xref: /netbsd-src/external/apache2/llvm/dist/llvm/tools/llvm-readobj/ELFDumper.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the ELF-specific dumper for llvm-readobj.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
16 #include "ObjDumper.h"
17 #include "StackMapPrinter.h"
18 #include "llvm-readobj.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/MapVector.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/PointerIntPair.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
32 #include "llvm/BinaryFormat/ELF.h"
33 #include "llvm/Demangle/Demangle.h"
34 #include "llvm/Object/ELF.h"
35 #include "llvm/Object/ELFObjectFile.h"
36 #include "llvm/Object/ELFTypes.h"
37 #include "llvm/Object/Error.h"
38 #include "llvm/Object/ObjectFile.h"
39 #include "llvm/Object/RelocationResolver.h"
40 #include "llvm/Object/StackMapParser.h"
41 #include "llvm/Support/AMDGPUMetadata.h"
42 #include "llvm/Support/ARMAttributeParser.h"
43 #include "llvm/Support/ARMBuildAttributes.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Endian.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/Format.h"
49 #include "llvm/Support/FormatVariadic.h"
50 #include "llvm/Support/FormattedStream.h"
51 #include "llvm/Support/LEB128.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/MipsABIFlags.h"
54 #include "llvm/Support/RISCVAttributeParser.h"
55 #include "llvm/Support/RISCVAttributes.h"
56 #include "llvm/Support/ScopedPrinter.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cinttypes>
60 #include <cstddef>
61 #include <cstdint>
62 #include <cstdlib>
63 #include <iterator>
64 #include <memory>
65 #include <string>
66 #include <system_error>
67 #include <vector>
68 
69 using namespace llvm;
70 using namespace llvm::object;
71 using namespace ELF;
72 
73 #define LLVM_READOBJ_ENUM_CASE(ns, enum)                                       \
74   case ns::enum:                                                               \
75     return #enum;
76 
77 #define ENUM_ENT(enum, altName)                                                \
78   { #enum, altName, ELF::enum }
79 
80 #define ENUM_ENT_1(enum)                                                       \
81   { #enum, #enum, ELF::enum }
82 
83 namespace {
84 
85 template <class ELFT> struct RelSymbol {
RelSymbol__anond60e1ac70111::RelSymbol86   RelSymbol(const typename ELFT::Sym *S, StringRef N)
87       : Sym(S), Name(N.str()) {}
88   const typename ELFT::Sym *Sym;
89   std::string Name;
90 };
91 
92 /// Represents a contiguous uniform range in the file. We cannot just create a
93 /// range directly because when creating one of these from the .dynamic table
94 /// the size, entity size and virtual address are different entries in arbitrary
95 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
96 struct DynRegionInfo {
DynRegionInfo__anond60e1ac70111::DynRegionInfo97   DynRegionInfo(const Binary &Owner, const ObjDumper &D)
98       : Obj(&Owner), Dumper(&D) {}
DynRegionInfo__anond60e1ac70111::DynRegionInfo99   DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A,
100                 uint64_t S, uint64_t ES)
101       : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {}
102 
103   /// Address in current address space.
104   const uint8_t *Addr = nullptr;
105   /// Size in bytes of the region.
106   uint64_t Size = 0;
107   /// Size of each entity in the region.
108   uint64_t EntSize = 0;
109 
110   /// Owner object. Used for error reporting.
111   const Binary *Obj;
112   /// Dumper used for error reporting.
113   const ObjDumper *Dumper;
114   /// Error prefix. Used for error reporting to provide more information.
115   std::string Context;
116   /// Region size name. Used for error reporting.
117   StringRef SizePrintName = "size";
118   /// Entry size name. Used for error reporting. If this field is empty, errors
119   /// will not mention the entry size.
120   StringRef EntSizePrintName = "entry size";
121 
getAsArrayRef__anond60e1ac70111::DynRegionInfo122   template <typename Type> ArrayRef<Type> getAsArrayRef() const {
123     const Type *Start = reinterpret_cast<const Type *>(Addr);
124     if (!Start)
125       return {Start, Start};
126 
127     const uint64_t Offset =
128         Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart();
129     const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize();
130 
131     if (Size > ObjSize - Offset) {
132       Dumper->reportUniqueWarning(
133           "unable to read data at 0x" + Twine::utohexstr(Offset) +
134           " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName +
135           "): it goes past the end of the file of size 0x" +
136           Twine::utohexstr(ObjSize));
137       return {Start, Start};
138     }
139 
140     if (EntSize == sizeof(Type) && (Size % EntSize == 0))
141       return {Start, Start + (Size / EntSize)};
142 
143     std::string Msg;
144     if (!Context.empty())
145       Msg += Context + " has ";
146 
147     Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")")
148                .str();
149     if (!EntSizePrintName.empty())
150       Msg +=
151           (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")")
152               .str();
153 
154     Dumper->reportUniqueWarning(Msg);
155     return {Start, Start};
156   }
157 };
158 
159 struct GroupMember {
160   StringRef Name;
161   uint64_t Index;
162 };
163 
164 struct GroupSection {
165   StringRef Name;
166   std::string Signature;
167   uint64_t ShName;
168   uint64_t Index;
169   uint32_t Link;
170   uint32_t Info;
171   uint32_t Type;
172   std::vector<GroupMember> Members;
173 };
174 
175 namespace {
176 
177 struct NoteType {
178   uint32_t ID;
179   StringRef Name;
180 };
181 
182 } // namespace
183 
184 template <class ELFT> class Relocation {
185 public:
Relocation(const typename ELFT::Rel & R,bool IsMips64EL)186   Relocation(const typename ELFT::Rel &R, bool IsMips64EL)
187       : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)),
188         Offset(R.r_offset), Info(R.r_info) {}
189 
Relocation(const typename ELFT::Rela & R,bool IsMips64EL)190   Relocation(const typename ELFT::Rela &R, bool IsMips64EL)
191       : Relocation((const typename ELFT::Rel &)R, IsMips64EL) {
192     Addend = R.r_addend;
193   }
194 
195   uint32_t Type;
196   uint32_t Symbol;
197   typename ELFT::uint Offset;
198   typename ELFT::uint Info;
199   Optional<int64_t> Addend;
200 };
201 
202 template <class ELFT> class MipsGOTParser;
203 
204 template <typename ELFT> class ELFDumper : public ObjDumper {
205   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
206 
207 public:
208   ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer);
209 
210   void printUnwindInfo() override;
211   void printNeededLibraries() override;
212   void printHashTable() override;
213   void printGnuHashTable() override;
214   void printLoadName() override;
215   void printVersionInfo() override;
216   void printArchSpecificInfo() override;
217   void printStackMap() const override;
218 
getElfObject() const219   const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; };
220 
221   std::string describe(const Elf_Shdr &Sec) const;
222 
getHashTableEntSize() const223   unsigned getHashTableEntSize() const {
224     // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
225     // sections. This violates the ELF specification.
226     if (Obj.getHeader().e_machine == ELF::EM_S390 ||
227         Obj.getHeader().e_machine == ELF::EM_ALPHA)
228       return 8;
229     return 4;
230   }
231 
dynamic_table() const232   Elf_Dyn_Range dynamic_table() const {
233     // A valid .dynamic section contains an array of entries terminated
234     // with a DT_NULL entry. However, sometimes the section content may
235     // continue past the DT_NULL entry, so to dump the section correctly,
236     // we first find the end of the entries by iterating over them.
237     Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>();
238 
239     size_t Size = 0;
240     while (Size < Table.size())
241       if (Table[Size++].getTag() == DT_NULL)
242         break;
243 
244     return Table.slice(0, Size);
245   }
246 
dynamic_symbols() const247   Elf_Sym_Range dynamic_symbols() const {
248     if (!DynSymRegion)
249       return Elf_Sym_Range();
250     return DynSymRegion->template getAsArrayRef<Elf_Sym>();
251   }
252 
253   const Elf_Shdr *findSectionByName(StringRef Name) const;
254 
getDynamicStringTable() const255   StringRef getDynamicStringTable() const { return DynamicStringTable; }
256 
257 protected:
258   virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0;
259   virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0;
260   virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0;
261 
262   void
263   printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart,
264                            function_ref<void(StringRef, uint64_t)> OnLibEntry);
265 
266   virtual void printRelRelaReloc(const Relocation<ELFT> &R,
267                                  const RelSymbol<ELFT> &RelSym) = 0;
268   virtual void printRelrReloc(const Elf_Relr &R) = 0;
printDynamicRelocHeader(unsigned Type,StringRef Name,const DynRegionInfo & Reg)269   virtual void printDynamicRelocHeader(unsigned Type, StringRef Name,
270                                        const DynRegionInfo &Reg) {}
271   void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
272                   const Elf_Shdr &Sec, const Elf_Shdr *SymTab);
273   void printDynamicReloc(const Relocation<ELFT> &R);
274   void printDynamicRelocationsHelper();
275   void printRelocationsHelper(const Elf_Shdr &Sec);
276   void forEachRelocationDo(
277       const Elf_Shdr &Sec, bool RawRelr,
278       llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
279                               const Elf_Shdr &, const Elf_Shdr *)>
280           RelRelaFn,
281       llvm::function_ref<void(const Elf_Relr &)> RelrFn);
282 
printSymtabMessage(const Elf_Shdr * Symtab,size_t Offset,bool NonVisibilityBitsUsed) const283   virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
284                                   bool NonVisibilityBitsUsed) const {};
285   virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
286                            DataRegion<Elf_Word> ShndxTable,
287                            Optional<StringRef> StrTable, bool IsDynamic,
288                            bool NonVisibilityBitsUsed) const = 0;
289 
290   virtual void printMipsABIFlags() = 0;
291   virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
292   virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
293 
294   Expected<ArrayRef<Elf_Versym>>
295   getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
296                   StringRef *StrTab, const Elf_Shdr **SymTabSec) const;
297   StringRef getPrintableSectionName(const Elf_Shdr &Sec) const;
298 
299   std::vector<GroupSection> getGroups();
300 
301   bool printFunctionStackSize(uint64_t SymValue,
302                               Optional<const Elf_Shdr *> FunctionSec,
303                               const Elf_Shdr &StackSizeSec, DataExtractor Data,
304                               uint64_t *Offset);
305   void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec,
306                       unsigned Ndx, const Elf_Shdr *SymTab,
307                       const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec,
308                       const RelocationResolver &Resolver, DataExtractor Data);
309   virtual void printStackSizeEntry(uint64_t Size, StringRef FuncName) = 0;
310 
311   void printRelocatableStackSizes(std::function<void()> PrintHeader);
312   void printNonRelocatableStackSizes(std::function<void()> PrintHeader);
313 
314   const object::ELFObjectFile<ELFT> &ObjF;
315   const ELFFile<ELFT> &Obj;
316   StringRef FileName;
317 
createDRI(uint64_t Offset,uint64_t Size,uint64_t EntSize)318   Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size,
319                                     uint64_t EntSize) {
320     if (Offset + Size < Offset || Offset + Size > Obj.getBufSize())
321       return createError("offset (0x" + Twine::utohexstr(Offset) +
322                          ") + size (0x" + Twine::utohexstr(Size) +
323                          ") is greater than the file size (0x" +
324                          Twine::utohexstr(Obj.getBufSize()) + ")");
325     return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize);
326   }
327 
328   void printAttributes();
329   void printMipsReginfo();
330   void printMipsOptions();
331 
332   std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic();
333   void loadDynamicTable();
334   void parseDynamicTable();
335 
336   Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym,
337                                        bool &IsDefault) const;
338   Expected<SmallVector<Optional<VersionEntry>, 0> *> getVersionMap() const;
339 
340   DynRegionInfo DynRelRegion;
341   DynRegionInfo DynRelaRegion;
342   DynRegionInfo DynRelrRegion;
343   DynRegionInfo DynPLTRelRegion;
344   Optional<DynRegionInfo> DynSymRegion;
345   DynRegionInfo DynSymTabShndxRegion;
346   DynRegionInfo DynamicTable;
347   StringRef DynamicStringTable;
348   const Elf_Hash *HashTable = nullptr;
349   const Elf_GnuHash *GnuHashTable = nullptr;
350   const Elf_Shdr *DotSymtabSec = nullptr;
351   const Elf_Shdr *DotDynsymSec = nullptr;
352   const Elf_Shdr *DotCGProfileSec = nullptr;
353   const Elf_Shdr *DotAddrsigSec = nullptr;
354   DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables;
355   Optional<uint64_t> SONameOffset;
356 
357   const Elf_Shdr *SymbolVersionSection = nullptr;   // .gnu.version
358   const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
359   const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
360 
361   std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex,
362                                 DataRegion<Elf_Word> ShndxTable,
363                                 Optional<StringRef> StrTable,
364                                 bool IsDynamic) const;
365   Expected<unsigned>
366   getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
367                         DataRegion<Elf_Word> ShndxTable) const;
368   Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol,
369                                            unsigned SectionIndex) const;
370   std::string getStaticSymbolName(uint32_t Index) const;
371   StringRef getDynamicString(uint64_t Value) const;
372 
373   void printSymbolsHelper(bool IsDynamic) const;
374   std::string getDynamicEntry(uint64_t Type, uint64_t Value) const;
375 
376   Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R,
377                                                 const Elf_Shdr *SymTab) const;
378 
379   ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const;
380 
381 private:
382   mutable SmallVector<Optional<VersionEntry>, 0> VersionMap;
383 };
384 
385 template <class ELFT>
describe(const Elf_Shdr & Sec) const386 std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const {
387   return ::describe(Obj, Sec);
388 }
389 
390 namespace {
391 
392 template <class ELFT> struct SymtabLink {
393   typename ELFT::SymRange Symbols;
394   StringRef StringTable;
395   const typename ELFT::Shdr *SymTab;
396 };
397 
398 // Returns the linked symbol table, symbols and associated string table for a
399 // given section.
400 template <class ELFT>
getLinkAsSymtab(const ELFFile<ELFT> & Obj,const typename ELFT::Shdr & Sec,unsigned ExpectedType)401 Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj,
402                                            const typename ELFT::Shdr &Sec,
403                                            unsigned ExpectedType) {
404   Expected<const typename ELFT::Shdr *> SymtabOrErr =
405       Obj.getSection(Sec.sh_link);
406   if (!SymtabOrErr)
407     return createError("invalid section linked to " + describe(Obj, Sec) +
408                        ": " + toString(SymtabOrErr.takeError()));
409 
410   if ((*SymtabOrErr)->sh_type != ExpectedType)
411     return createError(
412         "invalid section linked to " + describe(Obj, Sec) + ": expected " +
413         object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) +
414         ", but got " +
415         object::getELFSectionTypeName(Obj.getHeader().e_machine,
416                                       (*SymtabOrErr)->sh_type));
417 
418   Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr);
419   if (!StrTabOrErr)
420     return createError(
421         "can't get a string table for the symbol table linked to " +
422         describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError()));
423 
424   Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr);
425   if (!SymsOrErr)
426     return createError("unable to read symbols from the " + describe(Obj, Sec) +
427                        ": " + toString(SymsOrErr.takeError()));
428 
429   return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr};
430 }
431 
432 } // namespace
433 
434 template <class ELFT>
435 Expected<ArrayRef<typename ELFT::Versym>>
getVersionTable(const Elf_Shdr & Sec,ArrayRef<Elf_Sym> * SymTab,StringRef * StrTab,const Elf_Shdr ** SymTabSec) const436 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
437                                  StringRef *StrTab,
438                                  const Elf_Shdr **SymTabSec) const {
439   assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec));
440   if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) %
441           sizeof(uint16_t) !=
442       0)
443     return createError("the " + describe(Sec) + " is misaligned");
444 
445   Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
446       Obj.template getSectionContentsAsArray<Elf_Versym>(Sec);
447   if (!VersionsOrErr)
448     return createError("cannot read content of " + describe(Sec) + ": " +
449                        toString(VersionsOrErr.takeError()));
450 
451   Expected<SymtabLink<ELFT>> SymTabOrErr =
452       getLinkAsSymtab(Obj, Sec, SHT_DYNSYM);
453   if (!SymTabOrErr) {
454     reportUniqueWarning(SymTabOrErr.takeError());
455     return *VersionsOrErr;
456   }
457 
458   if (SymTabOrErr->Symbols.size() != VersionsOrErr->size())
459     reportUniqueWarning(describe(Sec) + ": the number of entries (" +
460                         Twine(VersionsOrErr->size()) +
461                         ") does not match the number of symbols (" +
462                         Twine(SymTabOrErr->Symbols.size()) +
463                         ") in the symbol table with index " +
464                         Twine(Sec.sh_link));
465 
466   if (SymTab) {
467     *SymTab = SymTabOrErr->Symbols;
468     *StrTab = SymTabOrErr->StringTable;
469     *SymTabSec = SymTabOrErr->SymTab;
470   }
471   return *VersionsOrErr;
472 }
473 
474 template <class ELFT>
printSymbolsHelper(bool IsDynamic) const475 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
476   Optional<StringRef> StrTable;
477   size_t Entries = 0;
478   Elf_Sym_Range Syms(nullptr, nullptr);
479   const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec;
480 
481   if (IsDynamic) {
482     StrTable = DynamicStringTable;
483     Syms = dynamic_symbols();
484     Entries = Syms.size();
485   } else if (DotSymtabSec) {
486     if (Expected<StringRef> StrTableOrErr =
487             Obj.getStringTableForSymtab(*DotSymtabSec))
488       StrTable = *StrTableOrErr;
489     else
490       reportUniqueWarning(
491           "unable to get the string table for the SHT_SYMTAB section: " +
492           toString(StrTableOrErr.takeError()));
493 
494     if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec))
495       Syms = *SymsOrErr;
496     else
497       reportUniqueWarning(
498           "unable to read symbols from the SHT_SYMTAB section: " +
499           toString(SymsOrErr.takeError()));
500     Entries = DotSymtabSec->getEntityCount();
501   }
502   if (Syms.empty())
503     return;
504 
505   // The st_other field has 2 logical parts. The first two bits hold the symbol
506   // visibility (STV_*) and the remainder hold other platform-specific values.
507   bool NonVisibilityBitsUsed =
508       llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; });
509 
510   DataRegion<Elf_Word> ShndxTable =
511       IsDynamic ? DataRegion<Elf_Word>(
512                       (const Elf_Word *)this->DynSymTabShndxRegion.Addr,
513                       this->getElfObject().getELFFile().end())
514                 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec));
515 
516   printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed);
517   for (const Elf_Sym &Sym : Syms)
518     printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic,
519                 NonVisibilityBitsUsed);
520 }
521 
522 template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> {
523   formatted_raw_ostream &OS;
524 
525 public:
526   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
527 
GNUELFDumper(const object::ELFObjectFile<ELFT> & ObjF,ScopedPrinter & Writer)528   GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
529       : ELFDumper<ELFT>(ObjF, Writer),
530         OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) {
531     assert(&this->W.getOStream() == &llvm::fouts());
532   }
533 
534   void printFileHeaders() override;
535   void printGroupSections() override;
536   void printRelocations() override;
537   void printSectionHeaders() override;
538   void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
539   void printHashSymbols() override;
540   void printSectionDetails() override;
541   void printDependentLibs() override;
542   void printDynamicTable() override;
543   void printDynamicRelocations() override;
544   void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
545                           bool NonVisibilityBitsUsed) const override;
546   void printProgramHeaders(bool PrintProgramHeaders,
547                            cl::boolOrDefault PrintSectionMapping) override;
548   void printVersionSymbolSection(const Elf_Shdr *Sec) override;
549   void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
550   void printVersionDependencySection(const Elf_Shdr *Sec) override;
551   void printHashHistograms() override;
552   void printCGProfile() override;
553   void printBBAddrMaps() override;
554   void printAddrsig() override;
555   void printNotes() override;
556   void printELFLinkerOptions() override;
557   void printStackSizes() override;
558 
559 private:
560   void printHashHistogram(const Elf_Hash &HashTable);
561   void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable);
562   void printHashTableSymbols(const Elf_Hash &HashTable);
563   void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable);
564 
565   struct Field {
566     std::string Str;
567     unsigned Column;
568 
Field__anond60e1ac70111::GNUELFDumper::Field569     Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {}
Field__anond60e1ac70111::GNUELFDumper::Field570     Field(unsigned Col) : Column(Col) {}
571   };
572 
573   template <typename T, typename TEnum>
printEnum(T Value,ArrayRef<EnumEntry<TEnum>> EnumValues) const574   std::string printEnum(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues) const {
575     for (const EnumEntry<TEnum> &EnumItem : EnumValues)
576       if (EnumItem.Value == Value)
577         return std::string(EnumItem.AltName);
578     return to_hexString(Value, false);
579   }
580 
581   template <typename T, typename TEnum>
printFlags(T Value,ArrayRef<EnumEntry<TEnum>> EnumValues,TEnum EnumMask1={},TEnum EnumMask2={},TEnum EnumMask3={}) const582   std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
583                          TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
584                          TEnum EnumMask3 = {}) const {
585     std::string Str;
586     for (const EnumEntry<TEnum> &Flag : EnumValues) {
587       if (Flag.Value == 0)
588         continue;
589 
590       TEnum EnumMask{};
591       if (Flag.Value & EnumMask1)
592         EnumMask = EnumMask1;
593       else if (Flag.Value & EnumMask2)
594         EnumMask = EnumMask2;
595       else if (Flag.Value & EnumMask3)
596         EnumMask = EnumMask3;
597       bool IsEnum = (Flag.Value & EnumMask) != 0;
598       if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
599           (IsEnum && (Value & EnumMask) == Flag.Value)) {
600         if (!Str.empty())
601           Str += ", ";
602         Str += Flag.AltName;
603       }
604     }
605     return Str;
606   }
607 
printField(struct Field F) const608   formatted_raw_ostream &printField(struct Field F) const {
609     if (F.Column != 0)
610       OS.PadToColumn(F.Column);
611     OS << F.Str;
612     OS.flush();
613     return OS;
614   }
615   void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex,
616                          DataRegion<Elf_Word> ShndxTable, StringRef StrTable,
617                          uint32_t Bucket);
618   void printRelrReloc(const Elf_Relr &R) override;
619   void printRelRelaReloc(const Relocation<ELFT> &R,
620                          const RelSymbol<ELFT> &RelSym) override;
621   void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
622                    DataRegion<Elf_Word> ShndxTable,
623                    Optional<StringRef> StrTable, bool IsDynamic,
624                    bool NonVisibilityBitsUsed) const override;
625   void printDynamicRelocHeader(unsigned Type, StringRef Name,
626                                const DynRegionInfo &Reg) override;
627 
628   std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex,
629                                   DataRegion<Elf_Word> ShndxTable) const;
630   void printProgramHeaders() override;
631   void printSectionMapping() override;
632   void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec,
633                                     const Twine &Label, unsigned EntriesNum);
634 
635   void printStackSizeEntry(uint64_t Size, StringRef FuncName) override;
636 
637   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
638   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
639   void printMipsABIFlags() override;
640 };
641 
642 template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> {
643 public:
644   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
645 
LLVMELFDumper(const object::ELFObjectFile<ELFT> & ObjF,ScopedPrinter & Writer)646   LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
647       : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {}
648 
649   void printFileHeaders() override;
650   void printGroupSections() override;
651   void printRelocations() override;
652   void printSectionHeaders() override;
653   void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
654   void printDependentLibs() override;
655   void printDynamicTable() override;
656   void printDynamicRelocations() override;
657   void printProgramHeaders(bool PrintProgramHeaders,
658                            cl::boolOrDefault PrintSectionMapping) override;
659   void printVersionSymbolSection(const Elf_Shdr *Sec) override;
660   void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
661   void printVersionDependencySection(const Elf_Shdr *Sec) override;
662   void printHashHistograms() override;
663   void printCGProfile() override;
664   void printBBAddrMaps() override;
665   void printAddrsig() override;
666   void printNotes() override;
667   void printELFLinkerOptions() override;
668   void printStackSizes() override;
669 
670 private:
671   void printRelrReloc(const Elf_Relr &R) override;
672   void printRelRelaReloc(const Relocation<ELFT> &R,
673                          const RelSymbol<ELFT> &RelSym) override;
674 
675   void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex,
676                           DataRegion<Elf_Word> ShndxTable) const;
677   void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
678                    DataRegion<Elf_Word> ShndxTable,
679                    Optional<StringRef> StrTable, bool IsDynamic,
680                    bool /*NonVisibilityBitsUsed*/) const override;
681   void printProgramHeaders() override;
printSectionMapping()682   void printSectionMapping() override {}
683   void printStackSizeEntry(uint64_t Size, StringRef FuncName) override;
684 
685   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
686   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
687   void printMipsABIFlags() override;
688 
689   ScopedPrinter &W;
690 };
691 
692 } // end anonymous namespace
693 
694 namespace llvm {
695 
696 template <class ELFT>
697 static std::unique_ptr<ObjDumper>
createELFDumper(const ELFObjectFile<ELFT> & Obj,ScopedPrinter & Writer)698 createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) {
699   if (opts::Output == opts::GNU)
700     return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer);
701   return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer);
702 }
703 
createELFDumper(const object::ELFObjectFileBase & Obj,ScopedPrinter & Writer)704 std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj,
705                                            ScopedPrinter &Writer) {
706   // Little-endian 32-bit
707   if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj))
708     return createELFDumper(*ELFObj, Writer);
709 
710   // Big-endian 32-bit
711   if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj))
712     return createELFDumper(*ELFObj, Writer);
713 
714   // Little-endian 64-bit
715   if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj))
716     return createELFDumper(*ELFObj, Writer);
717 
718   // Big-endian 64-bit
719   return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer);
720 }
721 
722 } // end namespace llvm
723 
724 template <class ELFT>
725 Expected<SmallVector<Optional<VersionEntry>, 0> *>
getVersionMap() const726 ELFDumper<ELFT>::getVersionMap() const {
727   // If the VersionMap has already been loaded or if there is no dynamic symtab
728   // or version table, there is nothing to do.
729   if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection)
730     return &VersionMap;
731 
732   Expected<SmallVector<Optional<VersionEntry>, 0>> MapOrErr =
733       Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection);
734   if (MapOrErr)
735     VersionMap = *MapOrErr;
736   else
737     return MapOrErr.takeError();
738 
739   return &VersionMap;
740 }
741 
742 template <typename ELFT>
getSymbolVersion(const Elf_Sym & Sym,bool & IsDefault) const743 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym,
744                                                       bool &IsDefault) const {
745   // This is a dynamic symbol. Look in the GNU symbol version table.
746   if (!SymbolVersionSection) {
747     // No version table.
748     IsDefault = false;
749     return "";
750   }
751 
752   assert(DynSymRegion && "DynSymRegion has not been initialised");
753   // Determine the position in the symbol table of this entry.
754   size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) -
755                        reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) /
756                       sizeof(Elf_Sym);
757 
758   // Get the corresponding version index entry.
759   Expected<const Elf_Versym *> EntryOrErr =
760       Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex);
761   if (!EntryOrErr)
762     return EntryOrErr.takeError();
763 
764   unsigned Version = (*EntryOrErr)->vs_index;
765   if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) {
766     IsDefault = false;
767     return "";
768   }
769 
770   Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr =
771       getVersionMap();
772   if (!MapOrErr)
773     return MapOrErr.takeError();
774 
775   return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr,
776                                      Sym.st_shndx == ELF::SHN_UNDEF);
777 }
778 
779 template <typename ELFT>
780 Expected<RelSymbol<ELFT>>
getRelocationTarget(const Relocation<ELFT> & R,const Elf_Shdr * SymTab) const781 ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R,
782                                      const Elf_Shdr *SymTab) const {
783   if (R.Symbol == 0)
784     return RelSymbol<ELFT>(nullptr, "");
785 
786   Expected<const Elf_Sym *> SymOrErr =
787       Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol);
788   if (!SymOrErr)
789     return createError("unable to read an entry with index " + Twine(R.Symbol) +
790                        " from " + describe(*SymTab) + ": " +
791                        toString(SymOrErr.takeError()));
792   const Elf_Sym *Sym = *SymOrErr;
793   if (!Sym)
794     return RelSymbol<ELFT>(nullptr, "");
795 
796   Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab);
797   if (!StrTableOrErr)
798     return StrTableOrErr.takeError();
799 
800   const Elf_Sym *FirstSym =
801       cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0));
802   std::string SymbolName =
803       getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab),
804                         *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM);
805   return RelSymbol<ELFT>(Sym, SymbolName);
806 }
807 
808 template <typename ELFT>
809 ArrayRef<typename ELFT::Word>
getShndxTable(const Elf_Shdr * Symtab) const810 ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const {
811   if (Symtab) {
812     auto It = ShndxTables.find(Symtab);
813     if (It != ShndxTables.end())
814       return It->second;
815   }
816   return {};
817 }
818 
maybeDemangle(StringRef Name)819 static std::string maybeDemangle(StringRef Name) {
820   return opts::Demangle ? demangle(std::string(Name)) : Name.str();
821 }
822 
823 template <typename ELFT>
getStaticSymbolName(uint32_t Index) const824 std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
825   auto Warn = [&](Error E) -> std::string {
826     reportUniqueWarning("unable to read the name of symbol with index " +
827                         Twine(Index) + ": " + toString(std::move(E)));
828     return "<?>";
829   };
830 
831   Expected<const typename ELFT::Sym *> SymOrErr =
832       Obj.getSymbol(DotSymtabSec, Index);
833   if (!SymOrErr)
834     return Warn(SymOrErr.takeError());
835 
836   Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec);
837   if (!StrTabOrErr)
838     return Warn(StrTabOrErr.takeError());
839 
840   Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
841   if (!NameOrErr)
842     return Warn(NameOrErr.takeError());
843   return maybeDemangle(*NameOrErr);
844 }
845 
846 template <typename ELFT>
getFullSymbolName(const Elf_Sym & Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable,Optional<StringRef> StrTable,bool IsDynamic) const847 std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym &Symbol,
848                                                unsigned SymIndex,
849                                                DataRegion<Elf_Word> ShndxTable,
850                                                Optional<StringRef> StrTable,
851                                                bool IsDynamic) const {
852   if (!StrTable)
853     return "<?>";
854 
855   std::string SymbolName;
856   if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) {
857     SymbolName = maybeDemangle(*NameOrErr);
858   } else {
859     reportUniqueWarning(NameOrErr.takeError());
860     return "<?>";
861   }
862 
863   if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) {
864     Expected<unsigned> SectionIndex =
865         getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
866     if (!SectionIndex) {
867       reportUniqueWarning(SectionIndex.takeError());
868       return "<?>";
869     }
870     Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
871     if (!NameOrErr) {
872       reportUniqueWarning(NameOrErr.takeError());
873       return ("<section " + Twine(*SectionIndex) + ">").str();
874     }
875     return std::string(*NameOrErr);
876   }
877 
878   if (!IsDynamic)
879     return SymbolName;
880 
881   bool IsDefault;
882   Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault);
883   if (!VersionOrErr) {
884     reportUniqueWarning(VersionOrErr.takeError());
885     return SymbolName + "@<corrupt>";
886   }
887 
888   if (!VersionOrErr->empty()) {
889     SymbolName += (IsDefault ? "@@" : "@");
890     SymbolName += *VersionOrErr;
891   }
892   return SymbolName;
893 }
894 
895 template <typename ELFT>
896 Expected<unsigned>
getSymbolSectionIndex(const Elf_Sym & Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable) const897 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
898                                        DataRegion<Elf_Word> ShndxTable) const {
899   unsigned Ndx = Symbol.st_shndx;
900   if (Ndx == SHN_XINDEX)
901     return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex,
902                                                      ShndxTable);
903   if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE)
904     return Ndx;
905 
906   auto CreateErr = [&](const Twine &Name, Optional<unsigned> Offset = None) {
907     std::string Desc;
908     if (Offset)
909       Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str();
910     else
911       Desc = Name.str();
912     return createError(
913         "unable to get section index for symbol with st_shndx = 0x" +
914         Twine::utohexstr(Ndx) + " (" + Desc + ")");
915   };
916 
917   if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC)
918     return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC);
919   if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS)
920     return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS);
921   if (Ndx == ELF::SHN_UNDEF)
922     return CreateErr("SHN_UNDEF");
923   if (Ndx == ELF::SHN_ABS)
924     return CreateErr("SHN_ABS");
925   if (Ndx == ELF::SHN_COMMON)
926     return CreateErr("SHN_COMMON");
927   return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE);
928 }
929 
930 template <typename ELFT>
931 Expected<StringRef>
getSymbolSectionName(const Elf_Sym & Symbol,unsigned SectionIndex) const932 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol,
933                                       unsigned SectionIndex) const {
934   Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex);
935   if (!SecOrErr)
936     return SecOrErr.takeError();
937   return Obj.getSectionName(**SecOrErr);
938 }
939 
940 template <class ELFO>
941 static const typename ELFO::Elf_Shdr *
findNotEmptySectionByAddress(const ELFO & Obj,StringRef FileName,uint64_t Addr)942 findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName,
943                              uint64_t Addr) {
944   for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections()))
945     if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
946       return &Shdr;
947   return nullptr;
948 }
949 
950 static const EnumEntry<unsigned> ElfClass[] = {
951   {"None",   "none",   ELF::ELFCLASSNONE},
952   {"32-bit", "ELF32",  ELF::ELFCLASS32},
953   {"64-bit", "ELF64",  ELF::ELFCLASS64},
954 };
955 
956 static const EnumEntry<unsigned> ElfDataEncoding[] = {
957   {"None",         "none",                          ELF::ELFDATANONE},
958   {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
959   {"BigEndian",    "2's complement, big endian",    ELF::ELFDATA2MSB},
960 };
961 
962 static const EnumEntry<unsigned> ElfObjectFileType[] = {
963   {"None",         "NONE (none)",              ELF::ET_NONE},
964   {"Relocatable",  "REL (Relocatable file)",   ELF::ET_REL},
965   {"Executable",   "EXEC (Executable file)",   ELF::ET_EXEC},
966   {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
967   {"Core",         "CORE (Core file)",         ELF::ET_CORE},
968 };
969 
970 static const EnumEntry<unsigned> ElfOSABI[] = {
971   {"SystemV",      "UNIX - System V",      ELF::ELFOSABI_NONE},
972   {"HPUX",         "UNIX - HP-UX",         ELF::ELFOSABI_HPUX},
973   {"NetBSD",       "UNIX - NetBSD",        ELF::ELFOSABI_NETBSD},
974   {"GNU/Linux",    "UNIX - GNU",           ELF::ELFOSABI_LINUX},
975   {"GNU/Hurd",     "GNU/Hurd",             ELF::ELFOSABI_HURD},
976   {"Solaris",      "UNIX - Solaris",       ELF::ELFOSABI_SOLARIS},
977   {"AIX",          "UNIX - AIX",           ELF::ELFOSABI_AIX},
978   {"IRIX",         "UNIX - IRIX",          ELF::ELFOSABI_IRIX},
979   {"FreeBSD",      "UNIX - FreeBSD",       ELF::ELFOSABI_FREEBSD},
980   {"TRU64",        "UNIX - TRU64",         ELF::ELFOSABI_TRU64},
981   {"Modesto",      "Novell - Modesto",     ELF::ELFOSABI_MODESTO},
982   {"OpenBSD",      "UNIX - OpenBSD",       ELF::ELFOSABI_OPENBSD},
983   {"OpenVMS",      "VMS - OpenVMS",        ELF::ELFOSABI_OPENVMS},
984   {"NSK",          "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
985   {"AROS",         "AROS",                 ELF::ELFOSABI_AROS},
986   {"FenixOS",      "FenixOS",              ELF::ELFOSABI_FENIXOS},
987   {"CloudABI",     "CloudABI",             ELF::ELFOSABI_CLOUDABI},
988   {"Standalone",   "Standalone App",       ELF::ELFOSABI_STANDALONE}
989 };
990 
991 static const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
992   {"AMDGPU_HSA",    "AMDGPU - HSA",    ELF::ELFOSABI_AMDGPU_HSA},
993   {"AMDGPU_PAL",    "AMDGPU - PAL",    ELF::ELFOSABI_AMDGPU_PAL},
994   {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
995 };
996 
997 static const EnumEntry<unsigned> ARMElfOSABI[] = {
998   {"ARM", "ARM", ELF::ELFOSABI_ARM}
999 };
1000 
1001 static const EnumEntry<unsigned> C6000ElfOSABI[] = {
1002   {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
1003   {"C6000_LINUX",  "Linux C6000",      ELF::ELFOSABI_C6000_LINUX}
1004 };
1005 
1006 static const EnumEntry<unsigned> ElfMachineType[] = {
1007   ENUM_ENT(EM_NONE,          "None"),
1008   ENUM_ENT(EM_M32,           "WE32100"),
1009   ENUM_ENT(EM_SPARC,         "Sparc"),
1010   ENUM_ENT(EM_386,           "Intel 80386"),
1011   ENUM_ENT(EM_68K,           "MC68000"),
1012   ENUM_ENT(EM_88K,           "MC88000"),
1013   ENUM_ENT(EM_IAMCU,         "EM_IAMCU"),
1014   ENUM_ENT(EM_860,           "Intel 80860"),
1015   ENUM_ENT(EM_MIPS,          "MIPS R3000"),
1016   ENUM_ENT(EM_S370,          "IBM System/370"),
1017   ENUM_ENT(EM_MIPS_RS3_LE,   "MIPS R3000 little-endian"),
1018   ENUM_ENT(EM_PARISC,        "HPPA"),
1019   ENUM_ENT(EM_VPP500,        "Fujitsu VPP500"),
1020   ENUM_ENT(EM_SPARC32PLUS,   "Sparc v8+"),
1021   ENUM_ENT(EM_960,           "Intel 80960"),
1022   ENUM_ENT(EM_PPC,           "PowerPC"),
1023   ENUM_ENT(EM_PPC64,         "PowerPC64"),
1024   ENUM_ENT(EM_S390,          "IBM S/390"),
1025   ENUM_ENT(EM_SPU,           "SPU"),
1026   ENUM_ENT(EM_V800,          "NEC V800 series"),
1027   ENUM_ENT(EM_FR20,          "Fujistsu FR20"),
1028   ENUM_ENT(EM_RH32,          "TRW RH-32"),
1029   ENUM_ENT(EM_RCE,           "Motorola RCE"),
1030   ENUM_ENT(EM_ARM,           "ARM"),
1031   ENUM_ENT(EM_ALPHA,         "EM_ALPHA"),
1032   ENUM_ENT(EM_SH,            "Hitachi SH"),
1033   ENUM_ENT(EM_SPARCV9,       "Sparc v9"),
1034   ENUM_ENT(EM_TRICORE,       "Siemens Tricore"),
1035   ENUM_ENT(EM_ARC,           "ARC"),
1036   ENUM_ENT(EM_H8_300,        "Hitachi H8/300"),
1037   ENUM_ENT(EM_H8_300H,       "Hitachi H8/300H"),
1038   ENUM_ENT(EM_H8S,           "Hitachi H8S"),
1039   ENUM_ENT(EM_H8_500,        "Hitachi H8/500"),
1040   ENUM_ENT(EM_IA_64,         "Intel IA-64"),
1041   ENUM_ENT(EM_MIPS_X,        "Stanford MIPS-X"),
1042   ENUM_ENT(EM_COLDFIRE,      "Motorola Coldfire"),
1043   ENUM_ENT(EM_68HC12,        "Motorola MC68HC12 Microcontroller"),
1044   ENUM_ENT(EM_MMA,           "Fujitsu Multimedia Accelerator"),
1045   ENUM_ENT(EM_PCP,           "Siemens PCP"),
1046   ENUM_ENT(EM_NCPU,          "Sony nCPU embedded RISC processor"),
1047   ENUM_ENT(EM_NDR1,          "Denso NDR1 microprocesspr"),
1048   ENUM_ENT(EM_STARCORE,      "Motorola Star*Core processor"),
1049   ENUM_ENT(EM_ME16,          "Toyota ME16 processor"),
1050   ENUM_ENT(EM_ST100,         "STMicroelectronics ST100 processor"),
1051   ENUM_ENT(EM_TINYJ,         "Advanced Logic Corp. TinyJ embedded processor"),
1052   ENUM_ENT(EM_X86_64,        "Advanced Micro Devices X86-64"),
1053   ENUM_ENT(EM_PDSP,          "Sony DSP processor"),
1054   ENUM_ENT(EM_PDP10,         "Digital Equipment Corp. PDP-10"),
1055   ENUM_ENT(EM_PDP11,         "Digital Equipment Corp. PDP-11"),
1056   ENUM_ENT(EM_FX66,          "Siemens FX66 microcontroller"),
1057   ENUM_ENT(EM_ST9PLUS,       "STMicroelectronics ST9+ 8/16 bit microcontroller"),
1058   ENUM_ENT(EM_ST7,           "STMicroelectronics ST7 8-bit microcontroller"),
1059   ENUM_ENT(EM_68HC16,        "Motorola MC68HC16 Microcontroller"),
1060   ENUM_ENT(EM_68HC11,        "Motorola MC68HC11 Microcontroller"),
1061   ENUM_ENT(EM_68HC08,        "Motorola MC68HC08 Microcontroller"),
1062   ENUM_ENT(EM_68HC05,        "Motorola MC68HC05 Microcontroller"),
1063   ENUM_ENT(EM_SVX,           "Silicon Graphics SVx"),
1064   ENUM_ENT(EM_ST19,          "STMicroelectronics ST19 8-bit microcontroller"),
1065   ENUM_ENT(EM_VAX,           "Digital VAX"),
1066   ENUM_ENT(EM_CRIS,          "Axis Communications 32-bit embedded processor"),
1067   ENUM_ENT(EM_JAVELIN,       "Infineon Technologies 32-bit embedded cpu"),
1068   ENUM_ENT(EM_FIREPATH,      "Element 14 64-bit DSP processor"),
1069   ENUM_ENT(EM_ZSP,           "LSI Logic's 16-bit DSP processor"),
1070   ENUM_ENT(EM_MMIX,          "Donald Knuth's educational 64-bit processor"),
1071   ENUM_ENT(EM_HUANY,         "Harvard Universitys's machine-independent object format"),
1072   ENUM_ENT(EM_PRISM,         "Vitesse Prism"),
1073   ENUM_ENT(EM_AVR,           "Atmel AVR 8-bit microcontroller"),
1074   ENUM_ENT(EM_FR30,          "Fujitsu FR30"),
1075   ENUM_ENT(EM_D10V,          "Mitsubishi D10V"),
1076   ENUM_ENT(EM_D30V,          "Mitsubishi D30V"),
1077   ENUM_ENT(EM_V850,          "NEC v850"),
1078   ENUM_ENT(EM_M32R,          "Renesas M32R (formerly Mitsubishi M32r)"),
1079   ENUM_ENT(EM_MN10300,       "Matsushita MN10300"),
1080   ENUM_ENT(EM_MN10200,       "Matsushita MN10200"),
1081   ENUM_ENT(EM_PJ,            "picoJava"),
1082   ENUM_ENT(EM_OPENRISC,      "OpenRISC 32-bit embedded processor"),
1083   ENUM_ENT(EM_ARC_COMPACT,   "EM_ARC_COMPACT"),
1084   ENUM_ENT(EM_XTENSA,        "Tensilica Xtensa Processor"),
1085   ENUM_ENT(EM_VIDEOCORE,     "Alphamosaic VideoCore processor"),
1086   ENUM_ENT(EM_TMM_GPP,       "Thompson Multimedia General Purpose Processor"),
1087   ENUM_ENT(EM_NS32K,         "National Semiconductor 32000 series"),
1088   ENUM_ENT(EM_TPC,           "Tenor Network TPC processor"),
1089   ENUM_ENT(EM_SNP1K,         "EM_SNP1K"),
1090   ENUM_ENT(EM_ST200,         "STMicroelectronics ST200 microcontroller"),
1091   ENUM_ENT(EM_IP2K,          "Ubicom IP2xxx 8-bit microcontrollers"),
1092   ENUM_ENT(EM_MAX,           "MAX Processor"),
1093   ENUM_ENT(EM_CR,            "National Semiconductor CompactRISC"),
1094   ENUM_ENT(EM_F2MC16,        "Fujitsu F2MC16"),
1095   ENUM_ENT(EM_MSP430,        "Texas Instruments msp430 microcontroller"),
1096   ENUM_ENT(EM_BLACKFIN,      "Analog Devices Blackfin"),
1097   ENUM_ENT(EM_SE_C33,        "S1C33 Family of Seiko Epson processors"),
1098   ENUM_ENT(EM_SEP,           "Sharp embedded microprocessor"),
1099   ENUM_ENT(EM_ARCA,          "Arca RISC microprocessor"),
1100   ENUM_ENT(EM_UNICORE,       "Unicore"),
1101   ENUM_ENT(EM_EXCESS,        "eXcess 16/32/64-bit configurable embedded CPU"),
1102   ENUM_ENT(EM_DXP,           "Icera Semiconductor Inc. Deep Execution Processor"),
1103   ENUM_ENT(EM_ALTERA_NIOS2,  "Altera Nios"),
1104   ENUM_ENT(EM_CRX,           "National Semiconductor CRX microprocessor"),
1105   ENUM_ENT(EM_XGATE,         "Motorola XGATE embedded processor"),
1106   ENUM_ENT(EM_C166,          "Infineon Technologies xc16x"),
1107   ENUM_ENT(EM_M16C,          "Renesas M16C"),
1108   ENUM_ENT(EM_DSPIC30F,      "Microchip Technology dsPIC30F Digital Signal Controller"),
1109   ENUM_ENT(EM_CE,            "Freescale Communication Engine RISC core"),
1110   ENUM_ENT(EM_M32C,          "Renesas M32C"),
1111   ENUM_ENT(EM_TSK3000,       "Altium TSK3000 core"),
1112   ENUM_ENT(EM_RS08,          "Freescale RS08 embedded processor"),
1113   ENUM_ENT(EM_SHARC,         "EM_SHARC"),
1114   ENUM_ENT(EM_ECOG2,         "Cyan Technology eCOG2 microprocessor"),
1115   ENUM_ENT(EM_SCORE7,        "SUNPLUS S+Core"),
1116   ENUM_ENT(EM_DSP24,         "New Japan Radio (NJR) 24-bit DSP Processor"),
1117   ENUM_ENT(EM_VIDEOCORE3,    "Broadcom VideoCore III processor"),
1118   ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
1119   ENUM_ENT(EM_SE_C17,        "Seiko Epson C17 family"),
1120   ENUM_ENT(EM_TI_C6000,      "Texas Instruments TMS320C6000 DSP family"),
1121   ENUM_ENT(EM_TI_C2000,      "Texas Instruments TMS320C2000 DSP family"),
1122   ENUM_ENT(EM_TI_C5500,      "Texas Instruments TMS320C55x DSP family"),
1123   ENUM_ENT(EM_MMDSP_PLUS,    "STMicroelectronics 64bit VLIW Data Signal Processor"),
1124   ENUM_ENT(EM_CYPRESS_M8C,   "Cypress M8C microprocessor"),
1125   ENUM_ENT(EM_R32C,          "Renesas R32C series microprocessors"),
1126   ENUM_ENT(EM_TRIMEDIA,      "NXP Semiconductors TriMedia architecture family"),
1127   ENUM_ENT(EM_HEXAGON,       "Qualcomm Hexagon"),
1128   ENUM_ENT(EM_8051,          "Intel 8051 and variants"),
1129   ENUM_ENT(EM_STXP7X,        "STMicroelectronics STxP7x family"),
1130   ENUM_ENT(EM_NDS32,         "Andes Technology compact code size embedded RISC processor family"),
1131   ENUM_ENT(EM_ECOG1,         "Cyan Technology eCOG1 microprocessor"),
1132   // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1133   //        an identical number to EM_ECOG1.
1134   ENUM_ENT(EM_ECOG1X,        "Cyan Technology eCOG1X family"),
1135   ENUM_ENT(EM_MAXQ30,        "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1136   ENUM_ENT(EM_XIMO16,        "New Japan Radio (NJR) 16-bit DSP Processor"),
1137   ENUM_ENT(EM_MANIK,         "M2000 Reconfigurable RISC Microprocessor"),
1138   ENUM_ENT(EM_CRAYNV2,       "Cray Inc. NV2 vector architecture"),
1139   ENUM_ENT(EM_RX,            "Renesas RX"),
1140   ENUM_ENT(EM_METAG,         "Imagination Technologies Meta processor architecture"),
1141   ENUM_ENT(EM_MCST_ELBRUS,   "MCST Elbrus general purpose hardware architecture"),
1142   ENUM_ENT(EM_ECOG16,        "Cyan Technology eCOG16 family"),
1143   ENUM_ENT(EM_CR16,          "National Semiconductor CompactRISC 16-bit processor"),
1144   ENUM_ENT(EM_ETPU,          "Freescale Extended Time Processing Unit"),
1145   ENUM_ENT(EM_SLE9X,         "Infineon Technologies SLE9X core"),
1146   ENUM_ENT(EM_L10M,          "EM_L10M"),
1147   ENUM_ENT(EM_K10M,          "EM_K10M"),
1148   ENUM_ENT(EM_AARCH64,       "AArch64"),
1149   ENUM_ENT(EM_AVR32,         "Atmel Corporation 32-bit microprocessor family"),
1150   ENUM_ENT(EM_STM8,          "STMicroeletronics STM8 8-bit microcontroller"),
1151   ENUM_ENT(EM_TILE64,        "Tilera TILE64 multicore architecture family"),
1152   ENUM_ENT(EM_TILEPRO,       "Tilera TILEPro multicore architecture family"),
1153   ENUM_ENT(EM_MICROBLAZE,    "Xilinx MicroBlaze 32-bit RISC soft processor core"),
1154   ENUM_ENT(EM_CUDA,          "NVIDIA CUDA architecture"),
1155   ENUM_ENT(EM_TILEGX,        "Tilera TILE-Gx multicore architecture family"),
1156   ENUM_ENT(EM_CLOUDSHIELD,   "EM_CLOUDSHIELD"),
1157   ENUM_ENT(EM_COREA_1ST,     "EM_COREA_1ST"),
1158   ENUM_ENT(EM_COREA_2ND,     "EM_COREA_2ND"),
1159   ENUM_ENT(EM_ARC_COMPACT2,  "EM_ARC_COMPACT2"),
1160   ENUM_ENT(EM_OPEN8,         "EM_OPEN8"),
1161   ENUM_ENT(EM_RL78,          "Renesas RL78"),
1162   ENUM_ENT(EM_VIDEOCORE5,    "Broadcom VideoCore V processor"),
1163   ENUM_ENT(EM_78KOR,         "EM_78KOR"),
1164   ENUM_ENT(EM_56800EX,       "EM_56800EX"),
1165   ENUM_ENT(EM_AMDGPU,        "EM_AMDGPU"),
1166   ENUM_ENT(EM_RISCV,         "RISC-V"),
1167   ENUM_ENT(EM_LANAI,         "EM_LANAI"),
1168   ENUM_ENT(EM_BPF,           "EM_BPF"),
1169   ENUM_ENT(EM_VE,            "NEC SX-Aurora Vector Engine"),
1170 };
1171 
1172 static const EnumEntry<unsigned> ElfSymbolBindings[] = {
1173     {"Local",  "LOCAL",  ELF::STB_LOCAL},
1174     {"Global", "GLOBAL", ELF::STB_GLOBAL},
1175     {"Weak",   "WEAK",   ELF::STB_WEAK},
1176     {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1177 
1178 static const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1179     {"DEFAULT",   "DEFAULT",   ELF::STV_DEFAULT},
1180     {"INTERNAL",  "INTERNAL",  ELF::STV_INTERNAL},
1181     {"HIDDEN",    "HIDDEN",    ELF::STV_HIDDEN},
1182     {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1183 
1184 static const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1185   { "AMDGPU_HSA_KERNEL",            ELF::STT_AMDGPU_HSA_KERNEL }
1186 };
1187 
getGroupType(uint32_t Flag)1188 static const char *getGroupType(uint32_t Flag) {
1189   if (Flag & ELF::GRP_COMDAT)
1190     return "COMDAT";
1191   else
1192     return "(unknown)";
1193 }
1194 
1195 static const EnumEntry<unsigned> ElfSectionFlags[] = {
1196   ENUM_ENT(SHF_WRITE,            "W"),
1197   ENUM_ENT(SHF_ALLOC,            "A"),
1198   ENUM_ENT(SHF_EXECINSTR,        "X"),
1199   ENUM_ENT(SHF_MERGE,            "M"),
1200   ENUM_ENT(SHF_STRINGS,          "S"),
1201   ENUM_ENT(SHF_INFO_LINK,        "I"),
1202   ENUM_ENT(SHF_LINK_ORDER,       "L"),
1203   ENUM_ENT(SHF_OS_NONCONFORMING, "O"),
1204   ENUM_ENT(SHF_GROUP,            "G"),
1205   ENUM_ENT(SHF_TLS,              "T"),
1206   ENUM_ENT(SHF_COMPRESSED,       "C"),
1207   ENUM_ENT(SHF_GNU_RETAIN,       "R"),
1208   ENUM_ENT(SHF_EXCLUDE,          "E"),
1209 };
1210 
1211 static const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1212   ENUM_ENT(XCORE_SHF_CP_SECTION, ""),
1213   ENUM_ENT(XCORE_SHF_DP_SECTION, "")
1214 };
1215 
1216 static const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1217   ENUM_ENT(SHF_ARM_PURECODE, "y")
1218 };
1219 
1220 static const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1221   ENUM_ENT(SHF_HEX_GPREL, "")
1222 };
1223 
1224 static const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1225   ENUM_ENT(SHF_MIPS_NODUPES, ""),
1226   ENUM_ENT(SHF_MIPS_NAMES,   ""),
1227   ENUM_ENT(SHF_MIPS_LOCAL,   ""),
1228   ENUM_ENT(SHF_MIPS_NOSTRIP, ""),
1229   ENUM_ENT(SHF_MIPS_GPREL,   ""),
1230   ENUM_ENT(SHF_MIPS_MERGE,   ""),
1231   ENUM_ENT(SHF_MIPS_ADDR,    ""),
1232   ENUM_ENT(SHF_MIPS_STRING,  "")
1233 };
1234 
1235 static const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1236   ENUM_ENT(SHF_X86_64_LARGE, "l")
1237 };
1238 
1239 static std::vector<EnumEntry<unsigned>>
getSectionFlagsForTarget(unsigned EMachine)1240 getSectionFlagsForTarget(unsigned EMachine) {
1241   std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
1242                                        std::end(ElfSectionFlags));
1243   switch (EMachine) {
1244   case EM_ARM:
1245     Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
1246                std::end(ElfARMSectionFlags));
1247     break;
1248   case EM_HEXAGON:
1249     Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
1250                std::end(ElfHexagonSectionFlags));
1251     break;
1252   case EM_MIPS:
1253     Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
1254                std::end(ElfMipsSectionFlags));
1255     break;
1256   case EM_X86_64:
1257     Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
1258                std::end(ElfX86_64SectionFlags));
1259     break;
1260   case EM_XCORE:
1261     Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
1262                std::end(ElfXCoreSectionFlags));
1263     break;
1264   default:
1265     break;
1266   }
1267   return Ret;
1268 }
1269 
getGNUFlags(unsigned EMachine,uint64_t Flags)1270 static std::string getGNUFlags(unsigned EMachine, uint64_t Flags) {
1271   // Here we are trying to build the flags string in the same way as GNU does.
1272   // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1273   // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1274   // GNU readelf will not print "E" or "Ep" in this case, but will print just
1275   // "p". It only will print "E" when no other processor flag is set.
1276   std::string Str;
1277   bool HasUnknownFlag = false;
1278   bool HasOSFlag = false;
1279   bool HasProcFlag = false;
1280   std::vector<EnumEntry<unsigned>> FlagsList =
1281       getSectionFlagsForTarget(EMachine);
1282   while (Flags) {
1283     // Take the least significant bit as a flag.
1284     uint64_t Flag = Flags & -Flags;
1285     Flags -= Flag;
1286 
1287     // Find the flag in the known flags list.
1288     auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
1289       // Flags with empty names are not printed in GNU style output.
1290       return E.Value == Flag && !E.AltName.empty();
1291     });
1292     if (I != FlagsList.end()) {
1293       Str += I->AltName;
1294       continue;
1295     }
1296 
1297     // If we did not find a matching regular flag, then we deal with an OS
1298     // specific flag, processor specific flag or an unknown flag.
1299     if (Flag & ELF::SHF_MASKOS) {
1300       HasOSFlag = true;
1301       Flags &= ~ELF::SHF_MASKOS;
1302     } else if (Flag & ELF::SHF_MASKPROC) {
1303       HasProcFlag = true;
1304       // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1305       // bit if set so that it doesn't also get printed.
1306       Flags &= ~ELF::SHF_MASKPROC;
1307     } else {
1308       HasUnknownFlag = true;
1309     }
1310   }
1311 
1312   // "o", "p" and "x" are printed last.
1313   if (HasOSFlag)
1314     Str += "o";
1315   if (HasProcFlag)
1316     Str += "p";
1317   if (HasUnknownFlag)
1318     Str += "x";
1319   return Str;
1320 }
1321 
segmentTypeToString(unsigned Arch,unsigned Type)1322 static StringRef segmentTypeToString(unsigned Arch, unsigned Type) {
1323   // Check potentially overlapped processor-specific program header type.
1324   switch (Arch) {
1325   case ELF::EM_ARM:
1326     switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
1327     break;
1328   case ELF::EM_MIPS:
1329   case ELF::EM_MIPS_RS3_LE:
1330     switch (Type) {
1331       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
1332       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
1333       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
1334       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
1335     }
1336     break;
1337   }
1338 
1339   switch (Type) {
1340     LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL);
1341     LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD);
1342     LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
1343     LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP);
1344     LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE);
1345     LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB);
1346     LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR);
1347     LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS);
1348 
1349     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
1350     LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
1351 
1352     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
1353     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
1354     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY);
1355 
1356     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
1357     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
1358     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
1359   default:
1360     return "";
1361   }
1362 }
1363 
getGNUPtType(unsigned Arch,unsigned Type)1364 static std::string getGNUPtType(unsigned Arch, unsigned Type) {
1365   StringRef Seg = segmentTypeToString(Arch, Type);
1366   if (Seg.empty())
1367     return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1368 
1369   // E.g. "PT_ARM_EXIDX" -> "EXIDX".
1370   if (Seg.startswith("PT_ARM_"))
1371     return Seg.drop_front(7).str();
1372 
1373   // E.g. "PT_MIPS_REGINFO" -> "REGINFO".
1374   if (Seg.startswith("PT_MIPS_"))
1375     return Seg.drop_front(8).str();
1376 
1377   // E.g. "PT_LOAD" -> "LOAD".
1378   assert(Seg.startswith("PT_"));
1379   return Seg.drop_front(3).str();
1380 }
1381 
1382 static const EnumEntry<unsigned> ElfSegmentFlags[] = {
1383   LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
1384   LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
1385   LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
1386 };
1387 
1388 static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1389   ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
1390   ENUM_ENT(EF_MIPS_PIC, "pic"),
1391   ENUM_ENT(EF_MIPS_CPIC, "cpic"),
1392   ENUM_ENT(EF_MIPS_ABI2, "abi2"),
1393   ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
1394   ENUM_ENT(EF_MIPS_FP64, "fp64"),
1395   ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
1396   ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
1397   ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
1398   ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
1399   ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
1400   ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
1401   ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
1402   ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
1403   ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
1404   ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
1405   ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
1406   ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
1407   ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
1408   ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
1409   ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
1410   ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
1411   ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
1412   ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
1413   ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
1414   ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
1415   ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
1416   ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
1417   ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
1418   ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
1419   ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
1420   ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
1421   ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
1422   ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
1423   ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
1424   ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
1425   ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
1426   ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
1427   ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
1428   ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
1429   ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
1430   ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
1431   ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
1432 };
1433 
1434 static const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = {
1435   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1436   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1437   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1438   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1439   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1440   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1441   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1442   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1443   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1444   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1445   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1446   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1447   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1448   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1449   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1450   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1451   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1452   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1453   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1454   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
1455   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1456   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1457   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1458   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1459   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1460   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
1461   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1462   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1463   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1464   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
1465   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1466   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1467   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1468   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1469   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1470   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1471   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1472   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
1473   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
1474   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1475   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1476   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1477   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1478   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
1479   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
1480   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
1481   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
1482   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_V3),
1483   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_V3)
1484 };
1485 
1486 static const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = {
1487   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1488   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1489   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1490   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1491   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1492   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1493   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1494   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1495   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1496   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1497   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1498   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1499   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1500   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1501   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1502   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1503   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1504   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1505   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1506   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
1507   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1508   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1509   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1510   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1511   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1512   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
1513   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1514   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1515   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1516   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
1517   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1518   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1519   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1520   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1521   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1522   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1523   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1524   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
1525   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
1526   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1527   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1528   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1529   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1530   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
1531   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
1532   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
1533   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
1534   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ANY_V4),
1535   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_OFF_V4),
1536   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ON_V4),
1537   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ANY_V4),
1538   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_OFF_V4),
1539   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ON_V4)
1540 };
1541 
1542 static const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1543   ENUM_ENT(EF_RISCV_RVC, "RVC"),
1544   ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
1545   ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
1546   ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
1547   ENUM_ENT(EF_RISCV_RVE, "RVE")
1548 };
1549 
1550 static const EnumEntry<unsigned> ElfHeaderAVRFlags[] = {
1551   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1),
1552   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2),
1553   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25),
1554   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3),
1555   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31),
1556   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35),
1557   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4),
1558   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5),
1559   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51),
1560   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6),
1561   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY),
1562   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1),
1563   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2),
1564   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3),
1565   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4),
1566   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5),
1567   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6),
1568   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7),
1569   ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"),
1570 };
1571 
1572 
1573 static const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1574   LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
1575   LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
1576   LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
1577 };
1578 
1579 static const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1580   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1581   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1582   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
1583   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
1584 };
1585 
1586 static const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = {
1587   LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS)
1588 };
1589 
1590 static const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1591   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1592   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1593   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
1594 };
1595 
getElfMipsOptionsOdkType(unsigned Odk)1596 static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1597   switch (Odk) {
1598   LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
1599   LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
1600   LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
1601   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
1602   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
1603   LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
1604   LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
1605   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
1606   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
1607   LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
1608   LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
1609   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
1610   default:
1611     return "Unknown";
1612   }
1613 }
1614 
1615 template <typename ELFT>
1616 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
findDynamic()1617 ELFDumper<ELFT>::findDynamic() {
1618   // Try to locate the PT_DYNAMIC header.
1619   const Elf_Phdr *DynamicPhdr = nullptr;
1620   if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) {
1621     for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
1622       if (Phdr.p_type != ELF::PT_DYNAMIC)
1623         continue;
1624       DynamicPhdr = &Phdr;
1625       break;
1626     }
1627   } else {
1628     reportUniqueWarning(
1629         "unable to read program headers to locate the PT_DYNAMIC segment: " +
1630         toString(PhdrsOrErr.takeError()));
1631   }
1632 
1633   // Try to locate the .dynamic section in the sections header table.
1634   const Elf_Shdr *DynamicSec = nullptr;
1635   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
1636     if (Sec.sh_type != ELF::SHT_DYNAMIC)
1637       continue;
1638     DynamicSec = &Sec;
1639     break;
1640   }
1641 
1642   if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
1643                        ObjF.getMemoryBufferRef().getBufferSize()) ||
1644                       (DynamicPhdr->p_offset + DynamicPhdr->p_filesz <
1645                        DynamicPhdr->p_offset))) {
1646     reportUniqueWarning(
1647         "PT_DYNAMIC segment offset (0x" +
1648         Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" +
1649         Twine::utohexstr(DynamicPhdr->p_filesz) +
1650         ") exceeds the size of the file (0x" +
1651         Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")");
1652     // Don't use the broken dynamic header.
1653     DynamicPhdr = nullptr;
1654   }
1655 
1656   if (DynamicPhdr && DynamicSec) {
1657     if (DynamicSec->sh_addr + DynamicSec->sh_size >
1658             DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
1659         DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
1660       reportUniqueWarning(describe(*DynamicSec) +
1661                           " is not contained within the "
1662                           "PT_DYNAMIC segment");
1663 
1664     if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
1665       reportUniqueWarning(describe(*DynamicSec) + " is not at the start of "
1666                                                   "PT_DYNAMIC segment");
1667   }
1668 
1669   return std::make_pair(DynamicPhdr, DynamicSec);
1670 }
1671 
1672 template <typename ELFT>
loadDynamicTable()1673 void ELFDumper<ELFT>::loadDynamicTable() {
1674   const Elf_Phdr *DynamicPhdr;
1675   const Elf_Shdr *DynamicSec;
1676   std::tie(DynamicPhdr, DynamicSec) = findDynamic();
1677   if (!DynamicPhdr && !DynamicSec)
1678     return;
1679 
1680   DynRegionInfo FromPhdr(ObjF, *this);
1681   bool IsPhdrTableValid = false;
1682   if (DynamicPhdr) {
1683     // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
1684     // validated in findDynamic() and so createDRI() is not expected to fail.
1685     FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz,
1686                                   sizeof(Elf_Dyn)));
1687     FromPhdr.SizePrintName = "PT_DYNAMIC size";
1688     FromPhdr.EntSizePrintName = "";
1689     IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty();
1690   }
1691 
1692   // Locate the dynamic table described in a section header.
1693   // Ignore sh_entsize and use the expected value for entry size explicitly.
1694   // This allows us to dump dynamic sections with a broken sh_entsize
1695   // field.
1696   DynRegionInfo FromSec(ObjF, *this);
1697   bool IsSecTableValid = false;
1698   if (DynamicSec) {
1699     Expected<DynRegionInfo> RegOrErr =
1700         createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn));
1701     if (RegOrErr) {
1702       FromSec = *RegOrErr;
1703       FromSec.Context = describe(*DynamicSec);
1704       FromSec.EntSizePrintName = "";
1705       IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty();
1706     } else {
1707       reportUniqueWarning("unable to read the dynamic table from " +
1708                           describe(*DynamicSec) + ": " +
1709                           toString(RegOrErr.takeError()));
1710     }
1711   }
1712 
1713   // When we only have information from one of the SHT_DYNAMIC section header or
1714   // PT_DYNAMIC program header, just use that.
1715   if (!DynamicPhdr || !DynamicSec) {
1716     if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
1717       DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
1718       parseDynamicTable();
1719     } else {
1720       reportUniqueWarning("no valid dynamic table was found");
1721     }
1722     return;
1723   }
1724 
1725   // At this point we have tables found from the section header and from the
1726   // dynamic segment. Usually they match, but we have to do sanity checks to
1727   // verify that.
1728 
1729   if (FromPhdr.Addr != FromSec.Addr)
1730     reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
1731                         "program header disagree about "
1732                         "the location of the dynamic table");
1733 
1734   if (!IsPhdrTableValid && !IsSecTableValid) {
1735     reportUniqueWarning("no valid dynamic table was found");
1736     return;
1737   }
1738 
1739   // Information in the PT_DYNAMIC program header has priority over the
1740   // information in a section header.
1741   if (IsPhdrTableValid) {
1742     if (!IsSecTableValid)
1743       reportUniqueWarning(
1744           "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
1745     DynamicTable = FromPhdr;
1746   } else {
1747     reportUniqueWarning(
1748         "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
1749     DynamicTable = FromSec;
1750   }
1751 
1752   parseDynamicTable();
1753 }
1754 
1755 template <typename ELFT>
ELFDumper(const object::ELFObjectFile<ELFT> & O,ScopedPrinter & Writer)1756 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O,
1757                            ScopedPrinter &Writer)
1758     : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()),
1759       FileName(O.getFileName()), DynRelRegion(O, *this),
1760       DynRelaRegion(O, *this), DynRelrRegion(O, *this),
1761       DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this),
1762       DynamicTable(O, *this) {
1763   if (!O.IsContentValid())
1764     return;
1765 
1766   typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
1767   for (const Elf_Shdr &Sec : Sections) {
1768     switch (Sec.sh_type) {
1769     case ELF::SHT_SYMTAB:
1770       if (!DotSymtabSec)
1771         DotSymtabSec = &Sec;
1772       break;
1773     case ELF::SHT_DYNSYM:
1774       if (!DotDynsymSec)
1775         DotDynsymSec = &Sec;
1776 
1777       if (!DynSymRegion) {
1778         Expected<DynRegionInfo> RegOrErr =
1779             createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize);
1780         if (RegOrErr) {
1781           DynSymRegion = *RegOrErr;
1782           DynSymRegion->Context = describe(Sec);
1783 
1784           if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec))
1785             DynamicStringTable = *E;
1786           else
1787             reportUniqueWarning("unable to get the string table for the " +
1788                                 describe(Sec) + ": " + toString(E.takeError()));
1789         } else {
1790           reportUniqueWarning("unable to read dynamic symbols from " +
1791                               describe(Sec) + ": " +
1792                               toString(RegOrErr.takeError()));
1793         }
1794       }
1795       break;
1796     case ELF::SHT_SYMTAB_SHNDX: {
1797       uint32_t SymtabNdx = Sec.sh_link;
1798       if (SymtabNdx >= Sections.size()) {
1799         reportUniqueWarning(
1800             "unable to get the associated symbol table for " + describe(Sec) +
1801             ": sh_link (" + Twine(SymtabNdx) +
1802             ") is greater than or equal to the total number of sections (" +
1803             Twine(Sections.size()) + ")");
1804         continue;
1805       }
1806 
1807       if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr =
1808               Obj.getSHNDXTable(Sec)) {
1809         if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr})
1810                  .second)
1811           reportUniqueWarning(
1812               "multiple SHT_SYMTAB_SHNDX sections are linked to " +
1813               describe(Sec));
1814       } else {
1815         reportUniqueWarning(ShndxTableOrErr.takeError());
1816       }
1817       break;
1818     }
1819     case ELF::SHT_GNU_versym:
1820       if (!SymbolVersionSection)
1821         SymbolVersionSection = &Sec;
1822       break;
1823     case ELF::SHT_GNU_verdef:
1824       if (!SymbolVersionDefSection)
1825         SymbolVersionDefSection = &Sec;
1826       break;
1827     case ELF::SHT_GNU_verneed:
1828       if (!SymbolVersionNeedSection)
1829         SymbolVersionNeedSection = &Sec;
1830       break;
1831     case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
1832       if (!DotCGProfileSec)
1833         DotCGProfileSec = &Sec;
1834       break;
1835     case ELF::SHT_LLVM_ADDRSIG:
1836       if (!DotAddrsigSec)
1837         DotAddrsigSec = &Sec;
1838       break;
1839     }
1840   }
1841 
1842   loadDynamicTable();
1843 }
1844 
parseDynamicTable()1845 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
1846   auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
1847     auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) {
1848       this->reportUniqueWarning(Msg);
1849       return Error::success();
1850     });
1851     if (!MappedAddrOrError) {
1852       this->reportUniqueWarning("unable to parse DT_" +
1853                                 Obj.getDynamicTagAsString(Tag) + ": " +
1854                                 llvm::toString(MappedAddrOrError.takeError()));
1855       return nullptr;
1856     }
1857     return MappedAddrOrError.get();
1858   };
1859 
1860   const char *StringTableBegin = nullptr;
1861   uint64_t StringTableSize = 0;
1862   Optional<DynRegionInfo> DynSymFromTable;
1863   for (const Elf_Dyn &Dyn : dynamic_table()) {
1864     switch (Dyn.d_tag) {
1865     case ELF::DT_HASH:
1866       HashTable = reinterpret_cast<const Elf_Hash *>(
1867           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1868       break;
1869     case ELF::DT_GNU_HASH:
1870       GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
1871           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1872       break;
1873     case ELF::DT_STRTAB:
1874       StringTableBegin = reinterpret_cast<const char *>(
1875           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1876       break;
1877     case ELF::DT_STRSZ:
1878       StringTableSize = Dyn.getVal();
1879       break;
1880     case ELF::DT_SYMTAB: {
1881       // If we can't map the DT_SYMTAB value to an address (e.g. when there are
1882       // no program headers), we ignore its value.
1883       if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
1884         DynSymFromTable.emplace(ObjF, *this);
1885         DynSymFromTable->Addr = VA;
1886         DynSymFromTable->EntSize = sizeof(Elf_Sym);
1887         DynSymFromTable->EntSizePrintName = "";
1888       }
1889       break;
1890     }
1891     case ELF::DT_SYMENT: {
1892       uint64_t Val = Dyn.getVal();
1893       if (Val != sizeof(Elf_Sym))
1894         this->reportUniqueWarning("DT_SYMENT value of 0x" +
1895                                   Twine::utohexstr(Val) +
1896                                   " is not the size of a symbol (0x" +
1897                                   Twine::utohexstr(sizeof(Elf_Sym)) + ")");
1898       break;
1899     }
1900     case ELF::DT_RELA:
1901       DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1902       break;
1903     case ELF::DT_RELASZ:
1904       DynRelaRegion.Size = Dyn.getVal();
1905       DynRelaRegion.SizePrintName = "DT_RELASZ value";
1906       break;
1907     case ELF::DT_RELAENT:
1908       DynRelaRegion.EntSize = Dyn.getVal();
1909       DynRelaRegion.EntSizePrintName = "DT_RELAENT value";
1910       break;
1911     case ELF::DT_SONAME:
1912       SONameOffset = Dyn.getVal();
1913       break;
1914     case ELF::DT_REL:
1915       DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1916       break;
1917     case ELF::DT_RELSZ:
1918       DynRelRegion.Size = Dyn.getVal();
1919       DynRelRegion.SizePrintName = "DT_RELSZ value";
1920       break;
1921     case ELF::DT_RELENT:
1922       DynRelRegion.EntSize = Dyn.getVal();
1923       DynRelRegion.EntSizePrintName = "DT_RELENT value";
1924       break;
1925     case ELF::DT_RELR:
1926     case ELF::DT_ANDROID_RELR:
1927       DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1928       break;
1929     case ELF::DT_RELRSZ:
1930     case ELF::DT_ANDROID_RELRSZ:
1931       DynRelrRegion.Size = Dyn.getVal();
1932       DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ
1933                                         ? "DT_RELRSZ value"
1934                                         : "DT_ANDROID_RELRSZ value";
1935       break;
1936     case ELF::DT_RELRENT:
1937     case ELF::DT_ANDROID_RELRENT:
1938       DynRelrRegion.EntSize = Dyn.getVal();
1939       DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT
1940                                            ? "DT_RELRENT value"
1941                                            : "DT_ANDROID_RELRENT value";
1942       break;
1943     case ELF::DT_PLTREL:
1944       if (Dyn.getVal() == DT_REL)
1945         DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
1946       else if (Dyn.getVal() == DT_RELA)
1947         DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
1948       else
1949         reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
1950                             Twine((uint64_t)Dyn.getVal()));
1951       DynPLTRelRegion.EntSizePrintName = "PLTREL entry size";
1952       break;
1953     case ELF::DT_JMPREL:
1954       DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1955       break;
1956     case ELF::DT_PLTRELSZ:
1957       DynPLTRelRegion.Size = Dyn.getVal();
1958       DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value";
1959       break;
1960     case ELF::DT_SYMTAB_SHNDX:
1961       DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1962       DynSymTabShndxRegion.EntSize = sizeof(Elf_Word);
1963       break;
1964     }
1965   }
1966 
1967   if (StringTableBegin) {
1968     const uint64_t FileSize = Obj.getBufSize();
1969     const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base();
1970     if (StringTableSize > FileSize - Offset)
1971       reportUniqueWarning(
1972           "the dynamic string table at 0x" + Twine::utohexstr(Offset) +
1973           " goes past the end of the file (0x" + Twine::utohexstr(FileSize) +
1974           ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize));
1975     else
1976       DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
1977   }
1978 
1979   const bool IsHashTableSupported = getHashTableEntSize() == 4;
1980   if (DynSymRegion) {
1981     // Often we find the information about the dynamic symbol table
1982     // location in the SHT_DYNSYM section header. However, the value in
1983     // DT_SYMTAB has priority, because it is used by dynamic loaders to
1984     // locate .dynsym at runtime. The location we find in the section header
1985     // and the location we find here should match.
1986     if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr)
1987       reportUniqueWarning(
1988           createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
1989                       "the location of the dynamic symbol table"));
1990 
1991     // According to the ELF gABI: "The number of symbol table entries should
1992     // equal nchain". Check to see if the DT_HASH hash table nchain value
1993     // conflicts with the number of symbols in the dynamic symbol table
1994     // according to the section header.
1995     if (HashTable && IsHashTableSupported) {
1996       if (DynSymRegion->EntSize == 0)
1997         reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
1998       else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize)
1999         reportUniqueWarning(
2000             "hash table nchain (" + Twine(HashTable->nchain) +
2001             ") differs from symbol count derived from SHT_DYNSYM section "
2002             "header (" +
2003             Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")");
2004     }
2005   }
2006 
2007   // Delay the creation of the actual dynamic symbol table until now, so that
2008   // checks can always be made against the section header-based properties,
2009   // without worrying about tag order.
2010   if (DynSymFromTable) {
2011     if (!DynSymRegion) {
2012       DynSymRegion = DynSymFromTable;
2013     } else {
2014       DynSymRegion->Addr = DynSymFromTable->Addr;
2015       DynSymRegion->EntSize = DynSymFromTable->EntSize;
2016       DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName;
2017     }
2018   }
2019 
2020   // Derive the dynamic symbol table size from the DT_HASH hash table, if
2021   // present.
2022   if (HashTable && IsHashTableSupported && DynSymRegion) {
2023     const uint64_t FileSize = Obj.getBufSize();
2024     const uint64_t DerivedSize =
2025         (uint64_t)HashTable->nchain * DynSymRegion->EntSize;
2026     const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base();
2027     if (DerivedSize > FileSize - Offset)
2028       reportUniqueWarning(
2029           "the size (0x" + Twine::utohexstr(DerivedSize) +
2030           ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) +
2031           ", derived from the hash table, goes past the end of the file (0x" +
2032           Twine::utohexstr(FileSize) + ") and will be ignored");
2033     else
2034       DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize;
2035   }
2036 }
2037 
printVersionInfo()2038 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
2039   // Dump version symbol section.
2040   printVersionSymbolSection(SymbolVersionSection);
2041 
2042   // Dump version definition section.
2043   printVersionDefinitionSection(SymbolVersionDefSection);
2044 
2045   // Dump version dependency section.
2046   printVersionDependencySection(SymbolVersionNeedSection);
2047 }
2048 
2049 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum)                                 \
2050   { #enum, prefix##_##enum }
2051 
2052 static const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
2053   LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
2054   LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
2055   LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
2056   LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
2057   LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
2058 };
2059 
2060 static const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
2061   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
2062   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
2063   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
2064   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
2065   LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
2066   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
2067   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
2068   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
2069   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
2070   LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
2071   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
2072   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
2073   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
2074   LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
2075   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
2076   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
2077   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
2078   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
2079   LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
2080   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
2081   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
2082   LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
2083   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
2084   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
2085   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
2086   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
2087   LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
2088 };
2089 
2090 static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
2091   LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
2092   LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
2093   LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
2094   LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
2095   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
2096   LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
2097   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
2098   LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
2099   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
2100   LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
2101   LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
2102   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
2103   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
2104   LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
2105   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
2106   LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
2107 };
2108 
2109 #undef LLVM_READOBJ_DT_FLAG_ENT
2110 
2111 template <typename T, typename TFlag>
printFlags(T Value,ArrayRef<EnumEntry<TFlag>> Flags,raw_ostream & OS)2112 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
2113   SmallVector<EnumEntry<TFlag>, 10> SetFlags;
2114   for (const EnumEntry<TFlag> &Flag : Flags)
2115     if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value)
2116       SetFlags.push_back(Flag);
2117 
2118   for (const EnumEntry<TFlag> &Flag : SetFlags)
2119     OS << Flag.Name << " ";
2120 }
2121 
2122 template <class ELFT>
2123 const typename ELFT::Shdr *
findSectionByName(StringRef Name) const2124 ELFDumper<ELFT>::findSectionByName(StringRef Name) const {
2125   for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
2126     if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) {
2127       if (*NameOrErr == Name)
2128         return &Shdr;
2129     } else {
2130       reportUniqueWarning("unable to read the name of " + describe(Shdr) +
2131                           ": " + toString(NameOrErr.takeError()));
2132     }
2133   }
2134   return nullptr;
2135 }
2136 
2137 template <class ELFT>
getDynamicEntry(uint64_t Type,uint64_t Value) const2138 std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type,
2139                                              uint64_t Value) const {
2140   auto FormatHexValue = [](uint64_t V) {
2141     std::string Str;
2142     raw_string_ostream OS(Str);
2143     const char *ConvChar =
2144         (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
2145     OS << format(ConvChar, V);
2146     return OS.str();
2147   };
2148 
2149   auto FormatFlags = [](uint64_t V,
2150                         llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) {
2151     std::string Str;
2152     raw_string_ostream OS(Str);
2153     printFlags(V, Array, OS);
2154     return OS.str();
2155   };
2156 
2157   // Handle custom printing of architecture specific tags
2158   switch (Obj.getHeader().e_machine) {
2159   case EM_AARCH64:
2160     switch (Type) {
2161     case DT_AARCH64_BTI_PLT:
2162     case DT_AARCH64_PAC_PLT:
2163     case DT_AARCH64_VARIANT_PCS:
2164       return std::to_string(Value);
2165     default:
2166       break;
2167     }
2168     break;
2169   case EM_HEXAGON:
2170     switch (Type) {
2171     case DT_HEXAGON_VER:
2172       return std::to_string(Value);
2173     case DT_HEXAGON_SYMSZ:
2174     case DT_HEXAGON_PLT:
2175       return FormatHexValue(Value);
2176     default:
2177       break;
2178     }
2179     break;
2180   case EM_MIPS:
2181     switch (Type) {
2182     case DT_MIPS_RLD_VERSION:
2183     case DT_MIPS_LOCAL_GOTNO:
2184     case DT_MIPS_SYMTABNO:
2185     case DT_MIPS_UNREFEXTNO:
2186       return std::to_string(Value);
2187     case DT_MIPS_TIME_STAMP:
2188     case DT_MIPS_ICHECKSUM:
2189     case DT_MIPS_IVERSION:
2190     case DT_MIPS_BASE_ADDRESS:
2191     case DT_MIPS_MSYM:
2192     case DT_MIPS_CONFLICT:
2193     case DT_MIPS_LIBLIST:
2194     case DT_MIPS_CONFLICTNO:
2195     case DT_MIPS_LIBLISTNO:
2196     case DT_MIPS_GOTSYM:
2197     case DT_MIPS_HIPAGENO:
2198     case DT_MIPS_RLD_MAP:
2199     case DT_MIPS_DELTA_CLASS:
2200     case DT_MIPS_DELTA_CLASS_NO:
2201     case DT_MIPS_DELTA_INSTANCE:
2202     case DT_MIPS_DELTA_RELOC:
2203     case DT_MIPS_DELTA_RELOC_NO:
2204     case DT_MIPS_DELTA_SYM:
2205     case DT_MIPS_DELTA_SYM_NO:
2206     case DT_MIPS_DELTA_CLASSSYM:
2207     case DT_MIPS_DELTA_CLASSSYM_NO:
2208     case DT_MIPS_CXX_FLAGS:
2209     case DT_MIPS_PIXIE_INIT:
2210     case DT_MIPS_SYMBOL_LIB:
2211     case DT_MIPS_LOCALPAGE_GOTIDX:
2212     case DT_MIPS_LOCAL_GOTIDX:
2213     case DT_MIPS_HIDDEN_GOTIDX:
2214     case DT_MIPS_PROTECTED_GOTIDX:
2215     case DT_MIPS_OPTIONS:
2216     case DT_MIPS_INTERFACE:
2217     case DT_MIPS_DYNSTR_ALIGN:
2218     case DT_MIPS_INTERFACE_SIZE:
2219     case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2220     case DT_MIPS_PERF_SUFFIX:
2221     case DT_MIPS_COMPACT_SIZE:
2222     case DT_MIPS_GP_VALUE:
2223     case DT_MIPS_AUX_DYNAMIC:
2224     case DT_MIPS_PLTGOT:
2225     case DT_MIPS_RWPLT:
2226     case DT_MIPS_RLD_MAP_REL:
2227       return FormatHexValue(Value);
2228     case DT_MIPS_FLAGS:
2229       return FormatFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags));
2230     default:
2231       break;
2232     }
2233     break;
2234   default:
2235     break;
2236   }
2237 
2238   switch (Type) {
2239   case DT_PLTREL:
2240     if (Value == DT_REL)
2241       return "REL";
2242     if (Value == DT_RELA)
2243       return "RELA";
2244     LLVM_FALLTHROUGH;
2245   case DT_PLTGOT:
2246   case DT_HASH:
2247   case DT_STRTAB:
2248   case DT_SYMTAB:
2249   case DT_RELA:
2250   case DT_INIT:
2251   case DT_FINI:
2252   case DT_REL:
2253   case DT_JMPREL:
2254   case DT_INIT_ARRAY:
2255   case DT_FINI_ARRAY:
2256   case DT_PREINIT_ARRAY:
2257   case DT_DEBUG:
2258   case DT_VERDEF:
2259   case DT_VERNEED:
2260   case DT_VERSYM:
2261   case DT_GNU_HASH:
2262   case DT_NULL:
2263     return FormatHexValue(Value);
2264   case DT_RELACOUNT:
2265   case DT_RELCOUNT:
2266   case DT_VERDEFNUM:
2267   case DT_VERNEEDNUM:
2268     return std::to_string(Value);
2269   case DT_PLTRELSZ:
2270   case DT_RELASZ:
2271   case DT_RELAENT:
2272   case DT_STRSZ:
2273   case DT_SYMENT:
2274   case DT_RELSZ:
2275   case DT_RELENT:
2276   case DT_INIT_ARRAYSZ:
2277   case DT_FINI_ARRAYSZ:
2278   case DT_PREINIT_ARRAYSZ:
2279   case DT_ANDROID_RELSZ:
2280   case DT_ANDROID_RELASZ:
2281     return std::to_string(Value) + " (bytes)";
2282   case DT_NEEDED:
2283   case DT_SONAME:
2284   case DT_AUXILIARY:
2285   case DT_USED:
2286   case DT_FILTER:
2287   case DT_RPATH:
2288   case DT_RUNPATH: {
2289     const std::map<uint64_t, const char *> TagNames = {
2290         {DT_NEEDED, "Shared library"},       {DT_SONAME, "Library soname"},
2291         {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"},
2292         {DT_FILTER, "Filter library"},       {DT_RPATH, "Library rpath"},
2293         {DT_RUNPATH, "Library runpath"},
2294     };
2295 
2296     return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]")
2297         .str();
2298   }
2299   case DT_FLAGS:
2300     return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags));
2301   case DT_FLAGS_1:
2302     return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags1));
2303   default:
2304     return FormatHexValue(Value);
2305   }
2306 }
2307 
2308 template <class ELFT>
getDynamicString(uint64_t Value) const2309 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
2310   if (DynamicStringTable.empty() && !DynamicStringTable.data()) {
2311     reportUniqueWarning("string table was not found");
2312     return "<?>";
2313   }
2314 
2315   auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) {
2316     reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) +
2317                         Msg);
2318     return "<?>";
2319   };
2320 
2321   const uint64_t FileSize = Obj.getBufSize();
2322   const uint64_t Offset =
2323       (const uint8_t *)DynamicStringTable.data() - Obj.base();
2324   if (DynamicStringTable.size() > FileSize - Offset)
2325     return WarnAndReturn(" with size 0x" +
2326                              Twine::utohexstr(DynamicStringTable.size()) +
2327                              " goes past the end of the file (0x" +
2328                              Twine::utohexstr(FileSize) + ")",
2329                          Offset);
2330 
2331   if (Value >= DynamicStringTable.size())
2332     return WarnAndReturn(
2333         ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) +
2334             ": it goes past the end of the table (0x" +
2335             Twine::utohexstr(Offset + DynamicStringTable.size()) + ")",
2336         Offset);
2337 
2338   if (DynamicStringTable.back() != '\0')
2339     return WarnAndReturn(": unable to read the string at 0x" +
2340                              Twine::utohexstr(Offset + Value) +
2341                              ": the string table is not null-terminated",
2342                          Offset);
2343 
2344   return DynamicStringTable.data() + Value;
2345 }
2346 
printUnwindInfo()2347 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
2348   DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
2349   Ctx.printUnwindInformation();
2350 }
2351 
2352 // The namespace is needed to fix the compilation with GCC older than 7.0+.
2353 namespace {
printUnwindInfo()2354 template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
2355   if (Obj.getHeader().e_machine == EM_ARM) {
2356     ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(),
2357                                             DotSymtabSec);
2358     Ctx.PrintUnwindInformation();
2359   }
2360   DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
2361   Ctx.printUnwindInformation();
2362 }
2363 } // namespace
2364 
printNeededLibraries()2365 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
2366   ListScope D(W, "NeededLibraries");
2367 
2368   std::vector<StringRef> Libs;
2369   for (const auto &Entry : dynamic_table())
2370     if (Entry.d_tag == ELF::DT_NEEDED)
2371       Libs.push_back(getDynamicString(Entry.d_un.d_val));
2372 
2373   llvm::sort(Libs);
2374 
2375   for (StringRef L : Libs)
2376     W.startLine() << L << "\n";
2377 }
2378 
2379 template <class ELFT>
checkHashTable(const ELFDumper<ELFT> & Dumper,const typename ELFT::Hash * H,bool * IsHeaderValid=nullptr)2380 static Error checkHashTable(const ELFDumper<ELFT> &Dumper,
2381                             const typename ELFT::Hash *H,
2382                             bool *IsHeaderValid = nullptr) {
2383   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
2384   const uint64_t SecOffset = (const uint8_t *)H - Obj.base();
2385   if (Dumper.getHashTableEntSize() == 8) {
2386     auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) {
2387       return E.Value == Obj.getHeader().e_machine;
2388     });
2389     if (IsHeaderValid)
2390       *IsHeaderValid = false;
2391     return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) +
2392                        " is not supported: it contains non-standard 8 "
2393                        "byte entries on " +
2394                        It->AltName + " platform");
2395   }
2396 
2397   auto MakeError = [&](const Twine &Msg = "") {
2398     return createError("the hash table at offset 0x" +
2399                        Twine::utohexstr(SecOffset) +
2400                        " goes past the end of the file (0x" +
2401                        Twine::utohexstr(Obj.getBufSize()) + ")" + Msg);
2402   };
2403 
2404   // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2405   const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word);
2406 
2407   if (IsHeaderValid)
2408     *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize;
2409 
2410   if (Obj.getBufSize() - SecOffset < HeaderSize)
2411     return MakeError();
2412 
2413   if (Obj.getBufSize() - SecOffset - HeaderSize <
2414       ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word))
2415     return MakeError(", nbucket = " + Twine(H->nbucket) +
2416                      ", nchain = " + Twine(H->nchain));
2417   return Error::success();
2418 }
2419 
2420 template <class ELFT>
checkGNUHashTable(const ELFFile<ELFT> & Obj,const typename ELFT::GnuHash * GnuHashTable,bool * IsHeaderValid=nullptr)2421 static Error checkGNUHashTable(const ELFFile<ELFT> &Obj,
2422                                const typename ELFT::GnuHash *GnuHashTable,
2423                                bool *IsHeaderValid = nullptr) {
2424   const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable);
2425   assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() &&
2426          "GnuHashTable must always point to a location inside the file");
2427 
2428   uint64_t TableOffset = TableData - Obj.base();
2429   if (IsHeaderValid)
2430     *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize();
2431   if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 +
2432           (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >=
2433       Obj.getBufSize())
2434     return createError("unable to dump the SHT_GNU_HASH "
2435                        "section at 0x" +
2436                        Twine::utohexstr(TableOffset) +
2437                        ": it goes past the end of the file");
2438   return Error::success();
2439 }
2440 
printHashTable()2441 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
2442   DictScope D(W, "HashTable");
2443   if (!HashTable)
2444     return;
2445 
2446   bool IsHeaderValid;
2447   Error Err = checkHashTable(*this, HashTable, &IsHeaderValid);
2448   if (IsHeaderValid) {
2449     W.printNumber("Num Buckets", HashTable->nbucket);
2450     W.printNumber("Num Chains", HashTable->nchain);
2451   }
2452 
2453   if (Err) {
2454     reportUniqueWarning(std::move(Err));
2455     return;
2456   }
2457 
2458   W.printList("Buckets", HashTable->buckets());
2459   W.printList("Chains", HashTable->chains());
2460 }
2461 
2462 template <class ELFT>
2463 static Expected<ArrayRef<typename ELFT::Word>>
getGnuHashTableChains(Optional<DynRegionInfo> DynSymRegion,const typename ELFT::GnuHash * GnuHashTable)2464 getGnuHashTableChains(Optional<DynRegionInfo> DynSymRegion,
2465                       const typename ELFT::GnuHash *GnuHashTable) {
2466   if (!DynSymRegion)
2467     return createError("no dynamic symbol table found");
2468 
2469   ArrayRef<typename ELFT::Sym> DynSymTable =
2470       DynSymRegion->template getAsArrayRef<typename ELFT::Sym>();
2471   size_t NumSyms = DynSymTable.size();
2472   if (!NumSyms)
2473     return createError("the dynamic symbol table is empty");
2474 
2475   if (GnuHashTable->symndx < NumSyms)
2476     return GnuHashTable->values(NumSyms);
2477 
2478   // A normal empty GNU hash table section produced by linker might have
2479   // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2480   // and have dummy null values in the Bloom filter and in the buckets
2481   // vector (or no values at all). It happens because the value of symndx is not
2482   // important for dynamic loaders when the GNU hash table is empty. They just
2483   // skip the whole object during symbol lookup. In such cases, the symndx value
2484   // is irrelevant and we should not report a warning.
2485   ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets();
2486   if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; }))
2487     return createError(
2488         "the first hashed symbol index (" + Twine(GnuHashTable->symndx) +
2489         ") is greater than or equal to the number of dynamic symbols (" +
2490         Twine(NumSyms) + ")");
2491   // There is no way to represent an array of (dynamic symbols count - symndx)
2492   // length.
2493   return ArrayRef<typename ELFT::Word>();
2494 }
2495 
2496 template <typename ELFT>
printGnuHashTable()2497 void ELFDumper<ELFT>::printGnuHashTable() {
2498   DictScope D(W, "GnuHashTable");
2499   if (!GnuHashTable)
2500     return;
2501 
2502   bool IsHeaderValid;
2503   Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid);
2504   if (IsHeaderValid) {
2505     W.printNumber("Num Buckets", GnuHashTable->nbuckets);
2506     W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
2507     W.printNumber("Num Mask Words", GnuHashTable->maskwords);
2508     W.printNumber("Shift Count", GnuHashTable->shift2);
2509   }
2510 
2511   if (Err) {
2512     reportUniqueWarning(std::move(Err));
2513     return;
2514   }
2515 
2516   ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter();
2517   W.printHexList("Bloom Filter", BloomFilter);
2518 
2519   ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
2520   W.printList("Buckets", Buckets);
2521 
2522   Expected<ArrayRef<Elf_Word>> Chains =
2523       getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable);
2524   if (!Chains) {
2525     reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
2526                         "section: " +
2527                         toString(Chains.takeError()));
2528     return;
2529   }
2530 
2531   W.printHexList("Values", *Chains);
2532 }
2533 
printLoadName()2534 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
2535   StringRef SOName = "<Not found>";
2536   if (SONameOffset)
2537     SOName = getDynamicString(*SONameOffset);
2538   W.printString("LoadName", SOName);
2539 }
2540 
printArchSpecificInfo()2541 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
2542   switch (Obj.getHeader().e_machine) {
2543   case EM_ARM:
2544   case EM_RISCV:
2545     printAttributes();
2546     break;
2547   case EM_MIPS: {
2548     printMipsABIFlags();
2549     printMipsOptions();
2550     printMipsReginfo();
2551     MipsGOTParser<ELFT> Parser(*this);
2552     if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols()))
2553       reportUniqueWarning(std::move(E));
2554     else if (!Parser.isGotEmpty())
2555       printMipsGOT(Parser);
2556 
2557     if (Error E = Parser.findPLT(dynamic_table()))
2558       reportUniqueWarning(std::move(E));
2559     else if (!Parser.isPltEmpty())
2560       printMipsPLT(Parser);
2561     break;
2562   }
2563   default:
2564     break;
2565   }
2566 }
2567 
printAttributes()2568 template <class ELFT> void ELFDumper<ELFT>::printAttributes() {
2569   if (!Obj.isLE()) {
2570     W.startLine() << "Attributes not implemented.\n";
2571     return;
2572   }
2573 
2574   const unsigned Machine = Obj.getHeader().e_machine;
2575   assert((Machine == EM_ARM || Machine == EM_RISCV) &&
2576          "Attributes not implemented.");
2577 
2578   DictScope BA(W, "BuildAttributes");
2579   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
2580     if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES &&
2581         Sec.sh_type != ELF::SHT_RISCV_ATTRIBUTES)
2582       continue;
2583 
2584     ArrayRef<uint8_t> Contents;
2585     if (Expected<ArrayRef<uint8_t>> ContentOrErr =
2586             Obj.getSectionContents(Sec)) {
2587       Contents = *ContentOrErr;
2588       if (Contents.empty()) {
2589         reportUniqueWarning("the " + describe(Sec) + " is empty");
2590         continue;
2591       }
2592     } else {
2593       reportUniqueWarning("unable to read the content of the " + describe(Sec) +
2594                           ": " + toString(ContentOrErr.takeError()));
2595       continue;
2596     }
2597 
2598     W.printHex("FormatVersion", Contents[0]);
2599 
2600     auto ParseAttrubutes = [&]() {
2601       if (Machine == EM_ARM)
2602         return ARMAttributeParser(&W).parse(Contents, support::little);
2603       return RISCVAttributeParser(&W).parse(Contents, support::little);
2604     };
2605 
2606     if (Error E = ParseAttrubutes())
2607       reportUniqueWarning("unable to dump attributes from the " +
2608                           describe(Sec) + ": " + toString(std::move(E)));
2609   }
2610 }
2611 
2612 namespace {
2613 
2614 template <class ELFT> class MipsGOTParser {
2615 public:
2616   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
2617   using Entry = typename ELFT::Addr;
2618   using Entries = ArrayRef<Entry>;
2619 
2620   const bool IsStatic;
2621   const ELFFile<ELFT> &Obj;
2622   const ELFDumper<ELFT> &Dumper;
2623 
2624   MipsGOTParser(const ELFDumper<ELFT> &D);
2625   Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
2626   Error findPLT(Elf_Dyn_Range DynTable);
2627 
isGotEmpty() const2628   bool isGotEmpty() const { return GotEntries.empty(); }
isPltEmpty() const2629   bool isPltEmpty() const { return PltEntries.empty(); }
2630 
2631   uint64_t getGp() const;
2632 
2633   const Entry *getGotLazyResolver() const;
2634   const Entry *getGotModulePointer() const;
2635   const Entry *getPltLazyResolver() const;
2636   const Entry *getPltModulePointer() const;
2637 
2638   Entries getLocalEntries() const;
2639   Entries getGlobalEntries() const;
2640   Entries getOtherEntries() const;
2641   Entries getPltEntries() const;
2642 
2643   uint64_t getGotAddress(const Entry * E) const;
2644   int64_t getGotOffset(const Entry * E) const;
2645   const Elf_Sym *getGotSym(const Entry *E) const;
2646 
2647   uint64_t getPltAddress(const Entry * E) const;
2648   const Elf_Sym *getPltSym(const Entry *E) const;
2649 
getPltStrTable() const2650   StringRef getPltStrTable() const { return PltStrTable; }
getPltSymTable() const2651   const Elf_Shdr *getPltSymTable() const { return PltSymTable; }
2652 
2653 private:
2654   const Elf_Shdr *GotSec;
2655   size_t LocalNum;
2656   size_t GlobalNum;
2657 
2658   const Elf_Shdr *PltSec;
2659   const Elf_Shdr *PltRelSec;
2660   const Elf_Shdr *PltSymTable;
2661   StringRef FileName;
2662 
2663   Elf_Sym_Range GotDynSyms;
2664   StringRef PltStrTable;
2665 
2666   Entries GotEntries;
2667   Entries PltEntries;
2668 };
2669 
2670 } // end anonymous namespace
2671 
2672 template <class ELFT>
MipsGOTParser(const ELFDumper<ELFT> & D)2673 MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D)
2674     : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()),
2675       Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
2676       PltRelSec(nullptr), PltSymTable(nullptr),
2677       FileName(D.getElfObject().getFileName()) {}
2678 
2679 template <class ELFT>
findGOT(Elf_Dyn_Range DynTable,Elf_Sym_Range DynSyms)2680 Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable,
2681                                    Elf_Sym_Range DynSyms) {
2682   // See "Global Offset Table" in Chapter 5 in the following document
2683   // for detailed GOT description.
2684   // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2685 
2686   // Find static GOT secton.
2687   if (IsStatic) {
2688     GotSec = Dumper.findSectionByName(".got");
2689     if (!GotSec)
2690       return Error::success();
2691 
2692     ArrayRef<uint8_t> Content =
2693         unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2694     GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2695                          Content.size() / sizeof(Entry));
2696     LocalNum = GotEntries.size();
2697     return Error::success();
2698   }
2699 
2700   // Lookup dynamic table tags which define the GOT layout.
2701   Optional<uint64_t> DtPltGot;
2702   Optional<uint64_t> DtLocalGotNum;
2703   Optional<uint64_t> DtGotSym;
2704   for (const auto &Entry : DynTable) {
2705     switch (Entry.getTag()) {
2706     case ELF::DT_PLTGOT:
2707       DtPltGot = Entry.getVal();
2708       break;
2709     case ELF::DT_MIPS_LOCAL_GOTNO:
2710       DtLocalGotNum = Entry.getVal();
2711       break;
2712     case ELF::DT_MIPS_GOTSYM:
2713       DtGotSym = Entry.getVal();
2714       break;
2715     }
2716   }
2717 
2718   if (!DtPltGot && !DtLocalGotNum && !DtGotSym)
2719     return Error::success();
2720 
2721   if (!DtPltGot)
2722     return createError("cannot find PLTGOT dynamic tag");
2723   if (!DtLocalGotNum)
2724     return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
2725   if (!DtGotSym)
2726     return createError("cannot find MIPS_GOTSYM dynamic tag");
2727 
2728   size_t DynSymTotal = DynSyms.size();
2729   if (*DtGotSym > DynSymTotal)
2730     return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) +
2731                        ") exceeds the number of dynamic symbols (" +
2732                        Twine(DynSymTotal) + ")");
2733 
2734   GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
2735   if (!GotSec)
2736     return createError("there is no non-empty GOT section at 0x" +
2737                        Twine::utohexstr(*DtPltGot));
2738 
2739   LocalNum = *DtLocalGotNum;
2740   GlobalNum = DynSymTotal - *DtGotSym;
2741 
2742   ArrayRef<uint8_t> Content =
2743       unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2744   GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2745                        Content.size() / sizeof(Entry));
2746   GotDynSyms = DynSyms.drop_front(*DtGotSym);
2747 
2748   return Error::success();
2749 }
2750 
2751 template <class ELFT>
findPLT(Elf_Dyn_Range DynTable)2752 Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) {
2753   // Lookup dynamic table tags which define the PLT layout.
2754   Optional<uint64_t> DtMipsPltGot;
2755   Optional<uint64_t> DtJmpRel;
2756   for (const auto &Entry : DynTable) {
2757     switch (Entry.getTag()) {
2758     case ELF::DT_MIPS_PLTGOT:
2759       DtMipsPltGot = Entry.getVal();
2760       break;
2761     case ELF::DT_JMPREL:
2762       DtJmpRel = Entry.getVal();
2763       break;
2764     }
2765   }
2766 
2767   if (!DtMipsPltGot && !DtJmpRel)
2768     return Error::success();
2769 
2770   // Find PLT section.
2771   if (!DtMipsPltGot)
2772     return createError("cannot find MIPS_PLTGOT dynamic tag");
2773   if (!DtJmpRel)
2774     return createError("cannot find JMPREL dynamic tag");
2775 
2776   PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot);
2777   if (!PltSec)
2778     return createError("there is no non-empty PLTGOT section at 0x" +
2779                        Twine::utohexstr(*DtMipsPltGot));
2780 
2781   PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel);
2782   if (!PltRelSec)
2783     return createError("there is no non-empty RELPLT section at 0x" +
2784                        Twine::utohexstr(*DtJmpRel));
2785 
2786   if (Expected<ArrayRef<uint8_t>> PltContentOrErr =
2787           Obj.getSectionContents(*PltSec))
2788     PltEntries =
2789         Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()),
2790                 PltContentOrErr->size() / sizeof(Entry));
2791   else
2792     return createError("unable to read PLTGOT section content: " +
2793                        toString(PltContentOrErr.takeError()));
2794 
2795   if (Expected<const Elf_Shdr *> PltSymTableOrErr =
2796           Obj.getSection(PltRelSec->sh_link))
2797     PltSymTable = *PltSymTableOrErr;
2798   else
2799     return createError("unable to get a symbol table linked to the " +
2800                        describe(Obj, *PltRelSec) + ": " +
2801                        toString(PltSymTableOrErr.takeError()));
2802 
2803   if (Expected<StringRef> StrTabOrErr =
2804           Obj.getStringTableForSymtab(*PltSymTable))
2805     PltStrTable = *StrTabOrErr;
2806   else
2807     return createError("unable to get a string table for the " +
2808                        describe(Obj, *PltSymTable) + ": " +
2809                        toString(StrTabOrErr.takeError()));
2810 
2811   return Error::success();
2812 }
2813 
getGp() const2814 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
2815   return GotSec->sh_addr + 0x7ff0;
2816 }
2817 
2818 template <class ELFT>
2819 const typename MipsGOTParser<ELFT>::Entry *
getGotLazyResolver() const2820 MipsGOTParser<ELFT>::getGotLazyResolver() const {
2821   return LocalNum > 0 ? &GotEntries[0] : nullptr;
2822 }
2823 
2824 template <class ELFT>
2825 const typename MipsGOTParser<ELFT>::Entry *
getGotModulePointer() const2826 MipsGOTParser<ELFT>::getGotModulePointer() const {
2827   if (LocalNum < 2)
2828     return nullptr;
2829   const Entry &E = GotEntries[1];
2830   if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
2831     return nullptr;
2832   return &E;
2833 }
2834 
2835 template <class ELFT>
2836 typename MipsGOTParser<ELFT>::Entries
getLocalEntries() const2837 MipsGOTParser<ELFT>::getLocalEntries() const {
2838   size_t Skip = getGotModulePointer() ? 2 : 1;
2839   if (LocalNum - Skip <= 0)
2840     return Entries();
2841   return GotEntries.slice(Skip, LocalNum - Skip);
2842 }
2843 
2844 template <class ELFT>
2845 typename MipsGOTParser<ELFT>::Entries
getGlobalEntries() const2846 MipsGOTParser<ELFT>::getGlobalEntries() const {
2847   if (GlobalNum == 0)
2848     return Entries();
2849   return GotEntries.slice(LocalNum, GlobalNum);
2850 }
2851 
2852 template <class ELFT>
2853 typename MipsGOTParser<ELFT>::Entries
getOtherEntries() const2854 MipsGOTParser<ELFT>::getOtherEntries() const {
2855   size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
2856   if (OtherNum == 0)
2857     return Entries();
2858   return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
2859 }
2860 
2861 template <class ELFT>
getGotAddress(const Entry * E) const2862 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
2863   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2864   return GotSec->sh_addr + Offset;
2865 }
2866 
2867 template <class ELFT>
getGotOffset(const Entry * E) const2868 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
2869   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2870   return Offset - 0x7ff0;
2871 }
2872 
2873 template <class ELFT>
2874 const typename MipsGOTParser<ELFT>::Elf_Sym *
getGotSym(const Entry * E) const2875 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
2876   int64_t Offset = std::distance(GotEntries.data(), E);
2877   return &GotDynSyms[Offset - LocalNum];
2878 }
2879 
2880 template <class ELFT>
2881 const typename MipsGOTParser<ELFT>::Entry *
getPltLazyResolver() const2882 MipsGOTParser<ELFT>::getPltLazyResolver() const {
2883   return PltEntries.empty() ? nullptr : &PltEntries[0];
2884 }
2885 
2886 template <class ELFT>
2887 const typename MipsGOTParser<ELFT>::Entry *
getPltModulePointer() const2888 MipsGOTParser<ELFT>::getPltModulePointer() const {
2889   return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
2890 }
2891 
2892 template <class ELFT>
2893 typename MipsGOTParser<ELFT>::Entries
getPltEntries() const2894 MipsGOTParser<ELFT>::getPltEntries() const {
2895   if (PltEntries.size() <= 2)
2896     return Entries();
2897   return PltEntries.slice(2, PltEntries.size() - 2);
2898 }
2899 
2900 template <class ELFT>
getPltAddress(const Entry * E) const2901 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
2902   int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
2903   return PltSec->sh_addr + Offset;
2904 }
2905 
2906 template <class ELFT>
2907 const typename MipsGOTParser<ELFT>::Elf_Sym *
getPltSym(const Entry * E) const2908 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
2909   int64_t Offset = std::distance(getPltEntries().data(), E);
2910   if (PltRelSec->sh_type == ELF::SHT_REL) {
2911     Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec));
2912     return unwrapOrError(FileName,
2913                          Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
2914   } else {
2915     Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec));
2916     return unwrapOrError(FileName,
2917                          Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
2918   }
2919 }
2920 
2921 static const EnumEntry<unsigned> ElfMipsISAExtType[] = {
2922   {"None",                    Mips::AFL_EXT_NONE},
2923   {"Broadcom SB-1",           Mips::AFL_EXT_SB1},
2924   {"Cavium Networks Octeon",  Mips::AFL_EXT_OCTEON},
2925   {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
2926   {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
2927   {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
2928   {"LSI R4010",               Mips::AFL_EXT_4010},
2929   {"Loongson 2E",             Mips::AFL_EXT_LOONGSON_2E},
2930   {"Loongson 2F",             Mips::AFL_EXT_LOONGSON_2F},
2931   {"Loongson 3A",             Mips::AFL_EXT_LOONGSON_3A},
2932   {"MIPS R4650",              Mips::AFL_EXT_4650},
2933   {"MIPS R5900",              Mips::AFL_EXT_5900},
2934   {"MIPS R10000",             Mips::AFL_EXT_10000},
2935   {"NEC VR4100",              Mips::AFL_EXT_4100},
2936   {"NEC VR4111/VR4181",       Mips::AFL_EXT_4111},
2937   {"NEC VR4120",              Mips::AFL_EXT_4120},
2938   {"NEC VR5400",              Mips::AFL_EXT_5400},
2939   {"NEC VR5500",              Mips::AFL_EXT_5500},
2940   {"RMI Xlr",                 Mips::AFL_EXT_XLR},
2941   {"Toshiba R3900",           Mips::AFL_EXT_3900}
2942 };
2943 
2944 static const EnumEntry<unsigned> ElfMipsASEFlags[] = {
2945   {"DSP",                Mips::AFL_ASE_DSP},
2946   {"DSPR2",              Mips::AFL_ASE_DSPR2},
2947   {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
2948   {"MCU",                Mips::AFL_ASE_MCU},
2949   {"MDMX",               Mips::AFL_ASE_MDMX},
2950   {"MIPS-3D",            Mips::AFL_ASE_MIPS3D},
2951   {"MT",                 Mips::AFL_ASE_MT},
2952   {"SmartMIPS",          Mips::AFL_ASE_SMARTMIPS},
2953   {"VZ",                 Mips::AFL_ASE_VIRT},
2954   {"MSA",                Mips::AFL_ASE_MSA},
2955   {"MIPS16",             Mips::AFL_ASE_MIPS16},
2956   {"microMIPS",          Mips::AFL_ASE_MICROMIPS},
2957   {"XPA",                Mips::AFL_ASE_XPA},
2958   {"CRC",                Mips::AFL_ASE_CRC},
2959   {"GINV",               Mips::AFL_ASE_GINV},
2960 };
2961 
2962 static const EnumEntry<unsigned> ElfMipsFpABIType[] = {
2963   {"Hard or soft float",                  Mips::Val_GNU_MIPS_ABI_FP_ANY},
2964   {"Hard float (double precision)",       Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
2965   {"Hard float (single precision)",       Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
2966   {"Soft float",                          Mips::Val_GNU_MIPS_ABI_FP_SOFT},
2967   {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
2968    Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
2969   {"Hard float (32-bit CPU, Any FPU)",    Mips::Val_GNU_MIPS_ABI_FP_XX},
2970   {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
2971   {"Hard float compat (32-bit CPU, 64-bit FPU)",
2972    Mips::Val_GNU_MIPS_ABI_FP_64A}
2973 };
2974 
2975 static const EnumEntry<unsigned> ElfMipsFlags1[] {
2976   {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
2977 };
2978 
getMipsRegisterSize(uint8_t Flag)2979 static int getMipsRegisterSize(uint8_t Flag) {
2980   switch (Flag) {
2981   case Mips::AFL_REG_NONE:
2982     return 0;
2983   case Mips::AFL_REG_32:
2984     return 32;
2985   case Mips::AFL_REG_64:
2986     return 64;
2987   case Mips::AFL_REG_128:
2988     return 128;
2989   default:
2990     return -1;
2991   }
2992 }
2993 
2994 template <class ELFT>
printMipsReginfoData(ScopedPrinter & W,const Elf_Mips_RegInfo<ELFT> & Reginfo)2995 static void printMipsReginfoData(ScopedPrinter &W,
2996                                  const Elf_Mips_RegInfo<ELFT> &Reginfo) {
2997   W.printHex("GP", Reginfo.ri_gp_value);
2998   W.printHex("General Mask", Reginfo.ri_gprmask);
2999   W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
3000   W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
3001   W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
3002   W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
3003 }
3004 
printMipsReginfo()3005 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
3006   const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo");
3007   if (!RegInfoSec) {
3008     W.startLine() << "There is no .reginfo section in the file.\n";
3009     return;
3010   }
3011 
3012   Expected<ArrayRef<uint8_t>> ContentsOrErr =
3013       Obj.getSectionContents(*RegInfoSec);
3014   if (!ContentsOrErr) {
3015     this->reportUniqueWarning(
3016         "unable to read the content of the .reginfo section (" +
3017         describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError()));
3018     return;
3019   }
3020 
3021   if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) {
3022     this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
3023                               Twine::utohexstr(ContentsOrErr->size()) + ")");
3024     return;
3025   }
3026 
3027   DictScope GS(W, "MIPS RegInfo");
3028   printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(
3029                               ContentsOrErr->data()));
3030 }
3031 
3032 template <class ELFT>
3033 static Expected<const Elf_Mips_Options<ELFT> *>
readMipsOptions(const uint8_t * SecBegin,ArrayRef<uint8_t> & SecData,bool & IsSupported)3034 readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData,
3035                 bool &IsSupported) {
3036   if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>))
3037     return createError("the .MIPS.options section has an invalid size (0x" +
3038                        Twine::utohexstr(SecData.size()) + ")");
3039 
3040   const Elf_Mips_Options<ELFT> *O =
3041       reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data());
3042   const uint8_t Size = O->size;
3043   if (Size > SecData.size()) {
3044     const uint64_t Offset = SecData.data() - SecBegin;
3045     const uint64_t SecSize = Offset + SecData.size();
3046     return createError("a descriptor of size 0x" + Twine::utohexstr(Size) +
3047                        " at offset 0x" + Twine::utohexstr(Offset) +
3048                        " goes past the end of the .MIPS.options "
3049                        "section of size 0x" +
3050                        Twine::utohexstr(SecSize));
3051   }
3052 
3053   IsSupported = O->kind == ODK_REGINFO;
3054   const size_t ExpectedSize =
3055       sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
3056 
3057   if (IsSupported)
3058     if (Size < ExpectedSize)
3059       return createError(
3060           "a .MIPS.options entry of kind " +
3061           Twine(getElfMipsOptionsOdkType(O->kind)) +
3062           " has an invalid size (0x" + Twine::utohexstr(Size) +
3063           "), the expected size is 0x" + Twine::utohexstr(ExpectedSize));
3064 
3065   SecData = SecData.drop_front(Size);
3066   return O;
3067 }
3068 
printMipsOptions()3069 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
3070   const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options");
3071   if (!MipsOpts) {
3072     W.startLine() << "There is no .MIPS.options section in the file.\n";
3073     return;
3074   }
3075 
3076   DictScope GS(W, "MIPS Options");
3077 
3078   ArrayRef<uint8_t> Data =
3079       unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts));
3080   const uint8_t *const SecBegin = Data.begin();
3081   while (!Data.empty()) {
3082     bool IsSupported;
3083     Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr =
3084         readMipsOptions<ELFT>(SecBegin, Data, IsSupported);
3085     if (!OptsOrErr) {
3086       reportUniqueWarning(OptsOrErr.takeError());
3087       break;
3088     }
3089 
3090     unsigned Kind = (*OptsOrErr)->kind;
3091     const char *Type = getElfMipsOptionsOdkType(Kind);
3092     if (!IsSupported) {
3093       W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind
3094                     << ")\n";
3095       continue;
3096     }
3097 
3098     DictScope GS(W, Type);
3099     if (Kind == ODK_REGINFO)
3100       printMipsReginfoData(W, (*OptsOrErr)->getRegInfo());
3101     else
3102       llvm_unreachable("unexpected .MIPS.options section descriptor kind");
3103   }
3104 }
3105 
printStackMap() const3106 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
3107   const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps");
3108   if (!StackMapSection)
3109     return;
3110 
3111   auto Warn = [&](Error &&E) {
3112     this->reportUniqueWarning("unable to read the stack map from " +
3113                               describe(*StackMapSection) + ": " +
3114                               toString(std::move(E)));
3115   };
3116 
3117   Expected<ArrayRef<uint8_t>> ContentOrErr =
3118       Obj.getSectionContents(*StackMapSection);
3119   if (!ContentOrErr) {
3120     Warn(ContentOrErr.takeError());
3121     return;
3122   }
3123 
3124   if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader(
3125           *ContentOrErr)) {
3126     Warn(std::move(E));
3127     return;
3128   }
3129 
3130   prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr));
3131 }
3132 
3133 template <class ELFT>
printReloc(const Relocation<ELFT> & R,unsigned RelIndex,const Elf_Shdr & Sec,const Elf_Shdr * SymTab)3134 void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
3135                                  const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
3136   Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab);
3137   if (!Target)
3138     reportUniqueWarning("unable to print relocation " + Twine(RelIndex) +
3139                         " in " + describe(Sec) + ": " +
3140                         toString(Target.takeError()));
3141   else
3142     printRelRelaReloc(R, *Target);
3143 }
3144 
printFields(formatted_raw_ostream & OS,StringRef Str1,StringRef Str2)3145 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
3146                                StringRef Str2) {
3147   OS.PadToColumn(2u);
3148   OS << Str1;
3149   OS.PadToColumn(37u);
3150   OS << Str2 << "\n";
3151   OS.flush();
3152 }
3153 
3154 template <class ELFT>
getSectionHeadersNumString(const ELFFile<ELFT> & Obj,StringRef FileName)3155 static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj,
3156                                               StringRef FileName) {
3157   const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3158   if (ElfHeader.e_shnum != 0)
3159     return to_string(ElfHeader.e_shnum);
3160 
3161   Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3162   if (!ArrOrErr) {
3163     // In this case we can ignore an error, because we have already reported a
3164     // warning about the broken section header table earlier.
3165     consumeError(ArrOrErr.takeError());
3166     return "<?>";
3167   }
3168 
3169   if (ArrOrErr->empty())
3170     return "0";
3171   return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")";
3172 }
3173 
3174 template <class ELFT>
getSectionHeaderTableIndexString(const ELFFile<ELFT> & Obj,StringRef FileName)3175 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj,
3176                                                     StringRef FileName) {
3177   const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3178   if (ElfHeader.e_shstrndx != SHN_XINDEX)
3179     return to_string(ElfHeader.e_shstrndx);
3180 
3181   Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3182   if (!ArrOrErr) {
3183     // In this case we can ignore an error, because we have already reported a
3184     // warning about the broken section header table earlier.
3185     consumeError(ArrOrErr.takeError());
3186     return "<?>";
3187   }
3188 
3189   if (ArrOrErr->empty())
3190     return "65535 (corrupt: out of range)";
3191   return to_string(ElfHeader.e_shstrndx) + " (" +
3192          to_string((*ArrOrErr)[0].sh_link) + ")";
3193 }
3194 
getObjectFileEnumEntry(unsigned Type)3195 static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) {
3196   auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) {
3197     return E.Value == Type;
3198   });
3199   if (It != makeArrayRef(ElfObjectFileType).end())
3200     return It;
3201   return nullptr;
3202 }
3203 
printFileHeaders()3204 template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() {
3205   const Elf_Ehdr &e = this->Obj.getHeader();
3206   OS << "ELF Header:\n";
3207   OS << "  Magic:  ";
3208   std::string Str;
3209   for (int i = 0; i < ELF::EI_NIDENT; i++)
3210     OS << format(" %02x", static_cast<int>(e.e_ident[i]));
3211   OS << "\n";
3212   Str = printEnum(e.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
3213   printFields(OS, "Class:", Str);
3214   Str = printEnum(e.e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
3215   printFields(OS, "Data:", Str);
3216   OS.PadToColumn(2u);
3217   OS << "Version:";
3218   OS.PadToColumn(37u);
3219   OS << to_hexString(e.e_ident[ELF::EI_VERSION]);
3220   if (e.e_version == ELF::EV_CURRENT)
3221     OS << " (current)";
3222   OS << "\n";
3223   Str = printEnum(e.e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
3224   printFields(OS, "OS/ABI:", Str);
3225   printFields(OS,
3226               "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION]));
3227 
3228   if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) {
3229     Str = E->AltName.str();
3230   } else {
3231     if (e.e_type >= ET_LOPROC)
3232       Str = "Processor Specific: (" + to_hexString(e.e_type, false) + ")";
3233     else if (e.e_type >= ET_LOOS)
3234       Str = "OS Specific: (" + to_hexString(e.e_type, false) + ")";
3235     else
3236       Str = "<unknown>: " + to_hexString(e.e_type, false);
3237   }
3238   printFields(OS, "Type:", Str);
3239 
3240   Str = printEnum(e.e_machine, makeArrayRef(ElfMachineType));
3241   printFields(OS, "Machine:", Str);
3242   Str = "0x" + to_hexString(e.e_version);
3243   printFields(OS, "Version:", Str);
3244   Str = "0x" + to_hexString(e.e_entry);
3245   printFields(OS, "Entry point address:", Str);
3246   Str = to_string(e.e_phoff) + " (bytes into file)";
3247   printFields(OS, "Start of program headers:", Str);
3248   Str = to_string(e.e_shoff) + " (bytes into file)";
3249   printFields(OS, "Start of section headers:", Str);
3250   std::string ElfFlags;
3251   if (e.e_machine == EM_MIPS)
3252     ElfFlags =
3253         printFlags(e.e_flags, makeArrayRef(ElfHeaderMipsFlags),
3254                    unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
3255                    unsigned(ELF::EF_MIPS_MACH));
3256   else if (e.e_machine == EM_RISCV)
3257     ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
3258   else if (e.e_machine == EM_AVR)
3259     ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderAVRFlags),
3260                           unsigned(ELF::EF_AVR_ARCH_MASK));
3261   Str = "0x" + to_hexString(e.e_flags);
3262   if (!ElfFlags.empty())
3263     Str = Str + ", " + ElfFlags;
3264   printFields(OS, "Flags:", Str);
3265   Str = to_string(e.e_ehsize) + " (bytes)";
3266   printFields(OS, "Size of this header:", Str);
3267   Str = to_string(e.e_phentsize) + " (bytes)";
3268   printFields(OS, "Size of program headers:", Str);
3269   Str = to_string(e.e_phnum);
3270   printFields(OS, "Number of program headers:", Str);
3271   Str = to_string(e.e_shentsize) + " (bytes)";
3272   printFields(OS, "Size of section headers:", Str);
3273   Str = getSectionHeadersNumString(this->Obj, this->FileName);
3274   printFields(OS, "Number of section headers:", Str);
3275   Str = getSectionHeaderTableIndexString(this->Obj, this->FileName);
3276   printFields(OS, "Section header string table index:", Str);
3277 }
3278 
getGroups()3279 template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() {
3280   auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx,
3281                           const Elf_Shdr &Symtab) -> StringRef {
3282     Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab);
3283     if (!StrTableOrErr) {
3284       reportUniqueWarning("unable to get the string table for " +
3285                           describe(Symtab) + ": " +
3286                           toString(StrTableOrErr.takeError()));
3287       return "<?>";
3288     }
3289 
3290     StringRef Strings = *StrTableOrErr;
3291     if (Sym.st_name >= Strings.size()) {
3292       reportUniqueWarning("unable to get the name of the symbol with index " +
3293                           Twine(SymNdx) + ": st_name (0x" +
3294                           Twine::utohexstr(Sym.st_name) +
3295                           ") is past the end of the string table of size 0x" +
3296                           Twine::utohexstr(Strings.size()));
3297       return "<?>";
3298     }
3299 
3300     return StrTableOrErr->data() + Sym.st_name;
3301   };
3302 
3303   std::vector<GroupSection> Ret;
3304   uint64_t I = 0;
3305   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
3306     ++I;
3307     if (Sec.sh_type != ELF::SHT_GROUP)
3308       continue;
3309 
3310     StringRef Signature = "<?>";
3311     if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) {
3312       if (Expected<const Elf_Sym *> SymOrErr =
3313               Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info))
3314         Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr);
3315       else
3316         reportUniqueWarning("unable to get the signature symbol for " +
3317                             describe(Sec) + ": " +
3318                             toString(SymOrErr.takeError()));
3319     } else {
3320       reportUniqueWarning("unable to get the symbol table for " +
3321                           describe(Sec) + ": " +
3322                           toString(SymtabOrErr.takeError()));
3323     }
3324 
3325     ArrayRef<Elf_Word> Data;
3326     if (Expected<ArrayRef<Elf_Word>> ContentsOrErr =
3327             Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) {
3328       if (ContentsOrErr->empty())
3329         reportUniqueWarning("unable to read the section group flag from the " +
3330                             describe(Sec) + ": the section is empty");
3331       else
3332         Data = *ContentsOrErr;
3333     } else {
3334       reportUniqueWarning("unable to get the content of the " + describe(Sec) +
3335                           ": " + toString(ContentsOrErr.takeError()));
3336     }
3337 
3338     Ret.push_back({getPrintableSectionName(Sec),
3339                    maybeDemangle(Signature),
3340                    Sec.sh_name,
3341                    I - 1,
3342                    Sec.sh_link,
3343                    Sec.sh_info,
3344                    Data.empty() ? Elf_Word(0) : Data[0],
3345                    {}});
3346 
3347     if (Data.empty())
3348       continue;
3349 
3350     std::vector<GroupMember> &GM = Ret.back().Members;
3351     for (uint32_t Ndx : Data.slice(1)) {
3352       if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) {
3353         GM.push_back({getPrintableSectionName(**SecOrErr), Ndx});
3354       } else {
3355         reportUniqueWarning("unable to get the section with index " +
3356                             Twine(Ndx) + " when dumping the " + describe(Sec) +
3357                             ": " + toString(SecOrErr.takeError()));
3358         GM.push_back({"<?>", Ndx});
3359       }
3360     }
3361   }
3362   return Ret;
3363 }
3364 
3365 static DenseMap<uint64_t, const GroupSection *>
mapSectionsToGroups(ArrayRef<GroupSection> Groups)3366 mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
3367   DenseMap<uint64_t, const GroupSection *> Ret;
3368   for (const GroupSection &G : Groups)
3369     for (const GroupMember &GM : G.Members)
3370       Ret.insert({GM.Index, &G});
3371   return Ret;
3372 }
3373 
printGroupSections()3374 template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() {
3375   std::vector<GroupSection> V = this->getGroups();
3376   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
3377   for (const GroupSection &G : V) {
3378     OS << "\n"
3379        << getGroupType(G.Type) << " group section ["
3380        << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
3381        << "] contains " << G.Members.size() << " sections:\n"
3382        << "   [Index]    Name\n";
3383     for (const GroupMember &GM : G.Members) {
3384       const GroupSection *MainGroup = Map[GM.Index];
3385       if (MainGroup != &G)
3386         this->reportUniqueWarning(
3387             "section with index " + Twine(GM.Index) +
3388             ", included in the group section with index " +
3389             Twine(MainGroup->Index) +
3390             ", was also found in the group section with index " +
3391             Twine(G.Index));
3392       OS << "   [" << format_decimal(GM.Index, 5) << "]   " << GM.Name << "\n";
3393     }
3394   }
3395 
3396   if (V.empty())
3397     OS << "There are no section groups in this file.\n";
3398 }
3399 
3400 template <class ELFT>
printRelrReloc(const Elf_Relr & R)3401 void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
3402   OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n";
3403 }
3404 
3405 template <class ELFT>
printRelRelaReloc(const Relocation<ELFT> & R,const RelSymbol<ELFT> & RelSym)3406 void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
3407                                            const RelSymbol<ELFT> &RelSym) {
3408   // First two fields are bit width dependent. The rest of them are fixed width.
3409   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3410   Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3411   unsigned Width = ELFT::Is64Bits ? 16 : 8;
3412 
3413   Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width));
3414   Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width));
3415 
3416   SmallString<32> RelocName;
3417   this->Obj.getRelocationTypeName(R.Type, RelocName);
3418   Fields[2].Str = RelocName.c_str();
3419 
3420   if (RelSym.Sym)
3421     Fields[3].Str =
3422         to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width));
3423 
3424   Fields[4].Str = std::string(RelSym.Name);
3425   for (const Field &F : Fields)
3426     printField(F);
3427 
3428   std::string Addend;
3429   if (Optional<int64_t> A = R.Addend) {
3430     int64_t RelAddend = *A;
3431     if (!RelSym.Name.empty()) {
3432       if (RelAddend < 0) {
3433         Addend = " - ";
3434         RelAddend = std::abs(RelAddend);
3435       } else {
3436         Addend = " + ";
3437       }
3438     }
3439     Addend += to_hexString(RelAddend, false);
3440   }
3441   OS << Addend << "\n";
3442 }
3443 
3444 template <class ELFT>
printRelocHeaderFields(formatted_raw_ostream & OS,unsigned SType)3445 static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType) {
3446   bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
3447   bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
3448   if (ELFT::Is64Bits)
3449     OS << "    ";
3450   else
3451     OS << " ";
3452   if (IsRelr && opts::RawRelr)
3453     OS << "Data  ";
3454   else
3455     OS << "Offset";
3456   if (ELFT::Is64Bits)
3457     OS << "             Info             Type"
3458        << "               Symbol's Value  Symbol's Name";
3459   else
3460     OS << "     Info    Type                Sym. Value  Symbol's Name";
3461   if (IsRela)
3462     OS << " + Addend";
3463   OS << "\n";
3464 }
3465 
3466 template <class ELFT>
printDynamicRelocHeader(unsigned Type,StringRef Name,const DynRegionInfo & Reg)3467 void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name,
3468                                                  const DynRegionInfo &Reg) {
3469   uint64_t Offset = Reg.Addr - this->Obj.base();
3470   OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x"
3471      << to_hexString(Offset, false) << " contains " << Reg.Size << " bytes:\n";
3472   printRelocHeaderFields<ELFT>(OS, Type);
3473 }
3474 
3475 template <class ELFT>
isRelocationSec(const typename ELFT::Shdr & Sec)3476 static bool isRelocationSec(const typename ELFT::Shdr &Sec) {
3477   return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA ||
3478          Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL ||
3479          Sec.sh_type == ELF::SHT_ANDROID_RELA ||
3480          Sec.sh_type == ELF::SHT_ANDROID_RELR;
3481 }
3482 
printRelocations()3483 template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() {
3484   auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> {
3485     // Android's packed relocation section needs to be unpacked first
3486     // to get the actual number of entries.
3487     if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
3488         Sec.sh_type == ELF::SHT_ANDROID_RELA) {
3489       Expected<std::vector<typename ELFT::Rela>> RelasOrErr =
3490           this->Obj.android_relas(Sec);
3491       if (!RelasOrErr)
3492         return RelasOrErr.takeError();
3493       return RelasOrErr->size();
3494     }
3495 
3496     if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
3497                            Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
3498       Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec);
3499       if (!RelrsOrErr)
3500         return RelrsOrErr.takeError();
3501       return this->Obj.decode_relrs(*RelrsOrErr).size();
3502     }
3503 
3504     return Sec.getEntityCount();
3505   };
3506 
3507   bool HasRelocSections = false;
3508   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
3509     if (!isRelocationSec<ELFT>(Sec))
3510       continue;
3511     HasRelocSections = true;
3512 
3513     std::string EntriesNum = "<?>";
3514     if (Expected<size_t> NumOrErr = GetEntriesNum(Sec))
3515       EntriesNum = std::to_string(*NumOrErr);
3516     else
3517       this->reportUniqueWarning("unable to get the number of relocations in " +
3518                                 this->describe(Sec) + ": " +
3519                                 toString(NumOrErr.takeError()));
3520 
3521     uintX_t Offset = Sec.sh_offset;
3522     StringRef Name = this->getPrintableSectionName(Sec);
3523     OS << "\nRelocation section '" << Name << "' at offset 0x"
3524        << to_hexString(Offset, false) << " contains " << EntriesNum
3525        << " entries:\n";
3526     printRelocHeaderFields<ELFT>(OS, Sec.sh_type);
3527     this->printRelocationsHelper(Sec);
3528   }
3529   if (!HasRelocSections)
3530     OS << "\nThere are no relocations in this file.\n";
3531 }
3532 
3533 // Print the offset of a particular section from anyone of the ranges:
3534 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3535 // If 'Type' does not fall within any of those ranges, then a string is
3536 // returned as '<unknown>' followed by the type value.
getSectionTypeOffsetString(unsigned Type)3537 static std::string getSectionTypeOffsetString(unsigned Type) {
3538   if (Type >= SHT_LOOS && Type <= SHT_HIOS)
3539     return "LOOS+0x" + to_hexString(Type - SHT_LOOS);
3540   else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
3541     return "LOPROC+0x" + to_hexString(Type - SHT_LOPROC);
3542   else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
3543     return "LOUSER+0x" + to_hexString(Type - SHT_LOUSER);
3544   return "0x" + to_hexString(Type) + ": <unknown>";
3545 }
3546 
getSectionTypeString(unsigned Machine,unsigned Type)3547 static std::string getSectionTypeString(unsigned Machine, unsigned Type) {
3548   StringRef Name = getELFSectionTypeName(Machine, Type);
3549 
3550   // Handle SHT_GNU_* type names.
3551   if (Name.startswith("SHT_GNU_")) {
3552     if (Name == "SHT_GNU_HASH")
3553       return "GNU_HASH";
3554     // E.g. SHT_GNU_verneed -> VERNEED.
3555     return Name.drop_front(8).upper();
3556   }
3557 
3558   if (Name == "SHT_SYMTAB_SHNDX")
3559     return "SYMTAB SECTION INDICES";
3560 
3561   if (Name.startswith("SHT_"))
3562     return Name.drop_front(4).str();
3563   return getSectionTypeOffsetString(Type);
3564 }
3565 
printSectionDescription(formatted_raw_ostream & OS,unsigned EMachine)3566 static void printSectionDescription(formatted_raw_ostream &OS,
3567                                     unsigned EMachine) {
3568   OS << "Key to Flags:\n";
3569   OS << "  W (write), A (alloc), X (execute), M (merge), S (strings), I "
3570         "(info),\n";
3571   OS << "  L (link order), O (extra OS processing required), G (group), T "
3572         "(TLS),\n";
3573   OS << "  C (compressed), x (unknown), o (OS specific), E (exclude),\n";
3574   OS << "  R (retain)";
3575 
3576   if (EMachine == EM_X86_64)
3577     OS << ", l (large)";
3578   else if (EMachine == EM_ARM)
3579     OS << ", y (purecode)";
3580 
3581   OS << ", p (processor specific)\n";
3582 }
3583 
printSectionHeaders()3584 template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() {
3585   unsigned Bias = ELFT::Is64Bits ? 0 : 8;
3586   ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
3587   OS << "There are " << to_string(Sections.size())
3588      << " section headers, starting at offset "
3589      << "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n";
3590   OS << "Section Headers:\n";
3591   Field Fields[11] = {
3592       {"[Nr]", 2},        {"Name", 7},        {"Type", 25},
3593       {"Address", 41},    {"Off", 58 - Bias}, {"Size", 65 - Bias},
3594       {"ES", 72 - Bias},  {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
3595       {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
3596   for (const Field &F : Fields)
3597     printField(F);
3598   OS << "\n";
3599 
3600   StringRef SecStrTable;
3601   if (Expected<StringRef> SecStrTableOrErr =
3602           this->Obj.getSectionStringTable(Sections, this->WarningHandler))
3603     SecStrTable = *SecStrTableOrErr;
3604   else
3605     this->reportUniqueWarning(SecStrTableOrErr.takeError());
3606 
3607   size_t SectionIndex = 0;
3608   for (const Elf_Shdr &Sec : Sections) {
3609     Fields[0].Str = to_string(SectionIndex);
3610     if (SecStrTable.empty())
3611       Fields[1].Str = "<no-strings>";
3612     else
3613       Fields[1].Str = std::string(unwrapOrError<StringRef>(
3614           this->FileName, this->Obj.getSectionName(Sec, SecStrTable)));
3615     Fields[2].Str =
3616         getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type);
3617     Fields[3].Str =
3618         to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
3619     Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
3620     Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
3621     Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
3622     Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_machine, Sec.sh_flags);
3623     Fields[8].Str = to_string(Sec.sh_link);
3624     Fields[9].Str = to_string(Sec.sh_info);
3625     Fields[10].Str = to_string(Sec.sh_addralign);
3626 
3627     OS.PadToColumn(Fields[0].Column);
3628     OS << "[" << right_justify(Fields[0].Str, 2) << "]";
3629     for (int i = 1; i < 7; i++)
3630       printField(Fields[i]);
3631     OS.PadToColumn(Fields[7].Column);
3632     OS << right_justify(Fields[7].Str, 3);
3633     OS.PadToColumn(Fields[8].Column);
3634     OS << right_justify(Fields[8].Str, 2);
3635     OS.PadToColumn(Fields[9].Column);
3636     OS << right_justify(Fields[9].Str, 3);
3637     OS.PadToColumn(Fields[10].Column);
3638     OS << right_justify(Fields[10].Str, 2);
3639     OS << "\n";
3640     ++SectionIndex;
3641   }
3642   printSectionDescription(OS, this->Obj.getHeader().e_machine);
3643 }
3644 
3645 template <class ELFT>
printSymtabMessage(const Elf_Shdr * Symtab,size_t Entries,bool NonVisibilityBitsUsed) const3646 void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab,
3647                                             size_t Entries,
3648                                             bool NonVisibilityBitsUsed) const {
3649   StringRef Name;
3650   if (Symtab)
3651     Name = this->getPrintableSectionName(*Symtab);
3652   if (!Name.empty())
3653     OS << "\nSymbol table '" << Name << "'";
3654   else
3655     OS << "\nSymbol table for image";
3656   OS << " contains " << Entries << " entries:\n";
3657 
3658   if (ELFT::Is64Bits)
3659     OS << "   Num:    Value          Size Type    Bind   Vis";
3660   else
3661     OS << "   Num:    Value  Size Type    Bind   Vis";
3662 
3663   if (NonVisibilityBitsUsed)
3664     OS << "             ";
3665   OS << "       Ndx Name\n";
3666 }
3667 
3668 template <class ELFT>
3669 std::string
getSymbolSectionNdx(const Elf_Sym & Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable) const3670 GNUELFDumper<ELFT>::getSymbolSectionNdx(const Elf_Sym &Symbol,
3671                                         unsigned SymIndex,
3672                                         DataRegion<Elf_Word> ShndxTable) const {
3673   unsigned SectionIndex = Symbol.st_shndx;
3674   switch (SectionIndex) {
3675   case ELF::SHN_UNDEF:
3676     return "UND";
3677   case ELF::SHN_ABS:
3678     return "ABS";
3679   case ELF::SHN_COMMON:
3680     return "COM";
3681   case ELF::SHN_XINDEX: {
3682     Expected<uint32_t> IndexOrErr =
3683         object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable);
3684     if (!IndexOrErr) {
3685       assert(Symbol.st_shndx == SHN_XINDEX &&
3686              "getExtendedSymbolTableIndex should only fail due to an invalid "
3687              "SHT_SYMTAB_SHNDX table/reference");
3688       this->reportUniqueWarning(IndexOrErr.takeError());
3689       return "RSV[0xffff]";
3690     }
3691     return to_string(format_decimal(*IndexOrErr, 3));
3692   }
3693   default:
3694     // Find if:
3695     // Processor specific
3696     if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
3697       return std::string("PRC[0x") +
3698              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3699     // OS specific
3700     if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
3701       return std::string("OS[0x") +
3702              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3703     // Architecture reserved:
3704     if (SectionIndex >= ELF::SHN_LORESERVE &&
3705         SectionIndex <= ELF::SHN_HIRESERVE)
3706       return std::string("RSV[0x") +
3707              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3708     // A normal section with an index
3709     return to_string(format_decimal(SectionIndex, 3));
3710   }
3711 }
3712 
3713 template <class ELFT>
printSymbol(const Elf_Sym & Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable,Optional<StringRef> StrTable,bool IsDynamic,bool NonVisibilityBitsUsed) const3714 void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
3715                                      DataRegion<Elf_Word> ShndxTable,
3716                                      Optional<StringRef> StrTable,
3717                                      bool IsDynamic,
3718                                      bool NonVisibilityBitsUsed) const {
3719   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3720   Field Fields[8] = {0,         8,         17 + Bias, 23 + Bias,
3721                      31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
3722   Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":";
3723   Fields[1].Str =
3724       to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8));
3725   Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5));
3726 
3727   unsigned char SymbolType = Symbol.getType();
3728   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
3729       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3730     Fields[3].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3731   else
3732     Fields[3].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
3733 
3734   Fields[4].Str =
3735       printEnum(Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
3736   Fields[5].Str =
3737       printEnum(Symbol.getVisibility(), makeArrayRef(ElfSymbolVisibilities));
3738 
3739   if (Symbol.st_other & ~0x3) {
3740     if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) {
3741       uint8_t Other = Symbol.st_other & ~0x3;
3742       if (Other & STO_AARCH64_VARIANT_PCS) {
3743         Other &= ~STO_AARCH64_VARIANT_PCS;
3744         Fields[5].Str += " [VARIANT_PCS";
3745         if (Other != 0)
3746           Fields[5].Str.append(" | " + to_hexString(Other, false));
3747         Fields[5].Str.append("]");
3748       }
3749     } else {
3750       Fields[5].Str +=
3751           " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]";
3752     }
3753   }
3754 
3755   Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
3756   Fields[6].Str = getSymbolSectionNdx(Symbol, SymIndex, ShndxTable);
3757 
3758   Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable,
3759                                           StrTable, IsDynamic);
3760   for (const Field &Entry : Fields)
3761     printField(Entry);
3762   OS << "\n";
3763 }
3764 
3765 template <class ELFT>
printHashedSymbol(const Elf_Sym * Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable,StringRef StrTable,uint32_t Bucket)3766 void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol,
3767                                            unsigned SymIndex,
3768                                            DataRegion<Elf_Word> ShndxTable,
3769                                            StringRef StrTable,
3770                                            uint32_t Bucket) {
3771   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3772   Field Fields[9] = {0,         6,         11,        20 + Bias, 25 + Bias,
3773                      34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
3774   Fields[0].Str = to_string(format_decimal(SymIndex, 5));
3775   Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
3776 
3777   Fields[2].Str = to_string(
3778       format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
3779   Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
3780 
3781   unsigned char SymbolType = Symbol->getType();
3782   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
3783       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3784     Fields[4].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3785   else
3786     Fields[4].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
3787 
3788   Fields[5].Str =
3789       printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
3790   Fields[6].Str =
3791       printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities));
3792   Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable);
3793   Fields[8].Str =
3794       this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true);
3795 
3796   for (const Field &Entry : Fields)
3797     printField(Entry);
3798   OS << "\n";
3799 }
3800 
3801 template <class ELFT>
printSymbols(bool PrintSymbols,bool PrintDynamicSymbols)3802 void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols,
3803                                       bool PrintDynamicSymbols) {
3804   if (!PrintSymbols && !PrintDynamicSymbols)
3805     return;
3806   // GNU readelf prints both the .dynsym and .symtab with --symbols.
3807   this->printSymbolsHelper(true);
3808   if (PrintSymbols)
3809     this->printSymbolsHelper(false);
3810 }
3811 
3812 template <class ELFT>
printHashTableSymbols(const Elf_Hash & SysVHash)3813 void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) {
3814   if (this->DynamicStringTable.empty())
3815     return;
3816 
3817   if (ELFT::Is64Bits)
3818     OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
3819   else
3820     OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
3821   OS << "\n";
3822 
3823   Elf_Sym_Range DynSyms = this->dynamic_symbols();
3824   const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
3825   if (!FirstSym) {
3826     this->reportUniqueWarning(
3827         Twine("unable to print symbols for the .hash table: the "
3828               "dynamic symbol table ") +
3829         (this->DynSymRegion ? "is empty" : "was not found"));
3830     return;
3831   }
3832 
3833   DataRegion<Elf_Word> ShndxTable(
3834       (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
3835   auto Buckets = SysVHash.buckets();
3836   auto Chains = SysVHash.chains();
3837   for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) {
3838     if (Buckets[Buc] == ELF::STN_UNDEF)
3839       continue;
3840     std::vector<bool> Visited(SysVHash.nchain);
3841     for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) {
3842       if (Ch == ELF::STN_UNDEF)
3843         break;
3844 
3845       if (Visited[Ch]) {
3846         this->reportUniqueWarning(".hash section is invalid: bucket " +
3847                                   Twine(Ch) +
3848                                   ": a cycle was detected in the linked chain");
3849         break;
3850       }
3851 
3852       printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable,
3853                         Buc);
3854       Visited[Ch] = true;
3855     }
3856   }
3857 }
3858 
3859 template <class ELFT>
printGnuHashTableSymbols(const Elf_GnuHash & GnuHash)3860 void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) {
3861   if (this->DynamicStringTable.empty())
3862     return;
3863 
3864   Elf_Sym_Range DynSyms = this->dynamic_symbols();
3865   const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
3866   if (!FirstSym) {
3867     this->reportUniqueWarning(
3868         Twine("unable to print symbols for the .gnu.hash table: the "
3869               "dynamic symbol table ") +
3870         (this->DynSymRegion ? "is empty" : "was not found"));
3871     return;
3872   }
3873 
3874   auto GetSymbol = [&](uint64_t SymIndex,
3875                        uint64_t SymsTotal) -> const Elf_Sym * {
3876     if (SymIndex >= SymsTotal) {
3877       this->reportUniqueWarning(
3878           "unable to print hashed symbol with index " + Twine(SymIndex) +
3879           ", which is greater than or equal to the number of dynamic symbols "
3880           "(" +
3881           Twine::utohexstr(SymsTotal) + ")");
3882       return nullptr;
3883     }
3884     return FirstSym + SymIndex;
3885   };
3886 
3887   Expected<ArrayRef<Elf_Word>> ValuesOrErr =
3888       getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash);
3889   ArrayRef<Elf_Word> Values;
3890   if (!ValuesOrErr)
3891     this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
3892                               "section: " +
3893                               toString(ValuesOrErr.takeError()));
3894   else
3895     Values = *ValuesOrErr;
3896 
3897   DataRegion<Elf_Word> ShndxTable(
3898       (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
3899   ArrayRef<Elf_Word> Buckets = GnuHash.buckets();
3900   for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) {
3901     if (Buckets[Buc] == ELF::STN_UNDEF)
3902       continue;
3903     uint32_t Index = Buckets[Buc];
3904     // Print whole chain.
3905     while (true) {
3906       uint32_t SymIndex = Index++;
3907       if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size()))
3908         printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable,
3909                           Buc);
3910       else
3911         break;
3912 
3913       if (SymIndex < GnuHash.symndx) {
3914         this->reportUniqueWarning(
3915             "unable to read the hash value for symbol with index " +
3916             Twine(SymIndex) +
3917             ", which is less than the index of the first hashed symbol (" +
3918             Twine(GnuHash.symndx) + ")");
3919         break;
3920       }
3921 
3922        // Chain ends at symbol with stopper bit.
3923       if ((Values[SymIndex - GnuHash.symndx] & 1) == 1)
3924         break;
3925     }
3926   }
3927 }
3928 
printHashSymbols()3929 template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() {
3930   if (this->HashTable) {
3931     OS << "\n Symbol table of .hash for image:\n";
3932     if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
3933       this->reportUniqueWarning(std::move(E));
3934     else
3935       printHashTableSymbols(*this->HashTable);
3936   }
3937 
3938   // Try printing the .gnu.hash table.
3939   if (this->GnuHashTable) {
3940     OS << "\n Symbol table of .gnu.hash for image:\n";
3941     if (ELFT::Is64Bits)
3942       OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
3943     else
3944       OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
3945     OS << "\n";
3946 
3947     if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
3948       this->reportUniqueWarning(std::move(E));
3949     else
3950       printGnuHashTableSymbols(*this->GnuHashTable);
3951   }
3952 }
3953 
printSectionDetails()3954 template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() {
3955   ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
3956   OS << "There are " << to_string(Sections.size())
3957      << " section headers, starting at offset "
3958      << "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n";
3959 
3960   OS << "Section Headers:\n";
3961 
3962   auto PrintFields = [&](ArrayRef<Field> V) {
3963     for (const Field &F : V)
3964       printField(F);
3965     OS << "\n";
3966   };
3967 
3968   PrintFields({{"[Nr]", 2}, {"Name", 7}});
3969 
3970   constexpr bool Is64 = ELFT::Is64Bits;
3971   PrintFields({{"Type", 7},
3972                {Is64 ? "Address" : "Addr", 23},
3973                {"Off", Is64 ? 40 : 32},
3974                {"Size", Is64 ? 47 : 39},
3975                {"ES", Is64 ? 54 : 46},
3976                {"Lk", Is64 ? 59 : 51},
3977                {"Inf", Is64 ? 62 : 54},
3978                {"Al", Is64 ? 66 : 57}});
3979   PrintFields({{"Flags", 7}});
3980 
3981   StringRef SecStrTable;
3982   if (Expected<StringRef> SecStrTableOrErr =
3983           this->Obj.getSectionStringTable(Sections, this->WarningHandler))
3984     SecStrTable = *SecStrTableOrErr;
3985   else
3986     this->reportUniqueWarning(SecStrTableOrErr.takeError());
3987 
3988   size_t SectionIndex = 0;
3989   const unsigned AddrSize = Is64 ? 16 : 8;
3990   for (const Elf_Shdr &S : Sections) {
3991     StringRef Name = "<?>";
3992     if (Expected<StringRef> NameOrErr =
3993             this->Obj.getSectionName(S, SecStrTable))
3994       Name = *NameOrErr;
3995     else
3996       this->reportUniqueWarning(NameOrErr.takeError());
3997 
3998     OS.PadToColumn(2);
3999     OS << "[" << right_justify(to_string(SectionIndex), 2) << "]";
4000     PrintFields({{Name, 7}});
4001     PrintFields(
4002         {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7},
4003          {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23},
4004          {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32},
4005          {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39},
4006          {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46},
4007          {to_string(S.sh_link), Is64 ? 59 : 51},
4008          {to_string(S.sh_info), Is64 ? 63 : 55},
4009          {to_string(S.sh_addralign), Is64 ? 66 : 58}});
4010 
4011     OS.PadToColumn(7);
4012     OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: ";
4013 
4014     DenseMap<unsigned, StringRef> FlagToName = {
4015         {SHF_WRITE, "WRITE"},           {SHF_ALLOC, "ALLOC"},
4016         {SHF_EXECINSTR, "EXEC"},        {SHF_MERGE, "MERGE"},
4017         {SHF_STRINGS, "STRINGS"},       {SHF_INFO_LINK, "INFO LINK"},
4018         {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"},
4019         {SHF_GROUP, "GROUP"},           {SHF_TLS, "TLS"},
4020         {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}};
4021 
4022     uint64_t Flags = S.sh_flags;
4023     uint64_t UnknownFlags = 0;
4024     ListSeparator LS;
4025     while (Flags) {
4026       // Take the least significant bit as a flag.
4027       uint64_t Flag = Flags & -Flags;
4028       Flags -= Flag;
4029 
4030       auto It = FlagToName.find(Flag);
4031       if (It != FlagToName.end())
4032         OS << LS << It->second;
4033       else
4034         UnknownFlags |= Flag;
4035     }
4036 
4037     auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) {
4038       uint64_t FlagsToPrint = UnknownFlags & Mask;
4039       if (!FlagsToPrint)
4040         return;
4041 
4042       OS << LS << Name << " ("
4043          << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")";
4044       UnknownFlags &= ~Mask;
4045     };
4046 
4047     PrintUnknownFlags(SHF_MASKOS, "OS");
4048     PrintUnknownFlags(SHF_MASKPROC, "PROC");
4049     PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
4050 
4051     OS << "\n";
4052     ++SectionIndex;
4053   }
4054 }
4055 
printPhdrFlags(unsigned Flag)4056 static inline std::string printPhdrFlags(unsigned Flag) {
4057   std::string Str;
4058   Str = (Flag & PF_R) ? "R" : " ";
4059   Str += (Flag & PF_W) ? "W" : " ";
4060   Str += (Flag & PF_X) ? "E" : " ";
4061   return Str;
4062 }
4063 
4064 template <class ELFT>
checkTLSSections(const typename ELFT::Phdr & Phdr,const typename ELFT::Shdr & Sec)4065 static bool checkTLSSections(const typename ELFT::Phdr &Phdr,
4066                              const typename ELFT::Shdr &Sec) {
4067   if (Sec.sh_flags & ELF::SHF_TLS) {
4068     // .tbss must only be shown in the PT_TLS segment.
4069     if (Sec.sh_type == ELF::SHT_NOBITS)
4070       return Phdr.p_type == ELF::PT_TLS;
4071 
4072     // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4073     // segments.
4074     return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
4075            (Phdr.p_type == ELF::PT_GNU_RELRO);
4076   }
4077 
4078   // PT_TLS must only have SHF_TLS sections.
4079   return Phdr.p_type != ELF::PT_TLS;
4080 }
4081 
4082 template <class ELFT>
checkOffsets(const typename ELFT::Phdr & Phdr,const typename ELFT::Shdr & Sec)4083 static bool checkOffsets(const typename ELFT::Phdr &Phdr,
4084                          const typename ELFT::Shdr &Sec) {
4085   // SHT_NOBITS sections don't need to have an offset inside the segment.
4086   if (Sec.sh_type == ELF::SHT_NOBITS)
4087     return true;
4088 
4089   if (Sec.sh_offset < Phdr.p_offset)
4090     return false;
4091 
4092   // Only non-empty sections can be at the end of a segment.
4093   if (Sec.sh_size == 0)
4094     return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz);
4095   return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz;
4096 }
4097 
4098 // Check that an allocatable section belongs to a virtual address
4099 // space of a segment.
4100 template <class ELFT>
checkVMA(const typename ELFT::Phdr & Phdr,const typename ELFT::Shdr & Sec)4101 static bool checkVMA(const typename ELFT::Phdr &Phdr,
4102                      const typename ELFT::Shdr &Sec) {
4103   if (!(Sec.sh_flags & ELF::SHF_ALLOC))
4104     return true;
4105 
4106   if (Sec.sh_addr < Phdr.p_vaddr)
4107     return false;
4108 
4109   bool IsTbss =
4110       (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
4111   // .tbss is special, it only has memory in PT_TLS and has NOBITS properties.
4112   bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS;
4113   // Only non-empty sections can be at the end of a segment.
4114   if (Sec.sh_size == 0 || IsTbssInNonTLS)
4115     return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz;
4116   return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz;
4117 }
4118 
4119 template <class ELFT>
checkPTDynamic(const typename ELFT::Phdr & Phdr,const typename ELFT::Shdr & Sec)4120 static bool checkPTDynamic(const typename ELFT::Phdr &Phdr,
4121                            const typename ELFT::Shdr &Sec) {
4122   if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0)
4123     return true;
4124 
4125   // We get here when we have an empty section. Only non-empty sections can be
4126   // at the start or at the end of PT_DYNAMIC.
4127   // Is section within the phdr both based on offset and VMA?
4128   bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) ||
4129                      (Sec.sh_offset > Phdr.p_offset &&
4130                       Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz);
4131   bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) ||
4132                  (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz);
4133   return CheckOffset && CheckVA;
4134 }
4135 
4136 template <class ELFT>
printProgramHeaders(bool PrintProgramHeaders,cl::boolOrDefault PrintSectionMapping)4137 void GNUELFDumper<ELFT>::printProgramHeaders(
4138     bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
4139   if (PrintProgramHeaders)
4140     printProgramHeaders();
4141 
4142   // Display the section mapping along with the program headers, unless
4143   // -section-mapping is explicitly set to false.
4144   if (PrintSectionMapping != cl::BOU_FALSE)
4145     printSectionMapping();
4146 }
4147 
printProgramHeaders()4148 template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() {
4149   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4150   const Elf_Ehdr &Header = this->Obj.getHeader();
4151   Field Fields[8] = {2,         17,        26,        37 + Bias,
4152                      48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
4153   OS << "\nElf file type is "
4154      << printEnum(Header.e_type, makeArrayRef(ElfObjectFileType)) << "\n"
4155      << "Entry point " << format_hex(Header.e_entry, 3) << "\n"
4156      << "There are " << Header.e_phnum << " program headers,"
4157      << " starting at offset " << Header.e_phoff << "\n\n"
4158      << "Program Headers:\n";
4159   if (ELFT::Is64Bits)
4160     OS << "  Type           Offset   VirtAddr           PhysAddr         "
4161        << "  FileSiz  MemSiz   Flg Align\n";
4162   else
4163     OS << "  Type           Offset   VirtAddr   PhysAddr   FileSiz "
4164        << "MemSiz  Flg Align\n";
4165 
4166   unsigned Width = ELFT::Is64Bits ? 18 : 10;
4167   unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
4168 
4169   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4170   if (!PhdrsOrErr) {
4171     this->reportUniqueWarning("unable to dump program headers: " +
4172                               toString(PhdrsOrErr.takeError()));
4173     return;
4174   }
4175 
4176   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4177     Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type);
4178     Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
4179     Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
4180     Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
4181     Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
4182     Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
4183     Fields[6].Str = printPhdrFlags(Phdr.p_flags);
4184     Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
4185     for (const Field &F : Fields)
4186       printField(F);
4187     if (Phdr.p_type == ELF::PT_INTERP) {
4188       OS << "\n";
4189       auto ReportBadInterp = [&](const Twine &Msg) {
4190         this->reportUniqueWarning(
4191             "unable to read program interpreter name at offset 0x" +
4192             Twine::utohexstr(Phdr.p_offset) + ": " + Msg);
4193       };
4194 
4195       if (Phdr.p_offset >= this->Obj.getBufSize()) {
4196         ReportBadInterp("it goes past the end of the file (0x" +
4197                         Twine::utohexstr(this->Obj.getBufSize()) + ")");
4198         continue;
4199       }
4200 
4201       const char *Data =
4202           reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset;
4203       size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset;
4204       size_t Len = strnlen(Data, MaxSize);
4205       if (Len == MaxSize) {
4206         ReportBadInterp("it is not null-terminated");
4207         continue;
4208       }
4209 
4210       OS << "      [Requesting program interpreter: ";
4211       OS << StringRef(Data, Len) << "]";
4212     }
4213     OS << "\n";
4214   }
4215 }
4216 
printSectionMapping()4217 template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() {
4218   OS << "\n Section to Segment mapping:\n  Segment Sections...\n";
4219   DenseSet<const Elf_Shdr *> BelongsToSegment;
4220   int Phnum = 0;
4221 
4222   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4223   if (!PhdrsOrErr) {
4224     this->reportUniqueWarning(
4225         "can't read program headers to build section to segment mapping: " +
4226         toString(PhdrsOrErr.takeError()));
4227     return;
4228   }
4229 
4230   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4231     std::string Sections;
4232     OS << format("   %2.2d     ", Phnum++);
4233     // Check if each section is in a segment and then print mapping.
4234     for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4235       if (Sec.sh_type == ELF::SHT_NULL)
4236         continue;
4237 
4238       // readelf additionally makes sure it does not print zero sized sections
4239       // at end of segments and for PT_DYNAMIC both start and end of section
4240       // .tbss must only be shown in PT_TLS section.
4241       if (checkTLSSections<ELFT>(Phdr, Sec) && checkOffsets<ELFT>(Phdr, Sec) &&
4242           checkVMA<ELFT>(Phdr, Sec) && checkPTDynamic<ELFT>(Phdr, Sec)) {
4243         Sections +=
4244             unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4245             " ";
4246         BelongsToSegment.insert(&Sec);
4247       }
4248     }
4249     OS << Sections << "\n";
4250     OS.flush();
4251   }
4252 
4253   // Display sections that do not belong to a segment.
4254   std::string Sections;
4255   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4256     if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
4257       Sections +=
4258           unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4259           ' ';
4260   }
4261   if (!Sections.empty()) {
4262     OS << "   None  " << Sections << '\n';
4263     OS.flush();
4264   }
4265 }
4266 
4267 namespace {
4268 
4269 template <class ELFT>
getSymbolForReloc(const ELFDumper<ELFT> & Dumper,const Relocation<ELFT> & Reloc)4270 RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper,
4271                                   const Relocation<ELFT> &Reloc) {
4272   using Elf_Sym = typename ELFT::Sym;
4273   auto WarnAndReturn = [&](const Elf_Sym *Sym,
4274                            const Twine &Reason) -> RelSymbol<ELFT> {
4275     Dumper.reportUniqueWarning(
4276         "unable to get name of the dynamic symbol with index " +
4277         Twine(Reloc.Symbol) + ": " + Reason);
4278     return {Sym, "<corrupt>"};
4279   };
4280 
4281   ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols();
4282   const Elf_Sym *FirstSym = Symbols.begin();
4283   if (!FirstSym)
4284     return WarnAndReturn(nullptr, "no dynamic symbol table found");
4285 
4286   // We might have an object without a section header. In this case the size of
4287   // Symbols is zero, because there is no way to know the size of the dynamic
4288   // table. We should allow this case and not print a warning.
4289   if (!Symbols.empty() && Reloc.Symbol >= Symbols.size())
4290     return WarnAndReturn(
4291         nullptr,
4292         "index is greater than or equal to the number of dynamic symbols (" +
4293             Twine(Symbols.size()) + ")");
4294 
4295   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
4296   const uint64_t FileSize = Obj.getBufSize();
4297   const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) +
4298                              (uint64_t)Reloc.Symbol * sizeof(Elf_Sym);
4299   if (SymOffset + sizeof(Elf_Sym) > FileSize)
4300     return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) +
4301                                       " goes past the end of the file (0x" +
4302                                       Twine::utohexstr(FileSize) + ")");
4303 
4304   const Elf_Sym *Sym = FirstSym + Reloc.Symbol;
4305   Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable());
4306   if (!ErrOrName)
4307     return WarnAndReturn(Sym, toString(ErrOrName.takeError()));
4308 
4309   return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)};
4310 }
4311 } // namespace
4312 
4313 template <class ELFT>
getMaxDynamicTagSize(const ELFFile<ELFT> & Obj,typename ELFT::DynRange Tags)4314 static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj,
4315                                    typename ELFT::DynRange Tags) {
4316   size_t Max = 0;
4317   for (const typename ELFT::Dyn &Dyn : Tags)
4318     Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size());
4319   return Max;
4320 }
4321 
printDynamicTable()4322 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() {
4323   Elf_Dyn_Range Table = this->dynamic_table();
4324   if (Table.empty())
4325     return;
4326 
4327   OS << "Dynamic section at offset "
4328      << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) -
4329                        this->Obj.base(),
4330                    1)
4331      << " contains " << Table.size() << " entries:\n";
4332 
4333   // The type name is surrounded with round brackets, hence add 2.
4334   size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2;
4335   // The "Name/Value" column should be indented from the "Type" column by N
4336   // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4337   // space (1) = 3.
4338   OS << "  Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type"
4339      << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
4340 
4341   std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s ";
4342   for (auto Entry : Table) {
4343     uintX_t Tag = Entry.getTag();
4344     std::string Type =
4345         std::string("(") + this->Obj.getDynamicTagAsString(Tag).c_str() + ")";
4346     std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
4347     OS << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10)
4348        << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n";
4349   }
4350 }
4351 
printDynamicRelocations()4352 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() {
4353   this->printDynamicRelocationsHelper();
4354 }
4355 
4356 template <class ELFT>
printDynamicReloc(const Relocation<ELFT> & R)4357 void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) {
4358   printRelRelaReloc(R, getSymbolForReloc(*this, R));
4359 }
4360 
4361 template <class ELFT>
printRelocationsHelper(const Elf_Shdr & Sec)4362 void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) {
4363   this->forEachRelocationDo(
4364       Sec, opts::RawRelr,
4365       [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
4366           const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); },
4367       [&](const Elf_Relr &R) { printRelrReloc(R); });
4368 }
4369 
printDynamicRelocationsHelper()4370 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() {
4371   const bool IsMips64EL = this->Obj.isMips64EL();
4372   if (this->DynRelaRegion.Size > 0) {
4373     printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion);
4374     for (const Elf_Rela &Rela :
4375          this->DynRelaRegion.template getAsArrayRef<Elf_Rela>())
4376       printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4377   }
4378 
4379   if (this->DynRelRegion.Size > 0) {
4380     printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion);
4381     for (const Elf_Rel &Rel :
4382          this->DynRelRegion.template getAsArrayRef<Elf_Rel>())
4383       printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4384   }
4385 
4386   if (this->DynRelrRegion.Size > 0) {
4387     printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion);
4388     Elf_Relr_Range Relrs =
4389         this->DynRelrRegion.template getAsArrayRef<Elf_Relr>();
4390     for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs))
4391       printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4392   }
4393 
4394   if (this->DynPLTRelRegion.Size) {
4395     if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
4396       printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion);
4397       for (const Elf_Rela &Rela :
4398            this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>())
4399         printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4400     } else {
4401       printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion);
4402       for (const Elf_Rel &Rel :
4403            this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>())
4404         printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4405     }
4406   }
4407 }
4408 
4409 template <class ELFT>
printGNUVersionSectionProlog(const typename ELFT::Shdr & Sec,const Twine & Label,unsigned EntriesNum)4410 void GNUELFDumper<ELFT>::printGNUVersionSectionProlog(
4411     const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) {
4412   // Don't inline the SecName, because it might report a warning to stderr and
4413   // corrupt the output.
4414   StringRef SecName = this->getPrintableSectionName(Sec);
4415   OS << Label << " section '" << SecName << "' "
4416      << "contains " << EntriesNum << " entries:\n";
4417 
4418   StringRef LinkedSecName = "<corrupt>";
4419   if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr =
4420           this->Obj.getSection(Sec.sh_link))
4421     LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr);
4422   else
4423     this->reportUniqueWarning("invalid section linked to " +
4424                               this->describe(Sec) + ": " +
4425                               toString(LinkedSecOrErr.takeError()));
4426 
4427   OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16)
4428      << "  Offset: " << format_hex(Sec.sh_offset, 8)
4429      << "  Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n";
4430 }
4431 
4432 template <class ELFT>
printVersionSymbolSection(const Elf_Shdr * Sec)4433 void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
4434   if (!Sec)
4435     return;
4436 
4437   printGNUVersionSectionProlog(*Sec, "Version symbols",
4438                                Sec->sh_size / sizeof(Elf_Versym));
4439   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
4440       this->getVersionTable(*Sec, /*SymTab=*/nullptr,
4441                             /*StrTab=*/nullptr, /*SymTabSec=*/nullptr);
4442   if (!VerTableOrErr) {
4443     this->reportUniqueWarning(VerTableOrErr.takeError());
4444     return;
4445   }
4446 
4447   SmallVector<Optional<VersionEntry>, 0> *VersionMap = nullptr;
4448   if (Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr =
4449           this->getVersionMap())
4450     VersionMap = *MapOrErr;
4451   else
4452     this->reportUniqueWarning(MapOrErr.takeError());
4453 
4454   ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
4455   std::vector<StringRef> Versions;
4456   for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
4457     unsigned Ndx = VerTable[I].vs_index;
4458     if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
4459       Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
4460       continue;
4461     }
4462 
4463     if (!VersionMap) {
4464       Versions.emplace_back("<corrupt>");
4465       continue;
4466     }
4467 
4468     bool IsDefault;
4469     Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex(
4470         Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/None);
4471     if (!NameOrErr) {
4472       this->reportUniqueWarning("unable to get a version for entry " +
4473                                 Twine(I) + " of " + this->describe(*Sec) +
4474                                 ": " + toString(NameOrErr.takeError()));
4475       Versions.emplace_back("<corrupt>");
4476       continue;
4477     }
4478     Versions.emplace_back(*NameOrErr);
4479   }
4480 
4481   // readelf prints 4 entries per line.
4482   uint64_t Entries = VerTable.size();
4483   for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
4484     OS << "  " << format_hex_no_prefix(VersymRow, 3) << ":";
4485     for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
4486       unsigned Ndx = VerTable[VersymRow + I].vs_index;
4487       OS << format("%4x%c", Ndx & VERSYM_VERSION,
4488                    Ndx & VERSYM_HIDDEN ? 'h' : ' ');
4489       OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
4490     }
4491     OS << '\n';
4492   }
4493   OS << '\n';
4494 }
4495 
versionFlagToString(unsigned Flags)4496 static std::string versionFlagToString(unsigned Flags) {
4497   if (Flags == 0)
4498     return "none";
4499 
4500   std::string Ret;
4501   auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
4502     if (!(Flags & Flag))
4503       return;
4504     if (!Ret.empty())
4505       Ret += " | ";
4506     Ret += Name;
4507     Flags &= ~Flag;
4508   };
4509 
4510   AddFlag(VER_FLG_BASE, "BASE");
4511   AddFlag(VER_FLG_WEAK, "WEAK");
4512   AddFlag(VER_FLG_INFO, "INFO");
4513   AddFlag(~0, "<unknown>");
4514   return Ret;
4515 }
4516 
4517 template <class ELFT>
printVersionDefinitionSection(const Elf_Shdr * Sec)4518 void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
4519   if (!Sec)
4520     return;
4521 
4522   printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info);
4523 
4524   Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
4525   if (!V) {
4526     this->reportUniqueWarning(V.takeError());
4527     return;
4528   }
4529 
4530   for (const VerDef &Def : *V) {
4531     OS << format("  0x%04x: Rev: %u  Flags: %s  Index: %u  Cnt: %u  Name: %s\n",
4532                  Def.Offset, Def.Version,
4533                  versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
4534                  Def.Name.data());
4535     unsigned I = 0;
4536     for (const VerdAux &Aux : Def.AuxV)
4537       OS << format("  0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
4538                    Aux.Name.data());
4539   }
4540 
4541   OS << '\n';
4542 }
4543 
4544 template <class ELFT>
printVersionDependencySection(const Elf_Shdr * Sec)4545 void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
4546   if (!Sec)
4547     return;
4548 
4549   unsigned VerneedNum = Sec->sh_info;
4550   printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum);
4551 
4552   Expected<std::vector<VerNeed>> V =
4553       this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
4554   if (!V) {
4555     this->reportUniqueWarning(V.takeError());
4556     return;
4557   }
4558 
4559   for (const VerNeed &VN : *V) {
4560     OS << format("  0x%04x: Version: %u  File: %s  Cnt: %u\n", VN.Offset,
4561                  VN.Version, VN.File.data(), VN.Cnt);
4562     for (const VernAux &Aux : VN.AuxV)
4563       OS << format("  0x%04x:   Name: %s  Flags: %s  Version: %u\n", Aux.Offset,
4564                    Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
4565                    Aux.Other);
4566   }
4567   OS << '\n';
4568 }
4569 
4570 template <class ELFT>
printHashHistogram(const Elf_Hash & HashTable)4571 void GNUELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) {
4572   size_t NBucket = HashTable.nbucket;
4573   size_t NChain = HashTable.nchain;
4574   ArrayRef<Elf_Word> Buckets = HashTable.buckets();
4575   ArrayRef<Elf_Word> Chains = HashTable.chains();
4576   size_t TotalSyms = 0;
4577   // If hash table is correct, we have at least chains with 0 length
4578   size_t MaxChain = 1;
4579   size_t CumulativeNonZero = 0;
4580 
4581   if (NChain == 0 || NBucket == 0)
4582     return;
4583 
4584   std::vector<size_t> ChainLen(NBucket, 0);
4585   // Go over all buckets and and note chain lengths of each bucket (total
4586   // unique chain lengths).
4587   for (size_t B = 0; B < NBucket; B++) {
4588     std::vector<bool> Visited(NChain);
4589     for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
4590       if (C == ELF::STN_UNDEF)
4591         break;
4592       if (Visited[C]) {
4593         this->reportUniqueWarning(".hash section is invalid: bucket " +
4594                                   Twine(C) +
4595                                   ": a cycle was detected in the linked chain");
4596         break;
4597       }
4598       Visited[C] = true;
4599       if (MaxChain <= ++ChainLen[B])
4600         MaxChain++;
4601     }
4602     TotalSyms += ChainLen[B];
4603   }
4604 
4605   if (!TotalSyms)
4606     return;
4607 
4608   std::vector<size_t> Count(MaxChain, 0);
4609   // Count how long is the chain for each bucket
4610   for (size_t B = 0; B < NBucket; B++)
4611     ++Count[ChainLen[B]];
4612   // Print Number of buckets with each chain lengths and their cumulative
4613   // coverage of the symbols
4614   OS << "Histogram for bucket list length (total of " << NBucket
4615      << " buckets)\n"
4616      << " Length  Number     % of total  Coverage\n";
4617   for (size_t I = 0; I < MaxChain; I++) {
4618     CumulativeNonZero += Count[I] * I;
4619     OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
4620                  (Count[I] * 100.0) / NBucket,
4621                  (CumulativeNonZero * 100.0) / TotalSyms);
4622   }
4623 }
4624 
4625 template <class ELFT>
printGnuHashHistogram(const Elf_GnuHash & GnuHashTable)4626 void GNUELFDumper<ELFT>::printGnuHashHistogram(
4627     const Elf_GnuHash &GnuHashTable) {
4628   Expected<ArrayRef<Elf_Word>> ChainsOrErr =
4629       getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable);
4630   if (!ChainsOrErr) {
4631     this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
4632                               toString(ChainsOrErr.takeError()));
4633     return;
4634   }
4635 
4636   ArrayRef<Elf_Word> Chains = *ChainsOrErr;
4637   size_t Symndx = GnuHashTable.symndx;
4638   size_t TotalSyms = 0;
4639   size_t MaxChain = 1;
4640   size_t CumulativeNonZero = 0;
4641 
4642   size_t NBucket = GnuHashTable.nbuckets;
4643   if (Chains.empty() || NBucket == 0)
4644     return;
4645 
4646   ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets();
4647   std::vector<size_t> ChainLen(NBucket, 0);
4648   for (size_t B = 0; B < NBucket; B++) {
4649     if (!Buckets[B])
4650       continue;
4651     size_t Len = 1;
4652     for (size_t C = Buckets[B] - Symndx;
4653          C < Chains.size() && (Chains[C] & 1) == 0; C++)
4654       if (MaxChain < ++Len)
4655         MaxChain++;
4656     ChainLen[B] = Len;
4657     TotalSyms += Len;
4658   }
4659   MaxChain++;
4660 
4661   if (!TotalSyms)
4662     return;
4663 
4664   std::vector<size_t> Count(MaxChain, 0);
4665   for (size_t B = 0; B < NBucket; B++)
4666     ++Count[ChainLen[B]];
4667   // Print Number of buckets with each chain lengths and their cumulative
4668   // coverage of the symbols
4669   OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
4670      << " buckets)\n"
4671      << " Length  Number     % of total  Coverage\n";
4672   for (size_t I = 0; I < MaxChain; I++) {
4673     CumulativeNonZero += Count[I] * I;
4674     OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
4675                  (Count[I] * 100.0) / NBucket,
4676                  (CumulativeNonZero * 100.0) / TotalSyms);
4677   }
4678 }
4679 
4680 // Hash histogram shows statistics of how efficient the hash was for the
4681 // dynamic symbol table. The table shows the number of hash buckets for
4682 // different lengths of chains as an absolute number and percentage of the total
4683 // buckets, and the cumulative coverage of symbols for each set of buckets.
printHashHistograms()4684 template <class ELFT> void GNUELFDumper<ELFT>::printHashHistograms() {
4685   // Print histogram for the .hash section.
4686   if (this->HashTable) {
4687     if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4688       this->reportUniqueWarning(std::move(E));
4689     else
4690       printHashHistogram(*this->HashTable);
4691   }
4692 
4693   // Print histogram for the .gnu.hash section.
4694   if (this->GnuHashTable) {
4695     if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4696       this->reportUniqueWarning(std::move(E));
4697     else
4698       printGnuHashHistogram(*this->GnuHashTable);
4699   }
4700 }
4701 
printCGProfile()4702 template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() {
4703   OS << "GNUStyle::printCGProfile not implemented\n";
4704 }
4705 
printBBAddrMaps()4706 template <class ELFT> void GNUELFDumper<ELFT>::printBBAddrMaps() {
4707   OS << "GNUStyle::printBBAddrMaps not implemented\n";
4708 }
4709 
toULEB128Array(ArrayRef<uint8_t> Data)4710 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
4711   std::vector<uint64_t> Ret;
4712   const uint8_t *Cur = Data.begin();
4713   const uint8_t *End = Data.end();
4714   while (Cur != End) {
4715     unsigned Size;
4716     const char *Err;
4717     Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
4718     if (Err)
4719       return createError(Err);
4720     Cur += Size;
4721   }
4722   return Ret;
4723 }
4724 
4725 template <class ELFT>
4726 static Expected<std::vector<uint64_t>>
decodeAddrsigSection(const ELFFile<ELFT> & Obj,const typename ELFT::Shdr & Sec)4727 decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) {
4728   Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
4729   if (!ContentsOrErr)
4730     return ContentsOrErr.takeError();
4731 
4732   if (Expected<std::vector<uint64_t>> SymsOrErr =
4733           toULEB128Array(*ContentsOrErr))
4734     return *SymsOrErr;
4735   else
4736     return createError("unable to decode " + describe(Obj, Sec) + ": " +
4737                        toString(SymsOrErr.takeError()));
4738 }
4739 
printAddrsig()4740 template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() {
4741   if (!this->DotAddrsigSec)
4742     return;
4743 
4744   Expected<std::vector<uint64_t>> SymsOrErr =
4745       decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
4746   if (!SymsOrErr) {
4747     this->reportUniqueWarning(SymsOrErr.takeError());
4748     return;
4749   }
4750 
4751   StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec);
4752   OS << "\nAddress-significant symbols section '" << Name << "'"
4753      << " contains " << SymsOrErr->size() << " entries:\n";
4754   OS << "   Num: Name\n";
4755 
4756   Field Fields[2] = {0, 8};
4757   size_t SymIndex = 0;
4758   for (uint64_t Sym : *SymsOrErr) {
4759     Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":";
4760     Fields[1].Str = this->getStaticSymbolName(Sym);
4761     for (const Field &Entry : Fields)
4762       printField(Entry);
4763     OS << "\n";
4764   }
4765 }
4766 
4767 template <typename ELFT>
getGNUProperty(uint32_t Type,uint32_t DataSize,ArrayRef<uint8_t> Data)4768 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
4769                                   ArrayRef<uint8_t> Data) {
4770   std::string str;
4771   raw_string_ostream OS(str);
4772   uint32_t PrData;
4773   auto DumpBit = [&](uint32_t Flag, StringRef Name) {
4774     if (PrData & Flag) {
4775       PrData &= ~Flag;
4776       OS << Name;
4777       if (PrData)
4778         OS << ", ";
4779     }
4780   };
4781 
4782   switch (Type) {
4783   default:
4784     OS << format("<application-specific type 0x%x>", Type);
4785     return OS.str();
4786   case GNU_PROPERTY_STACK_SIZE: {
4787     OS << "stack size: ";
4788     if (DataSize == sizeof(typename ELFT::uint))
4789       OS << formatv("{0:x}",
4790                     (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
4791     else
4792       OS << format("<corrupt length: 0x%x>", DataSize);
4793     return OS.str();
4794   }
4795   case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
4796     OS << "no copy on protected";
4797     if (DataSize)
4798       OS << format(" <corrupt length: 0x%x>", DataSize);
4799     return OS.str();
4800   case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
4801   case GNU_PROPERTY_X86_FEATURE_1_AND:
4802     OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
4803                                                         : "x86 feature: ");
4804     if (DataSize != 4) {
4805       OS << format("<corrupt length: 0x%x>", DataSize);
4806       return OS.str();
4807     }
4808     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4809     if (PrData == 0) {
4810       OS << "<None>";
4811       return OS.str();
4812     }
4813     if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
4814       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
4815       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
4816     } else {
4817       DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
4818       DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
4819     }
4820     if (PrData)
4821       OS << format("<unknown flags: 0x%x>", PrData);
4822     return OS.str();
4823   case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
4824   case GNU_PROPERTY_X86_FEATURE_2_USED:
4825     OS << "x86 feature "
4826        << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
4827     if (DataSize != 4) {
4828       OS << format("<corrupt length: 0x%x>", DataSize);
4829       return OS.str();
4830     }
4831     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4832     if (PrData == 0) {
4833       OS << "<None>";
4834       return OS.str();
4835     }
4836     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
4837     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
4838     DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
4839     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
4840     DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
4841     DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
4842     DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
4843     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
4844     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
4845     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
4846     if (PrData)
4847       OS << format("<unknown flags: 0x%x>", PrData);
4848     return OS.str();
4849   case GNU_PROPERTY_X86_ISA_1_NEEDED:
4850   case GNU_PROPERTY_X86_ISA_1_USED:
4851     OS << "x86 ISA "
4852        << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
4853     if (DataSize != 4) {
4854       OS << format("<corrupt length: 0x%x>", DataSize);
4855       return OS.str();
4856     }
4857     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4858     if (PrData == 0) {
4859       OS << "<None>";
4860       return OS.str();
4861     }
4862     DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline");
4863     DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2");
4864     DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3");
4865     DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4");
4866     if (PrData)
4867       OS << format("<unknown flags: 0x%x>", PrData);
4868     return OS.str();
4869   }
4870 }
4871 
4872 template <typename ELFT>
getGNUPropertyList(ArrayRef<uint8_t> Arr)4873 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
4874   using Elf_Word = typename ELFT::Word;
4875 
4876   SmallVector<std::string, 4> Properties;
4877   while (Arr.size() >= 8) {
4878     uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
4879     uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
4880     Arr = Arr.drop_front(8);
4881 
4882     // Take padding size into account if present.
4883     uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
4884     std::string str;
4885     raw_string_ostream OS(str);
4886     if (Arr.size() < PaddedSize) {
4887       OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
4888       Properties.push_back(OS.str());
4889       break;
4890     }
4891     Properties.push_back(
4892         getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
4893     Arr = Arr.drop_front(PaddedSize);
4894   }
4895 
4896   if (!Arr.empty())
4897     Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
4898 
4899   return Properties;
4900 }
4901 
4902 struct GNUAbiTag {
4903   std::string OSName;
4904   std::string ABI;
4905   bool IsValid;
4906 };
4907 
getGNUAbiTag(ArrayRef<uint8_t> Desc)4908 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
4909   typedef typename ELFT::Word Elf_Word;
4910 
4911   ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
4912                            reinterpret_cast<const Elf_Word *>(Desc.end()));
4913 
4914   if (Words.size() < 4)
4915     return {"", "", /*IsValid=*/false};
4916 
4917   static const char *OSNames[] = {
4918       "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
4919   };
4920   StringRef OSName = "Unknown";
4921   if (Words[0] < array_lengthof(OSNames))
4922     OSName = OSNames[Words[0]];
4923   uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
4924   std::string str;
4925   raw_string_ostream ABI(str);
4926   ABI << Major << "." << Minor << "." << Patch;
4927   return {std::string(OSName), ABI.str(), /*IsValid=*/true};
4928 }
4929 
getGNUBuildId(ArrayRef<uint8_t> Desc)4930 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
4931   std::string str;
4932   raw_string_ostream OS(str);
4933   for (uint8_t B : Desc)
4934     OS << format_hex_no_prefix(B, 2);
4935   return OS.str();
4936 }
4937 
getGNUGoldVersion(ArrayRef<uint8_t> Desc)4938 static StringRef getGNUGoldVersion(ArrayRef<uint8_t> Desc) {
4939   return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
4940 }
4941 
4942 template <typename ELFT>
printGNUNote(raw_ostream & OS,uint32_t NoteType,ArrayRef<uint8_t> Desc)4943 static bool printGNUNote(raw_ostream &OS, uint32_t NoteType,
4944                          ArrayRef<uint8_t> Desc) {
4945   // Return true if we were able to pretty-print the note, false otherwise.
4946   switch (NoteType) {
4947   default:
4948     return false;
4949   case ELF::NT_GNU_ABI_TAG: {
4950     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
4951     if (!AbiTag.IsValid)
4952       OS << "    <corrupt GNU_ABI_TAG>";
4953     else
4954       OS << "    OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
4955     break;
4956   }
4957   case ELF::NT_GNU_BUILD_ID: {
4958     OS << "    Build ID: " << getGNUBuildId(Desc);
4959     break;
4960   }
4961   case ELF::NT_GNU_GOLD_VERSION:
4962     OS << "    Version: " << getGNUGoldVersion(Desc);
4963     break;
4964   case ELF::NT_GNU_PROPERTY_TYPE_0:
4965     OS << "    Properties:";
4966     for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
4967       OS << "    " << Property << "\n";
4968     break;
4969   }
4970   OS << '\n';
4971   return true;
4972 }
4973 
4974 static const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = {
4975     {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE},
4976     {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE},
4977     {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE},
4978     {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED},
4979     {"LA48", NT_FREEBSD_FCTL_LA48},
4980     {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE},
4981 };
4982 
4983 struct FreeBSDNote {
4984   std::string Type;
4985   std::string Value;
4986 };
4987 
4988 template <typename ELFT>
4989 static Optional<FreeBSDNote>
getFreeBSDNote(uint32_t NoteType,ArrayRef<uint8_t> Desc,bool IsCore)4990 getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) {
4991   if (IsCore)
4992     return None; // No pretty-printing yet.
4993   switch (NoteType) {
4994   case ELF::NT_FREEBSD_ABI_TAG:
4995     if (Desc.size() != 4)
4996       return None;
4997     return FreeBSDNote{
4998         "ABI tag",
4999         utostr(support::endian::read32<ELFT::TargetEndianness>(Desc.data()))};
5000   case ELF::NT_FREEBSD_ARCH_TAG:
5001     return FreeBSDNote{"Arch tag", toStringRef(Desc).str()};
5002   case ELF::NT_FREEBSD_FEATURE_CTL: {
5003     if (Desc.size() != 4)
5004       return None;
5005     unsigned Value =
5006         support::endian::read32<ELFT::TargetEndianness>(Desc.data());
5007     std::string FlagsStr;
5008     raw_string_ostream OS(FlagsStr);
5009     printFlags(Value, makeArrayRef(FreeBSDFeatureCtlFlags), OS);
5010     if (OS.str().empty())
5011       OS << "0x" << utohexstr(Value);
5012     else
5013       OS << "(0x" << utohexstr(Value) << ")";
5014     return FreeBSDNote{"Feature flags", OS.str()};
5015   }
5016   default:
5017     return None;
5018   }
5019 }
5020 
5021 struct AMDNote {
5022   std::string Type;
5023   std::string Value;
5024 };
5025 
5026 template <typename ELFT>
getAMDNote(uint32_t NoteType,ArrayRef<uint8_t> Desc)5027 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5028   switch (NoteType) {
5029   default:
5030     return {"", ""};
5031   case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: {
5032     struct CodeObjectVersion {
5033       uint32_t MajorVersion;
5034       uint32_t MinorVersion;
5035     };
5036     if (Desc.size() != sizeof(CodeObjectVersion))
5037       return {"AMD HSA Code Object Version",
5038               "Invalid AMD HSA Code Object Version"};
5039     std::string VersionString;
5040     raw_string_ostream StrOS(VersionString);
5041     auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data());
5042     StrOS << "[Major: " << Version->MajorVersion
5043           << ", Minor: " << Version->MinorVersion << "]";
5044     return {"AMD HSA Code Object Version", VersionString};
5045   }
5046   case ELF::NT_AMD_HSA_HSAIL: {
5047     struct HSAILProperties {
5048       uint32_t HSAILMajorVersion;
5049       uint32_t HSAILMinorVersion;
5050       uint8_t Profile;
5051       uint8_t MachineModel;
5052       uint8_t DefaultFloatRound;
5053     };
5054     if (Desc.size() != sizeof(HSAILProperties))
5055       return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"};
5056     auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data());
5057     std::string HSAILPropetiesString;
5058     raw_string_ostream StrOS(HSAILPropetiesString);
5059     StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion
5060           << ", HSAIL Minor: " << Properties->HSAILMinorVersion
5061           << ", Profile: " << uint32_t(Properties->Profile)
5062           << ", Machine Model: " << uint32_t(Properties->MachineModel)
5063           << ", Default Float Round: "
5064           << uint32_t(Properties->DefaultFloatRound) << "]";
5065     return {"AMD HSA HSAIL Properties", HSAILPropetiesString};
5066   }
5067   case ELF::NT_AMD_HSA_ISA_VERSION: {
5068     struct IsaVersion {
5069       uint16_t VendorNameSize;
5070       uint16_t ArchitectureNameSize;
5071       uint32_t Major;
5072       uint32_t Minor;
5073       uint32_t Stepping;
5074     };
5075     if (Desc.size() < sizeof(IsaVersion))
5076       return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5077     auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data());
5078     if (Desc.size() < sizeof(IsaVersion) +
5079                           Isa->VendorNameSize + Isa->ArchitectureNameSize ||
5080         Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0)
5081       return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5082     std::string IsaString;
5083     raw_string_ostream StrOS(IsaString);
5084     StrOS << "[Vendor: "
5085           << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1)
5086           << ", Architecture: "
5087           << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize,
5088                        Isa->ArchitectureNameSize - 1)
5089           << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor
5090           << ", Stepping: " << Isa->Stepping << "]";
5091     return {"AMD HSA ISA Version", IsaString};
5092   }
5093   case ELF::NT_AMD_HSA_METADATA: {
5094     if (Desc.size() == 0)
5095       return {"AMD HSA Metadata", ""};
5096     return {
5097         "AMD HSA Metadata",
5098         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)};
5099   }
5100   case ELF::NT_AMD_HSA_ISA_NAME: {
5101     if (Desc.size() == 0)
5102       return {"AMD HSA ISA Name", ""};
5103     return {
5104         "AMD HSA ISA Name",
5105         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
5106   }
5107   case ELF::NT_AMD_PAL_METADATA: {
5108     struct PALMetadata {
5109       uint32_t Key;
5110       uint32_t Value;
5111     };
5112     if (Desc.size() % sizeof(PALMetadata) != 0)
5113       return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"};
5114     auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data());
5115     std::string MetadataString;
5116     raw_string_ostream StrOS(MetadataString);
5117     for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) {
5118       StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]";
5119     }
5120     return {"AMD PAL Metadata", MetadataString};
5121   }
5122   }
5123 }
5124 
5125 struct AMDGPUNote {
5126   std::string Type;
5127   std::string Value;
5128 };
5129 
5130 template <typename ELFT>
getAMDGPUNote(uint32_t NoteType,ArrayRef<uint8_t> Desc)5131 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5132   switch (NoteType) {
5133   default:
5134     return {"", ""};
5135   case ELF::NT_AMDGPU_METADATA: {
5136     StringRef MsgPackString =
5137         StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5138     msgpack::Document MsgPackDoc;
5139     if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
5140       return {"", ""};
5141 
5142     AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
5143     std::string MetadataString;
5144     if (!Verifier.verify(MsgPackDoc.getRoot()))
5145       MetadataString = "Invalid AMDGPU Metadata\n";
5146 
5147     raw_string_ostream StrOS(MetadataString);
5148     if (MsgPackDoc.getRoot().isScalar()) {
5149       // TODO: passing a scalar root to toYAML() asserts:
5150       // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar &&
5151       //    "plain scalar documents are not supported")
5152       // To avoid this crash we print the raw data instead.
5153       return {"", ""};
5154     }
5155     MsgPackDoc.toYAML(StrOS);
5156     return {"AMDGPU Metadata", StrOS.str()};
5157   }
5158   }
5159 }
5160 
5161 struct CoreFileMapping {
5162   uint64_t Start, End, Offset;
5163   StringRef Filename;
5164 };
5165 
5166 struct CoreNote {
5167   uint64_t PageSize;
5168   std::vector<CoreFileMapping> Mappings;
5169 };
5170 
readCoreNote(DataExtractor Desc)5171 static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
5172   // Expected format of the NT_FILE note description:
5173   // 1. # of file mappings (call it N)
5174   // 2. Page size
5175   // 3. N (start, end, offset) triples
5176   // 4. N packed filenames (null delimited)
5177   // Each field is an Elf_Addr, except for filenames which are char* strings.
5178 
5179   CoreNote Ret;
5180   const int Bytes = Desc.getAddressSize();
5181 
5182   if (!Desc.isValidOffsetForAddress(2))
5183     return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) +
5184                        " is too short, expected at least 0x" +
5185                        Twine::utohexstr(Bytes * 2));
5186   if (Desc.getData().back() != 0)
5187     return createError("the note is not NUL terminated");
5188 
5189   uint64_t DescOffset = 0;
5190   uint64_t FileCount = Desc.getAddress(&DescOffset);
5191   Ret.PageSize = Desc.getAddress(&DescOffset);
5192 
5193   if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
5194     return createError("unable to read file mappings (found " +
5195                        Twine(FileCount) + "): the note of size 0x" +
5196                        Twine::utohexstr(Desc.size()) + " is too short");
5197 
5198   uint64_t FilenamesOffset = 0;
5199   DataExtractor Filenames(
5200       Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
5201       Desc.isLittleEndian(), Desc.getAddressSize());
5202 
5203   Ret.Mappings.resize(FileCount);
5204   size_t I = 0;
5205   for (CoreFileMapping &Mapping : Ret.Mappings) {
5206     ++I;
5207     if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
5208       return createError(
5209           "unable to read the file name for the mapping with index " +
5210           Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) +
5211           " is truncated");
5212     Mapping.Start = Desc.getAddress(&DescOffset);
5213     Mapping.End = Desc.getAddress(&DescOffset);
5214     Mapping.Offset = Desc.getAddress(&DescOffset);
5215     Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
5216   }
5217 
5218   return Ret;
5219 }
5220 
5221 template <typename ELFT>
printCoreNote(raw_ostream & OS,const CoreNote & Note)5222 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
5223   // Length of "0x<address>" string.
5224   const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
5225 
5226   OS << "    Page size: " << format_decimal(Note.PageSize, 0) << '\n';
5227   OS << "    " << right_justify("Start", FieldWidth) << "  "
5228      << right_justify("End", FieldWidth) << "  "
5229      << right_justify("Page Offset", FieldWidth) << '\n';
5230   for (const CoreFileMapping &Mapping : Note.Mappings) {
5231     OS << "    " << format_hex(Mapping.Start, FieldWidth) << "  "
5232        << format_hex(Mapping.End, FieldWidth) << "  "
5233        << format_hex(Mapping.Offset, FieldWidth) << "\n        "
5234        << Mapping.Filename << '\n';
5235   }
5236 }
5237 
5238 static const NoteType GenericNoteTypes[] = {
5239     {ELF::NT_VERSION, "NT_VERSION (version)"},
5240     {ELF::NT_ARCH, "NT_ARCH (architecture)"},
5241     {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
5242     {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
5243 };
5244 
5245 static const NoteType GNUNoteTypes[] = {
5246     {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
5247     {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
5248     {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
5249     {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
5250     {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
5251 };
5252 
5253 static const NoteType FreeBSDCoreNoteTypes[] = {
5254     {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
5255     {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
5256     {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
5257     {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
5258     {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
5259     {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
5260     {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
5261     {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
5262     {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
5263      "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
5264     {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
5265 };
5266 
5267 static const NoteType FreeBSDNoteTypes[] = {
5268     {ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"},
5269     {ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"},
5270     {ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"},
5271     {ELF::NT_FREEBSD_FEATURE_CTL,
5272      "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"},
5273 };
5274 
5275 static const NoteType AMDNoteTypes[] = {
5276     {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION,
5277      "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"},
5278     {ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"},
5279     {ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"},
5280     {ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"},
5281     {ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"},
5282     {ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"},
5283 };
5284 
5285 static const NoteType AMDGPUNoteTypes[] = {
5286     {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
5287 };
5288 
5289 static const NoteType CoreNoteTypes[] = {
5290     {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
5291     {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
5292     {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
5293     {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
5294     {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
5295     {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
5296     {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
5297     {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
5298     {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
5299     {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
5300     {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
5301 
5302     {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
5303     {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
5304     {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
5305     {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
5306     {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
5307     {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
5308     {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
5309     {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
5310     {ELF::NT_PPC_TM_CFPR,
5311      "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
5312     {ELF::NT_PPC_TM_CVMX,
5313      "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
5314     {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
5315     {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
5316     {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
5317     {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
5318     {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
5319 
5320     {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
5321     {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
5322     {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
5323 
5324     {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
5325     {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
5326     {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
5327     {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"},
5328     {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
5329     {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
5330     {ELF::NT_S390_LAST_BREAK,
5331      "NT_S390_LAST_BREAK (s390 last breaking event address)"},
5332     {ELF::NT_S390_SYSTEM_CALL,
5333      "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
5334     {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
5335     {ELF::NT_S390_VXRS_LOW,
5336      "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
5337     {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
5338     {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
5339     {ELF::NT_S390_GS_BC,
5340      "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
5341 
5342     {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
5343     {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
5344     {ELF::NT_ARM_HW_BREAK,
5345      "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
5346     {ELF::NT_ARM_HW_WATCH,
5347      "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
5348 
5349     {ELF::NT_FILE, "NT_FILE (mapped files)"},
5350     {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
5351     {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
5352 };
5353 
5354 template <class ELFT>
getNoteTypeName(const typename ELFT::Note & Note,unsigned ELFType)5355 StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) {
5356   uint32_t Type = Note.getType();
5357   auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef {
5358     for (const NoteType &N : V)
5359       if (N.ID == Type)
5360         return N.Name;
5361     return "";
5362   };
5363 
5364   StringRef Name = Note.getName();
5365   if (Name == "GNU")
5366     return FindNote(GNUNoteTypes);
5367   if (Name == "FreeBSD") {
5368     if (ELFType == ELF::ET_CORE) {
5369       // FreeBSD also places the generic core notes in the FreeBSD namespace.
5370       StringRef Result = FindNote(FreeBSDCoreNoteTypes);
5371       if (!Result.empty())
5372         return Result;
5373       return FindNote(CoreNoteTypes);
5374     } else {
5375       return FindNote(FreeBSDNoteTypes);
5376     }
5377   }
5378   if (Name == "AMD")
5379     return FindNote(AMDNoteTypes);
5380   if (Name == "AMDGPU")
5381     return FindNote(AMDGPUNoteTypes);
5382 
5383   if (ELFType == ELF::ET_CORE)
5384     return FindNote(CoreNoteTypes);
5385   return FindNote(GenericNoteTypes);
5386 }
5387 
5388 template <class ELFT>
printNotesHelper(const ELFDumper<ELFT> & Dumper,llvm::function_ref<void (Optional<StringRef>,typename ELFT::Off,typename ELFT::Addr)> StartNotesFn,llvm::function_ref<Error (const typename ELFT::Note &,bool)> ProcessNoteFn,llvm::function_ref<void ()> FinishNotesFn)5389 static void printNotesHelper(
5390     const ELFDumper<ELFT> &Dumper,
5391     llvm::function_ref<void(Optional<StringRef>, typename ELFT::Off,
5392                             typename ELFT::Addr)>
5393         StartNotesFn,
5394     llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn,
5395     llvm::function_ref<void()> FinishNotesFn) {
5396   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
5397   bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE;
5398 
5399   ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections());
5400   if (!IsCoreFile && !Sections.empty()) {
5401     for (const typename ELFT::Shdr &S : Sections) {
5402       if (S.sh_type != SHT_NOTE)
5403         continue;
5404       StartNotesFn(expectedToOptional(Obj.getSectionName(S)), S.sh_offset,
5405                    S.sh_size);
5406       Error Err = Error::success();
5407       size_t I = 0;
5408       for (const typename ELFT::Note Note : Obj.notes(S, Err)) {
5409         if (Error E = ProcessNoteFn(Note, IsCoreFile))
5410           Dumper.reportUniqueWarning(
5411               "unable to read note with index " + Twine(I) + " from the " +
5412               describe(Obj, S) + ": " + toString(std::move(E)));
5413         ++I;
5414       }
5415       if (Err)
5416         Dumper.reportUniqueWarning("unable to read notes from the " +
5417                                    describe(Obj, S) + ": " +
5418                                    toString(std::move(Err)));
5419       FinishNotesFn();
5420     }
5421     return;
5422   }
5423 
5424   Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers();
5425   if (!PhdrsOrErr) {
5426     Dumper.reportUniqueWarning(
5427         "unable to read program headers to locate the PT_NOTE segment: " +
5428         toString(PhdrsOrErr.takeError()));
5429     return;
5430   }
5431 
5432   for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) {
5433     const typename ELFT::Phdr &P = (*PhdrsOrErr)[I];
5434     if (P.p_type != PT_NOTE)
5435       continue;
5436     StartNotesFn(/*SecName=*/None, P.p_offset, P.p_filesz);
5437     Error Err = Error::success();
5438     size_t Index = 0;
5439     for (const typename ELFT::Note Note : Obj.notes(P, Err)) {
5440       if (Error E = ProcessNoteFn(Note, IsCoreFile))
5441         Dumper.reportUniqueWarning("unable to read note with index " +
5442                                    Twine(Index) +
5443                                    " from the PT_NOTE segment with index " +
5444                                    Twine(I) + ": " + toString(std::move(E)));
5445       ++Index;
5446     }
5447     if (Err)
5448       Dumper.reportUniqueWarning(
5449           "unable to read notes from the PT_NOTE segment with index " +
5450           Twine(I) + ": " + toString(std::move(Err)));
5451     FinishNotesFn();
5452   }
5453 }
5454 
printNotes()5455 template <class ELFT> void GNUELFDumper<ELFT>::printNotes() {
5456   bool IsFirstHeader = true;
5457   auto PrintHeader = [&](Optional<StringRef> SecName,
5458                          const typename ELFT::Off Offset,
5459                          const typename ELFT::Addr Size) {
5460     // Print a newline between notes sections to match GNU readelf.
5461     if (!IsFirstHeader) {
5462       OS << '\n';
5463     } else {
5464       IsFirstHeader = false;
5465     }
5466 
5467     OS << "Displaying notes found ";
5468 
5469     if (SecName)
5470       OS << "in: " << *SecName << "\n";
5471     else
5472       OS << "at file offset " << format_hex(Offset, 10) << " with length "
5473          << format_hex(Size, 10) << ":\n";
5474 
5475     OS << "  Owner                Data size \tDescription\n";
5476   };
5477 
5478   auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
5479     StringRef Name = Note.getName();
5480     ArrayRef<uint8_t> Descriptor = Note.getDesc();
5481     Elf_Word Type = Note.getType();
5482 
5483     // Print the note owner/type.
5484     OS << "  " << left_justify(Name, 20) << ' '
5485        << format_hex(Descriptor.size(), 10) << '\t';
5486 
5487     StringRef NoteType =
5488         getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
5489     if (!NoteType.empty())
5490       OS << NoteType << '\n';
5491     else
5492       OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
5493 
5494     // Print the description, or fallback to printing raw bytes for unknown
5495     // owners/if we fail to pretty-print the contents.
5496     if (Name == "GNU") {
5497       if (printGNUNote<ELFT>(OS, Type, Descriptor))
5498         return Error::success();
5499     } else if (Name == "FreeBSD") {
5500       if (Optional<FreeBSDNote> N =
5501               getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
5502         OS << "    " << N->Type << ": " << N->Value << '\n';
5503         return Error::success();
5504       }
5505     } else if (Name == "AMD") {
5506       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
5507       if (!N.Type.empty()) {
5508         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
5509         return Error::success();
5510       }
5511     } else if (Name == "AMDGPU") {
5512       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
5513       if (!N.Type.empty()) {
5514         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
5515         return Error::success();
5516       }
5517     } else if (Name == "CORE") {
5518       if (Type == ELF::NT_FILE) {
5519         DataExtractor DescExtractor(Descriptor,
5520                                     ELFT::TargetEndianness == support::little,
5521                                     sizeof(Elf_Addr));
5522         if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) {
5523           printCoreNote<ELFT>(OS, *NoteOrErr);
5524           return Error::success();
5525         } else {
5526           return NoteOrErr.takeError();
5527         }
5528       }
5529     }
5530     if (!Descriptor.empty()) {
5531       OS << "   description data:";
5532       for (uint8_t B : Descriptor)
5533         OS << " " << format("%02x", B);
5534       OS << '\n';
5535     }
5536     return Error::success();
5537   };
5538 
5539   printNotesHelper(*this, PrintHeader, ProcessNote, []() {});
5540 }
5541 
printELFLinkerOptions()5542 template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() {
5543   OS << "printELFLinkerOptions not implemented!\n";
5544 }
5545 
5546 template <class ELFT>
printDependentLibsHelper(function_ref<void (const Elf_Shdr &)> OnSectionStart,function_ref<void (StringRef,uint64_t)> OnLibEntry)5547 void ELFDumper<ELFT>::printDependentLibsHelper(
5548     function_ref<void(const Elf_Shdr &)> OnSectionStart,
5549     function_ref<void(StringRef, uint64_t)> OnLibEntry) {
5550   auto Warn = [this](unsigned SecNdx, StringRef Msg) {
5551     this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
5552                               Twine(SecNdx) + " is broken: " + Msg);
5553   };
5554 
5555   unsigned I = -1;
5556   for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
5557     ++I;
5558     if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
5559       continue;
5560 
5561     OnSectionStart(Shdr);
5562 
5563     Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr);
5564     if (!ContentsOrErr) {
5565       Warn(I, toString(ContentsOrErr.takeError()));
5566       continue;
5567     }
5568 
5569     ArrayRef<uint8_t> Contents = *ContentsOrErr;
5570     if (!Contents.empty() && Contents.back() != 0) {
5571       Warn(I, "the content is not null-terminated");
5572       continue;
5573     }
5574 
5575     for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
5576       StringRef Lib((const char *)I);
5577       OnLibEntry(Lib, I - Contents.begin());
5578       I += Lib.size() + 1;
5579     }
5580   }
5581 }
5582 
5583 template <class ELFT>
forEachRelocationDo(const Elf_Shdr & Sec,bool RawRelr,llvm::function_ref<void (const Relocation<ELFT> &,unsigned,const Elf_Shdr &,const Elf_Shdr *)> RelRelaFn,llvm::function_ref<void (const Elf_Relr &)> RelrFn)5584 void ELFDumper<ELFT>::forEachRelocationDo(
5585     const Elf_Shdr &Sec, bool RawRelr,
5586     llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
5587                             const Elf_Shdr &, const Elf_Shdr *)>
5588         RelRelaFn,
5589     llvm::function_ref<void(const Elf_Relr &)> RelrFn) {
5590   auto Warn = [&](Error &&E,
5591                   const Twine &Prefix = "unable to read relocations from") {
5592     this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " +
5593                               toString(std::move(E)));
5594   };
5595 
5596   // SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table.
5597   // For them we should not treat the value of the sh_link field as an index of
5598   // a symbol table.
5599   const Elf_Shdr *SymTab;
5600   if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR) {
5601     Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link);
5602     if (!SymTabOrErr) {
5603       Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for");
5604       return;
5605     }
5606     SymTab = *SymTabOrErr;
5607   }
5608 
5609   unsigned RelNdx = 0;
5610   const bool IsMips64EL = this->Obj.isMips64EL();
5611   switch (Sec.sh_type) {
5612   case ELF::SHT_REL:
5613     if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) {
5614       for (const Elf_Rel &R : *RangeOrErr)
5615         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5616     } else {
5617       Warn(RangeOrErr.takeError());
5618     }
5619     break;
5620   case ELF::SHT_RELA:
5621     if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) {
5622       for (const Elf_Rela &R : *RangeOrErr)
5623         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5624     } else {
5625       Warn(RangeOrErr.takeError());
5626     }
5627     break;
5628   case ELF::SHT_RELR:
5629   case ELF::SHT_ANDROID_RELR: {
5630     Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec);
5631     if (!RangeOrErr) {
5632       Warn(RangeOrErr.takeError());
5633       break;
5634     }
5635     if (RawRelr) {
5636       for (const Elf_Relr &R : *RangeOrErr)
5637         RelrFn(R);
5638       break;
5639     }
5640 
5641     for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr))
5642       RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec,
5643                 /*SymTab=*/nullptr);
5644     break;
5645   }
5646   case ELF::SHT_ANDROID_REL:
5647   case ELF::SHT_ANDROID_RELA:
5648     if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) {
5649       for (const Elf_Rela &R : *RelasOrErr)
5650         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5651     } else {
5652       Warn(RelasOrErr.takeError());
5653     }
5654     break;
5655   }
5656 }
5657 
5658 template <class ELFT>
getPrintableSectionName(const Elf_Shdr & Sec) const5659 StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const {
5660   StringRef Name = "<?>";
5661   if (Expected<StringRef> SecNameOrErr =
5662           Obj.getSectionName(Sec, this->WarningHandler))
5663     Name = *SecNameOrErr;
5664   else
5665     this->reportUniqueWarning("unable to get the name of " + describe(Sec) +
5666                               ": " + toString(SecNameOrErr.takeError()));
5667   return Name;
5668 }
5669 
printDependentLibs()5670 template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() {
5671   bool SectionStarted = false;
5672   struct NameOffset {
5673     StringRef Name;
5674     uint64_t Offset;
5675   };
5676   std::vector<NameOffset> SecEntries;
5677   NameOffset Current;
5678   auto PrintSection = [&]() {
5679     OS << "Dependent libraries section " << Current.Name << " at offset "
5680        << format_hex(Current.Offset, 1) << " contains " << SecEntries.size()
5681        << " entries:\n";
5682     for (NameOffset Entry : SecEntries)
5683       OS << "  [" << format("%6" PRIx64, Entry.Offset) << "]  " << Entry.Name
5684          << "\n";
5685     OS << "\n";
5686     SecEntries.clear();
5687   };
5688 
5689   auto OnSectionStart = [&](const Elf_Shdr &Shdr) {
5690     if (SectionStarted)
5691       PrintSection();
5692     SectionStarted = true;
5693     Current.Offset = Shdr.sh_offset;
5694     Current.Name = this->getPrintableSectionName(Shdr);
5695   };
5696   auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) {
5697     SecEntries.push_back(NameOffset{Lib, Offset});
5698   };
5699 
5700   this->printDependentLibsHelper(OnSectionStart, OnLibEntry);
5701   if (SectionStarted)
5702     PrintSection();
5703 }
5704 
5705 template <class ELFT>
printFunctionStackSize(uint64_t SymValue,Optional<const Elf_Shdr * > FunctionSec,const Elf_Shdr & StackSizeSec,DataExtractor Data,uint64_t * Offset)5706 bool ELFDumper<ELFT>::printFunctionStackSize(
5707     uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec,
5708     const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) {
5709   uint32_t FuncSymIndex = 0;
5710   if (this->DotSymtabSec) {
5711     if (Expected<Elf_Sym_Range> SymsOrError = Obj.symbols(this->DotSymtabSec)) {
5712       uint32_t Index = (uint32_t)-1;
5713       for (const Elf_Sym &Sym : *SymsOrError) {
5714         ++Index;
5715 
5716         if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC)
5717           continue;
5718 
5719         if (Expected<uint64_t> SymAddrOrErr =
5720                 ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress()) {
5721           if (SymValue != *SymAddrOrErr)
5722             continue;
5723         } else {
5724           std::string Name = this->getStaticSymbolName(Index);
5725           reportUniqueWarning("unable to get address of symbol '" + Name +
5726                               "': " + toString(SymAddrOrErr.takeError()));
5727           break;
5728         }
5729 
5730         // Check if the symbol is in the right section. FunctionSec == None
5731         // means "any section".
5732         if (FunctionSec) {
5733           if (Expected<const Elf_Shdr *> SecOrErr =
5734                   Obj.getSection(Sym, this->DotSymtabSec,
5735                                  this->getShndxTable(this->DotSymtabSec))) {
5736             if (*FunctionSec != *SecOrErr)
5737               continue;
5738           } else {
5739             std::string Name = this->getStaticSymbolName(Index);
5740             // Note: it is impossible to trigger this error currently, it is
5741             // untested.
5742             reportUniqueWarning("unable to get section of symbol '" + Name +
5743                                 "': " + toString(SecOrErr.takeError()));
5744             break;
5745           }
5746         }
5747 
5748         FuncSymIndex = Index;
5749         break;
5750       }
5751     } else {
5752       reportUniqueWarning("unable to read the symbol table: " +
5753                           toString(SymsOrError.takeError()));
5754     }
5755   }
5756 
5757   std::string FuncName = "?";
5758   if (!FuncSymIndex)
5759     reportUniqueWarning(
5760         "could not identify function symbol for stack size entry in " +
5761         describe(StackSizeSec));
5762   else
5763     FuncName = this->getStaticSymbolName(FuncSymIndex);
5764 
5765   // Extract the size. The expectation is that Offset is pointing to the right
5766   // place, i.e. past the function address.
5767   Error Err = Error::success();
5768   uint64_t StackSize = Data.getULEB128(Offset, &Err);
5769   if (Err) {
5770     reportUniqueWarning("could not extract a valid stack size from " +
5771                         describe(StackSizeSec) + ": " +
5772                         toString(std::move(Err)));
5773     return false;
5774   }
5775   printStackSizeEntry(StackSize, FuncName);
5776   return true;
5777 }
5778 
5779 template <class ELFT>
printStackSizeEntry(uint64_t Size,StringRef FuncName)5780 void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
5781                                              StringRef FuncName) {
5782   OS.PadToColumn(2);
5783   OS << format_decimal(Size, 11);
5784   OS.PadToColumn(18);
5785   OS << FuncName << "\n";
5786 }
5787 
5788 template <class ELFT>
printStackSize(const Relocation<ELFT> & R,const Elf_Shdr & RelocSec,unsigned Ndx,const Elf_Shdr * SymTab,const Elf_Shdr * FunctionSec,const Elf_Shdr & StackSizeSec,const RelocationResolver & Resolver,DataExtractor Data)5789 void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R,
5790                                      const Elf_Shdr &RelocSec, unsigned Ndx,
5791                                      const Elf_Shdr *SymTab,
5792                                      const Elf_Shdr *FunctionSec,
5793                                      const Elf_Shdr &StackSizeSec,
5794                                      const RelocationResolver &Resolver,
5795                                      DataExtractor Data) {
5796   // This function ignores potentially erroneous input, unless it is directly
5797   // related to stack size reporting.
5798   const Elf_Sym *Sym = nullptr;
5799   Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab);
5800   if (!TargetOrErr)
5801     reportUniqueWarning("unable to get the target of relocation with index " +
5802                         Twine(Ndx) + " in " + describe(RelocSec) + ": " +
5803                         toString(TargetOrErr.takeError()));
5804   else
5805     Sym = TargetOrErr->Sym;
5806 
5807   uint64_t RelocSymValue = 0;
5808   if (Sym) {
5809     Expected<const Elf_Shdr *> SectionOrErr =
5810         this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab));
5811     if (!SectionOrErr) {
5812       reportUniqueWarning(
5813           "cannot identify the section for relocation symbol '" +
5814           (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError()));
5815     } else if (*SectionOrErr != FunctionSec) {
5816       reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name +
5817                           "' is not in the expected section");
5818       // Pretend that the symbol is in the correct section and report its
5819       // stack size anyway.
5820       FunctionSec = *SectionOrErr;
5821     }
5822 
5823     RelocSymValue = Sym->st_value;
5824   }
5825 
5826   uint64_t Offset = R.Offset;
5827   if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
5828     reportUniqueWarning("found invalid relocation offset (0x" +
5829                         Twine::utohexstr(Offset) + ") into " +
5830                         describe(StackSizeSec) +
5831                         " while trying to extract a stack size entry");
5832     return;
5833   }
5834 
5835   uint64_t SymValue =
5836       Resolver(R.Type, Offset, RelocSymValue, Data.getAddress(&Offset),
5837                R.Addend.getValueOr(0));
5838   this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data,
5839                                &Offset);
5840 }
5841 
5842 template <class ELFT>
printNonRelocatableStackSizes(std::function<void ()> PrintHeader)5843 void ELFDumper<ELFT>::printNonRelocatableStackSizes(
5844     std::function<void()> PrintHeader) {
5845   // This function ignores potentially erroneous input, unless it is directly
5846   // related to stack size reporting.
5847   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
5848     if (this->getPrintableSectionName(Sec) != ".stack_sizes")
5849       continue;
5850     PrintHeader();
5851     ArrayRef<uint8_t> Contents =
5852         unwrapOrError(this->FileName, Obj.getSectionContents(Sec));
5853     DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
5854     uint64_t Offset = 0;
5855     while (Offset < Contents.size()) {
5856       // The function address is followed by a ULEB representing the stack
5857       // size. Check for an extra byte before we try to process the entry.
5858       if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
5859         reportUniqueWarning(
5860             describe(Sec) +
5861             " ended while trying to extract a stack size entry");
5862         break;
5863       }
5864       uint64_t SymValue = Data.getAddress(&Offset);
5865       if (!printFunctionStackSize(SymValue, /*FunctionSec=*/None, Sec, Data,
5866                                   &Offset))
5867         break;
5868     }
5869   }
5870 }
5871 
5872 template <class ELFT>
printRelocatableStackSizes(std::function<void ()> PrintHeader)5873 void ELFDumper<ELFT>::printRelocatableStackSizes(
5874     std::function<void()> PrintHeader) {
5875   // Build a map between stack size sections and their corresponding relocation
5876   // sections.
5877   llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> StackSizeRelocMap;
5878   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
5879     StringRef SectionName;
5880     if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec))
5881       SectionName = *NameOrErr;
5882     else
5883       consumeError(NameOrErr.takeError());
5884 
5885     // A stack size section that we haven't encountered yet is mapped to the
5886     // null section until we find its corresponding relocation section.
5887     if (SectionName == ".stack_sizes")
5888       if (StackSizeRelocMap
5889               .insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr))
5890               .second)
5891         continue;
5892 
5893     // Check relocation sections if they are relocating contents of a
5894     // stack sizes section.
5895     if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL)
5896       continue;
5897 
5898     Expected<const Elf_Shdr *> RelSecOrErr = Obj.getSection(Sec.sh_info);
5899     if (!RelSecOrErr) {
5900       reportUniqueWarning(describe(Sec) +
5901                           ": failed to get a relocated section: " +
5902                           toString(RelSecOrErr.takeError()));
5903       continue;
5904     }
5905 
5906     const Elf_Shdr *ContentsSec = *RelSecOrErr;
5907     if (this->getPrintableSectionName(**RelSecOrErr) != ".stack_sizes")
5908       continue;
5909 
5910     // Insert a mapping from the stack sizes section to its relocation section.
5911     StackSizeRelocMap[ContentsSec] = &Sec;
5912   }
5913 
5914   for (const auto &StackSizeMapEntry : StackSizeRelocMap) {
5915     PrintHeader();
5916     const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first;
5917     const Elf_Shdr *RelocSec = StackSizeMapEntry.second;
5918 
5919     // Warn about stack size sections without a relocation section.
5920     if (!RelocSec) {
5921       reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) +
5922                                 ") does not have a corresponding "
5923                                 "relocation section"),
5924                     FileName);
5925       continue;
5926     }
5927 
5928     // A .stack_sizes section header's sh_link field is supposed to point
5929     // to the section that contains the functions whose stack sizes are
5930     // described in it.
5931     const Elf_Shdr *FunctionSec = unwrapOrError(
5932         this->FileName, Obj.getSection(StackSizesELFSec->sh_link));
5933 
5934     SupportsRelocation IsSupportedFn;
5935     RelocationResolver Resolver;
5936     std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF);
5937     ArrayRef<uint8_t> Contents =
5938         unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec));
5939     DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
5940 
5941     forEachRelocationDo(
5942         *RelocSec, /*RawRelr=*/false,
5943         [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
5944             const Elf_Shdr *SymTab) {
5945           if (!IsSupportedFn || !IsSupportedFn(R.Type)) {
5946             reportUniqueWarning(
5947                 describe(*RelocSec) +
5948                 " contains an unsupported relocation with index " + Twine(Ndx) +
5949                 ": " + Obj.getRelocationTypeName(R.Type));
5950             return;
5951           }
5952 
5953           this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec,
5954                                *StackSizesELFSec, Resolver, Data);
5955         },
5956         [](const Elf_Relr &) {
5957           llvm_unreachable("can't get here, because we only support "
5958                            "SHT_REL/SHT_RELA sections");
5959         });
5960   }
5961 }
5962 
5963 template <class ELFT>
printStackSizes()5964 void GNUELFDumper<ELFT>::printStackSizes() {
5965   bool HeaderHasBeenPrinted = false;
5966   auto PrintHeader = [&]() {
5967     if (HeaderHasBeenPrinted)
5968       return;
5969     OS << "\nStack Sizes:\n";
5970     OS.PadToColumn(9);
5971     OS << "Size";
5972     OS.PadToColumn(18);
5973     OS << "Function\n";
5974     HeaderHasBeenPrinted = true;
5975   };
5976 
5977   // For non-relocatable objects, look directly for sections whose name starts
5978   // with .stack_sizes and process the contents.
5979   if (this->Obj.getHeader().e_type == ELF::ET_REL)
5980     this->printRelocatableStackSizes(PrintHeader);
5981   else
5982     this->printNonRelocatableStackSizes(PrintHeader);
5983 }
5984 
5985 template <class ELFT>
printMipsGOT(const MipsGOTParser<ELFT> & Parser)5986 void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
5987   size_t Bias = ELFT::Is64Bits ? 8 : 0;
5988   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
5989     OS.PadToColumn(2);
5990     OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
5991     OS.PadToColumn(11 + Bias);
5992     OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
5993     OS.PadToColumn(22 + Bias);
5994     OS << format_hex_no_prefix(*E, 8 + Bias);
5995     OS.PadToColumn(31 + 2 * Bias);
5996     OS << Purpose << "\n";
5997   };
5998 
5999   OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
6000   OS << " Canonical gp value: "
6001      << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
6002 
6003   OS << " Reserved entries:\n";
6004   if (ELFT::Is64Bits)
6005     OS << "           Address     Access          Initial Purpose\n";
6006   else
6007     OS << "   Address     Access  Initial Purpose\n";
6008   PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
6009   if (Parser.getGotModulePointer())
6010     PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
6011 
6012   if (!Parser.getLocalEntries().empty()) {
6013     OS << "\n";
6014     OS << " Local entries:\n";
6015     if (ELFT::Is64Bits)
6016       OS << "           Address     Access          Initial\n";
6017     else
6018       OS << "   Address     Access  Initial\n";
6019     for (auto &E : Parser.getLocalEntries())
6020       PrintEntry(&E, "");
6021   }
6022 
6023   if (Parser.IsStatic)
6024     return;
6025 
6026   if (!Parser.getGlobalEntries().empty()) {
6027     OS << "\n";
6028     OS << " Global entries:\n";
6029     if (ELFT::Is64Bits)
6030       OS << "           Address     Access          Initial         Sym.Val."
6031          << " Type    Ndx Name\n";
6032     else
6033       OS << "   Address     Access  Initial Sym.Val. Type    Ndx Name\n";
6034 
6035     DataRegion<Elf_Word> ShndxTable(
6036         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6037     for (auto &E : Parser.getGlobalEntries()) {
6038       const Elf_Sym &Sym = *Parser.getGotSym(&E);
6039       const Elf_Sym &FirstSym = this->dynamic_symbols()[0];
6040       std::string SymName = this->getFullSymbolName(
6041           Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6042 
6043       OS.PadToColumn(2);
6044       OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
6045       OS.PadToColumn(11 + Bias);
6046       OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
6047       OS.PadToColumn(22 + Bias);
6048       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6049       OS.PadToColumn(31 + 2 * Bias);
6050       OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6051       OS.PadToColumn(40 + 3 * Bias);
6052       OS << printEnum(Sym.getType(), makeArrayRef(ElfSymbolTypes));
6053       OS.PadToColumn(48 + 3 * Bias);
6054       OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6055                                 ShndxTable);
6056       OS.PadToColumn(52 + 3 * Bias);
6057       OS << SymName << "\n";
6058     }
6059   }
6060 
6061   if (!Parser.getOtherEntries().empty())
6062     OS << "\n Number of TLS and multi-GOT entries "
6063        << Parser.getOtherEntries().size() << "\n";
6064 }
6065 
6066 template <class ELFT>
printMipsPLT(const MipsGOTParser<ELFT> & Parser)6067 void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6068   size_t Bias = ELFT::Is64Bits ? 8 : 0;
6069   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6070     OS.PadToColumn(2);
6071     OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
6072     OS.PadToColumn(11 + Bias);
6073     OS << format_hex_no_prefix(*E, 8 + Bias);
6074     OS.PadToColumn(20 + 2 * Bias);
6075     OS << Purpose << "\n";
6076   };
6077 
6078   OS << "PLT GOT:\n\n";
6079 
6080   OS << " Reserved entries:\n";
6081   OS << "   Address  Initial Purpose\n";
6082   PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
6083   if (Parser.getPltModulePointer())
6084     PrintEntry(Parser.getPltModulePointer(), "Module pointer");
6085 
6086   if (!Parser.getPltEntries().empty()) {
6087     OS << "\n";
6088     OS << " Entries:\n";
6089     OS << "   Address  Initial Sym.Val. Type    Ndx Name\n";
6090     DataRegion<Elf_Word> ShndxTable(
6091         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6092     for (auto &E : Parser.getPltEntries()) {
6093       const Elf_Sym &Sym = *Parser.getPltSym(&E);
6094       const Elf_Sym &FirstSym = *cantFail(
6095           this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
6096       std::string SymName = this->getFullSymbolName(
6097           Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6098 
6099       OS.PadToColumn(2);
6100       OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
6101       OS.PadToColumn(11 + Bias);
6102       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6103       OS.PadToColumn(20 + 2 * Bias);
6104       OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6105       OS.PadToColumn(29 + 3 * Bias);
6106       OS << printEnum(Sym.getType(), makeArrayRef(ElfSymbolTypes));
6107       OS.PadToColumn(37 + 3 * Bias);
6108       OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6109                                 ShndxTable);
6110       OS.PadToColumn(41 + 3 * Bias);
6111       OS << SymName << "\n";
6112     }
6113   }
6114 }
6115 
6116 template <class ELFT>
6117 Expected<const Elf_Mips_ABIFlags<ELFT> *>
getMipsAbiFlagsSection(const ELFDumper<ELFT> & Dumper)6118 getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) {
6119   const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags");
6120   if (Sec == nullptr)
6121     return nullptr;
6122 
6123   constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: ";
6124   Expected<ArrayRef<uint8_t>> DataOrErr =
6125       Dumper.getElfObject().getELFFile().getSectionContents(*Sec);
6126   if (!DataOrErr)
6127     return createError(ErrPrefix + toString(DataOrErr.takeError()));
6128 
6129   if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
6130     return createError(ErrPrefix + "it has a wrong size (" +
6131         Twine(DataOrErr->size()) + ")");
6132   return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data());
6133 }
6134 
printMipsABIFlags()6135 template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() {
6136   const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr;
6137   if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
6138           getMipsAbiFlagsSection(*this))
6139     Flags = *SecOrErr;
6140   else
6141     this->reportUniqueWarning(SecOrErr.takeError());
6142   if (!Flags)
6143     return;
6144 
6145   OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
6146   OS << "ISA: MIPS" << int(Flags->isa_level);
6147   if (Flags->isa_rev > 1)
6148     OS << "r" << int(Flags->isa_rev);
6149   OS << "\n";
6150   OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
6151   OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
6152   OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
6153   OS << "FP ABI: " << printEnum(Flags->fp_abi, makeArrayRef(ElfMipsFpABIType))
6154      << "\n";
6155   OS << "ISA Extension: "
6156      << printEnum(Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)) << "\n";
6157   if (Flags->ases == 0)
6158     OS << "ASEs: None\n";
6159   else
6160     // FIXME: Print each flag on a separate line.
6161     OS << "ASEs: " << printFlags(Flags->ases, makeArrayRef(ElfMipsASEFlags))
6162        << "\n";
6163   OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
6164   OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
6165   OS << "\n";
6166 }
6167 
printFileHeaders()6168 template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() {
6169   const Elf_Ehdr &E = this->Obj.getHeader();
6170   {
6171     DictScope D(W, "ElfHeader");
6172     {
6173       DictScope D(W, "Ident");
6174       W.printBinary("Magic", makeArrayRef(E.e_ident).slice(ELF::EI_MAG0, 4));
6175       W.printEnum("Class", E.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
6176       W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA],
6177                   makeArrayRef(ElfDataEncoding));
6178       W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]);
6179 
6180       auto OSABI = makeArrayRef(ElfOSABI);
6181       if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
6182           E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
6183         switch (E.e_machine) {
6184         case ELF::EM_AMDGPU:
6185           OSABI = makeArrayRef(AMDGPUElfOSABI);
6186           break;
6187         case ELF::EM_ARM:
6188           OSABI = makeArrayRef(ARMElfOSABI);
6189           break;
6190         case ELF::EM_TI_C6000:
6191           OSABI = makeArrayRef(C6000ElfOSABI);
6192           break;
6193         }
6194       }
6195       W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI);
6196       W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]);
6197       W.printBinary("Unused", makeArrayRef(E.e_ident).slice(ELF::EI_PAD));
6198     }
6199 
6200     std::string TypeStr;
6201     if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) {
6202       TypeStr = Ent->Name.str();
6203     } else {
6204       if (E.e_type >= ET_LOPROC)
6205         TypeStr = "Processor Specific";
6206       else if (E.e_type >= ET_LOOS)
6207         TypeStr = "OS Specific";
6208       else
6209         TypeStr = "Unknown";
6210     }
6211     W.printString("Type", TypeStr + " (0x" + to_hexString(E.e_type) + ")");
6212 
6213     W.printEnum("Machine", E.e_machine, makeArrayRef(ElfMachineType));
6214     W.printNumber("Version", E.e_version);
6215     W.printHex("Entry", E.e_entry);
6216     W.printHex("ProgramHeaderOffset", E.e_phoff);
6217     W.printHex("SectionHeaderOffset", E.e_shoff);
6218     if (E.e_machine == EM_MIPS)
6219       W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderMipsFlags),
6220                    unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
6221                    unsigned(ELF::EF_MIPS_MACH));
6222     else if (E.e_machine == EM_AMDGPU) {
6223       switch (E.e_ident[ELF::EI_ABIVERSION]) {
6224       default:
6225         W.printHex("Flags", E.e_flags);
6226         break;
6227       case 0:
6228         // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
6229         LLVM_FALLTHROUGH;
6230       case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
6231         W.printFlags("Flags", E.e_flags,
6232                      makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion3),
6233                      unsigned(ELF::EF_AMDGPU_MACH));
6234         break;
6235       case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
6236         W.printFlags("Flags", E.e_flags,
6237                      makeArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
6238                      unsigned(ELF::EF_AMDGPU_MACH),
6239                      unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
6240                      unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4));
6241         break;
6242       }
6243     } else if (E.e_machine == EM_RISCV)
6244       W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
6245     else if (E.e_machine == EM_AVR)
6246       W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderAVRFlags),
6247                    unsigned(ELF::EF_AVR_ARCH_MASK));
6248     else
6249       W.printFlags("Flags", E.e_flags);
6250     W.printNumber("HeaderSize", E.e_ehsize);
6251     W.printNumber("ProgramHeaderEntrySize", E.e_phentsize);
6252     W.printNumber("ProgramHeaderCount", E.e_phnum);
6253     W.printNumber("SectionHeaderEntrySize", E.e_shentsize);
6254     W.printString("SectionHeaderCount",
6255                   getSectionHeadersNumString(this->Obj, this->FileName));
6256     W.printString("StringTableSectionIndex",
6257                   getSectionHeaderTableIndexString(this->Obj, this->FileName));
6258   }
6259 }
6260 
printGroupSections()6261 template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() {
6262   DictScope Lists(W, "Groups");
6263   std::vector<GroupSection> V = this->getGroups();
6264   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
6265   for (const GroupSection &G : V) {
6266     DictScope D(W, "Group");
6267     W.printNumber("Name", G.Name, G.ShName);
6268     W.printNumber("Index", G.Index);
6269     W.printNumber("Link", G.Link);
6270     W.printNumber("Info", G.Info);
6271     W.printHex("Type", getGroupType(G.Type), G.Type);
6272     W.startLine() << "Signature: " << G.Signature << "\n";
6273 
6274     ListScope L(W, "Section(s) in group");
6275     for (const GroupMember &GM : G.Members) {
6276       const GroupSection *MainGroup = Map[GM.Index];
6277       if (MainGroup != &G)
6278         this->reportUniqueWarning(
6279             "section with index " + Twine(GM.Index) +
6280             ", included in the group section with index " +
6281             Twine(MainGroup->Index) +
6282             ", was also found in the group section with index " +
6283             Twine(G.Index));
6284       W.startLine() << GM.Name << " (" << GM.Index << ")\n";
6285     }
6286   }
6287 
6288   if (V.empty())
6289     W.startLine() << "There are no group sections in the file.\n";
6290 }
6291 
printRelocations()6292 template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() {
6293   ListScope D(W, "Relocations");
6294 
6295   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6296     if (!isRelocationSec<ELFT>(Sec))
6297       continue;
6298 
6299     StringRef Name = this->getPrintableSectionName(Sec);
6300     unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front();
6301     W.startLine() << "Section (" << SecNdx << ") " << Name << " {\n";
6302     W.indent();
6303     this->printRelocationsHelper(Sec);
6304     W.unindent();
6305     W.startLine() << "}\n";
6306   }
6307 }
6308 
6309 template <class ELFT>
printRelrReloc(const Elf_Relr & R)6310 void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
6311   W.startLine() << W.hex(R) << "\n";
6312 }
6313 
6314 template <class ELFT>
printRelRelaReloc(const Relocation<ELFT> & R,const RelSymbol<ELFT> & RelSym)6315 void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
6316                                             const RelSymbol<ELFT> &RelSym) {
6317   StringRef SymbolName = RelSym.Name;
6318   SmallString<32> RelocName;
6319   this->Obj.getRelocationTypeName(R.Type, RelocName);
6320 
6321   if (opts::ExpandRelocs) {
6322     DictScope Group(W, "Relocation");
6323     W.printHex("Offset", R.Offset);
6324     W.printNumber("Type", RelocName, R.Type);
6325     W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol);
6326     if (R.Addend)
6327       W.printHex("Addend", (uintX_t)*R.Addend);
6328   } else {
6329     raw_ostream &OS = W.startLine();
6330     OS << W.hex(R.Offset) << " " << RelocName << " "
6331        << (!SymbolName.empty() ? SymbolName : "-");
6332     if (R.Addend)
6333       OS << " " << W.hex((uintX_t)*R.Addend);
6334     OS << "\n";
6335   }
6336 }
6337 
printSectionHeaders()6338 template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() {
6339   ListScope SectionsD(W, "Sections");
6340 
6341   int SectionIndex = -1;
6342   std::vector<EnumEntry<unsigned>> FlagsList =
6343       getSectionFlagsForTarget(this->Obj.getHeader().e_machine);
6344   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6345     DictScope SectionD(W, "Section");
6346     W.printNumber("Index", ++SectionIndex);
6347     W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name);
6348     W.printHex("Type",
6349                object::getELFSectionTypeName(this->Obj.getHeader().e_machine,
6350                                              Sec.sh_type),
6351                Sec.sh_type);
6352     W.printFlags("Flags", Sec.sh_flags, makeArrayRef(FlagsList));
6353     W.printHex("Address", Sec.sh_addr);
6354     W.printHex("Offset", Sec.sh_offset);
6355     W.printNumber("Size", Sec.sh_size);
6356     W.printNumber("Link", Sec.sh_link);
6357     W.printNumber("Info", Sec.sh_info);
6358     W.printNumber("AddressAlignment", Sec.sh_addralign);
6359     W.printNumber("EntrySize", Sec.sh_entsize);
6360 
6361     if (opts::SectionRelocations) {
6362       ListScope D(W, "Relocations");
6363       this->printRelocationsHelper(Sec);
6364     }
6365 
6366     if (opts::SectionSymbols) {
6367       ListScope D(W, "Symbols");
6368       if (this->DotSymtabSec) {
6369         StringRef StrTable = unwrapOrError(
6370             this->FileName,
6371             this->Obj.getStringTableForSymtab(*this->DotSymtabSec));
6372         ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec);
6373 
6374         typename ELFT::SymRange Symbols = unwrapOrError(
6375             this->FileName, this->Obj.symbols(this->DotSymtabSec));
6376         for (const Elf_Sym &Sym : Symbols) {
6377           const Elf_Shdr *SymSec = unwrapOrError(
6378               this->FileName,
6379               this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable));
6380           if (SymSec == &Sec)
6381             printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false,
6382                         false);
6383         }
6384       }
6385     }
6386 
6387     if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
6388       ArrayRef<uint8_t> Data =
6389           unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec));
6390       W.printBinaryBlock(
6391           "SectionData",
6392           StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
6393     }
6394   }
6395 }
6396 
6397 template <class ELFT>
printSymbolSection(const Elf_Sym & Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable) const6398 void LLVMELFDumper<ELFT>::printSymbolSection(
6399     const Elf_Sym &Symbol, unsigned SymIndex,
6400     DataRegion<Elf_Word> ShndxTable) const {
6401   auto GetSectionSpecialType = [&]() -> Optional<StringRef> {
6402     if (Symbol.isUndefined())
6403       return StringRef("Undefined");
6404     if (Symbol.isProcessorSpecific())
6405       return StringRef("Processor Specific");
6406     if (Symbol.isOSSpecific())
6407       return StringRef("Operating System Specific");
6408     if (Symbol.isAbsolute())
6409       return StringRef("Absolute");
6410     if (Symbol.isCommon())
6411       return StringRef("Common");
6412     if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX)
6413       return StringRef("Reserved");
6414     return None;
6415   };
6416 
6417   if (Optional<StringRef> Type = GetSectionSpecialType()) {
6418     W.printHex("Section", *Type, Symbol.st_shndx);
6419     return;
6420   }
6421 
6422   Expected<unsigned> SectionIndex =
6423       this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
6424   if (!SectionIndex) {
6425     assert(Symbol.st_shndx == SHN_XINDEX &&
6426            "getSymbolSectionIndex should only fail due to an invalid "
6427            "SHT_SYMTAB_SHNDX table/reference");
6428     this->reportUniqueWarning(SectionIndex.takeError());
6429     W.printHex("Section", "Reserved", SHN_XINDEX);
6430     return;
6431   }
6432 
6433   Expected<StringRef> SectionName =
6434       this->getSymbolSectionName(Symbol, *SectionIndex);
6435   if (!SectionName) {
6436     // Don't report an invalid section name if the section headers are missing.
6437     // In such situations, all sections will be "invalid".
6438     if (!this->ObjF.sections().empty())
6439       this->reportUniqueWarning(SectionName.takeError());
6440     else
6441       consumeError(SectionName.takeError());
6442     W.printHex("Section", "<?>", *SectionIndex);
6443   } else {
6444     W.printHex("Section", *SectionName, *SectionIndex);
6445   }
6446 }
6447 
6448 template <class ELFT>
printSymbol(const Elf_Sym & Symbol,unsigned SymIndex,DataRegion<Elf_Word> ShndxTable,Optional<StringRef> StrTable,bool IsDynamic,bool) const6449 void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
6450                                       DataRegion<Elf_Word> ShndxTable,
6451                                       Optional<StringRef> StrTable,
6452                                       bool IsDynamic,
6453                                       bool /*NonVisibilityBitsUsed*/) const {
6454   std::string FullSymbolName = this->getFullSymbolName(
6455       Symbol, SymIndex, ShndxTable, StrTable, IsDynamic);
6456   unsigned char SymbolType = Symbol.getType();
6457 
6458   DictScope D(W, "Symbol");
6459   W.printNumber("Name", FullSymbolName, Symbol.st_name);
6460   W.printHex("Value", Symbol.st_value);
6461   W.printNumber("Size", Symbol.st_size);
6462   W.printEnum("Binding", Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
6463   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
6464       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
6465     W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
6466   else
6467     W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
6468   if (Symbol.st_other == 0)
6469     // Usually st_other flag is zero. Do not pollute the output
6470     // by flags enumeration in that case.
6471     W.printNumber("Other", 0);
6472   else {
6473     std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
6474                                                    std::end(ElfSymOtherFlags));
6475     if (this->Obj.getHeader().e_machine == EM_MIPS) {
6476       // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
6477       // flag overlapped with other ST_MIPS_xxx flags. So consider both
6478       // cases separately.
6479       if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
6480         SymOtherFlags.insert(SymOtherFlags.end(),
6481                              std::begin(ElfMips16SymOtherFlags),
6482                              std::end(ElfMips16SymOtherFlags));
6483       else
6484         SymOtherFlags.insert(SymOtherFlags.end(),
6485                              std::begin(ElfMipsSymOtherFlags),
6486                              std::end(ElfMipsSymOtherFlags));
6487     } else if (this->Obj.getHeader().e_machine == EM_AARCH64) {
6488       SymOtherFlags.insert(SymOtherFlags.end(),
6489                            std::begin(ElfAArch64SymOtherFlags),
6490                            std::end(ElfAArch64SymOtherFlags));
6491     }
6492     W.printFlags("Other", Symbol.st_other, makeArrayRef(SymOtherFlags), 0x3u);
6493   }
6494   printSymbolSection(Symbol, SymIndex, ShndxTable);
6495 }
6496 
6497 template <class ELFT>
printSymbols(bool PrintSymbols,bool PrintDynamicSymbols)6498 void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols,
6499                                        bool PrintDynamicSymbols) {
6500   if (PrintSymbols) {
6501     ListScope Group(W, "Symbols");
6502     this->printSymbolsHelper(false);
6503   }
6504   if (PrintDynamicSymbols) {
6505     ListScope Group(W, "DynamicSymbols");
6506     this->printSymbolsHelper(true);
6507   }
6508 }
6509 
printDynamicTable()6510 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() {
6511   Elf_Dyn_Range Table = this->dynamic_table();
6512   if (Table.empty())
6513     return;
6514 
6515   W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
6516 
6517   size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table);
6518   // The "Name/Value" column should be indented from the "Type" column by N
6519   // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
6520   // space (1) = -3.
6521   W.startLine() << "  Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ')
6522                 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
6523 
6524   std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s ";
6525   for (auto Entry : Table) {
6526     uintX_t Tag = Entry.getTag();
6527     std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
6528     W.startLine() << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true)
6529                   << " "
6530                   << format(ValueFmt.c_str(),
6531                             this->Obj.getDynamicTagAsString(Tag).c_str())
6532                   << Value << "\n";
6533   }
6534   W.startLine() << "]\n";
6535 }
6536 
printDynamicRelocations()6537 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() {
6538   W.startLine() << "Dynamic Relocations {\n";
6539   W.indent();
6540   this->printDynamicRelocationsHelper();
6541   W.unindent();
6542   W.startLine() << "}\n";
6543 }
6544 
6545 template <class ELFT>
printProgramHeaders(bool PrintProgramHeaders,cl::boolOrDefault PrintSectionMapping)6546 void LLVMELFDumper<ELFT>::printProgramHeaders(
6547     bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
6548   if (PrintProgramHeaders)
6549     printProgramHeaders();
6550   if (PrintSectionMapping == cl::BOU_TRUE)
6551     printSectionMapping();
6552 }
6553 
printProgramHeaders()6554 template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() {
6555   ListScope L(W, "ProgramHeaders");
6556 
6557   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
6558   if (!PhdrsOrErr) {
6559     this->reportUniqueWarning("unable to dump program headers: " +
6560                               toString(PhdrsOrErr.takeError()));
6561     return;
6562   }
6563 
6564   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
6565     DictScope P(W, "ProgramHeader");
6566     StringRef Type =
6567         segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type);
6568 
6569     W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type);
6570     W.printHex("Offset", Phdr.p_offset);
6571     W.printHex("VirtualAddress", Phdr.p_vaddr);
6572     W.printHex("PhysicalAddress", Phdr.p_paddr);
6573     W.printNumber("FileSize", Phdr.p_filesz);
6574     W.printNumber("MemSize", Phdr.p_memsz);
6575     W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
6576     W.printNumber("Alignment", Phdr.p_align);
6577   }
6578 }
6579 
6580 template <class ELFT>
printVersionSymbolSection(const Elf_Shdr * Sec)6581 void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
6582   ListScope SS(W, "VersionSymbols");
6583   if (!Sec)
6584     return;
6585 
6586   StringRef StrTable;
6587   ArrayRef<Elf_Sym> Syms;
6588   const Elf_Shdr *SymTabSec;
6589   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
6590       this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec);
6591   if (!VerTableOrErr) {
6592     this->reportUniqueWarning(VerTableOrErr.takeError());
6593     return;
6594   }
6595 
6596   if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
6597     return;
6598 
6599   ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec);
6600   for (size_t I = 0, E = Syms.size(); I < E; ++I) {
6601     DictScope S(W, "Symbol");
6602     W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
6603     W.printString("Name",
6604                   this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable,
6605                                           /*IsDynamic=*/true));
6606   }
6607 }
6608 
6609 static const EnumEntry<unsigned> SymVersionFlags[] = {
6610     {"Base", "BASE", VER_FLG_BASE},
6611     {"Weak", "WEAK", VER_FLG_WEAK},
6612     {"Info", "INFO", VER_FLG_INFO}};
6613 
6614 template <class ELFT>
printVersionDefinitionSection(const Elf_Shdr * Sec)6615 void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
6616   ListScope SD(W, "VersionDefinitions");
6617   if (!Sec)
6618     return;
6619 
6620   Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
6621   if (!V) {
6622     this->reportUniqueWarning(V.takeError());
6623     return;
6624   }
6625 
6626   for (const VerDef &D : *V) {
6627     DictScope Def(W, "Definition");
6628     W.printNumber("Version", D.Version);
6629     W.printFlags("Flags", D.Flags, makeArrayRef(SymVersionFlags));
6630     W.printNumber("Index", D.Ndx);
6631     W.printNumber("Hash", D.Hash);
6632     W.printString("Name", D.Name.c_str());
6633     W.printList(
6634         "Predecessors", D.AuxV,
6635         [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
6636   }
6637 }
6638 
6639 template <class ELFT>
printVersionDependencySection(const Elf_Shdr * Sec)6640 void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
6641   ListScope SD(W, "VersionRequirements");
6642   if (!Sec)
6643     return;
6644 
6645   Expected<std::vector<VerNeed>> V =
6646       this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
6647   if (!V) {
6648     this->reportUniqueWarning(V.takeError());
6649     return;
6650   }
6651 
6652   for (const VerNeed &VN : *V) {
6653     DictScope Entry(W, "Dependency");
6654     W.printNumber("Version", VN.Version);
6655     W.printNumber("Count", VN.Cnt);
6656     W.printString("FileName", VN.File.c_str());
6657 
6658     ListScope L(W, "Entries");
6659     for (const VernAux &Aux : VN.AuxV) {
6660       DictScope Entry(W, "Entry");
6661       W.printNumber("Hash", Aux.Hash);
6662       W.printFlags("Flags", Aux.Flags, makeArrayRef(SymVersionFlags));
6663       W.printNumber("Index", Aux.Other);
6664       W.printString("Name", Aux.Name.c_str());
6665     }
6666   }
6667 }
6668 
printHashHistograms()6669 template <class ELFT> void LLVMELFDumper<ELFT>::printHashHistograms() {
6670   W.startLine() << "Hash Histogram not implemented!\n";
6671 }
6672 
printCGProfile()6673 template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() {
6674   ListScope L(W, "CGProfile");
6675   if (!this->DotCGProfileSec)
6676     return;
6677 
6678   Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr =
6679       this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(
6680           *this->DotCGProfileSec);
6681   if (!CGProfileOrErr) {
6682     this->reportUniqueWarning(
6683         "unable to dump the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
6684         toString(CGProfileOrErr.takeError()));
6685     return;
6686   }
6687 
6688   for (const Elf_CGProfile &CGPE : *CGProfileOrErr) {
6689     DictScope D(W, "CGProfileEntry");
6690     W.printNumber("From", this->getStaticSymbolName(CGPE.cgp_from),
6691                   CGPE.cgp_from);
6692     W.printNumber("To", this->getStaticSymbolName(CGPE.cgp_to),
6693                   CGPE.cgp_to);
6694     W.printNumber("Weight", CGPE.cgp_weight);
6695   }
6696 }
6697 
printBBAddrMaps()6698 template <class ELFT> void LLVMELFDumper<ELFT>::printBBAddrMaps() {
6699   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6700     if (Sec.sh_type != SHT_LLVM_BB_ADDR_MAP)
6701       continue;
6702     ListScope L(W, "BBAddrMap");
6703     Expected<std::vector<Elf_BBAddrMap>> BBAddrMapOrErr =
6704         this->Obj.decodeBBAddrMap(Sec);
6705     if (!BBAddrMapOrErr) {
6706       this->reportUniqueWarning("unable to dump " + this->describe(Sec) + ": " +
6707                                 toString(BBAddrMapOrErr.takeError()));
6708       continue;
6709     }
6710     for (const Elf_BBAddrMap &AM : *BBAddrMapOrErr) {
6711       DictScope D(W, "Function");
6712       W.printHex("At", AM.Addr);
6713       ListScope L(W, "BB entries");
6714       for (const typename Elf_BBAddrMap::BBEntry &BBE : AM.BBEntries) {
6715         DictScope L(W);
6716         W.printHex("Offset", BBE.Offset);
6717         W.printHex("Size", BBE.Size);
6718         W.printBoolean("HasReturn", BBE.HasReturn);
6719         W.printBoolean("HasTailCall", BBE.HasTailCall);
6720         W.printBoolean("IsEHPad", BBE.IsEHPad);
6721         W.printBoolean("CanFallThrough", BBE.CanFallThrough);
6722       }
6723     }
6724   }
6725 }
6726 
printAddrsig()6727 template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() {
6728   ListScope L(W, "Addrsig");
6729   if (!this->DotAddrsigSec)
6730     return;
6731 
6732   Expected<std::vector<uint64_t>> SymsOrErr =
6733       decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
6734   if (!SymsOrErr) {
6735     this->reportUniqueWarning(SymsOrErr.takeError());
6736     return;
6737   }
6738 
6739   for (uint64_t Sym : *SymsOrErr)
6740     W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym);
6741 }
6742 
6743 template <typename ELFT>
printGNUNoteLLVMStyle(uint32_t NoteType,ArrayRef<uint8_t> Desc,ScopedPrinter & W)6744 static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
6745                                   ScopedPrinter &W) {
6746   // Return true if we were able to pretty-print the note, false otherwise.
6747   switch (NoteType) {
6748   default:
6749     return false;
6750   case ELF::NT_GNU_ABI_TAG: {
6751     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
6752     if (!AbiTag.IsValid) {
6753       W.printString("ABI", "<corrupt GNU_ABI_TAG>");
6754       return false;
6755     } else {
6756       W.printString("OS", AbiTag.OSName);
6757       W.printString("ABI", AbiTag.ABI);
6758     }
6759     break;
6760   }
6761   case ELF::NT_GNU_BUILD_ID: {
6762     W.printString("Build ID", getGNUBuildId(Desc));
6763     break;
6764   }
6765   case ELF::NT_GNU_GOLD_VERSION:
6766     W.printString("Version", getGNUGoldVersion(Desc));
6767     break;
6768   case ELF::NT_GNU_PROPERTY_TYPE_0:
6769     ListScope D(W, "Property");
6770     for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
6771       W.printString(Property);
6772     break;
6773   }
6774   return true;
6775 }
6776 
printCoreNoteLLVMStyle(const CoreNote & Note,ScopedPrinter & W)6777 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
6778   W.printNumber("Page Size", Note.PageSize);
6779   for (const CoreFileMapping &Mapping : Note.Mappings) {
6780     ListScope D(W, "Mapping");
6781     W.printHex("Start", Mapping.Start);
6782     W.printHex("End", Mapping.End);
6783     W.printHex("Offset", Mapping.Offset);
6784     W.printString("Filename", Mapping.Filename);
6785   }
6786 }
6787 
printNotes()6788 template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() {
6789   ListScope L(W, "Notes");
6790 
6791   std::unique_ptr<DictScope> NoteScope;
6792   auto StartNotes = [&](Optional<StringRef> SecName,
6793                         const typename ELFT::Off Offset,
6794                         const typename ELFT::Addr Size) {
6795     NoteScope = std::make_unique<DictScope>(W, "NoteSection");
6796     W.printString("Name", SecName ? *SecName : "<?>");
6797     W.printHex("Offset", Offset);
6798     W.printHex("Size", Size);
6799   };
6800 
6801   auto EndNotes = [&] { NoteScope.reset(); };
6802 
6803   auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
6804     DictScope D2(W, "Note");
6805     StringRef Name = Note.getName();
6806     ArrayRef<uint8_t> Descriptor = Note.getDesc();
6807     Elf_Word Type = Note.getType();
6808 
6809     // Print the note owner/type.
6810     W.printString("Owner", Name);
6811     W.printHex("Data size", Descriptor.size());
6812 
6813     StringRef NoteType =
6814         getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
6815     if (!NoteType.empty())
6816       W.printString("Type", NoteType);
6817     else
6818       W.printString("Type",
6819                     "Unknown (" + to_string(format_hex(Type, 10)) + ")");
6820 
6821     // Print the description, or fallback to printing raw bytes for unknown
6822     // owners/if we fail to pretty-print the contents.
6823     if (Name == "GNU") {
6824       if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W))
6825         return Error::success();
6826     } else if (Name == "FreeBSD") {
6827       if (Optional<FreeBSDNote> N =
6828               getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
6829         W.printString(N->Type, N->Value);
6830         return Error::success();
6831       }
6832     } else if (Name == "AMD") {
6833       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
6834       if (!N.Type.empty()) {
6835         W.printString(N.Type, N.Value);
6836         return Error::success();
6837       }
6838     } else if (Name == "AMDGPU") {
6839       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
6840       if (!N.Type.empty()) {
6841         W.printString(N.Type, N.Value);
6842         return Error::success();
6843       }
6844     } else if (Name == "CORE") {
6845       if (Type == ELF::NT_FILE) {
6846         DataExtractor DescExtractor(Descriptor,
6847                                     ELFT::TargetEndianness == support::little,
6848                                     sizeof(Elf_Addr));
6849         if (Expected<CoreNote> N = readCoreNote(DescExtractor)) {
6850           printCoreNoteLLVMStyle(*N, W);
6851           return Error::success();
6852         } else {
6853           return N.takeError();
6854         }
6855       }
6856     }
6857     if (!Descriptor.empty()) {
6858       W.printBinaryBlock("Description data", Descriptor);
6859     }
6860     return Error::success();
6861   };
6862 
6863   printNotesHelper(*this, StartNotes, ProcessNote, EndNotes);
6864 }
6865 
printELFLinkerOptions()6866 template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() {
6867   ListScope L(W, "LinkerOptions");
6868 
6869   unsigned I = -1;
6870   for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) {
6871     ++I;
6872     if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
6873       continue;
6874 
6875     Expected<ArrayRef<uint8_t>> ContentsOrErr =
6876         this->Obj.getSectionContents(Shdr);
6877     if (!ContentsOrErr) {
6878       this->reportUniqueWarning("unable to read the content of the "
6879                                 "SHT_LLVM_LINKER_OPTIONS section: " +
6880                                 toString(ContentsOrErr.takeError()));
6881       continue;
6882     }
6883     if (ContentsOrErr->empty())
6884       continue;
6885 
6886     if (ContentsOrErr->back() != 0) {
6887       this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
6888                                 Twine(I) +
6889                                 " is broken: the "
6890                                 "content is not null-terminated");
6891       continue;
6892     }
6893 
6894     SmallVector<StringRef, 16> Strings;
6895     toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0');
6896     if (Strings.size() % 2 != 0) {
6897       this->reportUniqueWarning(
6898           "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
6899           " is broken: an incomplete "
6900           "key-value pair was found. The last possible key was: \"" +
6901           Strings.back() + "\"");
6902       continue;
6903     }
6904 
6905     for (size_t I = 0; I < Strings.size(); I += 2)
6906       W.printString(Strings[I], Strings[I + 1]);
6907   }
6908 }
6909 
printDependentLibs()6910 template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() {
6911   ListScope L(W, "DependentLibs");
6912   this->printDependentLibsHelper(
6913       [](const Elf_Shdr &) {},
6914       [this](StringRef Lib, uint64_t) { W.printString(Lib); });
6915 }
6916 
printStackSizes()6917 template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() {
6918   ListScope L(W, "StackSizes");
6919   if (this->Obj.getHeader().e_type == ELF::ET_REL)
6920     this->printRelocatableStackSizes([]() {});
6921   else
6922     this->printNonRelocatableStackSizes([]() {});
6923 }
6924 
6925 template <class ELFT>
printStackSizeEntry(uint64_t Size,StringRef FuncName)6926 void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size, StringRef FuncName) {
6927   DictScope D(W, "Entry");
6928   W.printString("Function", FuncName);
6929   W.printHex("Size", Size);
6930 }
6931 
6932 template <class ELFT>
printMipsGOT(const MipsGOTParser<ELFT> & Parser)6933 void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
6934   auto PrintEntry = [&](const Elf_Addr *E) {
6935     W.printHex("Address", Parser.getGotAddress(E));
6936     W.printNumber("Access", Parser.getGotOffset(E));
6937     W.printHex("Initial", *E);
6938   };
6939 
6940   DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
6941 
6942   W.printHex("Canonical gp value", Parser.getGp());
6943   {
6944     ListScope RS(W, "Reserved entries");
6945     {
6946       DictScope D(W, "Entry");
6947       PrintEntry(Parser.getGotLazyResolver());
6948       W.printString("Purpose", StringRef("Lazy resolver"));
6949     }
6950 
6951     if (Parser.getGotModulePointer()) {
6952       DictScope D(W, "Entry");
6953       PrintEntry(Parser.getGotModulePointer());
6954       W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
6955     }
6956   }
6957   {
6958     ListScope LS(W, "Local entries");
6959     for (auto &E : Parser.getLocalEntries()) {
6960       DictScope D(W, "Entry");
6961       PrintEntry(&E);
6962     }
6963   }
6964 
6965   if (Parser.IsStatic)
6966     return;
6967 
6968   {
6969     ListScope GS(W, "Global entries");
6970     for (auto &E : Parser.getGlobalEntries()) {
6971       DictScope D(W, "Entry");
6972 
6973       PrintEntry(&E);
6974 
6975       const Elf_Sym &Sym = *Parser.getGotSym(&E);
6976       W.printHex("Value", Sym.st_value);
6977       W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));
6978 
6979       const unsigned SymIndex = &Sym - this->dynamic_symbols().begin();
6980       DataRegion<Elf_Word> ShndxTable(
6981           (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6982       printSymbolSection(Sym, SymIndex, ShndxTable);
6983 
6984       std::string SymName = this->getFullSymbolName(
6985           Sym, SymIndex, ShndxTable, this->DynamicStringTable, true);
6986       W.printNumber("Name", SymName, Sym.st_name);
6987     }
6988   }
6989 
6990   W.printNumber("Number of TLS and multi-GOT entries",
6991                 uint64_t(Parser.getOtherEntries().size()));
6992 }
6993 
6994 template <class ELFT>
printMipsPLT(const MipsGOTParser<ELFT> & Parser)6995 void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6996   auto PrintEntry = [&](const Elf_Addr *E) {
6997     W.printHex("Address", Parser.getPltAddress(E));
6998     W.printHex("Initial", *E);
6999   };
7000 
7001   DictScope GS(W, "PLT GOT");
7002 
7003   {
7004     ListScope RS(W, "Reserved entries");
7005     {
7006       DictScope D(W, "Entry");
7007       PrintEntry(Parser.getPltLazyResolver());
7008       W.printString("Purpose", StringRef("PLT lazy resolver"));
7009     }
7010 
7011     if (auto E = Parser.getPltModulePointer()) {
7012       DictScope D(W, "Entry");
7013       PrintEntry(E);
7014       W.printString("Purpose", StringRef("Module pointer"));
7015     }
7016   }
7017   {
7018     ListScope LS(W, "Entries");
7019     DataRegion<Elf_Word> ShndxTable(
7020         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7021     for (auto &E : Parser.getPltEntries()) {
7022       DictScope D(W, "Entry");
7023       PrintEntry(&E);
7024 
7025       const Elf_Sym &Sym = *Parser.getPltSym(&E);
7026       W.printHex("Value", Sym.st_value);
7027       W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));
7028       printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(),
7029                          ShndxTable);
7030 
7031       const Elf_Sym *FirstSym = cantFail(
7032           this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
7033       std::string SymName = this->getFullSymbolName(
7034           Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true);
7035       W.printNumber("Name", SymName, Sym.st_name);
7036     }
7037   }
7038 }
7039 
printMipsABIFlags()7040 template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() {
7041   const Elf_Mips_ABIFlags<ELFT> *Flags;
7042   if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
7043           getMipsAbiFlagsSection(*this)) {
7044     Flags = *SecOrErr;
7045     if (!Flags) {
7046       W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
7047       return;
7048     }
7049   } else {
7050     this->reportUniqueWarning(SecOrErr.takeError());
7051     return;
7052   }
7053 
7054   raw_ostream &OS = W.getOStream();
7055   DictScope GS(W, "MIPS ABI Flags");
7056 
7057   W.printNumber("Version", Flags->version);
7058   W.startLine() << "ISA: ";
7059   if (Flags->isa_rev <= 1)
7060     OS << format("MIPS%u", Flags->isa_level);
7061   else
7062     OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
7063   OS << "\n";
7064   W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
7065   W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
7066   W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
7067   W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
7068   W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
7069   W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
7070   W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
7071   W.printHex("Flags 2", Flags->flags2);
7072 }
7073