 toString(RegOrErr.takeError()));
1793 }
1794 }
1795 break;
1796 case ELF::SHT_SYMTAB_SHNDX: {
1797 uint32_t SymtabNdx = Sec.sh_link;
1798 if (SymtabNdx >= Sections.size()) {
1799 reportUniqueWarning(
1800 "unable to get the associated symbol table for " + describe(Sec) +
1801 ": sh_link (" + Twine(SymtabNdx) +
1802 ") is greater than or equal to the total number of sections (" +
1803 Twine(Sections.size()) + ")");
1804 continue;
1805 }
1806
1807 if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr =
1808 Obj.getSHNDXTable(Sec)) {
1809 if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr})
1810 .second)
1811 reportUniqueWarning(
1812 "multiple SHT_SYMTAB_SHNDX sections are linked to " +
1813 describe(Sec));
1814 } else {
1815 reportUniqueWarning(ShndxTableOrErr.takeError());
1816 }
1817 break;
1818 }
1819 case ELF::SHT_GNU_versym:
1820 if (!SymbolVersionSection)
1821 SymbolVersionSection = &Sec;
1822 break;
1823 case ELF::SHT_GNU_verdef:
1824 if (!SymbolVersionDefSection)
1825 SymbolVersionDefSection = &Sec;
1826 break;
1827 case ELF::SHT_GNU_verneed:
1828 if (!SymbolVersionNeedSection)
1829 SymbolVersionNeedSection = &Sec;
1830 break;
1831 case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
1832 if (!DotCGProfileSec)
1833 DotCGProfileSec = &Sec;
1834 break;
1835 case ELF::SHT_LLVM_ADDRSIG:
1836 if (!DotAddrsigSec)
1837 DotAddrsigSec = &Sec;
1838 break;
1839 }
1840 }
1841
1842 loadDynamicTable();
1843 }
1844
parseDynamicTable()1845 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
1846 auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
1847 auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) {
1848 this->reportUniqueWarning(Msg);
1849 return Error::success();
1850 });
1851 if (!MappedAddrOrError) {
1852 this->reportUniqueWarning("unable to parse DT_" +
1853 Obj.getDynamicTagAsString(Tag) + ": " +
1854 llvm::toString(MappedAddrOrError.takeError()));
1855 return nullptr;
1856 }
1857 return MappedAddrOrError.get();
1858 };
1859
1860 const char *StringTableBegin = nullptr;
1861 uint64_t StringTableSize = 0;
1862 Optional<DynRegionInfo> DynSymFromTable;
1863 for (const Elf_Dyn &Dyn : dynamic_table()) {
1864 switch (Dyn.d_tag) {
1865 case ELF::DT_HASH:
1866 HashTable = reinterpret_cast<const Elf_Hash *>(
1867 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1868 break;
1869 case ELF::DT_GNU_HASH:
1870 GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
1871 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1872 break;
1873 case ELF::DT_STRTAB:
1874 StringTableBegin = reinterpret_cast<const char *>(
1875 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1876 break;
1877 case ELF::DT_STRSZ:
1878 StringTableSize = Dyn.getVal();
1879 break;
1880 case ELF::DT_SYMTAB: {
1881 // If we can't map the DT_SYMTAB value to an address (e.g. when there are
1882 // no program headers), we ignore its value.
1883 if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
1884 DynSymFromTable.emplace(ObjF, *this);
1885 DynSymFromTable->Addr = VA;
1886 DynSymFromTable->EntSize = sizeof(Elf_Sym);
1887 DynSymFromTable->EntSizePrintName = "";
1888 }
1889 break;
1890 }
1891 case ELF::DT_SYMENT: {
1892 uint64_t Val = Dyn.getVal();
1893 if (Val != sizeof(Elf_Sym))
1894 this->reportUniqueWarning("DT_SYMENT value of 0x" +
1895 Twine::utohexstr(Val) +
1896 " is not the size of a symbol (0x" +
1897 Twine::utohexstr(sizeof(Elf_Sym)) + ")");
1898 break;
1899 }
1900 case ELF::DT_RELA:
1901 DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1902 break;
1903 case ELF::DT_RELASZ:
1904 DynRelaRegion.Size = Dyn.getVal();
1905 DynRelaRegion.SizePrintName = "DT_RELASZ value";
1906 break;
1907 case ELF::DT_RELAENT:
1908 DynRelaRegion.EntSize = Dyn.getVal();
1909 DynRelaRegion.EntSizePrintName = "DT_RELAENT value";
1910 break;
1911 case ELF::DT_SONAME:
1912 SONameOffset = Dyn.getVal();
1913 break;
1914 case ELF::DT_REL:
1915 DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1916 break;
1917 case ELF::DT_RELSZ:
1918 DynRelRegion.Size = Dyn.getVal();
1919 DynRelRegion.SizePrintName = "DT_RELSZ value";
1920 break;
1921 case ELF::DT_RELENT:
1922 DynRelRegion.EntSize = Dyn.getVal();
1923 DynRelRegion.EntSizePrintName = "DT_RELENT value";
1924 break;
1925 case ELF::DT_RELR:
1926 case ELF::DT_ANDROID_RELR:
1927 DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1928 break;
1929 case ELF::DT_RELRSZ:
1930 case ELF::DT_ANDROID_RELRSZ:
1931 DynRelrRegion.Size = Dyn.getVal();
1932 DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ
1933 ? "DT_RELRSZ value"
1934 : "DT_ANDROID_RELRSZ value";
1935 break;
1936 case ELF::DT_RELRENT:
1937 case ELF::DT_ANDROID_RELRENT:
1938 DynRelrRegion.EntSize = Dyn.getVal();
1939 DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT
1940 ? "DT_RELRENT value"
1941 : "DT_ANDROID_RELRENT value";
1942 break;
1943 case ELF::DT_PLTREL:
1944 if (Dyn.getVal() == DT_REL)
1945 DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
1946 else if (Dyn.getVal() == DT_RELA)
1947 DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
1948 else
1949 reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
1950 Twine((uint64_t)Dyn.getVal()));
1951 DynPLTRelRegion.EntSizePrintName = "PLTREL entry size";
1952 break;
1953 case ELF::DT_JMPREL:
1954 DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1955 break;
1956 case ELF::DT_PLTRELSZ:
1957 DynPLTRelRegion.Size = Dyn.getVal();
1958 DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value";
1959 break;
1960 case ELF::DT_SYMTAB_SHNDX:
1961 DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1962 DynSymTabShndxRegion.EntSize = sizeof(Elf_Word);
1963 break;
1964 }
1965 }
1966
1967 if (StringTableBegin) {
1968 const uint64_t FileSize = Obj.getBufSize();
1969 const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base();
1970 if (StringTableSize > FileSize - Offset)
1971 reportUniqueWarning(
1972 "the dynamic string table at 0x" + Twine::utohexstr(Offset) +
1973 " goes past the end of the file (0x" + Twine::utohexstr(FileSize) +
1974 ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize));
1975 else
1976 DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
1977 }
1978
1979 const bool IsHashTableSupported = getHashTableEntSize() == 4;
1980 if (DynSymRegion) {
1981 // Often we find the information about the dynamic symbol table
1982 // location in the SHT_DYNSYM section header. However, the value in
1983 // DT_SYMTAB has priority, because it is used by dynamic loaders to
1984 // locate .dynsym at runtime. The location we find in the section header
1985 // and the location we find here should match.
1986 if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr)
1987 reportUniqueWarning(
1988 createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
1989 "the location of the dynamic symbol table"));
1990
1991 // According to the ELF gABI: "The number of symbol table entries should
1992 // equal nchain". Check to see if the DT_HASH hash table nchain value
1993 // conflicts with the number of symbols in the dynamic symbol table
1994 // according to the section header.
1995 if (HashTable && IsHashTableSupported) {
1996 if (DynSymRegion->EntSize == 0)
1997 reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
1998 else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize)
1999 reportUniqueWarning(
2000 "hash table nchain (" + Twine(HashTable->nchain) +
2001 ") differs from symbol count derived from SHT_DYNSYM section "
2002 "header (" +
2003 Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")");
2004 }
2005 }
2006
2007 // Delay the creation of the actual dynamic symbol table until now, so that
2008 // checks can always be made against the section header-based properties,
2009 // without worrying about tag order.
2010 if (DynSymFromTable) {
2011 if (!DynSymRegion) {
2012 DynSymRegion = DynSymFromTable;
2013 } else {
2014 DynSymRegion->Addr = DynSymFromTable->Addr;
2015 DynSymRegion->EntSize = DynSymFromTable->EntSize;
2016 DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName;
2017 }
2018 }
2019
2020 // Derive the dynamic symbol table size from the DT_HASH hash table, if
2021 // present.
2022 if (HashTable && IsHashTableSupported && DynSymRegion) {
2023 const uint64_t FileSize = Obj.getBufSize();
2024 const uint64_t DerivedSize =
2025 (uint64_t)HashTable->nchain * DynSymRegion->EntSize;
2026 const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base();
2027 if (DerivedSize > FileSize - Offset)
2028 reportUniqueWarning(
2029 "the size (0x" + Twine::utohexstr(DerivedSize) +
2030 ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) +
2031 ", derived from the hash table, goes past the end of the file (0x" +
2032 Twine::utohexstr(FileSize) + ") and will be ignored");
2033 else
2034 DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize;
2035 }
2036 }
2037
printVersionInfo()2038 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
2039 // Dump version symbol section.
2040 printVersionSymbolSection(SymbolVersionSection);
2041
2042 // Dump version definition section.
2043 printVersionDefinitionSection(SymbolVersionDefSection);
2044
2045 // Dump version dependency section.
2046 printVersionDependencySection(SymbolVersionNeedSection);
2047 }
2048
2049 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
2050 { #enum, prefix##_##enum }
2051
2052 static const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
2053 LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
2054 LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
2055 LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
2056 LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
2057 LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
2058 };
2059
2060 static const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
2061 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
2062 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
2063 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
2064 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
2065 LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
2066 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
2067 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
2068 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
2069 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
2070 LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
2071 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
2072 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
2073 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
2074 LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
2075 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
2076 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
2077 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
2078 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
2079 LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
2080 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
2081 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
2082 LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
2083 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
2084 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
2085 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
2086 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
2087 LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
2088 };
2089
2090 static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
2091 LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
2092 LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
2093 LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
2094 LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
2095 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
2096 LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
2097 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
2098 LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
2099 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
2100 LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
2101 LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
2102 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
2103 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
2104 LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
2105 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
2106 LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
2107 };
2108
2109 #undef LLVM_READOBJ_DT_FLAG_ENT
2110
2111 template <typename T, typename TFlag>
printFlags(T Value,ArrayRef<EnumEntry<TFlag>> Flags,raw_ostream & OS)2112 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
2113 SmallVector<EnumEntry<TFlag>, 10> SetFlags;
2114 for (const EnumEntry<TFlag> &Flag : Flags)
2115 if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value)
2116 SetFlags.push_back(Flag);
2117
2118 for (const EnumEntry<TFlag> &Flag : SetFlags)
2119 OS << Flag.Name << " ";
2120 }
2121
2122 template <class ELFT>
2123 const typename ELFT::Shdr *
findSectionByName(StringRef Name) const2124 ELFDumper<ELFT>::findSectionByName(StringRef Name) const {
2125 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
2126 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) {
2127 if (*NameOrErr == Name)
2128 return &Shdr;
2129 } else {
2130 reportUniqueWarning("unable to read the name of " + describe(Shdr) +
2131 ": " + toString(NameOrErr.takeError()));
2132 }
2133 }
2134 return nullptr;
2135 }
2136
2137 template <class ELFT>
getDynamicEntry(uint64_t Type,uint64_t Value) const2138 std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type,
2139 uint64_t Value) const {
2140 auto FormatHexValue = [](uint64_t V) {
2141 std::string Str;
2142 raw_string_ostream OS(Str);
2143 const char *ConvChar =
2144 (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
2145 OS << format(ConvChar, V);
2146 return OS.str();
2147 };
2148
2149 auto FormatFlags = [](uint64_t V,
2150 llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) {
2151 std::string Str;
2152 raw_string_ostream OS(Str);
2153 printFlags(V, Array, OS);
2154 return OS.str();
2155 };
2156
2157 // Handle custom printing of architecture specific tags
2158 switch (Obj.getHeader().e_machine) {
2159 case EM_AARCH64:
2160 switch (Type) {
2161 case DT_AARCH64_BTI_PLT:
2162 case DT_AARCH64_PAC_PLT:
2163 case DT_AARCH64_VARIANT_PCS:
2164 return std::to_string(Value);
2165 default:
2166 break;
2167 }
2168 break;
2169 case EM_HEXAGON:
2170 switch (Type) {
2171 case DT_HEXAGON_VER:
2172 return std::to_string(Value);
2173 case DT_HEXAGON_SYMSZ:
2174 case DT_HEXAGON_PLT:
2175 return FormatHexValue(Value);
2176 default:
2177 break;
2178 }
2179 break;
2180 case EM_MIPS:
2181 switch (Type) {
2182 case DT_MIPS_RLD_VERSION:
2183 case DT_MIPS_LOCAL_GOTNO:
2184 case DT_MIPS_SYMTABNO:
2185 case DT_MIPS_UNREFEXTNO:
2186 return std::to_string(Value);
2187 case DT_MIPS_TIME_STAMP:
2188 case DT_MIPS_ICHECKSUM:
2189 case DT_MIPS_IVERSION:
2190 case DT_MIPS_BASE_ADDRESS:
2191 case DT_MIPS_MSYM:
2192 case DT_MIPS_CONFLICT:
2193 case DT_MIPS_LIBLIST:
2194 case DT_MIPS_CONFLICTNO:
2195 case DT_MIPS_LIBLISTNO:
2196 case DT_MIPS_GOTSYM:
2197 case DT_MIPS_HIPAGENO:
2198 case DT_MIPS_RLD_MAP:
2199 case DT_MIPS_DELTA_CLASS:
2200 case DT_MIPS_DELTA_CLASS_NO:
2201 case DT_MIPS_DELTA_INSTANCE:
2202 case DT_MIPS_DELTA_RELOC:
2203 case DT_MIPS_DELTA_RELOC_NO:
2204 case DT_MIPS_DELTA_SYM:
2205 case DT_MIPS_DELTA_SYM_NO:
2206 case DT_MIPS_DELTA_CLASSSYM:
2207 case DT_MIPS_DELTA_CLASSSYM_NO:
2208 case DT_MIPS_CXX_FLAGS:
2209 case DT_MIPS_PIXIE_INIT:
2210 case DT_MIPS_SYMBOL_LIB:
2211 case DT_MIPS_LOCALPAGE_GOTIDX:
2212 case DT_MIPS_LOCAL_GOTIDX:
2213 case DT_MIPS_HIDDEN_GOTIDX:
2214 case DT_MIPS_PROTECTED_GOTIDX:
2215 case DT_MIPS_OPTIONS:
2216 case DT_MIPS_INTERFACE:
2217 case DT_MIPS_DYNSTR_ALIGN:
2218 case DT_MIPS_INTERFACE_SIZE:
2219 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2220 case DT_MIPS_PERF_SUFFIX:
2221 case DT_MIPS_COMPACT_SIZE:
2222 case DT_MIPS_GP_VALUE:
2223 case DT_MIPS_AUX_DYNAMIC:
2224 case DT_MIPS_PLTGOT:
2225 case DT_MIPS_RWPLT:
2226 case DT_MIPS_RLD_MAP_REL:
2227 return FormatHexValue(Value);
2228 case DT_MIPS_FLAGS:
2229 return FormatFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags));
2230 default:
2231 break;
2232 }
2233 break;
2234 default:
2235 break;
2236 }
2237
2238 switch (Type) {
2239 case DT_PLTREL:
2240 if (Value == DT_REL)
2241 return "REL";
2242 if (Value == DT_RELA)
2243 return "RELA";
2244 LLVM_FALLTHROUGH;
2245 case DT_PLTGOT:
2246 case DT_HASH:
2247 case DT_STRTAB:
2248 case DT_SYMTAB:
2249 case DT_RELA:
2250 case DT_INIT:
2251 case DT_FINI:
2252 case DT_REL:
2253 case DT_JMPREL:
2254 case DT_INIT_ARRAY:
2255 case DT_FINI_ARRAY:
2256 case DT_PREINIT_ARRAY:
2257 case DT_DEBUG:
2258 case DT_VERDEF:
2259 case DT_VERNEED:
2260 case DT_VERSYM:
2261 case DT_GNU_HASH:
2262 case DT_NULL:
2263 return FormatHexValue(Value);
2264 case DT_RELACOUNT:
2265 case DT_RELCOUNT:
2266 case DT_VERDEFNUM:
2267 case DT_VERNEEDNUM:
2268 return std::to_string(Value);
2269 case DT_PLTRELSZ:
2270 case DT_RELASZ:
2271 case DT_RELAENT:
2272 case DT_STRSZ:
2273 case DT_SYMENT:
2274 case DT_RELSZ:
2275 case DT_RELENT:
2276 case DT_INIT_ARRAYSZ:
2277 case DT_FINI_ARRAYSZ:
2278 case DT_PREINIT_ARRAYSZ:
2279 case DT_ANDROID_RELSZ:
2280 case DT_ANDROID_RELASZ:
2281 return std::to_string(Value) + " (bytes)";
2282 case DT_NEEDED:
2283 case DT_SONAME:
2284 case DT_AUXILIARY:
2285 case DT_USED:
2286 case DT_FILTER:
2287 case DT_RPATH:
2288 case DT_RUNPATH: {
2289 const std::map<uint64_t, const char *> TagNames = {
2290 {DT_NEEDED, "Shared library"}, {DT_SONAME, "Library soname"},
2291 {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"},
2292 {DT_FILTER, "Filter library"}, {DT_RPATH, "Library rpath"},
2293 {DT_RUNPATH, "Library runpath"},
2294 };
2295
2296 return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]")
2297 .str();
2298 }
2299 case DT_FLAGS:
2300 return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags));
2301 case DT_FLAGS_1:
2302 return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags1));
2303 default:
2304 return FormatHexValue(Value);
2305 }
2306 }
2307
2308 template <class ELFT>
getDynamicString(uint64_t Value) const2309 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
2310 if (DynamicStringTable.empty() && !DynamicStringTable.data()) {
2311 reportUniqueWarning("string table was not found");
2312 return "<?>";
2313 }
2314
2315 auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) {
2316 reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) +
2317 Msg);
2318 return "<?>";
2319 };
2320
2321 const uint64_t FileSize = Obj.getBufSize();
2322 const uint64_t Offset =
2323 (const uint8_t *)DynamicStringTable.data() - Obj.base();
2324 if (DynamicStringTable.size() > FileSize - Offset)
2325 return WarnAndReturn(" with size 0x" +
2326 Twine::utohexstr(DynamicStringTable.size()) +
2327 " goes past the end of the file (0x" +
2328 Twine::utohexstr(FileSize) + ")",
2329 Offset);
2330
2331 if (Value >= DynamicStringTable.size())
2332 return WarnAndReturn(
2333 ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) +
2334 ": it goes past the end of the table (0x" +
2335 Twine::utohexstr(Offset + DynamicStringTable.size()) + ")",
2336 Offset);
2337
2338 if (DynamicStringTable.back() != '\0')
2339 return WarnAndReturn(": unable to read the string at 0x" +
2340 Twine::utohexstr(Offset + Value) +
2341 ": the string table is not null-terminated",
2342 Offset);
2343
2344 return DynamicStringTable.data() + Value;
2345 }
2346
printUnwindInfo()2347 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
2348 DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
2349 Ctx.printUnwindInformation();
2350 }
2351
2352 // The namespace is needed to fix the compilation with GCC older than 7.0+.
2353 namespace {
printUnwindInfo()2354 template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
2355 if (Obj.getHeader().e_machine == EM_ARM) {
2356 ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(),
2357 DotSymtabSec);
2358 Ctx.PrintUnwindInformation();
2359 }
2360 DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
2361 Ctx.printUnwindInformation();
2362 }
2363 } // namespace
2364
printNeededLibraries()2365 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
2366 ListScope D(W, "NeededLibraries");
2367
2368 std::vector<StringRef> Libs;
2369 for (const auto &Entry : dynamic_table())
2370 if (Entry.d_tag == ELF::DT_NEEDED)
2371 Libs.push_back(getDynamicString(Entry.d_un.d_val));
2372
2373 llvm::sort(Libs);
2374
2375 for (StringRef L : Libs)
2376 W.startLine() << L << "\n";
2377 }
2378
2379 template <class ELFT>
checkHashTable(const ELFDumper<ELFT> & Dumper,const typename ELFT::Hash * H,bool * IsHeaderValid=nullptr)2380 static Error checkHashTable(const ELFDumper<ELFT> &Dumper,
2381 const typename ELFT::Hash *H,
2382 bool *IsHeaderValid = nullptr) {
2383 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
2384 const uint64_t SecOffset = (const uint8_t *)H - Obj.base();
2385 if (Dumper.getHashTableEntSize() == 8) {
2386 auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) {
2387 return E.Value == Obj.getHeader().e_machine;
2388 });
2389 if (IsHeaderValid)
2390 *IsHeaderValid = false;
2391 return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) +
2392 " is not supported: it contains non-standard 8 "
2393 "byte entries on " +
2394 It->AltName + " platform");
2395 }
2396
2397 auto MakeError = [&](const Twine &Msg = "") {
2398 return createError("the hash table at offset 0x" +
2399 Twine::utohexstr(SecOffset) +
2400 " goes past the end of the file (0x" +
2401 Twine::utohexstr(Obj.getBufSize()) + ")" + Msg);
2402 };
2403
2404 // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2405 const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word);
2406
2407 if (IsHeaderValid)
2408 *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize;
2409
2410 if (Obj.getBufSize() - SecOffset < HeaderSize)
2411 return MakeError();
2412
2413 if (Obj.getBufSize() - SecOffset - HeaderSize <
2414 ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word))
2415 return MakeError(", nbucket = " + Twine(H->nbucket) +
2416 ", nchain = " + Twine(H->nchain));
2417 return Error::success();
2418 }
2419
2420 template <class ELFT>
checkGNUHashTable(const ELFFile<ELFT> & Obj,const typename ELFT::GnuHash * GnuHashTable,bool * IsHeaderValid=nullptr)2421 static Error checkGNUHashTable(const ELFFile<ELFT> &Obj,
2422 const typename ELFT::GnuHash *GnuHashTable,
2423 bool *IsHeaderValid = nullptr) {
2424 const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable);
2425 assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() &&
2426 "GnuHashTable must always point to a location inside the file");
2427
2428 uint64_t TableOffset = TableData - Obj.base();
2429 if (IsHeaderValid)
2430 *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize();
2431 if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 +
2432 (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >=
2433 Obj.getBufSize())
2434 return createError("unable to dump the SHT_GNU_HASH "
2435 "section at 0x" +
2436 Twine::utohexstr(TableOffset) +
2437 ": it goes past the end of the file");
2438 return Error::success();
2439 }
2440
printHashTable()2441 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
2442 DictScope D(W, "HashTable");
2443 if (!HashTable)
2444 return;
2445
2446 bool IsHeaderValid;
2447 Error Err = checkHashTable(*this, HashTable, &IsHeaderValid);
2448 if (IsHeaderValid) {
2449 W.printNumber("Num Buckets", HashTable->nbucket);
2450 W.printNumber("Num Chains", HashTable->nchain);
2451 }
2452
2453 if (Err) {
2454 reportUniqueWarning(std::move(Err));
2455 return;
2456 }
2457
2458 W.printList("Buckets", HashTable->buckets());
2459 W.printList("Chains", HashTable->chains());
2460 }
2461
2462 template <class ELFT>
2463 static Expected<ArrayRef<typename ELFT::Word>>
getGnuHashTableChains(Optional<DynRegionInfo> DynSymRegion,const typename ELFT::GnuHash * GnuHashTable)2464 getGnuHashTableChains(Optional<DynRegionInfo> DynSymRegion,
2465 const typename ELFT::GnuHash *GnuHashTable) {
2466 if (!DynSymRegion)
2467 return createError("no dynamic symbol table found");
2468
2469 ArrayRef<typename ELFT::Sym> DynSymTable =
2470 DynSymRegion->template getAsArrayRef<typename ELFT::Sym>();
2471 size_t NumSyms = DynSymTable.size();
2472 if (!NumSyms)
2473 return createError("the dynamic symbol table is empty");
2474
2475 if (GnuHashTable->symndx < NumSyms)
2476 return GnuHashTable->values(NumSyms);
2477
2478 // A normal empty GNU hash table section produced by linker might have
2479 // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2480 // and have dummy null values in the Bloom filter and in the buckets
2481 // vector (or no values at all). It happens because the value of symndx is not
2482 // important for dynamic loaders when the GNU hash table is empty. They just
2483 // skip the whole object during symbol lookup. In such cases, the symndx value
2484 // is irrelevant and we should not report a warning.
2485 ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets();
2486 if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; }))
2487 return createError(
2488 "the first hashed symbol index (" + Twine(GnuHashTable->symndx) +
2489 ") is greater than or equal to the number of dynamic symbols (" +
2490 Twine(NumSyms) + ")");
2491 // There is no way to represent an array of (dynamic symbols count - symndx)
2492 // length.
2493 return ArrayRef<typename ELFT::Word>();
2494 }
2495
2496 template <typename ELFT>
printGnuHashTable()2497 void ELFDumper<ELFT>::printGnuHashTable() {
2498 DictScope D(W, "GnuHashTable");
2499 if (!GnuHashTable)
2500 return;
2501
2502 bool IsHeaderValid;
2503 Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid);
2504 if (IsHeaderValid) {
2505 W.printNumber("Num Buckets", GnuHashTable->nbuckets);
2506 W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
2507 W.printNumber("Num Mask Words", GnuHashTable->maskwords);
2508 W.printNumber("Shift Count", GnuHashTable->shift2);
2509 }
2510
2511 if (Err) {
2512 reportUniqueWarning(std::move(Err));
2513 return;
2514 }
2515
2516 ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter();
2517 W.printHexList("Bloom Filter", BloomFilter);
2518
2519 ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
2520 W.printList("Buckets", Buckets);
2521
2522 Expected<ArrayRef<Elf_Word>> Chains =
2523 getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable);
2524 if (!Chains) {
2525 reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
2526 "section: " +
2527 toString(Chains.takeError()));
2528 return;
2529 }
2530
2531 W.printHexList("Values", *Chains);
2532 }
2533
printLoadName()2534 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
2535 StringRef SOName = "<Not found>";
2536 if (SONameOffset)
2537 SOName = getDynamicString(*SONameOffset);
2538 W.printString("LoadName", SOName);
2539 }
2540
printArchSpecificInfo()2541 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
2542 switch (Obj.getHeader().e_machine) {
2543 case EM_ARM:
2544 case EM_RISCV:
2545 printAttributes();
2546 break;
2547 case EM_MIPS: {
2548 printMipsABIFlags();
2549 printMipsOptions();
2550 printMipsReginfo();
2551 MipsGOTParser<ELFT> Parser(*this);
2552 if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols()))
2553 reportUniqueWarning(std::move(E));
2554 else if (!Parser.isGotEmpty())
2555 printMipsGOT(Parser);
2556
2557 if (Error E = Parser.findPLT(dynamic_table()))
2558 reportUniqueWarning(std::move(E));
2559 else if (!Parser.isPltEmpty())
2560 printMipsPLT(Parser);
2561 break;
2562 }
2563 default:
2564 break;
2565 }
2566 }
2567
printAttributes()2568 template <class ELFT> void ELFDumper<ELFT>::printAttributes() {
2569 if (!Obj.isLE()) {
2570 W.startLine() << "Attributes not implemented.\n";
2571 return;
2572 }
2573
2574 const unsigned Machine = Obj.getHeader().e_machine;
2575 assert((Machine == EM_ARM || Machine == EM_RISCV) &&
2576 "Attributes not implemented.");
2577
2578 DictScope BA(W, "BuildAttributes");
2579 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
2580 if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES &&
2581 Sec.sh_type != ELF::SHT_RISCV_ATTRIBUTES)
2582 continue;
2583
2584 ArrayRef<uint8_t> Contents;
2585 if (Expected<ArrayRef<uint8_t>> ContentOrErr =
2586 Obj.getSectionContents(Sec)) {
2587 Contents = *ContentOrErr;
2588 if (Contents.empty()) {
2589 reportUniqueWarning("the " + describe(Sec) + " is empty");
2590 continue;
2591 }
2592 } else {
2593 reportUniqueWarning("unable to read the content of the " + describe(Sec) +
2594 ": " + toString(ContentOrErr.takeError()));
2595 continue;
2596 }
2597
2598 W.printHex("FormatVersion", Contents[0]);
2599
2600 auto ParseAttrubutes = [&]() {
2601 if (Machine == EM_ARM)
2602 return ARMAttributeParser(&W).parse(Contents, support::little);
2603 return RISCVAttributeParser(&W).parse(Contents, support::little);
2604 };
2605
2606 if (Error E = ParseAttrubutes())
2607 reportUniqueWarning("unable to dump attributes from the " +
2608 describe(Sec) + ": " + toString(std::move(E)));
2609 }
2610 }
2611
2612 namespace {
2613
2614 template <class ELFT> class MipsGOTParser {
2615 public:
2616 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
2617 using Entry = typename ELFT::Addr;
2618 using Entries = ArrayRef<Entry>;
2619
2620 const bool IsStatic;
2621 const ELFFile<ELFT> &Obj;
2622 const ELFDumper<ELFT> &Dumper;
2623
2624 MipsGOTParser(const ELFDumper<ELFT> &D);
2625 Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
2626 Error findPLT(Elf_Dyn_Range DynTable);
2627
isGotEmpty() const2628 bool isGotEmpty() const { return GotEntries.empty(); }
isPltEmpty() const2629 bool isPltEmpty() const { return PltEntries.empty(); }
2630
2631 uint64_t getGp() const;
2632
2633 const Entry *getGotLazyResolver() const;
2634 const Entry *getGotModulePointer() const;
2635 const Entry *getPltLazyResolver() const;
2636 const Entry *getPltModulePointer() const;
2637
2638 Entries getLocalEntries() const;
2639 Entries getGlobalEntries() const;
2640 Entries getOtherEntries() const;
2641 Entries getPltEntries() const;
2642
2643 uint64_t getGotAddress(const Entry * E) const;
2644 int64_t getGotOffset(const Entry * E) const;
2645 const Elf_Sym *getGotSym(const Entry *E) const;
2646
2647 uint64_t getPltAddress(const Entry * E) const;
2648 const Elf_Sym *getPltSym(const Entry *E) const;
2649
getPltStrTable() const2650 StringRef getPltStrTable() const { return PltStrTable; }
getPltSymTable() const2651 const Elf_Shdr *getPltSymTable() const { return PltSymTable; }
2652
2653 private:
2654 const Elf_Shdr *GotSec;
2655 size_t LocalNum;
2656 size_t GlobalNum;
2657
2658 const Elf_Shdr *PltSec;
2659 const Elf_Shdr *PltRelSec;
2660 const Elf_Shdr *PltSymTable;
2661 StringRef FileName;
2662
2663 Elf_Sym_Range GotDynSyms;
2664 StringRef PltStrTable;
2665
2666 Entries GotEntries;
2667 Entries PltEntries;
2668 };
2669
2670 } // end anonymous namespace
2671
2672 template <class ELFT>
MipsGOTParser(const ELFDumper<ELFT> & D)2673 MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D)
2674 : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()),
2675 Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
2676 PltRelSec(nullptr), PltSymTable(nullptr),
2677 FileName(D.getElfObject().getFileName()) {}
2678
2679 template <class ELFT>
findGOT(Elf_Dyn_Range DynTable,Elf_Sym_Range DynSyms)2680 Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable,
2681 Elf_Sym_Range DynSyms) {
2682 // See "Global Offset Table" in Chapter 5 in the following document
2683 // for detailed GOT description.
2684 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2685
2686 // Find static GOT secton.
2687 if (IsStatic) {
2688 GotSec = Dumper.findSectionByName(".got");
2689 if (!GotSec)
2690 return Error::success();
2691
2692 ArrayRef<uint8_t> Content =
2693 unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2694 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2695 Content.size() / sizeof(Entry));
2696 LocalNum = GotEntries.size();
2697 return Error::success();
2698 }
2699
2700 // Lookup dynamic table tags which define the GOT layout.
2701 Optional<uint64_t> DtPltGot;
2702 Optional<uint64_t> DtLocalGotNum;
2703 Optional<uint64_t> DtGotSym;
2704 for (const auto &Entry : DynTable) {
2705 switch (Entry.getTag()) {
2706 case ELF::DT_PLTGOT:
2707 DtPltGot = Entry.getVal();
2708 break;
2709 case ELF::DT_MIPS_LOCAL_GOTNO:
2710 DtLocalGotNum = Entry.getVal();
2711 break;
2712 case ELF::DT_MIPS_GOTSYM:
2713 DtGotSym = Entry.getVal();
2714 break;
2715 }
2716 }
2717
2718 if (!DtPltGot && !DtLocalGotNum && !DtGotSym)
2719 return Error::success();
2720
2721 if (!DtPltGot)
2722 return createError("cannot find PLTGOT dynamic tag");
2723 if (!DtLocalGotNum)
2724 return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
2725 if (!DtGotSym)
2726 return createError("cannot find MIPS_GOTSYM dynamic tag");
2727
2728 size_t DynSymTotal = DynSyms.size();
2729 if (*DtGotSym > DynSymTotal)
2730 return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) +
2731 ") exceeds the number of dynamic symbols (" +
2732 Twine(DynSymTotal) + ")");
2733
2734 GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
2735 if (!GotSec)
2736 return createError("there is no non-empty GOT section at 0x" +
2737 Twine::utohexstr(*DtPltGot));
2738
2739 LocalNum = *DtLocalGotNum;
2740 GlobalNum = DynSymTotal - *DtGotSym;
2741
2742 ArrayRef<uint8_t> Content =
2743 unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2744 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2745 Content.size() / sizeof(Entry));
2746 GotDynSyms = DynSyms.drop_front(*DtGotSym);
2747
2748 return Error::success();
2749 }
2750
2751 template <class ELFT>
findPLT(Elf_Dyn_Range DynTable)2752 Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) {
2753 // Lookup dynamic table tags which define the PLT layout.
2754 Optional<uint64_t> DtMipsPltGot;
2755 Optional<uint64_t> DtJmpRel;
2756 for (const auto &Entry : DynTable) {
2757 switch (Entry.getTag()) {
2758 case ELF::DT_MIPS_PLTGOT:
2759 DtMipsPltGot = Entry.getVal();
2760 break;
2761 case ELF::DT_JMPREL:
2762 DtJmpRel = Entry.getVal();
2763 break;
2764 }
2765 }
2766
2767 if (!DtMipsPltGot && !DtJmpRel)
2768 return Error::success();
2769
2770 // Find PLT section.
2771 if (!DtMipsPltGot)
2772 return createError("cannot find MIPS_PLTGOT dynamic tag");
2773 if (!DtJmpRel)
2774 return createError("cannot find JMPREL dynamic tag");
2775
2776 PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot);
2777 if (!PltSec)
2778 return createError("there is no non-empty PLTGOT section at 0x" +
2779 Twine::utohexstr(*DtMipsPltGot));
2780
2781 PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel);
2782 if (!PltRelSec)
2783 return createError("there is no non-empty RELPLT section at 0x" +
2784 Twine::utohexstr(*DtJmpRel));
2785
2786 if (Expected<ArrayRef<uint8_t>> PltContentOrErr =
2787 Obj.getSectionContents(*PltSec))
2788 PltEntries =
2789 Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()),
2790 PltContentOrErr->size() / sizeof(Entry));
2791 else
2792 return createError("unable to read PLTGOT section content: " +
2793 toString(PltContentOrErr.takeError()));
2794
2795 if (Expected<const Elf_Shdr *> PltSymTableOrErr =
2796 Obj.getSection(PltRelSec->sh_link))
2797 PltSymTable = *PltSymTableOrErr;
2798 else
2799 return createError("unable to get a symbol table linked to the " +
2800 describe(Obj, *PltRelSec) + ": " +
2801 toString(PltSymTableOrErr.takeError()));
2802
2803 if (Expected<StringRef> StrTabOrErr =
2804 Obj.getStringTableForSymtab(*PltSymTable))
2805 PltStrTable = *StrTabOrErr;
2806 else
2807 return createError("unable to get a string table for the " +
2808 describe(Obj, *PltSymTable) + ": " +
2809 toString(StrTabOrErr.takeError()));
2810
2811 return Error::success();
2812 }
2813
getGp() const2814 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
2815 return GotSec->sh_addr + 0x7ff0;
2816 }
2817
2818 template <class ELFT>
2819 const typename MipsGOTParser<ELFT>::Entry *
getGotLazyResolver() const2820 MipsGOTParser<ELFT>::getGotLazyResolver() const {
2821 return LocalNum > 0 ? &GotEntries[0] : nullptr;
2822 }
2823
2824 template <class ELFT>
2825 const typename MipsGOTParser<ELFT>::Entry *
getGotModulePointer() const2826 MipsGOTParser<ELFT>::getGotModulePointer() const {
2827 if (LocalNum < 2)
2828 return nullptr;
2829 const Entry &E = GotEntries[1];
2830 if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
2831 return nullptr;
2832 return &E;
2833 }
2834
2835 template <class ELFT>
2836 typename MipsGOTParser<ELFT>::Entries
getLocalEntries() const2837 MipsGOTParser<ELFT>::getLocalEntries() const {
2838 size_t Skip = getGotModulePointer() ? 2 : 1;
2839 if (LocalNum - Skip <= 0)
2840 return Entries();
2841 return GotEntries.slice(Skip, LocalNum - Skip);
2842 }
2843
2844 template <class ELFT>
2845 typename MipsGOTParser<ELFT>::Entries
getGlobalEntries() const2846 MipsGOTParser<ELFT>::getGlobalEntries() const {
2847 if (GlobalNum == 0)
2848 return Entries();
2849 return GotEntries.slice(LocalNum, GlobalNum);
2850 }
2851
2852 template <class ELFT>
2853 typename MipsGOTParser<ELFT>::Entries
getOtherEntries() const2854 MipsGOTParser<ELFT>::getOtherEntries() const {
2855 size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
2856 if (OtherNum == 0)
2857 return Entries();
2858 return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
2859 }
2860
2861 template <class ELFT>
getGotAddress(const Entry * E) const2862 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
2863 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2864 return GotSec->sh_addr + Offset;
2865 }
2866
2867 template <class ELFT>
getGotOffset(const Entry * E) const2868 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
2869 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2870 return Offset - 0x7ff0;
2871 }
2872
2873 template <class ELFT>
2874 const typename MipsGOTParser<ELFT>::Elf_Sym *
getGotSym(const Entry * E) const2875 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
2876 int64_t Offset = std::distance(GotEntries.data(), E);
2877 return &GotDynSyms[Offset - LocalNum];
2878 }
2879
2880 template <class ELFT>
2881 const typename MipsGOTParser<ELFT>::Entry *
getPltLazyResolver() const2882 MipsGOTParser<ELFT>::getPltLazyResolver() const {
2883 return PltEntries.empty() ? nullptr : &PltEntries[0];
2884 }
2885
2886 template <class ELFT>
2887 const typename MipsGOTParser<ELFT>::Entry *
getPltModulePointer() const2888 MipsGOTParser<ELFT>::getPltModulePointer() const {
2889 return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
2890 }
2891
2892 template <class ELFT>
2893 typename MipsGOTParser<ELFT>::Entries
getPltEntries() const2894 MipsGOTParser<ELFT>::getPltEntries() const {
2895 if (PltEntries.size() <= 2)
2896 return Entries();
2897 return PltEntries.slice(2, PltEntries.size() - 2);
2898 }
2899
2900 template <class ELFT>
getPltAddress(const Entry * E) const2901 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
2902 int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
2903 return PltSec->sh_addr + Offset;
2904 }
2905
2906 template <class ELFT>
2907 const typename MipsGOTParser<ELFT>::Elf_Sym *
getPltSym(const Entry * E) const2908 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
2909 int64_t Offset = std::distance(getPltEntries().data(), E);
2910 if (PltRelSec->sh_type == ELF::SHT_REL) {
2911 Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec));
2912 return unwrapOrError(FileName,
2913 Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
2914 } else {
2915 Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec));
2916 return unwrapOrError(FileName,
2917 Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
2918 }
2919 }
2920
2921 static const EnumEntry<unsigned> ElfMipsISAExtType[] = {
2922 {"None", Mips::AFL_EXT_NONE},
2923 {"Broadcom SB-1", Mips::AFL_EXT_SB1},
2924 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON},
2925 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
2926 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
2927 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
2928 {"LSI R4010", Mips::AFL_EXT_4010},
2929 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E},
2930 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F},
2931 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A},
2932 {"MIPS R4650", Mips::AFL_EXT_4650},
2933 {"MIPS R5900", Mips::AFL_EXT_5900},
2934 {"MIPS R10000", Mips::AFL_EXT_10000},
2935 {"NEC VR4100", Mips::AFL_EXT_4100},
2936 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111},
2937 {"NEC VR4120", Mips::AFL_EXT_4120},
2938 {"NEC VR5400", Mips::AFL_EXT_5400},
2939 {"NEC VR5500", Mips::AFL_EXT_5500},
2940 {"RMI Xlr", Mips::AFL_EXT_XLR},
2941 {"Toshiba R3900", Mips::AFL_EXT_3900}
2942 };
2943
2944 static const EnumEntry<unsigned> ElfMipsASEFlags[] = {
2945 {"DSP", Mips::AFL_ASE_DSP},
2946 {"DSPR2", Mips::AFL_ASE_DSPR2},
2947 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
2948 {"MCU", Mips::AFL_ASE_MCU},
2949 {"MDMX", Mips::AFL_ASE_MDMX},
2950 {"MIPS-3D", Mips::AFL_ASE_MIPS3D},
2951 {"MT", Mips::AFL_ASE_MT},
2952 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS},
2953 {"VZ", Mips::AFL_ASE_VIRT},
2954 {"MSA", Mips::AFL_ASE_MSA},
2955 {"MIPS16", Mips::AFL_ASE_MIPS16},
2956 {"microMIPS", Mips::AFL_ASE_MICROMIPS},
2957 {"XPA", Mips::AFL_ASE_XPA},
2958 {"CRC", Mips::AFL_ASE_CRC},
2959 {"GINV", Mips::AFL_ASE_GINV},
2960 };
2961
2962 static const EnumEntry<unsigned> ElfMipsFpABIType[] = {
2963 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY},
2964 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
2965 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
2966 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT},
2967 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
2968 Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
2969 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX},
2970 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
2971 {"Hard float compat (32-bit CPU, 64-bit FPU)",
2972 Mips::Val_GNU_MIPS_ABI_FP_64A}
2973 };
2974
2975 static const EnumEntry<unsigned> ElfMipsFlags1[] {
2976 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
2977 };
2978
getMipsRegisterSize(uint8_t Flag)2979 static int getMipsRegisterSize(uint8_t Flag) {
2980 switch (Flag) {
2981 case Mips::AFL_REG_NONE:
2982 return 0;
2983 case Mips::AFL_REG_32:
2984 return 32;
2985 case Mips::AFL_REG_64:
2986 return 64;
2987 case Mips::AFL_REG_128:
2988 return 128;
2989 default:
2990 return -1;
2991 }
2992 }
2993
2994 template <class ELFT>
printMipsReginfoData(ScopedPrinter & W,const Elf_Mips_RegInfo<ELFT> & Reginfo)2995 static void printMipsReginfoData(ScopedPrinter &W,
2996 const Elf_Mips_RegInfo<ELFT> &Reginfo) {
2997 W.printHex("GP", Reginfo.ri_gp_value);
2998 W.printHex("General Mask", Reginfo.ri_gprmask);
2999 W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
3000 W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
3001 W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
3002 W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
3003 }
3004
printMipsReginfo()3005 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
3006 const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo");
3007 if (!RegInfoSec) {
3008 W.startLine() << "There is no .reginfo section in the file.\n";
3009 return;
3010 }
3011
3012 Expected<ArrayRef<uint8_t>> ContentsOrErr =
3013 Obj.getSectionContents(*RegInfoSec);
3014 if (!ContentsOrErr) {
3015 this->reportUniqueWarning(
3016 "unable to read the content of the .reginfo section (" +
3017 describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError()));
3018 return;
3019 }
3020
3021 if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) {
3022 this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
3023 Twine::utohexstr(ContentsOrErr->size()) + ")");
3024 return;
3025 }
3026
3027 DictScope GS(W, "MIPS RegInfo");
3028 printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(
3029 ContentsOrErr->data()));
3030 }
3031
3032 template <class ELFT>
3033 static Expected<const Elf_Mips_Options<ELFT> *>
readMipsOptions(const uint8_t * SecBegin,ArrayRef<uint8_t> & SecData,bool & IsSupported)3034 readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData,
3035 bool &IsSupported) {
3036 if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>))
3037 return createError("the .MIPS.options section has an invalid size (0x" +
3038 Twine::utohexstr(SecData.size()) + ")");
3039
3040 const Elf_Mips_Options<ELFT> *O =
3041 reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data());
3042 const uint8_t Size = O->size;
3043 if (Size > SecData.size()) {
3044 const uint64_t Offset = SecData.data() - SecBegin;
3045 const uint64_t SecSize = Offset + SecData.size();
3046 return createError("a descriptor of size 0x" + Twine::utohexstr(Size) +
3047 " at offset 0x" + Twine::utohexstr(Offset) +
3048 " goes past the end of the .MIPS.options "
3049 "section of size 0x" +
3050 Twine::utohexstr(SecSize));
3051 }
3052
3053 IsSupported = O->kind == ODK_REGINFO;
3054 const size_t ExpectedSize =
3055 sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
3056
3057 if (IsSupported)
3058 if (Size < ExpectedSize)
3059 return createError(
3060 "a .MIPS.options entry of kind " +
3061 Twine(getElfMipsOptionsOdkType(O->kind)) +
3062 " has an invalid size (0x" + Twine::utohexstr(Size) +
3063 "), the expected size is 0x" + Twine::utohexstr(ExpectedSize));
3064
3065 SecData = SecData.drop_front(Size);
3066 return O;
3067 }
3068
printMipsOptions()3069 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
3070 const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options");
3071 if (!MipsOpts) {
3072 W.startLine() << "There is no .MIPS.options section in the file.\n";
3073 return;
3074 }
3075
3076 DictScope GS(W, "MIPS Options");
3077
3078 ArrayRef<uint8_t> Data =
3079 unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts));
3080 const uint8_t *const SecBegin = Data.begin();
3081 while (!Data.empty()) {
3082 bool IsSupported;
3083 Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr =
3084 readMipsOptions<ELFT>(SecBegin, Data, IsSupported);
3085 if (!OptsOrErr) {
3086 reportUniqueWarning(OptsOrErr.takeError());
3087 break;
3088 }
3089
3090 unsigned Kind = (*OptsOrErr)->kind;
3091 const char *Type = getElfMipsOptionsOdkType(Kind);
3092 if (!IsSupported) {
3093 W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind
3094 << ")\n";
3095 continue;
3096 }
3097
3098 DictScope GS(W, Type);
3099 if (Kind == ODK_REGINFO)
3100 printMipsReginfoData(W, (*OptsOrErr)->getRegInfo());
3101 else
3102 llvm_unreachable("unexpected .MIPS.options section descriptor kind");
3103 }
3104 }
3105
printStackMap() const3106 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
3107 const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps");
3108 if (!StackMapSection)
3109 return;
3110
3111 auto Warn = [&](Error &&E) {
3112 this->reportUniqueWarning("unable to read the stack map from " +
3113 describe(*StackMapSection) + ": " +
3114 toString(std::move(E)));
3115 };
3116
3117 Expected<ArrayRef<uint8_t>> ContentOrErr =
3118 Obj.getSectionContents(*StackMapSection);
3119 if (!ContentOrErr) {
3120 Warn(ContentOrErr.takeError());
3121 return;
3122 }
3123
3124 if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader(
3125 *ContentOrErr)) {
3126 Warn(std::move(E));
3127 return;
3128 }
3129
3130 prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr));
3131 }
3132
3133 template <class ELFT>
printReloc(const Relocation<ELFT> & R,unsigned RelIndex,const Elf_Shdr & Sec,const Elf_Shdr * SymTab)3134 void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
3135 const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
3136 Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab);
3137 if (!Target)
3138 reportUniqueWarning("unable to print relocation " + Twine(RelIndex) +
3139 " in " + describe(Sec) + ": " +
3140 toString(Target.takeError()));
3141 else
3142 printRelRelaReloc(R, *Target);
3143 }
3144
printFields(formatted_raw_ostream & OS,StringRef Str1,StringRef Str2)3145 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
3146 StringRef Str2) {
3147 OS.PadToColumn(2u);
3148 OS << Str1;
3149 OS.PadToColumn(37u);
3150 OS << Str2 << "\n";
3151 OS.flush();
3152 }
3153
3154 template <class ELFT>
getSectionHeadersNumString(const ELFFile<ELFT> & Obj,StringRef FileName)3155 static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj,
3156 StringRef FileName) {
3157 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3158 if (ElfHeader.e_shnum != 0)
3159 return to_string(ElfHeader.e_shnum);
3160
3161 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3162 if (!ArrOrErr) {
3163 // In this case we can ignore an error, because we have already reported a
3164 // warning about the broken section header table earlier.
3165 consumeError(ArrOrErr.takeError());
3166 return "<?>";
3167 }
3168
3169 if (ArrOrErr->empty())
3170 return "0";
3171 return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")";
3172 }
3173
3174 template <class ELFT>
getSectionHeaderTableIndexString(const ELFFile<ELFT> & Obj,StringRef FileName)3175 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj,
3176 StringRef FileName) {
3177 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3178 if (ElfHeader.e_shstrndx != SHN_XINDEX)
3179 return to_string(ElfHeader.e_shstrndx);
3180
3181 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3182 if (!ArrOrErr) {
3183 // In this case we can ignore an error, because we have already reported a
3184 // warning about the broken section header table earlier.
3185 consumeError(ArrOrErr.takeError());
3186 return "<?>";
3187 }
3188
3189 if (ArrOrErr->empty())
3190 return "65535 (corrupt: out of range)";
3191 return to_string(ElfHeader.e_shstrndx) + " (" +
3192 to_string((*ArrOrErr)[0].sh_link) + ")";
3193 }
3194
getObjectFileEnumEntry(unsigned Type)3195 static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) {
3196 auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) {
3197 return E.Value == Type;
3198 });
3199 if (It != makeArrayRef(ElfObjectFileType).end())
3200 return It;
3201 return nullptr;
3202 }
3203
printFileHeaders()3204 template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() {
3205 const Elf_Ehdr &e = this->Obj.getHeader();
3206 OS << "ELF Header:\n";
3207 OS << " Magic: ";
3208 std::string Str;
3209 for (int i = 0; i < ELF::EI_NIDENT; i++)
3210 OS << format(" %02x", static_cast<int>(e.e_ident[i]));
3211 OS << "\n";
3212 Str = printEnum(e.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
3213 printFields(OS, "Class:", Str);
3214 Str = printEnum(e.e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
3215 printFields(OS, "Data:", Str);
3216 OS.PadToColumn(2u);
3217 OS << "Version:";
3218 OS.PadToColumn(37u);
3219 OS << to_hexString(e.e_ident[ELF::EI_VERSION]);
3220 if (e.e_version == ELF::EV_CURRENT)
3221 OS << " (current)";
3222 OS << "\n";
3223 Str = printEnum(e.e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
3224 printFields(OS, "OS/ABI:", Str);
3225 printFields(OS,
3226 "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION]));
3227
3228 if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) {
3229 Str = E->AltName.str();
3230 } else {
3231 if (e.e_type >= ET_LOPROC)
3232 Str = "Processor Specific: (" + to_hexString(e.e_type, false) + ")";
3233 else if (e.e_type >= ET_LOOS)
3234 Str = "OS Specific: (" + to_hexString(e.e_type, false) + ")";
3235 else
3236 Str = "<unknown>: " + to_hexString(e.e_type, false);
3237 }
3238 printFields(OS, "Type:", Str);
3239
3240 Str = printEnum(e.e_machine, makeArrayRef(ElfMachineType));
3241 printFields(OS, "Machine:", Str);
3242 Str = "0x" + to_hexString(e.e_version);
3243 printFields(OS, "Version:", Str);
3244 Str = "0x" + to_hexString(e.e_entry);
3245 printFields(OS, "Entry point address:", Str);
3246 Str = to_string(e.e_phoff) + " (bytes into file)";
3247 printFields(OS, "Start of program headers:", Str);
3248 Str = to_string(e.e_shoff) + " (bytes into file)";
3249 printFields(OS, "Start of section headers:", Str);
3250 std::string ElfFlags;
3251 if (e.e_machine == EM_MIPS)
3252 ElfFlags =
3253 printFlags(e.e_flags, makeArrayRef(ElfHeaderMipsFlags),
3254 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
3255 unsigned(ELF::EF_MIPS_MACH));
3256 else if (e.e_machine == EM_RISCV)
3257 ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
3258 else if (e.e_machine == EM_AVR)
3259 ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderAVRFlags),
3260 unsigned(ELF::EF_AVR_ARCH_MASK));
3261 Str = "0x" + to_hexString(e.e_flags);
3262 if (!ElfFlags.empty())
3263 Str = Str + ", " + ElfFlags;
3264 printFields(OS, "Flags:", Str);
3265 Str = to_string(e.e_ehsize) + " (bytes)";
3266 printFields(OS, "Size of this header:", Str);
3267 Str = to_string(e.e_phentsize) + " (bytes)";
3268 printFields(OS, "Size of program headers:", Str);
3269 Str = to_string(e.e_phnum);
3270 printFields(OS, "Number of program headers:", Str);
3271 Str = to_string(e.e_shentsize) + " (bytes)";
3272 printFields(OS, "Size of section headers:", Str);
3273 Str = getSectionHeadersNumString(this->Obj, this->FileName);
3274 printFields(OS, "Number of section headers:", Str);
3275 Str = getSectionHeaderTableIndexString(this->Obj, this->FileName);
3276 printFields(OS, "Section header string table index:", Str);
3277 }
3278
getGroups()3279 template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() {
3280 auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx,
3281 const Elf_Shdr &Symtab) -> StringRef {
3282 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab);
3283 if (!StrTableOrErr) {
3284 reportUniqueWarning("unable to get the string table for " +
3285 describe(Symtab) + ": " +
3286 toString(StrTableOrErr.takeError()));
3287 return "<?>";
3288 }
3289
3290 StringRef Strings = *StrTableOrErr;
3291 if (Sym.st_name >= Strings.size()) {
3292 reportUniqueWarning("unable to get the name of the symbol with index " +
3293 Twine(SymNdx) + ": st_name (0x" +
3294 Twine::utohexstr(Sym.st_name) +
3295 ") is past the end of the string table of size 0x" +
3296 Twine::utohexstr(Strings.size()));
3297 return "<?>";
3298 }
3299
3300 return StrTableOrErr->data() + Sym.st_name;
3301 };
3302
3303 std::vector<GroupSection> Ret;
3304 uint64_t I = 0;
3305 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
3306 ++I;
3307 if (Sec.sh_type != ELF::SHT_GROUP)
3308 continue;
3309
3310 StringRef Signature = "<?>";
3311 if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) {
3312 if (Expected<const Elf_Sym *> SymOrErr =
3313 Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info))
3314 Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr);
3315 else
3316 reportUniqueWarning("unable to get the signature symbol for " +
3317 describe(Sec) + ": " +
3318 toString(SymOrErr.takeError()));
3319 } else {
3320 reportUniqueWarning("unable to get the symbol table for " +
3321 describe(Sec) + ": " +
3322 toString(SymtabOrErr.takeError()));
3323 }
3324
3325 ArrayRef<Elf_Word> Data;
3326 if (Expected<ArrayRef<Elf_Word>> ContentsOrErr =
3327 Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) {
3328 if (ContentsOrErr->empty())
3329 reportUniqueWarning("unable to read the section group flag from the " +
3330 describe(Sec) + ": the section is empty");
3331 else
3332 Data = *ContentsOrErr;
3333 } else {
3334 reportUniqueWarning("unable to get the content of the " + describe(Sec) +
3335 ": " + toString(ContentsOrErr.takeError()));
3336 }
3337
3338 Ret.push_back({getPrintableSectionName(Sec),
3339 maybeDemangle(Signature),
3340 Sec.sh_name,
3341 I - 1,
3342 Sec.sh_link,
3343 Sec.sh_info,
3344 Data.empty() ? Elf_Word(0) : Data[0],
3345 {}});
3346
3347 if (Data.empty())
3348 continue;
3349
3350 std::vector<GroupMember> &GM = Ret.back().Members;
3351 for (uint32_t Ndx : Data.slice(1)) {
3352 if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) {
3353 GM.push_back({getPrintableSectionName(**SecOrErr), Ndx});
3354 } else {
3355 reportUniqueWarning("unable to get the section with index " +
3356 Twine(Ndx) + " when dumping the " + describe(Sec) +
3357 ": " + toString(SecOrErr.takeError()));
3358 GM.push_back({"<?>", Ndx});
3359 }
3360 }
3361 }
3362 return Ret;
3363 }
3364
3365 static DenseMap<uint64_t, const GroupSection *>
mapSectionsToGroups(ArrayRef<GroupSection> Groups)3366 mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
3367 DenseMap<uint64_t, const GroupSection *> Ret;
3368 for (const GroupSection &G : Groups)
3369 for (const GroupMember &GM : G.Members)
3370 Ret.insert({GM.Index, &G});
3371 return Ret;
3372 }
3373
printGroupSections()3374 template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() {
3375 std::vector<GroupSection> V = this->getGroups();
3376 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
3377 for (const GroupSection &G : V) {
3378 OS << "\n"
3379 << getGroupType(G.Type) << " group section ["
3380 << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
3381 << "] contains " << G.Members.size() << " sections:\n"
3382 << " [Index] Name\n";
3383 for (const GroupMember &GM : G.Members) {
3384 const GroupSection *MainGroup = Map[GM.Index];
3385 if (MainGroup != &G)
3386 this->reportUniqueWarning(
3387 "section with index " + Twine(GM.Index) +
3388 ", included in the group section with index " +
3389 Twine(MainGroup->Index) +
3390 ", was also found in the group section with index " +
3391 Twine(G.Index));
3392 OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n";
3393 }
3394 }
3395
3396 if (V.empty())
3397 OS << "There are no section groups in this file.\n";
3398 }
3399
3400 template <class ELFT>
printRelrReloc(const Elf_Relr & R)3401 void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
3402 OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n";
3403 }
3404
3405 template <class ELFT>
printRelRelaReloc(const Relocation<ELFT> & R,const RelSymbol<ELFT> & RelSym)3406 void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
3407 const RelSymbol<ELFT> &RelSym) {
3408 // First two fields are bit width dependent. The rest of them are fixed width.
3409 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3410 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3411 unsigned Width = ELFT::Is64Bits ? 16 : 8;
3412
3413 Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width));
3414 Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width));
3415
3416 SmallString<32> RelocName;
3417 this->Obj.getRelocationTypeName(R.Type, RelocName);
3418 Fields[2].Str = RelocName.c_str();
3419
3420 if (RelSym.Sym)
3421 Fields[3].Str =
3422 to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width));
3423
3424 Fields[4].Str = std::string(RelSym.Name);
3425 for (const Field &F : Fields)
3426 printField(F);
3427
3428 std::string Addend;
3429 if (Optional<int64_t> A = R.Addend) {
3430 int64_t RelAddend = *A;
3431 if (!RelSym.Name.empty()) {
3432 if (RelAddend < 0) {
3433 Addend = " - ";
3434 RelAddend = std::abs(RelAddend);
3435 } else {
3436 Addend = " + ";
3437 }
3438 }
3439 Addend += to_hexString(RelAddend, false);
3440 }
3441 OS << Addend << "\n";
3442 }
3443
3444 template <class ELFT>
printRelocHeaderFields(formatted_raw_ostream & OS,unsigned SType)3445 static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType) {
3446 bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
3447 bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
3448 if (ELFT::Is64Bits)
3449 OS << " ";
3450 else
3451 OS << " ";
3452 if (IsRelr && opts::RawRelr)
3453 OS << "Data ";
3454 else
3455 OS << "Offset";
3456 if (ELFT::Is64Bits)
3457 OS << " Info Type"
3458 << " Symbol's Value Symbol's Name";
3459 else
3460 OS << " Info Type Sym. Value Symbol's Name";
3461 if (IsRela)
3462 OS << " + Addend";
3463 OS << "\n";
3464 }
3465
3466 template <class ELFT>
printDynamicRelocHeader(unsigned Type,StringRef Name,const DynRegionInfo & Reg)3467 void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name,
3468 const DynRegionInfo &Reg) {
3469 uint64_t Offset = Reg.Addr - this->Obj.base();
3470 OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x"
3471 << to_hexString(Offset, false) << " contains " << Reg.Size << " bytes:\n";
3472 printRelocHeaderFields<ELFT>(OS, Type);
3473 }
3474
3475 template <class ELFT>
isRelocationSec(const typename ELFT::Shdr & Sec)3476 static bool isRelocationSec(const typename ELFT::Shdr &Sec) {
3477 return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA ||
3478 Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL ||
3479 Sec.sh_type == ELF::SHT_ANDROID_RELA ||
3480 Sec.sh_type == ELF::SHT_ANDROID_RELR;
3481 }
3482
printRelocations()3483 template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() {
3484 auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> {
3485 // Android's packed relocation section needs to be unpacked first
3486 // to get the actual number of entries.
3487 if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
3488 Sec.sh_type == ELF::SHT_ANDROID_RELA) {
3489 Expected<std::vector<typename ELFT::Rela>> RelasOrErr =
3490 this->Obj.android_relas(Sec);
3491 if (!RelasOrErr)
3492 return RelasOrErr.takeError();
3493 return RelasOrErr->size();
3494 }
3495
3496 if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
3497 Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
3498 Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec);
3499 if (!RelrsOrErr)
3500 return RelrsOrErr.takeError();
3501 return this->Obj.decode_relrs(*RelrsOrErr).size();
3502 }
3503
3504 return Sec.getEntityCount();
3505 };
3506
3507 bool HasRelocSections = false;
3508 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
3509 if (!isRelocationSec<ELFT>(Sec))
3510 continue;
3511 HasRelocSections = true;
3512
3513 std::string EntriesNum = "<?>";
3514 if (Expected<size_t> NumOrErr = GetEntriesNum(Sec))
3515 EntriesNum = std::to_string(*NumOrErr);
3516 else
3517 this->reportUniqueWarning("unable to get the number of relocations in " +
3518 this->describe(Sec) + ": " +
3519 toString(NumOrErr.takeError()));
3520
3521 uintX_t Offset = Sec.sh_offset;
3522 StringRef Name = this->getPrintableSectionName(Sec);
3523 OS << "\nRelocation section '" << Name << "' at offset 0x"
3524 << to_hexString(Offset, false) << " contains " << EntriesNum
3525 << " entries:\n";
3526 printRelocHeaderFields<ELFT>(OS, Sec.sh_type);
3527 this->printRelocationsHelper(Sec);
3528 }
3529 if (!HasRelocSections)
3530 OS << "\nThere are no relocations in this file.\n";
3531 }
3532
3533 // Print the offset of a particular section from anyone of the ranges:
3534 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3535 // If 'Type' does not fall within any of those ranges, then a string is
3536 // returned as '<unknown>' followed by the type value.
getSectionTypeOffsetString(unsigned Type)3537 static std::string getSectionTypeOffsetString(unsigned Type) {
3538 if (Type >= SHT_LOOS && Type <= SHT_HIOS)
3539 return "LOOS+0x" + to_hexString(Type - SHT_LOOS);
3540 else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
3541 return "LOPROC+0x" + to_hexString(Type - SHT_LOPROC);
3542 else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
3543 return "LOUSER+0x" + to_hexString(Type - SHT_LOUSER);
3544 return "0x" + to_hexString(Type) + ": <unknown>";
3545 }
3546
getSectionTypeString(unsigned Machine,unsigned Type)3547 static std::string getSectionTypeString(unsigned Machine, unsigned Type) {
3548 StringRef Name = getELFSectionTypeName(Machine, Type);
3549
3550 // Handle SHT_GNU_* type names.
3551 if (Name.startswith("SHT_GNU_")) {
3552 if (Name == "SHT_GNU_HASH")
3553 return "GNU_HASH";
3554 // E.g. SHT_GNU_verneed -> VERNEED.
3555 return Name.drop_front(8).upper();
3556 }
3557
3558 if (Name == "SHT_SYMTAB_SHNDX")
3559 return "SYMTAB SECTION INDICES";
3560
3561 if (Name.startswith("SHT_"))
3562 return Name.drop_front(4).str();
3563 return getSectionTypeOffsetString(Type);
3564 }
3565
printSectionDescription(formatted_raw_ostream & OS,unsigned EMachine)3566 static void printSectionDescription(formatted_raw_ostream &OS,
3567 unsigned EMachine) {
3568 OS << "Key to Flags:\n";
3569 OS << " W (write), A (alloc), X (execute), M (merge), S (strings), I "
3570 "(info),\n";
3571 OS << " L (link order), O (extra OS processing required), G (group), T "
3572 "(TLS),\n";
3573 OS << " C (compressed), x (unknown), o (OS specific), E (exclude),\n";
3574 OS << " R (retain)";
3575
3576 if (EMachine == EM_X86_64)
3577 OS << ", l (large)";
3578 else if (EMachine == EM_ARM)
3579 OS << ", y (purecode)";
3580
3581 OS << ", p (processor specific)\n";
3582 }
3583
printSectionHeaders()3584 template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() {
3585 unsigned Bias = ELFT::Is64Bits ? 0 : 8;
3586 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
3587 OS << "There are " << to_string(Sections.size())
3588 << " section headers, starting at offset "
3589 << "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n";
3590 OS << "Section Headers:\n";
3591 Field Fields[11] = {
3592 {"[Nr]", 2}, {"Name", 7}, {"Type", 25},
3593 {"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias},
3594 {"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
3595 {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
3596 for (const Field &F : Fields)
3597 printField(F);
3598 OS << "\n";
3599
3600 StringRef SecStrTable;
3601 if (Expected<StringRef> SecStrTableOrErr =
3602 this->Obj.getSectionStringTable(Sections, this->WarningHandler))
3603 SecStrTable = *SecStrTableOrErr;
3604 else
3605 this->reportUniqueWarning(SecStrTableOrErr.takeError());
3606
3607 size_t SectionIndex = 0;
3608 for (const Elf_Shdr &Sec : Sections) {
3609 Fields[0].Str = to_string(SectionIndex);
3610 if (SecStrTable.empty())
3611 Fields[1].Str = "<no-strings>";
3612 else
3613 Fields[1].Str = std::string(unwrapOrError<StringRef>(
3614 this->FileName, this->Obj.getSectionName(Sec, SecStrTable)));
3615 Fields[2].Str =
3616 getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type);
3617 Fields[3].Str =
3618 to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
3619 Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
3620 Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
3621 Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
3622 Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_machine, Sec.sh_flags);
3623 Fields[8].Str = to_string(Sec.sh_link);
3624 Fields[9].Str = to_string(Sec.sh_info);
3625 Fields[10].Str = to_string(Sec.sh_addralign);
3626
3627 OS.PadToColumn(Fields[0].Column);
3628 OS << "[" << right_justify(Fields[0].Str, 2) << "]";
3629 for (int i = 1; i < 7; i++)
3630 printField(Fields[i]);
3631 OS.PadToColumn(Fields[7].Column);
3632 OS << right_justify(Fields[7].Str, 3);
3633 OS.PadToColumn(Fields[8].Column);
3634 OS << right_justify(Fields[8].Str, 2);
3635 OS.PadToColumn(Fields[9].Column);
3636 OS << right_justify(Fields[9].Str, 3);
3637 OS.PadToColumn(Fields[10].Column);
3638 OS << right_justify(Fields[10].Str, 2);
3639 OS << "\n";
3640 ++SectionIndex;
3641 }
3642 printSectionDescription(OS, this->Obj.getHeader().e_machine);
3643 }
3644
3645 template <class ELFT>
printSymtabMessage(const Elf_Shdr * Symtab,size_t Entries,bool NonVisibilityBitsUsed) const3646 void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab,
3647 size_t Entries,
3648 bool NonVisibilityBitsUsed) const {
3649 StringRef Name;
3650 if (Symtab)
3651 Name = this->getPrintableSectionName(*Symtab);
3652 if (!Name.empty())
3653 OS << "\nSymbol table '" << Name << "'";
3654 else
3655 OS << "\nSymbol table for image";
3656 OS << " contains " << Entries << " entries:\n";
3657
3658 if (ELFT::Is64Bits)
3659 OS << " Num: Value Size Type Bind Vis";
3660 else
3661 OS << " Num: Value Size Type Bind Vis";
3662
3663 if (NonVisibilityBitsUsed)
3664 OS << " ";
3665 OS << " Ndx Name\n";
3666 }
3667
3668 template <class ELFT>
3669 std::string
getSymbolSectionNdx(const Elf_Sym & Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable) const3670 GNUELFDumper<ELFT>::getSymbolSectionNdx(const Elf_Sym &Symbol,
3671 unsigned SymIndex,
3672 DataRegion<Elf_Word> ShndxTable) const {
3673 unsigned SectionIndex = Symbol.st_shndx;
3674 switch (SectionIndex) {
3675 case ELF::SHN_UNDEF:
3676 return "UND";
3677 case ELF::SHN_ABS:
3678 return "ABS";
3679 case ELF::SHN_COMMON:
3680 return "COM";
3681 case ELF::SHN_XINDEX: {
3682 Expected<uint32_t> IndexOrErr =
3683 object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable);
3684 if (!IndexOrErr) {
3685 assert(Symbol.st_shndx == SHN_XINDEX &&
3686 "getExtendedSymbolTableIndex should only fail due to an invalid "
3687 "SHT_SYMTAB_SHNDX table/reference");
3688 this->reportUniqueWarning(IndexOrErr.takeError());
3689 return "RSV[0xffff]";
3690 }
3691 return to_string(format_decimal(*IndexOrErr, 3));
3692 }
3693 default:
3694 // Find if:
3695 // Processor specific
3696 if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
3697 return std::string("PRC[0x") +
3698 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3699 // OS specific
3700 if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
3701 return std::string("OS[0x") +
3702 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3703 // Architecture reserved:
3704 if (SectionIndex >= ELF::SHN_LORESERVE &&
3705 SectionIndex <= ELF::SHN_HIRESERVE)
3706 return std::string("RSV[0x") +
3707 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3708 // A normal section with an index
3709 return to_string(format_decimal(SectionIndex, 3));
3710 }
3711 }
3712
3713 template <class ELFT>
printSymbol(const Elf_Sym & Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable,Optional<StringRef> StrTable,bool IsDynamic,bool NonVisibilityBitsUsed) const3714 void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
3715 DataRegion<Elf_Word> ShndxTable,
3716 Optional<StringRef> StrTable,
3717 bool IsDynamic,
3718 bool NonVisibilityBitsUsed) const {
3719 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3720 Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias,
3721 31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
3722 Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":";
3723 Fields[1].Str =
3724 to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8));
3725 Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5));
3726
3727 unsigned char SymbolType = Symbol.getType();
3728 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
3729 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3730 Fields[3].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3731 else
3732 Fields[3].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
3733
3734 Fields[4].Str =
3735 printEnum(Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
3736 Fields[5].Str =
3737 printEnum(Symbol.getVisibility(), makeArrayRef(ElfSymbolVisibilities));
3738
3739 if (Symbol.st_other & ~0x3) {
3740 if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) {
3741 uint8_t Other = Symbol.st_other & ~0x3;
3742 if (Other & STO_AARCH64_VARIANT_PCS) {
3743 Other &= ~STO_AARCH64_VARIANT_PCS;
3744 Fields[5].Str += " [VARIANT_PCS";
3745 if (Other != 0)
3746 Fields[5].Str.append(" | " + to_hexString(Other, false));
3747 Fields[5].Str.append("]");
3748 }
3749 } else {
3750 Fields[5].Str +=
3751 " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]";
3752 }
3753 }
3754
3755 Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
3756 Fields[6].Str = getSymbolSectionNdx(Symbol, SymIndex, ShndxTable);
3757
3758 Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable,
3759 StrTable, IsDynamic);
3760 for (const Field &Entry : Fields)
3761 printField(Entry);
3762 OS << "\n";
3763 }
3764
3765 template <class ELFT>
printHashedSymbol(const Elf_Sym * Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable,StringRef StrTable,uint32_t Bucket)3766 void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol,
3767 unsigned SymIndex,
3768 DataRegion<Elf_Word> ShndxTable,
3769 StringRef StrTable,
3770 uint32_t Bucket) {
3771 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3772 Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias,
3773 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
3774 Fields[0].Str = to_string(format_decimal(SymIndex, 5));
3775 Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
3776
3777 Fields[2].Str = to_string(
3778 format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
3779 Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
3780
3781 unsigned char SymbolType = Symbol->getType();
3782 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
3783 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3784 Fields[4].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3785 else
3786 Fields[4].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
3787
3788 Fields[5].Str =
3789 printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
3790 Fields[6].Str =
3791 printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities));
3792 Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable);
3793 Fields[8].Str =
3794 this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true);
3795
3796 for (const Field &Entry : Fields)
3797 printField(Entry);
3798 OS << "\n";
3799 }
3800
3801 template <class ELFT>
printSymbols(bool PrintSymbols,bool PrintDynamicSymbols)3802 void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols,
3803 bool PrintDynamicSymbols) {
3804 if (!PrintSymbols && !PrintDynamicSymbols)
3805 return;
3806 // GNU readelf prints both the .dynsym and .symtab with --symbols.
3807 this->printSymbolsHelper(true);
3808 if (PrintSymbols)
3809 this->printSymbolsHelper(false);
3810 }
3811
3812 template <class ELFT>
printHashTableSymbols(const Elf_Hash & SysVHash)3813 void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) {
3814 if (this->DynamicStringTable.empty())
3815 return;
3816
3817 if (ELFT::Is64Bits)
3818 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3819 else
3820 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3821 OS << "\n";
3822
3823 Elf_Sym_Range DynSyms = this->dynamic_symbols();
3824 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
3825 if (!FirstSym) {
3826 this->reportUniqueWarning(
3827 Twine("unable to print symbols for the .hash table: the "
3828 "dynamic symbol table ") +
3829 (this->DynSymRegion ? "is empty" : "was not found"));
3830 return;
3831 }
3832
3833 DataRegion<Elf_Word> ShndxTable(
3834 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
3835 auto Buckets = SysVHash.buckets();
3836 auto Chains = SysVHash.chains();
3837 for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) {
3838 if (Buckets[Buc] == ELF::STN_UNDEF)
3839 continue;
3840 std::vector<bool> Visited(SysVHash.nchain);
3841 for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) {
3842 if (Ch == ELF::STN_UNDEF)
3843 break;
3844
3845 if (Visited[Ch]) {
3846 this->reportUniqueWarning(".hash section is invalid: bucket " +
3847 Twine(Ch) +
3848 ": a cycle was detected in the linked chain");
3849 break;
3850 }
3851
3852 printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable,
3853 Buc);
3854 Visited[Ch] = true;
3855 }
3856 }
3857 }
3858
3859 template <class ELFT>
printGnuHashTableSymbols(const Elf_GnuHash & GnuHash)3860 void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) {
3861 if (this->DynamicStringTable.empty())
3862 return;
3863
3864 Elf_Sym_Range DynSyms = this->dynamic_symbols();
3865 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
3866 if (!FirstSym) {
3867 this->reportUniqueWarning(
3868 Twine("unable to print symbols for the .gnu.hash table: the "
3869 "dynamic symbol table ") +
3870 (this->DynSymRegion ? "is empty" : "was not found"));
3871 return;
3872 }
3873
3874 auto GetSymbol = [&](uint64_t SymIndex,
3875 uint64_t SymsTotal) -> const Elf_Sym * {
3876 if (SymIndex >= SymsTotal) {
3877 this->reportUniqueWarning(
3878 "unable to print hashed symbol with index " + Twine(SymIndex) +
3879 ", which is greater than or equal to the number of dynamic symbols "
3880 "(" +
3881 Twine::utohexstr(SymsTotal) + ")");
3882 return nullptr;
3883 }
3884 return FirstSym + SymIndex;
3885 };
3886
3887 Expected<ArrayRef<Elf_Word>> ValuesOrErr =
3888 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash);
3889 ArrayRef<Elf_Word> Values;
3890 if (!ValuesOrErr)
3891 this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
3892 "section: " +
3893 toString(ValuesOrErr.takeError()));
3894 else
3895 Values = *ValuesOrErr;
3896
3897 DataRegion<Elf_Word> ShndxTable(
3898 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
3899 ArrayRef<Elf_Word> Buckets = GnuHash.buckets();
3900 for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) {
3901 if (Buckets[Buc] == ELF::STN_UNDEF)
3902 continue;
3903 uint32_t Index = Buckets[Buc];
3904 // Print whole chain.
3905 while (true) {
3906 uint32_t SymIndex = Index++;
3907 if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size()))
3908 printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable,
3909 Buc);
3910 else
3911 break;
3912
3913 if (SymIndex < GnuHash.symndx) {
3914 this->reportUniqueWarning(
3915 "unable to read the hash value for symbol with index " +
3916 Twine(SymIndex) +
3917 ", which is less than the index of the first hashed symbol (" +
3918 Twine(GnuHash.symndx) + ")");
3919 break;
3920 }
3921
3922 // Chain ends at symbol with stopper bit.
3923 if ((Values[SymIndex - GnuHash.symndx] & 1) == 1)
3924 break;
3925 }
3926 }
3927 }
3928
printHashSymbols()3929 template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() {
3930 if (this->HashTable) {
3931 OS << "\n Symbol table of .hash for image:\n";
3932 if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
3933 this->reportUniqueWarning(std::move(E));
3934 else
3935 printHashTableSymbols(*this->HashTable);
3936 }
3937
3938 // Try printing the .gnu.hash table.
3939 if (this->GnuHashTable) {
3940 OS << "\n Symbol table of .gnu.hash for image:\n";
3941 if (ELFT::Is64Bits)
3942 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3943 else
3944 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3945 OS << "\n";
3946
3947 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
3948 this->reportUniqueWarning(std::move(E));
3949 else
3950 printGnuHashTableSymbols(*this->GnuHashTable);
3951 }
3952 }
3953
printSectionDetails()3954 template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() {
3955 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
3956 OS << "There are " << to_string(Sections.size())
3957 << " section headers, starting at offset "
3958 << "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n";
3959
3960 OS << "Section Headers:\n";
3961
3962 auto PrintFields = [&](ArrayRef<Field> V) {
3963 for (const Field &F : V)
3964 printField(F);
3965 OS << "\n";
3966 };
3967
3968 PrintFields({{"[Nr]", 2}, {"Name", 7}});
3969
3970 constexpr bool Is64 = ELFT::Is64Bits;
3971 PrintFields({{"Type", 7},
3972 {Is64 ? "Address" : "Addr", 23},
3973 {"Off", Is64 ? 40 : 32},
3974 {"Size", Is64 ? 47 : 39},
3975 {"ES", Is64 ? 54 : 46},
3976 {"Lk", Is64 ? 59 : 51},
3977 {"Inf", Is64 ? 62 : 54},
3978 {"Al", Is64 ? 66 : 57}});
3979 PrintFields({{"Flags", 7}});
3980
3981 StringRef SecStrTable;
3982 if (Expected<StringRef> SecStrTableOrErr =
3983 this->Obj.getSectionStringTable(Sections, this->WarningHandler))
3984 SecStrTable = *SecStrTableOrErr;
3985 else
3986 this->reportUniqueWarning(SecStrTableOrErr.takeError());
3987
3988 size_t SectionIndex = 0;
3989 const unsigned AddrSize = Is64 ? 16 : 8;
3990 for (const Elf_Shdr &S : Sections) {
3991 StringRef Name = "<?>";
3992 if (Expected<StringRef> NameOrErr =
3993 this->Obj.getSectionName(S, SecStrTable))
3994 Name = *NameOrErr;
3995 else
3996 this->reportUniqueWarning(NameOrErr.takeError());
3997
3998 OS.PadToColumn(2);
3999 OS << "[" << right_justify(to_string(SectionIndex), 2) << "]";
4000 PrintFields({{Name, 7}});
4001 PrintFields(
4002 {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7},
4003 {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23},
4004 {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32},
4005 {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39},
4006 {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46},
4007 {to_string(S.sh_link), Is64 ? 59 : 51},
4008 {to_string(S.sh_info), Is64 ? 63 : 55},
4009 {to_string(S.sh_addralign), Is64 ? 66 : 58}});
4010
4011 OS.PadToColumn(7);
4012 OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: ";
4013
4014 DenseMap<unsigned, StringRef> FlagToName = {
4015 {SHF_WRITE, "WRITE"}, {SHF_ALLOC, "ALLOC"},
4016 {SHF_EXECINSTR, "EXEC"}, {SHF_MERGE, "MERGE"},
4017 {SHF_STRINGS, "STRINGS"}, {SHF_INFO_LINK, "INFO LINK"},
4018 {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"},
4019 {SHF_GROUP, "GROUP"}, {SHF_TLS, "TLS"},
4020 {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}};
4021
4022 uint64_t Flags = S.sh_flags;
4023 uint64_t UnknownFlags = 0;
4024 ListSeparator LS;
4025 while (Flags) {
4026 // Take the least significant bit as a flag.
4027 uint64_t Flag = Flags & -Flags;
4028 Flags -= Flag;
4029
4030 auto It = FlagToName.find(Flag);
4031 if (It != FlagToName.end())
4032 OS << LS << It->second;
4033 else
4034 UnknownFlags |= Flag;
4035 }
4036
4037 auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) {
4038 uint64_t FlagsToPrint = UnknownFlags & Mask;
4039 if (!FlagsToPrint)
4040 return;
4041
4042 OS << LS << Name << " ("
4043 << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")";
4044 UnknownFlags &= ~Mask;
4045 };
4046
4047 PrintUnknownFlags(SHF_MASKOS, "OS");
4048 PrintUnknownFlags(SHF_MASKPROC, "PROC");
4049 PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
4050
4051 OS << "\n";
4052 ++SectionIndex;
4053 }
4054 }
4055
printPhdrFlags(unsigned Flag)4056 static inline std::string printPhdrFlags(unsigned Flag) {
4057 std::string Str;
4058 Str = (Flag & PF_R) ? "R" : " ";
4059 Str += (Flag & PF_W) ? "W" : " ";
4060 Str += (Flag & PF_X) ? "E" : " ";
4061 return Str;
4062 }
4063
4064 template <class ELFT>
checkTLSSections(const typename ELFT::Phdr & Phdr,const typename ELFT::Shdr & Sec)4065 static bool checkTLSSections(const typename ELFT::Phdr &Phdr,
4066 const typename ELFT::Shdr &Sec) {
4067 if (Sec.sh_flags & ELF::SHF_TLS) {
4068 // .tbss must only be shown in the PT_TLS segment.
4069 if (Sec.sh_type == ELF::SHT_NOBITS)
4070 return Phdr.p_type == ELF::PT_TLS;
4071
4072 // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4073 // segments.
4074 return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
4075 (Phdr.p_type == ELF::PT_GNU_RELRO);
4076 }
4077
4078 // PT_TLS must only have SHF_TLS sections.
4079 return Phdr.p_type != ELF::PT_TLS;
4080 }
4081
4082 template <class ELFT>
checkOffsets(const typename ELFT::Phdr & Phdr,const typename ELFT::Shdr & Sec)4083 static bool checkOffsets(const typename ELFT::Phdr &Phdr,
4084 const typename ELFT::Shdr &Sec) {
4085 // SHT_NOBITS sections don't need to have an offset inside the segment.
4086 if (Sec.sh_type == ELF::SHT_NOBITS)
4087 return true;
4088
4089 if (Sec.sh_offset < Phdr.p_offset)
4090 return false;
4091
4092 // Only non-empty sections can be at the end of a segment.
4093 if (Sec.sh_size == 0)
4094 return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz);
4095 return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz;
4096 }
4097
4098 // Check that an allocatable section belongs to a virtual address
4099 // space of a segment.
4100 template <class ELFT>
checkVMA(const typename ELFT::Phdr & Phdr,const typename ELFT::Shdr & Sec)4101 static bool checkVMA(const typename ELFT::Phdr &Phdr,
4102 const typename ELFT::Shdr &Sec) {
4103 if (!(Sec.sh_flags & ELF::SHF_ALLOC))
4104 return true;
4105
4106 if (Sec.sh_addr < Phdr.p_vaddr)
4107 return false;
4108
4109 bool IsTbss =
4110 (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
4111 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties.
4112 bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS;
4113 // Only non-empty sections can be at the end of a segment.
4114 if (Sec.sh_size == 0 || IsTbssInNonTLS)
4115 return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz;
4116 return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz;
4117 }
4118
4119 template <class ELFT>
checkPTDynamic(const typename ELFT::Phdr & Phdr,const typename ELFT::Shdr & Sec)4120 static bool checkPTDynamic(const typename ELFT::Phdr &Phdr,
4121 const typename ELFT::Shdr &Sec) {
4122 if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0)
4123 return true;
4124
4125 // We get here when we have an empty section. Only non-empty sections can be
4126 // at the start or at the end of PT_DYNAMIC.
4127 // Is section within the phdr both based on offset and VMA?
4128 bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) ||
4129 (Sec.sh_offset > Phdr.p_offset &&
4130 Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz);
4131 bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) ||
4132 (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz);
4133 return CheckOffset && CheckVA;
4134 }
4135
4136 template <class ELFT>
printProgramHeaders(bool PrintProgramHeaders,cl::boolOrDefault PrintSectionMapping)4137 void GNUELFDumper<ELFT>::printProgramHeaders(
4138 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
4139 if (PrintProgramHeaders)
4140 printProgramHeaders();
4141
4142 // Display the section mapping along with the program headers, unless
4143 // -section-mapping is explicitly set to false.
4144 if (PrintSectionMapping != cl::BOU_FALSE)
4145 printSectionMapping();
4146 }
4147
printProgramHeaders()4148 template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() {
4149 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4150 const Elf_Ehdr &Header = this->Obj.getHeader();
4151 Field Fields[8] = {2, 17, 26, 37 + Bias,
4152 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
4153 OS << "\nElf file type is "
4154 << printEnum(Header.e_type, makeArrayRef(ElfObjectFileType)) << "\n"
4155 << "Entry point " << format_hex(Header.e_entry, 3) << "\n"
4156 << "There are " << Header.e_phnum << " program headers,"
4157 << " starting at offset " << Header.e_phoff << "\n\n"
4158 << "Program Headers:\n";
4159 if (ELFT::Is64Bits)
4160 OS << " Type Offset VirtAddr PhysAddr "
4161 << " FileSiz MemSiz Flg Align\n";
4162 else
4163 OS << " Type Offset VirtAddr PhysAddr FileSiz "
4164 << "MemSiz Flg Align\n";
4165
4166 unsigned Width = ELFT::Is64Bits ? 18 : 10;
4167 unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
4168
4169 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4170 if (!PhdrsOrErr) {
4171 this->reportUniqueWarning("unable to dump program headers: " +
4172 toString(PhdrsOrErr.takeError()));
4173 return;
4174 }
4175
4176 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4177 Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type);
4178 Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
4179 Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
4180 Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
4181 Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
4182 Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
4183 Fields[6].Str = printPhdrFlags(Phdr.p_flags);
4184 Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
4185 for (const Field &F : Fields)
4186 printField(F);
4187 if (Phdr.p_type == ELF::PT_INTERP) {
4188 OS << "\n";
4189 auto ReportBadInterp = [&](const Twine &Msg) {
4190 this->reportUniqueWarning(
4191 "unable to read program interpreter name at offset 0x" +
4192 Twine::utohexstr(Phdr.p_offset) + ": " + Msg);
4193 };
4194
4195 if (Phdr.p_offset >= this->Obj.getBufSize()) {
4196 ReportBadInterp("it goes past the end of the file (0x" +
4197 Twine::utohexstr(this->Obj.getBufSize()) + ")");
4198 continue;
4199 }
4200
4201 const char *Data =
4202 reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset;
4203 size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset;
4204 size_t Len = strnlen(Data, MaxSize);
4205 if (Len == MaxSize) {
4206 ReportBadInterp("it is not null-terminated");
4207 continue;
4208 }
4209
4210 OS << " [Requesting program interpreter: ";
4211 OS << StringRef(Data, Len) << "]";
4212 }
4213 OS << "\n";
4214 }
4215 }
4216
printSectionMapping()4217 template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() {
4218 OS << "\n Section to Segment mapping:\n Segment Sections...\n";
4219 DenseSet<const Elf_Shdr *> BelongsToSegment;
4220 int Phnum = 0;
4221
4222 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4223 if (!PhdrsOrErr) {
4224 this->reportUniqueWarning(
4225 "can't read program headers to build section to segment mapping: " +
4226 toString(PhdrsOrErr.takeError()));
4227 return;
4228 }
4229
4230 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4231 std::string Sections;
4232 OS << format(" %2.2d ", Phnum++);
4233 // Check if each section is in a segment and then print mapping.
4234 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4235 if (Sec.sh_type == ELF::SHT_NULL)
4236 continue;
4237
4238 // readelf additionally makes sure it does not print zero sized sections
4239 // at end of segments and for PT_DYNAMIC both start and end of section
4240 // .tbss must only be shown in PT_TLS section.
4241 if (checkTLSSections<ELFT>(Phdr, Sec) && checkOffsets<ELFT>(Phdr, Sec) &&
4242 checkVMA<ELFT>(Phdr, Sec) && checkPTDynamic<ELFT>(Phdr, Sec)) {
4243 Sections +=
4244 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4245 " ";
4246 BelongsToSegment.insert(&Sec);
4247 }
4248 }
4249 OS << Sections << "\n";
4250 OS.flush();
4251 }
4252
4253 // Display sections that do not belong to a segment.
4254 std::string Sections;
4255 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4256 if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
4257 Sections +=
4258 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4259 ' ';
4260 }
4261 if (!Sections.empty()) {
4262 OS << " None " << Sections << '\n';
4263 OS.flush();
4264 }
4265 }
4266
4267 namespace {
4268
4269 template <class ELFT>
getSymbolForReloc(const ELFDumper<ELFT> & Dumper,const Relocation<ELFT> & Reloc)4270 RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper,
4271 const Relocation<ELFT> &Reloc) {
4272 using Elf_Sym = typename ELFT::Sym;
4273 auto WarnAndReturn = [&](const Elf_Sym *Sym,
4274 const Twine &Reason) -> RelSymbol<ELFT> {
4275 Dumper.reportUniqueWarning(
4276 "unable to get name of the dynamic symbol with index " +
4277 Twine(Reloc.Symbol) + ": " + Reason);
4278 return {Sym, "<corrupt>"};
4279 };
4280
4281 ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols();
4282 const Elf_Sym *FirstSym = Symbols.begin();
4283 if (!FirstSym)
4284 return WarnAndReturn(nullptr, "no dynamic symbol table found");
4285
4286 // We might have an object without a section header. In this case the size of
4287 // Symbols is zero, because there is no way to know the size of the dynamic
4288 // table. We should allow this case and not print a warning.
4289 if (!Symbols.empty() && Reloc.Symbol >= Symbols.size())
4290 return WarnAndReturn(
4291 nullptr,
4292 "index is greater than or equal to the number of dynamic symbols (" +
4293 Twine(Symbols.size()) + ")");
4294
4295 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
4296 const uint64_t FileSize = Obj.getBufSize();
4297 const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) +
4298 (uint64_t)Reloc.Symbol * sizeof(Elf_Sym);
4299 if (SymOffset + sizeof(Elf_Sym) > FileSize)
4300 return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) +
4301 " goes past the end of the file (0x" +
4302 Twine::utohexstr(FileSize) + ")");
4303
4304 const Elf_Sym *Sym = FirstSym + Reloc.Symbol;
4305 Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable());
4306 if (!ErrOrName)
4307 return WarnAndReturn(Sym, toString(ErrOrName.takeError()));
4308
4309 return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)};
4310 }
4311 } // namespace
4312
4313 template <class ELFT>
getMaxDynamicTagSize(const ELFFile<ELFT> & Obj,typename ELFT::DynRange Tags)4314 static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj,
4315 typename ELFT::DynRange Tags) {
4316 size_t Max = 0;
4317 for (const typename ELFT::Dyn &Dyn : Tags)
4318 Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size());
4319 return Max;
4320 }
4321
printDynamicTable()4322 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() {
4323 Elf_Dyn_Range Table = this->dynamic_table();
4324 if (Table.empty())
4325 return;
4326
4327 OS << "Dynamic section at offset "
4328 << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) -
4329 this->Obj.base(),
4330 1)
4331 << " contains " << Table.size() << " entries:\n";
4332
4333 // The type name is surrounded with round brackets, hence add 2.
4334 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2;
4335 // The "Name/Value" column should be indented from the "Type" column by N
4336 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4337 // space (1) = 3.
4338 OS << " Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type"
4339 << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
4340
4341 std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s ";
4342 for (auto Entry : Table) {
4343 uintX_t Tag = Entry.getTag();
4344 std::string Type =
4345 std::string("(") + this->Obj.getDynamicTagAsString(Tag).c_str() + ")";
4346 std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
4347 OS << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10)
4348 << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n";
4349 }
4350 }
4351
printDynamicRelocations()4352 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() {
4353 this->printDynamicRelocationsHelper();
4354 }
4355
4356 template <class ELFT>
printDynamicReloc(const Relocation<ELFT> & R)4357 void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) {
4358 printRelRelaReloc(R, getSymbolForReloc(*this, R));
4359 }
4360
4361 template <class ELFT>
printRelocationsHelper(const Elf_Shdr & Sec)4362 void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) {
4363 this->forEachRelocationDo(
4364 Sec, opts::RawRelr,
4365 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
4366 const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); },
4367 [&](const Elf_Relr &R) { printRelrReloc(R); });
4368 }
4369
printDynamicRelocationsHelper()4370 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() {
4371 const bool IsMips64EL = this->Obj.isMips64EL();
4372 if (this->DynRelaRegion.Size > 0) {
4373 printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion);
4374 for (const Elf_Rela &Rela :
4375 this->DynRelaRegion.template getAsArrayRef<Elf_Rela>())
4376 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4377 }
4378
4379 if (this->DynRelRegion.Size > 0) {
4380 printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion);
4381 for (const Elf_Rel &Rel :
4382 this->DynRelRegion.template getAsArrayRef<Elf_Rel>())
4383 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4384 }
4385
4386 if (this->DynRelrRegion.Size > 0) {
4387 printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion);
4388 Elf_Relr_Range Relrs =
4389 this->DynRelrRegion.template getAsArrayRef<Elf_Relr>();
4390 for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs))
4391 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4392 }
4393
4394 if (this->DynPLTRelRegion.Size) {
4395 if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
4396 printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion);
4397 for (const Elf_Rela &Rela :
4398 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>())
4399 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4400 } else {
4401 printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion);
4402 for (const Elf_Rel &Rel :
4403 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>())
4404 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4405 }
4406 }
4407 }
4408
4409 template <class ELFT>
printGNUVersionSectionProlog(const typename ELFT::Shdr & Sec,const Twine & Label,unsigned EntriesNum)4410 void GNUELFDumper<ELFT>::printGNUVersionSectionProlog(
4411 const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) {
4412 // Don't inline the SecName, because it might report a warning to stderr and
4413 // corrupt the output.
4414 StringRef SecName = this->getPrintableSectionName(Sec);
4415 OS << Label << " section '" << SecName << "' "
4416 << "contains " << EntriesNum << " entries:\n";
4417
4418 StringRef LinkedSecName = "<corrupt>";
4419 if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr =
4420 this->Obj.getSection(Sec.sh_link))
4421 LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr);
4422 else
4423 this->reportUniqueWarning("invalid section linked to " +
4424 this->describe(Sec) + ": " +
4425 toString(LinkedSecOrErr.takeError()));
4426
4427 OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16)
4428 << " Offset: " << format_hex(Sec.sh_offset, 8)
4429 << " Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n";
4430 }
4431
4432 template <class ELFT>
printVersionSymbolSection(const Elf_Shdr * Sec)4433 void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
4434 if (!Sec)
4435 return;
4436
4437 printGNUVersionSectionProlog(*Sec, "Version symbols",
4438 Sec->sh_size / sizeof(Elf_Versym));
4439 Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
4440 this->getVersionTable(*Sec, /*SymTab=*/nullptr,
4441 /*StrTab=*/nullptr, /*SymTabSec=*/nullptr);
4442 if (!VerTableOrErr) {
4443 this->reportUniqueWarning(VerTableOrErr.takeError());
4444 return;
4445 }
4446
4447 SmallVector<Optional<VersionEntry>, 0> *VersionMap = nullptr;
4448 if (Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr =
4449 this->getVersionMap())
4450 VersionMap = *MapOrErr;
4451 else
4452 this->reportUniqueWarning(MapOrErr.takeError());
4453
4454 ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
4455 std::vector<StringRef> Versions;
4456 for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
4457 unsigned Ndx = VerTable[I].vs_index;
4458 if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
4459 Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
4460 continue;
4461 }
4462
4463 if (!VersionMap) {
4464 Versions.emplace_back("<corrupt>");
4465 continue;
4466 }
4467
4468 bool IsDefault;
4469 Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex(
4470 Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/None);
4471 if (!NameOrErr) {
4472 this->reportUniqueWarning("unable to get a version for entry " +
4473 Twine(I) + " of " + this->describe(*Sec) +
4474 ": " + toString(NameOrErr.takeError()));
4475 Versions.emplace_back("<corrupt>");
4476 continue;
4477 }
4478 Versions.emplace_back(*NameOrErr);
4479 }
4480
4481 // readelf prints 4 entries per line.
4482 uint64_t Entries = VerTable.size();
4483 for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
4484 OS << " " << format_hex_no_prefix(VersymRow, 3) << ":";
4485 for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
4486 unsigned Ndx = VerTable[VersymRow + I].vs_index;
4487 OS << format("%4x%c", Ndx & VERSYM_VERSION,
4488 Ndx & VERSYM_HIDDEN ? 'h' : ' ');
4489 OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
4490 }
4491 OS << '\n';
4492 }
4493 OS << '\n';
4494 }
4495
versionFlagToString(unsigned Flags)4496 static std::string versionFlagToString(unsigned Flags) {
4497 if (Flags == 0)
4498 return "none";
4499
4500 std::string Ret;
4501 auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
4502 if (!(Flags & Flag))
4503 return;
4504 if (!Ret.empty())
4505 Ret += " | ";
4506 Ret += Name;
4507 Flags &= ~Flag;
4508 };
4509
4510 AddFlag(VER_FLG_BASE, "BASE");
4511 AddFlag(VER_FLG_WEAK, "WEAK");
4512 AddFlag(VER_FLG_INFO, "INFO");
4513 AddFlag(~0, "<unknown>");
4514 return Ret;
4515 }
4516
4517 template <class ELFT>
printVersionDefinitionSection(const Elf_Shdr * Sec)4518 void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
4519 if (!Sec)
4520 return;
4521
4522 printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info);
4523
4524 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
4525 if (!V) {
4526 this->reportUniqueWarning(V.takeError());
4527 return;
4528 }
4529
4530 for (const VerDef &Def : *V) {
4531 OS << format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u Name: %s\n",
4532 Def.Offset, Def.Version,
4533 versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
4534 Def.Name.data());
4535 unsigned I = 0;
4536 for (const VerdAux &Aux : Def.AuxV)
4537 OS << format(" 0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
4538 Aux.Name.data());
4539 }
4540
4541 OS << '\n';
4542 }
4543
4544 template <class ELFT>
printVersionDependencySection(const Elf_Shdr * Sec)4545 void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
4546 if (!Sec)
4547 return;
4548
4549 unsigned VerneedNum = Sec->sh_info;
4550 printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum);
4551
4552 Expected<std::vector<VerNeed>> V =
4553 this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
4554 if (!V) {
4555 this->reportUniqueWarning(V.takeError());
4556 return;
4557 }
4558
4559 for (const VerNeed &VN : *V) {
4560 OS << format(" 0x%04x: Version: %u File: %s Cnt: %u\n", VN.Offset,
4561 VN.Version, VN.File.data(), VN.Cnt);
4562 for (const VernAux &Aux : VN.AuxV)
4563 OS << format(" 0x%04x: Name: %s Flags: %s Version: %u\n", Aux.Offset,
4564 Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
4565 Aux.Other);
4566 }
4567 OS << '\n';
4568 }
4569
4570 template <class ELFT>
printHashHistogram(const Elf_Hash & HashTable)4571 void GNUELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) {
4572 size_t NBucket = HashTable.nbucket;
4573 size_t NChain = HashTable.nchain;
4574 ArrayRef<Elf_Word> Buckets = HashTable.buckets();
4575 ArrayRef<Elf_Word> Chains = HashTable.chains();
4576 size_t TotalSyms = 0;
4577 // If hash table is correct, we have at least chains with 0 length
4578 size_t MaxChain = 1;
4579 size_t CumulativeNonZero = 0;
4580
4581 if (NChain == 0 || NBucket == 0)
4582 return;
4583
4584 std::vector<size_t> ChainLen(NBucket, 0);
4585 // Go over all buckets and and note chain lengths of each bucket (total
4586 // unique chain lengths).
4587 for (size_t B = 0; B < NBucket; B++) {
4588 std::vector<bool> Visited(NChain);
4589 for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
4590 if (C == ELF::STN_UNDEF)
4591 break;
4592 if (Visited[C]) {
4593 this->reportUniqueWarning(".hash section is invalid: bucket " +
4594 Twine(C) +
4595 ": a cycle was detected in the linked chain");
4596 break;
4597 }
4598 Visited[C] = true;
4599 if (MaxChain <= ++ChainLen[B])
4600 MaxChain++;
4601 }
4602 TotalSyms += ChainLen[B];
4603 }
4604
4605 if (!TotalSyms)
4606 return;
4607
4608 std::vector<size_t> Count(MaxChain, 0);
4609 // Count how long is the chain for each bucket
4610 for (size_t B = 0; B < NBucket; B++)
4611 ++Count[ChainLen[B]];
4612 // Print Number of buckets with each chain lengths and their cumulative
4613 // coverage of the symbols
4614 OS << "Histogram for bucket list length (total of " << NBucket
4615 << " buckets)\n"
4616 << " Length Number % of total Coverage\n";
4617 for (size_t I = 0; I < MaxChain; I++) {
4618 CumulativeNonZero += Count[I] * I;
4619 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
4620 (Count[I] * 100.0) / NBucket,
4621 (CumulativeNonZero * 100.0) / TotalSyms);
4622 }
4623 }
4624
4625 template <class ELFT>
printGnuHashHistogram(const Elf_GnuHash & GnuHashTable)4626 void GNUELFDumper<ELFT>::printGnuHashHistogram(
4627 const Elf_GnuHash &GnuHashTable) {
4628 Expected<ArrayRef<Elf_Word>> ChainsOrErr =
4629 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable);
4630 if (!ChainsOrErr) {
4631 this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
4632 toString(ChainsOrErr.takeError()));
4633 return;
4634 }
4635
4636 ArrayRef<Elf_Word> Chains = *ChainsOrErr;
4637 size_t Symndx = GnuHashTable.symndx;
4638 size_t TotalSyms = 0;
4639 size_t MaxChain = 1;
4640 size_t CumulativeNonZero = 0;
4641
4642 size_t NBucket = GnuHashTable.nbuckets;
4643 if (Chains.empty() || NBucket == 0)
4644 return;
4645
4646 ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets();
4647 std::vector<size_t> ChainLen(NBucket, 0);
4648 for (size_t B = 0; B < NBucket; B++) {
4649 if (!Buckets[B])
4650 continue;
4651 size_t Len = 1;
4652 for (size_t C = Buckets[B] - Symndx;
4653 C < Chains.size() && (Chains[C] & 1) == 0; C++)
4654 if (MaxChain < ++Len)
4655 MaxChain++;
4656 ChainLen[B] = Len;
4657 TotalSyms += Len;
4658 }
4659 MaxChain++;
4660
4661 if (!TotalSyms)
4662 return;
4663
4664 std::vector<size_t> Count(MaxChain, 0);
4665 for (size_t B = 0; B < NBucket; B++)
4666 ++Count[ChainLen[B]];
4667 // Print Number of buckets with each chain lengths and their cumulative
4668 // coverage of the symbols
4669 OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
4670 << " buckets)\n"
4671 << " Length Number % of total Coverage\n";
4672 for (size_t I = 0; I < MaxChain; I++) {
4673 CumulativeNonZero += Count[I] * I;
4674 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
4675 (Count[I] * 100.0) / NBucket,
4676 (CumulativeNonZero * 100.0) / TotalSyms);
4677 }
4678 }
4679
4680 // Hash histogram shows statistics of how efficient the hash was for the
4681 // dynamic symbol table. The table shows the number of hash buckets for
4682 // different lengths of chains as an absolute number and percentage of the total
4683 // buckets, and the cumulative coverage of symbols for each set of buckets.
printHashHistograms()4684 template <class ELFT> void GNUELFDumper<ELFT>::printHashHistograms() {
4685 // Print histogram for the .hash section.
4686 if (this->HashTable) {
4687 if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4688 this->reportUniqueWarning(std::move(E));
4689 else
4690 printHashHistogram(*this->HashTable);
4691 }
4692
4693 // Print histogram for the .gnu.hash section.
4694 if (this->GnuHashTable) {
4695 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4696 this->reportUniqueWarning(std::move(E));
4697 else
4698 printGnuHashHistogram(*this->GnuHashTable);
4699 }
4700 }
4701
printCGProfile()4702 template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() {
4703 OS << "GNUStyle::printCGProfile not implemented\n";
4704 }
4705
printBBAddrMaps()4706 template <class ELFT> void GNUELFDumper<ELFT>::printBBAddrMaps() {
4707 OS << "GNUStyle::printBBAddrMaps not implemented\n";
4708 }
4709
toULEB128Array(ArrayRef<uint8_t> Data)4710 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
4711 std::vector<uint64_t> Ret;
4712 const uint8_t *Cur = Data.begin();
4713 const uint8_t *End = Data.end();
4714 while (Cur != End) {
4715 unsigned Size;
4716 const char *Err;
4717 Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
4718 if (Err)
4719 return createError(Err);
4720 Cur += Size;
4721 }
4722 return Ret;
4723 }
4724
4725 template <class ELFT>
4726 static Expected<std::vector<uint64_t>>
decodeAddrsigSection(const ELFFile<ELFT> & Obj,const typename ELFT::Shdr & Sec)4727 decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) {
4728 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
4729 if (!ContentsOrErr)
4730 return ContentsOrErr.takeError();
4731
4732 if (Expected<std::vector<uint64_t>> SymsOrErr =
4733 toULEB128Array(*ContentsOrErr))
4734 return *SymsOrErr;
4735 else
4736 return createError("unable to decode " + describe(Obj, Sec) + ": " +
4737 toString(SymsOrErr.takeError()));
4738 }
4739
printAddrsig()4740 template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() {
4741 if (!this->DotAddrsigSec)
4742 return;
4743
4744 Expected<std::vector<uint64_t>> SymsOrErr =
4745 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
4746 if (!SymsOrErr) {
4747 this->reportUniqueWarning(SymsOrErr.takeError());
4748 return;
4749 }
4750
4751 StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec);
4752 OS << "\nAddress-significant symbols section '" << Name << "'"
4753 << " contains " << SymsOrErr->size() << " entries:\n";
4754 OS << " Num: Name\n";
4755
4756 Field Fields[2] = {0, 8};
4757 size_t SymIndex = 0;
4758 for (uint64_t Sym : *SymsOrErr) {
4759 Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":";
4760 Fields[1].Str = this->getStaticSymbolName(Sym);
4761 for (const Field &Entry : Fields)
4762 printField(Entry);
4763 OS << "\n";
4764 }
4765 }
4766
4767 template <typename ELFT>
getGNUProperty(uint32_t Type,uint32_t DataSize,ArrayRef<uint8_t> Data)4768 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
4769 ArrayRef<uint8_t> Data) {
4770 std::string str;
4771 raw_string_ostream OS(str);
4772 uint32_t PrData;
4773 auto DumpBit = [&](uint32_t Flag, StringRef Name) {
4774 if (PrData & Flag) {
4775 PrData &= ~Flag;
4776 OS << Name;
4777 if (PrData)
4778 OS << ", ";
4779 }
4780 };
4781
4782 switch (Type) {
4783 default:
4784 OS << format("<application-specific type 0x%x>", Type);
4785 return OS.str();
4786 case GNU_PROPERTY_STACK_SIZE: {
4787 OS << "stack size: ";
4788 if (DataSize == sizeof(typename ELFT::uint))
4789 OS << formatv("{0:x}",
4790 (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
4791 else
4792 OS << format("<corrupt length: 0x%x>", DataSize);
4793 return OS.str();
4794 }
4795 case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
4796 OS << "no copy on protected";
4797 if (DataSize)
4798 OS << format(" <corrupt length: 0x%x>", DataSize);
4799 return OS.str();
4800 case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
4801 case GNU_PROPERTY_X86_FEATURE_1_AND:
4802 OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
4803 : "x86 feature: ");
4804 if (DataSize != 4) {
4805 OS << format("<corrupt length: 0x%x>", DataSize);
4806 return OS.str();
4807 }
4808 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4809 if (PrData == 0) {
4810 OS << "<None>";
4811 return OS.str();
4812 }
4813 if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
4814 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
4815 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
4816 } else {
4817 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
4818 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
4819 }
4820 if (PrData)
4821 OS << format("<unknown flags: 0x%x>", PrData);
4822 return OS.str();
4823 case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
4824 case GNU_PROPERTY_X86_FEATURE_2_USED:
4825 OS << "x86 feature "
4826 << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
4827 if (DataSize != 4) {
4828 OS << format("<corrupt length: 0x%x>", DataSize);
4829 return OS.str();
4830 }
4831 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4832 if (PrData == 0) {
4833 OS << "<None>";
4834 return OS.str();
4835 }
4836 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
4837 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
4838 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
4839 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
4840 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
4841 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
4842 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
4843 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
4844 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
4845 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
4846 if (PrData)
4847 OS << format("<unknown flags: 0x%x>", PrData);
4848 return OS.str();
4849 case GNU_PROPERTY_X86_ISA_1_NEEDED:
4850 case GNU_PROPERTY_X86_ISA_1_USED:
4851 OS << "x86 ISA "
4852 << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
4853 if (DataSize != 4) {
4854 OS << format("<corrupt length: 0x%x>", DataSize);
4855 return OS.str();
4856 }
4857 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4858 if (PrData == 0) {
4859 OS << "<None>";
4860 return OS.str();
4861 }
4862 DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline");
4863 DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2");
4864 DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3");
4865 DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4");
4866 if (PrData)
4867 OS << format("<unknown flags: 0x%x>", PrData);
4868 return OS.str();
4869 }
4870 }
4871
4872 template <typename ELFT>
getGNUPropertyList(ArrayRef<uint8_t> Arr)4873 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
4874 using Elf_Word = typename ELFT::Word;
4875
4876 SmallVector<std::string, 4> Properties;
4877 while (Arr.size() >= 8) {
4878 uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
4879 uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
4880 Arr = Arr.drop_front(8);
4881
4882 // Take padding size into account if present.
4883 uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
4884 std::string str;
4885 raw_string_ostream OS(str);
4886 if (Arr.size() < PaddedSize) {
4887 OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
4888 Properties.push_back(OS.str());
4889 break;
4890 }
4891 Properties.push_back(
4892 getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
4893 Arr = Arr.drop_front(PaddedSize);
4894 }
4895
4896 if (!Arr.empty())
4897 Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
4898
4899 return Properties;
4900 }
4901
4902 struct GNUAbiTag {
4903 std::string OSName;
4904 std::string ABI;
4905 bool IsValid;
4906 };
4907
getGNUAbiTag(ArrayRef<uint8_t> Desc)4908 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
4909 typedef typename ELFT::Word Elf_Word;
4910
4911 ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
4912 reinterpret_cast<const Elf_Word *>(Desc.end()));
4913
4914 if (Words.size() < 4)
4915 return {"", "", /*IsValid=*/false};
4916
4917 static const char *OSNames[] = {
4918 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
4919 };
4920 StringRef OSName = "Unknown";
4921 if (Words[0] < array_lengthof(OSNames))
4922 OSName = OSNames[Words[0]];
4923 uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
4924 std::string str;
4925 raw_string_ostream ABI(str);
4926 ABI << Major << "." << Minor << "." << Patch;
4927 return {std::string(OSName), ABI.str(), /*IsValid=*/true};
4928 }
4929
getGNUBuildId(ArrayRef<uint8_t> Desc)4930 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
4931 std::string str;
4932 raw_string_ostream OS(str);
4933 for (uint8_t B : Desc)
4934 OS << format_hex_no_prefix(B, 2);
4935 return OS.str();
4936 }
4937
getGNUGoldVersion(ArrayRef<uint8_t> Desc)4938 static StringRef getGNUGoldVersion(ArrayRef<uint8_t> Desc) {
4939 return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
4940 }
4941
4942 template <typename ELFT>
printGNUNote(raw_ostream & OS,uint32_t NoteType,ArrayRef<uint8_t> Desc)4943 static bool printGNUNote(raw_ostream &OS, uint32_t NoteType,
4944 ArrayRef<uint8_t> Desc) {
4945 // Return true if we were able to pretty-print the note, false otherwise.
4946 switch (NoteType) {
4947 default:
4948 return false;
4949 case ELF::NT_GNU_ABI_TAG: {
4950 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
4951 if (!AbiTag.IsValid)
4952 OS << " <corrupt GNU_ABI_TAG>";
4953 else
4954 OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
4955 break;
4956 }
4957 case ELF::NT_GNU_BUILD_ID: {
4958 OS << " Build ID: " << getGNUBuildId(Desc);
4959 break;
4960 }
4961 case ELF::NT_GNU_GOLD_VERSION:
4962 OS << " Version: " << getGNUGoldVersion(Desc);
4963 break;
4964 case ELF::NT_GNU_PROPERTY_TYPE_0:
4965 OS << " Properties:";
4966 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
4967 OS << " " << Property << "\n";
4968 break;
4969 }
4970 OS << '\n';
4971 return true;
4972 }
4973
4974 static const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = {
4975 {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE},
4976 {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE},
4977 {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE},
4978 {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED},
4979 {"LA48", NT_FREEBSD_FCTL_LA48},
4980 {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE},
4981 };
4982
4983 struct FreeBSDNote {
4984 std::string Type;
4985 std::string Value;
4986 };
4987
4988 template <typename ELFT>
4989 static Optional<FreeBSDNote>
getFreeBSDNote(uint32_t NoteType,ArrayRef<uint8_t> Desc,bool IsCore)4990 getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) {
4991 if (IsCore)
4992 return None; // No pretty-printing yet.
4993 switch (NoteType) {
4994 case ELF::NT_FREEBSD_ABI_TAG:
4995 if (Desc.size() != 4)
4996 return None;
4997 return FreeBSDNote{
4998 "ABI tag",
4999 utostr(support::endian::read32<ELFT::TargetEndianness>(Desc.data()))};
5000 case ELF::NT_FREEBSD_ARCH_TAG:
5001 return FreeBSDNote{"Arch tag", toStringRef(Desc).str()};
5002 case ELF::NT_FREEBSD_FEATURE_CTL: {
5003 if (Desc.size() != 4)
5004 return None;
5005 unsigned Value =
5006 support::endian::read32<ELFT::TargetEndianness>(Desc.data());
5007 std::string FlagsStr;
5008 raw_string_ostream OS(FlagsStr);
5009 printFlags(Value, makeArrayRef(FreeBSDFeatureCtlFlags), OS);
5010 if (OS.str().empty())
5011 OS << "0x" << utohexstr(Value);
5012 else
5013 OS << "(0x" << utohexstr(Value) << ")";
5014 return FreeBSDNote{"Feature flags", OS.str()};
5015 }
5016 default:
5017 return None;
5018 }
5019 }
5020
5021 struct AMDNote {
5022 std::string Type;
5023 std::string Value;
5024 };
5025
5026 template <typename ELFT>
getAMDNote(uint32_t NoteType,ArrayRef<uint8_t> Desc)5027 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5028 switch (NoteType) {
5029 default:
5030 return {"", ""};
5031 case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: {
5032 struct CodeObjectVersion {
5033 uint32_t MajorVersion;
5034 uint32_t MinorVersion;
5035 };
5036 if (Desc.size() != sizeof(CodeObjectVersion))
5037 return {"AMD HSA Code Object Version",
5038 "Invalid AMD HSA Code Object Version"};
5039 std::string VersionString;
5040 raw_string_ostream StrOS(VersionString);
5041 auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data());
5042 StrOS << "[Major: " << Version->MajorVersion
5043 << ", Minor: " << Version->MinorVersion << "]";
5044 return {"AMD HSA Code Object Version", VersionString};
5045 }
5046 case ELF::NT_AMD_HSA_HSAIL: {
5047 struct HSAILProperties {
5048 uint32_t HSAILMajorVersion;
5049 uint32_t HSAILMinorVersion;
5050 uint8_t Profile;
5051 uint8_t MachineModel;
5052 uint8_t DefaultFloatRound;
5053 };
5054 if (Desc.size() != sizeof(HSAILProperties))
5055 return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"};
5056 auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data());
5057 std::string HSAILPropetiesString;
5058 raw_string_ostream StrOS(HSAILPropetiesString);
5059 StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion
5060 << ", HSAIL Minor: " << Properties->HSAILMinorVersion
5061 << ", Profile: " << uint32_t(Properties->Profile)
5062 << ", Machine Model: " << uint32_t(Properties->MachineModel)
5063 << ", Default Float Round: "
5064 << uint32_t(Properties->DefaultFloatRound) << "]";
5065 return {"AMD HSA HSAIL Properties", HSAILPropetiesString};
5066 }
5067 case ELF::NT_AMD_HSA_ISA_VERSION: {
5068 struct IsaVersion {
5069 uint16_t VendorNameSize;
5070 uint16_t ArchitectureNameSize;
5071 uint32_t Major;
5072 uint32_t Minor;
5073 uint32_t Stepping;
5074 };
5075 if (Desc.size() < sizeof(IsaVersion))
5076 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5077 auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data());
5078 if (Desc.size() < sizeof(IsaVersion) +
5079 Isa->VendorNameSize + Isa->ArchitectureNameSize ||
5080 Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0)
5081 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5082 std::string IsaString;
5083 raw_string_ostream StrOS(IsaString);
5084 StrOS << "[Vendor: "
5085 << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1)
5086 << ", Architecture: "
5087 << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize,
5088 Isa->ArchitectureNameSize - 1)
5089 << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor
5090 << ", Stepping: " << Isa->Stepping << "]";
5091 return {"AMD HSA ISA Version", IsaString};
5092 }
5093 case ELF::NT_AMD_HSA_METADATA: {
5094 if (Desc.size() == 0)
5095 return {"AMD HSA Metadata", ""};
5096 return {
5097 "AMD HSA Metadata",
5098 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)};
5099 }
5100 case ELF::NT_AMD_HSA_ISA_NAME: {
5101 if (Desc.size() == 0)
5102 return {"AMD HSA ISA Name", ""};
5103 return {
5104 "AMD HSA ISA Name",
5105 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
5106 }
5107 case ELF::NT_AMD_PAL_METADATA: {
5108 struct PALMetadata {
5109 uint32_t Key;
5110 uint32_t Value;
5111 };
5112 if (Desc.size() % sizeof(PALMetadata) != 0)
5113 return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"};
5114 auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data());
5115 std::string MetadataString;
5116 raw_string_ostream StrOS(MetadataString);
5117 for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) {
5118 StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]";
5119 }
5120 return {"AMD PAL Metadata", MetadataString};
5121 }
5122 }
5123 }
5124
5125 struct AMDGPUNote {
5126 std::string Type;
5127 std::string Value;
5128 };
5129
5130 template <typename ELFT>
getAMDGPUNote(uint32_t NoteType,ArrayRef<uint8_t> Desc)5131 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5132 switch (NoteType) {
5133 default:
5134 return {"", ""};
5135 case ELF::NT_AMDGPU_METADATA: {
5136 StringRef MsgPackString =
5137 StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5138 msgpack::Document MsgPackDoc;
5139 if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
5140 return {"", ""};
5141
5142 AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
5143 std::string MetadataString;
5144 if (!Verifier.verify(MsgPackDoc.getRoot()))
5145 MetadataString = "Invalid AMDGPU Metadata\n";
5146
5147 raw_string_ostream StrOS(MetadataString);
5148 if (MsgPackDoc.getRoot().isScalar()) {
5149 // TODO: passing a scalar root to toYAML() asserts:
5150 // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar &&
5151 // "plain scalar documents are not supported")
5152 // To avoid this crash we print the raw data instead.
5153 return {"", ""};
5154 }
5155 MsgPackDoc.toYAML(StrOS);
5156 return {"AMDGPU Metadata", StrOS.str()};
5157 }
5158 }
5159 }
5160
5161 struct CoreFileMapping {
5162 uint64_t Start, End, Offset;
5163 StringRef Filename;
5164 };
5165
5166 struct CoreNote {
5167 uint64_t PageSize;
5168 std::vector<CoreFileMapping> Mappings;
5169 };
5170
readCoreNote(DataExtractor Desc)5171 static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
5172 // Expected format of the NT_FILE note description:
5173 // 1. # of file mappings (call it N)
5174 // 2. Page size
5175 // 3. N (start, end, offset) triples
5176 // 4. N packed filenames (null delimited)
5177 // Each field is an Elf_Addr, except for filenames which are char* strings.
5178
5179 CoreNote Ret;
5180 const int Bytes = Desc.getAddressSize();
5181
5182 if (!Desc.isValidOffsetForAddress(2))
5183 return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) +
5184 " is too short, expected at least 0x" +
5185 Twine::utohexstr(Bytes * 2));
5186 if (Desc.getData().back() != 0)
5187 return createError("the note is not NUL terminated");
5188
5189 uint64_t DescOffset = 0;
5190 uint64_t FileCount = Desc.getAddress(&DescOffset);
5191 Ret.PageSize = Desc.getAddress(&DescOffset);
5192
5193 if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
5194 return createError("unable to read file mappings (found " +
5195 Twine(FileCount) + "): the note of size 0x" +
5196 Twine::utohexstr(Desc.size()) + " is too short");
5197
5198 uint64_t FilenamesOffset = 0;
5199 DataExtractor Filenames(
5200 Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
5201 Desc.isLittleEndian(), Desc.getAddressSize());
5202
5203 Ret.Mappings.resize(FileCount);
5204 size_t I = 0;
5205 for (CoreFileMapping &Mapping : Ret.Mappings) {
5206 ++I;
5207 if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
5208 return createError(
5209 "unable to read the file name for the mapping with index " +
5210 Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) +
5211 " is truncated");
5212 Mapping.Start = Desc.getAddress(&DescOffset);
5213 Mapping.End = Desc.getAddress(&DescOffset);
5214 Mapping.Offset = Desc.getAddress(&DescOffset);
5215 Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
5216 }
5217
5218 return Ret;
5219 }
5220
5221 template <typename ELFT>
printCoreNote(raw_ostream & OS,const CoreNote & Note)5222 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
5223 // Length of "0x<address>" string.
5224 const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
5225
5226 OS << " Page size: " << format_decimal(Note.PageSize, 0) << '\n';
5227 OS << " " << right_justify("Start", FieldWidth) << " "
5228 << right_justify("End", FieldWidth) << " "
5229 << right_justify("Page Offset", FieldWidth) << '\n';
5230 for (const CoreFileMapping &Mapping : Note.Mappings) {
5231 OS << " " << format_hex(Mapping.Start, FieldWidth) << " "
5232 << format_hex(Mapping.End, FieldWidth) << " "
5233 << format_hex(Mapping.Offset, FieldWidth) << "\n "
5234 << Mapping.Filename << '\n';
5235 }
5236 }
5237
5238 static const NoteType GenericNoteTypes[] = {
5239 {ELF::NT_VERSION, "NT_VERSION (version)"},
5240 {ELF::NT_ARCH, "NT_ARCH (architecture)"},
5241 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
5242 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
5243 };
5244
5245 static const NoteType GNUNoteTypes[] = {
5246 {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
5247 {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
5248 {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
5249 {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
5250 {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
5251 };
5252
5253 static const NoteType FreeBSDCoreNoteTypes[] = {
5254 {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
5255 {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
5256 {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
5257 {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
5258 {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
5259 {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
5260 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
5261 {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
5262 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
5263 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
5264 {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
5265 };
5266
5267 static const NoteType FreeBSDNoteTypes[] = {
5268 {ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"},
5269 {ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"},
5270 {ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"},
5271 {ELF::NT_FREEBSD_FEATURE_CTL,
5272 "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"},
5273 };
5274
5275 static const NoteType AMDNoteTypes[] = {
5276 {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION,
5277 "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"},
5278 {ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"},
5279 {ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"},
5280 {ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"},
5281 {ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"},
5282 {ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"},
5283 };
5284
5285 static const NoteType AMDGPUNoteTypes[] = {
5286 {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
5287 };
5288
5289 static const NoteType CoreNoteTypes[] = {
5290 {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
5291 {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
5292 {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
5293 {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
5294 {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
5295 {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
5296 {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
5297 {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
5298 {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
5299 {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
5300 {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
5301
5302 {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
5303 {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
5304 {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
5305 {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
5306 {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
5307 {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
5308 {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
5309 {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
5310 {ELF::NT_PPC_TM_CFPR,
5311 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
5312 {ELF::NT_PPC_TM_CVMX,
5313 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
5314 {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
5315 {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
5316 {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
5317 {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
5318 {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
5319
5320 {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
5321 {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
5322 {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
5323
5324 {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
5325 {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
5326 {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
5327 {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"},
5328 {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
5329 {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
5330 {ELF::NT_S390_LAST_BREAK,
5331 "NT_S390_LAST_BREAK (s390 last breaking event address)"},
5332 {ELF::NT_S390_SYSTEM_CALL,
5333 "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
5334 {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
5335 {ELF::NT_S390_VXRS_LOW,
5336 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
5337 {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
5338 {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
5339 {ELF::NT_S390_GS_BC,
5340 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
5341
5342 {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
5343 {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
5344 {ELF::NT_ARM_HW_BREAK,
5345 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
5346 {ELF::NT_ARM_HW_WATCH,
5347 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
5348
5349 {ELF::NT_FILE, "NT_FILE (mapped files)"},
5350 {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
5351 {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
5352 };
5353
5354 template <class ELFT>
getNoteTypeName(const typename ELFT::Note & Note,unsigned ELFType)5355 StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) {
5356 uint32_t Type = Note.getType();
5357 auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef {
5358 for (const NoteType &N : V)
5359 if (N.ID == Type)
5360 return N.Name;
5361 return "";
5362 };
5363
5364 StringRef Name = Note.getName();
5365 if (Name == "GNU")
5366 return FindNote(GNUNoteTypes);
5367 if (Name == "FreeBSD") {
5368 if (ELFType == ELF::ET_CORE) {
5369 // FreeBSD also places the generic core notes in the FreeBSD namespace.
5370 StringRef Result = FindNote(FreeBSDCoreNoteTypes);
5371 if (!Result.empty())
5372 return Result;
5373 return FindNote(CoreNoteTypes);
5374 } else {
5375 return FindNote(FreeBSDNoteTypes);
5376 }
5377 }
5378 if (Name == "AMD")
5379 return FindNote(AMDNoteTypes);
5380 if (Name == "AMDGPU")
5381 return FindNote(AMDGPUNoteTypes);
5382
5383 if (ELFType == ELF::ET_CORE)
5384 return FindNote(CoreNoteTypes);
5385 return FindNote(GenericNoteTypes);
5386 }
5387
5388 template <class ELFT>
printNotesHelper(const ELFDumper<ELFT> & Dumper,llvm::function_ref<void (Optional<StringRef>,typename ELFT::Off,typename ELFT::Addr)> StartNotesFn,llvm::function_ref<Error (const typename ELFT::Note &,bool)> ProcessNoteFn,llvm::function_ref<void ()> FinishNotesFn)5389 static void printNotesHelper(
5390 const ELFDumper<ELFT> &Dumper,
5391 llvm::function_ref<void(Optional<StringRef>, typename ELFT::Off,
5392 typename ELFT::Addr)>
5393 StartNotesFn,
5394 llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn,
5395 llvm::function_ref<void()> FinishNotesFn) {
5396 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
5397 bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE;
5398
5399 ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections());
5400 if (!IsCoreFile && !Sections.empty()) {
5401 for (const typename ELFT::Shdr &S : Sections) {
5402 if (S.sh_type != SHT_NOTE)
5403 continue;
5404 StartNotesFn(expectedToOptional(Obj.getSectionName(S)), S.sh_offset,
5405 S.sh_size);
5406 Error Err = Error::success();
5407 size_t I = 0;
5408 for (const typename ELFT::Note Note : Obj.notes(S, Err)) {
5409 if (Error E = ProcessNoteFn(Note, IsCoreFile))
5410 Dumper.reportUniqueWarning(
5411 "unable to read note with index " + Twine(I) + " from the " +
5412 describe(Obj, S) + ": " + toString(std::move(E)));
5413 ++I;
5414 }
5415 if (Err)
5416 Dumper.reportUniqueWarning("unable to read notes from the " +
5417 describe(Obj, S) + ": " +
5418 toString(std::move(Err)));
5419 FinishNotesFn();
5420 }
5421 return;
5422 }
5423
5424 Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers();
5425 if (!PhdrsOrErr) {
5426 Dumper.reportUniqueWarning(
5427 "unable to read program headers to locate the PT_NOTE segment: " +
5428 toString(PhdrsOrErr.takeError()));
5429 return;
5430 }
5431
5432 for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) {
5433 const typename ELFT::Phdr &P = (*PhdrsOrErr)[I];
5434 if (P.p_type != PT_NOTE)
5435 continue;
5436 StartNotesFn(/*SecName=*/None, P.p_offset, P.p_filesz);
5437 Error Err = Error::success();
5438 size_t Index = 0;
5439 for (const typename ELFT::Note Note : Obj.notes(P, Err)) {
5440 if (Error E = ProcessNoteFn(Note, IsCoreFile))
5441 Dumper.reportUniqueWarning("unable to read note with index " +
5442 Twine(Index) +
5443 " from the PT_NOTE segment with index " +
5444 Twine(I) + ": " + toString(std::move(E)));
5445 ++Index;
5446 }
5447 if (Err)
5448 Dumper.reportUniqueWarning(
5449 "unable to read notes from the PT_NOTE segment with index " +
5450 Twine(I) + ": " + toString(std::move(Err)));
5451 FinishNotesFn();
5452 }
5453 }
5454
printNotes()5455 template <class ELFT> void GNUELFDumper<ELFT>::printNotes() {
5456 bool IsFirstHeader = true;
5457 auto PrintHeader = [&](Optional<StringRef> SecName,
5458 const typename ELFT::Off Offset,
5459 const typename ELFT::Addr Size) {
5460 // Print a newline between notes sections to match GNU readelf.
5461 if (!IsFirstHeader) {
5462 OS << '\n';
5463 } else {
5464 IsFirstHeader = false;
5465 }
5466
5467 OS << "Displaying notes found ";
5468
5469 if (SecName)
5470 OS << "in: " << *SecName << "\n";
5471 else
5472 OS << "at file offset " << format_hex(Offset, 10) << " with length "
5473 << format_hex(Size, 10) << ":\n";
5474
5475 OS << " Owner Data size \tDescription\n";
5476 };
5477
5478 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
5479 StringRef Name = Note.getName();
5480 ArrayRef<uint8_t> Descriptor = Note.getDesc();
5481 Elf_Word Type = Note.getType();
5482
5483 // Print the note owner/type.
5484 OS << " " << left_justify(Name, 20) << ' '
5485 << format_hex(Descriptor.size(), 10) << '\t';
5486
5487 StringRef NoteType =
5488 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
5489 if (!NoteType.empty())
5490 OS << NoteType << '\n';
5491 else
5492 OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
5493
5494 // Print the description, or fallback to printing raw bytes for unknown
5495 // owners/if we fail to pretty-print the contents.
5496 if (Name == "GNU") {
5497 if (printGNUNote<ELFT>(OS, Type, Descriptor))
5498 return Error::success();
5499 } else if (Name == "FreeBSD") {
5500 if (Optional<FreeBSDNote> N =
5501 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
5502 OS << " " << N->Type << ": " << N->Value << '\n';
5503 return Error::success();
5504 }
5505 } else if (Name == "AMD") {
5506 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
5507 if (!N.Type.empty()) {
5508 OS << " " << N.Type << ":\n " << N.Value << '\n';
5509 return Error::success();
5510 }
5511 } else if (Name == "AMDGPU") {
5512 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
5513 if (!N.Type.empty()) {
5514 OS << " " << N.Type << ":\n " << N.Value << '\n';
5515 return Error::success();
5516 }
5517 } else if (Name == "CORE") {
5518 if (Type == ELF::NT_FILE) {
5519 DataExtractor DescExtractor(Descriptor,
5520 ELFT::TargetEndianness == support::little,
5521 sizeof(Elf_Addr));
5522 if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) {
5523 printCoreNote<ELFT>(OS, *NoteOrErr);
5524 return Error::success();
5525 } else {
5526 return NoteOrErr.takeError();
5527 }
5528 }
5529 }
5530 if (!Descriptor.empty()) {
5531 OS << " description data:";
5532 for (uint8_t B : Descriptor)
5533 OS << " " << format("%02x", B);
5534 OS << '\n';
5535 }
5536 return Error::success();
5537 };
5538
5539 printNotesHelper(*this, PrintHeader, ProcessNote, []() {});
5540 }
5541
printELFLinkerOptions()5542 template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() {
5543 OS << "printELFLinkerOptions not implemented!\n";
5544 }
5545
5546 template <class ELFT>
printDependentLibsHelper(function_ref<void (const Elf_Shdr &)> OnSectionStart,function_ref<void (StringRef,uint64_t)> OnLibEntry)5547 void ELFDumper<ELFT>::printDependentLibsHelper(
5548 function_ref<void(const Elf_Shdr &)> OnSectionStart,
5549 function_ref<void(StringRef, uint64_t)> OnLibEntry) {
5550 auto Warn = [this](unsigned SecNdx, StringRef Msg) {
5551 this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
5552 Twine(SecNdx) + " is broken: " + Msg);
5553 };
5554
5555 unsigned I = -1;
5556 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
5557 ++I;
5558 if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
5559 continue;
5560
5561 OnSectionStart(Shdr);
5562
5563 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr);
5564 if (!ContentsOrErr) {
5565 Warn(I, toString(ContentsOrErr.takeError()));
5566 continue;
5567 }
5568
5569 ArrayRef<uint8_t> Contents = *ContentsOrErr;
5570 if (!Contents.empty() && Contents.back() != 0) {
5571 Warn(I, "the content is not null-terminated");
5572 continue;
5573 }
5574
5575 for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
5576 StringRef Lib((const char *)I);
5577 OnLibEntry(Lib, I - Contents.begin());
5578 I += Lib.size() + 1;
5579 }
5580 }
5581 }
5582
5583 template <class ELFT>
forEachRelocationDo(const Elf_Shdr & Sec,bool RawRelr,llvm::function_ref<void (const Relocation<ELFT> &,unsigned,const Elf_Shdr &,const Elf_Shdr *)> RelRelaFn,llvm::function_ref<void (const Elf_Relr &)> RelrFn)5584 void ELFDumper<ELFT>::forEachRelocationDo(
5585 const Elf_Shdr &Sec, bool RawRelr,
5586 llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
5587 const Elf_Shdr &, const Elf_Shdr *)>
5588 RelRelaFn,
5589 llvm::function_ref<void(const Elf_Relr &)> RelrFn) {
5590 auto Warn = [&](Error &&E,
5591 const Twine &Prefix = "unable to read relocations from") {
5592 this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " +
5593 toString(std::move(E)));
5594 };
5595
5596 // SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table.
5597 // For them we should not treat the value of the sh_link field as an index of
5598 // a symbol table.
5599 const Elf_Shdr *SymTab;
5600 if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR) {
5601 Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link);
5602 if (!SymTabOrErr) {
5603 Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for");
5604 return;
5605 }
5606 SymTab = *SymTabOrErr;
5607 }
5608
5609 unsigned RelNdx = 0;
5610 const bool IsMips64EL = this->Obj.isMips64EL();
5611 switch (Sec.sh_type) {
5612 case ELF::SHT_REL:
5613 if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) {
5614 for (const Elf_Rel &R : *RangeOrErr)
5615 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5616 } else {
5617 Warn(RangeOrErr.takeError());
5618 }
5619 break;
5620 case ELF::SHT_RELA:
5621 if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) {
5622 for (const Elf_Rela &R : *RangeOrErr)
5623 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5624 } else {
5625 Warn(RangeOrErr.takeError());
5626 }
5627 break;
5628 case ELF::SHT_RELR:
5629 case ELF::SHT_ANDROID_RELR: {
5630 Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec);
5631 if (!RangeOrErr) {
5632 Warn(RangeOrErr.takeError());
5633 break;
5634 }
5635 if (RawRelr) {
5636 for (const Elf_Relr &R : *RangeOrErr)
5637 RelrFn(R);
5638 break;
5639 }
5640
5641 for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr))
5642 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec,
5643 /*SymTab=*/nullptr);
5644 break;
5645 }
5646 case ELF::SHT_ANDROID_REL:
5647 case ELF::SHT_ANDROID_RELA:
5648 if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) {
5649 for (const Elf_Rela &R : *RelasOrErr)
5650 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5651 } else {
5652 Warn(RelasOrErr.takeError());
5653 }
5654 break;
5655 }
5656 }
5657
5658 template <class ELFT>
getPrintableSectionName(const Elf_Shdr & Sec) const5659 StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const {
5660 StringRef Name = "<?>";
5661 if (Expected<StringRef> SecNameOrErr =
5662 Obj.getSectionName(Sec, this->WarningHandler))
5663 Name = *SecNameOrErr;
5664 else
5665 this->reportUniqueWarning("unable to get the name of " + describe(Sec) +
5666 ": " + toString(SecNameOrErr.takeError()));
5667 return Name;
5668 }
5669
printDependentLibs()5670 template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() {
5671 bool SectionStarted = false;
5672 struct NameOffset {
5673 StringRef Name;
5674 uint64_t Offset;
5675 };
5676 std::vector<NameOffset> SecEntries;
5677 NameOffset Current;
5678 auto PrintSection = [&]() {
5679 OS << "Dependent libraries section " << Current.Name << " at offset "
5680 << format_hex(Current.Offset, 1) << " contains " << SecEntries.size()
5681 << " entries:\n";
5682 for (NameOffset Entry : SecEntries)
5683 OS << " [" << format("%6" PRIx64, Entry.Offset) << "] " << Entry.Name
5684 << "\n";
5685 OS << "\n";
5686 SecEntries.clear();
5687 };
5688
5689 auto OnSectionStart = [&](const Elf_Shdr &Shdr) {
5690 if (SectionStarted)
5691 PrintSection();
5692 SectionStarted = true;
5693 Current.Offset = Shdr.sh_offset;
5694 Current.Name = this->getPrintableSectionName(Shdr);
5695 };
5696 auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) {
5697 SecEntries.push_back(NameOffset{Lib, Offset});
5698 };
5699
5700 this->printDependentLibsHelper(OnSectionStart, OnLibEntry);
5701 if (SectionStarted)
5702 PrintSection();
5703 }
5704
5705 template <class ELFT>
printFunctionStackSize(uint64_t SymValue,Optional<const Elf_Shdr * > FunctionSec,const Elf_Shdr & StackSizeSec,DataExtractor Data,uint64_t * Offset)5706 bool ELFDumper<ELFT>::printFunctionStackSize(
5707 uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec,
5708 const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) {
5709 uint32_t FuncSymIndex = 0;
5710 if (this->DotSymtabSec) {
5711 if (Expected<Elf_Sym_Range> SymsOrError = Obj.symbols(this->DotSymtabSec)) {
5712 uint32_t Index = (uint32_t)-1;
5713 for (const Elf_Sym &Sym : *SymsOrError) {
5714 ++Index;
5715
5716 if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC)
5717 continue;
5718
5719 if (Expected<uint64_t> SymAddrOrErr =
5720 ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress()) {
5721 if (SymValue != *SymAddrOrErr)
5722 continue;
5723 } else {
5724 std::string Name = this->getStaticSymbolName(Index);
5725 reportUniqueWarning("unable to get address of symbol '" + Name +
5726 "': " + toString(SymAddrOrErr.takeError()));
5727 break;
5728 }
5729
5730 // Check if the symbol is in the right section. FunctionSec == None
5731 // means "any section".
5732 if (FunctionSec) {
5733 if (Expected<const Elf_Shdr *> SecOrErr =
5734 Obj.getSection(Sym, this->DotSymtabSec,
5735 this->getShndxTable(this->DotSymtabSec))) {
5736 if (*FunctionSec != *SecOrErr)
5737 continue;
5738 } else {
5739 std::string Name = this->getStaticSymbolName(Index);
5740 // Note: it is impossible to trigger this error currently, it is
5741 // untested.
5742 reportUniqueWarning("unable to get section of symbol '" + Name +
5743 "': " + toString(SecOrErr.takeError()));
5744 break;
5745 }
5746 }
5747
5748 FuncSymIndex = Index;
5749 break;
5750 }
5751 } else {
5752 reportUniqueWarning("unable to read the symbol table: " +
5753 toString(SymsOrError.takeError()));
5754 }
5755 }
5756
5757 std::string FuncName = "?";
5758 if (!FuncSymIndex)
5759 reportUniqueWarning(
5760 "could not identify function symbol for stack size entry in " +
5761 describe(StackSizeSec));
5762 else
5763 FuncName = this->getStaticSymbolName(FuncSymIndex);
5764
5765 // Extract the size. The expectation is that Offset is pointing to the right
5766 // place, i.e. past the function address.
5767 Error Err = Error::success();
5768 uint64_t StackSize = Data.getULEB128(Offset, &Err);
5769 if (Err) {
5770 reportUniqueWarning("could not extract a valid stack size from " +
5771 describe(StackSizeSec) + ": " +
5772 toString(std::move(Err)));
5773 return false;
5774 }
5775 printStackSizeEntry(StackSize, FuncName);
5776 return true;
5777 }
5778
5779 template <class ELFT>
printStackSizeEntry(uint64_t Size,StringRef FuncName)5780 void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
5781 StringRef FuncName) {
5782 OS.PadToColumn(2);
5783 OS << format_decimal(Size, 11);
5784 OS.PadToColumn(18);
5785 OS << FuncName << "\n";
5786 }
5787
5788 template <class ELFT>
printStackSize(const Relocation<ELFT> & R,const Elf_Shdr & RelocSec,unsigned Ndx,const Elf_Shdr * SymTab,const Elf_Shdr * FunctionSec,const Elf_Shdr & StackSizeSec,const RelocationResolver & Resolver,DataExtractor Data)5789 void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R,
5790 const Elf_Shdr &RelocSec, unsigned Ndx,
5791 const Elf_Shdr *SymTab,
5792 const Elf_Shdr *FunctionSec,
5793 const Elf_Shdr &StackSizeSec,
5794 const RelocationResolver &Resolver,
5795 DataExtractor Data) {
5796 // This function ignores potentially erroneous input, unless it is directly
5797 // related to stack size reporting.
5798 const Elf_Sym *Sym = nullptr;
5799 Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab);
5800 if (!TargetOrErr)
5801 reportUniqueWarning("unable to get the target of relocation with index " +
5802 Twine(Ndx) + " in " + describe(RelocSec) + ": " +
5803 toString(TargetOrErr.takeError()));
5804 else
5805 Sym = TargetOrErr->Sym;
5806
5807 uint64_t RelocSymValue = 0;
5808 if (Sym) {
5809 Expected<const Elf_Shdr *> SectionOrErr =
5810 this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab));
5811 if (!SectionOrErr) {
5812 reportUniqueWarning(
5813 "cannot identify the section for relocation symbol '" +
5814 (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError()));
5815 } else if (*SectionOrErr != FunctionSec) {
5816 reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name +
5817 "' is not in the expected section");
5818 // Pretend that the symbol is in the correct section and report its
5819 // stack size anyway.
5820 FunctionSec = *SectionOrErr;
5821 }
5822
5823 RelocSymValue = Sym->st_value;
5824 }
5825
5826 uint64_t Offset = R.Offset;
5827 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
5828 reportUniqueWarning("found invalid relocation offset (0x" +
5829 Twine::utohexstr(Offset) + ") into " +
5830 describe(StackSizeSec) +
5831 " while trying to extract a stack size entry");
5832 return;
5833 }
5834
5835 uint64_t SymValue =
5836 Resolver(R.Type, Offset, RelocSymValue, Data.getAddress(&Offset),
5837 R.Addend.getValueOr(0));
5838 this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data,
5839 &Offset);
5840 }
5841
5842 template <class ELFT>
printNonRelocatableStackSizes(std::function<void ()> PrintHeader)5843 void ELFDumper<ELFT>::printNonRelocatableStackSizes(
5844 std::function<void()> PrintHeader) {
5845 // This function ignores potentially erroneous input, unless it is directly
5846 // related to stack size reporting.
5847 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
5848 if (this->getPrintableSectionName(Sec) != ".stack_sizes")
5849 continue;
5850 PrintHeader();
5851 ArrayRef<uint8_t> Contents =
5852 unwrapOrError(this->FileName, Obj.getSectionContents(Sec));
5853 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
5854 uint64_t Offset = 0;
5855 while (Offset < Contents.size()) {
5856 // The function address is followed by a ULEB representing the stack
5857 // size. Check for an extra byte before we try to process the entry.
5858 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
5859 reportUniqueWarning(
5860 describe(Sec) +
5861 " ended while trying to extract a stack size entry");
5862 break;
5863 }
5864 uint64_t SymValue = Data.getAddress(&Offset);
5865 if (!printFunctionStackSize(SymValue, /*FunctionSec=*/None, Sec, Data,
5866 &Offset))
5867 break;
5868 }
5869 }
5870 }
5871
5872 template <class ELFT>
printRelocatableStackSizes(std::function<void ()> PrintHeader)5873 void ELFDumper<ELFT>::printRelocatableStackSizes(
5874 std::function<void()> PrintHeader) {
5875 // Build a map between stack size sections and their corresponding relocation
5876 // sections.
5877 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> StackSizeRelocMap;
5878 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
5879 StringRef SectionName;
5880 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec))
5881 SectionName = *NameOrErr;
5882 else
5883 consumeError(NameOrErr.takeError());
5884
5885 // A stack size section that we haven't encountered yet is mapped to the
5886 // null section until we find its corresponding relocation section.
5887 if (SectionName == ".stack_sizes")
5888 if (StackSizeRelocMap
5889 .insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr))
5890 .second)
5891 continue;
5892
5893 // Check relocation sections if they are relocating contents of a
5894 // stack sizes section.
5895 if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL)
5896 continue;
5897
5898 Expected<const Elf_Shdr *> RelSecOrErr = Obj.getSection(Sec.sh_info);
5899 if (!RelSecOrErr) {
5900 reportUniqueWarning(describe(Sec) +
5901 ": failed to get a relocated section: " +
5902 toString(RelSecOrErr.takeError()));
5903 continue;
5904 }
5905
5906 const Elf_Shdr *ContentsSec = *RelSecOrErr;
5907 if (this->getPrintableSectionName(**RelSecOrErr) != ".stack_sizes")
5908 continue;
5909
5910 // Insert a mapping from the stack sizes section to its relocation section.
5911 StackSizeRelocMap[ContentsSec] = &Sec;
5912 }
5913
5914 for (const auto &StackSizeMapEntry : StackSizeRelocMap) {
5915 PrintHeader();
5916 const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first;
5917 const Elf_Shdr *RelocSec = StackSizeMapEntry.second;
5918
5919 // Warn about stack size sections without a relocation section.
5920 if (!RelocSec) {
5921 reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) +
5922 ") does not have a corresponding "
5923 "relocation section"),
5924 FileName);
5925 continue;
5926 }
5927
5928 // A .stack_sizes section header's sh_link field is supposed to point
5929 // to the section that contains the functions whose stack sizes are
5930 // described in it.
5931 const Elf_Shdr *FunctionSec = unwrapOrError(
5932 this->FileName, Obj.getSection(StackSizesELFSec->sh_link));
5933
5934 SupportsRelocation IsSupportedFn;
5935 RelocationResolver Resolver;
5936 std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF);
5937 ArrayRef<uint8_t> Contents =
5938 unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec));
5939 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
5940
5941 forEachRelocationDo(
5942 *RelocSec, /*RawRelr=*/false,
5943 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
5944 const Elf_Shdr *SymTab) {
5945 if (!IsSupportedFn || !IsSupportedFn(R.Type)) {
5946 reportUniqueWarning(
5947 describe(*RelocSec) +
5948 " contains an unsupported relocation with index " + Twine(Ndx) +
5949 ": " + Obj.getRelocationTypeName(R.Type));
5950 return;
5951 }
5952
5953 this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec,
5954 *StackSizesELFSec, Resolver, Data);
5955 },
5956 [](const Elf_Relr &) {
5957 llvm_unreachable("can't get here, because we only support "
5958 "SHT_REL/SHT_RELA sections");
5959 });
5960 }
5961 }
5962
5963 template <class ELFT>
printStackSizes()5964 void GNUELFDumper<ELFT>::printStackSizes() {
5965 bool HeaderHasBeenPrinted = false;
5966 auto PrintHeader = [&]() {
5967 if (HeaderHasBeenPrinted)
5968 return;
5969 OS << "\nStack Sizes:\n";
5970 OS.PadToColumn(9);
5971 OS << "Size";
5972 OS.PadToColumn(18);
5973 OS << "Function\n";
5974 HeaderHasBeenPrinted = true;
5975 };
5976
5977 // For non-relocatable objects, look directly for sections whose name starts
5978 // with .stack_sizes and process the contents.
5979 if (this->Obj.getHeader().e_type == ELF::ET_REL)
5980 this->printRelocatableStackSizes(PrintHeader);
5981 else
5982 this->printNonRelocatableStackSizes(PrintHeader);
5983 }
5984
5985 template <class ELFT>
printMipsGOT(const MipsGOTParser<ELFT> & Parser)5986 void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
5987 size_t Bias = ELFT::Is64Bits ? 8 : 0;
5988 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
5989 OS.PadToColumn(2);
5990 OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
5991 OS.PadToColumn(11 + Bias);
5992 OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
5993 OS.PadToColumn(22 + Bias);
5994 OS << format_hex_no_prefix(*E, 8 + Bias);
5995 OS.PadToColumn(31 + 2 * Bias);
5996 OS << Purpose << "\n";
5997 };
5998
5999 OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
6000 OS << " Canonical gp value: "
6001 << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
6002
6003 OS << " Reserved entries:\n";
6004 if (ELFT::Is64Bits)
6005 OS << " Address Access Initial Purpose\n";
6006 else
6007 OS << " Address Access Initial Purpose\n";
6008 PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
6009 if (Parser.getGotModulePointer())
6010 PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
6011
6012 if (!Parser.getLocalEntries().empty()) {
6013 OS << "\n";
6014 OS << " Local entries:\n";
6015 if (ELFT::Is64Bits)
6016 OS << " Address Access Initial\n";
6017 else
6018 OS << " Address Access Initial\n";
6019 for (auto &E : Parser.getLocalEntries())
6020 PrintEntry(&E, "");
6021 }
6022
6023 if (Parser.IsStatic)
6024 return;
6025
6026 if (!Parser.getGlobalEntries().empty()) {
6027 OS << "\n";
6028 OS << " Global entries:\n";
6029 if (ELFT::Is64Bits)
6030 OS << " Address Access Initial Sym.Val."
6031 << " Type Ndx Name\n";
6032 else
6033 OS << " Address Access Initial Sym.Val. Type Ndx Name\n";
6034
6035 DataRegion<Elf_Word> ShndxTable(
6036 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6037 for (auto &E : Parser.getGlobalEntries()) {
6038 const Elf_Sym &Sym = *Parser.getGotSym(&E);
6039 const Elf_Sym &FirstSym = this->dynamic_symbols()[0];
6040 std::string SymName = this->getFullSymbolName(
6041 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6042
6043 OS.PadToColumn(2);
6044 OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
6045 OS.PadToColumn(11 + Bias);
6046 OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
6047 OS.PadToColumn(22 + Bias);
6048 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6049 OS.PadToColumn(31 + 2 * Bias);
6050 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6051 OS.PadToColumn(40 + 3 * Bias);
6052 OS << printEnum(Sym.getType(), makeArrayRef(ElfSymbolTypes));
6053 OS.PadToColumn(48 + 3 * Bias);
6054 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6055 ShndxTable);
6056 OS.PadToColumn(52 + 3 * Bias);
6057 OS << SymName << "\n";
6058 }
6059 }
6060
6061 if (!Parser.getOtherEntries().empty())
6062 OS << "\n Number of TLS and multi-GOT entries "
6063 << Parser.getOtherEntries().size() << "\n";
6064 }
6065
6066 template <class ELFT>
printMipsPLT(const MipsGOTParser<ELFT> & Parser)6067 void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6068 size_t Bias = ELFT::Is64Bits ? 8 : 0;
6069 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6070 OS.PadToColumn(2);
6071 OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
6072 OS.PadToColumn(11 + Bias);
6073 OS << format_hex_no_prefix(*E, 8 + Bias);
6074 OS.PadToColumn(20 + 2 * Bias);
6075 OS << Purpose << "\n";
6076 };
6077
6078 OS << "PLT GOT:\n\n";
6079
6080 OS << " Reserved entries:\n";
6081 OS << " Address Initial Purpose\n";
6082 PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
6083 if (Parser.getPltModulePointer())
6084 PrintEntry(Parser.getPltModulePointer(), "Module pointer");
6085
6086 if (!Parser.getPltEntries().empty()) {
6087 OS << "\n";
6088 OS << " Entries:\n";
6089 OS << " Address Initial Sym.Val. Type Ndx Name\n";
6090 DataRegion<Elf_Word> ShndxTable(
6091 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6092 for (auto &E : Parser.getPltEntries()) {
6093 const Elf_Sym &Sym = *Parser.getPltSym(&E);
6094 const Elf_Sym &FirstSym = *cantFail(
6095 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
6096 std::string SymName = this->getFullSymbolName(
6097 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6098
6099 OS.PadToColumn(2);
6100 OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
6101 OS.PadToColumn(11 + Bias);
6102 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6103 OS.PadToColumn(20 + 2 * Bias);
6104 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6105 OS.PadToColumn(29 + 3 * Bias);
6106 OS << printEnum(Sym.getType(), makeArrayRef(ElfSymbolTypes));
6107 OS.PadToColumn(37 + 3 * Bias);
6108 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6109 ShndxTable);
6110 OS.PadToColumn(41 + 3 * Bias);
6111 OS << SymName << "\n";
6112 }
6113 }
6114 }
6115
6116 template <class ELFT>
6117 Expected<const Elf_Mips_ABIFlags<ELFT> *>
getMipsAbiFlagsSection(const ELFDumper<ELFT> & Dumper)6118 getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) {
6119 const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags");
6120 if (Sec == nullptr)
6121 return nullptr;
6122
6123 constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: ";
6124 Expected<ArrayRef<uint8_t>> DataOrErr =
6125 Dumper.getElfObject().getELFFile().getSectionContents(*Sec);
6126 if (!DataOrErr)
6127 return createError(ErrPrefix + toString(DataOrErr.takeError()));
6128
6129 if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
6130 return createError(ErrPrefix + "it has a wrong size (" +
6131 Twine(DataOrErr->size()) + ")");
6132 return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data());
6133 }
6134
printMipsABIFlags()6135 template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() {
6136 const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr;
6137 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
6138 getMipsAbiFlagsSection(*this))
6139 Flags = *SecOrErr;
6140 else
6141 this->reportUniqueWarning(SecOrErr.takeError());
6142 if (!Flags)
6143 return;
6144
6145 OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
6146 OS << "ISA: MIPS" << int(Flags->isa_level);
6147 if (Flags->isa_rev > 1)
6148 OS << "r" << int(Flags->isa_rev);
6149 OS << "\n";
6150 OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
6151 OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
6152 OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
6153 OS << "FP ABI: " << printEnum(Flags->fp_abi, makeArrayRef(ElfMipsFpABIType))
6154 << "\n";
6155 OS << "ISA Extension: "
6156 << printEnum(Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)) << "\n";
6157 if (Flags->ases == 0)
6158 OS << "ASEs: None\n";
6159 else
6160 // FIXME: Print each flag on a separate line.
6161 OS << "ASEs: " << printFlags(Flags->ases, makeArrayRef(ElfMipsASEFlags))
6162 << "\n";
6163 OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
6164 OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
6165 OS << "\n";
6166 }
6167
printFileHeaders()6168 template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() {
6169 const Elf_Ehdr &E = this->Obj.getHeader();
6170 {
6171 DictScope D(W, "ElfHeader");
6172 {
6173 DictScope D(W, "Ident");
6174 W.printBinary("Magic", makeArrayRef(E.e_ident).slice(ELF::EI_MAG0, 4));
6175 W.printEnum("Class", E.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
6176 W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA],
6177 makeArrayRef(ElfDataEncoding));
6178 W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]);
6179
6180 auto OSABI = makeArrayRef(ElfOSABI);
6181 if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
6182 E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
6183 switch (E.e_machine) {
6184 case ELF::EM_AMDGPU:
6185 OSABI = makeArrayRef(AMDGPUElfOSABI);
6186 break;
6187 case ELF::EM_ARM:
6188 OSABI = makeArrayRef(ARMElfOSABI);
6189 break;
6190 case ELF::EM_TI_C6000:
6191 OSABI = makeArrayRef(C6000ElfOSABI);
6192 break;
6193 }
6194 }
6195 W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI);
6196 W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]);
6197 W.printBinary("Unused", makeArrayRef(E.e_ident).slice(ELF::EI_PAD));
6198 }
6199
6200 std::string TypeStr;
6201 if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) {
6202 TypeStr = Ent->Name.str();
6203 } else {
6204 if (E.e_type >= ET_LOPROC)
6205 TypeStr = "Processor Specific";
6206 else if (E.e_type >= ET_LOOS)
6207 TypeStr = "OS Specific";
6208 else
6209 TypeStr = "Unknown";
6210 }
6211 W.printString("Type", TypeStr + " (0x" + to_hexString(E.e_type) + ")");
6212
6213 W.printEnum("Machine", E.e_machine, makeArrayRef(ElfMachineType));
6214 W.printNumber("Version", E.e_version);
6215 W.printHex("Entry", E.e_entry);
6216 W.printHex("ProgramHeaderOffset", E.e_phoff);
6217 W.printHex("SectionHeaderOffset", E.e_shoff);
6218 if (E.e_machine == EM_MIPS)
6219 W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderMipsFlags),
6220 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
6221 unsigned(ELF::EF_MIPS_MACH));
6222 else if (E.e_machine == EM_AMDGPU) {
6223 switch (E.e_ident[ELF::EI_ABIVERSION]) {
6224 default:
6225 W.printHex("Flags", E.e_flags);
6226 break;
6227 case 0:
6228 // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
6229 LLVM_FALLTHROUGH;
6230 case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
6231 W.printFlags("Flags", E.e_flags,
6232 makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion3),
6233 unsigned(ELF::EF_AMDGPU_MACH));
6234 break;
6235 case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
6236 W.printFlags("Flags", E.e_flags,
6237 makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
6238 unsigned(ELF::EF_AMDGPU_MACH),
6239 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
6240 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4));
6241 break;
6242 }
6243 } else if (E.e_machine == EM_RISCV)
6244 W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
6245 else if (E.e_machine == EM_AVR)
6246 W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderAVRFlags),
6247 unsigned(ELF::EF_AVR_ARCH_MASK));
6248 else
6249 W.printFlags("Flags", E.e_flags);
6250 W.printNumber("HeaderSize", E.e_ehsize);
6251 W.printNumber("ProgramHeaderEntrySize", E.e_phentsize);
6252 W.printNumber("ProgramHeaderCount", E.e_phnum);
6253 W.printNumber("SectionHeaderEntrySize", E.e_shentsize);
6254 W.printString("SectionHeaderCount",
6255 getSectionHeadersNumString(this->Obj, this->FileName));
6256 W.printString("StringTableSectionIndex",
6257 getSectionHeaderTableIndexString(this->Obj, this->FileName));
6258 }
6259 }
6260
printGroupSections()6261 template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() {
6262 DictScope Lists(W, "Groups");
6263 std::vector<GroupSection> V = this->getGroups();
6264 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
6265 for (const GroupSection &G : V) {
6266 DictScope D(W, "Group");
6267 W.printNumber("Name", G.Name, G.ShName);
6268 W.printNumber("Index", G.Index);
6269 W.printNumber("Link", G.Link);
6270 W.printNumber("Info", G.Info);
6271 W.printHex("Type", getGroupType(G.Type), G.Type);
6272 W.startLine() << "Signature: " << G.Signature << "\n";
6273
6274 ListScope L(W, "Section(s) in group");
6275 for (const GroupMember &GM : G.Members) {
6276 const GroupSection *MainGroup = Map[GM.Index];
6277 if (MainGroup != &G)
6278 this->reportUniqueWarning(
6279 "section with index " + Twine(GM.Index) +
6280 ", included in the group section with index " +
6281 Twine(MainGroup->Index) +
6282 ", was also found in the group section with index " +
6283 Twine(G.Index));
6284 W.startLine() << GM.Name << " (" << GM.Index << ")\n";
6285 }
6286 }
6287
6288 if (V.empty())
6289 W.startLine() << "There are no group sections in the file.\n";
6290 }
6291
printRelocations()6292 template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() {
6293 ListScope D(W, "Relocations");
6294
6295 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6296 if (!isRelocationSec<ELFT>(Sec))
6297 continue;
6298
6299 StringRef Name = this->getPrintableSectionName(Sec);
6300 unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front();
6301 W.startLine() << "Section (" << SecNdx << ") " << Name << " {\n";
6302 W.indent();
6303 this->printRelocationsHelper(Sec);
6304 W.unindent();
6305 W.startLine() << "}\n";
6306 }
6307 }
6308
6309 template <class ELFT>
printRelrReloc(const Elf_Relr & R)6310 void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
6311 W.startLine() << W.hex(R) << "\n";
6312 }
6313
6314 template <class ELFT>
printRelRelaReloc(const Relocation<ELFT> & R,const RelSymbol<ELFT> & RelSym)6315 void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
6316 const RelSymbol<ELFT> &RelSym) {
6317 StringRef SymbolName = RelSym.Name;
6318 SmallString<32> RelocName;
6319 this->Obj.getRelocationTypeName(R.Type, RelocName);
6320
6321 if (opts::ExpandRelocs) {
6322 DictScope Group(W, "Relocation");
6323 W.printHex("Offset", R.Offset);
6324 W.printNumber("Type", RelocName, R.Type);
6325 W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol);
6326 if (R.Addend)
6327 W.printHex("Addend", (uintX_t)*R.Addend);
6328 } else {
6329 raw_ostream &OS = W.startLine();
6330 OS << W.hex(R.Offset) << " " << RelocName << " "
6331 << (!SymbolName.empty() ? SymbolName : "-");
6332 if (R.Addend)
6333 OS << " " << W.hex((uintX_t)*R.Addend);
6334 OS << "\n";
6335 }
6336 }
6337
printSectionHeaders()6338 template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() {
6339 ListScope SectionsD(W, "Sections");
6340
6341 int SectionIndex = -1;
6342 std::vector<EnumEntry<unsigned>> FlagsList =
6343 getSectionFlagsForTarget(this->Obj.getHeader().e_machine);
6344 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6345 DictScope SectionD(W, "Section");
6346 W.printNumber("Index", ++SectionIndex);
6347 W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name);
6348 W.printHex("Type",
6349 object::getELFSectionTypeName(this->Obj.getHeader().e_machine,
6350 Sec.sh_type),
6351 Sec.sh_type);
6352 W.printFlags("Flags", Sec.sh_flags, makeArrayRef(FlagsList));
6353 W.printHex("Address", Sec.sh_addr);
6354 W.printHex("Offset", Sec.sh_offset);
6355 W.printNumber("Size", Sec.sh_size);
6356 W.printNumber("Link", Sec.sh_link);
6357 W.printNumber("Info", Sec.sh_info);
6358 W.printNumber("AddressAlignment", Sec.sh_addralign);
6359 W.printNumber("EntrySize", Sec.sh_entsize);
6360
6361 if (opts::SectionRelocations) {
6362 ListScope D(W, "Relocations");
6363 this->printRelocationsHelper(Sec);
6364 }
6365
6366 if (opts::SectionSymbols) {
6367 ListScope D(W, "Symbols");
6368 if (this->DotSymtabSec) {
6369 StringRef StrTable = unwrapOrError(
6370 this->FileName,
6371 this->Obj.getStringTableForSymtab(*this->DotSymtabSec));
6372 ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec);
6373
6374 typename ELFT::SymRange Symbols = unwrapOrError(
6375 this->FileName, this->Obj.symbols(this->DotSymtabSec));
6376 for (const Elf_Sym &Sym : Symbols) {
6377 const Elf_Shdr *SymSec = unwrapOrError(
6378 this->FileName,
6379 this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable));
6380 if (SymSec == &Sec)
6381 printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false,
6382 false);
6383 }
6384 }
6385 }
6386
6387 if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
6388 ArrayRef<uint8_t> Data =
6389 unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec));
6390 W.printBinaryBlock(
6391 "SectionData",
6392 StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
6393 }
6394 }
6395 }
6396
6397 template <class ELFT>
printSymbolSection(const Elf_Sym & Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable) const6398 void LLVMELFDumper<ELFT>::printSymbolSection(
6399 const Elf_Sym &Symbol, unsigned SymIndex,
6400 DataRegion<Elf_Word> ShndxTable) const {
6401 auto GetSectionSpecialType = [&]() -> Optional<StringRef> {
6402 if (Symbol.isUndefined())
6403 return StringRef("Undefined");
6404 if (Symbol.isProcessorSpecific())
6405 return StringRef("Processor Specific");
6406 if (Symbol.isOSSpecific())
6407 return StringRef("Operating System Specific");
6408 if (Symbol.isAbsolute())
6409 return StringRef("Absolute");
6410 if (Symbol.isCommon())
6411 return StringRef("Common");
6412 if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX)
6413 return StringRef("Reserved");
6414 return None;
6415 };
6416
6417 if (Optional<StringRef> Type = GetSectionSpecialType()) {
6418 W.printHex("Section", *Type, Symbol.st_shndx);
6419 return;
6420 }
6421
6422 Expected<unsigned> SectionIndex =
6423 this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
6424 if (!SectionIndex) {
6425 assert(Symbol.st_shndx == SHN_XINDEX &&
6426 "getSymbolSectionIndex should only fail due to an invalid "
6427 "SHT_SYMTAB_SHNDX table/reference");
6428 this->reportUniqueWarning(SectionIndex.takeError());
6429 W.printHex("Section", "Reserved", SHN_XINDEX);
6430 return;
6431 }
6432
6433 Expected<StringRef> SectionName =
6434 this->getSymbolSectionName(Symbol, *SectionIndex);
6435 if (!SectionName) {
6436 // Don't report an invalid section name if the section headers are missing.
6437 // In such situations, all sections will be "invalid".
6438 if (!this->ObjF.sections().empty())
6439 this->reportUniqueWarning(SectionName.takeError());
6440 else
6441 consumeError(SectionName.takeError());
6442 W.printHex("Section", "<?>", *SectionIndex);
6443 } else {
6444 W.printHex("Section", *SectionName, *SectionIndex);
6445 }
6446 }
6447
6448 template <class ELFT>
printSymbol(const Elf_Sym & Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable,Optional<StringRef> StrTable,bool IsDynamic,bool) const6449 void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
6450 DataRegion<Elf_Word> ShndxTable,
6451 Optional<StringRef> StrTable,
6452 bool IsDynamic,
6453 bool /*NonVisibilityBitsUsed*/) const {
6454 std::string FullSymbolName = this->getFullSymbolName(
6455 Symbol, SymIndex, ShndxTable, StrTable, IsDynamic);
6456 unsigned char SymbolType = Symbol.getType();
6457
6458 DictScope D(W, "Symbol");
6459 W.printNumber("Name", FullSymbolName, Symbol.st_name);
6460 W.printHex("Value", Symbol.st_value);
6461 W.printNumber("Size", Symbol.st_size);
6462 W.printEnum("Binding", Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
6463 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
6464 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
6465 W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
6466 else
6467 W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
6468 if (Symbol.st_other == 0)
6469 // Usually st_other flag is zero. Do not pollute the output
6470 // by flags enumeration in that case.
6471 W.printNumber("Other", 0);
6472 else {
6473 std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
6474 std::end(ElfSymOtherFlags));
6475 if (this->Obj.getHeader().e_machine == EM_MIPS) {
6476 // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
6477 // flag overlapped with other ST_MIPS_xxx flags. So consider both
6478 // cases separately.
6479 if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
6480 SymOtherFlags.insert(SymOtherFlags.end(),
6481 std::begin(ElfMips16SymOtherFlags),
6482 std::end(ElfMips16SymOtherFlags));
6483 else
6484 SymOtherFlags.insert(SymOtherFlags.end(),
6485 std::begin(ElfMipsSymOtherFlags),
6486 std::end(ElfMipsSymOtherFlags));
6487 } else if (this->Obj.getHeader().e_machine == EM_AARCH64) {
6488 SymOtherFlags.insert(SymOtherFlags.end(),
6489 std::begin(ElfAArch64SymOtherFlags),
6490 std::end(ElfAArch64SymOtherFlags));
6491 }
6492 W.printFlags("Other", Symbol.st_other, makeArrayRef(SymOtherFlags), 0x3u);
6493 }
6494 printSymbolSection(Symbol, SymIndex, ShndxTable);
6495 }
6496
6497 template <class ELFT>
printSymbols(bool PrintSymbols,bool PrintDynamicSymbols)6498 void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols,
6499 bool PrintDynamicSymbols) {
6500 if (PrintSymbols) {
6501 ListScope Group(W, "Symbols");
6502 this->printSymbolsHelper(false);
6503 }
6504 if (PrintDynamicSymbols) {
6505 ListScope Group(W, "DynamicSymbols");
6506 this->printSymbolsHelper(true);
6507 }
6508 }
6509
printDynamicTable()6510 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() {
6511 Elf_Dyn_Range Table = this->dynamic_table();
6512 if (Table.empty())
6513 return;
6514
6515 W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
6516
6517 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table);
6518 // The "Name/Value" column should be indented from the "Type" column by N
6519 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
6520 // space (1) = -3.
6521 W.startLine() << " Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ')
6522 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
6523
6524 std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s ";
6525 for (auto Entry : Table) {
6526 uintX_t Tag = Entry.getTag();
6527 std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
6528 W.startLine() << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true)
6529 << " "
6530 << format(ValueFmt.c_str(),
6531 this->Obj.getDynamicTagAsString(Tag).c_str())
6532 << Value << "\n";
6533 }
6534 W.startLine() << "]\n";
6535 }
6536
printDynamicRelocations()6537 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() {
6538 W.startLine() << "Dynamic Relocations {\n";
6539 W.indent();
6540 this->printDynamicRelocationsHelper();
6541 W.unindent();
6542 W.startLine() << "}\n";
6543 }
6544
6545 template <class ELFT>
printProgramHeaders(bool PrintProgramHeaders,cl::boolOrDefault PrintSectionMapping)6546 void LLVMELFDumper<ELFT>::printProgramHeaders(
6547 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
6548 if (PrintProgramHeaders)
6549 printProgramHeaders();
6550 if (PrintSectionMapping == cl::BOU_TRUE)
6551 printSectionMapping();
6552 }
6553
printProgramHeaders()6554 template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() {
6555 ListScope L(W, "ProgramHeaders");
6556
6557 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
6558 if (!PhdrsOrErr) {
6559 this->reportUniqueWarning("unable to dump program headers: " +
6560 toString(PhdrsOrErr.takeError()));
6561 return;
6562 }
6563
6564 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
6565 DictScope P(W, "ProgramHeader");
6566 StringRef Type =
6567 segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type);
6568
6569 W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type);
6570 W.printHex("Offset", Phdr.p_offset);
6571 W.printHex("VirtualAddress", Phdr.p_vaddr);
6572 W.printHex("PhysicalAddress", Phdr.p_paddr);
6573 W.printNumber("FileSize", Phdr.p_filesz);
6574 W.printNumber("MemSize", Phdr.p_memsz);
6575 W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
6576 W.printNumber("Alignment", Phdr.p_align);
6577 }
6578 }
6579
6580 template <class ELFT>
printVersionSymbolSection(const Elf_Shdr * Sec)6581 void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
6582 ListScope SS(W, "VersionSymbols");
6583 if (!Sec)
6584 return;
6585
6586 StringRef StrTable;
6587 ArrayRef<Elf_Sym> Syms;
6588 const Elf_Shdr *SymTabSec;
6589 Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
6590 this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec);
6591 if (!VerTableOrErr) {
6592 this->reportUniqueWarning(VerTableOrErr.takeError());
6593 return;
6594 }
6595
6596 if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
6597 return;
6598
6599 ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec);
6600 for (size_t I = 0, E = Syms.size(); I < E; ++I) {
6601 DictScope S(W, "Symbol");
6602 W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
6603 W.printString("Name",
6604 this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable,
6605 /*IsDynamic=*/true));
6606 }
6607 }
6608
6609 static const EnumEntry<unsigned> SymVersionFlags[] = {
6610 {"Base", "BASE", VER_FLG_BASE},
6611 {"Weak", "WEAK", VER_FLG_WEAK},
6612 {"Info", "INFO", VER_FLG_INFO}};
6613
6614 template <class ELFT>
printVersionDefinitionSection(const Elf_Shdr * Sec)6615 void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
6616 ListScope SD(W, "VersionDefinitions");
6617 if (!Sec)
6618 return;
6619
6620 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
6621 if (!V) {
6622 this->reportUniqueWarning(V.takeError());
6623 return;
6624 }
6625
6626 for (const VerDef &D : *V) {
6627 DictScope Def(W, "Definition");
6628 W.printNumber("Version", D.Version);
6629 W.printFlags("Flags", D.Flags, makeArrayRef(SymVersionFlags));
6630 W.printNumber("Index", D.Ndx);
6631 W.printNumber("Hash", D.Hash);
6632 W.printString("Name", D.Name.c_str());
6633 W.printList(
6634 "Predecessors", D.AuxV,
6635 [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
6636 }
6637 }
6638
6639 template <class ELFT>
printVersionDependencySection(const Elf_Shdr * Sec)6640 void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
6641 ListScope SD(W, "VersionRequirements");
6642 if (!Sec)
6643 return;
6644
6645 Expected<std::vector<VerNeed>> V =
6646 this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
6647 if (!V) {
6648 this->reportUniqueWarning(V.takeError());
6649 return;
6650 }
6651
6652 for (const VerNeed &VN : *V) {
6653 DictScope Entry(W, "Dependency");
6654 W.printNumber("Version", VN.Version);
6655 W.printNumber("Count", VN.Cnt);
6656 W.printString("FileName", VN.File.c_str());
6657
6658 ListScope L(W, "Entries");
6659 for (const VernAux &Aux : VN.AuxV) {
6660 DictScope Entry(W, "Entry");
6661 W.printNumber("Hash", Aux.Hash);
6662 W.printFlags("Flags", Aux.Flags, makeArrayRef(SymVersionFlags));
6663 W.printNumber("Index", Aux.Other);
6664 W.printString("Name", Aux.Name.c_str());
6665 }
6666 }
6667 }
6668
printHashHistograms()6669 template <class ELFT> void LLVMELFDumper<ELFT>::printHashHistograms() {
6670 W.startLine() << "Hash Histogram not implemented!\n";
6671 }
6672
printCGProfile()6673 template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() {
6674 ListScope L(W, "CGProfile");
6675 if (!this->DotCGProfileSec)
6676 return;
6677
6678 Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr =
6679 this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(
6680 *this->DotCGProfileSec);
6681 if (!CGProfileOrErr) {
6682 this->reportUniqueWarning(
6683 "unable to dump the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
6684 toString(CGProfileOrErr.takeError()));
6685 return;
6686 }
6687
6688 for (const Elf_CGProfile &CGPE : *CGProfileOrErr) {
6689 DictScope D(W, "CGProfileEntry");
6690 W.printNumber("From", this->getStaticSymbolName(CGPE.cgp_from),
6691 CGPE.cgp_from);
6692 W.printNumber("To", this->getStaticSymbolName(CGPE.cgp_to),
6693 CGPE.cgp_to);
6694 W.printNumber("Weight", CGPE.cgp_weight);
6695 }
6696 }
6697
printBBAddrMaps()6698 template <class ELFT> void LLVMELFDumper<ELFT>::printBBAddrMaps() {
6699 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6700 if (Sec.sh_type != SHT_LLVM_BB_ADDR_MAP)
6701 continue;
6702 ListScope L(W, "BBAddrMap");
6703 Expected<std::vector<Elf_BBAddrMap>> BBAddrMapOrErr =
6704 this->Obj.decodeBBAddrMap(Sec);
6705 if (!BBAddrMapOrErr) {
6706 this->reportUniqueWarning("unable to dump " + this->describe(Sec) + ": " +
6707 toString(BBAddrMapOrErr.takeError()));
6708 continue;
6709 }
6710 for (const Elf_BBAddrMap &AM : *BBAddrMapOrErr) {
6711 DictScope D(W, "Function");
6712 W.printHex("At", AM.Addr);
6713 ListScope L(W, "BB entries");
6714 for (const typename Elf_BBAddrMap::BBEntry &BBE : AM.BBEntries) {
6715 DictScope L(W);
6716 W.printHex("Offset", BBE.Offset);
6717 W.printHex("Size", BBE.Size);
6718 W.printBoolean("HasReturn", BBE.HasReturn);
6719 W.printBoolean("HasTailCall", BBE.HasTailCall);
6720 W.printBoolean("IsEHPad", BBE.IsEHPad);
6721 W.printBoolean("CanFallThrough", BBE.CanFallThrough);
6722 }
6723 }
6724 }
6725 }
6726
printAddrsig()6727 template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() {
6728 ListScope L(W, "Addrsig");
6729 if (!this->DotAddrsigSec)
6730 return;
6731
6732 Expected<std::vector<uint64_t>> SymsOrErr =
6733 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
6734 if (!SymsOrErr) {
6735 this->reportUniqueWarning(SymsOrErr.takeError());
6736 return;
6737 }
6738
6739 for (uint64_t Sym : *SymsOrErr)
6740 W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym);
6741 }
6742
6743 template <typename ELFT>
printGNUNoteLLVMStyle(uint32_t NoteType,ArrayRef<uint8_t> Desc,ScopedPrinter & W)6744 static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
6745 ScopedPrinter &W) {
6746 // Return true if we were able to pretty-print the note, false otherwise.
6747 switch (NoteType) {
6748 default:
6749 return false;
6750 case ELF::NT_GNU_ABI_TAG: {
6751 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
6752 if (!AbiTag.IsValid) {
6753 W.printString("ABI", "<corrupt GNU_ABI_TAG>");
6754 return false;
6755 } else {
6756 W.printString("OS", AbiTag.OSName);
6757 W.printString("ABI", AbiTag.ABI);
6758 }
6759 break;
6760 }
6761 case ELF::NT_GNU_BUILD_ID: {
6762 W.printString("Build ID", getGNUBuildId(Desc));
6763 break;
6764 }
6765 case ELF::NT_GNU_GOLD_VERSION:
6766 W.printString("Version", getGNUGoldVersion(Desc));
6767 break;
6768 case ELF::NT_GNU_PROPERTY_TYPE_0:
6769 ListScope D(W, "Property");
6770 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
6771 W.printString(Property);
6772 break;
6773 }
6774 return true;
6775 }
6776
printCoreNoteLLVMStyle(const CoreNote & Note,ScopedPrinter & W)6777 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
6778 W.printNumber("Page Size", Note.PageSize);
6779 for (const CoreFileMapping &Mapping : Note.Mappings) {
6780 ListScope D(W, "Mapping");
6781 W.printHex("Start", Mapping.Start);
6782 W.printHex("End", Mapping.End);
6783 W.printHex("Offset", Mapping.Offset);
6784 W.printString("Filename", Mapping.Filename);
6785 }
6786 }
6787
printNotes()6788 template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() {
6789 ListScope L(W, "Notes");
6790
6791 std::unique_ptr<DictScope> NoteScope;
6792 auto StartNotes = [&](Optional<StringRef> SecName,
6793 const typename ELFT::Off Offset,
6794 const typename ELFT::Addr Size) {
6795 NoteScope = std::make_unique<DictScope>(W, "NoteSection");
6796 W.printString("Name", SecName ? *SecName : "<?>");
6797 W.printHex("Offset", Offset);
6798 W.printHex("Size", Size);
6799 };
6800
6801 auto EndNotes = [&] { NoteScope.reset(); };
6802
6803 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
6804 DictScope D2(W, "Note");
6805 StringRef Name = Note.getName();
6806 ArrayRef<uint8_t> Descriptor = Note.getDesc();
6807 Elf_Word Type = Note.getType();
6808
6809 // Print the note owner/type.
6810 W.printString("Owner", Name);
6811 W.printHex("Data size", Descriptor.size());
6812
6813 StringRef NoteType =
6814 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
6815 if (!NoteType.empty())
6816 W.printString("Type", NoteType);
6817 else
6818 W.printString("Type",
6819 "Unknown (" + to_string(format_hex(Type, 10)) + ")");
6820
6821 // Print the description, or fallback to printing raw bytes for unknown
6822 // owners/if we fail to pretty-print the contents.
6823 if (Name == "GNU") {
6824 if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W))
6825 return Error::success();
6826 } else if (Name == "FreeBSD") {
6827 if (Optional<FreeBSDNote> N =
6828 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
6829 W.printString(N->Type, N->Value);
6830 return Error::success();
6831 }
6832 } else if (Name == "AMD") {
6833 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
6834 if (!N.Type.empty()) {
6835 W.printString(N.Type, N.Value);
6836 return Error::success();
6837 }
6838 } else if (Name == "AMDGPU") {
6839 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
6840 if (!N.Type.empty()) {
6841 W.printString(N.Type, N.Value);
6842 return Error::success();
6843 }
6844 } else if (Name == "CORE") {
6845 if (Type == ELF::NT_FILE) {
6846 DataExtractor DescExtractor(Descriptor,
6847 ELFT::TargetEndianness == support::little,
6848 sizeof(Elf_Addr));
6849 if (Expected<CoreNote> N = readCoreNote(DescExtractor)) {
6850 printCoreNoteLLVMStyle(*N, W);
6851 return Error::success();
6852 } else {
6853 return N.takeError();
6854 }
6855 }
6856 }
6857 if (!Descriptor.empty()) {
6858 W.printBinaryBlock("Description data", Descriptor);
6859 }
6860 return Error::success();
6861 };
6862
6863 printNotesHelper(*this, StartNotes, ProcessNote, EndNotes);
6864 }
6865
printELFLinkerOptions()6866 template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() {
6867 ListScope L(W, "LinkerOptions");
6868
6869 unsigned I = -1;
6870 for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) {
6871 ++I;
6872 if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
6873 continue;
6874
6875 Expected<ArrayRef<uint8_t>> ContentsOrErr =
6876 this->Obj.getSectionContents(Shdr);
6877 if (!ContentsOrErr) {
6878 this->reportUniqueWarning("unable to read the content of the "
6879 "SHT_LLVM_LINKER_OPTIONS section: " +
6880 toString(ContentsOrErr.takeError()));
6881 continue;
6882 }
6883 if (ContentsOrErr->empty())
6884 continue;
6885
6886 if (ContentsOrErr->back() != 0) {
6887 this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
6888 Twine(I) +
6889 " is broken: the "
6890 "content is not null-terminated");
6891 continue;
6892 }
6893
6894 SmallVector<StringRef, 16> Strings;
6895 toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0');
6896 if (Strings.size() % 2 != 0) {
6897 this->reportUniqueWarning(
6898 "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
6899 " is broken: an incomplete "
6900 "key-value pair was found. The last possible key was: \"" +
6901 Strings.back() + "\"");
6902 continue;
6903 }
6904
6905 for (size_t I = 0; I < Strings.size(); I += 2)
6906 W.printString(Strings[I], Strings[I + 1]);
6907 }
6908 }
6909
printDependentLibs()6910 template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() {
6911 ListScope L(W, "DependentLibs");
6912 this->printDependentLibsHelper(
6913 [](const Elf_Shdr &) {},
6914 [this](StringRef Lib, uint64_t) { W.printString(Lib); });
6915 }
6916
printStackSizes()6917 template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() {
6918 ListScope L(W, "StackSizes");
6919 if (this->Obj.getHeader().e_type == ELF::ET_REL)
6920 this->printRelocatableStackSizes([]() {});
6921 else
6922 this->printNonRelocatableStackSizes([]() {});
6923 }
6924
6925 template <class ELFT>
printStackSizeEntry(uint64_t Size,StringRef FuncName)6926 void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size, StringRef FuncName) {
6927 DictScope D(W, "Entry");
6928 W.printString("Function", FuncName);
6929 W.printHex("Size", Size);
6930 }
6931
6932 template <class ELFT>
printMipsGOT(const MipsGOTParser<ELFT> & Parser)6933 void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
6934 auto PrintEntry = [&](const Elf_Addr *E) {
6935 W.printHex("Address", Parser.getGotAddress(E));
6936 W.printNumber("Access", Parser.getGotOffset(E));
6937 W.printHex("Initial", *E);
6938 };
6939
6940 DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
6941
6942 W.printHex("Canonical gp value", Parser.getGp());
6943 {
6944 ListScope RS(W, "Reserved entries");
6945 {
6946 DictScope D(W, "Entry");
6947 PrintEntry(Parser.getGotLazyResolver());
6948 W.printString("Purpose", StringRef("Lazy resolver"));
6949 }
6950
6951 if (Parser.getGotModulePointer()) {
6952 DictScope D(W, "Entry");
6953 PrintEntry(Parser.getGotModulePointer());
6954 W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
6955 }
6956 }
6957 {
6958 ListScope LS(W, "Local entries");
6959 for (auto &E : Parser.getLocalEntries()) {
6960 DictScope D(W, "Entry");
6961 PrintEntry(&E);
6962 }
6963 }
6964
6965 if (Parser.IsStatic)
6966 return;
6967
6968 {
6969 ListScope GS(W, "Global entries");
6970 for (auto &E : Parser.getGlobalEntries()) {
6971 DictScope D(W, "Entry");
6972
6973 PrintEntry(&E);
6974
6975 const Elf_Sym &Sym = *Parser.getGotSym(&E);
6976 W.printHex("Value", Sym.st_value);
6977 W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));
6978
6979 const unsigned SymIndex = &Sym - this->dynamic_symbols().begin();
6980 DataRegion<Elf_Word> ShndxTable(
6981 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6982 printSymbolSection(Sym, SymIndex, ShndxTable);
6983
6984 std::string SymName = this->getFullSymbolName(
6985 Sym, SymIndex, ShndxTable, this->DynamicStringTable, true);
6986 W.printNumber("Name", SymName, Sym.st_name);
6987 }
6988 }
6989
6990 W.printNumber("Number of TLS and multi-GOT entries",
6991 uint64_t(Parser.getOtherEntries().size()));
6992 }
6993
6994 template <class ELFT>
printMipsPLT(const MipsGOTParser<ELFT> & Parser)6995 void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6996 auto PrintEntry = [&](const Elf_Addr *E) {
6997 W.printHex("Address", Parser.getPltAddress(E));
6998 W.printHex("Initial", *E);
6999 };
7000
7001 DictScope GS(W, "PLT GOT");
7002
7003 {
7004 ListScope RS(W, "Reserved entries");
7005 {
7006 DictScope D(W, "Entry");
7007 PrintEntry(Parser.getPltLazyResolver());
7008 W.printString("Purpose", StringRef("PLT lazy resolver"));
7009 }
7010
7011 if (auto E = Parser.getPltModulePointer()) {
7012 DictScope D(W, "Entry");
7013 PrintEntry(E);
7014 W.printString("Purpose", StringRef("Module pointer"));
7015 }
7016 }
7017 {
7018 ListScope LS(W, "Entries");
7019 DataRegion<Elf_Word> ShndxTable(
7020 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7021 for (auto &E : Parser.getPltEntries()) {
7022 DictScope D(W, "Entry");
7023 PrintEntry(&E);
7024
7025 const Elf_Sym &Sym = *Parser.getPltSym(&E);
7026 W.printHex("Value", Sym.st_value);
7027 W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));
7028 printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(),
7029 ShndxTable);
7030
7031 const Elf_Sym *FirstSym = cantFail(
7032 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
7033 std::string SymName = this->getFullSymbolName(
7034 Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true);
7035 W.printNumber("Name", SymName, Sym.st_name);
7036 }
7037 }
7038 }
7039
printMipsABIFlags()7040 template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() {
7041 const Elf_Mips_ABIFlags<ELFT> *Flags;
7042 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
7043 getMipsAbiFlagsSection(*this)) {
7044 Flags = *SecOrErr;
7045 if (!Flags) {
7046 W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
7047 return;
7048 }
7049 } else {
7050 this->reportUniqueWarning(SecOrErr.takeError());
7051 return;
7052 }
7053
7054 raw_ostream &OS = W.getOStream();
7055 DictScope GS(W, "MIPS ABI Flags");
7056
7057 W.printNumber("Version", Flags->version);
7058 W.startLine() << "ISA: ";
7059 if (Flags->isa_rev <= 1)
7060 OS << format("MIPS%u", Flags->isa_level);
7061 else
7062 OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
7063 OS << "\n";
7064 W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
7065 W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
7066 W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
7067 W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
7068 W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
7069 W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
7070 W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
7071 W.printHex("Flags 2", Flags->flags2);
7072 }
7073