xref: /llvm-project/llvm/include/llvm/Support/Allocator.h (revision 289c0491791c4377af1a818b531d83c0cbb06525)
1 //===- Allocator.h - Simple memory allocation abstraction -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file defines the BumpPtrAllocator interface. BumpPtrAllocator conforms
11 /// to the LLVM "Allocator" concept and is similar to MallocAllocator, but
12 /// objects cannot be deallocated. Their lifetime is tied to the lifetime of the
13 /// allocator.
14 ///
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_SUPPORT_ALLOCATOR_H
18 #define LLVM_SUPPORT_ALLOCATOR_H
19 
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Support/Alignment.h"
22 #include "llvm/Support/AllocatorBase.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/MathExtras.h"
25 #include <algorithm>
26 #include <cassert>
27 #include <cstddef>
28 #include <cstdint>
29 #include <iterator>
30 #include <optional>
31 #include <utility>
32 
33 namespace llvm {
34 
35 namespace detail {
36 
37 // We call out to an external function to actually print the message as the
38 // printing code uses Allocator.h in its implementation.
39 void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated,
40                                 size_t TotalMemory);
41 
42 } // end namespace detail
43 
44 /// Allocate memory in an ever growing pool, as if by bump-pointer.
45 ///
46 /// This isn't strictly a bump-pointer allocator as it uses backing slabs of
47 /// memory rather than relying on a boundless contiguous heap. However, it has
48 /// bump-pointer semantics in that it is a monotonically growing pool of memory
49 /// where every allocation is found by merely allocating the next N bytes in
50 /// the slab, or the next N bytes in the next slab.
51 ///
52 /// Note that this also has a threshold for forcing allocations above a certain
53 /// size into their own slab.
54 ///
55 /// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator
56 /// object, which wraps malloc, to allocate memory, but it can be changed to
57 /// use a custom allocator.
58 ///
59 /// The GrowthDelay specifies after how many allocated slabs the allocator
60 /// increases the size of the slabs.
61 template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096,
62           size_t SizeThreshold = SlabSize, size_t GrowthDelay = 128>
63 class BumpPtrAllocatorImpl
64     : public AllocatorBase<BumpPtrAllocatorImpl<AllocatorT, SlabSize,
65                                                 SizeThreshold, GrowthDelay>>,
66       private detail::AllocatorHolder<AllocatorT> {
67   using AllocTy = detail::AllocatorHolder<AllocatorT>;
68 
69 public:
70   static_assert(SizeThreshold <= SlabSize,
71                 "The SizeThreshold must be at most the SlabSize to ensure "
72                 "that objects larger than a slab go into their own memory "
73                 "allocation.");
74   static_assert(GrowthDelay > 0,
75                 "GrowthDelay must be at least 1 which already increases the"
76                 "slab size after each allocated slab.");
77 
78   BumpPtrAllocatorImpl() = default;
79 
80   template <typename T>
81   BumpPtrAllocatorImpl(T &&Allocator)
82       : AllocTy(std::forward<T &&>(Allocator)) {}
83 
84   // Manually implement a move constructor as we must clear the old allocator's
85   // slabs as a matter of correctness.
86   BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old)
87       : AllocTy(std::move(Old.getAllocator())), CurPtr(Old.CurPtr),
88         End(Old.End), Slabs(std::move(Old.Slabs)),
89         CustomSizedSlabs(std::move(Old.CustomSizedSlabs)),
90         BytesAllocated(Old.BytesAllocated), RedZoneSize(Old.RedZoneSize) {
91     Old.CurPtr = Old.End = nullptr;
92     Old.BytesAllocated = 0;
93     Old.Slabs.clear();
94     Old.CustomSizedSlabs.clear();
95   }
96 
97   ~BumpPtrAllocatorImpl() {
98     DeallocateSlabs(Slabs.begin(), Slabs.end());
99     DeallocateCustomSizedSlabs();
100   }
101 
102   BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) {
103     DeallocateSlabs(Slabs.begin(), Slabs.end());
104     DeallocateCustomSizedSlabs();
105 
106     CurPtr = RHS.CurPtr;
107     End = RHS.End;
108     BytesAllocated = RHS.BytesAllocated;
109     RedZoneSize = RHS.RedZoneSize;
110     Slabs = std::move(RHS.Slabs);
111     CustomSizedSlabs = std::move(RHS.CustomSizedSlabs);
112     AllocTy::operator=(std::move(RHS.getAllocator()));
113 
114     RHS.CurPtr = RHS.End = nullptr;
115     RHS.BytesAllocated = 0;
116     RHS.Slabs.clear();
117     RHS.CustomSizedSlabs.clear();
118     return *this;
119   }
120 
121   /// Deallocate all but the current slab and reset the current pointer
122   /// to the beginning of it, freeing all memory allocated so far.
123   void Reset() {
124     // Deallocate all but the first slab, and deallocate all custom-sized slabs.
125     DeallocateCustomSizedSlabs();
126     CustomSizedSlabs.clear();
127 
128     if (Slabs.empty())
129       return;
130 
131     // Reset the state.
132     BytesAllocated = 0;
133     CurPtr = (char *)Slabs.front();
134     End = CurPtr + SlabSize;
135 
136     __asan_poison_memory_region(*Slabs.begin(), computeSlabSize(0));
137     DeallocateSlabs(std::next(Slabs.begin()), Slabs.end());
138     Slabs.erase(std::next(Slabs.begin()), Slabs.end());
139   }
140 
141   /// Allocate space at the specified alignment.
142   // This method is *not* marked noalias, because
143   // SpecificBumpPtrAllocator::DestroyAll() loops over all allocations, and
144   // that loop is not based on the Allocate() return value.
145   //
146   // Allocate(0, N) is valid, it returns a non-null pointer (which should not
147   // be dereferenced).
148   LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size, Align Alignment) {
149     // Keep track of how many bytes we've allocated.
150     BytesAllocated += Size;
151 
152     uintptr_t AlignedPtr = alignAddr(CurPtr, Alignment);
153 
154     size_t SizeToAllocate = Size;
155 #if LLVM_ADDRESS_SANITIZER_BUILD
156     // Add trailing bytes as a "red zone" under ASan.
157     SizeToAllocate += RedZoneSize;
158 #endif
159 
160     uintptr_t AllocEndPtr = AlignedPtr + SizeToAllocate;
161     assert(AllocEndPtr >= uintptr_t(CurPtr) &&
162            "Alignment + Size must not overflow");
163 
164     // Check if we have enough space.
165     if (LLVM_LIKELY(AllocEndPtr <= uintptr_t(End)
166                     // We can't return nullptr even for a zero-sized allocation!
167                     && CurPtr != nullptr)) {
168       CurPtr = reinterpret_cast<char *>(AllocEndPtr);
169       // Update the allocation point of this memory block in MemorySanitizer.
170       // Without this, MemorySanitizer messages for values originated from here
171       // will point to the allocation of the entire slab.
172       __msan_allocated_memory(reinterpret_cast<char *>(AlignedPtr), Size);
173       // Similarly, tell ASan about this space.
174       __asan_unpoison_memory_region(reinterpret_cast<char *>(AlignedPtr), Size);
175       return reinterpret_cast<char *>(AlignedPtr);
176     }
177 
178     return AllocateSlow(Size, SizeToAllocate, Alignment);
179   }
180 
181   LLVM_ATTRIBUTE_RETURNS_NONNULL LLVM_ATTRIBUTE_NOINLINE void *
182   AllocateSlow(size_t Size, size_t SizeToAllocate, Align Alignment) {
183     // If Size is really big, allocate a separate slab for it.
184     size_t PaddedSize = SizeToAllocate + Alignment.value() - 1;
185     if (PaddedSize > SizeThreshold) {
186       void *NewSlab =
187           this->getAllocator().Allocate(PaddedSize, alignof(std::max_align_t));
188       // We own the new slab and don't want anyone reading anyting other than
189       // pieces returned from this method.  So poison the whole slab.
190       __asan_poison_memory_region(NewSlab, PaddedSize);
191       CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize));
192 
193       uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment);
194       assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize);
195       char *AlignedPtr = (char*)AlignedAddr;
196       __msan_allocated_memory(AlignedPtr, Size);
197       __asan_unpoison_memory_region(AlignedPtr, Size);
198       return AlignedPtr;
199     }
200 
201     // Otherwise, start a new slab and try again.
202     StartNewSlab();
203     uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment);
204     assert(AlignedAddr + SizeToAllocate <= (uintptr_t)End &&
205            "Unable to allocate memory!");
206     char *AlignedPtr = (char*)AlignedAddr;
207     CurPtr = AlignedPtr + SizeToAllocate;
208     __msan_allocated_memory(AlignedPtr, Size);
209     __asan_unpoison_memory_region(AlignedPtr, Size);
210     return AlignedPtr;
211   }
212 
213   inline LLVM_ATTRIBUTE_RETURNS_NONNULL void *
214   Allocate(size_t Size, size_t Alignment) {
215     assert(Alignment > 0 && "0-byte alignment is not allowed. Use 1 instead.");
216     return Allocate(Size, Align(Alignment));
217   }
218 
219   // Pull in base class overloads.
220   using AllocatorBase<BumpPtrAllocatorImpl>::Allocate;
221 
222   // Bump pointer allocators are expected to never free their storage; and
223   // clients expect pointers to remain valid for non-dereferencing uses even
224   // after deallocation.
225   void Deallocate(const void *Ptr, size_t Size, size_t /*Alignment*/) {
226     __asan_poison_memory_region(Ptr, Size);
227   }
228 
229   // Pull in base class overloads.
230   using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate;
231 
232   size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); }
233 
234   /// \return An index uniquely and reproducibly identifying
235   /// an input pointer \p Ptr in the given allocator.
236   /// The returned value is negative iff the object is inside a custom-size
237   /// slab.
238   /// Returns an empty optional if the pointer is not found in the allocator.
239   std::optional<int64_t> identifyObject(const void *Ptr) {
240     const char *P = static_cast<const char *>(Ptr);
241     int64_t InSlabIdx = 0;
242     for (size_t Idx = 0, E = Slabs.size(); Idx < E; Idx++) {
243       const char *S = static_cast<const char *>(Slabs[Idx]);
244       if (P >= S && P < S + computeSlabSize(Idx))
245         return InSlabIdx + static_cast<int64_t>(P - S);
246       InSlabIdx += static_cast<int64_t>(computeSlabSize(Idx));
247     }
248 
249     // Use negative index to denote custom sized slabs.
250     int64_t InCustomSizedSlabIdx = -1;
251     for (size_t Idx = 0, E = CustomSizedSlabs.size(); Idx < E; Idx++) {
252       const char *S = static_cast<const char *>(CustomSizedSlabs[Idx].first);
253       size_t Size = CustomSizedSlabs[Idx].second;
254       if (P >= S && P < S + Size)
255         return InCustomSizedSlabIdx - static_cast<int64_t>(P - S);
256       InCustomSizedSlabIdx -= static_cast<int64_t>(Size);
257     }
258     return std::nullopt;
259   }
260 
261   /// A wrapper around identifyObject that additionally asserts that
262   /// the object is indeed within the allocator.
263   /// \return An index uniquely and reproducibly identifying
264   /// an input pointer \p Ptr in the given allocator.
265   int64_t identifyKnownObject(const void *Ptr) {
266     std::optional<int64_t> Out = identifyObject(Ptr);
267     assert(Out && "Wrong allocator used");
268     return *Out;
269   }
270 
271   /// A wrapper around identifyKnownObject. Accepts type information
272   /// about the object and produces a smaller identifier by relying on
273   /// the alignment information. Note that sub-classes may have different
274   /// alignment, so the most base class should be passed as template parameter
275   /// in order to obtain correct results. For that reason automatic template
276   /// parameter deduction is disabled.
277   /// \return An index uniquely and reproducibly identifying
278   /// an input pointer \p Ptr in the given allocator. This identifier is
279   /// different from the ones produced by identifyObject and
280   /// identifyAlignedObject.
281   template <typename T>
282   int64_t identifyKnownAlignedObject(const void *Ptr) {
283     int64_t Out = identifyKnownObject(Ptr);
284     assert(Out % alignof(T) == 0 && "Wrong alignment information");
285     return Out / alignof(T);
286   }
287 
288   size_t getTotalMemory() const {
289     size_t TotalMemory = 0;
290     for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I)
291       TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I));
292     for (const auto &PtrAndSize : CustomSizedSlabs)
293       TotalMemory += PtrAndSize.second;
294     return TotalMemory;
295   }
296 
297   size_t getBytesAllocated() const { return BytesAllocated; }
298 
299   void setRedZoneSize(size_t NewSize) {
300     RedZoneSize = NewSize;
301   }
302 
303   void PrintStats() const {
304     detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated,
305                                        getTotalMemory());
306   }
307 
308 private:
309   /// The current pointer into the current slab.
310   ///
311   /// This points to the next free byte in the slab.
312   char *CurPtr = nullptr;
313 
314   /// The end of the current slab.
315   char *End = nullptr;
316 
317   /// The slabs allocated so far.
318   SmallVector<void *, 4> Slabs;
319 
320   /// Custom-sized slabs allocated for too-large allocation requests.
321   SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs;
322 
323   /// How many bytes we've allocated.
324   ///
325   /// Used so that we can compute how much space was wasted.
326   size_t BytesAllocated = 0;
327 
328   /// The number of bytes to put between allocations when running under
329   /// a sanitizer.
330   size_t RedZoneSize = 1;
331 
332   static size_t computeSlabSize(unsigned SlabIdx) {
333     // Scale the actual allocated slab size based on the number of slabs
334     // allocated. Every GrowthDelay slabs allocated, we double
335     // the allocated size to reduce allocation frequency, but saturate at
336     // multiplying the slab size by 2^30.
337     return SlabSize *
338            ((size_t)1 << std::min<size_t>(30, SlabIdx / GrowthDelay));
339   }
340 
341   /// Allocate a new slab and move the bump pointers over into the new
342   /// slab, modifying CurPtr and End.
343   void StartNewSlab() {
344     size_t AllocatedSlabSize = computeSlabSize(Slabs.size());
345 
346     void *NewSlab = this->getAllocator().Allocate(AllocatedSlabSize,
347                                                   alignof(std::max_align_t));
348     // We own the new slab and don't want anyone reading anything other than
349     // pieces returned from this method.  So poison the whole slab.
350     __asan_poison_memory_region(NewSlab, AllocatedSlabSize);
351 
352     Slabs.push_back(NewSlab);
353     CurPtr = (char *)(NewSlab);
354     End = ((char *)NewSlab) + AllocatedSlabSize;
355   }
356 
357   /// Deallocate a sequence of slabs.
358   void DeallocateSlabs(SmallVectorImpl<void *>::iterator I,
359                        SmallVectorImpl<void *>::iterator E) {
360     for (; I != E; ++I) {
361       size_t AllocatedSlabSize =
362           computeSlabSize(std::distance(Slabs.begin(), I));
363       this->getAllocator().Deallocate(*I, AllocatedSlabSize,
364                                       alignof(std::max_align_t));
365     }
366   }
367 
368   /// Deallocate all memory for custom sized slabs.
369   void DeallocateCustomSizedSlabs() {
370     for (auto &PtrAndSize : CustomSizedSlabs) {
371       void *Ptr = PtrAndSize.first;
372       size_t Size = PtrAndSize.second;
373       this->getAllocator().Deallocate(Ptr, Size, alignof(std::max_align_t));
374     }
375   }
376 
377   template <typename T> friend class SpecificBumpPtrAllocator;
378 };
379 
380 /// The standard BumpPtrAllocator which just uses the default template
381 /// parameters.
382 typedef BumpPtrAllocatorImpl<> BumpPtrAllocator;
383 
384 /// A BumpPtrAllocator that allows only elements of a specific type to be
385 /// allocated.
386 ///
387 /// This allows calling the destructor in DestroyAll() and when the allocator is
388 /// destroyed.
389 template <typename T> class SpecificBumpPtrAllocator {
390   BumpPtrAllocator Allocator;
391 
392 public:
393   SpecificBumpPtrAllocator() {
394     // Because SpecificBumpPtrAllocator walks the memory to call destructors,
395     // it can't have red zones between allocations.
396     Allocator.setRedZoneSize(0);
397   }
398   SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old)
399       : Allocator(std::move(Old.Allocator)) {}
400   ~SpecificBumpPtrAllocator() { DestroyAll(); }
401 
402   SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) {
403     Allocator = std::move(RHS.Allocator);
404     return *this;
405   }
406 
407   /// Call the destructor of each allocated object and deallocate all but the
408   /// current slab and reset the current pointer to the beginning of it, freeing
409   /// all memory allocated so far.
410   void DestroyAll() {
411     auto DestroyElements = [](char *Begin, char *End) {
412       assert(Begin == (char *)alignAddr(Begin, Align::Of<T>()));
413       for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T))
414         reinterpret_cast<T *>(Ptr)->~T();
415     };
416 
417     for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E;
418          ++I) {
419       size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize(
420           std::distance(Allocator.Slabs.begin(), I));
421       char *Begin = (char *)alignAddr(*I, Align::Of<T>());
422       char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr
423                                                : (char *)*I + AllocatedSlabSize;
424 
425       DestroyElements(Begin, End);
426     }
427 
428     for (auto &PtrAndSize : Allocator.CustomSizedSlabs) {
429       void *Ptr = PtrAndSize.first;
430       size_t Size = PtrAndSize.second;
431       DestroyElements((char *)alignAddr(Ptr, Align::Of<T>()),
432                       (char *)Ptr + Size);
433     }
434 
435     Allocator.Reset();
436   }
437 
438   /// Allocate space for an array of objects without constructing them.
439   T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); }
440 
441   /// \return An index uniquely and reproducibly identifying
442   /// an input pointer \p Ptr in the given allocator.
443   /// Returns an empty optional if the pointer is not found in the allocator.
444   std::optional<int64_t> identifyObject(const void *Ptr) {
445     return Allocator.identifyObject(Ptr);
446   }
447 };
448 
449 } // end namespace llvm
450 
451 template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold,
452           size_t GrowthDelay>
453 void *
454 operator new(size_t Size,
455              llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold,
456                                         GrowthDelay> &Allocator) {
457   return Allocator.Allocate(Size, std::min((size_t)llvm::NextPowerOf2(Size),
458                                            alignof(std::max_align_t)));
459 }
460 
461 template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold,
462           size_t GrowthDelay>
463 void operator delete(void *,
464                      llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize,
465                                                 SizeThreshold, GrowthDelay> &) {
466 }
467 
468 #endif // LLVM_SUPPORT_ALLOCATOR_H
469