1 //===- MachineFunction.cpp ------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect native machine code information for a function. This allows 10 // target-specific information about the generated code to be stored with each 11 // function. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/ProfileSummaryInfo.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineJumpTableInfo.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/PseudoSourceValue.h" 35 #include "llvm/CodeGen/PseudoSourceValueManager.h" 36 #include "llvm/CodeGen/TargetFrameLowering.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/WasmEHFuncInfo.h" 42 #include "llvm/CodeGen/WinEHFuncInfo.h" 43 #include "llvm/Config/llvm-config.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/EHPersonalities.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GlobalValue.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSlotTracker.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/MC/MCContext.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/MC/SectionKind.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/DOTGraphTraits.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/GraphWriter.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <string> 75 #include <utility> 76 #include <vector> 77 78 #include "LiveDebugValues/LiveDebugValues.h" 79 80 using namespace llvm; 81 82 #define DEBUG_TYPE "codegen" 83 84 static cl::opt<unsigned> AlignAllFunctions( 85 "align-all-functions", 86 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " 87 "means align on 16B boundaries)."), 88 cl::init(0), cl::Hidden); 89 90 static const char *getPropertyName(MachineFunctionProperties::Property Prop) { 91 using P = MachineFunctionProperties::Property; 92 93 // clang-format off 94 switch(Prop) { 95 case P::FailedISel: return "FailedISel"; 96 case P::IsSSA: return "IsSSA"; 97 case P::Legalized: return "Legalized"; 98 case P::NoPHIs: return "NoPHIs"; 99 case P::NoVRegs: return "NoVRegs"; 100 case P::RegBankSelected: return "RegBankSelected"; 101 case P::Selected: return "Selected"; 102 case P::TracksLiveness: return "TracksLiveness"; 103 case P::TiedOpsRewritten: return "TiedOpsRewritten"; 104 case P::FailsVerification: return "FailsVerification"; 105 case P::FailedRegAlloc: return "FailedRegAlloc"; 106 case P::TracksDebugUserValues: return "TracksDebugUserValues"; 107 } 108 // clang-format on 109 llvm_unreachable("Invalid machine function property"); 110 } 111 112 void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) { 113 if (!F.hasFnAttribute(Attribute::SafeStack)) 114 return; 115 116 auto *Existing = 117 dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation)); 118 119 if (!Existing || Existing->getNumOperands() != 2) 120 return; 121 122 auto *MetadataName = "unsafe-stack-size"; 123 if (auto &N = Existing->getOperand(0)) { 124 if (N.equalsStr(MetadataName)) { 125 if (auto &Op = Existing->getOperand(1)) { 126 auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue(); 127 FrameInfo.setUnsafeStackSize(Val); 128 } 129 } 130 } 131 } 132 133 // Pin the vtable to this file. 134 void MachineFunction::Delegate::anchor() {} 135 136 void MachineFunctionProperties::print(raw_ostream &OS) const { 137 const char *Separator = ""; 138 for (BitVector::size_type I = 0; I < Properties.size(); ++I) { 139 if (!Properties[I]) 140 continue; 141 OS << Separator << getPropertyName(static_cast<Property>(I)); 142 Separator = ", "; 143 } 144 } 145 146 //===----------------------------------------------------------------------===// 147 // MachineFunction implementation 148 //===----------------------------------------------------------------------===// 149 150 // Out-of-line virtual method. 151 MachineFunctionInfo::~MachineFunctionInfo() = default; 152 153 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 154 MBB->getParent()->deleteMachineBasicBlock(MBB); 155 } 156 157 static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI, 158 const Function &F) { 159 if (auto MA = F.getFnStackAlign()) 160 return *MA; 161 return STI->getFrameLowering()->getStackAlign(); 162 } 163 164 MachineFunction::MachineFunction(Function &F, const TargetMachine &Target, 165 const TargetSubtargetInfo &STI, MCContext &Ctx, 166 unsigned FunctionNum) 167 : F(F), Target(Target), STI(&STI), Ctx(Ctx) { 168 FunctionNumber = FunctionNum; 169 init(); 170 } 171 172 void MachineFunction::handleInsertion(MachineInstr &MI) { 173 if (TheDelegate) 174 TheDelegate->MF_HandleInsertion(MI); 175 } 176 177 void MachineFunction::handleRemoval(MachineInstr &MI) { 178 if (TheDelegate) 179 TheDelegate->MF_HandleRemoval(MI); 180 } 181 182 void MachineFunction::handleChangeDesc(MachineInstr &MI, 183 const MCInstrDesc &TID) { 184 if (TheDelegate) 185 TheDelegate->MF_HandleChangeDesc(MI, TID); 186 } 187 188 void MachineFunction::init() { 189 // Assume the function starts in SSA form with correct liveness. 190 Properties.set(MachineFunctionProperties::Property::IsSSA); 191 Properties.set(MachineFunctionProperties::Property::TracksLiveness); 192 if (STI->getRegisterInfo()) 193 RegInfo = new (Allocator) MachineRegisterInfo(this); 194 else 195 RegInfo = nullptr; 196 197 MFInfo = nullptr; 198 199 // We can realign the stack if the target supports it and the user hasn't 200 // explicitly asked us not to. 201 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && 202 !F.hasFnAttribute("no-realign-stack"); 203 bool ForceRealignSP = F.hasFnAttribute(Attribute::StackAlignment) || 204 F.hasFnAttribute("stackrealign"); 205 FrameInfo = new (Allocator) MachineFrameInfo( 206 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, 207 /*ForcedRealign=*/ForceRealignSP && CanRealignSP); 208 209 setUnsafeStackSize(F, *FrameInfo); 210 211 if (F.hasFnAttribute(Attribute::StackAlignment)) 212 FrameInfo->ensureMaxAlignment(*F.getFnStackAlign()); 213 214 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); 215 Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); 216 217 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. 218 // FIXME: Use Function::hasOptSize(). 219 if (!F.hasFnAttribute(Attribute::OptimizeForSize)) 220 Alignment = std::max(Alignment, 221 STI->getTargetLowering()->getPrefFunctionAlignment()); 222 223 // -fsanitize=function and -fsanitize=kcfi instrument indirect function calls 224 // to load a type hash before the function label. Ensure functions are aligned 225 // by a least 4 to avoid unaligned access, which is especially important for 226 // -mno-unaligned-access. 227 if (F.hasMetadata(LLVMContext::MD_func_sanitize) || 228 F.getMetadata(LLVMContext::MD_kcfi_type)) 229 Alignment = std::max(Alignment, Align(4)); 230 231 if (AlignAllFunctions) 232 Alignment = Align(1ULL << AlignAllFunctions); 233 234 JumpTableInfo = nullptr; 235 236 if (isFuncletEHPersonality(classifyEHPersonality( 237 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 238 WinEHInfo = new (Allocator) WinEHFuncInfo(); 239 } 240 241 if (isScopedEHPersonality(classifyEHPersonality( 242 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { 243 WasmEHInfo = new (Allocator) WasmEHFuncInfo(); 244 } 245 246 assert(Target.isCompatibleDataLayout(getDataLayout()) && 247 "Can't create a MachineFunction using a Module with a " 248 "Target-incompatible DataLayout attached\n"); 249 250 PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget()); 251 } 252 253 void MachineFunction::initTargetMachineFunctionInfo( 254 const TargetSubtargetInfo &STI) { 255 assert(!MFInfo && "MachineFunctionInfo already set"); 256 MFInfo = Target.createMachineFunctionInfo(Allocator, F, &STI); 257 } 258 259 MachineFunction::~MachineFunction() { 260 clear(); 261 } 262 263 void MachineFunction::clear() { 264 Properties.reset(); 265 // Don't call destructors on MachineInstr and MachineOperand. All of their 266 // memory comes from the BumpPtrAllocator which is about to be purged. 267 // 268 // Do call MachineBasicBlock destructors, it contains std::vectors. 269 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I)) 270 I->Insts.clearAndLeakNodesUnsafely(); 271 MBBNumbering.clear(); 272 273 InstructionRecycler.clear(Allocator); 274 OperandRecycler.clear(Allocator); 275 BasicBlockRecycler.clear(Allocator); 276 CodeViewAnnotations.clear(); 277 VariableDbgInfos.clear(); 278 if (RegInfo) { 279 RegInfo->~MachineRegisterInfo(); 280 Allocator.Deallocate(RegInfo); 281 } 282 if (MFInfo) { 283 MFInfo->~MachineFunctionInfo(); 284 Allocator.Deallocate(MFInfo); 285 } 286 287 FrameInfo->~MachineFrameInfo(); 288 Allocator.Deallocate(FrameInfo); 289 290 ConstantPool->~MachineConstantPool(); 291 Allocator.Deallocate(ConstantPool); 292 293 if (JumpTableInfo) { 294 JumpTableInfo->~MachineJumpTableInfo(); 295 Allocator.Deallocate(JumpTableInfo); 296 } 297 298 if (WinEHInfo) { 299 WinEHInfo->~WinEHFuncInfo(); 300 Allocator.Deallocate(WinEHInfo); 301 } 302 303 if (WasmEHInfo) { 304 WasmEHInfo->~WasmEHFuncInfo(); 305 Allocator.Deallocate(WasmEHInfo); 306 } 307 } 308 309 const DataLayout &MachineFunction::getDataLayout() const { 310 return F.getDataLayout(); 311 } 312 313 /// Get the JumpTableInfo for this function. 314 /// If it does not already exist, allocate one. 315 MachineJumpTableInfo *MachineFunction:: 316 getOrCreateJumpTableInfo(unsigned EntryKind) { 317 if (JumpTableInfo) return JumpTableInfo; 318 319 JumpTableInfo = new (Allocator) 320 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 321 return JumpTableInfo; 322 } 323 324 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { 325 return F.getDenormalMode(FPType); 326 } 327 328 /// Should we be emitting segmented stack stuff for the function 329 bool MachineFunction::shouldSplitStack() const { 330 return getFunction().hasFnAttribute("split-stack"); 331 } 332 333 [[nodiscard]] unsigned 334 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { 335 FrameInstructions.push_back(Inst); 336 return FrameInstructions.size() - 1; 337 } 338 339 /// This discards all of the MachineBasicBlock numbers and recomputes them. 340 /// This guarantees that the MBB numbers are sequential, dense, and match the 341 /// ordering of the blocks within the function. If a specific MachineBasicBlock 342 /// is specified, only that block and those after it are renumbered. 343 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 344 if (empty()) { MBBNumbering.clear(); return; } 345 MachineFunction::iterator MBBI, E = end(); 346 if (MBB == nullptr) 347 MBBI = begin(); 348 else 349 MBBI = MBB->getIterator(); 350 351 // Figure out the block number this should have. 352 unsigned BlockNo = 0; 353 if (MBBI != begin()) 354 BlockNo = std::prev(MBBI)->getNumber() + 1; 355 356 for (; MBBI != E; ++MBBI, ++BlockNo) { 357 if (MBBI->getNumber() != (int)BlockNo) { 358 // Remove use of the old number. 359 if (MBBI->getNumber() != -1) { 360 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 361 "MBB number mismatch!"); 362 MBBNumbering[MBBI->getNumber()] = nullptr; 363 } 364 365 // If BlockNo is already taken, set that block's number to -1. 366 if (MBBNumbering[BlockNo]) 367 MBBNumbering[BlockNo]->setNumber(-1); 368 369 MBBNumbering[BlockNo] = &*MBBI; 370 MBBI->setNumber(BlockNo); 371 } 372 } 373 374 // Okay, all the blocks are renumbered. If we have compactified the block 375 // numbering, shrink MBBNumbering now. 376 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 377 MBBNumbering.resize(BlockNo); 378 MBBNumberingEpoch++; 379 } 380 381 int64_t MachineFunction::estimateFunctionSizeInBytes() { 382 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 383 const Align FunctionAlignment = getAlignment(); 384 MachineFunction::iterator MBBI = begin(), E = end(); 385 /// Offset - Distance from the beginning of the function to the end 386 /// of the basic block. 387 int64_t Offset = 0; 388 389 for (; MBBI != E; ++MBBI) { 390 const Align Alignment = MBBI->getAlignment(); 391 int64_t BlockSize = 0; 392 393 for (auto &MI : *MBBI) { 394 BlockSize += TII.getInstSizeInBytes(MI); 395 } 396 397 int64_t OffsetBB; 398 if (Alignment <= FunctionAlignment) { 399 OffsetBB = alignTo(Offset, Alignment); 400 } else { 401 // The alignment of this MBB is larger than the function's alignment, so 402 // we can't tell whether or not it will insert nops. Assume that it will. 403 OffsetBB = alignTo(Offset, Alignment) + Alignment.value() - 404 FunctionAlignment.value(); 405 } 406 Offset = OffsetBB + BlockSize; 407 } 408 409 return Offset; 410 } 411 412 /// This method iterates over the basic blocks and assigns their IsBeginSection 413 /// and IsEndSection fields. This must be called after MBB layout is finalized 414 /// and the SectionID's are assigned to MBBs. 415 void MachineFunction::assignBeginEndSections() { 416 front().setIsBeginSection(); 417 auto CurrentSectionID = front().getSectionID(); 418 for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) { 419 if (MBBI->getSectionID() == CurrentSectionID) 420 continue; 421 MBBI->setIsBeginSection(); 422 std::prev(MBBI)->setIsEndSection(); 423 CurrentSectionID = MBBI->getSectionID(); 424 } 425 back().setIsEndSection(); 426 } 427 428 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. 429 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, 430 DebugLoc DL, 431 bool NoImplicit) { 432 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 433 MachineInstr(*this, MCID, std::move(DL), NoImplicit); 434 } 435 436 /// Create a new MachineInstr which is a copy of the 'Orig' instruction, 437 /// identical in all ways except the instruction has no parent, prev, or next. 438 MachineInstr * 439 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 440 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 441 MachineInstr(*this, *Orig); 442 } 443 444 MachineInstr &MachineFunction::cloneMachineInstrBundle( 445 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 446 const MachineInstr &Orig) { 447 MachineInstr *FirstClone = nullptr; 448 MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); 449 while (true) { 450 MachineInstr *Cloned = CloneMachineInstr(&*I); 451 MBB.insert(InsertBefore, Cloned); 452 if (FirstClone == nullptr) { 453 FirstClone = Cloned; 454 } else { 455 Cloned->bundleWithPred(); 456 } 457 458 if (!I->isBundledWithSucc()) 459 break; 460 ++I; 461 } 462 // Copy over call info to the cloned instruction if needed. If Orig is in 463 // a bundle, copyAdditionalCallInfo takes care of finding the call instruction 464 // in the bundle. 465 if (Orig.shouldUpdateAdditionalCallInfo()) 466 copyAdditionalCallInfo(&Orig, FirstClone); 467 return *FirstClone; 468 } 469 470 /// Delete the given MachineInstr. 471 /// 472 /// This function also serves as the MachineInstr destructor - the real 473 /// ~MachineInstr() destructor must be empty. 474 void MachineFunction::deleteMachineInstr(MachineInstr *MI) { 475 // Verify that a call site info is at valid state. This assertion should 476 // be triggered during the implementation of support for the 477 // call site info of a new architecture. If the assertion is triggered, 478 // back trace will tell where to insert a call to updateCallSiteInfo(). 479 assert((!MI->isCandidateForAdditionalCallInfo() || 480 !CallSitesInfo.contains(MI)) && 481 "Call site info was not updated!"); 482 // Verify that the "called globals" info is in a valid state. 483 assert((!MI->isCandidateForAdditionalCallInfo() || 484 !CalledGlobalsInfo.contains(MI)) && 485 "Called globals info was not updated!"); 486 // Strip it for parts. The operand array and the MI object itself are 487 // independently recyclable. 488 if (MI->Operands) 489 deallocateOperandArray(MI->CapOperands, MI->Operands); 490 // Don't call ~MachineInstr() which must be trivial anyway because 491 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their 492 // destructors. 493 InstructionRecycler.Deallocate(Allocator, MI); 494 } 495 496 /// Allocate a new MachineBasicBlock. Use this instead of 497 /// `new MachineBasicBlock'. 498 MachineBasicBlock * 499 MachineFunction::CreateMachineBasicBlock(const BasicBlock *BB, 500 std::optional<UniqueBBID> BBID) { 501 MachineBasicBlock *MBB = 502 new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 503 MachineBasicBlock(*this, BB); 504 // Set BBID for `-basic-block-sections=list` and `-basic-block-address-map` to 505 // allow robust mapping of profiles to basic blocks. 506 if (Target.Options.BBAddrMap || 507 Target.getBBSectionsType() == BasicBlockSection::List) 508 MBB->setBBID(BBID.has_value() ? *BBID : UniqueBBID{NextBBID++, 0}); 509 return MBB; 510 } 511 512 /// Delete the given MachineBasicBlock. 513 void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) { 514 assert(MBB->getParent() == this && "MBB parent mismatch!"); 515 // Clean up any references to MBB in jump tables before deleting it. 516 if (JumpTableInfo) 517 JumpTableInfo->RemoveMBBFromJumpTables(MBB); 518 MBB->~MachineBasicBlock(); 519 BasicBlockRecycler.Deallocate(Allocator, MBB); 520 } 521 522 MachineMemOperand *MachineFunction::getMachineMemOperand( 523 MachinePointerInfo PtrInfo, MachineMemOperand::Flags F, LocationSize Size, 524 Align BaseAlignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 525 SyncScope::ID SSID, AtomicOrdering Ordering, 526 AtomicOrdering FailureOrdering) { 527 assert((!Size.hasValue() || 528 Size.getValue().getKnownMinValue() != ~UINT64_C(0)) && 529 "Unexpected an unknown size to be represented using " 530 "LocationSize::beforeOrAfter()"); 531 return new (Allocator) 532 MachineMemOperand(PtrInfo, F, Size, BaseAlignment, AAInfo, Ranges, SSID, 533 Ordering, FailureOrdering); 534 } 535 536 MachineMemOperand *MachineFunction::getMachineMemOperand( 537 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, 538 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, 539 SyncScope::ID SSID, AtomicOrdering Ordering, 540 AtomicOrdering FailureOrdering) { 541 return new (Allocator) 542 MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID, 543 Ordering, FailureOrdering); 544 } 545 546 MachineMemOperand * 547 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 548 const MachinePointerInfo &PtrInfo, 549 LocationSize Size) { 550 assert((!Size.hasValue() || 551 Size.getValue().getKnownMinValue() != ~UINT64_C(0)) && 552 "Unexpected an unknown size to be represented using " 553 "LocationSize::beforeOrAfter()"); 554 return new (Allocator) 555 MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(), 556 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 557 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 558 } 559 560 MachineMemOperand *MachineFunction::getMachineMemOperand( 561 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) { 562 return new (Allocator) 563 MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(), 564 AAMDNodes(), nullptr, MMO->getSyncScopeID(), 565 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 566 } 567 568 MachineMemOperand * 569 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 570 int64_t Offset, LLT Ty) { 571 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); 572 573 // If there is no pointer value, the offset isn't tracked so we need to adjust 574 // the base alignment. 575 Align Alignment = PtrInfo.V.isNull() 576 ? commonAlignment(MMO->getBaseAlign(), Offset) 577 : MMO->getBaseAlign(); 578 579 // Do not preserve ranges, since we don't necessarily know what the high bits 580 // are anymore. 581 return new (Allocator) MachineMemOperand( 582 PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment, 583 MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(), 584 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 585 } 586 587 MachineMemOperand * 588 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 589 const AAMDNodes &AAInfo) { 590 MachinePointerInfo MPI = MMO->getValue() ? 591 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : 592 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); 593 594 return new (Allocator) MachineMemOperand( 595 MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo, 596 MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(), 597 MMO->getFailureOrdering()); 598 } 599 600 MachineMemOperand * 601 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 602 MachineMemOperand::Flags Flags) { 603 return new (Allocator) MachineMemOperand( 604 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(), 605 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), 606 MMO->getSuccessOrdering(), MMO->getFailureOrdering()); 607 } 608 609 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( 610 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, 611 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections, 612 uint32_t CFIType, MDNode *MMRAs) { 613 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, 614 PostInstrSymbol, HeapAllocMarker, 615 PCSections, CFIType, MMRAs); 616 } 617 618 const char *MachineFunction::createExternalSymbolName(StringRef Name) { 619 char *Dest = Allocator.Allocate<char>(Name.size() + 1); 620 llvm::copy(Name, Dest); 621 Dest[Name.size()] = 0; 622 return Dest; 623 } 624 625 uint32_t *MachineFunction::allocateRegMask() { 626 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); 627 unsigned Size = MachineOperand::getRegMaskSize(NumRegs); 628 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size); 629 memset(Mask, 0, Size * sizeof(Mask[0])); 630 return Mask; 631 } 632 633 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { 634 int* AllocMask = Allocator.Allocate<int>(Mask.size()); 635 copy(Mask, AllocMask); 636 return {AllocMask, Mask.size()}; 637 } 638 639 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 640 LLVM_DUMP_METHOD void MachineFunction::dump() const { 641 print(dbgs()); 642 } 643 #endif 644 645 StringRef MachineFunction::getName() const { 646 return getFunction().getName(); 647 } 648 649 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { 650 OS << "# Machine code for function " << getName() << ": "; 651 getProperties().print(OS); 652 OS << '\n'; 653 654 // Print Frame Information 655 FrameInfo->print(*this, OS); 656 657 // Print JumpTable Information 658 if (JumpTableInfo) 659 JumpTableInfo->print(OS); 660 661 // Print Constant Pool 662 ConstantPool->print(OS); 663 664 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); 665 666 if (RegInfo && !RegInfo->livein_empty()) { 667 OS << "Function Live Ins: "; 668 for (MachineRegisterInfo::livein_iterator 669 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 670 OS << printReg(I->first, TRI); 671 if (I->second) 672 OS << " in " << printReg(I->second, TRI); 673 if (std::next(I) != E) 674 OS << ", "; 675 } 676 OS << '\n'; 677 } 678 679 ModuleSlotTracker MST(getFunction().getParent()); 680 MST.incorporateFunction(getFunction()); 681 for (const auto &BB : *this) { 682 OS << '\n'; 683 // If we print the whole function, print it at its most verbose level. 684 BB.print(OS, MST, Indexes, /*IsStandalone=*/true); 685 } 686 687 OS << "\n# End machine code for function " << getName() << ".\n\n"; 688 } 689 690 /// True if this function needs frame moves for debug or exceptions. 691 bool MachineFunction::needsFrameMoves() const { 692 // TODO: Ideally, what we'd like is to have a switch that allows emitting 693 // synchronous (precise at call-sites only) CFA into .eh_frame. However, even 694 // under this switch, we'd like .debug_frame to be precise when using -g. At 695 // this moment, there's no way to specify that some CFI directives go into 696 // .eh_frame only, while others go into .debug_frame only. 697 return getTarget().Options.ForceDwarfFrameSection || 698 F.needsUnwindTableEntry() || 699 !F.getParent()->debug_compile_units().empty(); 700 } 701 702 namespace llvm { 703 704 template<> 705 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 706 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 707 708 static std::string getGraphName(const MachineFunction *F) { 709 return ("CFG for '" + F->getName() + "' function").str(); 710 } 711 712 std::string getNodeLabel(const MachineBasicBlock *Node, 713 const MachineFunction *Graph) { 714 std::string OutStr; 715 { 716 raw_string_ostream OSS(OutStr); 717 718 if (isSimple()) { 719 OSS << printMBBReference(*Node); 720 if (const BasicBlock *BB = Node->getBasicBlock()) 721 OSS << ": " << BB->getName(); 722 } else 723 Node->print(OSS); 724 } 725 726 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 727 728 // Process string output to make it nicer... 729 for (unsigned i = 0; i != OutStr.length(); ++i) 730 if (OutStr[i] == '\n') { // Left justify 731 OutStr[i] = '\\'; 732 OutStr.insert(OutStr.begin()+i+1, 'l'); 733 } 734 return OutStr; 735 } 736 }; 737 738 } // end namespace llvm 739 740 void MachineFunction::viewCFG() const 741 { 742 #ifndef NDEBUG 743 ViewGraph(this, "mf" + getName()); 744 #else 745 errs() << "MachineFunction::viewCFG is only available in debug builds on " 746 << "systems with Graphviz or gv!\n"; 747 #endif // NDEBUG 748 } 749 750 void MachineFunction::viewCFGOnly() const 751 { 752 #ifndef NDEBUG 753 ViewGraph(this, "mf" + getName(), true); 754 #else 755 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " 756 << "systems with Graphviz or gv!\n"; 757 #endif // NDEBUG 758 } 759 760 /// Add the specified physical register as a live-in value and 761 /// create a corresponding virtual register for it. 762 Register MachineFunction::addLiveIn(MCRegister PReg, 763 const TargetRegisterClass *RC) { 764 MachineRegisterInfo &MRI = getRegInfo(); 765 Register VReg = MRI.getLiveInVirtReg(PReg); 766 if (VReg) { 767 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg); 768 (void)VRegRC; 769 // A physical register can be added several times. 770 // Between two calls, the register class of the related virtual register 771 // may have been constrained to match some operation constraints. 772 // In that case, check that the current register class includes the 773 // physical register and is a sub class of the specified RC. 774 assert((VRegRC == RC || (VRegRC->contains(PReg) && 775 RC->hasSubClassEq(VRegRC))) && 776 "Register class mismatch!"); 777 return VReg; 778 } 779 VReg = MRI.createVirtualRegister(RC); 780 MRI.addLiveIn(PReg, VReg); 781 return VReg; 782 } 783 784 /// Return the MCSymbol for the specified non-empty jump table. 785 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 786 /// normal 'L' label is returned. 787 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 788 bool isLinkerPrivate) const { 789 const DataLayout &DL = getDataLayout(); 790 assert(JumpTableInfo && "No jump tables"); 791 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 792 793 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() 794 : DL.getPrivateGlobalPrefix(); 795 SmallString<60> Name; 796 raw_svector_ostream(Name) 797 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 798 return Ctx.getOrCreateSymbol(Name); 799 } 800 801 /// Return a function-local symbol to represent the PIC base. 802 MCSymbol *MachineFunction::getPICBaseSymbol() const { 803 const DataLayout &DL = getDataLayout(); 804 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 805 Twine(getFunctionNumber()) + "$pb"); 806 } 807 808 /// \name Exception Handling 809 /// \{ 810 811 LandingPadInfo & 812 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { 813 unsigned N = LandingPads.size(); 814 for (unsigned i = 0; i < N; ++i) { 815 LandingPadInfo &LP = LandingPads[i]; 816 if (LP.LandingPadBlock == LandingPad) 817 return LP; 818 } 819 820 LandingPads.push_back(LandingPadInfo(LandingPad)); 821 return LandingPads[N]; 822 } 823 824 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, 825 MCSymbol *BeginLabel, MCSymbol *EndLabel) { 826 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 827 LP.BeginLabels.push_back(BeginLabel); 828 LP.EndLabels.push_back(EndLabel); 829 } 830 831 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { 832 MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); 833 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); 834 LP.LandingPadLabel = LandingPadLabel; 835 836 BasicBlock::const_iterator FirstI = 837 LandingPad->getBasicBlock()->getFirstNonPHIIt(); 838 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) { 839 // If there's no typeid list specified, then "cleanup" is implicit. 840 // Otherwise, id 0 is reserved for the cleanup action. 841 if (LPI->isCleanup() && LPI->getNumClauses() != 0) 842 LP.TypeIds.push_back(0); 843 844 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% 845 // correct, but we need to do it this way because of how the DWARF EH 846 // emitter processes the clauses. 847 for (unsigned I = LPI->getNumClauses(); I != 0; --I) { 848 Value *Val = LPI->getClause(I - 1); 849 if (LPI->isCatch(I - 1)) { 850 LP.TypeIds.push_back( 851 getTypeIDFor(dyn_cast<GlobalValue>(Val->stripPointerCasts()))); 852 } else { 853 // Add filters in a list. 854 auto *CVal = cast<Constant>(Val); 855 SmallVector<unsigned, 4> FilterList; 856 for (const Use &U : CVal->operands()) 857 FilterList.push_back( 858 getTypeIDFor(cast<GlobalValue>(U->stripPointerCasts()))); 859 860 LP.TypeIds.push_back(getFilterIDFor(FilterList)); 861 } 862 } 863 864 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) { 865 for (unsigned I = CPI->arg_size(); I != 0; --I) { 866 auto *TypeInfo = 867 dyn_cast<GlobalValue>(CPI->getArgOperand(I - 1)->stripPointerCasts()); 868 LP.TypeIds.push_back(getTypeIDFor(TypeInfo)); 869 } 870 871 } else { 872 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!"); 873 } 874 875 return LandingPadLabel; 876 } 877 878 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, 879 ArrayRef<unsigned> Sites) { 880 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end()); 881 } 882 883 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { 884 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) 885 if (TypeInfos[i] == TI) return i + 1; 886 887 TypeInfos.push_back(TI); 888 return TypeInfos.size(); 889 } 890 891 int MachineFunction::getFilterIDFor(ArrayRef<unsigned> TyIds) { 892 // If the new filter coincides with the tail of an existing filter, then 893 // re-use the existing filter. Folding filters more than this requires 894 // re-ordering filters and/or their elements - probably not worth it. 895 for (unsigned i : FilterEnds) { 896 unsigned j = TyIds.size(); 897 898 while (i && j) 899 if (FilterIds[--i] != TyIds[--j]) 900 goto try_next; 901 902 if (!j) 903 // The new filter coincides with range [i, end) of the existing filter. 904 return -(1 + i); 905 906 try_next:; 907 } 908 909 // Add the new filter. 910 int FilterID = -(1 + FilterIds.size()); 911 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1); 912 llvm::append_range(FilterIds, TyIds); 913 FilterEnds.push_back(FilterIds.size()); 914 FilterIds.push_back(0); // terminator 915 return FilterID; 916 } 917 918 MachineFunction::CallSiteInfoMap::iterator 919 MachineFunction::getCallSiteInfo(const MachineInstr *MI) { 920 assert(MI->isCandidateForAdditionalCallInfo() && 921 "Call site info refers only to call (MI) candidates"); 922 923 if (!Target.Options.EmitCallSiteInfo) 924 return CallSitesInfo.end(); 925 return CallSitesInfo.find(MI); 926 } 927 928 /// Return the call machine instruction or find a call within bundle. 929 static const MachineInstr *getCallInstr(const MachineInstr *MI) { 930 if (!MI->isBundle()) 931 return MI; 932 933 for (const auto &BMI : make_range(getBundleStart(MI->getIterator()), 934 getBundleEnd(MI->getIterator()))) 935 if (BMI.isCandidateForAdditionalCallInfo()) 936 return &BMI; 937 938 llvm_unreachable("Unexpected bundle without a call site candidate"); 939 } 940 941 void MachineFunction::eraseAdditionalCallInfo(const MachineInstr *MI) { 942 assert(MI->shouldUpdateAdditionalCallInfo() && 943 "Call info refers only to call (MI) candidates or " 944 "candidates inside bundles"); 945 946 const MachineInstr *CallMI = getCallInstr(MI); 947 948 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI); 949 if (CSIt != CallSitesInfo.end()) 950 CallSitesInfo.erase(CSIt); 951 952 CalledGlobalsMap::iterator CGIt = CalledGlobalsInfo.find(CallMI); 953 if (CGIt != CalledGlobalsInfo.end()) 954 CalledGlobalsInfo.erase(CGIt); 955 } 956 957 void MachineFunction::copyAdditionalCallInfo(const MachineInstr *Old, 958 const MachineInstr *New) { 959 assert(Old->shouldUpdateAdditionalCallInfo() && 960 "Call info refers only to call (MI) candidates or " 961 "candidates inside bundles"); 962 963 if (!New->isCandidateForAdditionalCallInfo()) 964 return eraseAdditionalCallInfo(Old); 965 966 const MachineInstr *OldCallMI = getCallInstr(Old); 967 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 968 if (CSIt != CallSitesInfo.end()) { 969 CallSiteInfo CSInfo = CSIt->second; 970 CallSitesInfo[New] = CSInfo; 971 } 972 973 CalledGlobalsMap::iterator CGIt = CalledGlobalsInfo.find(OldCallMI); 974 if (CGIt != CalledGlobalsInfo.end()) { 975 CalledGlobalInfo CGInfo = CGIt->second; 976 CalledGlobalsInfo[New] = CGInfo; 977 } 978 } 979 980 void MachineFunction::moveAdditionalCallInfo(const MachineInstr *Old, 981 const MachineInstr *New) { 982 assert(Old->shouldUpdateAdditionalCallInfo() && 983 "Call info refers only to call (MI) candidates or " 984 "candidates inside bundles"); 985 986 if (!New->isCandidateForAdditionalCallInfo()) 987 return eraseAdditionalCallInfo(Old); 988 989 const MachineInstr *OldCallMI = getCallInstr(Old); 990 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI); 991 if (CSIt != CallSitesInfo.end()) { 992 CallSiteInfo CSInfo = std::move(CSIt->second); 993 CallSitesInfo.erase(CSIt); 994 CallSitesInfo[New] = CSInfo; 995 } 996 997 CalledGlobalsMap::iterator CGIt = CalledGlobalsInfo.find(OldCallMI); 998 if (CGIt != CalledGlobalsInfo.end()) { 999 CalledGlobalInfo CGInfo = std::move(CGIt->second); 1000 CalledGlobalsInfo.erase(CGIt); 1001 CalledGlobalsInfo[New] = CGInfo; 1002 } 1003 } 1004 1005 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) { 1006 DebugInstrNumberingCount = Num; 1007 } 1008 1009 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A, 1010 DebugInstrOperandPair B, 1011 unsigned Subreg) { 1012 // Catch any accidental self-loops. 1013 assert(A.first != B.first); 1014 // Don't allow any substitutions _from_ the memory operand number. 1015 assert(A.second != DebugOperandMemNumber); 1016 1017 DebugValueSubstitutions.push_back({A, B, Subreg}); 1018 } 1019 1020 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old, 1021 MachineInstr &New, 1022 unsigned MaxOperand) { 1023 // If the Old instruction wasn't tracked at all, there is no work to do. 1024 unsigned OldInstrNum = Old.peekDebugInstrNum(); 1025 if (!OldInstrNum) 1026 return; 1027 1028 // Iterate over all operands looking for defs to create substitutions for. 1029 // Avoid creating new instr numbers unless we create a new substitution. 1030 // While this has no functional effect, it risks confusing someone reading 1031 // MIR output. 1032 // Examine all the operands, or the first N specified by the caller. 1033 MaxOperand = std::min(MaxOperand, Old.getNumOperands()); 1034 for (unsigned int I = 0; I < MaxOperand; ++I) { 1035 const auto &OldMO = Old.getOperand(I); 1036 auto &NewMO = New.getOperand(I); 1037 (void)NewMO; 1038 1039 if (!OldMO.isReg() || !OldMO.isDef()) 1040 continue; 1041 assert(NewMO.isDef()); 1042 1043 unsigned NewInstrNum = New.getDebugInstrNum(); 1044 makeDebugValueSubstitution(std::make_pair(OldInstrNum, I), 1045 std::make_pair(NewInstrNum, I)); 1046 } 1047 } 1048 1049 auto MachineFunction::salvageCopySSA( 1050 MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache) 1051 -> DebugInstrOperandPair { 1052 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 1053 1054 // Check whether this copy-like instruction has already been salvaged into 1055 // an operand pair. 1056 Register Dest; 1057 if (auto CopyDstSrc = TII.isCopyLikeInstr(MI)) { 1058 Dest = CopyDstSrc->Destination->getReg(); 1059 } else { 1060 assert(MI.isSubregToReg()); 1061 Dest = MI.getOperand(0).getReg(); 1062 } 1063 1064 auto CacheIt = DbgPHICache.find(Dest); 1065 if (CacheIt != DbgPHICache.end()) 1066 return CacheIt->second; 1067 1068 // Calculate the instruction number to use, or install a DBG_PHI. 1069 auto OperandPair = salvageCopySSAImpl(MI); 1070 DbgPHICache.insert({Dest, OperandPair}); 1071 return OperandPair; 1072 } 1073 1074 auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI) 1075 -> DebugInstrOperandPair { 1076 MachineRegisterInfo &MRI = getRegInfo(); 1077 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 1078 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); 1079 1080 // Chase the value read by a copy-like instruction back to the instruction 1081 // that ultimately _defines_ that value. This may pass: 1082 // * Through multiple intermediate copies, including subregister moves / 1083 // copies, 1084 // * Copies from physical registers that must then be traced back to the 1085 // defining instruction, 1086 // * Or, physical registers may be live-in to (only) the entry block, which 1087 // requires a DBG_PHI to be created. 1088 // We can pursue this problem in that order: trace back through copies, 1089 // optionally through a physical register, to a defining instruction. We 1090 // should never move from physreg to vreg. As we're still in SSA form, no need 1091 // to worry about partial definitions of registers. 1092 1093 // Helper lambda to interpret a copy-like instruction. Takes instruction, 1094 // returns the register read and any subregister identifying which part is 1095 // read. 1096 auto GetRegAndSubreg = 1097 [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> { 1098 Register NewReg, OldReg; 1099 unsigned SubReg; 1100 if (Cpy.isCopy()) { 1101 OldReg = Cpy.getOperand(0).getReg(); 1102 NewReg = Cpy.getOperand(1).getReg(); 1103 SubReg = Cpy.getOperand(1).getSubReg(); 1104 } else if (Cpy.isSubregToReg()) { 1105 OldReg = Cpy.getOperand(0).getReg(); 1106 NewReg = Cpy.getOperand(2).getReg(); 1107 SubReg = Cpy.getOperand(3).getImm(); 1108 } else { 1109 auto CopyDetails = *TII.isCopyInstr(Cpy); 1110 const MachineOperand &Src = *CopyDetails.Source; 1111 const MachineOperand &Dest = *CopyDetails.Destination; 1112 OldReg = Dest.getReg(); 1113 NewReg = Src.getReg(); 1114 SubReg = Src.getSubReg(); 1115 } 1116 1117 return {NewReg, SubReg}; 1118 }; 1119 1120 // First seek either the defining instruction, or a copy from a physreg. 1121 // During search, the current state is the current copy instruction, and which 1122 // register we've read. Accumulate qualifying subregisters into SubregsSeen; 1123 // deal with those later. 1124 auto State = GetRegAndSubreg(MI); 1125 auto CurInst = MI.getIterator(); 1126 SmallVector<unsigned, 4> SubregsSeen; 1127 while (true) { 1128 // If we've found a copy from a physreg, first portion of search is over. 1129 if (!State.first.isVirtual()) 1130 break; 1131 1132 // Record any subregister qualifier. 1133 if (State.second) 1134 SubregsSeen.push_back(State.second); 1135 1136 assert(MRI.hasOneDef(State.first)); 1137 MachineInstr &Inst = *MRI.def_begin(State.first)->getParent(); 1138 CurInst = Inst.getIterator(); 1139 1140 // Any non-copy instruction is the defining instruction we're seeking. 1141 if (!Inst.isCopyLike() && !TII.isCopyLikeInstr(Inst)) 1142 break; 1143 State = GetRegAndSubreg(Inst); 1144 }; 1145 1146 // Helper lambda to apply additional subregister substitutions to a known 1147 // instruction/operand pair. Adds new (fake) substitutions so that we can 1148 // record the subregister. FIXME: this isn't very space efficient if multiple 1149 // values are tracked back through the same copies; cache something later. 1150 auto ApplySubregisters = 1151 [&](DebugInstrOperandPair P) -> DebugInstrOperandPair { 1152 for (unsigned Subreg : reverse(SubregsSeen)) { 1153 // Fetch a new instruction number, not attached to an actual instruction. 1154 unsigned NewInstrNumber = getNewDebugInstrNum(); 1155 // Add a substitution from the "new" number to the known one, with a 1156 // qualifying subreg. 1157 makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg); 1158 // Return the new number; to find the underlying value, consumers need to 1159 // deal with the qualifying subreg. 1160 P = {NewInstrNumber, 0}; 1161 } 1162 return P; 1163 }; 1164 1165 // If we managed to find the defining instruction after COPYs, return an 1166 // instruction / operand pair after adding subregister qualifiers. 1167 if (State.first.isVirtual()) { 1168 // Virtual register def -- we can just look up where this happens. 1169 MachineInstr *Inst = MRI.def_begin(State.first)->getParent(); 1170 for (auto &MO : Inst->all_defs()) { 1171 if (MO.getReg() != State.first) 1172 continue; 1173 return ApplySubregisters({Inst->getDebugInstrNum(), MO.getOperandNo()}); 1174 } 1175 1176 llvm_unreachable("Vreg def with no corresponding operand?"); 1177 } 1178 1179 // Our search ended in a copy from a physreg: walk back up the function 1180 // looking for whatever defines the physreg. 1181 assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst)); 1182 State = GetRegAndSubreg(*CurInst); 1183 Register RegToSeek = State.first; 1184 1185 auto RMII = CurInst->getReverseIterator(); 1186 auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend()); 1187 for (auto &ToExamine : PrevInstrs) { 1188 for (auto &MO : ToExamine.all_defs()) { 1189 // Test for operand that defines something aliasing RegToSeek. 1190 if (!TRI.regsOverlap(RegToSeek, MO.getReg())) 1191 continue; 1192 1193 return ApplySubregisters( 1194 {ToExamine.getDebugInstrNum(), MO.getOperandNo()}); 1195 } 1196 } 1197 1198 MachineBasicBlock &InsertBB = *CurInst->getParent(); 1199 1200 // We reached the start of the block before finding a defining instruction. 1201 // There are numerous scenarios where this can happen: 1202 // * Constant physical registers, 1203 // * Several intrinsics that allow LLVM-IR to read arbitary registers, 1204 // * Arguments in the entry block, 1205 // * Exception handling landing pads. 1206 // Validating all of them is too difficult, so just insert a DBG_PHI reading 1207 // the variable value at this position, rather than checking it makes sense. 1208 1209 // Create DBG_PHI for specified physreg. 1210 auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(), 1211 TII.get(TargetOpcode::DBG_PHI)); 1212 Builder.addReg(State.first); 1213 unsigned NewNum = getNewDebugInstrNum(); 1214 Builder.addImm(NewNum); 1215 return ApplySubregisters({NewNum, 0u}); 1216 } 1217 1218 void MachineFunction::finalizeDebugInstrRefs() { 1219 auto *TII = getSubtarget().getInstrInfo(); 1220 1221 auto MakeUndefDbgValue = [&](MachineInstr &MI) { 1222 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE_LIST); 1223 MI.setDesc(RefII); 1224 MI.setDebugValueUndef(); 1225 }; 1226 1227 DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs; 1228 for (auto &MBB : *this) { 1229 for (auto &MI : MBB) { 1230 if (!MI.isDebugRef()) 1231 continue; 1232 1233 bool IsValidRef = true; 1234 1235 for (MachineOperand &MO : MI.debug_operands()) { 1236 if (!MO.isReg()) 1237 continue; 1238 1239 Register Reg = MO.getReg(); 1240 1241 // Some vregs can be deleted as redundant in the meantime. Mark those 1242 // as DBG_VALUE $noreg. Additionally, some normal instructions are 1243 // quickly deleted, leaving dangling references to vregs with no def. 1244 if (Reg == 0 || !RegInfo->hasOneDef(Reg)) { 1245 IsValidRef = false; 1246 break; 1247 } 1248 1249 assert(Reg.isVirtual()); 1250 MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg); 1251 1252 // If we've found a copy-like instruction, follow it back to the 1253 // instruction that defines the source value, see salvageCopySSA docs 1254 // for why this is important. 1255 if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) { 1256 auto Result = salvageCopySSA(DefMI, ArgDbgPHIs); 1257 MO.ChangeToDbgInstrRef(Result.first, Result.second); 1258 } else { 1259 // Otherwise, identify the operand number that the VReg refers to. 1260 unsigned OperandIdx = 0; 1261 for (const auto &DefMO : DefMI.operands()) { 1262 if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg) 1263 break; 1264 ++OperandIdx; 1265 } 1266 assert(OperandIdx < DefMI.getNumOperands()); 1267 1268 // Morph this instr ref to point at the given instruction and operand. 1269 unsigned ID = DefMI.getDebugInstrNum(); 1270 MO.ChangeToDbgInstrRef(ID, OperandIdx); 1271 } 1272 } 1273 1274 if (!IsValidRef) 1275 MakeUndefDbgValue(MI); 1276 } 1277 } 1278 } 1279 1280 bool MachineFunction::shouldUseDebugInstrRef() const { 1281 // Disable instr-ref at -O0: it's very slow (in compile time). We can still 1282 // have optimized code inlined into this unoptimized code, however with 1283 // fewer and less aggressive optimizations happening, coverage and accuracy 1284 // should not suffer. 1285 if (getTarget().getOptLevel() == CodeGenOptLevel::None) 1286 return false; 1287 1288 // Don't use instr-ref if this function is marked optnone. 1289 if (F.hasFnAttribute(Attribute::OptimizeNone)) 1290 return false; 1291 1292 if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple())) 1293 return true; 1294 1295 return false; 1296 } 1297 1298 bool MachineFunction::useDebugInstrRef() const { 1299 return UseDebugInstrRef; 1300 } 1301 1302 void MachineFunction::setUseDebugInstrRef(bool Use) { 1303 UseDebugInstrRef = Use; 1304 } 1305 1306 // Use one million as a high / reserved number. 1307 const unsigned MachineFunction::DebugOperandMemNumber = 1000000; 1308 1309 /// \} 1310 1311 //===----------------------------------------------------------------------===// 1312 // MachineJumpTableInfo implementation 1313 //===----------------------------------------------------------------------===// 1314 1315 MachineJumpTableEntry::MachineJumpTableEntry( 1316 const std::vector<MachineBasicBlock *> &MBBs) 1317 : MBBs(MBBs), Hotness(MachineFunctionDataHotness::Unknown) {} 1318 1319 /// Return the size of each entry in the jump table. 1320 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { 1321 // The size of a jump table entry is 4 bytes unless the entry is just the 1322 // address of a block, in which case it is the pointer size. 1323 switch (getEntryKind()) { 1324 case MachineJumpTableInfo::EK_BlockAddress: 1325 return TD.getPointerSize(); 1326 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1327 case MachineJumpTableInfo::EK_LabelDifference64: 1328 return 8; 1329 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1330 case MachineJumpTableInfo::EK_LabelDifference32: 1331 case MachineJumpTableInfo::EK_Custom32: 1332 return 4; 1333 case MachineJumpTableInfo::EK_Inline: 1334 return 0; 1335 } 1336 llvm_unreachable("Unknown jump table encoding!"); 1337 } 1338 1339 /// Return the alignment of each entry in the jump table. 1340 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { 1341 // The alignment of a jump table entry is the alignment of int32 unless the 1342 // entry is just the address of a block, in which case it is the pointer 1343 // alignment. 1344 switch (getEntryKind()) { 1345 case MachineJumpTableInfo::EK_BlockAddress: 1346 return TD.getPointerABIAlignment(0).value(); 1347 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1348 case MachineJumpTableInfo::EK_LabelDifference64: 1349 return TD.getABIIntegerTypeAlignment(64).value(); 1350 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1351 case MachineJumpTableInfo::EK_LabelDifference32: 1352 case MachineJumpTableInfo::EK_Custom32: 1353 return TD.getABIIntegerTypeAlignment(32).value(); 1354 case MachineJumpTableInfo::EK_Inline: 1355 return 1; 1356 } 1357 llvm_unreachable("Unknown jump table encoding!"); 1358 } 1359 1360 /// Create a new jump table entry in the jump table info. 1361 unsigned MachineJumpTableInfo::createJumpTableIndex( 1362 const std::vector<MachineBasicBlock*> &DestBBs) { 1363 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 1364 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 1365 return JumpTables.size()-1; 1366 } 1367 1368 bool MachineJumpTableInfo::updateJumpTableEntryHotness( 1369 size_t JTI, MachineFunctionDataHotness Hotness) { 1370 assert(JTI < JumpTables.size() && "Invalid JTI!"); 1371 // Record the largest hotness value. 1372 if (Hotness <= JumpTables[JTI].Hotness) 1373 return false; 1374 1375 JumpTables[JTI].Hotness = Hotness; 1376 return true; 1377 } 1378 1379 /// If Old is the target of any jump tables, update the jump tables to branch 1380 /// to New instead. 1381 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 1382 MachineBasicBlock *New) { 1383 assert(Old != New && "Not making a change?"); 1384 bool MadeChange = false; 1385 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 1386 ReplaceMBBInJumpTable(i, Old, New); 1387 return MadeChange; 1388 } 1389 1390 /// If MBB is present in any jump tables, remove it. 1391 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) { 1392 bool MadeChange = false; 1393 for (MachineJumpTableEntry &JTE : JumpTables) { 1394 auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB); 1395 MadeChange |= (removeBeginItr != JTE.MBBs.end()); 1396 JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end()); 1397 } 1398 return MadeChange; 1399 } 1400 1401 /// If Old is a target of the jump tables, update the jump table to branch to 1402 /// New instead. 1403 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 1404 MachineBasicBlock *Old, 1405 MachineBasicBlock *New) { 1406 assert(Old != New && "Not making a change?"); 1407 bool MadeChange = false; 1408 MachineJumpTableEntry &JTE = JumpTables[Idx]; 1409 for (MachineBasicBlock *&MBB : JTE.MBBs) 1410 if (MBB == Old) { 1411 MBB = New; 1412 MadeChange = true; 1413 } 1414 return MadeChange; 1415 } 1416 1417 void MachineJumpTableInfo::print(raw_ostream &OS) const { 1418 if (JumpTables.empty()) return; 1419 1420 OS << "Jump Tables:\n"; 1421 1422 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 1423 OS << printJumpTableEntryReference(i) << ':'; 1424 for (const MachineBasicBlock *MBB : JumpTables[i].MBBs) 1425 OS << ' ' << printMBBReference(*MBB); 1426 if (i != e) 1427 OS << '\n'; 1428 } 1429 1430 OS << '\n'; 1431 } 1432 1433 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1434 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } 1435 #endif 1436 1437 Printable llvm::printJumpTableEntryReference(unsigned Idx) { 1438 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); 1439 } 1440 1441 //===----------------------------------------------------------------------===// 1442 // MachineConstantPool implementation 1443 //===----------------------------------------------------------------------===// 1444 1445 void MachineConstantPoolValue::anchor() {} 1446 1447 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const { 1448 return DL.getTypeAllocSize(Ty); 1449 } 1450 1451 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const { 1452 if (isMachineConstantPoolEntry()) 1453 return Val.MachineCPVal->getSizeInBytes(DL); 1454 return DL.getTypeAllocSize(Val.ConstVal->getType()); 1455 } 1456 1457 bool MachineConstantPoolEntry::needsRelocation() const { 1458 if (isMachineConstantPoolEntry()) 1459 return true; 1460 return Val.ConstVal->needsDynamicRelocation(); 1461 } 1462 1463 SectionKind 1464 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { 1465 if (needsRelocation()) 1466 return SectionKind::getReadOnlyWithRel(); 1467 switch (getSizeInBytes(*DL)) { 1468 case 4: 1469 return SectionKind::getMergeableConst4(); 1470 case 8: 1471 return SectionKind::getMergeableConst8(); 1472 case 16: 1473 return SectionKind::getMergeableConst16(); 1474 case 32: 1475 return SectionKind::getMergeableConst32(); 1476 default: 1477 return SectionKind::getReadOnly(); 1478 } 1479 } 1480 1481 MachineConstantPool::~MachineConstantPool() { 1482 // A constant may be a member of both Constants and MachineCPVsSharingEntries, 1483 // so keep track of which we've deleted to avoid double deletions. 1484 DenseSet<MachineConstantPoolValue*> Deleted; 1485 for (const MachineConstantPoolEntry &C : Constants) 1486 if (C.isMachineConstantPoolEntry()) { 1487 Deleted.insert(C.Val.MachineCPVal); 1488 delete C.Val.MachineCPVal; 1489 } 1490 for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) { 1491 if (Deleted.count(CPV) == 0) 1492 delete CPV; 1493 } 1494 } 1495 1496 /// Test whether the given two constants can be allocated the same constant pool 1497 /// entry referenced by \param A. 1498 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, 1499 const DataLayout &DL) { 1500 // Handle the trivial case quickly. 1501 if (A == B) return true; 1502 1503 // If they have the same type but weren't the same constant, quickly 1504 // reject them. 1505 if (A->getType() == B->getType()) return false; 1506 1507 // We can't handle structs or arrays. 1508 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) || 1509 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType())) 1510 return false; 1511 1512 // For now, only support constants with the same size. 1513 uint64_t StoreSize = DL.getTypeStoreSize(A->getType()); 1514 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128) 1515 return false; 1516 1517 bool ContainsUndefOrPoisonA = A->containsUndefOrPoisonElement(); 1518 1519 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8); 1520 1521 // Try constant folding a bitcast of both instructions to an integer. If we 1522 // get two identical ConstantInt's, then we are good to share them. We use 1523 // the constant folding APIs to do this so that we get the benefit of 1524 // DataLayout. 1525 if (isa<PointerType>(A->getType())) 1526 A = ConstantFoldCastOperand(Instruction::PtrToInt, 1527 const_cast<Constant *>(A), IntTy, DL); 1528 else if (A->getType() != IntTy) 1529 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A), 1530 IntTy, DL); 1531 if (isa<PointerType>(B->getType())) 1532 B = ConstantFoldCastOperand(Instruction::PtrToInt, 1533 const_cast<Constant *>(B), IntTy, DL); 1534 else if (B->getType() != IntTy) 1535 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B), 1536 IntTy, DL); 1537 1538 if (A != B) 1539 return false; 1540 1541 // Constants only safely match if A doesn't contain undef/poison. 1542 // As we'll be reusing A, it doesn't matter if B contain undef/poison. 1543 // TODO: Handle cases where A and B have the same undef/poison elements. 1544 // TODO: Merge A and B with mismatching undef/poison elements. 1545 return !ContainsUndefOrPoisonA; 1546 } 1547 1548 /// Create a new entry in the constant pool or return an existing one. 1549 /// User must specify the log2 of the minimum required alignment for the object. 1550 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, 1551 Align Alignment) { 1552 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1553 1554 // Check to see if we already have this constant. 1555 // 1556 // FIXME, this could be made much more efficient for large constant pools. 1557 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 1558 if (!Constants[i].isMachineConstantPoolEntry() && 1559 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) { 1560 if (Constants[i].getAlign() < Alignment) 1561 Constants[i].Alignment = Alignment; 1562 return i; 1563 } 1564 1565 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 1566 return Constants.size()-1; 1567 } 1568 1569 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 1570 Align Alignment) { 1571 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 1572 1573 // Check to see if we already have this constant. 1574 // 1575 // FIXME, this could be made much more efficient for large constant pools. 1576 int Idx = V->getExistingMachineCPValue(this, Alignment); 1577 if (Idx != -1) { 1578 MachineCPVsSharingEntries.insert(V); 1579 return (unsigned)Idx; 1580 } 1581 1582 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 1583 return Constants.size()-1; 1584 } 1585 1586 void MachineConstantPool::print(raw_ostream &OS) const { 1587 if (Constants.empty()) return; 1588 1589 OS << "Constant Pool:\n"; 1590 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1591 OS << " cp#" << i << ": "; 1592 if (Constants[i].isMachineConstantPoolEntry()) 1593 Constants[i].Val.MachineCPVal->print(OS); 1594 else 1595 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false); 1596 OS << ", align=" << Constants[i].getAlign().value(); 1597 OS << "\n"; 1598 } 1599 } 1600 1601 //===----------------------------------------------------------------------===// 1602 // Template specialization for MachineFunction implementation of 1603 // ProfileSummaryInfo::getEntryCount(). 1604 //===----------------------------------------------------------------------===// 1605 template <> 1606 std::optional<Function::ProfileCount> 1607 ProfileSummaryInfo::getEntryCount<llvm::MachineFunction>( 1608 const llvm::MachineFunction *F) const { 1609 return F->getFunction().getEntryCount(); 1610 } 1611 1612 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1613 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } 1614 #endif 1615