xref: /llvm-project/llvm/include/llvm/Transforms/Utils/Cloning.h (revision 196f7c2a4f472074668451c5ecc40e82731940f7)
1 //===- Cloning.h - Clone various parts of LLVM programs ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines various functions that are used to clone chunks of LLVM
10 // code for various purposes.  This varies from copying whole modules into new
11 // modules, to cloning functions with different arguments, to inlining
12 // functions, to copying basic blocks to support loop unrolling or superblock
13 // formation, etc.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_TRANSFORMS_UTILS_CLONING_H
18 #define LLVM_TRANSFORMS_UTILS_CLONING_H
19 
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/InlineCost.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/ValueHandle.h"
26 #include "llvm/Transforms/Utils/ValueMapper.h"
27 #include <functional>
28 #include <memory>
29 #include <vector>
30 
31 namespace llvm {
32 
33 class AAResults;
34 class AllocaInst;
35 class BasicBlock;
36 class BlockFrequencyInfo;
37 class DebugInfoFinder;
38 class DominatorTree;
39 class Function;
40 class Instruction;
41 class Loop;
42 class LoopInfo;
43 class Module;
44 class PGOContextualProfile;
45 class ProfileSummaryInfo;
46 class ReturnInst;
47 class DomTreeUpdater;
48 
49 /// Return an exact copy of the specified module
50 std::unique_ptr<Module> CloneModule(const Module &M);
51 std::unique_ptr<Module> CloneModule(const Module &M, ValueToValueMapTy &VMap);
52 
53 /// Return a copy of the specified module. The ShouldCloneDefinition function
54 /// controls whether a specific GlobalValue's definition is cloned. If the
55 /// function returns false, the module copy will contain an external reference
56 /// in place of the global definition.
57 std::unique_ptr<Module>
58 CloneModule(const Module &M, ValueToValueMapTy &VMap,
59             function_ref<bool(const GlobalValue *)> ShouldCloneDefinition);
60 
61 /// This struct can be used to capture information about code
62 /// being cloned, while it is being cloned.
63 struct ClonedCodeInfo {
64   /// This is set to true if the cloned code contains a normal call instruction.
65   bool ContainsCalls = false;
66 
67   /// This is set to true if there is memprof related metadata (memprof or
68   /// callsite metadata) in the cloned code.
69   bool ContainsMemProfMetadata = false;
70 
71   /// This is set to true if the cloned code contains a 'dynamic' alloca.
72   /// Dynamic allocas are allocas that are either not in the entry block or they
73   /// are in the entry block but are not a constant size.
74   bool ContainsDynamicAllocas = false;
75 
76   /// All cloned call sites that have operand bundles attached are appended to
77   /// this vector.  This vector may contain nulls or undefs if some of the
78   /// originally inserted callsites were DCE'ed after they were cloned.
79   std::vector<WeakTrackingVH> OperandBundleCallSites;
80 
81   /// Like VMap, but maps only unsimplified instructions. Values in the map
82   /// may be dangling, it is only intended to be used via isSimplified(), to
83   /// check whether the main VMap mapping involves simplification or not.
84   DenseMap<const Value *, const Value *> OrigVMap;
85 
86   ClonedCodeInfo() = default;
87 
88   bool isSimplified(const Value *From, const Value *To) const {
89     return OrigVMap.lookup(From) != To;
90   }
91 };
92 
93 /// Return a copy of the specified basic block, but without
94 /// embedding the block into a particular function.  The block returned is an
95 /// exact copy of the specified basic block, without any remapping having been
96 /// performed.  Because of this, this is only suitable for applications where
97 /// the basic block will be inserted into the same function that it was cloned
98 /// from (loop unrolling would use this, for example).
99 ///
100 /// Also, note that this function makes a direct copy of the basic block, and
101 /// can thus produce illegal LLVM code.  In particular, it will copy any PHI
102 /// nodes from the original block, even though there are no predecessors for the
103 /// newly cloned block (thus, phi nodes will have to be updated).  Also, this
104 /// block will branch to the old successors of the original block: these
105 /// successors will have to have any PHI nodes updated to account for the new
106 /// incoming edges.
107 ///
108 /// The correlation between instructions in the source and result basic blocks
109 /// is recorded in the VMap map.
110 ///
111 /// If you have a particular suffix you'd like to use to add to any cloned
112 /// names, specify it as the optional third parameter.
113 ///
114 /// If you would like the basic block to be auto-inserted into the end of a
115 /// function, you can specify it as the optional fourth parameter.
116 ///
117 /// If you would like to collect additional information about the cloned
118 /// function, you can specify a ClonedCodeInfo object with the optional fifth
119 /// parameter.
120 BasicBlock *CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
121                             const Twine &NameSuffix = "", Function *F = nullptr,
122                             ClonedCodeInfo *CodeInfo = nullptr);
123 
124 /// Return a copy of the specified function and add it to that
125 /// function's module.  Also, any references specified in the VMap are changed
126 /// to refer to their mapped value instead of the original one.  If any of the
127 /// arguments to the function are in the VMap, the arguments are deleted from
128 /// the resultant function.  The VMap is updated to include mappings from all of
129 /// the instructions and basicblocks in the function from their old to new
130 /// values.  The final argument captures information about the cloned code if
131 /// non-null.
132 ///
133 /// \pre VMap contains no non-identity GlobalValue mappings.
134 ///
135 Function *CloneFunction(Function *F, ValueToValueMapTy &VMap,
136                         ClonedCodeInfo *CodeInfo = nullptr);
137 
138 enum class CloneFunctionChangeType {
139   LocalChangesOnly,
140   GlobalChanges,
141   DifferentModule,
142   ClonedModule,
143 };
144 
145 /// Clone OldFunc into NewFunc, transforming the old arguments into references
146 /// to VMap values.  Note that if NewFunc already has basic blocks, the ones
147 /// cloned into it will be added to the end of the function.  This function
148 /// fills in a list of return instructions, and can optionally remap types
149 /// and/or append the specified suffix to all values cloned.
150 ///
151 /// If \p Changes is \a CloneFunctionChangeType::LocalChangesOnly, VMap is
152 /// required to contain no non-identity GlobalValue mappings. Otherwise,
153 /// referenced metadata will be cloned.
154 ///
155 /// If \p Changes is less than \a CloneFunctionChangeType::DifferentModule
156 /// indicating cloning into the same module (even if it's LocalChangesOnly), if
157 /// debug info metadata transitively references a \a DISubprogram, it will be
158 /// cloned, effectively upgrading \p Changes to GlobalChanges while suppressing
159 /// cloning of types and compile units.
160 ///
161 /// If \p Changes is \a CloneFunctionChangeType::DifferentModule, the new
162 /// module's \c !llvm.dbg.cu will get updated with any newly created compile
163 /// units. (\a CloneFunctionChangeType::ClonedModule leaves that work for the
164 /// caller.)
165 ///
166 /// FIXME: Consider simplifying this function by splitting out \a
167 /// CloneFunctionMetadataInto() and expecting / updating callers to call it
168 /// first when / how it's needed.
169 void CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
170                        ValueToValueMapTy &VMap, CloneFunctionChangeType Changes,
171                        SmallVectorImpl<ReturnInst *> &Returns,
172                        const char *NameSuffix = "",
173                        ClonedCodeInfo *CodeInfo = nullptr,
174                        ValueMapTypeRemapper *TypeMapper = nullptr,
175                        ValueMaterializer *Materializer = nullptr);
176 
177 /// Clone OldFunc's attributes into NewFunc, transforming values based on the
178 /// mappings in VMap.
179 void CloneFunctionAttributesInto(Function *NewFunc, const Function *OldFunc,
180                                  ValueToValueMapTy &VMap,
181                                  bool ModuleLevelChanges,
182                                  ValueMapTypeRemapper *TypeMapper = nullptr,
183                                  ValueMaterializer *Materializer = nullptr);
184 
185 /// Clone OldFunc's metadata into NewFunc.
186 ///
187 /// The caller is expected to populate \p VMap beforehand and set an appropriate
188 /// \p RemapFlag. Subprograms/CUs/types that were already mapped to themselves
189 /// won't be duplicated.
190 ///
191 /// NOTE: This function doesn't clone !llvm.dbg.cu when cloning into a different
192 /// module. Use CloneFunctionInto for that behavior.
193 void CloneFunctionMetadataInto(Function &NewFunc, const Function &OldFunc,
194                                ValueToValueMapTy &VMap, RemapFlags RemapFlag,
195                                ValueMapTypeRemapper *TypeMapper = nullptr,
196                                ValueMaterializer *Materializer = nullptr,
197                                const MetadataSetTy *IdentityMD = nullptr);
198 
199 /// Clone OldFunc's body into NewFunc.
200 void CloneFunctionBodyInto(Function &NewFunc, const Function &OldFunc,
201                            ValueToValueMapTy &VMap, RemapFlags RemapFlag,
202                            SmallVectorImpl<ReturnInst *> &Returns,
203                            const char *NameSuffix = "",
204                            ClonedCodeInfo *CodeInfo = nullptr,
205                            ValueMapTypeRemapper *TypeMapper = nullptr,
206                            ValueMaterializer *Materializer = nullptr,
207                            const MetadataSetTy *IdentityMD = nullptr);
208 
209 void CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
210                                const Instruction *StartingInst,
211                                ValueToValueMapTy &VMap, bool ModuleLevelChanges,
212                                SmallVectorImpl<ReturnInst *> &Returns,
213                                const char *NameSuffix = "",
214                                ClonedCodeInfo *CodeInfo = nullptr);
215 
216 /// This works exactly like CloneFunctionInto,
217 /// except that it does some simple constant prop and DCE on the fly.  The
218 /// effect of this is to copy significantly less code in cases where (for
219 /// example) a function call with constant arguments is inlined, and those
220 /// constant arguments cause a significant amount of code in the callee to be
221 /// dead.  Since this doesn't produce an exactly copy of the input, it can't be
222 /// used for things like CloneFunction or CloneModule.
223 ///
224 /// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
225 /// mappings.
226 ///
227 void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
228                                ValueToValueMapTy &VMap, bool ModuleLevelChanges,
229                                SmallVectorImpl<ReturnInst*> &Returns,
230                                const char *NameSuffix = "",
231                                ClonedCodeInfo *CodeInfo = nullptr);
232 
233 /// Collect debug information such as types, compile units, and other
234 /// subprograms that are reachable from \p F and can be considered global for
235 /// the purposes of cloning (and hence not needing to be cloned).
236 ///
237 /// What debug information should be processed depends on \p Changes: when
238 /// cloning into the same module we process \p F's subprogram and instructions;
239 /// when into a cloned module, neither of those.
240 ///
241 /// Returns DISubprogram of the cloned function when cloning into the same
242 /// module or nullptr otherwise.
243 DISubprogram *CollectDebugInfoForCloning(const Function &F,
244                                          CloneFunctionChangeType Changes,
245                                          DebugInfoFinder &DIFinder);
246 
247 /// Based on \p Changes and \p DIFinder return debug info that needs to be
248 /// identity mapped during Metadata cloning.
249 ///
250 /// NOTE: Such \a MetadataSetTy can be used by \a CloneFunction* to directly
251 /// specify metadata that should be identity mapped (and hence not cloned). The
252 /// metadata will be identity mapped in \a ValueToValueMapTy on first use. There
253 /// are several reasons for doing it this way rather than eagerly identity
254 /// mapping metadata nodes in a \a ValueMap:
255 /// 1. Mapping metadata is not cheap, particularly because of tracking.
256 /// 2. When cloning a Function we identity map lots of global module-level
257 ///    metadata to avoid cloning it, while only a fraction of it is actually
258 ///    used by the function. Mapping on first use is a lot faster for modules
259 ///    with meaningful amount of debug info.
260 /// 3. Eagerly identity mapping metadata makes it harder to cache module-level
261 ///    data (e.g. a set of metadata nodes in a \a DICompileUnit).
262 MetadataSetTy FindDebugInfoToIdentityMap(CloneFunctionChangeType Changes,
263                                          DebugInfoFinder &DIFinder,
264                                          DISubprogram *SPClonedWithinModule);
265 
266 /// This class captures the data input to the InlineFunction call, and records
267 /// the auxiliary results produced by it.
268 class InlineFunctionInfo {
269 public:
270   explicit InlineFunctionInfo(
271       function_ref<AssumptionCache &(Function &)> GetAssumptionCache = nullptr,
272       ProfileSummaryInfo *PSI = nullptr,
273       BlockFrequencyInfo *CallerBFI = nullptr,
274       BlockFrequencyInfo *CalleeBFI = nullptr, bool UpdateProfile = true)
275       : GetAssumptionCache(GetAssumptionCache), PSI(PSI), CallerBFI(CallerBFI),
276         CalleeBFI(CalleeBFI), UpdateProfile(UpdateProfile) {}
277 
278   /// If non-null, InlineFunction will update the callgraph to reflect the
279   /// changes it makes.
280   function_ref<AssumptionCache &(Function &)> GetAssumptionCache;
281   ProfileSummaryInfo *PSI;
282   BlockFrequencyInfo *CallerBFI, *CalleeBFI;
283 
284   /// InlineFunction fills this in with all static allocas that get copied into
285   /// the caller.
286   SmallVector<AllocaInst *, 4> StaticAllocas;
287 
288   /// InlineFunction fills this in with callsites that were inlined from the
289   /// callee. This is only filled in if CG is non-null.
290   SmallVector<WeakTrackingVH, 8> InlinedCalls;
291 
292   /// All of the new call sites inlined into the caller.
293   ///
294   /// 'InlineFunction' fills this in by scanning the inlined instructions, and
295   /// only if CG is null. If CG is non-null, instead the value handle
296   /// `InlinedCalls` above is used.
297   SmallVector<CallBase *, 8> InlinedCallSites;
298 
299   /// Update profile for callee as well as cloned version. We need to do this
300   /// for regular inlining, but not for inlining from sample profile loader.
301   bool UpdateProfile;
302 
303   void reset() {
304     StaticAllocas.clear();
305     InlinedCalls.clear();
306     InlinedCallSites.clear();
307   }
308 };
309 
310 /// This function inlines the called function into the basic
311 /// block of the caller.  This returns false if it is not possible to inline
312 /// this call.  The program is still in a well defined state if this occurs
313 /// though.
314 ///
315 /// Note that this only does one level of inlining.  For example, if the
316 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
317 /// exists in the instruction stream.  Similarly this will inline a recursive
318 /// function by one level.
319 ///
320 /// Note that while this routine is allowed to cleanup and optimize the
321 /// *inlined* code to minimize the actual inserted code, it must not delete
322 /// code in the caller as users of this routine may have pointers to
323 /// instructions in the caller that need to remain stable.
324 ///
325 /// If ForwardVarArgsTo is passed, inlining a function with varargs is allowed
326 /// and all varargs at the callsite will be passed to any calls to
327 /// ForwardVarArgsTo. The caller of InlineFunction has to make sure any varargs
328 /// are only used by ForwardVarArgsTo.
329 ///
330 /// The callee's function attributes are merged into the callers' if
331 /// MergeAttributes is set to true.
332 InlineResult InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
333                             bool MergeAttributes = false,
334                             AAResults *CalleeAAR = nullptr,
335                             bool InsertLifetime = true,
336                             Function *ForwardVarArgsTo = nullptr);
337 
338 /// Same as above, but it will update the contextual profile. If the contextual
339 /// profile is invalid (i.e. not loaded because it is not present), it defaults
340 /// to the behavior of the non-contextual profile updating variant above. This
341 /// makes it easy to drop-in replace uses of the non-contextual overload.
342 InlineResult InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
343                             PGOContextualProfile &CtxProf,
344                             bool MergeAttributes = false,
345                             AAResults *CalleeAAR = nullptr,
346                             bool InsertLifetime = true,
347                             Function *ForwardVarArgsTo = nullptr);
348 
349 /// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
350 /// Blocks.
351 ///
352 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
353 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
354 /// Note: Only innermost loops are supported.
355 Loop *cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
356                              Loop *OrigLoop, ValueToValueMapTy &VMap,
357                              const Twine &NameSuffix, LoopInfo *LI,
358                              DominatorTree *DT,
359                              SmallVectorImpl<BasicBlock *> &Blocks);
360 
361 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
362 void remapInstructionsInBlocks(ArrayRef<BasicBlock *> Blocks,
363                                ValueToValueMapTy &VMap);
364 
365 /// Split edge between BB and PredBB and duplicate all non-Phi instructions
366 /// from BB between its beginning and the StopAt instruction into the split
367 /// block. Phi nodes are not duplicated, but their uses are handled correctly:
368 /// we replace them with the uses of corresponding Phi inputs. ValueMapping
369 /// is used to map the original instructions from BB to their newly-created
370 /// copies. Returns the split block.
371 BasicBlock *DuplicateInstructionsInSplitBetween(BasicBlock *BB,
372                                                 BasicBlock *PredBB,
373                                                 Instruction *StopAt,
374                                                 ValueToValueMapTy &ValueMapping,
375                                                 DomTreeUpdater &DTU);
376 
377 /// Updates profile information by adjusting the entry count by adding
378 /// EntryDelta then scaling callsite information by the new count divided by the
379 /// old count. VMap is used during inlinng to also update the new clone
380 void updateProfileCallee(
381     Function *Callee, int64_t EntryDelta,
382     const ValueMap<const Value *, WeakTrackingVH> *VMap = nullptr);
383 
384 /// Find the 'llvm.experimental.noalias.scope.decl' intrinsics in the specified
385 /// basic blocks and extract their scope. These are candidates for duplication
386 /// when cloning.
387 void identifyNoAliasScopesToClone(
388     ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes);
389 
390 /// Find the 'llvm.experimental.noalias.scope.decl' intrinsics in the specified
391 /// instruction range and extract their scope. These are candidates for
392 /// duplication when cloning.
393 void identifyNoAliasScopesToClone(
394     BasicBlock::iterator Start, BasicBlock::iterator End,
395     SmallVectorImpl<MDNode *> &NoAliasDeclScopes);
396 
397 /// Duplicate the specified list of noalias decl scopes.
398 /// The 'Ext' string is added as an extension to the name.
399 /// Afterwards, the ClonedScopes contains the mapping of the original scope
400 /// MDNode onto the cloned scope.
401 /// Be aware that the cloned scopes are still part of the original scope domain.
402 void cloneNoAliasScopes(
403     ArrayRef<MDNode *> NoAliasDeclScopes,
404     DenseMap<MDNode *, MDNode *> &ClonedScopes,
405     StringRef Ext, LLVMContext &Context);
406 
407 /// Adapt the metadata for the specified instruction according to the
408 /// provided mapping. This is normally used after cloning an instruction, when
409 /// some noalias scopes needed to be cloned.
410 void adaptNoAliasScopes(
411     llvm::Instruction *I, const DenseMap<MDNode *, MDNode *> &ClonedScopes,
412     LLVMContext &Context);
413 
414 /// Clone the specified noalias decl scopes. Then adapt all instructions in the
415 /// NewBlocks basicblocks to the cloned versions.
416 /// 'Ext' will be added to the duplicate scope names.
417 void cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
418                                 ArrayRef<BasicBlock *> NewBlocks,
419                                 LLVMContext &Context, StringRef Ext);
420 
421 /// Clone the specified noalias decl scopes. Then adapt all instructions in the
422 /// [IStart, IEnd] (IEnd included !) range to the cloned versions. 'Ext' will be
423 /// added to the duplicate scope names.
424 void cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
425                                 Instruction *IStart, Instruction *IEnd,
426                                 LLVMContext &Context, StringRef Ext);
427 } // end namespace llvm
428 
429 #endif // LLVM_TRANSFORMS_UTILS_CLONING_H
430