xref: /llvm-project/clang/lib/Sema/SemaExpr.cpp (revision 1ac3665e66c7ddb20ef26bc275ad005186ab09fb)
1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CheckExprLifetime.h"
14 #include "TreeTransform.h"
15 #include "UsedDeclVisitor.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTLambda.h"
19 #include "clang/AST/ASTMutationListener.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/DynamicRecursiveASTVisitor.h"
25 #include "clang/AST/EvaluatedExprVisitor.h"
26 #include "clang/AST/Expr.h"
27 #include "clang/AST/ExprCXX.h"
28 #include "clang/AST/ExprObjC.h"
29 #include "clang/AST/MangleNumberingContext.h"
30 #include "clang/AST/OperationKinds.h"
31 #include "clang/AST/Type.h"
32 #include "clang/AST/TypeLoc.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/DiagnosticSema.h"
35 #include "clang/Basic/PartialDiagnostic.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/Basic/TargetInfo.h"
39 #include "clang/Basic/TypeTraits.h"
40 #include "clang/Lex/LiteralSupport.h"
41 #include "clang/Lex/Preprocessor.h"
42 #include "clang/Sema/AnalysisBasedWarnings.h"
43 #include "clang/Sema/DeclSpec.h"
44 #include "clang/Sema/DelayedDiagnostic.h"
45 #include "clang/Sema/Designator.h"
46 #include "clang/Sema/EnterExpressionEvaluationContext.h"
47 #include "clang/Sema/Initialization.h"
48 #include "clang/Sema/Lookup.h"
49 #include "clang/Sema/Overload.h"
50 #include "clang/Sema/ParsedTemplate.h"
51 #include "clang/Sema/Scope.h"
52 #include "clang/Sema/ScopeInfo.h"
53 #include "clang/Sema/SemaCUDA.h"
54 #include "clang/Sema/SemaFixItUtils.h"
55 #include "clang/Sema/SemaHLSL.h"
56 #include "clang/Sema/SemaInternal.h"
57 #include "clang/Sema/SemaObjC.h"
58 #include "clang/Sema/SemaOpenMP.h"
59 #include "clang/Sema/SemaPseudoObject.h"
60 #include "clang/Sema/Template.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/STLForwardCompat.h"
63 #include "llvm/ADT/StringExtras.h"
64 #include "llvm/Support/ConvertUTF.h"
65 #include "llvm/Support/SaveAndRestore.h"
66 #include "llvm/Support/TimeProfiler.h"
67 #include "llvm/Support/TypeSize.h"
68 #include <optional>
69 
70 using namespace clang;
71 using namespace sema;
72 
73 bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
74   // See if this is an auto-typed variable whose initializer we are parsing.
75   if (ParsingInitForAutoVars.count(D))
76     return false;
77 
78   // See if this is a deleted function.
79   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
80     if (FD->isDeleted())
81       return false;
82 
83     // If the function has a deduced return type, and we can't deduce it,
84     // then we can't use it either.
85     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
86         DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
87       return false;
88 
89     // See if this is an aligned allocation/deallocation function that is
90     // unavailable.
91     if (TreatUnavailableAsInvalid &&
92         isUnavailableAlignedAllocationFunction(*FD))
93       return false;
94   }
95 
96   // See if this function is unavailable.
97   if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
98       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
99     return false;
100 
101   if (isa<UnresolvedUsingIfExistsDecl>(D))
102     return false;
103 
104   return true;
105 }
106 
107 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
108   // Warn if this is used but marked unused.
109   if (const auto *A = D->getAttr<UnusedAttr>()) {
110     // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
111     // should diagnose them.
112     if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
113         A->getSemanticSpelling() != UnusedAttr::C23_maybe_unused) {
114       const Decl *DC = cast_or_null<Decl>(S.ObjC().getCurObjCLexicalContext());
115       if (DC && !DC->hasAttr<UnusedAttr>())
116         S.Diag(Loc, diag::warn_used_but_marked_unused) << D;
117     }
118   }
119 }
120 
121 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
122   assert(Decl && Decl->isDeleted());
123 
124   if (Decl->isDefaulted()) {
125     // If the method was explicitly defaulted, point at that declaration.
126     if (!Decl->isImplicit())
127       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
128 
129     // Try to diagnose why this special member function was implicitly
130     // deleted. This might fail, if that reason no longer applies.
131     DiagnoseDeletedDefaultedFunction(Decl);
132     return;
133   }
134 
135   auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
136   if (Ctor && Ctor->isInheritingConstructor())
137     return NoteDeletedInheritingConstructor(Ctor);
138 
139   Diag(Decl->getLocation(), diag::note_availability_specified_here)
140     << Decl << 1;
141 }
142 
143 /// Determine whether a FunctionDecl was ever declared with an
144 /// explicit storage class.
145 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
146   for (auto *I : D->redecls()) {
147     if (I->getStorageClass() != SC_None)
148       return true;
149   }
150   return false;
151 }
152 
153 /// Check whether we're in an extern inline function and referring to a
154 /// variable or function with internal linkage (C11 6.7.4p3).
155 ///
156 /// This is only a warning because we used to silently accept this code, but
157 /// in many cases it will not behave correctly. This is not enabled in C++ mode
158 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
159 /// and so while there may still be user mistakes, most of the time we can't
160 /// prove that there are errors.
161 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
162                                                       const NamedDecl *D,
163                                                       SourceLocation Loc) {
164   // This is disabled under C++; there are too many ways for this to fire in
165   // contexts where the warning is a false positive, or where it is technically
166   // correct but benign.
167   if (S.getLangOpts().CPlusPlus)
168     return;
169 
170   // Check if this is an inlined function or method.
171   FunctionDecl *Current = S.getCurFunctionDecl();
172   if (!Current)
173     return;
174   if (!Current->isInlined())
175     return;
176   if (!Current->isExternallyVisible())
177     return;
178 
179   // Check if the decl has internal linkage.
180   if (D->getFormalLinkage() != Linkage::Internal)
181     return;
182 
183   // Downgrade from ExtWarn to Extension if
184   //  (1) the supposedly external inline function is in the main file,
185   //      and probably won't be included anywhere else.
186   //  (2) the thing we're referencing is a pure function.
187   //  (3) the thing we're referencing is another inline function.
188   // This last can give us false negatives, but it's better than warning on
189   // wrappers for simple C library functions.
190   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
191   bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
192   if (!DowngradeWarning && UsedFn)
193     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
194 
195   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
196                                : diag::ext_internal_in_extern_inline)
197     << /*IsVar=*/!UsedFn << D;
198 
199   S.MaybeSuggestAddingStaticToDecl(Current);
200 
201   S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
202       << D;
203 }
204 
205 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
206   const FunctionDecl *First = Cur->getFirstDecl();
207 
208   // Suggest "static" on the function, if possible.
209   if (!hasAnyExplicitStorageClass(First)) {
210     SourceLocation DeclBegin = First->getSourceRange().getBegin();
211     Diag(DeclBegin, diag::note_convert_inline_to_static)
212       << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
213   }
214 }
215 
216 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
217                              const ObjCInterfaceDecl *UnknownObjCClass,
218                              bool ObjCPropertyAccess,
219                              bool AvoidPartialAvailabilityChecks,
220                              ObjCInterfaceDecl *ClassReceiver,
221                              bool SkipTrailingRequiresClause) {
222   SourceLocation Loc = Locs.front();
223   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
224     // If there were any diagnostics suppressed by template argument deduction,
225     // emit them now.
226     auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
227     if (Pos != SuppressedDiagnostics.end()) {
228       for (const PartialDiagnosticAt &Suppressed : Pos->second)
229         Diag(Suppressed.first, Suppressed.second);
230 
231       // Clear out the list of suppressed diagnostics, so that we don't emit
232       // them again for this specialization. However, we don't obsolete this
233       // entry from the table, because we want to avoid ever emitting these
234       // diagnostics again.
235       Pos->second.clear();
236     }
237 
238     // C++ [basic.start.main]p3:
239     //   The function 'main' shall not be used within a program.
240     if (cast<FunctionDecl>(D)->isMain())
241       Diag(Loc, diag::ext_main_used);
242 
243     diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
244   }
245 
246   // See if this is an auto-typed variable whose initializer we are parsing.
247   if (ParsingInitForAutoVars.count(D)) {
248     if (isa<BindingDecl>(D)) {
249       Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
250         << D->getDeclName();
251     } else {
252       Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
253         << D->getDeclName() << cast<VarDecl>(D)->getType();
254     }
255     return true;
256   }
257 
258   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
259     // See if this is a deleted function.
260     if (FD->isDeleted()) {
261       auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
262       if (Ctor && Ctor->isInheritingConstructor())
263         Diag(Loc, diag::err_deleted_inherited_ctor_use)
264             << Ctor->getParent()
265             << Ctor->getInheritedConstructor().getConstructor()->getParent();
266       else {
267         StringLiteral *Msg = FD->getDeletedMessage();
268         Diag(Loc, diag::err_deleted_function_use)
269             << (Msg != nullptr) << (Msg ? Msg->getString() : StringRef());
270       }
271       NoteDeletedFunction(FD);
272       return true;
273     }
274 
275     // [expr.prim.id]p4
276     //   A program that refers explicitly or implicitly to a function with a
277     //   trailing requires-clause whose constraint-expression is not satisfied,
278     //   other than to declare it, is ill-formed. [...]
279     //
280     // See if this is a function with constraints that need to be satisfied.
281     // Check this before deducing the return type, as it might instantiate the
282     // definition.
283     if (!SkipTrailingRequiresClause && FD->getTrailingRequiresClause()) {
284       ConstraintSatisfaction Satisfaction;
285       if (CheckFunctionConstraints(FD, Satisfaction, Loc,
286                                    /*ForOverloadResolution*/ true))
287         // A diagnostic will have already been generated (non-constant
288         // constraint expression, for example)
289         return true;
290       if (!Satisfaction.IsSatisfied) {
291         Diag(Loc,
292              diag::err_reference_to_function_with_unsatisfied_constraints)
293             << D;
294         DiagnoseUnsatisfiedConstraint(Satisfaction);
295         return true;
296       }
297     }
298 
299     // If the function has a deduced return type, and we can't deduce it,
300     // then we can't use it either.
301     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
302         DeduceReturnType(FD, Loc))
303       return true;
304 
305     if (getLangOpts().CUDA && !CUDA().CheckCall(Loc, FD))
306       return true;
307 
308   }
309 
310   if (auto *Concept = dyn_cast<ConceptDecl>(D);
311       Concept && CheckConceptUseInDefinition(Concept, Loc))
312     return true;
313 
314   if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
315     // Lambdas are only default-constructible or assignable in C++2a onwards.
316     if (MD->getParent()->isLambda() &&
317         ((isa<CXXConstructorDecl>(MD) &&
318           cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
319          MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
320       Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
321         << !isa<CXXConstructorDecl>(MD);
322     }
323   }
324 
325   auto getReferencedObjCProp = [](const NamedDecl *D) ->
326                                       const ObjCPropertyDecl * {
327     if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
328       return MD->findPropertyDecl();
329     return nullptr;
330   };
331   if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
332     if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
333       return true;
334   } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
335       return true;
336   }
337 
338   // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
339   // Only the variables omp_in and omp_out are allowed in the combiner.
340   // Only the variables omp_priv and omp_orig are allowed in the
341   // initializer-clause.
342   auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
343   if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
344       isa<VarDecl>(D)) {
345     Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
346         << getCurFunction()->HasOMPDeclareReductionCombiner;
347     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
348     return true;
349   }
350 
351   // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
352   //  List-items in map clauses on this construct may only refer to the declared
353   //  variable var and entities that could be referenced by a procedure defined
354   //  at the same location.
355   // [OpenMP 5.2] Also allow iterator declared variables.
356   if (LangOpts.OpenMP && isa<VarDecl>(D) &&
357       !OpenMP().isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) {
358     Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
359         << OpenMP().getOpenMPDeclareMapperVarName();
360     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
361     return true;
362   }
363 
364   if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(D)) {
365     Diag(Loc, diag::err_use_of_empty_using_if_exists);
366     Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here);
367     return true;
368   }
369 
370   DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
371                              AvoidPartialAvailabilityChecks, ClassReceiver);
372 
373   DiagnoseUnusedOfDecl(*this, D, Loc);
374 
375   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
376 
377   if (D->hasAttr<AvailableOnlyInDefaultEvalMethodAttr>()) {
378     if (getLangOpts().getFPEvalMethod() !=
379             LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine &&
380         PP.getLastFPEvalPragmaLocation().isValid() &&
381         PP.getCurrentFPEvalMethod() != getLangOpts().getFPEvalMethod())
382       Diag(D->getLocation(),
383            diag::err_type_available_only_in_default_eval_method)
384           << D->getName();
385   }
386 
387   if (auto *VD = dyn_cast<ValueDecl>(D))
388     checkTypeSupport(VD->getType(), Loc, VD);
389 
390   if (LangOpts.SYCLIsDevice ||
391       (LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice)) {
392     if (!Context.getTargetInfo().isTLSSupported())
393       if (const auto *VD = dyn_cast<VarDecl>(D))
394         if (VD->getTLSKind() != VarDecl::TLS_None)
395           targetDiag(*Locs.begin(), diag::err_thread_unsupported);
396   }
397 
398   if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
399       !isUnevaluatedContext()) {
400     // C++ [expr.prim.req.nested] p3
401     //   A local parameter shall only appear as an unevaluated operand
402     //   (Clause 8) within the constraint-expression.
403     Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
404         << D;
405     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
406     return true;
407   }
408 
409   return false;
410 }
411 
412 void Sema::DiagnoseSentinelCalls(const NamedDecl *D, SourceLocation Loc,
413                                  ArrayRef<Expr *> Args) {
414   const SentinelAttr *Attr = D->getAttr<SentinelAttr>();
415   if (!Attr)
416     return;
417 
418   // The number of formal parameters of the declaration.
419   unsigned NumFormalParams;
420 
421   // The kind of declaration.  This is also an index into a %select in
422   // the diagnostic.
423   enum { CK_Function, CK_Method, CK_Block } CalleeKind;
424 
425   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
426     NumFormalParams = MD->param_size();
427     CalleeKind = CK_Method;
428   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
429     NumFormalParams = FD->param_size();
430     CalleeKind = CK_Function;
431   } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
432     QualType Ty = VD->getType();
433     const FunctionType *Fn = nullptr;
434     if (const auto *PtrTy = Ty->getAs<PointerType>()) {
435       Fn = PtrTy->getPointeeType()->getAs<FunctionType>();
436       if (!Fn)
437         return;
438       CalleeKind = CK_Function;
439     } else if (const auto *PtrTy = Ty->getAs<BlockPointerType>()) {
440       Fn = PtrTy->getPointeeType()->castAs<FunctionType>();
441       CalleeKind = CK_Block;
442     } else {
443       return;
444     }
445 
446     if (const auto *proto = dyn_cast<FunctionProtoType>(Fn))
447       NumFormalParams = proto->getNumParams();
448     else
449       NumFormalParams = 0;
450   } else {
451     return;
452   }
453 
454   // "NullPos" is the number of formal parameters at the end which
455   // effectively count as part of the variadic arguments.  This is
456   // useful if you would prefer to not have *any* formal parameters,
457   // but the language forces you to have at least one.
458   unsigned NullPos = Attr->getNullPos();
459   assert((NullPos == 0 || NullPos == 1) && "invalid null position on sentinel");
460   NumFormalParams = (NullPos > NumFormalParams ? 0 : NumFormalParams - NullPos);
461 
462   // The number of arguments which should follow the sentinel.
463   unsigned NumArgsAfterSentinel = Attr->getSentinel();
464 
465   // If there aren't enough arguments for all the formal parameters,
466   // the sentinel, and the args after the sentinel, complain.
467   if (Args.size() < NumFormalParams + NumArgsAfterSentinel + 1) {
468     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
469     Diag(D->getLocation(), diag::note_sentinel_here) << int(CalleeKind);
470     return;
471   }
472 
473   // Otherwise, find the sentinel expression.
474   const Expr *SentinelExpr = Args[Args.size() - NumArgsAfterSentinel - 1];
475   if (!SentinelExpr)
476     return;
477   if (SentinelExpr->isValueDependent())
478     return;
479   if (Context.isSentinelNullExpr(SentinelExpr))
480     return;
481 
482   // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
483   // or 'NULL' if those are actually defined in the context.  Only use
484   // 'nil' for ObjC methods, where it's much more likely that the
485   // variadic arguments form a list of object pointers.
486   SourceLocation MissingNilLoc = getLocForEndOfToken(SentinelExpr->getEndLoc());
487   std::string NullValue;
488   if (CalleeKind == CK_Method && PP.isMacroDefined("nil"))
489     NullValue = "nil";
490   else if (getLangOpts().CPlusPlus11)
491     NullValue = "nullptr";
492   else if (PP.isMacroDefined("NULL"))
493     NullValue = "NULL";
494   else
495     NullValue = "(void*) 0";
496 
497   if (MissingNilLoc.isInvalid())
498     Diag(Loc, diag::warn_missing_sentinel) << int(CalleeKind);
499   else
500     Diag(MissingNilLoc, diag::warn_missing_sentinel)
501         << int(CalleeKind)
502         << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
503   Diag(D->getLocation(), diag::note_sentinel_here)
504       << int(CalleeKind) << Attr->getRange();
505 }
506 
507 SourceRange Sema::getExprRange(Expr *E) const {
508   return E ? E->getSourceRange() : SourceRange();
509 }
510 
511 //===----------------------------------------------------------------------===//
512 //  Standard Promotions and Conversions
513 //===----------------------------------------------------------------------===//
514 
515 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
516 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
517   // Handle any placeholder expressions which made it here.
518   if (E->hasPlaceholderType()) {
519     ExprResult result = CheckPlaceholderExpr(E);
520     if (result.isInvalid()) return ExprError();
521     E = result.get();
522   }
523 
524   QualType Ty = E->getType();
525   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
526 
527   if (Ty->isFunctionType()) {
528     if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
529       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
530         if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
531           return ExprError();
532 
533     E = ImpCastExprToType(E, Context.getPointerType(Ty),
534                           CK_FunctionToPointerDecay).get();
535   } else if (Ty->isArrayType()) {
536     // In C90 mode, arrays only promote to pointers if the array expression is
537     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
538     // type 'array of type' is converted to an expression that has type 'pointer
539     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
540     // that has type 'array of type' ...".  The relevant change is "an lvalue"
541     // (C90) to "an expression" (C99).
542     //
543     // C++ 4.2p1:
544     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
545     // T" can be converted to an rvalue of type "pointer to T".
546     //
547     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) {
548       ExprResult Res = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
549                                          CK_ArrayToPointerDecay);
550       if (Res.isInvalid())
551         return ExprError();
552       E = Res.get();
553     }
554   }
555   return E;
556 }
557 
558 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
559   // Check to see if we are dereferencing a null pointer.  If so,
560   // and if not volatile-qualified, this is undefined behavior that the
561   // optimizer will delete, so warn about it.  People sometimes try to use this
562   // to get a deterministic trap and are surprised by clang's behavior.  This
563   // only handles the pattern "*null", which is a very syntactic check.
564   const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
565   if (UO && UO->getOpcode() == UO_Deref &&
566       UO->getSubExpr()->getType()->isPointerType()) {
567     const LangAS AS =
568         UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
569     if ((!isTargetAddressSpace(AS) ||
570          (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
571         UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
572             S.Context, Expr::NPC_ValueDependentIsNotNull) &&
573         !UO->getType().isVolatileQualified()) {
574       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
575                             S.PDiag(diag::warn_indirection_through_null)
576                                 << UO->getSubExpr()->getSourceRange());
577       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
578                             S.PDiag(diag::note_indirection_through_null));
579     }
580   }
581 }
582 
583 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
584                                     SourceLocation AssignLoc,
585                                     const Expr* RHS) {
586   const ObjCIvarDecl *IV = OIRE->getDecl();
587   if (!IV)
588     return;
589 
590   DeclarationName MemberName = IV->getDeclName();
591   IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
592   if (!Member || !Member->isStr("isa"))
593     return;
594 
595   const Expr *Base = OIRE->getBase();
596   QualType BaseType = Base->getType();
597   if (OIRE->isArrow())
598     BaseType = BaseType->getPointeeType();
599   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
600     if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
601       ObjCInterfaceDecl *ClassDeclared = nullptr;
602       ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
603       if (!ClassDeclared->getSuperClass()
604           && (*ClassDeclared->ivar_begin()) == IV) {
605         if (RHS) {
606           NamedDecl *ObjectSetClass =
607             S.LookupSingleName(S.TUScope,
608                                &S.Context.Idents.get("object_setClass"),
609                                SourceLocation(), S.LookupOrdinaryName);
610           if (ObjectSetClass) {
611             SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
612             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
613                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
614                                               "object_setClass(")
615                 << FixItHint::CreateReplacement(
616                        SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
617                 << FixItHint::CreateInsertion(RHSLocEnd, ")");
618           }
619           else
620             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
621         } else {
622           NamedDecl *ObjectGetClass =
623             S.LookupSingleName(S.TUScope,
624                                &S.Context.Idents.get("object_getClass"),
625                                SourceLocation(), S.LookupOrdinaryName);
626           if (ObjectGetClass)
627             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
628                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
629                                               "object_getClass(")
630                 << FixItHint::CreateReplacement(
631                        SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
632           else
633             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
634         }
635         S.Diag(IV->getLocation(), diag::note_ivar_decl);
636       }
637     }
638 }
639 
640 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
641   // Handle any placeholder expressions which made it here.
642   if (E->hasPlaceholderType()) {
643     ExprResult result = CheckPlaceholderExpr(E);
644     if (result.isInvalid()) return ExprError();
645     E = result.get();
646   }
647 
648   // C++ [conv.lval]p1:
649   //   A glvalue of a non-function, non-array type T can be
650   //   converted to a prvalue.
651   if (!E->isGLValue()) return E;
652 
653   QualType T = E->getType();
654   assert(!T.isNull() && "r-value conversion on typeless expression?");
655 
656   // lvalue-to-rvalue conversion cannot be applied to types that decay to
657   // pointers (i.e. function or array types).
658   if (T->canDecayToPointerType())
659     return E;
660 
661   // We don't want to throw lvalue-to-rvalue casts on top of
662   // expressions of certain types in C++.
663   if (getLangOpts().CPlusPlus) {
664     if (T == Context.OverloadTy || T->isRecordType() ||
665         (T->isDependentType() && !T->isAnyPointerType() &&
666          !T->isMemberPointerType()))
667       return E;
668   }
669 
670   // The C standard is actually really unclear on this point, and
671   // DR106 tells us what the result should be but not why.  It's
672   // generally best to say that void types just doesn't undergo
673   // lvalue-to-rvalue at all.  Note that expressions of unqualified
674   // 'void' type are never l-values, but qualified void can be.
675   if (T->isVoidType())
676     return E;
677 
678   // OpenCL usually rejects direct accesses to values of 'half' type.
679   if (getLangOpts().OpenCL &&
680       !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
681       T->isHalfType()) {
682     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
683       << 0 << T;
684     return ExprError();
685   }
686 
687   CheckForNullPointerDereference(*this, E);
688   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
689     NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
690                                      &Context.Idents.get("object_getClass"),
691                                      SourceLocation(), LookupOrdinaryName);
692     if (ObjectGetClass)
693       Diag(E->getExprLoc(), diag::warn_objc_isa_use)
694           << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
695           << FixItHint::CreateReplacement(
696                  SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
697     else
698       Diag(E->getExprLoc(), diag::warn_objc_isa_use);
699   }
700   else if (const ObjCIvarRefExpr *OIRE =
701             dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
702     DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
703 
704   // C++ [conv.lval]p1:
705   //   [...] If T is a non-class type, the type of the prvalue is the
706   //   cv-unqualified version of T. Otherwise, the type of the
707   //   rvalue is T.
708   //
709   // C99 6.3.2.1p2:
710   //   If the lvalue has qualified type, the value has the unqualified
711   //   version of the type of the lvalue; otherwise, the value has the
712   //   type of the lvalue.
713   if (T.hasQualifiers())
714     T = T.getUnqualifiedType();
715 
716   // Under the MS ABI, lock down the inheritance model now.
717   if (T->isMemberPointerType() &&
718       Context.getTargetInfo().getCXXABI().isMicrosoft())
719     (void)isCompleteType(E->getExprLoc(), T);
720 
721   ExprResult Res = CheckLValueToRValueConversionOperand(E);
722   if (Res.isInvalid())
723     return Res;
724   E = Res.get();
725 
726   // Loading a __weak object implicitly retains the value, so we need a cleanup to
727   // balance that.
728   if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
729     Cleanup.setExprNeedsCleanups(true);
730 
731   if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
732     Cleanup.setExprNeedsCleanups(true);
733 
734   // C++ [conv.lval]p3:
735   //   If T is cv std::nullptr_t, the result is a null pointer constant.
736   CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
737   Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_PRValue,
738                                  CurFPFeatureOverrides());
739 
740   // C11 6.3.2.1p2:
741   //   ... if the lvalue has atomic type, the value has the non-atomic version
742   //   of the type of the lvalue ...
743   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
744     T = Atomic->getValueType().getUnqualifiedType();
745     Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
746                                    nullptr, VK_PRValue, FPOptionsOverride());
747   }
748 
749   return Res;
750 }
751 
752 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
753   ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
754   if (Res.isInvalid())
755     return ExprError();
756   Res = DefaultLvalueConversion(Res.get());
757   if (Res.isInvalid())
758     return ExprError();
759   return Res;
760 }
761 
762 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
763   QualType Ty = E->getType();
764   ExprResult Res = E;
765   // Only do implicit cast for a function type, but not for a pointer
766   // to function type.
767   if (Ty->isFunctionType()) {
768     Res = ImpCastExprToType(E, Context.getPointerType(Ty),
769                             CK_FunctionToPointerDecay);
770     if (Res.isInvalid())
771       return ExprError();
772   }
773   Res = DefaultLvalueConversion(Res.get());
774   if (Res.isInvalid())
775     return ExprError();
776   return Res.get();
777 }
778 
779 /// UsualUnaryFPConversions - Promotes floating-point types according to the
780 /// current language semantics.
781 ExprResult Sema::UsualUnaryFPConversions(Expr *E) {
782   QualType Ty = E->getType();
783   assert(!Ty.isNull() && "UsualUnaryFPConversions - missing type");
784 
785   LangOptions::FPEvalMethodKind EvalMethod = CurFPFeatures.getFPEvalMethod();
786   if (EvalMethod != LangOptions::FEM_Source && Ty->isFloatingType() &&
787       (getLangOpts().getFPEvalMethod() !=
788            LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine ||
789        PP.getLastFPEvalPragmaLocation().isValid())) {
790     switch (EvalMethod) {
791     default:
792       llvm_unreachable("Unrecognized float evaluation method");
793       break;
794     case LangOptions::FEM_UnsetOnCommandLine:
795       llvm_unreachable("Float evaluation method should be set by now");
796       break;
797     case LangOptions::FEM_Double:
798       if (Context.getFloatingTypeOrder(Context.DoubleTy, Ty) > 0)
799         // Widen the expression to double.
800         return Ty->isComplexType()
801                    ? ImpCastExprToType(E,
802                                        Context.getComplexType(Context.DoubleTy),
803                                        CK_FloatingComplexCast)
804                    : ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast);
805       break;
806     case LangOptions::FEM_Extended:
807       if (Context.getFloatingTypeOrder(Context.LongDoubleTy, Ty) > 0)
808         // Widen the expression to long double.
809         return Ty->isComplexType()
810                    ? ImpCastExprToType(
811                          E, Context.getComplexType(Context.LongDoubleTy),
812                          CK_FloatingComplexCast)
813                    : ImpCastExprToType(E, Context.LongDoubleTy,
814                                        CK_FloatingCast);
815       break;
816     }
817   }
818 
819   // Half FP have to be promoted to float unless it is natively supported
820   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
821     return ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast);
822 
823   return E;
824 }
825 
826 /// UsualUnaryConversions - Performs various conversions that are common to most
827 /// operators (C99 6.3). The conversions of array and function types are
828 /// sometimes suppressed. For example, the array->pointer conversion doesn't
829 /// apply if the array is an argument to the sizeof or address (&) operators.
830 /// In these instances, this routine should *not* be called.
831 ExprResult Sema::UsualUnaryConversions(Expr *E) {
832   // First, convert to an r-value.
833   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
834   if (Res.isInvalid())
835     return ExprError();
836 
837   // Promote floating-point types.
838   Res = UsualUnaryFPConversions(Res.get());
839   if (Res.isInvalid())
840     return ExprError();
841   E = Res.get();
842 
843   QualType Ty = E->getType();
844   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
845 
846   // Try to perform integral promotions if the object has a theoretically
847   // promotable type.
848   if (Ty->isIntegralOrUnscopedEnumerationType()) {
849     // C99 6.3.1.1p2:
850     //
851     //   The following may be used in an expression wherever an int or
852     //   unsigned int may be used:
853     //     - an object or expression with an integer type whose integer
854     //       conversion rank is less than or equal to the rank of int
855     //       and unsigned int.
856     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
857     //
858     //   If an int can represent all values of the original type, the
859     //   value is converted to an int; otherwise, it is converted to an
860     //   unsigned int. These are called the integer promotions. All
861     //   other types are unchanged by the integer promotions.
862 
863     QualType PTy = Context.isPromotableBitField(E);
864     if (!PTy.isNull()) {
865       E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
866       return E;
867     }
868     if (Context.isPromotableIntegerType(Ty)) {
869       QualType PT = Context.getPromotedIntegerType(Ty);
870       E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
871       return E;
872     }
873   }
874   return E;
875 }
876 
877 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
878 /// do not have a prototype. Arguments that have type float or __fp16
879 /// are promoted to double. All other argument types are converted by
880 /// UsualUnaryConversions().
881 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
882   QualType Ty = E->getType();
883   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
884 
885   ExprResult Res = UsualUnaryConversions(E);
886   if (Res.isInvalid())
887     return ExprError();
888   E = Res.get();
889 
890   // If this is a 'float'  or '__fp16' (CVR qualified or typedef)
891   // promote to double.
892   // Note that default argument promotion applies only to float (and
893   // half/fp16); it does not apply to _Float16.
894   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
895   if (BTy && (BTy->getKind() == BuiltinType::Half ||
896               BTy->getKind() == BuiltinType::Float)) {
897     if (getLangOpts().OpenCL &&
898         !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) {
899       if (BTy->getKind() == BuiltinType::Half) {
900         E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
901       }
902     } else {
903       E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
904     }
905   }
906   if (BTy &&
907       getLangOpts().getExtendIntArgs() ==
908           LangOptions::ExtendArgsKind::ExtendTo64 &&
909       Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() &&
910       Context.getTypeSizeInChars(BTy) <
911           Context.getTypeSizeInChars(Context.LongLongTy)) {
912     E = (Ty->isUnsignedIntegerType())
913             ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast)
914                   .get()
915             : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get();
916     assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&
917            "Unexpected typesize for LongLongTy");
918   }
919 
920   // C++ performs lvalue-to-rvalue conversion as a default argument
921   // promotion, even on class types, but note:
922   //   C++11 [conv.lval]p2:
923   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
924   //     operand or a subexpression thereof the value contained in the
925   //     referenced object is not accessed. Otherwise, if the glvalue
926   //     has a class type, the conversion copy-initializes a temporary
927   //     of type T from the glvalue and the result of the conversion
928   //     is a prvalue for the temporary.
929   // FIXME: add some way to gate this entire thing for correctness in
930   // potentially potentially evaluated contexts.
931   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
932     ExprResult Temp = PerformCopyInitialization(
933                        InitializedEntity::InitializeTemporary(E->getType()),
934                                                 E->getExprLoc(), E);
935     if (Temp.isInvalid())
936       return ExprError();
937     E = Temp.get();
938   }
939 
940   // C++ [expr.call]p7, per CWG722:
941   //   An argument that has (possibly cv-qualified) type std::nullptr_t is
942   //   converted to void* ([conv.ptr]).
943   // (This does not apply to C23 nullptr)
944   if (getLangOpts().CPlusPlus && E->getType()->isNullPtrType())
945     E = ImpCastExprToType(E, Context.VoidPtrTy, CK_NullToPointer).get();
946 
947   return E;
948 }
949 
950 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
951   if (Ty->isIncompleteType()) {
952     // C++11 [expr.call]p7:
953     //   After these conversions, if the argument does not have arithmetic,
954     //   enumeration, pointer, pointer to member, or class type, the program
955     //   is ill-formed.
956     //
957     // Since we've already performed null pointer conversion, array-to-pointer
958     // decay and function-to-pointer decay, the only such type in C++ is cv
959     // void. This also handles initializer lists as variadic arguments.
960     if (Ty->isVoidType())
961       return VAK_Invalid;
962 
963     if (Ty->isObjCObjectType())
964       return VAK_Invalid;
965     return VAK_Valid;
966   }
967 
968   if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
969     return VAK_Invalid;
970 
971   if (Context.getTargetInfo().getTriple().isWasm() &&
972       Ty.isWebAssemblyReferenceType()) {
973     return VAK_Invalid;
974   }
975 
976   if (Ty.isCXX98PODType(Context))
977     return VAK_Valid;
978 
979   // C++11 [expr.call]p7:
980   //   Passing a potentially-evaluated argument of class type (Clause 9)
981   //   having a non-trivial copy constructor, a non-trivial move constructor,
982   //   or a non-trivial destructor, with no corresponding parameter,
983   //   is conditionally-supported with implementation-defined semantics.
984   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
985     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
986       if (!Record->hasNonTrivialCopyConstructor() &&
987           !Record->hasNonTrivialMoveConstructor() &&
988           !Record->hasNonTrivialDestructor())
989         return VAK_ValidInCXX11;
990 
991   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
992     return VAK_Valid;
993 
994   if (Ty->isObjCObjectType())
995     return VAK_Invalid;
996 
997   if (getLangOpts().HLSL && Ty->getAs<HLSLAttributedResourceType>())
998     return VAK_Valid;
999 
1000   if (getLangOpts().MSVCCompat)
1001     return VAK_MSVCUndefined;
1002 
1003   if (getLangOpts().HLSL && Ty->getAs<HLSLAttributedResourceType>())
1004     return VAK_Valid;
1005 
1006   // FIXME: In C++11, these cases are conditionally-supported, meaning we're
1007   // permitted to reject them. We should consider doing so.
1008   return VAK_Undefined;
1009 }
1010 
1011 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
1012   // Don't allow one to pass an Objective-C interface to a vararg.
1013   const QualType &Ty = E->getType();
1014   VarArgKind VAK = isValidVarArgType(Ty);
1015 
1016   // Complain about passing non-POD types through varargs.
1017   switch (VAK) {
1018   case VAK_ValidInCXX11:
1019     DiagRuntimeBehavior(
1020         E->getBeginLoc(), nullptr,
1021         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
1022     [[fallthrough]];
1023   case VAK_Valid:
1024     if (Ty->isRecordType()) {
1025       // This is unlikely to be what the user intended. If the class has a
1026       // 'c_str' member function, the user probably meant to call that.
1027       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1028                           PDiag(diag::warn_pass_class_arg_to_vararg)
1029                               << Ty << CT << hasCStrMethod(E) << ".c_str()");
1030     }
1031     break;
1032 
1033   case VAK_Undefined:
1034   case VAK_MSVCUndefined:
1035     DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1036                         PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
1037                             << getLangOpts().CPlusPlus11 << Ty << CT);
1038     break;
1039 
1040   case VAK_Invalid:
1041     if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
1042       Diag(E->getBeginLoc(),
1043            diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
1044           << Ty << CT;
1045     else if (Ty->isObjCObjectType())
1046       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1047                           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
1048                               << Ty << CT);
1049     else
1050       Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
1051           << isa<InitListExpr>(E) << Ty << CT;
1052     break;
1053   }
1054 }
1055 
1056 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
1057                                                   FunctionDecl *FDecl) {
1058   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
1059     // Strip the unbridged-cast placeholder expression off, if applicable.
1060     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
1061         (CT == VariadicMethod ||
1062          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
1063       E = ObjC().stripARCUnbridgedCast(E);
1064 
1065       // Otherwise, do normal placeholder checking.
1066     } else {
1067       ExprResult ExprRes = CheckPlaceholderExpr(E);
1068       if (ExprRes.isInvalid())
1069         return ExprError();
1070       E = ExprRes.get();
1071     }
1072   }
1073 
1074   ExprResult ExprRes = DefaultArgumentPromotion(E);
1075   if (ExprRes.isInvalid())
1076     return ExprError();
1077 
1078   // Copy blocks to the heap.
1079   if (ExprRes.get()->getType()->isBlockPointerType())
1080     maybeExtendBlockObject(ExprRes);
1081 
1082   E = ExprRes.get();
1083 
1084   // Diagnostics regarding non-POD argument types are
1085   // emitted along with format string checking in Sema::CheckFunctionCall().
1086   if (isValidVarArgType(E->getType()) == VAK_Undefined) {
1087     // Turn this into a trap.
1088     CXXScopeSpec SS;
1089     SourceLocation TemplateKWLoc;
1090     UnqualifiedId Name;
1091     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
1092                        E->getBeginLoc());
1093     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
1094                                           /*HasTrailingLParen=*/true,
1095                                           /*IsAddressOfOperand=*/false);
1096     if (TrapFn.isInvalid())
1097       return ExprError();
1098 
1099     ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(), {},
1100                                     E->getEndLoc());
1101     if (Call.isInvalid())
1102       return ExprError();
1103 
1104     ExprResult Comma =
1105         ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
1106     if (Comma.isInvalid())
1107       return ExprError();
1108     return Comma.get();
1109   }
1110 
1111   if (!getLangOpts().CPlusPlus &&
1112       RequireCompleteType(E->getExprLoc(), E->getType(),
1113                           diag::err_call_incomplete_argument))
1114     return ExprError();
1115 
1116   return E;
1117 }
1118 
1119 /// Convert complex integers to complex floats and real integers to
1120 /// real floats as required for complex arithmetic. Helper function of
1121 /// UsualArithmeticConversions()
1122 ///
1123 /// \return false if the integer expression is an integer type and is
1124 /// successfully converted to the (complex) float type.
1125 static bool handleComplexIntegerToFloatConversion(Sema &S, ExprResult &IntExpr,
1126                                                   ExprResult &ComplexExpr,
1127                                                   QualType IntTy,
1128                                                   QualType ComplexTy,
1129                                                   bool SkipCast) {
1130   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1131   if (SkipCast) return false;
1132   if (IntTy->isIntegerType()) {
1133     QualType fpTy = ComplexTy->castAs<ComplexType>()->getElementType();
1134     IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1135   } else {
1136     assert(IntTy->isComplexIntegerType());
1137     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1138                                   CK_IntegralComplexToFloatingComplex);
1139   }
1140   return false;
1141 }
1142 
1143 // This handles complex/complex, complex/float, or float/complex.
1144 // When both operands are complex, the shorter operand is converted to the
1145 // type of the longer, and that is the type of the result. This corresponds
1146 // to what is done when combining two real floating-point operands.
1147 // The fun begins when size promotion occur across type domains.
1148 // From H&S 6.3.4: When one operand is complex and the other is a real
1149 // floating-point type, the less precise type is converted, within it's
1150 // real or complex domain, to the precision of the other type. For example,
1151 // when combining a "long double" with a "double _Complex", the
1152 // "double _Complex" is promoted to "long double _Complex".
1153 static QualType handleComplexFloatConversion(Sema &S, ExprResult &Shorter,
1154                                              QualType ShorterType,
1155                                              QualType LongerType,
1156                                              bool PromotePrecision) {
1157   bool LongerIsComplex = isa<ComplexType>(LongerType.getCanonicalType());
1158   QualType Result =
1159       LongerIsComplex ? LongerType : S.Context.getComplexType(LongerType);
1160 
1161   if (PromotePrecision) {
1162     if (isa<ComplexType>(ShorterType.getCanonicalType())) {
1163       Shorter =
1164           S.ImpCastExprToType(Shorter.get(), Result, CK_FloatingComplexCast);
1165     } else {
1166       if (LongerIsComplex)
1167         LongerType = LongerType->castAs<ComplexType>()->getElementType();
1168       Shorter = S.ImpCastExprToType(Shorter.get(), LongerType, CK_FloatingCast);
1169     }
1170   }
1171   return Result;
1172 }
1173 
1174 /// Handle arithmetic conversion with complex types.  Helper function of
1175 /// UsualArithmeticConversions()
1176 static QualType handleComplexConversion(Sema &S, ExprResult &LHS,
1177                                         ExprResult &RHS, QualType LHSType,
1178                                         QualType RHSType, bool IsCompAssign) {
1179   // Handle (complex) integer types.
1180   if (!handleComplexIntegerToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1181                                              /*SkipCast=*/false))
1182     return LHSType;
1183   if (!handleComplexIntegerToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1184                                              /*SkipCast=*/IsCompAssign))
1185     return RHSType;
1186 
1187   // Compute the rank of the two types, regardless of whether they are complex.
1188   int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1189   if (Order < 0)
1190     // Promote the precision of the LHS if not an assignment.
1191     return handleComplexFloatConversion(S, LHS, LHSType, RHSType,
1192                                         /*PromotePrecision=*/!IsCompAssign);
1193   // Promote the precision of the RHS unless it is already the same as the LHS.
1194   return handleComplexFloatConversion(S, RHS, RHSType, LHSType,
1195                                       /*PromotePrecision=*/Order > 0);
1196 }
1197 
1198 /// Handle arithmetic conversion from integer to float.  Helper function
1199 /// of UsualArithmeticConversions()
1200 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1201                                            ExprResult &IntExpr,
1202                                            QualType FloatTy, QualType IntTy,
1203                                            bool ConvertFloat, bool ConvertInt) {
1204   if (IntTy->isIntegerType()) {
1205     if (ConvertInt)
1206       // Convert intExpr to the lhs floating point type.
1207       IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1208                                     CK_IntegralToFloating);
1209     return FloatTy;
1210   }
1211 
1212   // Convert both sides to the appropriate complex float.
1213   assert(IntTy->isComplexIntegerType());
1214   QualType result = S.Context.getComplexType(FloatTy);
1215 
1216   // _Complex int -> _Complex float
1217   if (ConvertInt)
1218     IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1219                                   CK_IntegralComplexToFloatingComplex);
1220 
1221   // float -> _Complex float
1222   if (ConvertFloat)
1223     FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1224                                     CK_FloatingRealToComplex);
1225 
1226   return result;
1227 }
1228 
1229 /// Handle arithmethic conversion with floating point types.  Helper
1230 /// function of UsualArithmeticConversions()
1231 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1232                                       ExprResult &RHS, QualType LHSType,
1233                                       QualType RHSType, bool IsCompAssign) {
1234   bool LHSFloat = LHSType->isRealFloatingType();
1235   bool RHSFloat = RHSType->isRealFloatingType();
1236 
1237   // N1169 4.1.4: If one of the operands has a floating type and the other
1238   //              operand has a fixed-point type, the fixed-point operand
1239   //              is converted to the floating type [...]
1240   if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) {
1241     if (LHSFloat)
1242       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating);
1243     else if (!IsCompAssign)
1244       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating);
1245     return LHSFloat ? LHSType : RHSType;
1246   }
1247 
1248   // If we have two real floating types, convert the smaller operand
1249   // to the bigger result.
1250   if (LHSFloat && RHSFloat) {
1251     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1252     if (order > 0) {
1253       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1254       return LHSType;
1255     }
1256 
1257     assert(order < 0 && "illegal float comparison");
1258     if (!IsCompAssign)
1259       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1260     return RHSType;
1261   }
1262 
1263   if (LHSFloat) {
1264     // Half FP has to be promoted to float unless it is natively supported
1265     if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1266       LHSType = S.Context.FloatTy;
1267 
1268     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1269                                       /*ConvertFloat=*/!IsCompAssign,
1270                                       /*ConvertInt=*/ true);
1271   }
1272   assert(RHSFloat);
1273   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1274                                     /*ConvertFloat=*/ true,
1275                                     /*ConvertInt=*/!IsCompAssign);
1276 }
1277 
1278 /// Diagnose attempts to convert between __float128, __ibm128 and
1279 /// long double if there is no support for such conversion.
1280 /// Helper function of UsualArithmeticConversions().
1281 static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1282                                       QualType RHSType) {
1283   // No issue if either is not a floating point type.
1284   if (!LHSType->isFloatingType() || !RHSType->isFloatingType())
1285     return false;
1286 
1287   // No issue if both have the same 128-bit float semantics.
1288   auto *LHSComplex = LHSType->getAs<ComplexType>();
1289   auto *RHSComplex = RHSType->getAs<ComplexType>();
1290 
1291   QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType;
1292   QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType;
1293 
1294   const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(LHSElem);
1295   const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(RHSElem);
1296 
1297   if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() ||
1298        &RHSSem != &llvm::APFloat::IEEEquad()) &&
1299       (&LHSSem != &llvm::APFloat::IEEEquad() ||
1300        &RHSSem != &llvm::APFloat::PPCDoubleDouble()))
1301     return false;
1302 
1303   return true;
1304 }
1305 
1306 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1307 
1308 namespace {
1309 /// These helper callbacks are placed in an anonymous namespace to
1310 /// permit their use as function template parameters.
1311 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1312   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1313 }
1314 
1315 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1316   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1317                              CK_IntegralComplexCast);
1318 }
1319 }
1320 
1321 /// Handle integer arithmetic conversions.  Helper function of
1322 /// UsualArithmeticConversions()
1323 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1324 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1325                                         ExprResult &RHS, QualType LHSType,
1326                                         QualType RHSType, bool IsCompAssign) {
1327   // The rules for this case are in C99 6.3.1.8
1328   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1329   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1330   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1331   if (LHSSigned == RHSSigned) {
1332     // Same signedness; use the higher-ranked type
1333     if (order >= 0) {
1334       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1335       return LHSType;
1336     } else if (!IsCompAssign)
1337       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1338     return RHSType;
1339   } else if (order != (LHSSigned ? 1 : -1)) {
1340     // The unsigned type has greater than or equal rank to the
1341     // signed type, so use the unsigned type
1342     if (RHSSigned) {
1343       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1344       return LHSType;
1345     } else if (!IsCompAssign)
1346       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1347     return RHSType;
1348   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1349     // The two types are different widths; if we are here, that
1350     // means the signed type is larger than the unsigned type, so
1351     // use the signed type.
1352     if (LHSSigned) {
1353       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1354       return LHSType;
1355     } else if (!IsCompAssign)
1356       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1357     return RHSType;
1358   } else {
1359     // The signed type is higher-ranked than the unsigned type,
1360     // but isn't actually any bigger (like unsigned int and long
1361     // on most 32-bit systems).  Use the unsigned type corresponding
1362     // to the signed type.
1363     QualType result =
1364       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1365     RHS = (*doRHSCast)(S, RHS.get(), result);
1366     if (!IsCompAssign)
1367       LHS = (*doLHSCast)(S, LHS.get(), result);
1368     return result;
1369   }
1370 }
1371 
1372 /// Handle conversions with GCC complex int extension.  Helper function
1373 /// of UsualArithmeticConversions()
1374 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1375                                            ExprResult &RHS, QualType LHSType,
1376                                            QualType RHSType,
1377                                            bool IsCompAssign) {
1378   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1379   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1380 
1381   if (LHSComplexInt && RHSComplexInt) {
1382     QualType LHSEltType = LHSComplexInt->getElementType();
1383     QualType RHSEltType = RHSComplexInt->getElementType();
1384     QualType ScalarType =
1385       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1386         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1387 
1388     return S.Context.getComplexType(ScalarType);
1389   }
1390 
1391   if (LHSComplexInt) {
1392     QualType LHSEltType = LHSComplexInt->getElementType();
1393     QualType ScalarType =
1394       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1395         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1396     QualType ComplexType = S.Context.getComplexType(ScalarType);
1397     RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1398                               CK_IntegralRealToComplex);
1399 
1400     return ComplexType;
1401   }
1402 
1403   assert(RHSComplexInt);
1404 
1405   QualType RHSEltType = RHSComplexInt->getElementType();
1406   QualType ScalarType =
1407     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1408       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1409   QualType ComplexType = S.Context.getComplexType(ScalarType);
1410 
1411   if (!IsCompAssign)
1412     LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1413                               CK_IntegralRealToComplex);
1414   return ComplexType;
1415 }
1416 
1417 /// Return the rank of a given fixed point or integer type. The value itself
1418 /// doesn't matter, but the values must be increasing with proper increasing
1419 /// rank as described in N1169 4.1.1.
1420 static unsigned GetFixedPointRank(QualType Ty) {
1421   const auto *BTy = Ty->getAs<BuiltinType>();
1422   assert(BTy && "Expected a builtin type.");
1423 
1424   switch (BTy->getKind()) {
1425   case BuiltinType::ShortFract:
1426   case BuiltinType::UShortFract:
1427   case BuiltinType::SatShortFract:
1428   case BuiltinType::SatUShortFract:
1429     return 1;
1430   case BuiltinType::Fract:
1431   case BuiltinType::UFract:
1432   case BuiltinType::SatFract:
1433   case BuiltinType::SatUFract:
1434     return 2;
1435   case BuiltinType::LongFract:
1436   case BuiltinType::ULongFract:
1437   case BuiltinType::SatLongFract:
1438   case BuiltinType::SatULongFract:
1439     return 3;
1440   case BuiltinType::ShortAccum:
1441   case BuiltinType::UShortAccum:
1442   case BuiltinType::SatShortAccum:
1443   case BuiltinType::SatUShortAccum:
1444     return 4;
1445   case BuiltinType::Accum:
1446   case BuiltinType::UAccum:
1447   case BuiltinType::SatAccum:
1448   case BuiltinType::SatUAccum:
1449     return 5;
1450   case BuiltinType::LongAccum:
1451   case BuiltinType::ULongAccum:
1452   case BuiltinType::SatLongAccum:
1453   case BuiltinType::SatULongAccum:
1454     return 6;
1455   default:
1456     if (BTy->isInteger())
1457       return 0;
1458     llvm_unreachable("Unexpected fixed point or integer type");
1459   }
1460 }
1461 
1462 /// handleFixedPointConversion - Fixed point operations between fixed
1463 /// point types and integers or other fixed point types do not fall under
1464 /// usual arithmetic conversion since these conversions could result in loss
1465 /// of precsision (N1169 4.1.4). These operations should be calculated with
1466 /// the full precision of their result type (N1169 4.1.6.2.1).
1467 static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1468                                            QualType RHSTy) {
1469   assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
1470          "Expected at least one of the operands to be a fixed point type");
1471   assert((LHSTy->isFixedPointOrIntegerType() ||
1472           RHSTy->isFixedPointOrIntegerType()) &&
1473          "Special fixed point arithmetic operation conversions are only "
1474          "applied to ints or other fixed point types");
1475 
1476   // If one operand has signed fixed-point type and the other operand has
1477   // unsigned fixed-point type, then the unsigned fixed-point operand is
1478   // converted to its corresponding signed fixed-point type and the resulting
1479   // type is the type of the converted operand.
1480   if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1481     LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1482   else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1483     RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1484 
1485   // The result type is the type with the highest rank, whereby a fixed-point
1486   // conversion rank is always greater than an integer conversion rank; if the
1487   // type of either of the operands is a saturating fixedpoint type, the result
1488   // type shall be the saturating fixed-point type corresponding to the type
1489   // with the highest rank; the resulting value is converted (taking into
1490   // account rounding and overflow) to the precision of the resulting type.
1491   // Same ranks between signed and unsigned types are resolved earlier, so both
1492   // types are either signed or both unsigned at this point.
1493   unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1494   unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1495 
1496   QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1497 
1498   if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1499     ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1500 
1501   return ResultTy;
1502 }
1503 
1504 /// Check that the usual arithmetic conversions can be performed on this pair of
1505 /// expressions that might be of enumeration type.
1506 void Sema::checkEnumArithmeticConversions(Expr *LHS, Expr *RHS,
1507                                           SourceLocation Loc,
1508                                           Sema::ArithConvKind ACK) {
1509   // C++2a [expr.arith.conv]p1:
1510   //   If one operand is of enumeration type and the other operand is of a
1511   //   different enumeration type or a floating-point type, this behavior is
1512   //   deprecated ([depr.arith.conv.enum]).
1513   //
1514   // Warn on this in all language modes. Produce a deprecation warning in C++20.
1515   // Eventually we will presumably reject these cases (in C++23 onwards?).
1516   QualType L = LHS->getEnumCoercedType(Context),
1517            R = RHS->getEnumCoercedType(Context);
1518   bool LEnum = L->isUnscopedEnumerationType(),
1519        REnum = R->isUnscopedEnumerationType();
1520   bool IsCompAssign = ACK == Sema::ACK_CompAssign;
1521   if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1522       (REnum && L->isFloatingType())) {
1523     Diag(Loc, getLangOpts().CPlusPlus26 ? diag::err_arith_conv_enum_float_cxx26
1524               : getLangOpts().CPlusPlus20
1525                   ? diag::warn_arith_conv_enum_float_cxx20
1526                   : diag::warn_arith_conv_enum_float)
1527         << LHS->getSourceRange() << RHS->getSourceRange() << (int)ACK << LEnum
1528         << L << R;
1529   } else if (!IsCompAssign && LEnum && REnum &&
1530              !Context.hasSameUnqualifiedType(L, R)) {
1531     unsigned DiagID;
1532     // In C++ 26, usual arithmetic conversions between 2 different enum types
1533     // are ill-formed.
1534     if (getLangOpts().CPlusPlus26)
1535       DiagID = diag::err_conv_mixed_enum_types_cxx26;
1536     else if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1537              !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1538       // If either enumeration type is unnamed, it's less likely that the
1539       // user cares about this, but this situation is still deprecated in
1540       // C++2a. Use a different warning group.
1541       DiagID = getLangOpts().CPlusPlus20
1542                    ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1543                    : diag::warn_arith_conv_mixed_anon_enum_types;
1544     } else if (ACK == Sema::ACK_Conditional) {
1545       // Conditional expressions are separated out because they have
1546       // historically had a different warning flag.
1547       DiagID = getLangOpts().CPlusPlus20
1548                    ? diag::warn_conditional_mixed_enum_types_cxx20
1549                    : diag::warn_conditional_mixed_enum_types;
1550     } else if (ACK == Sema::ACK_Comparison) {
1551       // Comparison expressions are separated out because they have
1552       // historically had a different warning flag.
1553       DiagID = getLangOpts().CPlusPlus20
1554                    ? diag::warn_comparison_mixed_enum_types_cxx20
1555                    : diag::warn_comparison_mixed_enum_types;
1556     } else {
1557       DiagID = getLangOpts().CPlusPlus20
1558                    ? diag::warn_arith_conv_mixed_enum_types_cxx20
1559                    : diag::warn_arith_conv_mixed_enum_types;
1560     }
1561     Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1562                       << (int)ACK << L << R;
1563   }
1564 }
1565 
1566 /// UsualArithmeticConversions - Performs various conversions that are common to
1567 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1568 /// routine returns the first non-arithmetic type found. The client is
1569 /// responsible for emitting appropriate error diagnostics.
1570 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1571                                           SourceLocation Loc,
1572                                           ArithConvKind ACK) {
1573   checkEnumArithmeticConversions(LHS.get(), RHS.get(), Loc, ACK);
1574 
1575   if (ACK != ACK_CompAssign) {
1576     LHS = UsualUnaryConversions(LHS.get());
1577     if (LHS.isInvalid())
1578       return QualType();
1579   }
1580 
1581   RHS = UsualUnaryConversions(RHS.get());
1582   if (RHS.isInvalid())
1583     return QualType();
1584 
1585   // For conversion purposes, we ignore any qualifiers.
1586   // For example, "const float" and "float" are equivalent.
1587   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
1588   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
1589 
1590   // For conversion purposes, we ignore any atomic qualifier on the LHS.
1591   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1592     LHSType = AtomicLHS->getValueType();
1593 
1594   // If both types are identical, no conversion is needed.
1595   if (Context.hasSameType(LHSType, RHSType))
1596     return Context.getCommonSugaredType(LHSType, RHSType);
1597 
1598   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1599   // The caller can deal with this (e.g. pointer + int).
1600   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1601     return QualType();
1602 
1603   // Apply unary and bitfield promotions to the LHS's type.
1604   QualType LHSUnpromotedType = LHSType;
1605   if (Context.isPromotableIntegerType(LHSType))
1606     LHSType = Context.getPromotedIntegerType(LHSType);
1607   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1608   if (!LHSBitfieldPromoteTy.isNull())
1609     LHSType = LHSBitfieldPromoteTy;
1610   if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
1611     LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1612 
1613   // If both types are identical, no conversion is needed.
1614   if (Context.hasSameType(LHSType, RHSType))
1615     return Context.getCommonSugaredType(LHSType, RHSType);
1616 
1617   // At this point, we have two different arithmetic types.
1618 
1619   // Diagnose attempts to convert between __ibm128, __float128 and long double
1620   // where such conversions currently can't be handled.
1621   if (unsupportedTypeConversion(*this, LHSType, RHSType))
1622     return QualType();
1623 
1624   // Handle complex types first (C99 6.3.1.8p1).
1625   if (LHSType->isComplexType() || RHSType->isComplexType())
1626     return handleComplexConversion(*this, LHS, RHS, LHSType, RHSType,
1627                                    ACK == ACK_CompAssign);
1628 
1629   // Now handle "real" floating types (i.e. float, double, long double).
1630   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1631     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1632                                  ACK == ACK_CompAssign);
1633 
1634   // Handle GCC complex int extension.
1635   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1636     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1637                                       ACK == ACK_CompAssign);
1638 
1639   if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1640     return handleFixedPointConversion(*this, LHSType, RHSType);
1641 
1642   // Finally, we have two differing integer types.
1643   return handleIntegerConversion<doIntegralCast, doIntegralCast>
1644            (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
1645 }
1646 
1647 //===----------------------------------------------------------------------===//
1648 //  Semantic Analysis for various Expression Types
1649 //===----------------------------------------------------------------------===//
1650 
1651 
1652 ExprResult Sema::ActOnGenericSelectionExpr(
1653     SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1654     bool PredicateIsExpr, void *ControllingExprOrType,
1655     ArrayRef<ParsedType> ArgTypes, ArrayRef<Expr *> ArgExprs) {
1656   unsigned NumAssocs = ArgTypes.size();
1657   assert(NumAssocs == ArgExprs.size());
1658 
1659   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1660   for (unsigned i = 0; i < NumAssocs; ++i) {
1661     if (ArgTypes[i])
1662       (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1663     else
1664       Types[i] = nullptr;
1665   }
1666 
1667   // If we have a controlling type, we need to convert it from a parsed type
1668   // into a semantic type and then pass that along.
1669   if (!PredicateIsExpr) {
1670     TypeSourceInfo *ControllingType;
1671     (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(ControllingExprOrType),
1672                             &ControllingType);
1673     assert(ControllingType && "couldn't get the type out of the parser");
1674     ControllingExprOrType = ControllingType;
1675   }
1676 
1677   ExprResult ER = CreateGenericSelectionExpr(
1678       KeyLoc, DefaultLoc, RParenLoc, PredicateIsExpr, ControllingExprOrType,
1679       llvm::ArrayRef(Types, NumAssocs), ArgExprs);
1680   delete [] Types;
1681   return ER;
1682 }
1683 
1684 ExprResult Sema::CreateGenericSelectionExpr(
1685     SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1686     bool PredicateIsExpr, void *ControllingExprOrType,
1687     ArrayRef<TypeSourceInfo *> Types, ArrayRef<Expr *> Exprs) {
1688   unsigned NumAssocs = Types.size();
1689   assert(NumAssocs == Exprs.size());
1690   assert(ControllingExprOrType &&
1691          "Must have either a controlling expression or a controlling type");
1692 
1693   Expr *ControllingExpr = nullptr;
1694   TypeSourceInfo *ControllingType = nullptr;
1695   if (PredicateIsExpr) {
1696     // Decay and strip qualifiers for the controlling expression type, and
1697     // handle placeholder type replacement. See committee discussion from WG14
1698     // DR423.
1699     EnterExpressionEvaluationContext Unevaluated(
1700         *this, Sema::ExpressionEvaluationContext::Unevaluated);
1701     ExprResult R = DefaultFunctionArrayLvalueConversion(
1702         reinterpret_cast<Expr *>(ControllingExprOrType));
1703     if (R.isInvalid())
1704       return ExprError();
1705     ControllingExpr = R.get();
1706   } else {
1707     // The extension form uses the type directly rather than converting it.
1708     ControllingType = reinterpret_cast<TypeSourceInfo *>(ControllingExprOrType);
1709     if (!ControllingType)
1710       return ExprError();
1711   }
1712 
1713   bool TypeErrorFound = false,
1714        IsResultDependent = ControllingExpr
1715                                ? ControllingExpr->isTypeDependent()
1716                                : ControllingType->getType()->isDependentType(),
1717        ContainsUnexpandedParameterPack =
1718            ControllingExpr
1719                ? ControllingExpr->containsUnexpandedParameterPack()
1720                : ControllingType->getType()->containsUnexpandedParameterPack();
1721 
1722   // The controlling expression is an unevaluated operand, so side effects are
1723   // likely unintended.
1724   if (!inTemplateInstantiation() && !IsResultDependent && ControllingExpr &&
1725       ControllingExpr->HasSideEffects(Context, false))
1726     Diag(ControllingExpr->getExprLoc(),
1727          diag::warn_side_effects_unevaluated_context);
1728 
1729   for (unsigned i = 0; i < NumAssocs; ++i) {
1730     if (Exprs[i]->containsUnexpandedParameterPack())
1731       ContainsUnexpandedParameterPack = true;
1732 
1733     if (Types[i]) {
1734       if (Types[i]->getType()->containsUnexpandedParameterPack())
1735         ContainsUnexpandedParameterPack = true;
1736 
1737       if (Types[i]->getType()->isDependentType()) {
1738         IsResultDependent = true;
1739       } else {
1740         // We relax the restriction on use of incomplete types and non-object
1741         // types with the type-based extension of _Generic. Allowing incomplete
1742         // objects means those can be used as "tags" for a type-safe way to map
1743         // to a value. Similarly, matching on function types rather than
1744         // function pointer types can be useful. However, the restriction on VM
1745         // types makes sense to retain as there are open questions about how
1746         // the selection can be made at compile time.
1747         //
1748         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1749         // complete object type other than a variably modified type."
1750         unsigned D = 0;
1751         if (ControllingExpr && Types[i]->getType()->isIncompleteType())
1752           D = diag::err_assoc_type_incomplete;
1753         else if (ControllingExpr && !Types[i]->getType()->isObjectType())
1754           D = diag::err_assoc_type_nonobject;
1755         else if (Types[i]->getType()->isVariablyModifiedType())
1756           D = diag::err_assoc_type_variably_modified;
1757         else if (ControllingExpr) {
1758           // Because the controlling expression undergoes lvalue conversion,
1759           // array conversion, and function conversion, an association which is
1760           // of array type, function type, or is qualified can never be
1761           // reached. We will warn about this so users are less surprised by
1762           // the unreachable association. However, we don't have to handle
1763           // function types; that's not an object type, so it's handled above.
1764           //
1765           // The logic is somewhat different for C++ because C++ has different
1766           // lvalue to rvalue conversion rules than C. [conv.lvalue]p1 says,
1767           // If T is a non-class type, the type of the prvalue is the cv-
1768           // unqualified version of T. Otherwise, the type of the prvalue is T.
1769           // The result of these rules is that all qualified types in an
1770           // association in C are unreachable, and in C++, only qualified non-
1771           // class types are unreachable.
1772           //
1773           // NB: this does not apply when the first operand is a type rather
1774           // than an expression, because the type form does not undergo
1775           // conversion.
1776           unsigned Reason = 0;
1777           QualType QT = Types[i]->getType();
1778           if (QT->isArrayType())
1779             Reason = 1;
1780           else if (QT.hasQualifiers() &&
1781                    (!LangOpts.CPlusPlus || !QT->isRecordType()))
1782             Reason = 2;
1783 
1784           if (Reason)
1785             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1786                  diag::warn_unreachable_association)
1787                 << QT << (Reason - 1);
1788         }
1789 
1790         if (D != 0) {
1791           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1792             << Types[i]->getTypeLoc().getSourceRange()
1793             << Types[i]->getType();
1794           TypeErrorFound = true;
1795         }
1796 
1797         // C11 6.5.1.1p2 "No two generic associations in the same generic
1798         // selection shall specify compatible types."
1799         for (unsigned j = i+1; j < NumAssocs; ++j)
1800           if (Types[j] && !Types[j]->getType()->isDependentType() &&
1801               Context.typesAreCompatible(Types[i]->getType(),
1802                                          Types[j]->getType())) {
1803             Diag(Types[j]->getTypeLoc().getBeginLoc(),
1804                  diag::err_assoc_compatible_types)
1805               << Types[j]->getTypeLoc().getSourceRange()
1806               << Types[j]->getType()
1807               << Types[i]->getType();
1808             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1809                  diag::note_compat_assoc)
1810               << Types[i]->getTypeLoc().getSourceRange()
1811               << Types[i]->getType();
1812             TypeErrorFound = true;
1813           }
1814       }
1815     }
1816   }
1817   if (TypeErrorFound)
1818     return ExprError();
1819 
1820   // If we determined that the generic selection is result-dependent, don't
1821   // try to compute the result expression.
1822   if (IsResultDependent) {
1823     if (ControllingExpr)
1824       return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr,
1825                                           Types, Exprs, DefaultLoc, RParenLoc,
1826                                           ContainsUnexpandedParameterPack);
1827     return GenericSelectionExpr::Create(Context, KeyLoc, ControllingType, Types,
1828                                         Exprs, DefaultLoc, RParenLoc,
1829                                         ContainsUnexpandedParameterPack);
1830   }
1831 
1832   SmallVector<unsigned, 1> CompatIndices;
1833   unsigned DefaultIndex = -1U;
1834   // Look at the canonical type of the controlling expression in case it was a
1835   // deduced type like __auto_type. However, when issuing diagnostics, use the
1836   // type the user wrote in source rather than the canonical one.
1837   for (unsigned i = 0; i < NumAssocs; ++i) {
1838     if (!Types[i])
1839       DefaultIndex = i;
1840     else if (ControllingExpr &&
1841              Context.typesAreCompatible(
1842                  ControllingExpr->getType().getCanonicalType(),
1843                  Types[i]->getType()))
1844       CompatIndices.push_back(i);
1845     else if (ControllingType &&
1846              Context.typesAreCompatible(
1847                  ControllingType->getType().getCanonicalType(),
1848                  Types[i]->getType()))
1849       CompatIndices.push_back(i);
1850   }
1851 
1852   auto GetControllingRangeAndType = [](Expr *ControllingExpr,
1853                                        TypeSourceInfo *ControllingType) {
1854     // We strip parens here because the controlling expression is typically
1855     // parenthesized in macro definitions.
1856     if (ControllingExpr)
1857       ControllingExpr = ControllingExpr->IgnoreParens();
1858 
1859     SourceRange SR = ControllingExpr
1860                          ? ControllingExpr->getSourceRange()
1861                          : ControllingType->getTypeLoc().getSourceRange();
1862     QualType QT = ControllingExpr ? ControllingExpr->getType()
1863                                   : ControllingType->getType();
1864 
1865     return std::make_pair(SR, QT);
1866   };
1867 
1868   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1869   // type compatible with at most one of the types named in its generic
1870   // association list."
1871   if (CompatIndices.size() > 1) {
1872     auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1873     SourceRange SR = P.first;
1874     Diag(SR.getBegin(), diag::err_generic_sel_multi_match)
1875         << SR << P.second << (unsigned)CompatIndices.size();
1876     for (unsigned I : CompatIndices) {
1877       Diag(Types[I]->getTypeLoc().getBeginLoc(),
1878            diag::note_compat_assoc)
1879         << Types[I]->getTypeLoc().getSourceRange()
1880         << Types[I]->getType();
1881     }
1882     return ExprError();
1883   }
1884 
1885   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1886   // its controlling expression shall have type compatible with exactly one of
1887   // the types named in its generic association list."
1888   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1889     auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1890     SourceRange SR = P.first;
1891     Diag(SR.getBegin(), diag::err_generic_sel_no_match) << SR << P.second;
1892     return ExprError();
1893   }
1894 
1895   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1896   // type name that is compatible with the type of the controlling expression,
1897   // then the result expression of the generic selection is the expression
1898   // in that generic association. Otherwise, the result expression of the
1899   // generic selection is the expression in the default generic association."
1900   unsigned ResultIndex =
1901     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1902 
1903   if (ControllingExpr) {
1904     return GenericSelectionExpr::Create(
1905         Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1906         ContainsUnexpandedParameterPack, ResultIndex);
1907   }
1908   return GenericSelectionExpr::Create(
1909       Context, KeyLoc, ControllingType, Types, Exprs, DefaultLoc, RParenLoc,
1910       ContainsUnexpandedParameterPack, ResultIndex);
1911 }
1912 
1913 static PredefinedIdentKind getPredefinedExprKind(tok::TokenKind Kind) {
1914   switch (Kind) {
1915   default:
1916     llvm_unreachable("unexpected TokenKind");
1917   case tok::kw___func__:
1918     return PredefinedIdentKind::Func; // [C99 6.4.2.2]
1919   case tok::kw___FUNCTION__:
1920     return PredefinedIdentKind::Function;
1921   case tok::kw___FUNCDNAME__:
1922     return PredefinedIdentKind::FuncDName; // [MS]
1923   case tok::kw___FUNCSIG__:
1924     return PredefinedIdentKind::FuncSig; // [MS]
1925   case tok::kw_L__FUNCTION__:
1926     return PredefinedIdentKind::LFunction; // [MS]
1927   case tok::kw_L__FUNCSIG__:
1928     return PredefinedIdentKind::LFuncSig; // [MS]
1929   case tok::kw___PRETTY_FUNCTION__:
1930     return PredefinedIdentKind::PrettyFunction; // [GNU]
1931   }
1932 }
1933 
1934 /// getPredefinedExprDecl - Returns Decl of a given DeclContext that can be used
1935 /// to determine the value of a PredefinedExpr. This can be either a
1936 /// block, lambda, captured statement, function, otherwise a nullptr.
1937 static Decl *getPredefinedExprDecl(DeclContext *DC) {
1938   while (DC && !isa<BlockDecl, CapturedDecl, FunctionDecl, ObjCMethodDecl>(DC))
1939     DC = DC->getParent();
1940   return cast_or_null<Decl>(DC);
1941 }
1942 
1943 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1944 /// location of the token and the offset of the ud-suffix within it.
1945 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1946                                      unsigned Offset) {
1947   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1948                                         S.getLangOpts());
1949 }
1950 
1951 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1952 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
1953 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1954                                                  IdentifierInfo *UDSuffix,
1955                                                  SourceLocation UDSuffixLoc,
1956                                                  ArrayRef<Expr*> Args,
1957                                                  SourceLocation LitEndLoc) {
1958   assert(Args.size() <= 2 && "too many arguments for literal operator");
1959 
1960   QualType ArgTy[2];
1961   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1962     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1963     if (ArgTy[ArgIdx]->isArrayType())
1964       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1965   }
1966 
1967   DeclarationName OpName =
1968     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1969   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1970   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1971 
1972   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1973   if (S.LookupLiteralOperator(Scope, R, llvm::ArrayRef(ArgTy, Args.size()),
1974                               /*AllowRaw*/ false, /*AllowTemplate*/ false,
1975                               /*AllowStringTemplatePack*/ false,
1976                               /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1977     return ExprError();
1978 
1979   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1980 }
1981 
1982 ExprResult Sema::ActOnUnevaluatedStringLiteral(ArrayRef<Token> StringToks) {
1983   // StringToks needs backing storage as it doesn't hold array elements itself
1984   std::vector<Token> ExpandedToks;
1985   if (getLangOpts().MicrosoftExt)
1986     StringToks = ExpandedToks = ExpandFunctionLocalPredefinedMacros(StringToks);
1987 
1988   StringLiteralParser Literal(StringToks, PP,
1989                               StringLiteralEvalMethod::Unevaluated);
1990   if (Literal.hadError)
1991     return ExprError();
1992 
1993   SmallVector<SourceLocation, 4> StringTokLocs;
1994   for (const Token &Tok : StringToks)
1995     StringTokLocs.push_back(Tok.getLocation());
1996 
1997   StringLiteral *Lit = StringLiteral::Create(
1998       Context, Literal.GetString(), StringLiteralKind::Unevaluated, false, {},
1999       &StringTokLocs[0], StringTokLocs.size());
2000 
2001   if (!Literal.getUDSuffix().empty()) {
2002     SourceLocation UDSuffixLoc =
2003         getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
2004                        Literal.getUDSuffixOffset());
2005     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
2006   }
2007 
2008   return Lit;
2009 }
2010 
2011 std::vector<Token>
2012 Sema::ExpandFunctionLocalPredefinedMacros(ArrayRef<Token> Toks) {
2013   // MSVC treats some predefined identifiers (e.g. __FUNCTION__) as function
2014   // local macros that expand to string literals that may be concatenated.
2015   // These macros are expanded here (in Sema), because StringLiteralParser
2016   // (in Lex) doesn't know the enclosing function (because it hasn't been
2017   // parsed yet).
2018   assert(getLangOpts().MicrosoftExt);
2019 
2020   // Note: Although function local macros are defined only inside functions,
2021   // we ensure a valid `CurrentDecl` even outside of a function. This allows
2022   // expansion of macros into empty string literals without additional checks.
2023   Decl *CurrentDecl = getPredefinedExprDecl(CurContext);
2024   if (!CurrentDecl)
2025     CurrentDecl = Context.getTranslationUnitDecl();
2026 
2027   std::vector<Token> ExpandedToks;
2028   ExpandedToks.reserve(Toks.size());
2029   for (const Token &Tok : Toks) {
2030     if (!isFunctionLocalStringLiteralMacro(Tok.getKind(), getLangOpts())) {
2031       assert(tok::isStringLiteral(Tok.getKind()));
2032       ExpandedToks.emplace_back(Tok);
2033       continue;
2034     }
2035     if (isa<TranslationUnitDecl>(CurrentDecl))
2036       Diag(Tok.getLocation(), diag::ext_predef_outside_function);
2037     // Stringify predefined expression
2038     Diag(Tok.getLocation(), diag::ext_string_literal_from_predefined)
2039         << Tok.getKind();
2040     SmallString<64> Str;
2041     llvm::raw_svector_ostream OS(Str);
2042     Token &Exp = ExpandedToks.emplace_back();
2043     Exp.startToken();
2044     if (Tok.getKind() == tok::kw_L__FUNCTION__ ||
2045         Tok.getKind() == tok::kw_L__FUNCSIG__) {
2046       OS << 'L';
2047       Exp.setKind(tok::wide_string_literal);
2048     } else {
2049       Exp.setKind(tok::string_literal);
2050     }
2051     OS << '"'
2052        << Lexer::Stringify(PredefinedExpr::ComputeName(
2053               getPredefinedExprKind(Tok.getKind()), CurrentDecl))
2054        << '"';
2055     PP.CreateString(OS.str(), Exp, Tok.getLocation(), Tok.getEndLoc());
2056   }
2057   return ExpandedToks;
2058 }
2059 
2060 ExprResult
2061 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
2062   assert(!StringToks.empty() && "Must have at least one string!");
2063 
2064   // StringToks needs backing storage as it doesn't hold array elements itself
2065   std::vector<Token> ExpandedToks;
2066   if (getLangOpts().MicrosoftExt)
2067     StringToks = ExpandedToks = ExpandFunctionLocalPredefinedMacros(StringToks);
2068 
2069   StringLiteralParser Literal(StringToks, PP);
2070   if (Literal.hadError)
2071     return ExprError();
2072 
2073   SmallVector<SourceLocation, 4> StringTokLocs;
2074   for (const Token &Tok : StringToks)
2075     StringTokLocs.push_back(Tok.getLocation());
2076 
2077   QualType CharTy = Context.CharTy;
2078   StringLiteralKind Kind = StringLiteralKind::Ordinary;
2079   if (Literal.isWide()) {
2080     CharTy = Context.getWideCharType();
2081     Kind = StringLiteralKind::Wide;
2082   } else if (Literal.isUTF8()) {
2083     if (getLangOpts().Char8)
2084       CharTy = Context.Char8Ty;
2085     else if (getLangOpts().C23)
2086       CharTy = Context.UnsignedCharTy;
2087     Kind = StringLiteralKind::UTF8;
2088   } else if (Literal.isUTF16()) {
2089     CharTy = Context.Char16Ty;
2090     Kind = StringLiteralKind::UTF16;
2091   } else if (Literal.isUTF32()) {
2092     CharTy = Context.Char32Ty;
2093     Kind = StringLiteralKind::UTF32;
2094   } else if (Literal.isPascal()) {
2095     CharTy = Context.UnsignedCharTy;
2096   }
2097 
2098   // Warn on u8 string literals before C++20 and C23, whose type
2099   // was an array of char before but becomes an array of char8_t.
2100   // In C++20, it cannot be used where a pointer to char is expected.
2101   // In C23, it might have an unexpected value if char was signed.
2102   if (Kind == StringLiteralKind::UTF8 &&
2103       (getLangOpts().CPlusPlus
2104            ? !getLangOpts().CPlusPlus20 && !getLangOpts().Char8
2105            : !getLangOpts().C23)) {
2106     Diag(StringTokLocs.front(), getLangOpts().CPlusPlus
2107                                     ? diag::warn_cxx20_compat_utf8_string
2108                                     : diag::warn_c23_compat_utf8_string);
2109 
2110     // Create removals for all 'u8' prefixes in the string literal(s). This
2111     // ensures C++20/C23 compatibility (but may change the program behavior when
2112     // built by non-Clang compilers for which the execution character set is
2113     // not always UTF-8).
2114     auto RemovalDiag = PDiag(diag::note_cxx20_c23_compat_utf8_string_remove_u8);
2115     SourceLocation RemovalDiagLoc;
2116     for (const Token &Tok : StringToks) {
2117       if (Tok.getKind() == tok::utf8_string_literal) {
2118         if (RemovalDiagLoc.isInvalid())
2119           RemovalDiagLoc = Tok.getLocation();
2120         RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
2121             Tok.getLocation(),
2122             Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
2123                                            getSourceManager(), getLangOpts())));
2124       }
2125     }
2126     Diag(RemovalDiagLoc, RemovalDiag);
2127   }
2128 
2129   QualType StrTy =
2130       Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
2131 
2132   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
2133   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
2134                                              Kind, Literal.Pascal, StrTy,
2135                                              &StringTokLocs[0],
2136                                              StringTokLocs.size());
2137   if (Literal.getUDSuffix().empty())
2138     return Lit;
2139 
2140   // We're building a user-defined literal.
2141   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2142   SourceLocation UDSuffixLoc =
2143     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
2144                    Literal.getUDSuffixOffset());
2145 
2146   // Make sure we're allowed user-defined literals here.
2147   if (!UDLScope)
2148     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
2149 
2150   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
2151   //   operator "" X (str, len)
2152   QualType SizeType = Context.getSizeType();
2153 
2154   DeclarationName OpName =
2155     Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
2156   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2157   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2158 
2159   QualType ArgTy[] = {
2160     Context.getArrayDecayedType(StrTy), SizeType
2161   };
2162 
2163   LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2164   switch (LookupLiteralOperator(UDLScope, R, ArgTy,
2165                                 /*AllowRaw*/ false, /*AllowTemplate*/ true,
2166                                 /*AllowStringTemplatePack*/ true,
2167                                 /*DiagnoseMissing*/ true, Lit)) {
2168 
2169   case LOLR_Cooked: {
2170     llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
2171     IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
2172                                                     StringTokLocs[0]);
2173     Expr *Args[] = { Lit, LenArg };
2174 
2175     return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
2176   }
2177 
2178   case LOLR_Template: {
2179     TemplateArgumentListInfo ExplicitArgs;
2180     TemplateArgument Arg(Lit);
2181     TemplateArgumentLocInfo ArgInfo(Lit);
2182     ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2183     return BuildLiteralOperatorCall(R, OpNameInfo, {}, StringTokLocs.back(),
2184                                     &ExplicitArgs);
2185   }
2186 
2187   case LOLR_StringTemplatePack: {
2188     TemplateArgumentListInfo ExplicitArgs;
2189 
2190     unsigned CharBits = Context.getIntWidth(CharTy);
2191     bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
2192     llvm::APSInt Value(CharBits, CharIsUnsigned);
2193 
2194     TemplateArgument TypeArg(CharTy);
2195     TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
2196     ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
2197 
2198     for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
2199       Value = Lit->getCodeUnit(I);
2200       TemplateArgument Arg(Context, Value, CharTy);
2201       TemplateArgumentLocInfo ArgInfo;
2202       ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2203     }
2204     return BuildLiteralOperatorCall(R, OpNameInfo, {}, StringTokLocs.back(),
2205                                     &ExplicitArgs);
2206   }
2207   case LOLR_Raw:
2208   case LOLR_ErrorNoDiagnostic:
2209     llvm_unreachable("unexpected literal operator lookup result");
2210   case LOLR_Error:
2211     return ExprError();
2212   }
2213   llvm_unreachable("unexpected literal operator lookup result");
2214 }
2215 
2216 DeclRefExpr *
2217 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2218                        SourceLocation Loc,
2219                        const CXXScopeSpec *SS) {
2220   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
2221   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
2222 }
2223 
2224 DeclRefExpr *
2225 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2226                        const DeclarationNameInfo &NameInfo,
2227                        const CXXScopeSpec *SS, NamedDecl *FoundD,
2228                        SourceLocation TemplateKWLoc,
2229                        const TemplateArgumentListInfo *TemplateArgs) {
2230   NestedNameSpecifierLoc NNS =
2231       SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
2232   return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
2233                           TemplateArgs);
2234 }
2235 
2236 // CUDA/HIP: Check whether a captured reference variable is referencing a
2237 // host variable in a device or host device lambda.
2238 static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S,
2239                                                             VarDecl *VD) {
2240   if (!S.getLangOpts().CUDA || !VD->hasInit())
2241     return false;
2242   assert(VD->getType()->isReferenceType());
2243 
2244   // Check whether the reference variable is referencing a host variable.
2245   auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit());
2246   if (!DRE)
2247     return false;
2248   auto *Referee = dyn_cast<VarDecl>(DRE->getDecl());
2249   if (!Referee || !Referee->hasGlobalStorage() ||
2250       Referee->hasAttr<CUDADeviceAttr>())
2251     return false;
2252 
2253   // Check whether the current function is a device or host device lambda.
2254   // Check whether the reference variable is a capture by getDeclContext()
2255   // since refersToEnclosingVariableOrCapture() is not ready at this point.
2256   auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext);
2257   if (MD && MD->getParent()->isLambda() &&
2258       MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() &&
2259       VD->getDeclContext() != MD)
2260     return true;
2261 
2262   return false;
2263 }
2264 
2265 NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
2266   // A declaration named in an unevaluated operand never constitutes an odr-use.
2267   if (isUnevaluatedContext())
2268     return NOUR_Unevaluated;
2269 
2270   // C++2a [basic.def.odr]p4:
2271   //   A variable x whose name appears as a potentially-evaluated expression e
2272   //   is odr-used by e unless [...] x is a reference that is usable in
2273   //   constant expressions.
2274   // CUDA/HIP:
2275   //   If a reference variable referencing a host variable is captured in a
2276   //   device or host device lambda, the value of the referee must be copied
2277   //   to the capture and the reference variable must be treated as odr-use
2278   //   since the value of the referee is not known at compile time and must
2279   //   be loaded from the captured.
2280   if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2281     if (VD->getType()->isReferenceType() &&
2282         !(getLangOpts().OpenMP && OpenMP().isOpenMPCapturedDecl(D)) &&
2283         !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) &&
2284         VD->isUsableInConstantExpressions(Context))
2285       return NOUR_Constant;
2286   }
2287 
2288   // All remaining non-variable cases constitute an odr-use. For variables, we
2289   // need to wait and see how the expression is used.
2290   return NOUR_None;
2291 }
2292 
2293 DeclRefExpr *
2294 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2295                        const DeclarationNameInfo &NameInfo,
2296                        NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
2297                        SourceLocation TemplateKWLoc,
2298                        const TemplateArgumentListInfo *TemplateArgs) {
2299   bool RefersToCapturedVariable = isa<VarDecl, BindingDecl>(D) &&
2300                                   NeedToCaptureVariable(D, NameInfo.getLoc());
2301 
2302   DeclRefExpr *E = DeclRefExpr::Create(
2303       Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
2304       VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
2305   MarkDeclRefReferenced(E);
2306 
2307   // C++ [except.spec]p17:
2308   //   An exception-specification is considered to be needed when:
2309   //   - in an expression, the function is the unique lookup result or
2310   //     the selected member of a set of overloaded functions.
2311   //
2312   // We delay doing this until after we've built the function reference and
2313   // marked it as used so that:
2314   //  a) if the function is defaulted, we get errors from defining it before /
2315   //     instead of errors from computing its exception specification, and
2316   //  b) if the function is a defaulted comparison, we can use the body we
2317   //     build when defining it as input to the exception specification
2318   //     computation rather than computing a new body.
2319   if (const auto *FPT = Ty->getAs<FunctionProtoType>()) {
2320     if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
2321       if (const auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
2322         E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
2323     }
2324   }
2325 
2326   if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
2327       Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
2328       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
2329     getCurFunction()->recordUseOfWeak(E);
2330 
2331   const auto *FD = dyn_cast<FieldDecl>(D);
2332   if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D))
2333     FD = IFD->getAnonField();
2334   if (FD) {
2335     UnusedPrivateFields.remove(FD);
2336     // Just in case we're building an illegal pointer-to-member.
2337     if (FD->isBitField())
2338       E->setObjectKind(OK_BitField);
2339   }
2340 
2341   // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2342   // designates a bit-field.
2343   if (const auto *BD = dyn_cast<BindingDecl>(D))
2344     if (const auto *BE = BD->getBinding())
2345       E->setObjectKind(BE->getObjectKind());
2346 
2347   return E;
2348 }
2349 
2350 void
2351 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
2352                              TemplateArgumentListInfo &Buffer,
2353                              DeclarationNameInfo &NameInfo,
2354                              const TemplateArgumentListInfo *&TemplateArgs) {
2355   if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
2356     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
2357     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
2358 
2359     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
2360                                        Id.TemplateId->NumArgs);
2361     translateTemplateArguments(TemplateArgsPtr, Buffer);
2362 
2363     TemplateName TName = Id.TemplateId->Template.get();
2364     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
2365     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
2366     TemplateArgs = &Buffer;
2367   } else {
2368     NameInfo = GetNameFromUnqualifiedId(Id);
2369     TemplateArgs = nullptr;
2370   }
2371 }
2372 
2373 static void emitEmptyLookupTypoDiagnostic(
2374     const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
2375     DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
2376     unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
2377   DeclContext *Ctx =
2378       SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
2379   if (!TC) {
2380     // Emit a special diagnostic for failed member lookups.
2381     // FIXME: computing the declaration context might fail here (?)
2382     if (Ctx)
2383       SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
2384                                                  << SS.getRange();
2385     else
2386       SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
2387     return;
2388   }
2389 
2390   std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
2391   bool DroppedSpecifier =
2392       TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2393   unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2394                         ? diag::note_implicit_param_decl
2395                         : diag::note_previous_decl;
2396   if (!Ctx)
2397     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
2398                          SemaRef.PDiag(NoteID));
2399   else
2400     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
2401                                  << Typo << Ctx << DroppedSpecifier
2402                                  << SS.getRange(),
2403                          SemaRef.PDiag(NoteID));
2404 }
2405 
2406 bool Sema::DiagnoseDependentMemberLookup(const LookupResult &R) {
2407   // During a default argument instantiation the CurContext points
2408   // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2409   // function parameter list, hence add an explicit check.
2410   bool isDefaultArgument =
2411       !CodeSynthesisContexts.empty() &&
2412       CodeSynthesisContexts.back().Kind ==
2413           CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2414   const auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
2415   bool isInstance = CurMethod && CurMethod->isInstance() &&
2416                     R.getNamingClass() == CurMethod->getParent() &&
2417                     !isDefaultArgument;
2418 
2419   // There are two ways we can find a class-scope declaration during template
2420   // instantiation that we did not find in the template definition: if it is a
2421   // member of a dependent base class, or if it is declared after the point of
2422   // use in the same class. Distinguish these by comparing the class in which
2423   // the member was found to the naming class of the lookup.
2424   unsigned DiagID = diag::err_found_in_dependent_base;
2425   unsigned NoteID = diag::note_member_declared_at;
2426   if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) {
2427     DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class
2428                                       : diag::err_found_later_in_class;
2429   } else if (getLangOpts().MSVCCompat) {
2430     DiagID = diag::ext_found_in_dependent_base;
2431     NoteID = diag::note_dependent_member_use;
2432   }
2433 
2434   if (isInstance) {
2435     // Give a code modification hint to insert 'this->'.
2436     Diag(R.getNameLoc(), DiagID)
2437         << R.getLookupName()
2438         << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
2439     CheckCXXThisCapture(R.getNameLoc());
2440   } else {
2441     // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2442     // they're not shadowed).
2443     Diag(R.getNameLoc(), DiagID) << R.getLookupName();
2444   }
2445 
2446   for (const NamedDecl *D : R)
2447     Diag(D->getLocation(), NoteID);
2448 
2449   // Return true if we are inside a default argument instantiation
2450   // and the found name refers to an instance member function, otherwise
2451   // the caller will try to create an implicit member call and this is wrong
2452   // for default arguments.
2453   //
2454   // FIXME: Is this special case necessary? We could allow the caller to
2455   // diagnose this.
2456   if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2457     Diag(R.getNameLoc(), diag::err_member_call_without_object) << 0;
2458     return true;
2459   }
2460 
2461   // Tell the callee to try to recover.
2462   return false;
2463 }
2464 
2465 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2466                                CorrectionCandidateCallback &CCC,
2467                                TemplateArgumentListInfo *ExplicitTemplateArgs,
2468                                ArrayRef<Expr *> Args, DeclContext *LookupCtx,
2469                                TypoExpr **Out) {
2470   DeclarationName Name = R.getLookupName();
2471 
2472   unsigned diagnostic = diag::err_undeclared_var_use;
2473   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2474   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2475       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2476       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2477     diagnostic = diag::err_undeclared_use;
2478     diagnostic_suggest = diag::err_undeclared_use_suggest;
2479   }
2480 
2481   // If the original lookup was an unqualified lookup, fake an
2482   // unqualified lookup.  This is useful when (for example) the
2483   // original lookup would not have found something because it was a
2484   // dependent name.
2485   DeclContext *DC =
2486       LookupCtx ? LookupCtx : (SS.isEmpty() ? CurContext : nullptr);
2487   while (DC) {
2488     if (isa<CXXRecordDecl>(DC)) {
2489       if (ExplicitTemplateArgs) {
2490         if (LookupTemplateName(
2491                 R, S, SS, Context.getRecordType(cast<CXXRecordDecl>(DC)),
2492                 /*EnteringContext*/ false, TemplateNameIsRequired,
2493                 /*RequiredTemplateKind*/ nullptr, /*AllowTypoCorrection*/ true))
2494           return true;
2495       } else {
2496         LookupQualifiedName(R, DC);
2497       }
2498 
2499       if (!R.empty()) {
2500         // Don't give errors about ambiguities in this lookup.
2501         R.suppressDiagnostics();
2502 
2503         // If there's a best viable function among the results, only mention
2504         // that one in the notes.
2505         OverloadCandidateSet Candidates(R.getNameLoc(),
2506                                         OverloadCandidateSet::CSK_Normal);
2507         AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates);
2508         OverloadCandidateSet::iterator Best;
2509         if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) ==
2510             OR_Success) {
2511           R.clear();
2512           R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
2513           R.resolveKind();
2514         }
2515 
2516         return DiagnoseDependentMemberLookup(R);
2517       }
2518 
2519       R.clear();
2520     }
2521 
2522     DC = DC->getLookupParent();
2523   }
2524 
2525   // We didn't find anything, so try to correct for a typo.
2526   TypoCorrection Corrected;
2527   if (S && Out) {
2528     SourceLocation TypoLoc = R.getNameLoc();
2529     assert(!ExplicitTemplateArgs &&
2530            "Diagnosing an empty lookup with explicit template args!");
2531     *Out = CorrectTypoDelayed(
2532         R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2533         [=](const TypoCorrection &TC) {
2534           emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2535                                         diagnostic, diagnostic_suggest);
2536         },
2537         nullptr, CTK_ErrorRecovery, LookupCtx);
2538     if (*Out)
2539       return true;
2540   } else if (S && (Corrected =
2541                        CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S,
2542                                    &SS, CCC, CTK_ErrorRecovery, LookupCtx))) {
2543     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2544     bool DroppedSpecifier =
2545         Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2546     R.setLookupName(Corrected.getCorrection());
2547 
2548     bool AcceptableWithRecovery = false;
2549     bool AcceptableWithoutRecovery = false;
2550     NamedDecl *ND = Corrected.getFoundDecl();
2551     if (ND) {
2552       if (Corrected.isOverloaded()) {
2553         OverloadCandidateSet OCS(R.getNameLoc(),
2554                                  OverloadCandidateSet::CSK_Normal);
2555         OverloadCandidateSet::iterator Best;
2556         for (NamedDecl *CD : Corrected) {
2557           if (FunctionTemplateDecl *FTD =
2558                    dyn_cast<FunctionTemplateDecl>(CD))
2559             AddTemplateOverloadCandidate(
2560                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2561                 Args, OCS);
2562           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2563             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2564               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2565                                    Args, OCS);
2566         }
2567         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2568         case OR_Success:
2569           ND = Best->FoundDecl;
2570           Corrected.setCorrectionDecl(ND);
2571           break;
2572         default:
2573           // FIXME: Arbitrarily pick the first declaration for the note.
2574           Corrected.setCorrectionDecl(ND);
2575           break;
2576         }
2577       }
2578       R.addDecl(ND);
2579       if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2580         CXXRecordDecl *Record = nullptr;
2581         if (Corrected.getCorrectionSpecifier()) {
2582           const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2583           Record = Ty->getAsCXXRecordDecl();
2584         }
2585         if (!Record)
2586           Record = cast<CXXRecordDecl>(
2587               ND->getDeclContext()->getRedeclContext());
2588         R.setNamingClass(Record);
2589       }
2590 
2591       auto *UnderlyingND = ND->getUnderlyingDecl();
2592       AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2593                                isa<FunctionTemplateDecl>(UnderlyingND);
2594       // FIXME: If we ended up with a typo for a type name or
2595       // Objective-C class name, we're in trouble because the parser
2596       // is in the wrong place to recover. Suggest the typo
2597       // correction, but don't make it a fix-it since we're not going
2598       // to recover well anyway.
2599       AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2600                                   getAsTypeTemplateDecl(UnderlyingND) ||
2601                                   isa<ObjCInterfaceDecl>(UnderlyingND);
2602     } else {
2603       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2604       // because we aren't able to recover.
2605       AcceptableWithoutRecovery = true;
2606     }
2607 
2608     if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2609       unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2610                             ? diag::note_implicit_param_decl
2611                             : diag::note_previous_decl;
2612       if (SS.isEmpty())
2613         diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2614                      PDiag(NoteID), AcceptableWithRecovery);
2615       else
2616         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2617                                   << Name << computeDeclContext(SS, false)
2618                                   << DroppedSpecifier << SS.getRange(),
2619                      PDiag(NoteID), AcceptableWithRecovery);
2620 
2621       // Tell the callee whether to try to recover.
2622       return !AcceptableWithRecovery;
2623     }
2624   }
2625   R.clear();
2626 
2627   // Emit a special diagnostic for failed member lookups.
2628   // FIXME: computing the declaration context might fail here (?)
2629   if (!SS.isEmpty()) {
2630     Diag(R.getNameLoc(), diag::err_no_member)
2631       << Name << computeDeclContext(SS, false)
2632       << SS.getRange();
2633     return true;
2634   }
2635 
2636   // Give up, we can't recover.
2637   Diag(R.getNameLoc(), diagnostic) << Name;
2638   return true;
2639 }
2640 
2641 /// In Microsoft mode, if we are inside a template class whose parent class has
2642 /// dependent base classes, and we can't resolve an unqualified identifier, then
2643 /// assume the identifier is a member of a dependent base class.  We can only
2644 /// recover successfully in static methods, instance methods, and other contexts
2645 /// where 'this' is available.  This doesn't precisely match MSVC's
2646 /// instantiation model, but it's close enough.
2647 static Expr *
2648 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2649                                DeclarationNameInfo &NameInfo,
2650                                SourceLocation TemplateKWLoc,
2651                                const TemplateArgumentListInfo *TemplateArgs) {
2652   // Only try to recover from lookup into dependent bases in static methods or
2653   // contexts where 'this' is available.
2654   QualType ThisType = S.getCurrentThisType();
2655   const CXXRecordDecl *RD = nullptr;
2656   if (!ThisType.isNull())
2657     RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2658   else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2659     RD = MD->getParent();
2660   if (!RD || !RD->hasDefinition() || !RD->hasAnyDependentBases())
2661     return nullptr;
2662 
2663   // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
2664   // is available, suggest inserting 'this->' as a fixit.
2665   SourceLocation Loc = NameInfo.getLoc();
2666   auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2667   DB << NameInfo.getName() << RD;
2668 
2669   if (!ThisType.isNull()) {
2670     DB << FixItHint::CreateInsertion(Loc, "this->");
2671     return CXXDependentScopeMemberExpr::Create(
2672         Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2673         /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2674         /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2675   }
2676 
2677   // Synthesize a fake NNS that points to the derived class.  This will
2678   // perform name lookup during template instantiation.
2679   CXXScopeSpec SS;
2680   auto *NNS =
2681       NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2682   SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2683   return DependentScopeDeclRefExpr::Create(
2684       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2685       TemplateArgs);
2686 }
2687 
2688 ExprResult
2689 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2690                         SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2691                         bool HasTrailingLParen, bool IsAddressOfOperand,
2692                         CorrectionCandidateCallback *CCC,
2693                         bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2694   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2695          "cannot be direct & operand and have a trailing lparen");
2696   if (SS.isInvalid())
2697     return ExprError();
2698 
2699   TemplateArgumentListInfo TemplateArgsBuffer;
2700 
2701   // Decompose the UnqualifiedId into the following data.
2702   DeclarationNameInfo NameInfo;
2703   const TemplateArgumentListInfo *TemplateArgs;
2704   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2705 
2706   DeclarationName Name = NameInfo.getName();
2707   IdentifierInfo *II = Name.getAsIdentifierInfo();
2708   SourceLocation NameLoc = NameInfo.getLoc();
2709 
2710   if (II && II->isEditorPlaceholder()) {
2711     // FIXME: When typed placeholders are supported we can create a typed
2712     // placeholder expression node.
2713     return ExprError();
2714   }
2715 
2716   // This specially handles arguments of attributes appertains to a type of C
2717   // struct field such that the name lookup within a struct finds the member
2718   // name, which is not the case for other contexts in C.
2719   if (isAttrContext() && !getLangOpts().CPlusPlus && S->isClassScope()) {
2720     // See if this is reference to a field of struct.
2721     LookupResult R(*this, NameInfo, LookupMemberName);
2722     // LookupName handles a name lookup from within anonymous struct.
2723     if (LookupName(R, S)) {
2724       if (auto *VD = dyn_cast<ValueDecl>(R.getFoundDecl())) {
2725         QualType type = VD->getType().getNonReferenceType();
2726         // This will eventually be translated into MemberExpr upon
2727         // the use of instantiated struct fields.
2728         return BuildDeclRefExpr(VD, type, VK_LValue, NameLoc);
2729       }
2730     }
2731   }
2732 
2733   // Perform the required lookup.
2734   LookupResult R(*this, NameInfo,
2735                  (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2736                      ? LookupObjCImplicitSelfParam
2737                      : LookupOrdinaryName);
2738   if (TemplateKWLoc.isValid() || TemplateArgs) {
2739     // Lookup the template name again to correctly establish the context in
2740     // which it was found. This is really unfortunate as we already did the
2741     // lookup to determine that it was a template name in the first place. If
2742     // this becomes a performance hit, we can work harder to preserve those
2743     // results until we get here but it's likely not worth it.
2744     AssumedTemplateKind AssumedTemplate;
2745     if (LookupTemplateName(R, S, SS, /*ObjectType=*/QualType(),
2746                            /*EnteringContext=*/false, TemplateKWLoc,
2747                            &AssumedTemplate))
2748       return ExprError();
2749 
2750     if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid())
2751       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2752                                         IsAddressOfOperand, TemplateArgs);
2753   } else {
2754     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2755     LookupParsedName(R, S, &SS, /*ObjectType=*/QualType(),
2756                      /*AllowBuiltinCreation=*/!IvarLookupFollowUp);
2757 
2758     // If the result might be in a dependent base class, this is a dependent
2759     // id-expression.
2760     if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid())
2761       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2762                                         IsAddressOfOperand, TemplateArgs);
2763 
2764     // If this reference is in an Objective-C method, then we need to do
2765     // some special Objective-C lookup, too.
2766     if (IvarLookupFollowUp) {
2767       ExprResult E(ObjC().LookupInObjCMethod(R, S, II, true));
2768       if (E.isInvalid())
2769         return ExprError();
2770 
2771       if (Expr *Ex = E.getAs<Expr>())
2772         return Ex;
2773     }
2774   }
2775 
2776   if (R.isAmbiguous())
2777     return ExprError();
2778 
2779   // This could be an implicitly declared function reference if the language
2780   // mode allows it as a feature.
2781   if (R.empty() && HasTrailingLParen && II &&
2782       getLangOpts().implicitFunctionsAllowed()) {
2783     NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2784     if (D) R.addDecl(D);
2785   }
2786 
2787   // Determine whether this name might be a candidate for
2788   // argument-dependent lookup.
2789   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2790 
2791   if (R.empty() && !ADL) {
2792     if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2793       if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2794                                                    TemplateKWLoc, TemplateArgs))
2795         return E;
2796     }
2797 
2798     // Don't diagnose an empty lookup for inline assembly.
2799     if (IsInlineAsmIdentifier)
2800       return ExprError();
2801 
2802     // If this name wasn't predeclared and if this is not a function
2803     // call, diagnose the problem.
2804     TypoExpr *TE = nullptr;
2805     DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2806                                                        : nullptr);
2807     DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2808     assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2809            "Typo correction callback misconfigured");
2810     if (CCC) {
2811       // Make sure the callback knows what the typo being diagnosed is.
2812       CCC->setTypoName(II);
2813       if (SS.isValid())
2814         CCC->setTypoNNS(SS.getScopeRep());
2815     }
2816     // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2817     // a template name, but we happen to have always already looked up the name
2818     // before we get here if it must be a template name.
2819     if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2820                             {}, nullptr, &TE)) {
2821       if (TE && KeywordReplacement) {
2822         auto &State = getTypoExprState(TE);
2823         auto BestTC = State.Consumer->getNextCorrection();
2824         if (BestTC.isKeyword()) {
2825           auto *II = BestTC.getCorrectionAsIdentifierInfo();
2826           if (State.DiagHandler)
2827             State.DiagHandler(BestTC);
2828           KeywordReplacement->startToken();
2829           KeywordReplacement->setKind(II->getTokenID());
2830           KeywordReplacement->setIdentifierInfo(II);
2831           KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2832           // Clean up the state associated with the TypoExpr, since it has
2833           // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2834           clearDelayedTypo(TE);
2835           // Signal that a correction to a keyword was performed by returning a
2836           // valid-but-null ExprResult.
2837           return (Expr*)nullptr;
2838         }
2839         State.Consumer->resetCorrectionStream();
2840       }
2841       return TE ? TE : ExprError();
2842     }
2843 
2844     assert(!R.empty() &&
2845            "DiagnoseEmptyLookup returned false but added no results");
2846 
2847     // If we found an Objective-C instance variable, let
2848     // LookupInObjCMethod build the appropriate expression to
2849     // reference the ivar.
2850     if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2851       R.clear();
2852       ExprResult E(ObjC().LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2853       // In a hopelessly buggy code, Objective-C instance variable
2854       // lookup fails and no expression will be built to reference it.
2855       if (!E.isInvalid() && !E.get())
2856         return ExprError();
2857       return E;
2858     }
2859   }
2860 
2861   // This is guaranteed from this point on.
2862   assert(!R.empty() || ADL);
2863 
2864   // Check whether this might be a C++ implicit instance member access.
2865   // C++ [class.mfct.non-static]p3:
2866   //   When an id-expression that is not part of a class member access
2867   //   syntax and not used to form a pointer to member is used in the
2868   //   body of a non-static member function of class X, if name lookup
2869   //   resolves the name in the id-expression to a non-static non-type
2870   //   member of some class C, the id-expression is transformed into a
2871   //   class member access expression using (*this) as the
2872   //   postfix-expression to the left of the . operator.
2873   //
2874   // But we don't actually need to do this for '&' operands if R
2875   // resolved to a function or overloaded function set, because the
2876   // expression is ill-formed if it actually works out to be a
2877   // non-static member function:
2878   //
2879   // C++ [expr.ref]p4:
2880   //   Otherwise, if E1.E2 refers to a non-static member function. . .
2881   //   [t]he expression can be used only as the left-hand operand of a
2882   //   member function call.
2883   //
2884   // There are other safeguards against such uses, but it's important
2885   // to get this right here so that we don't end up making a
2886   // spuriously dependent expression if we're inside a dependent
2887   // instance method.
2888   if (isPotentialImplicitMemberAccess(SS, R, IsAddressOfOperand))
2889     return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs,
2890                                            S);
2891 
2892   if (TemplateArgs || TemplateKWLoc.isValid()) {
2893 
2894     // In C++1y, if this is a variable template id, then check it
2895     // in BuildTemplateIdExpr().
2896     // The single lookup result must be a variable template declaration.
2897     if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2898         Id.TemplateId->Kind == TNK_Var_template) {
2899       assert(R.getAsSingle<VarTemplateDecl>() &&
2900              "There should only be one declaration found.");
2901     }
2902 
2903     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2904   }
2905 
2906   return BuildDeclarationNameExpr(SS, R, ADL);
2907 }
2908 
2909 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2910     CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2911     bool IsAddressOfOperand, TypeSourceInfo **RecoveryTSI) {
2912   LookupResult R(*this, NameInfo, LookupOrdinaryName);
2913   LookupParsedName(R, /*S=*/nullptr, &SS, /*ObjectType=*/QualType());
2914 
2915   if (R.isAmbiguous())
2916     return ExprError();
2917 
2918   if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid())
2919     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2920                                      NameInfo, /*TemplateArgs=*/nullptr);
2921 
2922   if (R.empty()) {
2923     // Don't diagnose problems with invalid record decl, the secondary no_member
2924     // diagnostic during template instantiation is likely bogus, e.g. if a class
2925     // is invalid because it's derived from an invalid base class, then missing
2926     // members were likely supposed to be inherited.
2927     DeclContext *DC = computeDeclContext(SS);
2928     if (const auto *CD = dyn_cast<CXXRecordDecl>(DC))
2929       if (CD->isInvalidDecl())
2930         return ExprError();
2931     Diag(NameInfo.getLoc(), diag::err_no_member)
2932       << NameInfo.getName() << DC << SS.getRange();
2933     return ExprError();
2934   }
2935 
2936   if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2937     // Diagnose a missing typename if this resolved unambiguously to a type in
2938     // a dependent context.  If we can recover with a type, downgrade this to
2939     // a warning in Microsoft compatibility mode.
2940     unsigned DiagID = diag::err_typename_missing;
2941     if (RecoveryTSI && getLangOpts().MSVCCompat)
2942       DiagID = diag::ext_typename_missing;
2943     SourceLocation Loc = SS.getBeginLoc();
2944     auto D = Diag(Loc, DiagID);
2945     D << SS.getScopeRep() << NameInfo.getName().getAsString()
2946       << SourceRange(Loc, NameInfo.getEndLoc());
2947 
2948     // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2949     // context.
2950     if (!RecoveryTSI)
2951       return ExprError();
2952 
2953     // Only issue the fixit if we're prepared to recover.
2954     D << FixItHint::CreateInsertion(Loc, "typename ");
2955 
2956     // Recover by pretending this was an elaborated type.
2957     QualType Ty = Context.getTypeDeclType(TD);
2958     TypeLocBuilder TLB;
2959     TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2960 
2961     QualType ET = getElaboratedType(ElaboratedTypeKeyword::None, SS, Ty);
2962     ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2963     QTL.setElaboratedKeywordLoc(SourceLocation());
2964     QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2965 
2966     *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2967 
2968     return ExprEmpty();
2969   }
2970 
2971   // If necessary, build an implicit class member access.
2972   if (isPotentialImplicitMemberAccess(SS, R, IsAddressOfOperand))
2973     return BuildPossibleImplicitMemberExpr(SS,
2974                                            /*TemplateKWLoc=*/SourceLocation(),
2975                                            R, /*TemplateArgs=*/nullptr,
2976                                            /*S=*/nullptr);
2977 
2978   return BuildDeclarationNameExpr(SS, R, /*ADL=*/false);
2979 }
2980 
2981 ExprResult
2982 Sema::PerformObjectMemberConversion(Expr *From,
2983                                     NestedNameSpecifier *Qualifier,
2984                                     NamedDecl *FoundDecl,
2985                                     NamedDecl *Member) {
2986   const auto *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2987   if (!RD)
2988     return From;
2989 
2990   QualType DestRecordType;
2991   QualType DestType;
2992   QualType FromRecordType;
2993   QualType FromType = From->getType();
2994   bool PointerConversions = false;
2995   if (isa<FieldDecl>(Member)) {
2996     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2997     auto FromPtrType = FromType->getAs<PointerType>();
2998     DestRecordType = Context.getAddrSpaceQualType(
2999         DestRecordType, FromPtrType
3000                             ? FromType->getPointeeType().getAddressSpace()
3001                             : FromType.getAddressSpace());
3002 
3003     if (FromPtrType) {
3004       DestType = Context.getPointerType(DestRecordType);
3005       FromRecordType = FromPtrType->getPointeeType();
3006       PointerConversions = true;
3007     } else {
3008       DestType = DestRecordType;
3009       FromRecordType = FromType;
3010     }
3011   } else if (const auto *Method = dyn_cast<CXXMethodDecl>(Member)) {
3012     if (!Method->isImplicitObjectMemberFunction())
3013       return From;
3014 
3015     DestType = Method->getThisType().getNonReferenceType();
3016     DestRecordType = Method->getFunctionObjectParameterType();
3017 
3018     if (FromType->getAs<PointerType>()) {
3019       FromRecordType = FromType->getPointeeType();
3020       PointerConversions = true;
3021     } else {
3022       FromRecordType = FromType;
3023       DestType = DestRecordType;
3024     }
3025 
3026     LangAS FromAS = FromRecordType.getAddressSpace();
3027     LangAS DestAS = DestRecordType.getAddressSpace();
3028     if (FromAS != DestAS) {
3029       QualType FromRecordTypeWithoutAS =
3030           Context.removeAddrSpaceQualType(FromRecordType);
3031       QualType FromTypeWithDestAS =
3032           Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
3033       if (PointerConversions)
3034         FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
3035       From = ImpCastExprToType(From, FromTypeWithDestAS,
3036                                CK_AddressSpaceConversion, From->getValueKind())
3037                  .get();
3038     }
3039   } else {
3040     // No conversion necessary.
3041     return From;
3042   }
3043 
3044   if (DestType->isDependentType() || FromType->isDependentType())
3045     return From;
3046 
3047   // If the unqualified types are the same, no conversion is necessary.
3048   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3049     return From;
3050 
3051   SourceRange FromRange = From->getSourceRange();
3052   SourceLocation FromLoc = FromRange.getBegin();
3053 
3054   ExprValueKind VK = From->getValueKind();
3055 
3056   // C++ [class.member.lookup]p8:
3057   //   [...] Ambiguities can often be resolved by qualifying a name with its
3058   //   class name.
3059   //
3060   // If the member was a qualified name and the qualified referred to a
3061   // specific base subobject type, we'll cast to that intermediate type
3062   // first and then to the object in which the member is declared. That allows
3063   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3064   //
3065   //   class Base { public: int x; };
3066   //   class Derived1 : public Base { };
3067   //   class Derived2 : public Base { };
3068   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
3069   //
3070   //   void VeryDerived::f() {
3071   //     x = 17; // error: ambiguous base subobjects
3072   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
3073   //   }
3074   if (Qualifier && Qualifier->getAsType()) {
3075     QualType QType = QualType(Qualifier->getAsType(), 0);
3076     assert(QType->isRecordType() && "lookup done with non-record type");
3077 
3078     QualType QRecordType = QualType(QType->castAs<RecordType>(), 0);
3079 
3080     // In C++98, the qualifier type doesn't actually have to be a base
3081     // type of the object type, in which case we just ignore it.
3082     // Otherwise build the appropriate casts.
3083     if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
3084       CXXCastPath BasePath;
3085       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
3086                                        FromLoc, FromRange, &BasePath))
3087         return ExprError();
3088 
3089       if (PointerConversions)
3090         QType = Context.getPointerType(QType);
3091       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
3092                                VK, &BasePath).get();
3093 
3094       FromType = QType;
3095       FromRecordType = QRecordType;
3096 
3097       // If the qualifier type was the same as the destination type,
3098       // we're done.
3099       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3100         return From;
3101     }
3102   }
3103 
3104   CXXCastPath BasePath;
3105   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
3106                                    FromLoc, FromRange, &BasePath,
3107                                    /*IgnoreAccess=*/true))
3108     return ExprError();
3109 
3110   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
3111                            VK, &BasePath);
3112 }
3113 
3114 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
3115                                       const LookupResult &R,
3116                                       bool HasTrailingLParen) {
3117   // Only when used directly as the postfix-expression of a call.
3118   if (!HasTrailingLParen)
3119     return false;
3120 
3121   // Never if a scope specifier was provided.
3122   if (SS.isNotEmpty())
3123     return false;
3124 
3125   // Only in C++ or ObjC++.
3126   if (!getLangOpts().CPlusPlus)
3127     return false;
3128 
3129   // Turn off ADL when we find certain kinds of declarations during
3130   // normal lookup:
3131   for (const NamedDecl *D : R) {
3132     // C++0x [basic.lookup.argdep]p3:
3133     //     -- a declaration of a class member
3134     // Since using decls preserve this property, we check this on the
3135     // original decl.
3136     if (D->isCXXClassMember())
3137       return false;
3138 
3139     // C++0x [basic.lookup.argdep]p3:
3140     //     -- a block-scope function declaration that is not a
3141     //        using-declaration
3142     // NOTE: we also trigger this for function templates (in fact, we
3143     // don't check the decl type at all, since all other decl types
3144     // turn off ADL anyway).
3145     if (isa<UsingShadowDecl>(D))
3146       D = cast<UsingShadowDecl>(D)->getTargetDecl();
3147     else if (D->getLexicalDeclContext()->isFunctionOrMethod())
3148       return false;
3149 
3150     // C++0x [basic.lookup.argdep]p3:
3151     //     -- a declaration that is neither a function or a function
3152     //        template
3153     // And also for builtin functions.
3154     if (const auto *FDecl = dyn_cast<FunctionDecl>(D)) {
3155       // But also builtin functions.
3156       if (FDecl->getBuiltinID() && FDecl->isImplicit())
3157         return false;
3158     } else if (!isa<FunctionTemplateDecl>(D))
3159       return false;
3160   }
3161 
3162   return true;
3163 }
3164 
3165 
3166 /// Diagnoses obvious problems with the use of the given declaration
3167 /// as an expression.  This is only actually called for lookups that
3168 /// were not overloaded, and it doesn't promise that the declaration
3169 /// will in fact be used.
3170 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D,
3171                             bool AcceptInvalid) {
3172   if (D->isInvalidDecl() && !AcceptInvalid)
3173     return true;
3174 
3175   if (isa<TypedefNameDecl>(D)) {
3176     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
3177     return true;
3178   }
3179 
3180   if (isa<ObjCInterfaceDecl>(D)) {
3181     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
3182     return true;
3183   }
3184 
3185   if (isa<NamespaceDecl>(D)) {
3186     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
3187     return true;
3188   }
3189 
3190   return false;
3191 }
3192 
3193 // Certain multiversion types should be treated as overloaded even when there is
3194 // only one result.
3195 static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3196   assert(R.isSingleResult() && "Expected only a single result");
3197   const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
3198   return FD &&
3199          (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3200 }
3201 
3202 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3203                                           LookupResult &R, bool NeedsADL,
3204                                           bool AcceptInvalidDecl) {
3205   // If this is a single, fully-resolved result and we don't need ADL,
3206   // just build an ordinary singleton decl ref.
3207   if (!NeedsADL && R.isSingleResult() &&
3208       !R.getAsSingle<FunctionTemplateDecl>() &&
3209       !ShouldLookupResultBeMultiVersionOverload(R))
3210     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
3211                                     R.getRepresentativeDecl(), nullptr,
3212                                     AcceptInvalidDecl);
3213 
3214   // We only need to check the declaration if there's exactly one
3215   // result, because in the overloaded case the results can only be
3216   // functions and function templates.
3217   if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3218       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl(),
3219                       AcceptInvalidDecl))
3220     return ExprError();
3221 
3222   // Otherwise, just build an unresolved lookup expression.  Suppress
3223   // any lookup-related diagnostics; we'll hash these out later, when
3224   // we've picked a target.
3225   R.suppressDiagnostics();
3226 
3227   UnresolvedLookupExpr *ULE = UnresolvedLookupExpr::Create(
3228       Context, R.getNamingClass(), SS.getWithLocInContext(Context),
3229       R.getLookupNameInfo(), NeedsADL, R.begin(), R.end(),
3230       /*KnownDependent=*/false, /*KnownInstantiationDependent=*/false);
3231 
3232   return ULE;
3233 }
3234 
3235 static void diagnoseUncapturableValueReferenceOrBinding(Sema &S,
3236                                                         SourceLocation loc,
3237                                                         ValueDecl *var);
3238 
3239 ExprResult Sema::BuildDeclarationNameExpr(
3240     const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3241     NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3242     bool AcceptInvalidDecl) {
3243   assert(D && "Cannot refer to a NULL declaration");
3244   assert(!isa<FunctionTemplateDecl>(D) &&
3245          "Cannot refer unambiguously to a function template");
3246 
3247   SourceLocation Loc = NameInfo.getLoc();
3248   if (CheckDeclInExpr(*this, Loc, D, AcceptInvalidDecl)) {
3249     // Recovery from invalid cases (e.g. D is an invalid Decl).
3250     // We use the dependent type for the RecoveryExpr to prevent bogus follow-up
3251     // diagnostics, as invalid decls use int as a fallback type.
3252     return CreateRecoveryExpr(NameInfo.getBeginLoc(), NameInfo.getEndLoc(), {});
3253   }
3254 
3255   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) {
3256     // Specifically diagnose references to class templates that are missing
3257     // a template argument list.
3258     diagnoseMissingTemplateArguments(SS, /*TemplateKeyword=*/false, TD, Loc);
3259     return ExprError();
3260   }
3261 
3262   // Make sure that we're referring to a value.
3263   if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(D)) {
3264     Diag(Loc, diag::err_ref_non_value) << D << SS.getRange();
3265     Diag(D->getLocation(), diag::note_declared_at);
3266     return ExprError();
3267   }
3268 
3269   // Check whether this declaration can be used. Note that we suppress
3270   // this check when we're going to perform argument-dependent lookup
3271   // on this function name, because this might not be the function
3272   // that overload resolution actually selects.
3273   if (DiagnoseUseOfDecl(D, Loc))
3274     return ExprError();
3275 
3276   auto *VD = cast<ValueDecl>(D);
3277 
3278   // Only create DeclRefExpr's for valid Decl's.
3279   if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3280     return ExprError();
3281 
3282   // Handle members of anonymous structs and unions.  If we got here,
3283   // and the reference is to a class member indirect field, then this
3284   // must be the subject of a pointer-to-member expression.
3285   if (auto *IndirectField = dyn_cast<IndirectFieldDecl>(VD);
3286       IndirectField && !IndirectField->isCXXClassMember())
3287     return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
3288                                                     IndirectField);
3289 
3290   QualType type = VD->getType();
3291   if (type.isNull())
3292     return ExprError();
3293   ExprValueKind valueKind = VK_PRValue;
3294 
3295   // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3296   // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3297   // is expanded by some outer '...' in the context of the use.
3298   type = type.getNonPackExpansionType();
3299 
3300   switch (D->getKind()) {
3301     // Ignore all the non-ValueDecl kinds.
3302 #define ABSTRACT_DECL(kind)
3303 #define VALUE(type, base)
3304 #define DECL(type, base) case Decl::type:
3305 #include "clang/AST/DeclNodes.inc"
3306     llvm_unreachable("invalid value decl kind");
3307 
3308   // These shouldn't make it here.
3309   case Decl::ObjCAtDefsField:
3310     llvm_unreachable("forming non-member reference to ivar?");
3311 
3312   // Enum constants are always r-values and never references.
3313   // Unresolved using declarations are dependent.
3314   case Decl::EnumConstant:
3315   case Decl::UnresolvedUsingValue:
3316   case Decl::OMPDeclareReduction:
3317   case Decl::OMPDeclareMapper:
3318     valueKind = VK_PRValue;
3319     break;
3320 
3321   // Fields and indirect fields that got here must be for
3322   // pointer-to-member expressions; we just call them l-values for
3323   // internal consistency, because this subexpression doesn't really
3324   // exist in the high-level semantics.
3325   case Decl::Field:
3326   case Decl::IndirectField:
3327   case Decl::ObjCIvar:
3328     assert((getLangOpts().CPlusPlus || isAttrContext()) &&
3329            "building reference to field in C?");
3330 
3331     // These can't have reference type in well-formed programs, but
3332     // for internal consistency we do this anyway.
3333     type = type.getNonReferenceType();
3334     valueKind = VK_LValue;
3335     break;
3336 
3337   // Non-type template parameters are either l-values or r-values
3338   // depending on the type.
3339   case Decl::NonTypeTemplateParm: {
3340     if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3341       type = reftype->getPointeeType();
3342       valueKind = VK_LValue; // even if the parameter is an r-value reference
3343       break;
3344     }
3345 
3346     // [expr.prim.id.unqual]p2:
3347     //   If the entity is a template parameter object for a template
3348     //   parameter of type T, the type of the expression is const T.
3349     //   [...] The expression is an lvalue if the entity is a [...] template
3350     //   parameter object.
3351     if (type->isRecordType()) {
3352       type = type.getUnqualifiedType().withConst();
3353       valueKind = VK_LValue;
3354       break;
3355     }
3356 
3357     // For non-references, we need to strip qualifiers just in case
3358     // the template parameter was declared as 'const int' or whatever.
3359     valueKind = VK_PRValue;
3360     type = type.getUnqualifiedType();
3361     break;
3362   }
3363 
3364   case Decl::Var:
3365   case Decl::VarTemplateSpecialization:
3366   case Decl::VarTemplatePartialSpecialization:
3367   case Decl::Decomposition:
3368   case Decl::Binding:
3369   case Decl::OMPCapturedExpr:
3370     // In C, "extern void blah;" is valid and is an r-value.
3371     if (!getLangOpts().CPlusPlus && !type.hasQualifiers() &&
3372         type->isVoidType()) {
3373       valueKind = VK_PRValue;
3374       break;
3375     }
3376     [[fallthrough]];
3377 
3378   case Decl::ImplicitParam:
3379   case Decl::ParmVar: {
3380     // These are always l-values.
3381     valueKind = VK_LValue;
3382     type = type.getNonReferenceType();
3383 
3384     // FIXME: Does the addition of const really only apply in
3385     // potentially-evaluated contexts? Since the variable isn't actually
3386     // captured in an unevaluated context, it seems that the answer is no.
3387     if (!isUnevaluatedContext()) {
3388       QualType CapturedType = getCapturedDeclRefType(cast<ValueDecl>(VD), Loc);
3389       if (!CapturedType.isNull())
3390         type = CapturedType;
3391     }
3392     break;
3393   }
3394 
3395   case Decl::Function: {
3396     if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3397       if (!Context.BuiltinInfo.isDirectlyAddressable(BID)) {
3398         type = Context.BuiltinFnTy;
3399         valueKind = VK_PRValue;
3400         break;
3401       }
3402     }
3403 
3404     const FunctionType *fty = type->castAs<FunctionType>();
3405 
3406     // If we're referring to a function with an __unknown_anytype
3407     // result type, make the entire expression __unknown_anytype.
3408     if (fty->getReturnType() == Context.UnknownAnyTy) {
3409       type = Context.UnknownAnyTy;
3410       valueKind = VK_PRValue;
3411       break;
3412     }
3413 
3414     // Functions are l-values in C++.
3415     if (getLangOpts().CPlusPlus) {
3416       valueKind = VK_LValue;
3417       break;
3418     }
3419 
3420     // C99 DR 316 says that, if a function type comes from a
3421     // function definition (without a prototype), that type is only
3422     // used for checking compatibility. Therefore, when referencing
3423     // the function, we pretend that we don't have the full function
3424     // type.
3425     if (!cast<FunctionDecl>(VD)->hasPrototype() && isa<FunctionProtoType>(fty))
3426       type = Context.getFunctionNoProtoType(fty->getReturnType(),
3427                                             fty->getExtInfo());
3428 
3429     // Functions are r-values in C.
3430     valueKind = VK_PRValue;
3431     break;
3432   }
3433 
3434   case Decl::CXXDeductionGuide:
3435     llvm_unreachable("building reference to deduction guide");
3436 
3437   case Decl::MSProperty:
3438   case Decl::MSGuid:
3439   case Decl::TemplateParamObject:
3440     // FIXME: Should MSGuidDecl and template parameter objects be subject to
3441     // capture in OpenMP, or duplicated between host and device?
3442     valueKind = VK_LValue;
3443     break;
3444 
3445   case Decl::UnnamedGlobalConstant:
3446     valueKind = VK_LValue;
3447     break;
3448 
3449   case Decl::CXXMethod:
3450     // If we're referring to a method with an __unknown_anytype
3451     // result type, make the entire expression __unknown_anytype.
3452     // This should only be possible with a type written directly.
3453     if (const FunctionProtoType *proto =
3454             dyn_cast<FunctionProtoType>(VD->getType()))
3455       if (proto->getReturnType() == Context.UnknownAnyTy) {
3456         type = Context.UnknownAnyTy;
3457         valueKind = VK_PRValue;
3458         break;
3459       }
3460 
3461     // C++ methods are l-values if static, r-values if non-static.
3462     if (cast<CXXMethodDecl>(VD)->isStatic()) {
3463       valueKind = VK_LValue;
3464       break;
3465     }
3466     [[fallthrough]];
3467 
3468   case Decl::CXXConversion:
3469   case Decl::CXXDestructor:
3470   case Decl::CXXConstructor:
3471     valueKind = VK_PRValue;
3472     break;
3473   }
3474 
3475   auto *E =
3476       BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3477                        /*FIXME: TemplateKWLoc*/ SourceLocation(), TemplateArgs);
3478   // Clang AST consumers assume a DeclRefExpr refers to a valid decl. We
3479   // wrap a DeclRefExpr referring to an invalid decl with a dependent-type
3480   // RecoveryExpr to avoid follow-up semantic analysis (thus prevent bogus
3481   // diagnostics).
3482   if (VD->isInvalidDecl() && E)
3483     return CreateRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), {E});
3484   return E;
3485 }
3486 
3487 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3488                                     SmallString<32> &Target) {
3489   Target.resize(CharByteWidth * (Source.size() + 1));
3490   char *ResultPtr = &Target[0];
3491   const llvm::UTF8 *ErrorPtr;
3492   bool success =
3493       llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3494   (void)success;
3495   assert(success);
3496   Target.resize(ResultPtr - &Target[0]);
3497 }
3498 
3499 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3500                                      PredefinedIdentKind IK) {
3501   Decl *currentDecl = getPredefinedExprDecl(CurContext);
3502   if (!currentDecl) {
3503     Diag(Loc, diag::ext_predef_outside_function);
3504     currentDecl = Context.getTranslationUnitDecl();
3505   }
3506 
3507   QualType ResTy;
3508   StringLiteral *SL = nullptr;
3509   if (cast<DeclContext>(currentDecl)->isDependentContext())
3510     ResTy = Context.DependentTy;
3511   else {
3512     // Pre-defined identifiers are of type char[x], where x is the length of
3513     // the string.
3514     bool ForceElaboratedPrinting =
3515         IK == PredefinedIdentKind::Function && getLangOpts().MSVCCompat;
3516     auto Str =
3517         PredefinedExpr::ComputeName(IK, currentDecl, ForceElaboratedPrinting);
3518     unsigned Length = Str.length();
3519 
3520     llvm::APInt LengthI(32, Length + 1);
3521     if (IK == PredefinedIdentKind::LFunction ||
3522         IK == PredefinedIdentKind::LFuncSig) {
3523       ResTy =
3524           Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3525       SmallString<32> RawChars;
3526       ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3527                               Str, RawChars);
3528       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3529                                            ArraySizeModifier::Normal,
3530                                            /*IndexTypeQuals*/ 0);
3531       SL = StringLiteral::Create(Context, RawChars, StringLiteralKind::Wide,
3532                                  /*Pascal*/ false, ResTy, Loc);
3533     } else {
3534       ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3535       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3536                                            ArraySizeModifier::Normal,
3537                                            /*IndexTypeQuals*/ 0);
3538       SL = StringLiteral::Create(Context, Str, StringLiteralKind::Ordinary,
3539                                  /*Pascal*/ false, ResTy, Loc);
3540     }
3541   }
3542 
3543   return PredefinedExpr::Create(Context, Loc, ResTy, IK, LangOpts.MicrosoftExt,
3544                                 SL);
3545 }
3546 
3547 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3548   return BuildPredefinedExpr(Loc, getPredefinedExprKind(Kind));
3549 }
3550 
3551 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3552   SmallString<16> CharBuffer;
3553   bool Invalid = false;
3554   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3555   if (Invalid)
3556     return ExprError();
3557 
3558   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3559                             PP, Tok.getKind());
3560   if (Literal.hadError())
3561     return ExprError();
3562 
3563   QualType Ty;
3564   if (Literal.isWide())
3565     Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3566   else if (Literal.isUTF8() && getLangOpts().C23)
3567     Ty = Context.UnsignedCharTy; // u8'x' -> unsigned char in C23
3568   else if (Literal.isUTF8() && getLangOpts().Char8)
3569     Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3570   else if (Literal.isUTF16())
3571     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3572   else if (Literal.isUTF32())
3573     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3574   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3575     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
3576   else
3577     Ty = Context.CharTy; // 'x' -> char in C++;
3578                          // u8'x' -> char in C11-C17 and in C++ without char8_t.
3579 
3580   CharacterLiteralKind Kind = CharacterLiteralKind::Ascii;
3581   if (Literal.isWide())
3582     Kind = CharacterLiteralKind::Wide;
3583   else if (Literal.isUTF16())
3584     Kind = CharacterLiteralKind::UTF16;
3585   else if (Literal.isUTF32())
3586     Kind = CharacterLiteralKind::UTF32;
3587   else if (Literal.isUTF8())
3588     Kind = CharacterLiteralKind::UTF8;
3589 
3590   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3591                                              Tok.getLocation());
3592 
3593   if (Literal.getUDSuffix().empty())
3594     return Lit;
3595 
3596   // We're building a user-defined literal.
3597   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3598   SourceLocation UDSuffixLoc =
3599     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3600 
3601   // Make sure we're allowed user-defined literals here.
3602   if (!UDLScope)
3603     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3604 
3605   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3606   //   operator "" X (ch)
3607   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3608                                         Lit, Tok.getLocation());
3609 }
3610 
3611 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, int64_t Val) {
3612   unsigned IntSize = Context.getTargetInfo().getIntWidth();
3613   return IntegerLiteral::Create(Context,
3614                                 llvm::APInt(IntSize, Val, /*isSigned=*/true),
3615                                 Context.IntTy, Loc);
3616 }
3617 
3618 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3619                                   QualType Ty, SourceLocation Loc) {
3620   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3621 
3622   using llvm::APFloat;
3623   APFloat Val(Format);
3624 
3625   llvm::RoundingMode RM = S.CurFPFeatures.getRoundingMode();
3626   if (RM == llvm::RoundingMode::Dynamic)
3627     RM = llvm::RoundingMode::NearestTiesToEven;
3628   APFloat::opStatus result = Literal.GetFloatValue(Val, RM);
3629 
3630   // Overflow is always an error, but underflow is only an error if
3631   // we underflowed to zero (APFloat reports denormals as underflow).
3632   if ((result & APFloat::opOverflow) ||
3633       ((result & APFloat::opUnderflow) && Val.isZero())) {
3634     unsigned diagnostic;
3635     SmallString<20> buffer;
3636     if (result & APFloat::opOverflow) {
3637       diagnostic = diag::warn_float_overflow;
3638       APFloat::getLargest(Format).toString(buffer);
3639     } else {
3640       diagnostic = diag::warn_float_underflow;
3641       APFloat::getSmallest(Format).toString(buffer);
3642     }
3643 
3644     S.Diag(Loc, diagnostic) << Ty << buffer.str();
3645   }
3646 
3647   bool isExact = (result == APFloat::opOK);
3648   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3649 }
3650 
3651 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc, bool AllowZero) {
3652   assert(E && "Invalid expression");
3653 
3654   if (E->isValueDependent())
3655     return false;
3656 
3657   QualType QT = E->getType();
3658   if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3659     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3660     return true;
3661   }
3662 
3663   llvm::APSInt ValueAPS;
3664   ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3665 
3666   if (R.isInvalid())
3667     return true;
3668 
3669   // GCC allows the value of unroll count to be 0.
3670   // https://gcc.gnu.org/onlinedocs/gcc/Loop-Specific-Pragmas.html says
3671   // "The values of 0 and 1 block any unrolling of the loop."
3672   // The values doesn't have to be strictly positive in '#pragma GCC unroll' and
3673   // '#pragma unroll' cases.
3674   bool ValueIsPositive =
3675       AllowZero ? ValueAPS.isNonNegative() : ValueAPS.isStrictlyPositive();
3676   if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3677     Diag(E->getExprLoc(), diag::err_requires_positive_value)
3678         << toString(ValueAPS, 10) << ValueIsPositive;
3679     return true;
3680   }
3681 
3682   return false;
3683 }
3684 
3685 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3686   // Fast path for a single digit (which is quite common).  A single digit
3687   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3688   if (Tok.getLength() == 1 || Tok.getKind() == tok::binary_data) {
3689     const uint8_t Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3690     return ActOnIntegerConstant(Tok.getLocation(), Val);
3691   }
3692 
3693   SmallString<128> SpellingBuffer;
3694   // NumericLiteralParser wants to overread by one character.  Add padding to
3695   // the buffer in case the token is copied to the buffer.  If getSpelling()
3696   // returns a StringRef to the memory buffer, it should have a null char at
3697   // the EOF, so it is also safe.
3698   SpellingBuffer.resize(Tok.getLength() + 1);
3699 
3700   // Get the spelling of the token, which eliminates trigraphs, etc.
3701   bool Invalid = false;
3702   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3703   if (Invalid)
3704     return ExprError();
3705 
3706   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
3707                                PP.getSourceManager(), PP.getLangOpts(),
3708                                PP.getTargetInfo(), PP.getDiagnostics());
3709   if (Literal.hadError)
3710     return ExprError();
3711 
3712   if (Literal.hasUDSuffix()) {
3713     // We're building a user-defined literal.
3714     const IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3715     SourceLocation UDSuffixLoc =
3716       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3717 
3718     // Make sure we're allowed user-defined literals here.
3719     if (!UDLScope)
3720       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3721 
3722     QualType CookedTy;
3723     if (Literal.isFloatingLiteral()) {
3724       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3725       // long double, the literal is treated as a call of the form
3726       //   operator "" X (f L)
3727       CookedTy = Context.LongDoubleTy;
3728     } else {
3729       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3730       // unsigned long long, the literal is treated as a call of the form
3731       //   operator "" X (n ULL)
3732       CookedTy = Context.UnsignedLongLongTy;
3733     }
3734 
3735     DeclarationName OpName =
3736       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3737     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3738     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3739 
3740     SourceLocation TokLoc = Tok.getLocation();
3741 
3742     // Perform literal operator lookup to determine if we're building a raw
3743     // literal or a cooked one.
3744     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3745     switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3746                                   /*AllowRaw*/ true, /*AllowTemplate*/ true,
3747                                   /*AllowStringTemplatePack*/ false,
3748                                   /*DiagnoseMissing*/ !Literal.isImaginary)) {
3749     case LOLR_ErrorNoDiagnostic:
3750       // Lookup failure for imaginary constants isn't fatal, there's still the
3751       // GNU extension producing _Complex types.
3752       break;
3753     case LOLR_Error:
3754       return ExprError();
3755     case LOLR_Cooked: {
3756       Expr *Lit;
3757       if (Literal.isFloatingLiteral()) {
3758         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3759       } else {
3760         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3761         if (Literal.GetIntegerValue(ResultVal))
3762           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3763               << /* Unsigned */ 1;
3764         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3765                                      Tok.getLocation());
3766       }
3767       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3768     }
3769 
3770     case LOLR_Raw: {
3771       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3772       // literal is treated as a call of the form
3773       //   operator "" X ("n")
3774       unsigned Length = Literal.getUDSuffixOffset();
3775       QualType StrTy = Context.getConstantArrayType(
3776           Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
3777           llvm::APInt(32, Length + 1), nullptr, ArraySizeModifier::Normal, 0);
3778       Expr *Lit =
3779           StringLiteral::Create(Context, StringRef(TokSpelling.data(), Length),
3780                                 StringLiteralKind::Ordinary,
3781                                 /*Pascal*/ false, StrTy, &TokLoc, 1);
3782       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3783     }
3784 
3785     case LOLR_Template: {
3786       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3787       // template), L is treated as a call fo the form
3788       //   operator "" X <'c1', 'c2', ... 'ck'>()
3789       // where n is the source character sequence c1 c2 ... ck.
3790       TemplateArgumentListInfo ExplicitArgs;
3791       unsigned CharBits = Context.getIntWidth(Context.CharTy);
3792       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3793       llvm::APSInt Value(CharBits, CharIsUnsigned);
3794       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3795         Value = TokSpelling[I];
3796         TemplateArgument Arg(Context, Value, Context.CharTy);
3797         TemplateArgumentLocInfo ArgInfo;
3798         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3799       }
3800       return BuildLiteralOperatorCall(R, OpNameInfo, {}, TokLoc, &ExplicitArgs);
3801     }
3802     case LOLR_StringTemplatePack:
3803       llvm_unreachable("unexpected literal operator lookup result");
3804     }
3805   }
3806 
3807   Expr *Res;
3808 
3809   if (Literal.isFixedPointLiteral()) {
3810     QualType Ty;
3811 
3812     if (Literal.isAccum) {
3813       if (Literal.isHalf) {
3814         Ty = Context.ShortAccumTy;
3815       } else if (Literal.isLong) {
3816         Ty = Context.LongAccumTy;
3817       } else {
3818         Ty = Context.AccumTy;
3819       }
3820     } else if (Literal.isFract) {
3821       if (Literal.isHalf) {
3822         Ty = Context.ShortFractTy;
3823       } else if (Literal.isLong) {
3824         Ty = Context.LongFractTy;
3825       } else {
3826         Ty = Context.FractTy;
3827       }
3828     }
3829 
3830     if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
3831 
3832     bool isSigned = !Literal.isUnsigned;
3833     unsigned scale = Context.getFixedPointScale(Ty);
3834     unsigned bit_width = Context.getTypeInfo(Ty).Width;
3835 
3836     llvm::APInt Val(bit_width, 0, isSigned);
3837     bool Overflowed = Literal.GetFixedPointValue(Val, scale);
3838     bool ValIsZero = Val.isZero() && !Overflowed;
3839 
3840     auto MaxVal = Context.getFixedPointMax(Ty).getValue();
3841     if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
3842       // Clause 6.4.4 - The value of a constant shall be in the range of
3843       // representable values for its type, with exception for constants of a
3844       // fract type with a value of exactly 1; such a constant shall denote
3845       // the maximal value for the type.
3846       --Val;
3847     else if (Val.ugt(MaxVal) || Overflowed)
3848       Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
3849 
3850     Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
3851                                               Tok.getLocation(), scale);
3852   } else if (Literal.isFloatingLiteral()) {
3853     QualType Ty;
3854     if (Literal.isHalf){
3855       if (getLangOpts().HLSL ||
3856           getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()))
3857         Ty = Context.HalfTy;
3858       else {
3859         Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
3860         return ExprError();
3861       }
3862     } else if (Literal.isFloat)
3863       Ty = Context.FloatTy;
3864     else if (Literal.isLong)
3865       Ty = !getLangOpts().HLSL ? Context.LongDoubleTy : Context.DoubleTy;
3866     else if (Literal.isFloat16)
3867       Ty = Context.Float16Ty;
3868     else if (Literal.isFloat128)
3869       Ty = Context.Float128Ty;
3870     else if (getLangOpts().HLSL)
3871       Ty = Context.FloatTy;
3872     else
3873       Ty = Context.DoubleTy;
3874 
3875     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3876 
3877     if (Ty == Context.DoubleTy) {
3878       if (getLangOpts().SinglePrecisionConstants) {
3879         if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) {
3880           Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3881         }
3882       } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption(
3883                                              "cl_khr_fp64", getLangOpts())) {
3884         // Impose single-precision float type when cl_khr_fp64 is not enabled.
3885         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64)
3886             << (getLangOpts().getOpenCLCompatibleVersion() >= 300);
3887         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3888       }
3889     }
3890   } else if (!Literal.isIntegerLiteral()) {
3891     return ExprError();
3892   } else {
3893     QualType Ty;
3894 
3895     // 'z/uz' literals are a C++23 feature.
3896     if (Literal.isSizeT)
3897       Diag(Tok.getLocation(), getLangOpts().CPlusPlus
3898                                   ? getLangOpts().CPlusPlus23
3899                                         ? diag::warn_cxx20_compat_size_t_suffix
3900                                         : diag::ext_cxx23_size_t_suffix
3901                                   : diag::err_cxx23_size_t_suffix);
3902 
3903     // 'wb/uwb' literals are a C23 feature. We support _BitInt as a type in C++,
3904     // but we do not currently support the suffix in C++ mode because it's not
3905     // entirely clear whether WG21 will prefer this suffix to return a library
3906     // type such as std::bit_int instead of returning a _BitInt. '__wb/__uwb'
3907     // literals are a C++ extension.
3908     if (Literal.isBitInt)
3909       PP.Diag(Tok.getLocation(),
3910               getLangOpts().CPlusPlus ? diag::ext_cxx_bitint_suffix
3911               : getLangOpts().C23     ? diag::warn_c23_compat_bitint_suffix
3912                                       : diag::ext_c23_bitint_suffix);
3913 
3914     // Get the value in the widest-possible width. What is "widest" depends on
3915     // whether the literal is a bit-precise integer or not. For a bit-precise
3916     // integer type, try to scan the source to determine how many bits are
3917     // needed to represent the value. This may seem a bit expensive, but trying
3918     // to get the integer value from an overly-wide APInt is *extremely*
3919     // expensive, so the naive approach of assuming
3920     // llvm::IntegerType::MAX_INT_BITS is a big performance hit.
3921     unsigned BitsNeeded =
3922         Literal.isBitInt ? llvm::APInt::getSufficientBitsNeeded(
3923                                Literal.getLiteralDigits(), Literal.getRadix())
3924                          : Context.getTargetInfo().getIntMaxTWidth();
3925     llvm::APInt ResultVal(BitsNeeded, 0);
3926 
3927     if (Literal.GetIntegerValue(ResultVal)) {
3928       // If this value didn't fit into uintmax_t, error and force to ull.
3929       Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3930           << /* Unsigned */ 1;
3931       Ty = Context.UnsignedLongLongTy;
3932       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3933              "long long is not intmax_t?");
3934     } else {
3935       // If this value fits into a ULL, try to figure out what else it fits into
3936       // according to the rules of C99 6.4.4.1p5.
3937 
3938       // Octal, Hexadecimal, and integers with a U suffix are allowed to
3939       // be an unsigned int.
3940       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3941 
3942       // HLSL doesn't really have `long` or `long long`. We support the `ll`
3943       // suffix for portability of code with C++, but both `l` and `ll` are
3944       // 64-bit integer types, and we want the type of `1l` and `1ll` to be the
3945       // same.
3946       if (getLangOpts().HLSL && !Literal.isLong && Literal.isLongLong) {
3947         Literal.isLong = true;
3948         Literal.isLongLong = false;
3949       }
3950 
3951       // Check from smallest to largest, picking the smallest type we can.
3952       unsigned Width = 0;
3953 
3954       // Microsoft specific integer suffixes are explicitly sized.
3955       if (Literal.MicrosoftInteger) {
3956         if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
3957           Width = 8;
3958           Ty = Context.CharTy;
3959         } else {
3960           Width = Literal.MicrosoftInteger;
3961           Ty = Context.getIntTypeForBitwidth(Width,
3962                                              /*Signed=*/!Literal.isUnsigned);
3963         }
3964       }
3965 
3966       // Bit-precise integer literals are automagically-sized based on the
3967       // width required by the literal.
3968       if (Literal.isBitInt) {
3969         // The signed version has one more bit for the sign value. There are no
3970         // zero-width bit-precise integers, even if the literal value is 0.
3971         Width = std::max(ResultVal.getActiveBits(), 1u) +
3972                 (Literal.isUnsigned ? 0u : 1u);
3973 
3974         // Diagnose if the width of the constant is larger than BITINT_MAXWIDTH,
3975         // and reset the type to the largest supported width.
3976         unsigned int MaxBitIntWidth =
3977             Context.getTargetInfo().getMaxBitIntWidth();
3978         if (Width > MaxBitIntWidth) {
3979           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3980               << Literal.isUnsigned;
3981           Width = MaxBitIntWidth;
3982         }
3983 
3984         // Reset the result value to the smaller APInt and select the correct
3985         // type to be used. Note, we zext even for signed values because the
3986         // literal itself is always an unsigned value (a preceeding - is a
3987         // unary operator, not part of the literal).
3988         ResultVal = ResultVal.zextOrTrunc(Width);
3989         Ty = Context.getBitIntType(Literal.isUnsigned, Width);
3990       }
3991 
3992       // Check C++23 size_t literals.
3993       if (Literal.isSizeT) {
3994         assert(!Literal.MicrosoftInteger &&
3995                "size_t literals can't be Microsoft literals");
3996         unsigned SizeTSize = Context.getTargetInfo().getTypeWidth(
3997             Context.getTargetInfo().getSizeType());
3998 
3999         // Does it fit in size_t?
4000         if (ResultVal.isIntN(SizeTSize)) {
4001           // Does it fit in ssize_t?
4002           if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0)
4003             Ty = Context.getSignedSizeType();
4004           else if (AllowUnsigned)
4005             Ty = Context.getSizeType();
4006           Width = SizeTSize;
4007         }
4008       }
4009 
4010       if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong &&
4011           !Literal.isSizeT) {
4012         // Are int/unsigned possibilities?
4013         unsigned IntSize = Context.getTargetInfo().getIntWidth();
4014 
4015         // Does it fit in a unsigned int?
4016         if (ResultVal.isIntN(IntSize)) {
4017           // Does it fit in a signed int?
4018           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
4019             Ty = Context.IntTy;
4020           else if (AllowUnsigned)
4021             Ty = Context.UnsignedIntTy;
4022           Width = IntSize;
4023         }
4024       }
4025 
4026       // Are long/unsigned long possibilities?
4027       if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) {
4028         unsigned LongSize = Context.getTargetInfo().getLongWidth();
4029 
4030         // Does it fit in a unsigned long?
4031         if (ResultVal.isIntN(LongSize)) {
4032           // Does it fit in a signed long?
4033           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
4034             Ty = Context.LongTy;
4035           else if (AllowUnsigned)
4036             Ty = Context.UnsignedLongTy;
4037           // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
4038           // is compatible.
4039           else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
4040             const unsigned LongLongSize =
4041                 Context.getTargetInfo().getLongLongWidth();
4042             Diag(Tok.getLocation(),
4043                  getLangOpts().CPlusPlus
4044                      ? Literal.isLong
4045                            ? diag::warn_old_implicitly_unsigned_long_cxx
4046                            : /*C++98 UB*/ diag::
4047                                  ext_old_implicitly_unsigned_long_cxx
4048                      : diag::warn_old_implicitly_unsigned_long)
4049                 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
4050                                             : /*will be ill-formed*/ 1);
4051             Ty = Context.UnsignedLongTy;
4052           }
4053           Width = LongSize;
4054         }
4055       }
4056 
4057       // Check long long if needed.
4058       if (Ty.isNull() && !Literal.isSizeT) {
4059         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
4060 
4061         // Does it fit in a unsigned long long?
4062         if (ResultVal.isIntN(LongLongSize)) {
4063           // Does it fit in a signed long long?
4064           // To be compatible with MSVC, hex integer literals ending with the
4065           // LL or i64 suffix are always signed in Microsoft mode.
4066           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
4067               (getLangOpts().MSVCCompat && Literal.isLongLong)))
4068             Ty = Context.LongLongTy;
4069           else if (AllowUnsigned)
4070             Ty = Context.UnsignedLongLongTy;
4071           Width = LongLongSize;
4072 
4073           // 'long long' is a C99 or C++11 feature, whether the literal
4074           // explicitly specified 'long long' or we needed the extra width.
4075           if (getLangOpts().CPlusPlus)
4076             Diag(Tok.getLocation(), getLangOpts().CPlusPlus11
4077                                         ? diag::warn_cxx98_compat_longlong
4078                                         : diag::ext_cxx11_longlong);
4079           else if (!getLangOpts().C99)
4080             Diag(Tok.getLocation(), diag::ext_c99_longlong);
4081         }
4082       }
4083 
4084       // If we still couldn't decide a type, we either have 'size_t' literal
4085       // that is out of range, or a decimal literal that does not fit in a
4086       // signed long long and has no U suffix.
4087       if (Ty.isNull()) {
4088         if (Literal.isSizeT)
4089           Diag(Tok.getLocation(), diag::err_size_t_literal_too_large)
4090               << Literal.isUnsigned;
4091         else
4092           Diag(Tok.getLocation(),
4093                diag::ext_integer_literal_too_large_for_signed);
4094         Ty = Context.UnsignedLongLongTy;
4095         Width = Context.getTargetInfo().getLongLongWidth();
4096       }
4097 
4098       if (ResultVal.getBitWidth() != Width)
4099         ResultVal = ResultVal.trunc(Width);
4100     }
4101     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
4102   }
4103 
4104   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
4105   if (Literal.isImaginary) {
4106     Res = new (Context) ImaginaryLiteral(Res,
4107                                         Context.getComplexType(Res->getType()));
4108 
4109     // In C++, this is a GNU extension. In C, it's a C2y extension.
4110     unsigned DiagId;
4111     if (getLangOpts().CPlusPlus)
4112       DiagId = diag::ext_gnu_imaginary_constant;
4113     else if (getLangOpts().C2y)
4114       DiagId = diag::warn_c23_compat_imaginary_constant;
4115     else
4116       DiagId = diag::ext_c2y_imaginary_constant;
4117     Diag(Tok.getLocation(), DiagId);
4118   }
4119   return Res;
4120 }
4121 
4122 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
4123   assert(E && "ActOnParenExpr() missing expr");
4124   QualType ExprTy = E->getType();
4125   if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() &&
4126       !E->isLValue() && ExprTy->hasFloatingRepresentation())
4127     return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E);
4128   return new (Context) ParenExpr(L, R, E);
4129 }
4130 
4131 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
4132                                          SourceLocation Loc,
4133                                          SourceRange ArgRange) {
4134   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
4135   // scalar or vector data type argument..."
4136   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4137   // type (C99 6.2.5p18) or void.
4138   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
4139     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
4140       << T << ArgRange;
4141     return true;
4142   }
4143 
4144   assert((T->isVoidType() || !T->isIncompleteType()) &&
4145          "Scalar types should always be complete");
4146   return false;
4147 }
4148 
4149 static bool CheckVectorElementsTraitOperandType(Sema &S, QualType T,
4150                                                 SourceLocation Loc,
4151                                                 SourceRange ArgRange) {
4152   // builtin_vectorelements supports both fixed-sized and scalable vectors.
4153   if (!T->isVectorType() && !T->isSizelessVectorType())
4154     return S.Diag(Loc, diag::err_builtin_non_vector_type)
4155            << ""
4156            << "__builtin_vectorelements" << T << ArgRange;
4157 
4158   return false;
4159 }
4160 
4161 static bool checkPtrAuthTypeDiscriminatorOperandType(Sema &S, QualType T,
4162                                                      SourceLocation Loc,
4163                                                      SourceRange ArgRange) {
4164   if (S.checkPointerAuthEnabled(Loc, ArgRange))
4165     return true;
4166 
4167   if (!T->isFunctionType() && !T->isFunctionPointerType() &&
4168       !T->isFunctionReferenceType() && !T->isMemberFunctionPointerType()) {
4169     S.Diag(Loc, diag::err_ptrauth_type_disc_undiscriminated) << T << ArgRange;
4170     return true;
4171   }
4172 
4173   return false;
4174 }
4175 
4176 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
4177                                            SourceLocation Loc,
4178                                            SourceRange ArgRange,
4179                                            UnaryExprOrTypeTrait TraitKind) {
4180   // Invalid types must be hard errors for SFINAE in C++.
4181   if (S.LangOpts.CPlusPlus)
4182     return true;
4183 
4184   // C99 6.5.3.4p1:
4185   if (T->isFunctionType() &&
4186       (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
4187        TraitKind == UETT_PreferredAlignOf)) {
4188     // sizeof(function)/alignof(function) is allowed as an extension.
4189     S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
4190         << getTraitSpelling(TraitKind) << ArgRange;
4191     return false;
4192   }
4193 
4194   // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4195   // this is an error (OpenCL v1.1 s6.3.k)
4196   if (T->isVoidType()) {
4197     unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
4198                                         : diag::ext_sizeof_alignof_void_type;
4199     S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange;
4200     return false;
4201   }
4202 
4203   return true;
4204 }
4205 
4206 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
4207                                              SourceLocation Loc,
4208                                              SourceRange ArgRange,
4209                                              UnaryExprOrTypeTrait TraitKind) {
4210   // Reject sizeof(interface) and sizeof(interface<proto>) if the
4211   // runtime doesn't allow it.
4212   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
4213     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
4214       << T << (TraitKind == UETT_SizeOf)
4215       << ArgRange;
4216     return true;
4217   }
4218 
4219   return false;
4220 }
4221 
4222 /// Check whether E is a pointer from a decayed array type (the decayed
4223 /// pointer type is equal to T) and emit a warning if it is.
4224 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
4225                                      const Expr *E) {
4226   // Don't warn if the operation changed the type.
4227   if (T != E->getType())
4228     return;
4229 
4230   // Now look for array decays.
4231   const auto *ICE = dyn_cast<ImplicitCastExpr>(E);
4232   if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
4233     return;
4234 
4235   S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
4236                                              << ICE->getType()
4237                                              << ICE->getSubExpr()->getType();
4238 }
4239 
4240 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
4241                                             UnaryExprOrTypeTrait ExprKind) {
4242   QualType ExprTy = E->getType();
4243   assert(!ExprTy->isReferenceType());
4244 
4245   bool IsUnevaluatedOperand =
4246       (ExprKind == UETT_SizeOf || ExprKind == UETT_DataSizeOf ||
4247        ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4248        ExprKind == UETT_VecStep);
4249   if (IsUnevaluatedOperand) {
4250     ExprResult Result = CheckUnevaluatedOperand(E);
4251     if (Result.isInvalid())
4252       return true;
4253     E = Result.get();
4254   }
4255 
4256   // The operand for sizeof and alignof is in an unevaluated expression context,
4257   // so side effects could result in unintended consequences.
4258   // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
4259   // used to build SFINAE gadgets.
4260   // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
4261   if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
4262       !E->isInstantiationDependent() &&
4263       !E->getType()->isVariableArrayType() &&
4264       E->HasSideEffects(Context, false))
4265     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
4266 
4267   if (ExprKind == UETT_VecStep)
4268     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
4269                                         E->getSourceRange());
4270 
4271   if (ExprKind == UETT_VectorElements)
4272     return CheckVectorElementsTraitOperandType(*this, ExprTy, E->getExprLoc(),
4273                                                E->getSourceRange());
4274 
4275   // Explicitly list some types as extensions.
4276   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
4277                                       E->getSourceRange(), ExprKind))
4278     return false;
4279 
4280   // WebAssembly tables are always illegal operands to unary expressions and
4281   // type traits.
4282   if (Context.getTargetInfo().getTriple().isWasm() &&
4283       E->getType()->isWebAssemblyTableType()) {
4284     Diag(E->getExprLoc(), diag::err_wasm_table_invalid_uett_operand)
4285         << getTraitSpelling(ExprKind);
4286     return true;
4287   }
4288 
4289   // 'alignof' applied to an expression only requires the base element type of
4290   // the expression to be complete. 'sizeof' requires the expression's type to
4291   // be complete (and will attempt to complete it if it's an array of unknown
4292   // bound).
4293   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4294     if (RequireCompleteSizedType(
4295             E->getExprLoc(), Context.getBaseElementType(E->getType()),
4296             diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4297             getTraitSpelling(ExprKind), E->getSourceRange()))
4298       return true;
4299   } else {
4300     if (RequireCompleteSizedExprType(
4301             E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4302             getTraitSpelling(ExprKind), E->getSourceRange()))
4303       return true;
4304   }
4305 
4306   // Completing the expression's type may have changed it.
4307   ExprTy = E->getType();
4308   assert(!ExprTy->isReferenceType());
4309 
4310   if (ExprTy->isFunctionType()) {
4311     Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
4312         << getTraitSpelling(ExprKind) << E->getSourceRange();
4313     return true;
4314   }
4315 
4316   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
4317                                        E->getSourceRange(), ExprKind))
4318     return true;
4319 
4320   if (ExprKind == UETT_SizeOf) {
4321     if (const auto *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4322       if (const auto *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
4323         QualType OType = PVD->getOriginalType();
4324         QualType Type = PVD->getType();
4325         if (Type->isPointerType() && OType->isArrayType()) {
4326           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
4327             << Type << OType;
4328           Diag(PVD->getLocation(), diag::note_declared_at);
4329         }
4330       }
4331     }
4332 
4333     // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4334     // decays into a pointer and returns an unintended result. This is most
4335     // likely a typo for "sizeof(array) op x".
4336     if (const auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
4337       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4338                                BO->getLHS());
4339       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4340                                BO->getRHS());
4341     }
4342   }
4343 
4344   return false;
4345 }
4346 
4347 static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4348   // Cannot know anything else if the expression is dependent.
4349   if (E->isTypeDependent())
4350     return false;
4351 
4352   if (E->getObjectKind() == OK_BitField) {
4353     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
4354        << 1 << E->getSourceRange();
4355     return true;
4356   }
4357 
4358   ValueDecl *D = nullptr;
4359   Expr *Inner = E->IgnoreParens();
4360   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
4361     D = DRE->getDecl();
4362   } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
4363     D = ME->getMemberDecl();
4364   }
4365 
4366   // If it's a field, require the containing struct to have a
4367   // complete definition so that we can compute the layout.
4368   //
4369   // This can happen in C++11 onwards, either by naming the member
4370   // in a way that is not transformed into a member access expression
4371   // (in an unevaluated operand, for instance), or by naming the member
4372   // in a trailing-return-type.
4373   //
4374   // For the record, since __alignof__ on expressions is a GCC
4375   // extension, GCC seems to permit this but always gives the
4376   // nonsensical answer 0.
4377   //
4378   // We don't really need the layout here --- we could instead just
4379   // directly check for all the appropriate alignment-lowing
4380   // attributes --- but that would require duplicating a lot of
4381   // logic that just isn't worth duplicating for such a marginal
4382   // use-case.
4383   if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
4384     // Fast path this check, since we at least know the record has a
4385     // definition if we can find a member of it.
4386     if (!FD->getParent()->isCompleteDefinition()) {
4387       S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4388         << E->getSourceRange();
4389       return true;
4390     }
4391 
4392     // Otherwise, if it's a field, and the field doesn't have
4393     // reference type, then it must have a complete type (or be a
4394     // flexible array member, which we explicitly want to
4395     // white-list anyway), which makes the following checks trivial.
4396     if (!FD->getType()->isReferenceType())
4397       return false;
4398   }
4399 
4400   return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4401 }
4402 
4403 bool Sema::CheckVecStepExpr(Expr *E) {
4404   E = E->IgnoreParens();
4405 
4406   // Cannot know anything else if the expression is dependent.
4407   if (E->isTypeDependent())
4408     return false;
4409 
4410   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4411 }
4412 
4413 static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4414                                         CapturingScopeInfo *CSI) {
4415   assert(T->isVariablyModifiedType());
4416   assert(CSI != nullptr);
4417 
4418   // We're going to walk down into the type and look for VLA expressions.
4419   do {
4420     const Type *Ty = T.getTypePtr();
4421     switch (Ty->getTypeClass()) {
4422 #define TYPE(Class, Base)
4423 #define ABSTRACT_TYPE(Class, Base)
4424 #define NON_CANONICAL_TYPE(Class, Base)
4425 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
4426 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4427 #include "clang/AST/TypeNodes.inc"
4428       T = QualType();
4429       break;
4430     // These types are never variably-modified.
4431     case Type::Builtin:
4432     case Type::Complex:
4433     case Type::Vector:
4434     case Type::ExtVector:
4435     case Type::ConstantMatrix:
4436     case Type::Record:
4437     case Type::Enum:
4438     case Type::TemplateSpecialization:
4439     case Type::ObjCObject:
4440     case Type::ObjCInterface:
4441     case Type::ObjCObjectPointer:
4442     case Type::ObjCTypeParam:
4443     case Type::Pipe:
4444     case Type::BitInt:
4445       llvm_unreachable("type class is never variably-modified!");
4446     case Type::Elaborated:
4447       T = cast<ElaboratedType>(Ty)->getNamedType();
4448       break;
4449     case Type::Adjusted:
4450       T = cast<AdjustedType>(Ty)->getOriginalType();
4451       break;
4452     case Type::Decayed:
4453       T = cast<DecayedType>(Ty)->getPointeeType();
4454       break;
4455     case Type::ArrayParameter:
4456       T = cast<ArrayParameterType>(Ty)->getElementType();
4457       break;
4458     case Type::Pointer:
4459       T = cast<PointerType>(Ty)->getPointeeType();
4460       break;
4461     case Type::BlockPointer:
4462       T = cast<BlockPointerType>(Ty)->getPointeeType();
4463       break;
4464     case Type::LValueReference:
4465     case Type::RValueReference:
4466       T = cast<ReferenceType>(Ty)->getPointeeType();
4467       break;
4468     case Type::MemberPointer:
4469       T = cast<MemberPointerType>(Ty)->getPointeeType();
4470       break;
4471     case Type::ConstantArray:
4472     case Type::IncompleteArray:
4473       // Losing element qualification here is fine.
4474       T = cast<ArrayType>(Ty)->getElementType();
4475       break;
4476     case Type::VariableArray: {
4477       // Losing element qualification here is fine.
4478       const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4479 
4480       // Unknown size indication requires no size computation.
4481       // Otherwise, evaluate and record it.
4482       auto Size = VAT->getSizeExpr();
4483       if (Size && !CSI->isVLATypeCaptured(VAT) &&
4484           (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4485         CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4486 
4487       T = VAT->getElementType();
4488       break;
4489     }
4490     case Type::FunctionProto:
4491     case Type::FunctionNoProto:
4492       T = cast<FunctionType>(Ty)->getReturnType();
4493       break;
4494     case Type::Paren:
4495     case Type::TypeOf:
4496     case Type::UnaryTransform:
4497     case Type::Attributed:
4498     case Type::BTFTagAttributed:
4499     case Type::HLSLAttributedResource:
4500     case Type::SubstTemplateTypeParm:
4501     case Type::MacroQualified:
4502     case Type::CountAttributed:
4503       // Keep walking after single level desugaring.
4504       T = T.getSingleStepDesugaredType(Context);
4505       break;
4506     case Type::Typedef:
4507       T = cast<TypedefType>(Ty)->desugar();
4508       break;
4509     case Type::Decltype:
4510       T = cast<DecltypeType>(Ty)->desugar();
4511       break;
4512     case Type::PackIndexing:
4513       T = cast<PackIndexingType>(Ty)->desugar();
4514       break;
4515     case Type::Using:
4516       T = cast<UsingType>(Ty)->desugar();
4517       break;
4518     case Type::Auto:
4519     case Type::DeducedTemplateSpecialization:
4520       T = cast<DeducedType>(Ty)->getDeducedType();
4521       break;
4522     case Type::TypeOfExpr:
4523       T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4524       break;
4525     case Type::Atomic:
4526       T = cast<AtomicType>(Ty)->getValueType();
4527       break;
4528     }
4529   } while (!T.isNull() && T->isVariablyModifiedType());
4530 }
4531 
4532 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4533                                             SourceLocation OpLoc,
4534                                             SourceRange ExprRange,
4535                                             UnaryExprOrTypeTrait ExprKind,
4536                                             StringRef KWName) {
4537   if (ExprType->isDependentType())
4538     return false;
4539 
4540   // C++ [expr.sizeof]p2:
4541   //     When applied to a reference or a reference type, the result
4542   //     is the size of the referenced type.
4543   // C++11 [expr.alignof]p3:
4544   //     When alignof is applied to a reference type, the result
4545   //     shall be the alignment of the referenced type.
4546   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4547     ExprType = Ref->getPointeeType();
4548 
4549   // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4550   //   When alignof or _Alignof is applied to an array type, the result
4551   //   is the alignment of the element type.
4552   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4553       ExprKind == UETT_OpenMPRequiredSimdAlign) {
4554     // If the trait is 'alignof' in C before C2y, the ability to apply the
4555     // trait to an incomplete array is an extension.
4556     if (ExprKind == UETT_AlignOf && !getLangOpts().CPlusPlus &&
4557         ExprType->isIncompleteArrayType())
4558       Diag(OpLoc, getLangOpts().C2y
4559                       ? diag::warn_c2y_compat_alignof_incomplete_array
4560                       : diag::ext_c2y_alignof_incomplete_array);
4561     ExprType = Context.getBaseElementType(ExprType);
4562   }
4563 
4564   if (ExprKind == UETT_VecStep)
4565     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
4566 
4567   if (ExprKind == UETT_VectorElements)
4568     return CheckVectorElementsTraitOperandType(*this, ExprType, OpLoc,
4569                                                ExprRange);
4570 
4571   if (ExprKind == UETT_PtrAuthTypeDiscriminator)
4572     return checkPtrAuthTypeDiscriminatorOperandType(*this, ExprType, OpLoc,
4573                                                     ExprRange);
4574 
4575   // Explicitly list some types as extensions.
4576   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
4577                                       ExprKind))
4578     return false;
4579 
4580   if (RequireCompleteSizedType(
4581           OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4582           KWName, ExprRange))
4583     return true;
4584 
4585   if (ExprType->isFunctionType()) {
4586     Diag(OpLoc, diag::err_sizeof_alignof_function_type) << KWName << ExprRange;
4587     return true;
4588   }
4589 
4590   // WebAssembly tables are always illegal operands to unary expressions and
4591   // type traits.
4592   if (Context.getTargetInfo().getTriple().isWasm() &&
4593       ExprType->isWebAssemblyTableType()) {
4594     Diag(OpLoc, diag::err_wasm_table_invalid_uett_operand)
4595         << getTraitSpelling(ExprKind);
4596     return true;
4597   }
4598 
4599   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
4600                                        ExprKind))
4601     return true;
4602 
4603   if (ExprType->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4604     if (auto *TT = ExprType->getAs<TypedefType>()) {
4605       for (auto I = FunctionScopes.rbegin(),
4606                 E = std::prev(FunctionScopes.rend());
4607            I != E; ++I) {
4608         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4609         if (CSI == nullptr)
4610           break;
4611         DeclContext *DC = nullptr;
4612         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4613           DC = LSI->CallOperator;
4614         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4615           DC = CRSI->TheCapturedDecl;
4616         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4617           DC = BSI->TheDecl;
4618         if (DC) {
4619           if (DC->containsDecl(TT->getDecl()))
4620             break;
4621           captureVariablyModifiedType(Context, ExprType, CSI);
4622         }
4623       }
4624     }
4625   }
4626 
4627   return false;
4628 }
4629 
4630 ExprResult Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4631                                                 SourceLocation OpLoc,
4632                                                 UnaryExprOrTypeTrait ExprKind,
4633                                                 SourceRange R) {
4634   if (!TInfo)
4635     return ExprError();
4636 
4637   QualType T = TInfo->getType();
4638 
4639   if (!T->isDependentType() &&
4640       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind,
4641                                        getTraitSpelling(ExprKind)))
4642     return ExprError();
4643 
4644   // Adds overload of TransformToPotentiallyEvaluated for TypeSourceInfo to
4645   // properly deal with VLAs in nested calls of sizeof and typeof.
4646   if (currentEvaluationContext().isUnevaluated() &&
4647       currentEvaluationContext().InConditionallyConstantEvaluateContext &&
4648       ExprKind == UETT_SizeOf && TInfo->getType()->isVariablyModifiedType())
4649     TInfo = TransformToPotentiallyEvaluated(TInfo);
4650 
4651   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4652   return new (Context) UnaryExprOrTypeTraitExpr(
4653       ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4654 }
4655 
4656 ExprResult
4657 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4658                                      UnaryExprOrTypeTrait ExprKind) {
4659   ExprResult PE = CheckPlaceholderExpr(E);
4660   if (PE.isInvalid())
4661     return ExprError();
4662 
4663   E = PE.get();
4664 
4665   // Verify that the operand is valid.
4666   bool isInvalid = false;
4667   if (E->isTypeDependent()) {
4668     // Delay type-checking for type-dependent expressions.
4669   } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4670     isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4671   } else if (ExprKind == UETT_VecStep) {
4672     isInvalid = CheckVecStepExpr(E);
4673   } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4674       Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4675       isInvalid = true;
4676   } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
4677     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4678     isInvalid = true;
4679   } else if (ExprKind == UETT_VectorElements) {
4680     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_VectorElements);
4681   } else {
4682     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4683   }
4684 
4685   if (isInvalid)
4686     return ExprError();
4687 
4688   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4689     PE = TransformToPotentiallyEvaluated(E);
4690     if (PE.isInvalid()) return ExprError();
4691     E = PE.get();
4692   }
4693 
4694   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4695   return new (Context) UnaryExprOrTypeTraitExpr(
4696       ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4697 }
4698 
4699 ExprResult
4700 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4701                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
4702                                     void *TyOrEx, SourceRange ArgRange) {
4703   // If error parsing type, ignore.
4704   if (!TyOrEx) return ExprError();
4705 
4706   if (IsType) {
4707     TypeSourceInfo *TInfo;
4708     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4709     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4710   }
4711 
4712   Expr *ArgEx = (Expr *)TyOrEx;
4713   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4714   return Result;
4715 }
4716 
4717 bool Sema::CheckAlignasTypeArgument(StringRef KWName, TypeSourceInfo *TInfo,
4718                                     SourceLocation OpLoc, SourceRange R) {
4719   if (!TInfo)
4720     return true;
4721   return CheckUnaryExprOrTypeTraitOperand(TInfo->getType(), OpLoc, R,
4722                                           UETT_AlignOf, KWName);
4723 }
4724 
4725 bool Sema::ActOnAlignasTypeArgument(StringRef KWName, ParsedType Ty,
4726                                     SourceLocation OpLoc, SourceRange R) {
4727   TypeSourceInfo *TInfo;
4728   (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(Ty.getAsOpaquePtr()),
4729                           &TInfo);
4730   return CheckAlignasTypeArgument(KWName, TInfo, OpLoc, R);
4731 }
4732 
4733 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4734                                      bool IsReal) {
4735   if (V.get()->isTypeDependent())
4736     return S.Context.DependentTy;
4737 
4738   // _Real and _Imag are only l-values for normal l-values.
4739   if (V.get()->getObjectKind() != OK_Ordinary) {
4740     V = S.DefaultLvalueConversion(V.get());
4741     if (V.isInvalid())
4742       return QualType();
4743   }
4744 
4745   // These operators return the element type of a complex type.
4746   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4747     return CT->getElementType();
4748 
4749   // Otherwise they pass through real integer and floating point types here.
4750   if (V.get()->getType()->isArithmeticType())
4751     return V.get()->getType();
4752 
4753   // Test for placeholders.
4754   ExprResult PR = S.CheckPlaceholderExpr(V.get());
4755   if (PR.isInvalid()) return QualType();
4756   if (PR.get() != V.get()) {
4757     V = PR;
4758     return CheckRealImagOperand(S, V, Loc, IsReal);
4759   }
4760 
4761   // Reject anything else.
4762   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4763     << (IsReal ? "__real" : "__imag");
4764   return QualType();
4765 }
4766 
4767 
4768 
4769 ExprResult
4770 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4771                           tok::TokenKind Kind, Expr *Input) {
4772   UnaryOperatorKind Opc;
4773   switch (Kind) {
4774   default: llvm_unreachable("Unknown unary op!");
4775   case tok::plusplus:   Opc = UO_PostInc; break;
4776   case tok::minusminus: Opc = UO_PostDec; break;
4777   }
4778 
4779   // Since this might is a postfix expression, get rid of ParenListExprs.
4780   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4781   if (Result.isInvalid()) return ExprError();
4782   Input = Result.get();
4783 
4784   return BuildUnaryOp(S, OpLoc, Opc, Input);
4785 }
4786 
4787 /// Diagnose if arithmetic on the given ObjC pointer is illegal.
4788 ///
4789 /// \return true on error
4790 static bool checkArithmeticOnObjCPointer(Sema &S,
4791                                          SourceLocation opLoc,
4792                                          Expr *op) {
4793   assert(op->getType()->isObjCObjectPointerType());
4794   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4795       !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4796     return false;
4797 
4798   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
4799     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4800     << op->getSourceRange();
4801   return true;
4802 }
4803 
4804 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4805   auto *BaseNoParens = Base->IgnoreParens();
4806   if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
4807     return MSProp->getPropertyDecl()->getType()->isArrayType();
4808   return isa<MSPropertySubscriptExpr>(BaseNoParens);
4809 }
4810 
4811 // Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent.
4812 // Typically this is DependentTy, but can sometimes be more precise.
4813 //
4814 // There are cases when we could determine a non-dependent type:
4815 //  - LHS and RHS may have non-dependent types despite being type-dependent
4816 //    (e.g. unbounded array static members of the current instantiation)
4817 //  - one may be a dependent-sized array with known element type
4818 //  - one may be a dependent-typed valid index (enum in current instantiation)
4819 //
4820 // We *always* return a dependent type, in such cases it is DependentTy.
4821 // This avoids creating type-dependent expressions with non-dependent types.
4822 // FIXME: is this important to avoid? See https://reviews.llvm.org/D107275
4823 static QualType getDependentArraySubscriptType(Expr *LHS, Expr *RHS,
4824                                                const ASTContext &Ctx) {
4825   assert(LHS->isTypeDependent() || RHS->isTypeDependent());
4826   QualType LTy = LHS->getType(), RTy = RHS->getType();
4827   QualType Result = Ctx.DependentTy;
4828   if (RTy->isIntegralOrUnscopedEnumerationType()) {
4829     if (const PointerType *PT = LTy->getAs<PointerType>())
4830       Result = PT->getPointeeType();
4831     else if (const ArrayType *AT = LTy->getAsArrayTypeUnsafe())
4832       Result = AT->getElementType();
4833   } else if (LTy->isIntegralOrUnscopedEnumerationType()) {
4834     if (const PointerType *PT = RTy->getAs<PointerType>())
4835       Result = PT->getPointeeType();
4836     else if (const ArrayType *AT = RTy->getAsArrayTypeUnsafe())
4837       Result = AT->getElementType();
4838   }
4839   // Ensure we return a dependent type.
4840   return Result->isDependentType() ? Result : Ctx.DependentTy;
4841 }
4842 
4843 ExprResult Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base,
4844                                          SourceLocation lbLoc,
4845                                          MultiExprArg ArgExprs,
4846                                          SourceLocation rbLoc) {
4847 
4848   if (base && !base->getType().isNull() &&
4849       base->hasPlaceholderType(BuiltinType::ArraySection)) {
4850     auto *AS = cast<ArraySectionExpr>(base);
4851     if (AS->isOMPArraySection())
4852       return OpenMP().ActOnOMPArraySectionExpr(
4853           base, lbLoc, ArgExprs.front(), SourceLocation(), SourceLocation(),
4854           /*Length*/ nullptr,
4855           /*Stride=*/nullptr, rbLoc);
4856 
4857     return OpenACC().ActOnArraySectionExpr(base, lbLoc, ArgExprs.front(),
4858                                            SourceLocation(), /*Length*/ nullptr,
4859                                            rbLoc);
4860   }
4861 
4862   // Since this might be a postfix expression, get rid of ParenListExprs.
4863   if (isa<ParenListExpr>(base)) {
4864     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
4865     if (result.isInvalid())
4866       return ExprError();
4867     base = result.get();
4868   }
4869 
4870   // Check if base and idx form a MatrixSubscriptExpr.
4871   //
4872   // Helper to check for comma expressions, which are not allowed as indices for
4873   // matrix subscript expressions.
4874   auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
4875     if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) {
4876       Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
4877           << SourceRange(base->getBeginLoc(), rbLoc);
4878       return true;
4879     }
4880     return false;
4881   };
4882   // The matrix subscript operator ([][])is considered a single operator.
4883   // Separating the index expressions by parenthesis is not allowed.
4884   if (base && !base->getType().isNull() &&
4885       base->hasPlaceholderType(BuiltinType::IncompleteMatrixIdx) &&
4886       !isa<MatrixSubscriptExpr>(base)) {
4887     Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
4888         << SourceRange(base->getBeginLoc(), rbLoc);
4889     return ExprError();
4890   }
4891   // If the base is a MatrixSubscriptExpr, try to create a new
4892   // MatrixSubscriptExpr.
4893   auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base);
4894   if (matSubscriptE) {
4895     assert(ArgExprs.size() == 1);
4896     if (CheckAndReportCommaError(ArgExprs.front()))
4897       return ExprError();
4898 
4899     assert(matSubscriptE->isIncomplete() &&
4900            "base has to be an incomplete matrix subscript");
4901     return CreateBuiltinMatrixSubscriptExpr(matSubscriptE->getBase(),
4902                                             matSubscriptE->getRowIdx(),
4903                                             ArgExprs.front(), rbLoc);
4904   }
4905   if (base->getType()->isWebAssemblyTableType()) {
4906     Diag(base->getExprLoc(), diag::err_wasm_table_art)
4907         << SourceRange(base->getBeginLoc(), rbLoc) << 3;
4908     return ExprError();
4909   }
4910 
4911   CheckInvalidBuiltinCountedByRef(base, ArraySubscriptKind);
4912 
4913   // Handle any non-overload placeholder types in the base and index
4914   // expressions.  We can't handle overloads here because the other
4915   // operand might be an overloadable type, in which case the overload
4916   // resolution for the operator overload should get the first crack
4917   // at the overload.
4918   bool IsMSPropertySubscript = false;
4919   if (base->getType()->isNonOverloadPlaceholderType()) {
4920     IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
4921     if (!IsMSPropertySubscript) {
4922       ExprResult result = CheckPlaceholderExpr(base);
4923       if (result.isInvalid())
4924         return ExprError();
4925       base = result.get();
4926     }
4927   }
4928 
4929   // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
4930   if (base->getType()->isMatrixType()) {
4931     assert(ArgExprs.size() == 1);
4932     if (CheckAndReportCommaError(ArgExprs.front()))
4933       return ExprError();
4934 
4935     return CreateBuiltinMatrixSubscriptExpr(base, ArgExprs.front(), nullptr,
4936                                             rbLoc);
4937   }
4938 
4939   if (ArgExprs.size() == 1 && getLangOpts().CPlusPlus20) {
4940     Expr *idx = ArgExprs[0];
4941     if ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
4942         (isa<CXXOperatorCallExpr>(idx) &&
4943          cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma)) {
4944       Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
4945           << SourceRange(base->getBeginLoc(), rbLoc);
4946     }
4947   }
4948 
4949   if (ArgExprs.size() == 1 &&
4950       ArgExprs[0]->getType()->isNonOverloadPlaceholderType()) {
4951     ExprResult result = CheckPlaceholderExpr(ArgExprs[0]);
4952     if (result.isInvalid())
4953       return ExprError();
4954     ArgExprs[0] = result.get();
4955   } else {
4956     if (CheckArgsForPlaceholders(ArgExprs))
4957       return ExprError();
4958   }
4959 
4960   // Build an unanalyzed expression if either operand is type-dependent.
4961   if (getLangOpts().CPlusPlus && ArgExprs.size() == 1 &&
4962       (base->isTypeDependent() ||
4963        Expr::hasAnyTypeDependentArguments(ArgExprs)) &&
4964       !isa<PackExpansionExpr>(ArgExprs[0])) {
4965     return new (Context) ArraySubscriptExpr(
4966         base, ArgExprs.front(),
4967         getDependentArraySubscriptType(base, ArgExprs.front(), getASTContext()),
4968         VK_LValue, OK_Ordinary, rbLoc);
4969   }
4970 
4971   // MSDN, property (C++)
4972   // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
4973   // This attribute can also be used in the declaration of an empty array in a
4974   // class or structure definition. For example:
4975   // __declspec(property(get=GetX, put=PutX)) int x[];
4976   // The above statement indicates that x[] can be used with one or more array
4977   // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
4978   // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
4979   if (IsMSPropertySubscript) {
4980     assert(ArgExprs.size() == 1);
4981     // Build MS property subscript expression if base is MS property reference
4982     // or MS property subscript.
4983     return new (Context)
4984         MSPropertySubscriptExpr(base, ArgExprs.front(), Context.PseudoObjectTy,
4985                                 VK_LValue, OK_Ordinary, rbLoc);
4986   }
4987 
4988   // Use C++ overloaded-operator rules if either operand has record
4989   // type.  The spec says to do this if either type is *overloadable*,
4990   // but enum types can't declare subscript operators or conversion
4991   // operators, so there's nothing interesting for overload resolution
4992   // to do if there aren't any record types involved.
4993   //
4994   // ObjC pointers have their own subscripting logic that is not tied
4995   // to overload resolution and so should not take this path.
4996   if (getLangOpts().CPlusPlus && !base->getType()->isObjCObjectPointerType() &&
4997       ((base->getType()->isRecordType() ||
4998         (ArgExprs.size() != 1 || isa<PackExpansionExpr>(ArgExprs[0]) ||
4999          ArgExprs[0]->getType()->isRecordType())))) {
5000     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, ArgExprs);
5001   }
5002 
5003   ExprResult Res =
5004       CreateBuiltinArraySubscriptExpr(base, lbLoc, ArgExprs.front(), rbLoc);
5005 
5006   if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
5007     CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
5008 
5009   return Res;
5010 }
5011 
5012 ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
5013   InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
5014   InitializationKind Kind =
5015       InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation());
5016   InitializationSequence InitSeq(*this, Entity, Kind, E);
5017   return InitSeq.Perform(*this, Entity, Kind, E);
5018 }
5019 
5020 ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
5021                                                   Expr *ColumnIdx,
5022                                                   SourceLocation RBLoc) {
5023   ExprResult BaseR = CheckPlaceholderExpr(Base);
5024   if (BaseR.isInvalid())
5025     return BaseR;
5026   Base = BaseR.get();
5027 
5028   ExprResult RowR = CheckPlaceholderExpr(RowIdx);
5029   if (RowR.isInvalid())
5030     return RowR;
5031   RowIdx = RowR.get();
5032 
5033   if (!ColumnIdx)
5034     return new (Context) MatrixSubscriptExpr(
5035         Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
5036 
5037   // Build an unanalyzed expression if any of the operands is type-dependent.
5038   if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
5039       ColumnIdx->isTypeDependent())
5040     return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5041                                              Context.DependentTy, RBLoc);
5042 
5043   ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx);
5044   if (ColumnR.isInvalid())
5045     return ColumnR;
5046   ColumnIdx = ColumnR.get();
5047 
5048   // Check that IndexExpr is an integer expression. If it is a constant
5049   // expression, check that it is less than Dim (= the number of elements in the
5050   // corresponding dimension).
5051   auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
5052                           bool IsColumnIdx) -> Expr * {
5053     if (!IndexExpr->getType()->isIntegerType() &&
5054         !IndexExpr->isTypeDependent()) {
5055       Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
5056           << IsColumnIdx;
5057       return nullptr;
5058     }
5059 
5060     if (std::optional<llvm::APSInt> Idx =
5061             IndexExpr->getIntegerConstantExpr(Context)) {
5062       if ((*Idx < 0 || *Idx >= Dim)) {
5063         Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
5064             << IsColumnIdx << Dim;
5065         return nullptr;
5066       }
5067     }
5068 
5069     ExprResult ConvExpr = IndexExpr;
5070     assert(!ConvExpr.isInvalid() &&
5071            "should be able to convert any integer type to size type");
5072     return ConvExpr.get();
5073   };
5074 
5075   auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
5076   RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
5077   ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
5078   if (!RowIdx || !ColumnIdx)
5079     return ExprError();
5080 
5081   return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5082                                            MTy->getElementType(), RBLoc);
5083 }
5084 
5085 void Sema::CheckAddressOfNoDeref(const Expr *E) {
5086   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5087   const Expr *StrippedExpr = E->IgnoreParenImpCasts();
5088 
5089   // For expressions like `&(*s).b`, the base is recorded and what should be
5090   // checked.
5091   const MemberExpr *Member = nullptr;
5092   while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
5093     StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
5094 
5095   LastRecord.PossibleDerefs.erase(StrippedExpr);
5096 }
5097 
5098 void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
5099   if (isUnevaluatedContext())
5100     return;
5101 
5102   QualType ResultTy = E->getType();
5103   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5104 
5105   // Bail if the element is an array since it is not memory access.
5106   if (isa<ArrayType>(ResultTy))
5107     return;
5108 
5109   if (ResultTy->hasAttr(attr::NoDeref)) {
5110     LastRecord.PossibleDerefs.insert(E);
5111     return;
5112   }
5113 
5114   // Check if the base type is a pointer to a member access of a struct
5115   // marked with noderef.
5116   const Expr *Base = E->getBase();
5117   QualType BaseTy = Base->getType();
5118   if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
5119     // Not a pointer access
5120     return;
5121 
5122   const MemberExpr *Member = nullptr;
5123   while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
5124          Member->isArrow())
5125     Base = Member->getBase();
5126 
5127   if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
5128     if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
5129       LastRecord.PossibleDerefs.insert(E);
5130   }
5131 }
5132 
5133 ExprResult
5134 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5135                                       Expr *Idx, SourceLocation RLoc) {
5136   Expr *LHSExp = Base;
5137   Expr *RHSExp = Idx;
5138 
5139   ExprValueKind VK = VK_LValue;
5140   ExprObjectKind OK = OK_Ordinary;
5141 
5142   // Per C++ core issue 1213, the result is an xvalue if either operand is
5143   // a non-lvalue array, and an lvalue otherwise.
5144   if (getLangOpts().CPlusPlus11) {
5145     for (auto *Op : {LHSExp, RHSExp}) {
5146       Op = Op->IgnoreImplicit();
5147       if (Op->getType()->isArrayType() && !Op->isLValue())
5148         VK = VK_XValue;
5149     }
5150   }
5151 
5152   // Perform default conversions.
5153   if (!LHSExp->getType()->isSubscriptableVectorType()) {
5154     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
5155     if (Result.isInvalid())
5156       return ExprError();
5157     LHSExp = Result.get();
5158   }
5159   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
5160   if (Result.isInvalid())
5161     return ExprError();
5162   RHSExp = Result.get();
5163 
5164   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
5165 
5166   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5167   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5168   // in the subscript position. As a result, we need to derive the array base
5169   // and index from the expression types.
5170   Expr *BaseExpr, *IndexExpr;
5171   QualType ResultType;
5172   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
5173     BaseExpr = LHSExp;
5174     IndexExpr = RHSExp;
5175     ResultType =
5176         getDependentArraySubscriptType(LHSExp, RHSExp, getASTContext());
5177   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
5178     BaseExpr = LHSExp;
5179     IndexExpr = RHSExp;
5180     ResultType = PTy->getPointeeType();
5181   } else if (const ObjCObjectPointerType *PTy =
5182                LHSTy->getAs<ObjCObjectPointerType>()) {
5183     BaseExpr = LHSExp;
5184     IndexExpr = RHSExp;
5185 
5186     // Use custom logic if this should be the pseudo-object subscript
5187     // expression.
5188     if (!LangOpts.isSubscriptPointerArithmetic())
5189       return ObjC().BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr,
5190                                                  nullptr, nullptr);
5191 
5192     ResultType = PTy->getPointeeType();
5193   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
5194      // Handle the uncommon case of "123[Ptr]".
5195     BaseExpr = RHSExp;
5196     IndexExpr = LHSExp;
5197     ResultType = PTy->getPointeeType();
5198   } else if (const ObjCObjectPointerType *PTy =
5199                RHSTy->getAs<ObjCObjectPointerType>()) {
5200      // Handle the uncommon case of "123[Ptr]".
5201     BaseExpr = RHSExp;
5202     IndexExpr = LHSExp;
5203     ResultType = PTy->getPointeeType();
5204     if (!LangOpts.isSubscriptPointerArithmetic()) {
5205       Diag(LLoc, diag::err_subscript_nonfragile_interface)
5206         << ResultType << BaseExpr->getSourceRange();
5207       return ExprError();
5208     }
5209   } else if (LHSTy->isSubscriptableVectorType()) {
5210     if (LHSTy->isBuiltinType() &&
5211         LHSTy->getAs<BuiltinType>()->isSveVLSBuiltinType()) {
5212       const BuiltinType *BTy = LHSTy->getAs<BuiltinType>();
5213       if (BTy->isSVEBool())
5214         return ExprError(Diag(LLoc, diag::err_subscript_svbool_t)
5215                          << LHSExp->getSourceRange()
5216                          << RHSExp->getSourceRange());
5217       ResultType = BTy->getSveEltType(Context);
5218     } else {
5219       const VectorType *VTy = LHSTy->getAs<VectorType>();
5220       ResultType = VTy->getElementType();
5221     }
5222     BaseExpr = LHSExp; // vectors: V[123]
5223     IndexExpr = RHSExp;
5224     // We apply C++ DR1213 to vector subscripting too.
5225     if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5226       ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5227       if (Materialized.isInvalid())
5228         return ExprError();
5229       LHSExp = Materialized.get();
5230     }
5231     VK = LHSExp->getValueKind();
5232     if (VK != VK_PRValue)
5233       OK = OK_VectorComponent;
5234 
5235     QualType BaseType = BaseExpr->getType();
5236     Qualifiers BaseQuals = BaseType.getQualifiers();
5237     Qualifiers MemberQuals = ResultType.getQualifiers();
5238     Qualifiers Combined = BaseQuals + MemberQuals;
5239     if (Combined != MemberQuals)
5240       ResultType = Context.getQualifiedType(ResultType, Combined);
5241   } else if (LHSTy->isArrayType()) {
5242     // If we see an array that wasn't promoted by
5243     // DefaultFunctionArrayLvalueConversion, it must be an array that
5244     // wasn't promoted because of the C90 rule that doesn't
5245     // allow promoting non-lvalue arrays.  Warn, then
5246     // force the promotion here.
5247     Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5248         << LHSExp->getSourceRange();
5249     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
5250                                CK_ArrayToPointerDecay).get();
5251     LHSTy = LHSExp->getType();
5252 
5253     BaseExpr = LHSExp;
5254     IndexExpr = RHSExp;
5255     ResultType = LHSTy->castAs<PointerType>()->getPointeeType();
5256   } else if (RHSTy->isArrayType()) {
5257     // Same as previous, except for 123[f().a] case
5258     Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5259         << RHSExp->getSourceRange();
5260     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
5261                                CK_ArrayToPointerDecay).get();
5262     RHSTy = RHSExp->getType();
5263 
5264     BaseExpr = RHSExp;
5265     IndexExpr = LHSExp;
5266     ResultType = RHSTy->castAs<PointerType>()->getPointeeType();
5267   } else {
5268     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
5269        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5270   }
5271   // C99 6.5.2.1p1
5272   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
5273     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
5274                      << IndexExpr->getSourceRange());
5275 
5276   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5277        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) &&
5278       !IndexExpr->isTypeDependent()) {
5279     std::optional<llvm::APSInt> IntegerContantExpr =
5280         IndexExpr->getIntegerConstantExpr(getASTContext());
5281     if (!IntegerContantExpr.has_value() ||
5282         IntegerContantExpr.value().isNegative())
5283       Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
5284   }
5285 
5286   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5287   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5288   // type. Note that Functions are not objects, and that (in C99 parlance)
5289   // incomplete types are not object types.
5290   if (ResultType->isFunctionType()) {
5291     Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
5292         << ResultType << BaseExpr->getSourceRange();
5293     return ExprError();
5294   }
5295 
5296   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
5297     // GNU extension: subscripting on pointer to void
5298     Diag(LLoc, diag::ext_gnu_subscript_void_type)
5299       << BaseExpr->getSourceRange();
5300 
5301     // C forbids expressions of unqualified void type from being l-values.
5302     // See IsCForbiddenLValueType.
5303     if (!ResultType.hasQualifiers())
5304       VK = VK_PRValue;
5305   } else if (!ResultType->isDependentType() &&
5306              !ResultType.isWebAssemblyReferenceType() &&
5307              RequireCompleteSizedType(
5308                  LLoc, ResultType,
5309                  diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
5310     return ExprError();
5311 
5312   assert(VK == VK_PRValue || LangOpts.CPlusPlus ||
5313          !ResultType.isCForbiddenLValueType());
5314 
5315   if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
5316       FunctionScopes.size() > 1) {
5317     if (auto *TT =
5318             LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
5319       for (auto I = FunctionScopes.rbegin(),
5320                 E = std::prev(FunctionScopes.rend());
5321            I != E; ++I) {
5322         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
5323         if (CSI == nullptr)
5324           break;
5325         DeclContext *DC = nullptr;
5326         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
5327           DC = LSI->CallOperator;
5328         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
5329           DC = CRSI->TheCapturedDecl;
5330         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
5331           DC = BSI->TheDecl;
5332         if (DC) {
5333           if (DC->containsDecl(TT->getDecl()))
5334             break;
5335           captureVariablyModifiedType(
5336               Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
5337         }
5338       }
5339     }
5340   }
5341 
5342   return new (Context)
5343       ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
5344 }
5345 
5346 bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5347                                   ParmVarDecl *Param, Expr *RewrittenInit,
5348                                   bool SkipImmediateInvocations) {
5349   if (Param->hasUnparsedDefaultArg()) {
5350     assert(!RewrittenInit && "Should not have a rewritten init expression yet");
5351     // If we've already cleared out the location for the default argument,
5352     // that means we're parsing it right now.
5353     if (!UnparsedDefaultArgLocs.count(Param)) {
5354       Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
5355       Diag(CallLoc, diag::note_recursive_default_argument_used_here);
5356       Param->setInvalidDecl();
5357       return true;
5358     }
5359 
5360     Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later)
5361         << FD << cast<CXXRecordDecl>(FD->getDeclContext());
5362     Diag(UnparsedDefaultArgLocs[Param],
5363          diag::note_default_argument_declared_here);
5364     return true;
5365   }
5366 
5367   if (Param->hasUninstantiatedDefaultArg()) {
5368     assert(!RewrittenInit && "Should not have a rewitten init expression yet");
5369     if (InstantiateDefaultArgument(CallLoc, FD, Param))
5370       return true;
5371   }
5372 
5373   Expr *Init = RewrittenInit ? RewrittenInit : Param->getInit();
5374   assert(Init && "default argument but no initializer?");
5375 
5376   // If the default expression creates temporaries, we need to
5377   // push them to the current stack of expression temporaries so they'll
5378   // be properly destroyed.
5379   // FIXME: We should really be rebuilding the default argument with new
5380   // bound temporaries; see the comment in PR5810.
5381   // We don't need to do that with block decls, though, because
5382   // blocks in default argument expression can never capture anything.
5383   if (auto *InitWithCleanup = dyn_cast<ExprWithCleanups>(Init)) {
5384     // Set the "needs cleanups" bit regardless of whether there are
5385     // any explicit objects.
5386     Cleanup.setExprNeedsCleanups(InitWithCleanup->cleanupsHaveSideEffects());
5387     // Append all the objects to the cleanup list.  Right now, this
5388     // should always be a no-op, because blocks in default argument
5389     // expressions should never be able to capture anything.
5390     assert(!InitWithCleanup->getNumObjects() &&
5391            "default argument expression has capturing blocks?");
5392   }
5393   // C++ [expr.const]p15.1:
5394   //   An expression or conversion is in an immediate function context if it is
5395   //   potentially evaluated and [...] its innermost enclosing non-block scope
5396   //   is a function parameter scope of an immediate function.
5397   EnterExpressionEvaluationContext EvalContext(
5398       *this,
5399       FD->isImmediateFunction()
5400           ? ExpressionEvaluationContext::ImmediateFunctionContext
5401           : ExpressionEvaluationContext::PotentiallyEvaluated,
5402       Param);
5403   ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
5404       SkipImmediateInvocations;
5405   runWithSufficientStackSpace(CallLoc, [&] {
5406     MarkDeclarationsReferencedInExpr(Init, /*SkipLocalVariables=*/true);
5407   });
5408   return false;
5409 }
5410 
5411 struct ImmediateCallVisitor : DynamicRecursiveASTVisitor {
5412   const ASTContext &Context;
5413   ImmediateCallVisitor(const ASTContext &Ctx) : Context(Ctx) {
5414     ShouldVisitImplicitCode = true;
5415   }
5416 
5417   bool HasImmediateCalls = false;
5418 
5419   bool VisitCallExpr(CallExpr *E) override {
5420     if (const FunctionDecl *FD = E->getDirectCallee())
5421       HasImmediateCalls |= FD->isImmediateFunction();
5422     return DynamicRecursiveASTVisitor::VisitStmt(E);
5423   }
5424 
5425   bool VisitCXXConstructExpr(CXXConstructExpr *E) override {
5426     if (const FunctionDecl *FD = E->getConstructor())
5427       HasImmediateCalls |= FD->isImmediateFunction();
5428     return DynamicRecursiveASTVisitor::VisitStmt(E);
5429   }
5430 
5431   // SourceLocExpr are not immediate invocations
5432   // but CXXDefaultInitExpr/CXXDefaultArgExpr containing a SourceLocExpr
5433   // need to be rebuilt so that they refer to the correct SourceLocation and
5434   // DeclContext.
5435   bool VisitSourceLocExpr(SourceLocExpr *E) override {
5436     HasImmediateCalls = true;
5437     return DynamicRecursiveASTVisitor::VisitStmt(E);
5438   }
5439 
5440   // A nested lambda might have parameters with immediate invocations
5441   // in their default arguments.
5442   // The compound statement is not visited (as it does not constitute a
5443   // subexpression).
5444   // FIXME: We should consider visiting and transforming captures
5445   // with init expressions.
5446   bool VisitLambdaExpr(LambdaExpr *E) override {
5447     return VisitCXXMethodDecl(E->getCallOperator());
5448   }
5449 
5450   bool VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) override {
5451     return TraverseStmt(E->getExpr());
5452   }
5453 
5454   bool VisitCXXDefaultInitExpr(CXXDefaultInitExpr *E) override {
5455     return TraverseStmt(E->getExpr());
5456   }
5457 };
5458 
5459 struct EnsureImmediateInvocationInDefaultArgs
5460     : TreeTransform<EnsureImmediateInvocationInDefaultArgs> {
5461   EnsureImmediateInvocationInDefaultArgs(Sema &SemaRef)
5462       : TreeTransform(SemaRef) {}
5463 
5464   bool AlwaysRebuild() { return true; }
5465 
5466   // Lambda can only have immediate invocations in the default
5467   // args of their parameters, which is transformed upon calling the closure.
5468   // The body is not a subexpression, so we have nothing to do.
5469   // FIXME: Immediate calls in capture initializers should be transformed.
5470   ExprResult TransformLambdaExpr(LambdaExpr *E) { return E; }
5471   ExprResult TransformBlockExpr(BlockExpr *E) { return E; }
5472 
5473   // Make sure we don't rebuild the this pointer as it would
5474   // cause it to incorrectly point it to the outermost class
5475   // in the case of nested struct initialization.
5476   ExprResult TransformCXXThisExpr(CXXThisExpr *E) { return E; }
5477 
5478   // Rewrite to source location to refer to the context in which they are used.
5479   ExprResult TransformSourceLocExpr(SourceLocExpr *E) {
5480     DeclContext *DC = E->getParentContext();
5481     if (DC == SemaRef.CurContext)
5482       return E;
5483 
5484     // FIXME: During instantiation, because the rebuild of defaults arguments
5485     // is not always done in the context of the template instantiator,
5486     // we run the risk of producing a dependent source location
5487     // that would never be rebuilt.
5488     // This usually happens during overload resolution, or in contexts
5489     // where the value of the source location does not matter.
5490     // However, we should find a better way to deal with source location
5491     // of function templates.
5492     if (!SemaRef.CurrentInstantiationScope ||
5493         !SemaRef.CurContext->isDependentContext() || DC->isDependentContext())
5494       DC = SemaRef.CurContext;
5495 
5496     return getDerived().RebuildSourceLocExpr(
5497         E->getIdentKind(), E->getType(), E->getBeginLoc(), E->getEndLoc(), DC);
5498   }
5499 };
5500 
5501 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5502                                         FunctionDecl *FD, ParmVarDecl *Param,
5503                                         Expr *Init) {
5504   assert(Param->hasDefaultArg() && "can't build nonexistent default arg");
5505 
5506   bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
5507   bool NeedRebuild = needsRebuildOfDefaultArgOrInit();
5508   std::optional<ExpressionEvaluationContextRecord::InitializationContext>
5509       InitializationContext =
5510           OutermostDeclarationWithDelayedImmediateInvocations();
5511   if (!InitializationContext.has_value())
5512     InitializationContext.emplace(CallLoc, Param, CurContext);
5513 
5514   if (!Init && !Param->hasUnparsedDefaultArg()) {
5515     // Mark that we are replacing a default argument first.
5516     // If we are instantiating a template we won't have to
5517     // retransform immediate calls.
5518     // C++ [expr.const]p15.1:
5519     //   An expression or conversion is in an immediate function context if it
5520     //   is potentially evaluated and [...] its innermost enclosing non-block
5521     //   scope is a function parameter scope of an immediate function.
5522     EnterExpressionEvaluationContext EvalContext(
5523         *this,
5524         FD->isImmediateFunction()
5525             ? ExpressionEvaluationContext::ImmediateFunctionContext
5526             : ExpressionEvaluationContext::PotentiallyEvaluated,
5527         Param);
5528 
5529     if (Param->hasUninstantiatedDefaultArg()) {
5530       if (InstantiateDefaultArgument(CallLoc, FD, Param))
5531         return ExprError();
5532     }
5533     // CWG2631
5534     // An immediate invocation that is not evaluated where it appears is
5535     // evaluated and checked for whether it is a constant expression at the
5536     // point where the enclosing initializer is used in a function call.
5537     ImmediateCallVisitor V(getASTContext());
5538     if (!NestedDefaultChecking)
5539       V.TraverseDecl(Param);
5540 
5541     // Rewrite the call argument that was created from the corresponding
5542     // parameter's default argument.
5543     if (V.HasImmediateCalls ||
5544         (NeedRebuild && isa_and_present<ExprWithCleanups>(Param->getInit()))) {
5545       if (V.HasImmediateCalls)
5546         ExprEvalContexts.back().DelayedDefaultInitializationContext = {
5547             CallLoc, Param, CurContext};
5548       // Pass down lifetime extending flag, and collect temporaries in
5549       // CreateMaterializeTemporaryExpr when we rewrite the call argument.
5550       currentEvaluationContext().InLifetimeExtendingContext =
5551           parentEvaluationContext().InLifetimeExtendingContext;
5552       EnsureImmediateInvocationInDefaultArgs Immediate(*this);
5553       ExprResult Res;
5554       runWithSufficientStackSpace(CallLoc, [&] {
5555         Res = Immediate.TransformInitializer(Param->getInit(),
5556                                              /*NotCopy=*/false);
5557       });
5558       if (Res.isInvalid())
5559         return ExprError();
5560       Res = ConvertParamDefaultArgument(Param, Res.get(),
5561                                         Res.get()->getBeginLoc());
5562       if (Res.isInvalid())
5563         return ExprError();
5564       Init = Res.get();
5565     }
5566   }
5567 
5568   if (CheckCXXDefaultArgExpr(
5569           CallLoc, FD, Param, Init,
5570           /*SkipImmediateInvocations=*/NestedDefaultChecking))
5571     return ExprError();
5572 
5573   return CXXDefaultArgExpr::Create(Context, InitializationContext->Loc, Param,
5574                                    Init, InitializationContext->Context);
5575 }
5576 
5577 static FieldDecl *FindFieldDeclInstantiationPattern(const ASTContext &Ctx,
5578                                                     FieldDecl *Field) {
5579   if (FieldDecl *Pattern = Ctx.getInstantiatedFromUnnamedFieldDecl(Field))
5580     return Pattern;
5581   auto *ParentRD = cast<CXXRecordDecl>(Field->getParent());
5582   CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
5583   DeclContext::lookup_result Lookup =
5584       ClassPattern->lookup(Field->getDeclName());
5585   auto Rng = llvm::make_filter_range(
5586       Lookup, [](auto &&L) { return isa<FieldDecl>(*L); });
5587   if (Rng.empty())
5588     return nullptr;
5589   // FIXME: this breaks clang/test/Modules/pr28812.cpp
5590   // assert(std::distance(Rng.begin(), Rng.end()) <= 1
5591   //       && "Duplicated instantiation pattern for field decl");
5592   return cast<FieldDecl>(*Rng.begin());
5593 }
5594 
5595 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
5596   assert(Field->hasInClassInitializer());
5597 
5598   CXXThisScopeRAII This(*this, Field->getParent(), Qualifiers());
5599 
5600   auto *ParentRD = cast<CXXRecordDecl>(Field->getParent());
5601 
5602   std::optional<ExpressionEvaluationContextRecord::InitializationContext>
5603       InitializationContext =
5604           OutermostDeclarationWithDelayedImmediateInvocations();
5605   if (!InitializationContext.has_value())
5606     InitializationContext.emplace(Loc, Field, CurContext);
5607 
5608   Expr *Init = nullptr;
5609 
5610   bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
5611   bool NeedRebuild = needsRebuildOfDefaultArgOrInit();
5612   EnterExpressionEvaluationContext EvalContext(
5613       *this, ExpressionEvaluationContext::PotentiallyEvaluated, Field);
5614 
5615   if (!Field->getInClassInitializer()) {
5616     // Maybe we haven't instantiated the in-class initializer. Go check the
5617     // pattern FieldDecl to see if it has one.
5618     if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
5619       FieldDecl *Pattern =
5620           FindFieldDeclInstantiationPattern(getASTContext(), Field);
5621       assert(Pattern && "We must have set the Pattern!");
5622       if (!Pattern->hasInClassInitializer() ||
5623           InstantiateInClassInitializer(Loc, Field, Pattern,
5624                                         getTemplateInstantiationArgs(Field))) {
5625         Field->setInvalidDecl();
5626         return ExprError();
5627       }
5628     }
5629   }
5630 
5631   // CWG2631
5632   // An immediate invocation that is not evaluated where it appears is
5633   // evaluated and checked for whether it is a constant expression at the
5634   // point where the enclosing initializer is used in a [...] a constructor
5635   // definition, or an aggregate initialization.
5636   ImmediateCallVisitor V(getASTContext());
5637   if (!NestedDefaultChecking)
5638     V.TraverseDecl(Field);
5639 
5640   // CWG1815
5641   // Support lifetime extension of temporary created by aggregate
5642   // initialization using a default member initializer. We should rebuild
5643   // the initializer in a lifetime extension context if the initializer
5644   // expression is an ExprWithCleanups. Then make sure the normal lifetime
5645   // extension code recurses into the default initializer and does lifetime
5646   // extension when warranted.
5647   bool ContainsAnyTemporaries =
5648       isa_and_present<ExprWithCleanups>(Field->getInClassInitializer());
5649   if (Field->getInClassInitializer() &&
5650       !Field->getInClassInitializer()->containsErrors() &&
5651       (V.HasImmediateCalls || (NeedRebuild && ContainsAnyTemporaries))) {
5652     ExprEvalContexts.back().DelayedDefaultInitializationContext = {Loc, Field,
5653                                                                    CurContext};
5654     ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
5655         NestedDefaultChecking;
5656     // Pass down lifetime extending flag, and collect temporaries in
5657     // CreateMaterializeTemporaryExpr when we rewrite the call argument.
5658     currentEvaluationContext().InLifetimeExtendingContext =
5659         parentEvaluationContext().InLifetimeExtendingContext;
5660     EnsureImmediateInvocationInDefaultArgs Immediate(*this);
5661     ExprResult Res;
5662     runWithSufficientStackSpace(Loc, [&] {
5663       Res = Immediate.TransformInitializer(Field->getInClassInitializer(),
5664                                            /*CXXDirectInit=*/false);
5665     });
5666     if (!Res.isInvalid())
5667       Res = ConvertMemberDefaultInitExpression(Field, Res.get(), Loc);
5668     if (Res.isInvalid()) {
5669       Field->setInvalidDecl();
5670       return ExprError();
5671     }
5672     Init = Res.get();
5673   }
5674 
5675   if (Field->getInClassInitializer()) {
5676     Expr *E = Init ? Init : Field->getInClassInitializer();
5677     if (!NestedDefaultChecking)
5678       runWithSufficientStackSpace(Loc, [&] {
5679         MarkDeclarationsReferencedInExpr(E, /*SkipLocalVariables=*/false);
5680       });
5681     if (isInLifetimeExtendingContext())
5682       DiscardCleanupsInEvaluationContext();
5683     // C++11 [class.base.init]p7:
5684     //   The initialization of each base and member constitutes a
5685     //   full-expression.
5686     ExprResult Res = ActOnFinishFullExpr(E, /*DiscardedValue=*/false);
5687     if (Res.isInvalid()) {
5688       Field->setInvalidDecl();
5689       return ExprError();
5690     }
5691     Init = Res.get();
5692 
5693     return CXXDefaultInitExpr::Create(Context, InitializationContext->Loc,
5694                                       Field, InitializationContext->Context,
5695                                       Init);
5696   }
5697 
5698   // DR1351:
5699   //   If the brace-or-equal-initializer of a non-static data member
5700   //   invokes a defaulted default constructor of its class or of an
5701   //   enclosing class in a potentially evaluated subexpression, the
5702   //   program is ill-formed.
5703   //
5704   // This resolution is unworkable: the exception specification of the
5705   // default constructor can be needed in an unevaluated context, in
5706   // particular, in the operand of a noexcept-expression, and we can be
5707   // unable to compute an exception specification for an enclosed class.
5708   //
5709   // Any attempt to resolve the exception specification of a defaulted default
5710   // constructor before the initializer is lexically complete will ultimately
5711   // come here at which point we can diagnose it.
5712   RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
5713   Diag(Loc, diag::err_default_member_initializer_not_yet_parsed)
5714       << OutermostClass << Field;
5715   Diag(Field->getEndLoc(),
5716        diag::note_default_member_initializer_not_yet_parsed);
5717   // Recover by marking the field invalid, unless we're in a SFINAE context.
5718   if (!isSFINAEContext())
5719     Field->setInvalidDecl();
5720   return ExprError();
5721 }
5722 
5723 Sema::VariadicCallType
5724 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
5725                           Expr *Fn) {
5726   if (Proto && Proto->isVariadic()) {
5727     if (isa_and_nonnull<CXXConstructorDecl>(FDecl))
5728       return VariadicConstructor;
5729     else if (Fn && Fn->getType()->isBlockPointerType())
5730       return VariadicBlock;
5731     else if (FDecl) {
5732       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
5733         if (Method->isInstance())
5734           return VariadicMethod;
5735     } else if (Fn && Fn->getType() == Context.BoundMemberTy)
5736       return VariadicMethod;
5737     return VariadicFunction;
5738   }
5739   return VariadicDoesNotApply;
5740 }
5741 
5742 namespace {
5743 class FunctionCallCCC final : public FunctionCallFilterCCC {
5744 public:
5745   FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
5746                   unsigned NumArgs, MemberExpr *ME)
5747       : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
5748         FunctionName(FuncName) {}
5749 
5750   bool ValidateCandidate(const TypoCorrection &candidate) override {
5751     if (!candidate.getCorrectionSpecifier() ||
5752         candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
5753       return false;
5754     }
5755 
5756     return FunctionCallFilterCCC::ValidateCandidate(candidate);
5757   }
5758 
5759   std::unique_ptr<CorrectionCandidateCallback> clone() override {
5760     return std::make_unique<FunctionCallCCC>(*this);
5761   }
5762 
5763 private:
5764   const IdentifierInfo *const FunctionName;
5765 };
5766 }
5767 
5768 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
5769                                                FunctionDecl *FDecl,
5770                                                ArrayRef<Expr *> Args) {
5771   MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
5772   DeclarationName FuncName = FDecl->getDeclName();
5773   SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
5774 
5775   FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
5776   if (TypoCorrection Corrected = S.CorrectTypo(
5777           DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
5778           S.getScopeForContext(S.CurContext), nullptr, CCC,
5779           Sema::CTK_ErrorRecovery)) {
5780     if (NamedDecl *ND = Corrected.getFoundDecl()) {
5781       if (Corrected.isOverloaded()) {
5782         OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
5783         OverloadCandidateSet::iterator Best;
5784         for (NamedDecl *CD : Corrected) {
5785           if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
5786             S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
5787                                    OCS);
5788         }
5789         switch (OCS.BestViableFunction(S, NameLoc, Best)) {
5790         case OR_Success:
5791           ND = Best->FoundDecl;
5792           Corrected.setCorrectionDecl(ND);
5793           break;
5794         default:
5795           break;
5796         }
5797       }
5798       ND = ND->getUnderlyingDecl();
5799       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
5800         return Corrected;
5801     }
5802   }
5803   return TypoCorrection();
5804 }
5805 
5806 // [C++26][[expr.unary.op]/p4
5807 // A pointer to member is only formed when an explicit &
5808 // is used and its operand is a qualified-id not enclosed in parentheses.
5809 static bool isParenthetizedAndQualifiedAddressOfExpr(Expr *Fn) {
5810   if (!isa<ParenExpr>(Fn))
5811     return false;
5812 
5813   Fn = Fn->IgnoreParens();
5814 
5815   auto *UO = dyn_cast<UnaryOperator>(Fn);
5816   if (!UO || UO->getOpcode() != clang::UO_AddrOf)
5817     return false;
5818   if (auto *DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr()->IgnoreParens())) {
5819     return DRE->hasQualifier();
5820   }
5821   if (auto *OVL = dyn_cast<OverloadExpr>(UO->getSubExpr()->IgnoreParens()))
5822     return OVL->getQualifier();
5823   return false;
5824 }
5825 
5826 bool
5827 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
5828                               FunctionDecl *FDecl,
5829                               const FunctionProtoType *Proto,
5830                               ArrayRef<Expr *> Args,
5831                               SourceLocation RParenLoc,
5832                               bool IsExecConfig) {
5833   // Bail out early if calling a builtin with custom typechecking.
5834   if (FDecl)
5835     if (unsigned ID = FDecl->getBuiltinID())
5836       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
5837         return false;
5838 
5839   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
5840   // assignment, to the types of the corresponding parameter, ...
5841 
5842   bool AddressOf = isParenthetizedAndQualifiedAddressOfExpr(Fn);
5843   bool HasExplicitObjectParameter =
5844       !AddressOf && FDecl && FDecl->hasCXXExplicitFunctionObjectParameter();
5845   unsigned ExplicitObjectParameterOffset = HasExplicitObjectParameter ? 1 : 0;
5846   unsigned NumParams = Proto->getNumParams();
5847   bool Invalid = false;
5848   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
5849   unsigned FnKind = Fn->getType()->isBlockPointerType()
5850                        ? 1 /* block */
5851                        : (IsExecConfig ? 3 /* kernel function (exec config) */
5852                                        : 0 /* function */);
5853 
5854   // If too few arguments are available (and we don't have default
5855   // arguments for the remaining parameters), don't make the call.
5856   if (Args.size() < NumParams) {
5857     if (Args.size() < MinArgs) {
5858       TypoCorrection TC;
5859       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5860         unsigned diag_id =
5861             MinArgs == NumParams && !Proto->isVariadic()
5862                 ? diag::err_typecheck_call_too_few_args_suggest
5863                 : diag::err_typecheck_call_too_few_args_at_least_suggest;
5864         diagnoseTypo(
5865             TC, PDiag(diag_id)
5866                     << FnKind << MinArgs - ExplicitObjectParameterOffset
5867                     << static_cast<unsigned>(Args.size()) -
5868                            ExplicitObjectParameterOffset
5869                     << HasExplicitObjectParameter << TC.getCorrectionRange());
5870       } else if (MinArgs - ExplicitObjectParameterOffset == 1 && FDecl &&
5871                  FDecl->getParamDecl(ExplicitObjectParameterOffset)
5872                      ->getDeclName())
5873         Diag(RParenLoc,
5874              MinArgs == NumParams && !Proto->isVariadic()
5875                  ? diag::err_typecheck_call_too_few_args_one
5876                  : diag::err_typecheck_call_too_few_args_at_least_one)
5877             << FnKind << FDecl->getParamDecl(ExplicitObjectParameterOffset)
5878             << HasExplicitObjectParameter << Fn->getSourceRange();
5879       else
5880         Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
5881                             ? diag::err_typecheck_call_too_few_args
5882                             : diag::err_typecheck_call_too_few_args_at_least)
5883             << FnKind << MinArgs - ExplicitObjectParameterOffset
5884             << static_cast<unsigned>(Args.size()) -
5885                    ExplicitObjectParameterOffset
5886             << HasExplicitObjectParameter << Fn->getSourceRange();
5887 
5888       // Emit the location of the prototype.
5889       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5890         Diag(FDecl->getLocation(), diag::note_callee_decl)
5891             << FDecl << FDecl->getParametersSourceRange();
5892 
5893       return true;
5894     }
5895     // We reserve space for the default arguments when we create
5896     // the call expression, before calling ConvertArgumentsForCall.
5897     assert((Call->getNumArgs() == NumParams) &&
5898            "We should have reserved space for the default arguments before!");
5899   }
5900 
5901   // If too many are passed and not variadic, error on the extras and drop
5902   // them.
5903   if (Args.size() > NumParams) {
5904     if (!Proto->isVariadic()) {
5905       TypoCorrection TC;
5906       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5907         unsigned diag_id =
5908             MinArgs == NumParams && !Proto->isVariadic()
5909                 ? diag::err_typecheck_call_too_many_args_suggest
5910                 : diag::err_typecheck_call_too_many_args_at_most_suggest;
5911         diagnoseTypo(
5912             TC, PDiag(diag_id)
5913                     << FnKind << NumParams - ExplicitObjectParameterOffset
5914                     << static_cast<unsigned>(Args.size()) -
5915                            ExplicitObjectParameterOffset
5916                     << HasExplicitObjectParameter << TC.getCorrectionRange());
5917       } else if (NumParams - ExplicitObjectParameterOffset == 1 && FDecl &&
5918                  FDecl->getParamDecl(ExplicitObjectParameterOffset)
5919                      ->getDeclName())
5920         Diag(Args[NumParams]->getBeginLoc(),
5921              MinArgs == NumParams
5922                  ? diag::err_typecheck_call_too_many_args_one
5923                  : diag::err_typecheck_call_too_many_args_at_most_one)
5924             << FnKind << FDecl->getParamDecl(ExplicitObjectParameterOffset)
5925             << static_cast<unsigned>(Args.size()) -
5926                    ExplicitObjectParameterOffset
5927             << HasExplicitObjectParameter << Fn->getSourceRange()
5928             << SourceRange(Args[NumParams]->getBeginLoc(),
5929                            Args.back()->getEndLoc());
5930       else
5931         Diag(Args[NumParams]->getBeginLoc(),
5932              MinArgs == NumParams
5933                  ? diag::err_typecheck_call_too_many_args
5934                  : diag::err_typecheck_call_too_many_args_at_most)
5935             << FnKind << NumParams - ExplicitObjectParameterOffset
5936             << static_cast<unsigned>(Args.size()) -
5937                    ExplicitObjectParameterOffset
5938             << HasExplicitObjectParameter << Fn->getSourceRange()
5939             << SourceRange(Args[NumParams]->getBeginLoc(),
5940                            Args.back()->getEndLoc());
5941 
5942       // Emit the location of the prototype.
5943       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5944         Diag(FDecl->getLocation(), diag::note_callee_decl)
5945             << FDecl << FDecl->getParametersSourceRange();
5946 
5947       // This deletes the extra arguments.
5948       Call->shrinkNumArgs(NumParams);
5949       return true;
5950     }
5951   }
5952   SmallVector<Expr *, 8> AllArgs;
5953   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
5954 
5955   Invalid = GatherArgumentsForCall(Call->getExprLoc(), FDecl, Proto, 0, Args,
5956                                    AllArgs, CallType);
5957   if (Invalid)
5958     return true;
5959   unsigned TotalNumArgs = AllArgs.size();
5960   for (unsigned i = 0; i < TotalNumArgs; ++i)
5961     Call->setArg(i, AllArgs[i]);
5962 
5963   Call->computeDependence();
5964   return false;
5965 }
5966 
5967 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
5968                                   const FunctionProtoType *Proto,
5969                                   unsigned FirstParam, ArrayRef<Expr *> Args,
5970                                   SmallVectorImpl<Expr *> &AllArgs,
5971                                   VariadicCallType CallType, bool AllowExplicit,
5972                                   bool IsListInitialization) {
5973   unsigned NumParams = Proto->getNumParams();
5974   bool Invalid = false;
5975   size_t ArgIx = 0;
5976   // Continue to check argument types (even if we have too few/many args).
5977   for (unsigned i = FirstParam; i < NumParams; i++) {
5978     QualType ProtoArgType = Proto->getParamType(i);
5979 
5980     Expr *Arg;
5981     ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
5982     if (ArgIx < Args.size()) {
5983       Arg = Args[ArgIx++];
5984 
5985       if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
5986                               diag::err_call_incomplete_argument, Arg))
5987         return true;
5988 
5989       // Strip the unbridged-cast placeholder expression off, if applicable.
5990       bool CFAudited = false;
5991       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
5992           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5993           (!Param || !Param->hasAttr<CFConsumedAttr>()))
5994         Arg = ObjC().stripARCUnbridgedCast(Arg);
5995       else if (getLangOpts().ObjCAutoRefCount &&
5996                FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5997                (!Param || !Param->hasAttr<CFConsumedAttr>()))
5998         CFAudited = true;
5999 
6000       if (Proto->getExtParameterInfo(i).isNoEscape() &&
6001           ProtoArgType->isBlockPointerType())
6002         if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
6003           BE->getBlockDecl()->setDoesNotEscape();
6004       if ((Proto->getExtParameterInfo(i).getABI() == ParameterABI::HLSLOut ||
6005            Proto->getExtParameterInfo(i).getABI() == ParameterABI::HLSLInOut)) {
6006         ExprResult ArgExpr = HLSL().ActOnOutParamExpr(Param, Arg);
6007         if (ArgExpr.isInvalid())
6008           return true;
6009         Arg = ArgExpr.getAs<Expr>();
6010       }
6011 
6012       InitializedEntity Entity =
6013           Param ? InitializedEntity::InitializeParameter(Context, Param,
6014                                                          ProtoArgType)
6015                 : InitializedEntity::InitializeParameter(
6016                       Context, ProtoArgType, Proto->isParamConsumed(i));
6017 
6018       // Remember that parameter belongs to a CF audited API.
6019       if (CFAudited)
6020         Entity.setParameterCFAudited();
6021 
6022       ExprResult ArgE = PerformCopyInitialization(
6023           Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
6024       if (ArgE.isInvalid())
6025         return true;
6026 
6027       Arg = ArgE.getAs<Expr>();
6028     } else {
6029       assert(Param && "can't use default arguments without a known callee");
6030 
6031       ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
6032       if (ArgExpr.isInvalid())
6033         return true;
6034 
6035       Arg = ArgExpr.getAs<Expr>();
6036     }
6037 
6038     // Check for array bounds violations for each argument to the call. This
6039     // check only triggers warnings when the argument isn't a more complex Expr
6040     // with its own checking, such as a BinaryOperator.
6041     CheckArrayAccess(Arg);
6042 
6043     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
6044     CheckStaticArrayArgument(CallLoc, Param, Arg);
6045 
6046     AllArgs.push_back(Arg);
6047   }
6048 
6049   // If this is a variadic call, handle args passed through "...".
6050   if (CallType != VariadicDoesNotApply) {
6051     // Assume that extern "C" functions with variadic arguments that
6052     // return __unknown_anytype aren't *really* variadic.
6053     if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
6054         FDecl->isExternC()) {
6055       for (Expr *A : Args.slice(ArgIx)) {
6056         QualType paramType; // ignored
6057         ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
6058         Invalid |= arg.isInvalid();
6059         AllArgs.push_back(arg.get());
6060       }
6061 
6062     // Otherwise do argument promotion, (C99 6.5.2.2p7).
6063     } else {
6064       for (Expr *A : Args.slice(ArgIx)) {
6065         ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
6066         Invalid |= Arg.isInvalid();
6067         AllArgs.push_back(Arg.get());
6068       }
6069     }
6070 
6071     // Check for array bounds violations.
6072     for (Expr *A : Args.slice(ArgIx))
6073       CheckArrayAccess(A);
6074   }
6075   return Invalid;
6076 }
6077 
6078 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
6079   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
6080   if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
6081     TL = DTL.getOriginalLoc();
6082   if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
6083     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
6084       << ATL.getLocalSourceRange();
6085 }
6086 
6087 void
6088 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
6089                                ParmVarDecl *Param,
6090                                const Expr *ArgExpr) {
6091   // Static array parameters are not supported in C++.
6092   if (!Param || getLangOpts().CPlusPlus)
6093     return;
6094 
6095   QualType OrigTy = Param->getOriginalType();
6096 
6097   const ArrayType *AT = Context.getAsArrayType(OrigTy);
6098   if (!AT || AT->getSizeModifier() != ArraySizeModifier::Static)
6099     return;
6100 
6101   if (ArgExpr->isNullPointerConstant(Context,
6102                                      Expr::NPC_NeverValueDependent)) {
6103     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
6104     DiagnoseCalleeStaticArrayParam(*this, Param);
6105     return;
6106   }
6107 
6108   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
6109   if (!CAT)
6110     return;
6111 
6112   const ConstantArrayType *ArgCAT =
6113     Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
6114   if (!ArgCAT)
6115     return;
6116 
6117   if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
6118                                              ArgCAT->getElementType())) {
6119     if (ArgCAT->getSize().ult(CAT->getSize())) {
6120       Diag(CallLoc, diag::warn_static_array_too_small)
6121           << ArgExpr->getSourceRange() << (unsigned)ArgCAT->getZExtSize()
6122           << (unsigned)CAT->getZExtSize() << 0;
6123       DiagnoseCalleeStaticArrayParam(*this, Param);
6124     }
6125     return;
6126   }
6127 
6128   std::optional<CharUnits> ArgSize =
6129       getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
6130   std::optional<CharUnits> ParmSize =
6131       getASTContext().getTypeSizeInCharsIfKnown(CAT);
6132   if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
6133     Diag(CallLoc, diag::warn_static_array_too_small)
6134         << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
6135         << (unsigned)ParmSize->getQuantity() << 1;
6136     DiagnoseCalleeStaticArrayParam(*this, Param);
6137   }
6138 }
6139 
6140 /// Given a function expression of unknown-any type, try to rebuild it
6141 /// to have a function type.
6142 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
6143 
6144 /// Is the given type a placeholder that we need to lower out
6145 /// immediately during argument processing?
6146 static bool isPlaceholderToRemoveAsArg(QualType type) {
6147   // Placeholders are never sugared.
6148   const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
6149   if (!placeholder) return false;
6150 
6151   switch (placeholder->getKind()) {
6152   // Ignore all the non-placeholder types.
6153 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6154   case BuiltinType::Id:
6155 #include "clang/Basic/OpenCLImageTypes.def"
6156 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6157   case BuiltinType::Id:
6158 #include "clang/Basic/OpenCLExtensionTypes.def"
6159   // In practice we'll never use this, since all SVE types are sugared
6160   // via TypedefTypes rather than exposed directly as BuiltinTypes.
6161 #define SVE_TYPE(Name, Id, SingletonId) \
6162   case BuiltinType::Id:
6163 #include "clang/Basic/AArch64SVEACLETypes.def"
6164 #define PPC_VECTOR_TYPE(Name, Id, Size) \
6165   case BuiltinType::Id:
6166 #include "clang/Basic/PPCTypes.def"
6167 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6168 #include "clang/Basic/RISCVVTypes.def"
6169 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6170 #include "clang/Basic/WebAssemblyReferenceTypes.def"
6171 #define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) case BuiltinType::Id:
6172 #include "clang/Basic/AMDGPUTypes.def"
6173 #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6174 #include "clang/Basic/HLSLIntangibleTypes.def"
6175 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6176 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6177 #include "clang/AST/BuiltinTypes.def"
6178     return false;
6179 
6180   case BuiltinType::UnresolvedTemplate:
6181   // We cannot lower out overload sets; they might validly be resolved
6182   // by the call machinery.
6183   case BuiltinType::Overload:
6184     return false;
6185 
6186   // Unbridged casts in ARC can be handled in some call positions and
6187   // should be left in place.
6188   case BuiltinType::ARCUnbridgedCast:
6189     return false;
6190 
6191   // Pseudo-objects should be converted as soon as possible.
6192   case BuiltinType::PseudoObject:
6193     return true;
6194 
6195   // The debugger mode could theoretically but currently does not try
6196   // to resolve unknown-typed arguments based on known parameter types.
6197   case BuiltinType::UnknownAny:
6198     return true;
6199 
6200   // These are always invalid as call arguments and should be reported.
6201   case BuiltinType::BoundMember:
6202   case BuiltinType::BuiltinFn:
6203   case BuiltinType::IncompleteMatrixIdx:
6204   case BuiltinType::ArraySection:
6205   case BuiltinType::OMPArrayShaping:
6206   case BuiltinType::OMPIterator:
6207     return true;
6208 
6209   }
6210   llvm_unreachable("bad builtin type kind");
6211 }
6212 
6213 bool Sema::CheckArgsForPlaceholders(MultiExprArg args) {
6214   // Apply this processing to all the arguments at once instead of
6215   // dying at the first failure.
6216   bool hasInvalid = false;
6217   for (size_t i = 0, e = args.size(); i != e; i++) {
6218     if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
6219       ExprResult result = CheckPlaceholderExpr(args[i]);
6220       if (result.isInvalid()) hasInvalid = true;
6221       else args[i] = result.get();
6222     }
6223   }
6224   return hasInvalid;
6225 }
6226 
6227 /// If a builtin function has a pointer argument with no explicit address
6228 /// space, then it should be able to accept a pointer to any address
6229 /// space as input.  In order to do this, we need to replace the
6230 /// standard builtin declaration with one that uses the same address space
6231 /// as the call.
6232 ///
6233 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6234 ///                  it does not contain any pointer arguments without
6235 ///                  an address space qualifer.  Otherwise the rewritten
6236 ///                  FunctionDecl is returned.
6237 /// TODO: Handle pointer return types.
6238 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
6239                                                 FunctionDecl *FDecl,
6240                                                 MultiExprArg ArgExprs) {
6241 
6242   QualType DeclType = FDecl->getType();
6243   const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
6244 
6245   if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
6246       ArgExprs.size() < FT->getNumParams())
6247     return nullptr;
6248 
6249   bool NeedsNewDecl = false;
6250   unsigned i = 0;
6251   SmallVector<QualType, 8> OverloadParams;
6252 
6253   for (QualType ParamType : FT->param_types()) {
6254 
6255     // Convert array arguments to pointer to simplify type lookup.
6256     ExprResult ArgRes =
6257         Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
6258     if (ArgRes.isInvalid())
6259       return nullptr;
6260     Expr *Arg = ArgRes.get();
6261     QualType ArgType = Arg->getType();
6262     if (!ParamType->isPointerType() || ParamType.hasAddressSpace() ||
6263         !ArgType->isPointerType() ||
6264         !ArgType->getPointeeType().hasAddressSpace() ||
6265         isPtrSizeAddressSpace(ArgType->getPointeeType().getAddressSpace())) {
6266       OverloadParams.push_back(ParamType);
6267       continue;
6268     }
6269 
6270     QualType PointeeType = ParamType->getPointeeType();
6271     if (PointeeType.hasAddressSpace())
6272       continue;
6273 
6274     NeedsNewDecl = true;
6275     LangAS AS = ArgType->getPointeeType().getAddressSpace();
6276 
6277     PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
6278     OverloadParams.push_back(Context.getPointerType(PointeeType));
6279   }
6280 
6281   if (!NeedsNewDecl)
6282     return nullptr;
6283 
6284   FunctionProtoType::ExtProtoInfo EPI;
6285   EPI.Variadic = FT->isVariadic();
6286   QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
6287                                                 OverloadParams, EPI);
6288   DeclContext *Parent = FDecl->getParent();
6289   FunctionDecl *OverloadDecl = FunctionDecl::Create(
6290       Context, Parent, FDecl->getLocation(), FDecl->getLocation(),
6291       FDecl->getIdentifier(), OverloadTy,
6292       /*TInfo=*/nullptr, SC_Extern, Sema->getCurFPFeatures().isFPConstrained(),
6293       false,
6294       /*hasPrototype=*/true);
6295   SmallVector<ParmVarDecl*, 16> Params;
6296   FT = cast<FunctionProtoType>(OverloadTy);
6297   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
6298     QualType ParamType = FT->getParamType(i);
6299     ParmVarDecl *Parm =
6300         ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
6301                                 SourceLocation(), nullptr, ParamType,
6302                                 /*TInfo=*/nullptr, SC_None, nullptr);
6303     Parm->setScopeInfo(0, i);
6304     Params.push_back(Parm);
6305   }
6306   OverloadDecl->setParams(Params);
6307   Sema->mergeDeclAttributes(OverloadDecl, FDecl);
6308   return OverloadDecl;
6309 }
6310 
6311 static void checkDirectCallValidity(Sema &S, const Expr *Fn,
6312                                     FunctionDecl *Callee,
6313                                     MultiExprArg ArgExprs) {
6314   // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
6315   // similar attributes) really don't like it when functions are called with an
6316   // invalid number of args.
6317   if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
6318                          /*PartialOverloading=*/false) &&
6319       !Callee->isVariadic())
6320     return;
6321   if (Callee->getMinRequiredArguments() > ArgExprs.size())
6322     return;
6323 
6324   if (const EnableIfAttr *Attr =
6325           S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
6326     S.Diag(Fn->getBeginLoc(),
6327            isa<CXXMethodDecl>(Callee)
6328                ? diag::err_ovl_no_viable_member_function_in_call
6329                : diag::err_ovl_no_viable_function_in_call)
6330         << Callee << Callee->getSourceRange();
6331     S.Diag(Callee->getLocation(),
6332            diag::note_ovl_candidate_disabled_by_function_cond_attr)
6333         << Attr->getCond()->getSourceRange() << Attr->getMessage();
6334     return;
6335   }
6336 }
6337 
6338 static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
6339     const UnresolvedMemberExpr *const UME, Sema &S) {
6340 
6341   const auto GetFunctionLevelDCIfCXXClass =
6342       [](Sema &S) -> const CXXRecordDecl * {
6343     const DeclContext *const DC = S.getFunctionLevelDeclContext();
6344     if (!DC || !DC->getParent())
6345       return nullptr;
6346 
6347     // If the call to some member function was made from within a member
6348     // function body 'M' return return 'M's parent.
6349     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
6350       return MD->getParent()->getCanonicalDecl();
6351     // else the call was made from within a default member initializer of a
6352     // class, so return the class.
6353     if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
6354       return RD->getCanonicalDecl();
6355     return nullptr;
6356   };
6357   // If our DeclContext is neither a member function nor a class (in the
6358   // case of a lambda in a default member initializer), we can't have an
6359   // enclosing 'this'.
6360 
6361   const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
6362   if (!CurParentClass)
6363     return false;
6364 
6365   // The naming class for implicit member functions call is the class in which
6366   // name lookup starts.
6367   const CXXRecordDecl *const NamingClass =
6368       UME->getNamingClass()->getCanonicalDecl();
6369   assert(NamingClass && "Must have naming class even for implicit access");
6370 
6371   // If the unresolved member functions were found in a 'naming class' that is
6372   // related (either the same or derived from) to the class that contains the
6373   // member function that itself contained the implicit member access.
6374 
6375   return CurParentClass == NamingClass ||
6376          CurParentClass->isDerivedFrom(NamingClass);
6377 }
6378 
6379 static void
6380 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6381     Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
6382 
6383   if (!UME)
6384     return;
6385 
6386   LambdaScopeInfo *const CurLSI = S.getCurLambda();
6387   // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
6388   // already been captured, or if this is an implicit member function call (if
6389   // it isn't, an attempt to capture 'this' should already have been made).
6390   if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
6391       !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
6392     return;
6393 
6394   // Check if the naming class in which the unresolved members were found is
6395   // related (same as or is a base of) to the enclosing class.
6396 
6397   if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
6398     return;
6399 
6400 
6401   DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
6402   // If the enclosing function is not dependent, then this lambda is
6403   // capture ready, so if we can capture this, do so.
6404   if (!EnclosingFunctionCtx->isDependentContext()) {
6405     // If the current lambda and all enclosing lambdas can capture 'this' -
6406     // then go ahead and capture 'this' (since our unresolved overload set
6407     // contains at least one non-static member function).
6408     if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
6409       S.CheckCXXThisCapture(CallLoc);
6410   } else if (S.CurContext->isDependentContext()) {
6411     // ... since this is an implicit member reference, that might potentially
6412     // involve a 'this' capture, mark 'this' for potential capture in
6413     // enclosing lambdas.
6414     if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
6415       CurLSI->addPotentialThisCapture(CallLoc);
6416   }
6417 }
6418 
6419 // Once a call is fully resolved, warn for unqualified calls to specific
6420 // C++ standard functions, like move and forward.
6421 static void DiagnosedUnqualifiedCallsToStdFunctions(Sema &S,
6422                                                     const CallExpr *Call) {
6423   // We are only checking unary move and forward so exit early here.
6424   if (Call->getNumArgs() != 1)
6425     return;
6426 
6427   const Expr *E = Call->getCallee()->IgnoreParenImpCasts();
6428   if (!E || isa<UnresolvedLookupExpr>(E))
6429     return;
6430   const DeclRefExpr *DRE = dyn_cast_if_present<DeclRefExpr>(E);
6431   if (!DRE || !DRE->getLocation().isValid())
6432     return;
6433 
6434   if (DRE->getQualifier())
6435     return;
6436 
6437   const FunctionDecl *FD = Call->getDirectCallee();
6438   if (!FD)
6439     return;
6440 
6441   // Only warn for some functions deemed more frequent or problematic.
6442   unsigned BuiltinID = FD->getBuiltinID();
6443   if (BuiltinID != Builtin::BImove && BuiltinID != Builtin::BIforward)
6444     return;
6445 
6446   S.Diag(DRE->getLocation(), diag::warn_unqualified_call_to_std_cast_function)
6447       << FD->getQualifiedNameAsString()
6448       << FixItHint::CreateInsertion(DRE->getLocation(), "std::");
6449 }
6450 
6451 ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6452                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
6453                                Expr *ExecConfig) {
6454   ExprResult Call =
6455       BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6456                     /*IsExecConfig=*/false, /*AllowRecovery=*/true);
6457   if (Call.isInvalid())
6458     return Call;
6459 
6460   // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
6461   // language modes.
6462   if (const auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn);
6463       ULE && ULE->hasExplicitTemplateArgs() &&
6464       ULE->decls_begin() == ULE->decls_end()) {
6465     Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20
6466                                ? diag::warn_cxx17_compat_adl_only_template_id
6467                                : diag::ext_adl_only_template_id)
6468         << ULE->getName();
6469   }
6470 
6471   if (LangOpts.OpenMP)
6472     Call = OpenMP().ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
6473                                     ExecConfig);
6474   if (LangOpts.CPlusPlus) {
6475     if (const auto *CE = dyn_cast<CallExpr>(Call.get()))
6476       DiagnosedUnqualifiedCallsToStdFunctions(*this, CE);
6477 
6478     // If we previously found that the id-expression of this call refers to a
6479     // consteval function but the call is dependent, we should not treat is an
6480     // an invalid immediate call.
6481     if (auto *DRE = dyn_cast<DeclRefExpr>(Fn->IgnoreParens());
6482         DRE && Call.get()->isValueDependent()) {
6483       currentEvaluationContext().ReferenceToConsteval.erase(DRE);
6484     }
6485   }
6486   return Call;
6487 }
6488 
6489 ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6490                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
6491                                Expr *ExecConfig, bool IsExecConfig,
6492                                bool AllowRecovery) {
6493   // Since this might be a postfix expression, get rid of ParenListExprs.
6494   ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
6495   if (Result.isInvalid()) return ExprError();
6496   Fn = Result.get();
6497 
6498   if (CheckArgsForPlaceholders(ArgExprs))
6499     return ExprError();
6500 
6501   // The result of __builtin_counted_by_ref cannot be used as a function
6502   // argument. It allows leaking and modification of bounds safety information.
6503   for (const Expr *Arg : ArgExprs)
6504     if (CheckInvalidBuiltinCountedByRef(Arg, FunctionArgKind))
6505       return ExprError();
6506 
6507   if (getLangOpts().CPlusPlus) {
6508     // If this is a pseudo-destructor expression, build the call immediately.
6509     if (isa<CXXPseudoDestructorExpr>(Fn)) {
6510       if (!ArgExprs.empty()) {
6511         // Pseudo-destructor calls should not have any arguments.
6512         Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
6513             << FixItHint::CreateRemoval(
6514                    SourceRange(ArgExprs.front()->getBeginLoc(),
6515                                ArgExprs.back()->getEndLoc()));
6516       }
6517 
6518       return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
6519                               VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6520     }
6521     if (Fn->getType() == Context.PseudoObjectTy) {
6522       ExprResult result = CheckPlaceholderExpr(Fn);
6523       if (result.isInvalid()) return ExprError();
6524       Fn = result.get();
6525     }
6526 
6527     // Determine whether this is a dependent call inside a C++ template,
6528     // in which case we won't do any semantic analysis now.
6529     if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
6530       if (ExecConfig) {
6531         return CUDAKernelCallExpr::Create(Context, Fn,
6532                                           cast<CallExpr>(ExecConfig), ArgExprs,
6533                                           Context.DependentTy, VK_PRValue,
6534                                           RParenLoc, CurFPFeatureOverrides());
6535       } else {
6536 
6537         tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6538             *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
6539             Fn->getBeginLoc());
6540 
6541         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6542                                 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6543       }
6544     }
6545 
6546     // Determine whether this is a call to an object (C++ [over.call.object]).
6547     if (Fn->getType()->isRecordType())
6548       return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
6549                                           RParenLoc);
6550 
6551     if (Fn->getType() == Context.UnknownAnyTy) {
6552       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6553       if (result.isInvalid()) return ExprError();
6554       Fn = result.get();
6555     }
6556 
6557     if (Fn->getType() == Context.BoundMemberTy) {
6558       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6559                                        RParenLoc, ExecConfig, IsExecConfig,
6560                                        AllowRecovery);
6561     }
6562   }
6563 
6564   // Check for overloaded calls.  This can happen even in C due to extensions.
6565   if (Fn->getType() == Context.OverloadTy) {
6566     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
6567 
6568     // We aren't supposed to apply this logic if there's an '&' involved.
6569     if (!find.HasFormOfMemberPointer || find.IsAddressOfOperandWithParen) {
6570       if (Expr::hasAnyTypeDependentArguments(ArgExprs))
6571         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6572                                 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6573       OverloadExpr *ovl = find.Expression;
6574       if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
6575         return BuildOverloadedCallExpr(
6576             Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6577             /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
6578       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6579                                        RParenLoc, ExecConfig, IsExecConfig,
6580                                        AllowRecovery);
6581     }
6582   }
6583 
6584   // If we're directly calling a function, get the appropriate declaration.
6585   if (Fn->getType() == Context.UnknownAnyTy) {
6586     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6587     if (result.isInvalid()) return ExprError();
6588     Fn = result.get();
6589   }
6590 
6591   Expr *NakedFn = Fn->IgnoreParens();
6592 
6593   bool CallingNDeclIndirectly = false;
6594   NamedDecl *NDecl = nullptr;
6595   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
6596     if (UnOp->getOpcode() == UO_AddrOf) {
6597       CallingNDeclIndirectly = true;
6598       NakedFn = UnOp->getSubExpr()->IgnoreParens();
6599     }
6600   }
6601 
6602   if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
6603     NDecl = DRE->getDecl();
6604 
6605     FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
6606     if (FDecl && FDecl->getBuiltinID()) {
6607       // Rewrite the function decl for this builtin by replacing parameters
6608       // with no explicit address space with the address space of the arguments
6609       // in ArgExprs.
6610       if ((FDecl =
6611                rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
6612         NDecl = FDecl;
6613         Fn = DeclRefExpr::Create(
6614             Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
6615             SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
6616             nullptr, DRE->isNonOdrUse());
6617       }
6618     }
6619   } else if (auto *ME = dyn_cast<MemberExpr>(NakedFn))
6620     NDecl = ME->getMemberDecl();
6621 
6622   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
6623     if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
6624                                       FD, /*Complain=*/true, Fn->getBeginLoc()))
6625       return ExprError();
6626 
6627     checkDirectCallValidity(*this, Fn, FD, ArgExprs);
6628 
6629     // If this expression is a call to a builtin function in HIP device
6630     // compilation, allow a pointer-type argument to default address space to be
6631     // passed as a pointer-type parameter to a non-default address space.
6632     // If Arg is declared in the default address space and Param is declared
6633     // in a non-default address space, perform an implicit address space cast to
6634     // the parameter type.
6635     if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD &&
6636         FD->getBuiltinID()) {
6637       for (unsigned Idx = 0; Idx < ArgExprs.size() && Idx < FD->param_size();
6638           ++Idx) {
6639         ParmVarDecl *Param = FD->getParamDecl(Idx);
6640         if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() ||
6641             !ArgExprs[Idx]->getType()->isPointerType())
6642           continue;
6643 
6644         auto ParamAS = Param->getType()->getPointeeType().getAddressSpace();
6645         auto ArgTy = ArgExprs[Idx]->getType();
6646         auto ArgPtTy = ArgTy->getPointeeType();
6647         auto ArgAS = ArgPtTy.getAddressSpace();
6648 
6649         // Add address space cast if target address spaces are different
6650         bool NeedImplicitASC =
6651           ParamAS != LangAS::Default &&       // Pointer params in generic AS don't need special handling.
6652           ( ArgAS == LangAS::Default  ||      // We do allow implicit conversion from generic AS
6653                                               // or from specific AS which has target AS matching that of Param.
6654           getASTContext().getTargetAddressSpace(ArgAS) == getASTContext().getTargetAddressSpace(ParamAS));
6655         if (!NeedImplicitASC)
6656           continue;
6657 
6658         // First, ensure that the Arg is an RValue.
6659         if (ArgExprs[Idx]->isGLValue()) {
6660           ArgExprs[Idx] = ImplicitCastExpr::Create(
6661               Context, ArgExprs[Idx]->getType(), CK_NoOp, ArgExprs[Idx],
6662               nullptr, VK_PRValue, FPOptionsOverride());
6663         }
6664 
6665         // Construct a new arg type with address space of Param
6666         Qualifiers ArgPtQuals = ArgPtTy.getQualifiers();
6667         ArgPtQuals.setAddressSpace(ParamAS);
6668         auto NewArgPtTy =
6669             Context.getQualifiedType(ArgPtTy.getUnqualifiedType(), ArgPtQuals);
6670         auto NewArgTy =
6671             Context.getQualifiedType(Context.getPointerType(NewArgPtTy),
6672                                      ArgTy.getQualifiers());
6673 
6674         // Finally perform an implicit address space cast
6675         ArgExprs[Idx] = ImpCastExprToType(ArgExprs[Idx], NewArgTy,
6676                                           CK_AddressSpaceConversion)
6677                             .get();
6678       }
6679     }
6680   }
6681 
6682   if (Context.isDependenceAllowed() &&
6683       (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) {
6684     assert(!getLangOpts().CPlusPlus);
6685     assert((Fn->containsErrors() ||
6686             llvm::any_of(ArgExprs,
6687                          [](clang::Expr *E) { return E->containsErrors(); })) &&
6688            "should only occur in error-recovery path.");
6689     return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6690                             VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6691   }
6692   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
6693                                ExecConfig, IsExecConfig);
6694 }
6695 
6696 Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
6697                                  MultiExprArg CallArgs) {
6698   StringRef Name = Context.BuiltinInfo.getName(Id);
6699   LookupResult R(*this, &Context.Idents.get(Name), Loc,
6700                  Sema::LookupOrdinaryName);
6701   LookupName(R, TUScope, /*AllowBuiltinCreation=*/true);
6702 
6703   auto *BuiltInDecl = R.getAsSingle<FunctionDecl>();
6704   assert(BuiltInDecl && "failed to find builtin declaration");
6705 
6706   ExprResult DeclRef =
6707       BuildDeclRefExpr(BuiltInDecl, BuiltInDecl->getType(), VK_LValue, Loc);
6708   assert(DeclRef.isUsable() && "Builtin reference cannot fail");
6709 
6710   ExprResult Call =
6711       BuildCallExpr(/*Scope=*/nullptr, DeclRef.get(), Loc, CallArgs, Loc);
6712 
6713   assert(!Call.isInvalid() && "Call to builtin cannot fail!");
6714   return Call.get();
6715 }
6716 
6717 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
6718                                  SourceLocation BuiltinLoc,
6719                                  SourceLocation RParenLoc) {
6720   QualType DstTy = GetTypeFromParser(ParsedDestTy);
6721   return BuildAsTypeExpr(E, DstTy, BuiltinLoc, RParenLoc);
6722 }
6723 
6724 ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy,
6725                                  SourceLocation BuiltinLoc,
6726                                  SourceLocation RParenLoc) {
6727   ExprValueKind VK = VK_PRValue;
6728   ExprObjectKind OK = OK_Ordinary;
6729   QualType SrcTy = E->getType();
6730   if (!SrcTy->isDependentType() &&
6731       Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
6732     return ExprError(
6733         Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size)
6734         << DestTy << SrcTy << E->getSourceRange());
6735   return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc);
6736 }
6737 
6738 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
6739                                         SourceLocation BuiltinLoc,
6740                                         SourceLocation RParenLoc) {
6741   TypeSourceInfo *TInfo;
6742   GetTypeFromParser(ParsedDestTy, &TInfo);
6743   return ConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
6744 }
6745 
6746 ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
6747                                        SourceLocation LParenLoc,
6748                                        ArrayRef<Expr *> Args,
6749                                        SourceLocation RParenLoc, Expr *Config,
6750                                        bool IsExecConfig, ADLCallKind UsesADL) {
6751   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
6752   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
6753 
6754   // Functions with 'interrupt' attribute cannot be called directly.
6755   if (FDecl) {
6756     if (FDecl->hasAttr<AnyX86InterruptAttr>()) {
6757       Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
6758       return ExprError();
6759     }
6760     if (FDecl->hasAttr<ARMInterruptAttr>()) {
6761       Diag(Fn->getExprLoc(), diag::err_arm_interrupt_called);
6762       return ExprError();
6763     }
6764   }
6765 
6766   // X86 interrupt handlers may only call routines with attribute
6767   // no_caller_saved_registers since there is no efficient way to
6768   // save and restore the non-GPR state.
6769   if (auto *Caller = getCurFunctionDecl()) {
6770     if (Caller->hasAttr<AnyX86InterruptAttr>() ||
6771         Caller->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) {
6772       const TargetInfo &TI = Context.getTargetInfo();
6773       bool HasNonGPRRegisters =
6774           TI.hasFeature("sse") || TI.hasFeature("x87") || TI.hasFeature("mmx");
6775       if (HasNonGPRRegisters &&
6776           (!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())) {
6777         Diag(Fn->getExprLoc(), diag::warn_anyx86_excessive_regsave)
6778             << (Caller->hasAttr<AnyX86InterruptAttr>() ? 0 : 1);
6779         if (FDecl)
6780           Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6781       }
6782     }
6783   }
6784 
6785   // Promote the function operand.
6786   // We special-case function promotion here because we only allow promoting
6787   // builtin functions to function pointers in the callee of a call.
6788   ExprResult Result;
6789   QualType ResultTy;
6790   if (BuiltinID &&
6791       Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
6792     // Extract the return type from the (builtin) function pointer type.
6793     // FIXME Several builtins still have setType in
6794     // Sema::CheckBuiltinFunctionCall. One should review their definitions in
6795     // Builtins.td to ensure they are correct before removing setType calls.
6796     QualType FnPtrTy = Context.getPointerType(FDecl->getType());
6797     Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
6798     ResultTy = FDecl->getCallResultType();
6799   } else {
6800     Result = CallExprUnaryConversions(Fn);
6801     ResultTy = Context.BoolTy;
6802   }
6803   if (Result.isInvalid())
6804     return ExprError();
6805   Fn = Result.get();
6806 
6807   // Check for a valid function type, but only if it is not a builtin which
6808   // requires custom type checking. These will be handled by
6809   // CheckBuiltinFunctionCall below just after creation of the call expression.
6810   const FunctionType *FuncT = nullptr;
6811   if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
6812   retry:
6813     if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
6814       // C99 6.5.2.2p1 - "The expression that denotes the called function shall
6815       // have type pointer to function".
6816       FuncT = PT->getPointeeType()->getAs<FunctionType>();
6817       if (!FuncT)
6818         return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6819                          << Fn->getType() << Fn->getSourceRange());
6820     } else if (const BlockPointerType *BPT =
6821                    Fn->getType()->getAs<BlockPointerType>()) {
6822       FuncT = BPT->getPointeeType()->castAs<FunctionType>();
6823     } else {
6824       // Handle calls to expressions of unknown-any type.
6825       if (Fn->getType() == Context.UnknownAnyTy) {
6826         ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
6827         if (rewrite.isInvalid())
6828           return ExprError();
6829         Fn = rewrite.get();
6830         goto retry;
6831       }
6832 
6833       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6834                        << Fn->getType() << Fn->getSourceRange());
6835     }
6836   }
6837 
6838   // Get the number of parameters in the function prototype, if any.
6839   // We will allocate space for max(Args.size(), NumParams) arguments
6840   // in the call expression.
6841   const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
6842   unsigned NumParams = Proto ? Proto->getNumParams() : 0;
6843 
6844   CallExpr *TheCall;
6845   if (Config) {
6846     assert(UsesADL == ADLCallKind::NotADL &&
6847            "CUDAKernelCallExpr should not use ADL");
6848     TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config),
6849                                          Args, ResultTy, VK_PRValue, RParenLoc,
6850                                          CurFPFeatureOverrides(), NumParams);
6851   } else {
6852     TheCall =
6853         CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
6854                          CurFPFeatureOverrides(), NumParams, UsesADL);
6855   }
6856 
6857   if (!Context.isDependenceAllowed()) {
6858     // Forget about the nulled arguments since typo correction
6859     // do not handle them well.
6860     TheCall->shrinkNumArgs(Args.size());
6861     // C cannot always handle TypoExpr nodes in builtin calls and direct
6862     // function calls as their argument checking don't necessarily handle
6863     // dependent types properly, so make sure any TypoExprs have been
6864     // dealt with.
6865     ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
6866     if (!Result.isUsable()) return ExprError();
6867     CallExpr *TheOldCall = TheCall;
6868     TheCall = dyn_cast<CallExpr>(Result.get());
6869     bool CorrectedTypos = TheCall != TheOldCall;
6870     if (!TheCall) return Result;
6871     Args = llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
6872 
6873     // A new call expression node was created if some typos were corrected.
6874     // However it may not have been constructed with enough storage. In this
6875     // case, rebuild the node with enough storage. The waste of space is
6876     // immaterial since this only happens when some typos were corrected.
6877     if (CorrectedTypos && Args.size() < NumParams) {
6878       if (Config)
6879         TheCall = CUDAKernelCallExpr::Create(
6880             Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_PRValue,
6881             RParenLoc, CurFPFeatureOverrides(), NumParams);
6882       else
6883         TheCall =
6884             CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
6885                              CurFPFeatureOverrides(), NumParams, UsesADL);
6886     }
6887     // We can now handle the nulled arguments for the default arguments.
6888     TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
6889   }
6890 
6891   // Bail out early if calling a builtin with custom type checking.
6892   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
6893     ExprResult E = CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6894     if (!E.isInvalid() && Context.BuiltinInfo.isImmediate(BuiltinID))
6895       E = CheckForImmediateInvocation(E, FDecl);
6896     return E;
6897   }
6898 
6899   if (getLangOpts().CUDA) {
6900     if (Config) {
6901       // CUDA: Kernel calls must be to global functions
6902       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
6903         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
6904             << FDecl << Fn->getSourceRange());
6905 
6906       // CUDA: Kernel function must have 'void' return type
6907       if (!FuncT->getReturnType()->isVoidType() &&
6908           !FuncT->getReturnType()->getAs<AutoType>() &&
6909           !FuncT->getReturnType()->isInstantiationDependentType())
6910         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
6911             << Fn->getType() << Fn->getSourceRange());
6912     } else {
6913       // CUDA: Calls to global functions must be configured
6914       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
6915         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
6916             << FDecl << Fn->getSourceRange());
6917     }
6918   }
6919 
6920   // Check for a valid return type
6921   if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
6922                           FDecl))
6923     return ExprError();
6924 
6925   // We know the result type of the call, set it.
6926   TheCall->setType(FuncT->getCallResultType(Context));
6927   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
6928 
6929   // WebAssembly tables can't be used as arguments.
6930   if (Context.getTargetInfo().getTriple().isWasm()) {
6931     for (const Expr *Arg : Args) {
6932       if (Arg && Arg->getType()->isWebAssemblyTableType()) {
6933         return ExprError(Diag(Arg->getExprLoc(),
6934                               diag::err_wasm_table_as_function_parameter));
6935       }
6936     }
6937   }
6938 
6939   if (Proto) {
6940     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
6941                                 IsExecConfig))
6942       return ExprError();
6943   } else {
6944     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
6945 
6946     if (FDecl) {
6947       // Check if we have too few/too many template arguments, based
6948       // on our knowledge of the function definition.
6949       const FunctionDecl *Def = nullptr;
6950       if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
6951         Proto = Def->getType()->getAs<FunctionProtoType>();
6952        if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
6953           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
6954           << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
6955       }
6956 
6957       // If the function we're calling isn't a function prototype, but we have
6958       // a function prototype from a prior declaratiom, use that prototype.
6959       if (!FDecl->hasPrototype())
6960         Proto = FDecl->getType()->getAs<FunctionProtoType>();
6961     }
6962 
6963     // If we still haven't found a prototype to use but there are arguments to
6964     // the call, diagnose this as calling a function without a prototype.
6965     // However, if we found a function declaration, check to see if
6966     // -Wdeprecated-non-prototype was disabled where the function was declared.
6967     // If so, we will silence the diagnostic here on the assumption that this
6968     // interface is intentional and the user knows what they're doing. We will
6969     // also silence the diagnostic if there is a function declaration but it
6970     // was implicitly defined (the user already gets diagnostics about the
6971     // creation of the implicit function declaration, so the additional warning
6972     // is not helpful).
6973     if (!Proto && !Args.empty() &&
6974         (!FDecl || (!FDecl->isImplicit() &&
6975                     !Diags.isIgnored(diag::warn_strict_uses_without_prototype,
6976                                      FDecl->getLocation()))))
6977       Diag(LParenLoc, diag::warn_strict_uses_without_prototype)
6978           << (FDecl != nullptr) << FDecl;
6979 
6980     // Promote the arguments (C99 6.5.2.2p6).
6981     for (unsigned i = 0, e = Args.size(); i != e; i++) {
6982       Expr *Arg = Args[i];
6983 
6984       if (Proto && i < Proto->getNumParams()) {
6985         InitializedEntity Entity = InitializedEntity::InitializeParameter(
6986             Context, Proto->getParamType(i), Proto->isParamConsumed(i));
6987         ExprResult ArgE =
6988             PerformCopyInitialization(Entity, SourceLocation(), Arg);
6989         if (ArgE.isInvalid())
6990           return true;
6991 
6992         Arg = ArgE.getAs<Expr>();
6993 
6994       } else {
6995         ExprResult ArgE = DefaultArgumentPromotion(Arg);
6996 
6997         if (ArgE.isInvalid())
6998           return true;
6999 
7000         Arg = ArgE.getAs<Expr>();
7001       }
7002 
7003       if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
7004                               diag::err_call_incomplete_argument, Arg))
7005         return ExprError();
7006 
7007       TheCall->setArg(i, Arg);
7008     }
7009     TheCall->computeDependence();
7010   }
7011 
7012   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
7013     if (Method->isImplicitObjectMemberFunction())
7014       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
7015                        << Fn->getSourceRange() << 0);
7016 
7017   // Check for sentinels
7018   if (NDecl)
7019     DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
7020 
7021   // Warn for unions passing across security boundary (CMSE).
7022   if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
7023     for (unsigned i = 0, e = Args.size(); i != e; i++) {
7024       if (const auto *RT =
7025               dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) {
7026         if (RT->getDecl()->isOrContainsUnion())
7027           Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
7028               << 0 << i;
7029       }
7030     }
7031   }
7032 
7033   // Do special checking on direct calls to functions.
7034   if (FDecl) {
7035     if (CheckFunctionCall(FDecl, TheCall, Proto))
7036       return ExprError();
7037 
7038     checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
7039 
7040     if (BuiltinID)
7041       return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7042   } else if (NDecl) {
7043     if (CheckPointerCall(NDecl, TheCall, Proto))
7044       return ExprError();
7045   } else {
7046     if (CheckOtherCall(TheCall, Proto))
7047       return ExprError();
7048   }
7049 
7050   return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl);
7051 }
7052 
7053 ExprResult
7054 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
7055                            SourceLocation RParenLoc, Expr *InitExpr) {
7056   assert(Ty && "ActOnCompoundLiteral(): missing type");
7057   assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
7058 
7059   TypeSourceInfo *TInfo;
7060   QualType literalType = GetTypeFromParser(Ty, &TInfo);
7061   if (!TInfo)
7062     TInfo = Context.getTrivialTypeSourceInfo(literalType);
7063 
7064   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
7065 }
7066 
7067 ExprResult
7068 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
7069                                SourceLocation RParenLoc, Expr *LiteralExpr) {
7070   QualType literalType = TInfo->getType();
7071 
7072   if (literalType->isArrayType()) {
7073     if (RequireCompleteSizedType(
7074             LParenLoc, Context.getBaseElementType(literalType),
7075             diag::err_array_incomplete_or_sizeless_type,
7076             SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7077       return ExprError();
7078     if (literalType->isVariableArrayType()) {
7079       // C23 6.7.10p4: An entity of variable length array type shall not be
7080       // initialized except by an empty initializer.
7081       //
7082       // The C extension warnings are issued from ParseBraceInitializer() and
7083       // do not need to be issued here. However, we continue to issue an error
7084       // in the case there are initializers or we are compiling C++. We allow
7085       // use of VLAs in C++, but it's not clear we want to allow {} to zero
7086       // init a VLA in C++ in all cases (such as with non-trivial constructors).
7087       // FIXME: should we allow this construct in C++ when it makes sense to do
7088       // so?
7089       //
7090       // But: C99-C23 6.5.2.5 Compound literals constraint 1: The type name
7091       // shall specify an object type or an array of unknown size, but not a
7092       // variable length array type. This seems odd, as it allows 'int a[size] =
7093       // {}', but forbids 'int *a = (int[size]){}'. As this is what the standard
7094       // says, this is what's implemented here for C (except for the extension
7095       // that permits constant foldable size arrays)
7096 
7097       auto diagID = LangOpts.CPlusPlus
7098                         ? diag::err_variable_object_no_init
7099                         : diag::err_compound_literal_with_vla_type;
7100       if (!tryToFixVariablyModifiedVarType(TInfo, literalType, LParenLoc,
7101                                            diagID))
7102         return ExprError();
7103     }
7104   } else if (!literalType->isDependentType() &&
7105              RequireCompleteType(LParenLoc, literalType,
7106                diag::err_typecheck_decl_incomplete_type,
7107                SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7108     return ExprError();
7109 
7110   InitializedEntity Entity
7111     = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
7112   InitializationKind Kind
7113     = InitializationKind::CreateCStyleCast(LParenLoc,
7114                                            SourceRange(LParenLoc, RParenLoc),
7115                                            /*InitList=*/true);
7116   InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
7117   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
7118                                       &literalType);
7119   if (Result.isInvalid())
7120     return ExprError();
7121   LiteralExpr = Result.get();
7122 
7123   bool isFileScope = !CurContext->isFunctionOrMethod();
7124 
7125   // In C, compound literals are l-values for some reason.
7126   // For GCC compatibility, in C++, file-scope array compound literals with
7127   // constant initializers are also l-values, and compound literals are
7128   // otherwise prvalues.
7129   //
7130   // (GCC also treats C++ list-initialized file-scope array prvalues with
7131   // constant initializers as l-values, but that's non-conforming, so we don't
7132   // follow it there.)
7133   //
7134   // FIXME: It would be better to handle the lvalue cases as materializing and
7135   // lifetime-extending a temporary object, but our materialized temporaries
7136   // representation only supports lifetime extension from a variable, not "out
7137   // of thin air".
7138   // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
7139   // is bound to the result of applying array-to-pointer decay to the compound
7140   // literal.
7141   // FIXME: GCC supports compound literals of reference type, which should
7142   // obviously have a value kind derived from the kind of reference involved.
7143   ExprValueKind VK =
7144       (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
7145           ? VK_PRValue
7146           : VK_LValue;
7147 
7148   if (isFileScope)
7149     if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
7150       for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
7151         Expr *Init = ILE->getInit(i);
7152         ILE->setInit(i, ConstantExpr::Create(Context, Init));
7153       }
7154 
7155   auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
7156                                               VK, LiteralExpr, isFileScope);
7157   if (isFileScope) {
7158     if (!LiteralExpr->isTypeDependent() &&
7159         !LiteralExpr->isValueDependent() &&
7160         !literalType->isDependentType()) // C99 6.5.2.5p3
7161       if (CheckForConstantInitializer(LiteralExpr))
7162         return ExprError();
7163   } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
7164              literalType.getAddressSpace() != LangAS::Default) {
7165     // Embedded-C extensions to C99 6.5.2.5:
7166     //   "If the compound literal occurs inside the body of a function, the
7167     //   type name shall not be qualified by an address-space qualifier."
7168     Diag(LParenLoc, diag::err_compound_literal_with_address_space)
7169       << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
7170     return ExprError();
7171   }
7172 
7173   if (!isFileScope && !getLangOpts().CPlusPlus) {
7174     // Compound literals that have automatic storage duration are destroyed at
7175     // the end of the scope in C; in C++, they're just temporaries.
7176 
7177     // Emit diagnostics if it is or contains a C union type that is non-trivial
7178     // to destruct.
7179     if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
7180       checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
7181                             NTCUC_CompoundLiteral, NTCUK_Destruct);
7182 
7183     // Diagnose jumps that enter or exit the lifetime of the compound literal.
7184     if (literalType.isDestructedType()) {
7185       Cleanup.setExprNeedsCleanups(true);
7186       ExprCleanupObjects.push_back(E);
7187       getCurFunction()->setHasBranchProtectedScope();
7188     }
7189   }
7190 
7191   if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
7192       E->getType().hasNonTrivialToPrimitiveCopyCUnion())
7193     checkNonTrivialCUnionInInitializer(E->getInitializer(),
7194                                        E->getInitializer()->getExprLoc());
7195 
7196   return MaybeBindToTemporary(E);
7197 }
7198 
7199 ExprResult
7200 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7201                     SourceLocation RBraceLoc) {
7202   // Only produce each kind of designated initialization diagnostic once.
7203   SourceLocation FirstDesignator;
7204   bool DiagnosedArrayDesignator = false;
7205   bool DiagnosedNestedDesignator = false;
7206   bool DiagnosedMixedDesignator = false;
7207 
7208   // Check that any designated initializers are syntactically valid in the
7209   // current language mode.
7210   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7211     if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
7212       if (FirstDesignator.isInvalid())
7213         FirstDesignator = DIE->getBeginLoc();
7214 
7215       if (!getLangOpts().CPlusPlus)
7216         break;
7217 
7218       if (!DiagnosedNestedDesignator && DIE->size() > 1) {
7219         DiagnosedNestedDesignator = true;
7220         Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
7221           << DIE->getDesignatorsSourceRange();
7222       }
7223 
7224       for (auto &Desig : DIE->designators()) {
7225         if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
7226           DiagnosedArrayDesignator = true;
7227           Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
7228             << Desig.getSourceRange();
7229         }
7230       }
7231 
7232       if (!DiagnosedMixedDesignator &&
7233           !isa<DesignatedInitExpr>(InitArgList[0])) {
7234         DiagnosedMixedDesignator = true;
7235         Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7236           << DIE->getSourceRange();
7237         Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
7238           << InitArgList[0]->getSourceRange();
7239       }
7240     } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
7241                isa<DesignatedInitExpr>(InitArgList[0])) {
7242       DiagnosedMixedDesignator = true;
7243       auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
7244       Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7245         << DIE->getSourceRange();
7246       Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
7247         << InitArgList[I]->getSourceRange();
7248     }
7249   }
7250 
7251   if (FirstDesignator.isValid()) {
7252     // Only diagnose designated initiaization as a C++20 extension if we didn't
7253     // already diagnose use of (non-C++20) C99 designator syntax.
7254     if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
7255         !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
7256       Diag(FirstDesignator, getLangOpts().CPlusPlus20
7257                                 ? diag::warn_cxx17_compat_designated_init
7258                                 : diag::ext_cxx_designated_init);
7259     } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
7260       Diag(FirstDesignator, diag::ext_designated_init);
7261     }
7262   }
7263 
7264   return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
7265 }
7266 
7267 ExprResult
7268 Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7269                     SourceLocation RBraceLoc) {
7270   // Semantic analysis for initializers is done by ActOnDeclarator() and
7271   // CheckInitializer() - it requires knowledge of the object being initialized.
7272 
7273   // Immediately handle non-overload placeholders.  Overloads can be
7274   // resolved contextually, but everything else here can't.
7275   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7276     if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
7277       ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
7278 
7279       // Ignore failures; dropping the entire initializer list because
7280       // of one failure would be terrible for indexing/etc.
7281       if (result.isInvalid()) continue;
7282 
7283       InitArgList[I] = result.get();
7284     }
7285   }
7286 
7287   InitListExpr *E =
7288       new (Context) InitListExpr(Context, LBraceLoc, InitArgList, RBraceLoc);
7289   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
7290   return E;
7291 }
7292 
7293 void Sema::maybeExtendBlockObject(ExprResult &E) {
7294   assert(E.get()->getType()->isBlockPointerType());
7295   assert(E.get()->isPRValue());
7296 
7297   // Only do this in an r-value context.
7298   if (!getLangOpts().ObjCAutoRefCount) return;
7299 
7300   E = ImplicitCastExpr::Create(
7301       Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(),
7302       /*base path*/ nullptr, VK_PRValue, FPOptionsOverride());
7303   Cleanup.setExprNeedsCleanups(true);
7304 }
7305 
7306 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
7307   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
7308   // Also, callers should have filtered out the invalid cases with
7309   // pointers.  Everything else should be possible.
7310 
7311   QualType SrcTy = Src.get()->getType();
7312   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
7313     return CK_NoOp;
7314 
7315   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
7316   case Type::STK_MemberPointer:
7317     llvm_unreachable("member pointer type in C");
7318 
7319   case Type::STK_CPointer:
7320   case Type::STK_BlockPointer:
7321   case Type::STK_ObjCObjectPointer:
7322     switch (DestTy->getScalarTypeKind()) {
7323     case Type::STK_CPointer: {
7324       LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
7325       LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
7326       if (SrcAS != DestAS)
7327         return CK_AddressSpaceConversion;
7328       if (Context.hasCvrSimilarType(SrcTy, DestTy))
7329         return CK_NoOp;
7330       return CK_BitCast;
7331     }
7332     case Type::STK_BlockPointer:
7333       return (SrcKind == Type::STK_BlockPointer
7334                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
7335     case Type::STK_ObjCObjectPointer:
7336       if (SrcKind == Type::STK_ObjCObjectPointer)
7337         return CK_BitCast;
7338       if (SrcKind == Type::STK_CPointer)
7339         return CK_CPointerToObjCPointerCast;
7340       maybeExtendBlockObject(Src);
7341       return CK_BlockPointerToObjCPointerCast;
7342     case Type::STK_Bool:
7343       return CK_PointerToBoolean;
7344     case Type::STK_Integral:
7345       return CK_PointerToIntegral;
7346     case Type::STK_Floating:
7347     case Type::STK_FloatingComplex:
7348     case Type::STK_IntegralComplex:
7349     case Type::STK_MemberPointer:
7350     case Type::STK_FixedPoint:
7351       llvm_unreachable("illegal cast from pointer");
7352     }
7353     llvm_unreachable("Should have returned before this");
7354 
7355   case Type::STK_FixedPoint:
7356     switch (DestTy->getScalarTypeKind()) {
7357     case Type::STK_FixedPoint:
7358       return CK_FixedPointCast;
7359     case Type::STK_Bool:
7360       return CK_FixedPointToBoolean;
7361     case Type::STK_Integral:
7362       return CK_FixedPointToIntegral;
7363     case Type::STK_Floating:
7364       return CK_FixedPointToFloating;
7365     case Type::STK_IntegralComplex:
7366     case Type::STK_FloatingComplex:
7367       Diag(Src.get()->getExprLoc(),
7368            diag::err_unimplemented_conversion_with_fixed_point_type)
7369           << DestTy;
7370       return CK_IntegralCast;
7371     case Type::STK_CPointer:
7372     case Type::STK_ObjCObjectPointer:
7373     case Type::STK_BlockPointer:
7374     case Type::STK_MemberPointer:
7375       llvm_unreachable("illegal cast to pointer type");
7376     }
7377     llvm_unreachable("Should have returned before this");
7378 
7379   case Type::STK_Bool: // casting from bool is like casting from an integer
7380   case Type::STK_Integral:
7381     switch (DestTy->getScalarTypeKind()) {
7382     case Type::STK_CPointer:
7383     case Type::STK_ObjCObjectPointer:
7384     case Type::STK_BlockPointer:
7385       if (Src.get()->isNullPointerConstant(Context,
7386                                            Expr::NPC_ValueDependentIsNull))
7387         return CK_NullToPointer;
7388       return CK_IntegralToPointer;
7389     case Type::STK_Bool:
7390       return CK_IntegralToBoolean;
7391     case Type::STK_Integral:
7392       return CK_IntegralCast;
7393     case Type::STK_Floating:
7394       return CK_IntegralToFloating;
7395     case Type::STK_IntegralComplex:
7396       Src = ImpCastExprToType(Src.get(),
7397                       DestTy->castAs<ComplexType>()->getElementType(),
7398                       CK_IntegralCast);
7399       return CK_IntegralRealToComplex;
7400     case Type::STK_FloatingComplex:
7401       Src = ImpCastExprToType(Src.get(),
7402                       DestTy->castAs<ComplexType>()->getElementType(),
7403                       CK_IntegralToFloating);
7404       return CK_FloatingRealToComplex;
7405     case Type::STK_MemberPointer:
7406       llvm_unreachable("member pointer type in C");
7407     case Type::STK_FixedPoint:
7408       return CK_IntegralToFixedPoint;
7409     }
7410     llvm_unreachable("Should have returned before this");
7411 
7412   case Type::STK_Floating:
7413     switch (DestTy->getScalarTypeKind()) {
7414     case Type::STK_Floating:
7415       return CK_FloatingCast;
7416     case Type::STK_Bool:
7417       return CK_FloatingToBoolean;
7418     case Type::STK_Integral:
7419       return CK_FloatingToIntegral;
7420     case Type::STK_FloatingComplex:
7421       Src = ImpCastExprToType(Src.get(),
7422                               DestTy->castAs<ComplexType>()->getElementType(),
7423                               CK_FloatingCast);
7424       return CK_FloatingRealToComplex;
7425     case Type::STK_IntegralComplex:
7426       Src = ImpCastExprToType(Src.get(),
7427                               DestTy->castAs<ComplexType>()->getElementType(),
7428                               CK_FloatingToIntegral);
7429       return CK_IntegralRealToComplex;
7430     case Type::STK_CPointer:
7431     case Type::STK_ObjCObjectPointer:
7432     case Type::STK_BlockPointer:
7433       llvm_unreachable("valid float->pointer cast?");
7434     case Type::STK_MemberPointer:
7435       llvm_unreachable("member pointer type in C");
7436     case Type::STK_FixedPoint:
7437       return CK_FloatingToFixedPoint;
7438     }
7439     llvm_unreachable("Should have returned before this");
7440 
7441   case Type::STK_FloatingComplex:
7442     switch (DestTy->getScalarTypeKind()) {
7443     case Type::STK_FloatingComplex:
7444       return CK_FloatingComplexCast;
7445     case Type::STK_IntegralComplex:
7446       return CK_FloatingComplexToIntegralComplex;
7447     case Type::STK_Floating: {
7448       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7449       if (Context.hasSameType(ET, DestTy))
7450         return CK_FloatingComplexToReal;
7451       Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
7452       return CK_FloatingCast;
7453     }
7454     case Type::STK_Bool:
7455       return CK_FloatingComplexToBoolean;
7456     case Type::STK_Integral:
7457       Src = ImpCastExprToType(Src.get(),
7458                               SrcTy->castAs<ComplexType>()->getElementType(),
7459                               CK_FloatingComplexToReal);
7460       return CK_FloatingToIntegral;
7461     case Type::STK_CPointer:
7462     case Type::STK_ObjCObjectPointer:
7463     case Type::STK_BlockPointer:
7464       llvm_unreachable("valid complex float->pointer cast?");
7465     case Type::STK_MemberPointer:
7466       llvm_unreachable("member pointer type in C");
7467     case Type::STK_FixedPoint:
7468       Diag(Src.get()->getExprLoc(),
7469            diag::err_unimplemented_conversion_with_fixed_point_type)
7470           << SrcTy;
7471       return CK_IntegralCast;
7472     }
7473     llvm_unreachable("Should have returned before this");
7474 
7475   case Type::STK_IntegralComplex:
7476     switch (DestTy->getScalarTypeKind()) {
7477     case Type::STK_FloatingComplex:
7478       return CK_IntegralComplexToFloatingComplex;
7479     case Type::STK_IntegralComplex:
7480       return CK_IntegralComplexCast;
7481     case Type::STK_Integral: {
7482       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7483       if (Context.hasSameType(ET, DestTy))
7484         return CK_IntegralComplexToReal;
7485       Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
7486       return CK_IntegralCast;
7487     }
7488     case Type::STK_Bool:
7489       return CK_IntegralComplexToBoolean;
7490     case Type::STK_Floating:
7491       Src = ImpCastExprToType(Src.get(),
7492                               SrcTy->castAs<ComplexType>()->getElementType(),
7493                               CK_IntegralComplexToReal);
7494       return CK_IntegralToFloating;
7495     case Type::STK_CPointer:
7496     case Type::STK_ObjCObjectPointer:
7497     case Type::STK_BlockPointer:
7498       llvm_unreachable("valid complex int->pointer cast?");
7499     case Type::STK_MemberPointer:
7500       llvm_unreachable("member pointer type in C");
7501     case Type::STK_FixedPoint:
7502       Diag(Src.get()->getExprLoc(),
7503            diag::err_unimplemented_conversion_with_fixed_point_type)
7504           << SrcTy;
7505       return CK_IntegralCast;
7506     }
7507     llvm_unreachable("Should have returned before this");
7508   }
7509 
7510   llvm_unreachable("Unhandled scalar cast");
7511 }
7512 
7513 static bool breakDownVectorType(QualType type, uint64_t &len,
7514                                 QualType &eltType) {
7515   // Vectors are simple.
7516   if (const VectorType *vecType = type->getAs<VectorType>()) {
7517     len = vecType->getNumElements();
7518     eltType = vecType->getElementType();
7519     assert(eltType->isScalarType() || eltType->isMFloat8Type());
7520     return true;
7521   }
7522 
7523   // We allow lax conversion to and from non-vector types, but only if
7524   // they're real types (i.e. non-complex, non-pointer scalar types).
7525   if (!type->isRealType()) return false;
7526 
7527   len = 1;
7528   eltType = type;
7529   return true;
7530 }
7531 
7532 bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) {
7533   assert(srcTy->isVectorType() || destTy->isVectorType());
7534 
7535   auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
7536     if (!FirstType->isSVESizelessBuiltinType())
7537       return false;
7538 
7539     const auto *VecTy = SecondType->getAs<VectorType>();
7540     return VecTy && VecTy->getVectorKind() == VectorKind::SveFixedLengthData;
7541   };
7542 
7543   return ValidScalableConversion(srcTy, destTy) ||
7544          ValidScalableConversion(destTy, srcTy);
7545 }
7546 
7547 bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) {
7548   if (!destTy->isMatrixType() || !srcTy->isMatrixType())
7549     return false;
7550 
7551   const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>();
7552   const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>();
7553 
7554   return matSrcType->getNumRows() == matDestType->getNumRows() &&
7555          matSrcType->getNumColumns() == matDestType->getNumColumns();
7556 }
7557 
7558 bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) {
7559   assert(DestTy->isVectorType() || SrcTy->isVectorType());
7560 
7561   uint64_t SrcLen, DestLen;
7562   QualType SrcEltTy, DestEltTy;
7563   if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy))
7564     return false;
7565   if (!breakDownVectorType(DestTy, DestLen, DestEltTy))
7566     return false;
7567 
7568   // ASTContext::getTypeSize will return the size rounded up to a
7569   // power of 2, so instead of using that, we need to use the raw
7570   // element size multiplied by the element count.
7571   uint64_t SrcEltSize = Context.getTypeSize(SrcEltTy);
7572   uint64_t DestEltSize = Context.getTypeSize(DestEltTy);
7573 
7574   return (SrcLen * SrcEltSize == DestLen * DestEltSize);
7575 }
7576 
7577 bool Sema::anyAltivecTypes(QualType SrcTy, QualType DestTy) {
7578   assert((DestTy->isVectorType() || SrcTy->isVectorType()) &&
7579          "expected at least one type to be a vector here");
7580 
7581   bool IsSrcTyAltivec =
7582       SrcTy->isVectorType() && ((SrcTy->castAs<VectorType>()->getVectorKind() ==
7583                                  VectorKind::AltiVecVector) ||
7584                                 (SrcTy->castAs<VectorType>()->getVectorKind() ==
7585                                  VectorKind::AltiVecBool) ||
7586                                 (SrcTy->castAs<VectorType>()->getVectorKind() ==
7587                                  VectorKind::AltiVecPixel));
7588 
7589   bool IsDestTyAltivec = DestTy->isVectorType() &&
7590                          ((DestTy->castAs<VectorType>()->getVectorKind() ==
7591                            VectorKind::AltiVecVector) ||
7592                           (DestTy->castAs<VectorType>()->getVectorKind() ==
7593                            VectorKind::AltiVecBool) ||
7594                           (DestTy->castAs<VectorType>()->getVectorKind() ==
7595                            VectorKind::AltiVecPixel));
7596 
7597   return (IsSrcTyAltivec || IsDestTyAltivec);
7598 }
7599 
7600 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
7601   assert(destTy->isVectorType() || srcTy->isVectorType());
7602 
7603   // Disallow lax conversions between scalars and ExtVectors (these
7604   // conversions are allowed for other vector types because common headers
7605   // depend on them).  Most scalar OP ExtVector cases are handled by the
7606   // splat path anyway, which does what we want (convert, not bitcast).
7607   // What this rules out for ExtVectors is crazy things like char4*float.
7608   if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
7609   if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
7610 
7611   return areVectorTypesSameSize(srcTy, destTy);
7612 }
7613 
7614 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
7615   assert(destTy->isVectorType() || srcTy->isVectorType());
7616 
7617   switch (Context.getLangOpts().getLaxVectorConversions()) {
7618   case LangOptions::LaxVectorConversionKind::None:
7619     return false;
7620 
7621   case LangOptions::LaxVectorConversionKind::Integer:
7622     if (!srcTy->isIntegralOrEnumerationType()) {
7623       auto *Vec = srcTy->getAs<VectorType>();
7624       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7625         return false;
7626     }
7627     if (!destTy->isIntegralOrEnumerationType()) {
7628       auto *Vec = destTy->getAs<VectorType>();
7629       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7630         return false;
7631     }
7632     // OK, integer (vector) -> integer (vector) bitcast.
7633     break;
7634 
7635     case LangOptions::LaxVectorConversionKind::All:
7636     break;
7637   }
7638 
7639   return areLaxCompatibleVectorTypes(srcTy, destTy);
7640 }
7641 
7642 bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
7643                            CastKind &Kind) {
7644   if (SrcTy->isMatrixType() && DestTy->isMatrixType()) {
7645     if (!areMatrixTypesOfTheSameDimension(SrcTy, DestTy)) {
7646       return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes)
7647              << DestTy << SrcTy << R;
7648     }
7649   } else if (SrcTy->isMatrixType()) {
7650     return Diag(R.getBegin(),
7651                 diag::err_invalid_conversion_between_matrix_and_type)
7652            << SrcTy << DestTy << R;
7653   } else if (DestTy->isMatrixType()) {
7654     return Diag(R.getBegin(),
7655                 diag::err_invalid_conversion_between_matrix_and_type)
7656            << DestTy << SrcTy << R;
7657   }
7658 
7659   Kind = CK_MatrixCast;
7660   return false;
7661 }
7662 
7663 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
7664                            CastKind &Kind) {
7665   assert(VectorTy->isVectorType() && "Not a vector type!");
7666 
7667   if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
7668     if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
7669       return Diag(R.getBegin(),
7670                   Ty->isVectorType() ?
7671                   diag::err_invalid_conversion_between_vectors :
7672                   diag::err_invalid_conversion_between_vector_and_integer)
7673         << VectorTy << Ty << R;
7674   } else
7675     return Diag(R.getBegin(),
7676                 diag::err_invalid_conversion_between_vector_and_scalar)
7677       << VectorTy << Ty << R;
7678 
7679   Kind = CK_BitCast;
7680   return false;
7681 }
7682 
7683 ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
7684   QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
7685 
7686   if (DestElemTy == SplattedExpr->getType())
7687     return SplattedExpr;
7688 
7689   assert(DestElemTy->isFloatingType() ||
7690          DestElemTy->isIntegralOrEnumerationType());
7691 
7692   CastKind CK;
7693   if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
7694     // OpenCL requires that we convert `true` boolean expressions to -1, but
7695     // only when splatting vectors.
7696     if (DestElemTy->isFloatingType()) {
7697       // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
7698       // in two steps: boolean to signed integral, then to floating.
7699       ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
7700                                                  CK_BooleanToSignedIntegral);
7701       SplattedExpr = CastExprRes.get();
7702       CK = CK_IntegralToFloating;
7703     } else {
7704       CK = CK_BooleanToSignedIntegral;
7705     }
7706   } else {
7707     ExprResult CastExprRes = SplattedExpr;
7708     CK = PrepareScalarCast(CastExprRes, DestElemTy);
7709     if (CastExprRes.isInvalid())
7710       return ExprError();
7711     SplattedExpr = CastExprRes.get();
7712   }
7713   return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
7714 }
7715 
7716 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
7717                                     Expr *CastExpr, CastKind &Kind) {
7718   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
7719 
7720   QualType SrcTy = CastExpr->getType();
7721 
7722   // If SrcTy is a VectorType, the total size must match to explicitly cast to
7723   // an ExtVectorType.
7724   // In OpenCL, casts between vectors of different types are not allowed.
7725   // (See OpenCL 6.2).
7726   if (SrcTy->isVectorType()) {
7727     if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
7728         (getLangOpts().OpenCL &&
7729          !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
7730       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
7731         << DestTy << SrcTy << R;
7732       return ExprError();
7733     }
7734     Kind = CK_BitCast;
7735     return CastExpr;
7736   }
7737 
7738   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
7739   // conversion will take place first from scalar to elt type, and then
7740   // splat from elt type to vector.
7741   if (SrcTy->isPointerType())
7742     return Diag(R.getBegin(),
7743                 diag::err_invalid_conversion_between_vector_and_scalar)
7744       << DestTy << SrcTy << R;
7745 
7746   Kind = CK_VectorSplat;
7747   return prepareVectorSplat(DestTy, CastExpr);
7748 }
7749 
7750 ExprResult
7751 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
7752                     Declarator &D, ParsedType &Ty,
7753                     SourceLocation RParenLoc, Expr *CastExpr) {
7754   assert(!D.isInvalidType() && (CastExpr != nullptr) &&
7755          "ActOnCastExpr(): missing type or expr");
7756 
7757   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
7758   if (D.isInvalidType())
7759     return ExprError();
7760 
7761   if (getLangOpts().CPlusPlus) {
7762     // Check that there are no default arguments (C++ only).
7763     CheckExtraCXXDefaultArguments(D);
7764   } else {
7765     // Make sure any TypoExprs have been dealt with.
7766     ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
7767     if (!Res.isUsable())
7768       return ExprError();
7769     CastExpr = Res.get();
7770   }
7771 
7772   checkUnusedDeclAttributes(D);
7773 
7774   QualType castType = castTInfo->getType();
7775   Ty = CreateParsedType(castType, castTInfo);
7776 
7777   bool isVectorLiteral = false;
7778 
7779   // Check for an altivec or OpenCL literal,
7780   // i.e. all the elements are integer constants.
7781   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
7782   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
7783   if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
7784        && castType->isVectorType() && (PE || PLE)) {
7785     if (PLE && PLE->getNumExprs() == 0) {
7786       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
7787       return ExprError();
7788     }
7789     if (PE || PLE->getNumExprs() == 1) {
7790       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
7791       if (!E->isTypeDependent() && !E->getType()->isVectorType())
7792         isVectorLiteral = true;
7793     }
7794     else
7795       isVectorLiteral = true;
7796   }
7797 
7798   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
7799   // then handle it as such.
7800   if (isVectorLiteral)
7801     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
7802 
7803   // If the Expr being casted is a ParenListExpr, handle it specially.
7804   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
7805   // sequence of BinOp comma operators.
7806   if (isa<ParenListExpr>(CastExpr)) {
7807     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
7808     if (Result.isInvalid()) return ExprError();
7809     CastExpr = Result.get();
7810   }
7811 
7812   if (getLangOpts().CPlusPlus && !castType->isVoidType())
7813     Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
7814 
7815   ObjC().CheckTollFreeBridgeCast(castType, CastExpr);
7816 
7817   ObjC().CheckObjCBridgeRelatedCast(castType, CastExpr);
7818 
7819   DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
7820 
7821   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
7822 }
7823 
7824 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
7825                                     SourceLocation RParenLoc, Expr *E,
7826                                     TypeSourceInfo *TInfo) {
7827   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
7828          "Expected paren or paren list expression");
7829 
7830   Expr **exprs;
7831   unsigned numExprs;
7832   Expr *subExpr;
7833   SourceLocation LiteralLParenLoc, LiteralRParenLoc;
7834   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
7835     LiteralLParenLoc = PE->getLParenLoc();
7836     LiteralRParenLoc = PE->getRParenLoc();
7837     exprs = PE->getExprs();
7838     numExprs = PE->getNumExprs();
7839   } else { // isa<ParenExpr> by assertion at function entrance
7840     LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
7841     LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
7842     subExpr = cast<ParenExpr>(E)->getSubExpr();
7843     exprs = &subExpr;
7844     numExprs = 1;
7845   }
7846 
7847   QualType Ty = TInfo->getType();
7848   assert(Ty->isVectorType() && "Expected vector type");
7849 
7850   SmallVector<Expr *, 8> initExprs;
7851   const VectorType *VTy = Ty->castAs<VectorType>();
7852   unsigned numElems = VTy->getNumElements();
7853 
7854   // '(...)' form of vector initialization in AltiVec: the number of
7855   // initializers must be one or must match the size of the vector.
7856   // If a single value is specified in the initializer then it will be
7857   // replicated to all the components of the vector
7858   if (CheckAltivecInitFromScalar(E->getSourceRange(), Ty,
7859                                  VTy->getElementType()))
7860     return ExprError();
7861   if (ShouldSplatAltivecScalarInCast(VTy)) {
7862     // The number of initializers must be one or must match the size of the
7863     // vector. If a single value is specified in the initializer then it will
7864     // be replicated to all the components of the vector
7865     if (numExprs == 1) {
7866       QualType ElemTy = VTy->getElementType();
7867       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
7868       if (Literal.isInvalid())
7869         return ExprError();
7870       Literal = ImpCastExprToType(Literal.get(), ElemTy,
7871                                   PrepareScalarCast(Literal, ElemTy));
7872       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
7873     }
7874     else if (numExprs < numElems) {
7875       Diag(E->getExprLoc(),
7876            diag::err_incorrect_number_of_vector_initializers);
7877       return ExprError();
7878     }
7879     else
7880       initExprs.append(exprs, exprs + numExprs);
7881   }
7882   else {
7883     // For OpenCL, when the number of initializers is a single value,
7884     // it will be replicated to all components of the vector.
7885     if (getLangOpts().OpenCL && VTy->getVectorKind() == VectorKind::Generic &&
7886         numExprs == 1) {
7887       QualType ElemTy = VTy->getElementType();
7888       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
7889       if (Literal.isInvalid())
7890         return ExprError();
7891       Literal = ImpCastExprToType(Literal.get(), ElemTy,
7892                                   PrepareScalarCast(Literal, ElemTy));
7893       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
7894     }
7895 
7896     initExprs.append(exprs, exprs + numExprs);
7897   }
7898   // FIXME: This means that pretty-printing the final AST will produce curly
7899   // braces instead of the original commas.
7900   InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
7901                                                    initExprs, LiteralRParenLoc);
7902   initE->setType(Ty);
7903   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
7904 }
7905 
7906 ExprResult
7907 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
7908   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
7909   if (!E)
7910     return OrigExpr;
7911 
7912   ExprResult Result(E->getExpr(0));
7913 
7914   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
7915     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
7916                         E->getExpr(i));
7917 
7918   if (Result.isInvalid()) return ExprError();
7919 
7920   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
7921 }
7922 
7923 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
7924                                     SourceLocation R,
7925                                     MultiExprArg Val) {
7926   return ParenListExpr::Create(Context, L, Val, R);
7927 }
7928 
7929 bool Sema::DiagnoseConditionalForNull(const Expr *LHSExpr, const Expr *RHSExpr,
7930                                       SourceLocation QuestionLoc) {
7931   const Expr *NullExpr = LHSExpr;
7932   const Expr *NonPointerExpr = RHSExpr;
7933   Expr::NullPointerConstantKind NullKind =
7934       NullExpr->isNullPointerConstant(Context,
7935                                       Expr::NPC_ValueDependentIsNotNull);
7936 
7937   if (NullKind == Expr::NPCK_NotNull) {
7938     NullExpr = RHSExpr;
7939     NonPointerExpr = LHSExpr;
7940     NullKind =
7941         NullExpr->isNullPointerConstant(Context,
7942                                         Expr::NPC_ValueDependentIsNotNull);
7943   }
7944 
7945   if (NullKind == Expr::NPCK_NotNull)
7946     return false;
7947 
7948   if (NullKind == Expr::NPCK_ZeroExpression)
7949     return false;
7950 
7951   if (NullKind == Expr::NPCK_ZeroLiteral) {
7952     // In this case, check to make sure that we got here from a "NULL"
7953     // string in the source code.
7954     NullExpr = NullExpr->IgnoreParenImpCasts();
7955     SourceLocation loc = NullExpr->getExprLoc();
7956     if (!findMacroSpelling(loc, "NULL"))
7957       return false;
7958   }
7959 
7960   int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
7961   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
7962       << NonPointerExpr->getType() << DiagType
7963       << NonPointerExpr->getSourceRange();
7964   return true;
7965 }
7966 
7967 /// Return false if the condition expression is valid, true otherwise.
7968 static bool checkCondition(Sema &S, const Expr *Cond,
7969                            SourceLocation QuestionLoc) {
7970   QualType CondTy = Cond->getType();
7971 
7972   // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
7973   if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
7974     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
7975       << CondTy << Cond->getSourceRange();
7976     return true;
7977   }
7978 
7979   // C99 6.5.15p2
7980   if (CondTy->isScalarType()) return false;
7981 
7982   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
7983     << CondTy << Cond->getSourceRange();
7984   return true;
7985 }
7986 
7987 /// Return false if the NullExpr can be promoted to PointerTy,
7988 /// true otherwise.
7989 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
7990                                         QualType PointerTy) {
7991   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
7992       !NullExpr.get()->isNullPointerConstant(S.Context,
7993                                             Expr::NPC_ValueDependentIsNull))
7994     return true;
7995 
7996   NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
7997   return false;
7998 }
7999 
8000 /// Checks compatibility between two pointers and return the resulting
8001 /// type.
8002 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
8003                                                      ExprResult &RHS,
8004                                                      SourceLocation Loc) {
8005   QualType LHSTy = LHS.get()->getType();
8006   QualType RHSTy = RHS.get()->getType();
8007 
8008   if (S.Context.hasSameType(LHSTy, RHSTy)) {
8009     // Two identical pointers types are always compatible.
8010     return S.Context.getCommonSugaredType(LHSTy, RHSTy);
8011   }
8012 
8013   QualType lhptee, rhptee;
8014 
8015   // Get the pointee types.
8016   bool IsBlockPointer = false;
8017   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
8018     lhptee = LHSBTy->getPointeeType();
8019     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
8020     IsBlockPointer = true;
8021   } else {
8022     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8023     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8024   }
8025 
8026   // C99 6.5.15p6: If both operands are pointers to compatible types or to
8027   // differently qualified versions of compatible types, the result type is
8028   // a pointer to an appropriately qualified version of the composite
8029   // type.
8030 
8031   // Only CVR-qualifiers exist in the standard, and the differently-qualified
8032   // clause doesn't make sense for our extensions. E.g. address space 2 should
8033   // be incompatible with address space 3: they may live on different devices or
8034   // anything.
8035   Qualifiers lhQual = lhptee.getQualifiers();
8036   Qualifiers rhQual = rhptee.getQualifiers();
8037 
8038   LangAS ResultAddrSpace = LangAS::Default;
8039   LangAS LAddrSpace = lhQual.getAddressSpace();
8040   LangAS RAddrSpace = rhQual.getAddressSpace();
8041 
8042   // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
8043   // spaces is disallowed.
8044   if (lhQual.isAddressSpaceSupersetOf(rhQual, S.getASTContext()))
8045     ResultAddrSpace = LAddrSpace;
8046   else if (rhQual.isAddressSpaceSupersetOf(lhQual, S.getASTContext()))
8047     ResultAddrSpace = RAddrSpace;
8048   else {
8049     S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
8050         << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
8051         << RHS.get()->getSourceRange();
8052     return QualType();
8053   }
8054 
8055   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
8056   auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
8057   lhQual.removeCVRQualifiers();
8058   rhQual.removeCVRQualifiers();
8059 
8060   // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
8061   // (C99 6.7.3) for address spaces. We assume that the check should behave in
8062   // the same manner as it's defined for CVR qualifiers, so for OpenCL two
8063   // qual types are compatible iff
8064   //  * corresponded types are compatible
8065   //  * CVR qualifiers are equal
8066   //  * address spaces are equal
8067   // Thus for conditional operator we merge CVR and address space unqualified
8068   // pointees and if there is a composite type we return a pointer to it with
8069   // merged qualifiers.
8070   LHSCastKind =
8071       LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8072   RHSCastKind =
8073       RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8074   lhQual.removeAddressSpace();
8075   rhQual.removeAddressSpace();
8076 
8077   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
8078   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
8079 
8080   QualType CompositeTy = S.Context.mergeTypes(
8081       lhptee, rhptee, /*OfBlockPointer=*/false, /*Unqualified=*/false,
8082       /*BlockReturnType=*/false, /*IsConditionalOperator=*/true);
8083 
8084   if (CompositeTy.isNull()) {
8085     // In this situation, we assume void* type. No especially good
8086     // reason, but this is what gcc does, and we do have to pick
8087     // to get a consistent AST.
8088     QualType incompatTy;
8089     incompatTy = S.Context.getPointerType(
8090         S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
8091     LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
8092     RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
8093 
8094     // FIXME: For OpenCL the warning emission and cast to void* leaves a room
8095     // for casts between types with incompatible address space qualifiers.
8096     // For the following code the compiler produces casts between global and
8097     // local address spaces of the corresponded innermost pointees:
8098     // local int *global *a;
8099     // global int *global *b;
8100     // a = (0 ? a : b); // see C99 6.5.16.1.p1.
8101     S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
8102         << LHSTy << RHSTy << LHS.get()->getSourceRange()
8103         << RHS.get()->getSourceRange();
8104 
8105     return incompatTy;
8106   }
8107 
8108   // The pointer types are compatible.
8109   // In case of OpenCL ResultTy should have the address space qualifier
8110   // which is a superset of address spaces of both the 2nd and the 3rd
8111   // operands of the conditional operator.
8112   QualType ResultTy = [&, ResultAddrSpace]() {
8113     if (S.getLangOpts().OpenCL) {
8114       Qualifiers CompositeQuals = CompositeTy.getQualifiers();
8115       CompositeQuals.setAddressSpace(ResultAddrSpace);
8116       return S.Context
8117           .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
8118           .withCVRQualifiers(MergedCVRQual);
8119     }
8120     return CompositeTy.withCVRQualifiers(MergedCVRQual);
8121   }();
8122   if (IsBlockPointer)
8123     ResultTy = S.Context.getBlockPointerType(ResultTy);
8124   else
8125     ResultTy = S.Context.getPointerType(ResultTy);
8126 
8127   LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
8128   RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
8129   return ResultTy;
8130 }
8131 
8132 /// Return the resulting type when the operands are both block pointers.
8133 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
8134                                                           ExprResult &LHS,
8135                                                           ExprResult &RHS,
8136                                                           SourceLocation Loc) {
8137   QualType LHSTy = LHS.get()->getType();
8138   QualType RHSTy = RHS.get()->getType();
8139 
8140   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
8141     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
8142       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
8143       LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8144       RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8145       return destType;
8146     }
8147     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
8148       << LHSTy << RHSTy << LHS.get()->getSourceRange()
8149       << RHS.get()->getSourceRange();
8150     return QualType();
8151   }
8152 
8153   // We have 2 block pointer types.
8154   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8155 }
8156 
8157 /// Return the resulting type when the operands are both pointers.
8158 static QualType
8159 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
8160                                             ExprResult &RHS,
8161                                             SourceLocation Loc) {
8162   // get the pointer types
8163   QualType LHSTy = LHS.get()->getType();
8164   QualType RHSTy = RHS.get()->getType();
8165 
8166   // get the "pointed to" types
8167   QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8168   QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8169 
8170   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
8171   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
8172     // Figure out necessary qualifiers (C99 6.5.15p6)
8173     QualType destPointee
8174       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8175     QualType destType = S.Context.getPointerType(destPointee);
8176     // Add qualifiers if necessary.
8177     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8178     // Promote to void*.
8179     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8180     return destType;
8181   }
8182   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
8183     QualType destPointee
8184       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8185     QualType destType = S.Context.getPointerType(destPointee);
8186     // Add qualifiers if necessary.
8187     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8188     // Promote to void*.
8189     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8190     return destType;
8191   }
8192 
8193   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8194 }
8195 
8196 /// Return false if the first expression is not an integer and the second
8197 /// expression is not a pointer, true otherwise.
8198 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
8199                                         Expr* PointerExpr, SourceLocation Loc,
8200                                         bool IsIntFirstExpr) {
8201   if (!PointerExpr->getType()->isPointerType() ||
8202       !Int.get()->getType()->isIntegerType())
8203     return false;
8204 
8205   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
8206   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
8207 
8208   S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
8209     << Expr1->getType() << Expr2->getType()
8210     << Expr1->getSourceRange() << Expr2->getSourceRange();
8211   Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
8212                             CK_IntegralToPointer);
8213   return true;
8214 }
8215 
8216 /// Simple conversion between integer and floating point types.
8217 ///
8218 /// Used when handling the OpenCL conditional operator where the
8219 /// condition is a vector while the other operands are scalar.
8220 ///
8221 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
8222 /// types are either integer or floating type. Between the two
8223 /// operands, the type with the higher rank is defined as the "result
8224 /// type". The other operand needs to be promoted to the same type. No
8225 /// other type promotion is allowed. We cannot use
8226 /// UsualArithmeticConversions() for this purpose, since it always
8227 /// promotes promotable types.
8228 static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
8229                                             ExprResult &RHS,
8230                                             SourceLocation QuestionLoc) {
8231   LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
8232   if (LHS.isInvalid())
8233     return QualType();
8234   RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
8235   if (RHS.isInvalid())
8236     return QualType();
8237 
8238   // For conversion purposes, we ignore any qualifiers.
8239   // For example, "const float" and "float" are equivalent.
8240   QualType LHSType =
8241     S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
8242   QualType RHSType =
8243     S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
8244 
8245   if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
8246     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8247       << LHSType << LHS.get()->getSourceRange();
8248     return QualType();
8249   }
8250 
8251   if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
8252     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8253       << RHSType << RHS.get()->getSourceRange();
8254     return QualType();
8255   }
8256 
8257   // If both types are identical, no conversion is needed.
8258   if (LHSType == RHSType)
8259     return LHSType;
8260 
8261   // Now handle "real" floating types (i.e. float, double, long double).
8262   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
8263     return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
8264                                  /*IsCompAssign = */ false);
8265 
8266   // Finally, we have two differing integer types.
8267   return handleIntegerConversion<doIntegralCast, doIntegralCast>
8268   (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
8269 }
8270 
8271 /// Convert scalar operands to a vector that matches the
8272 ///        condition in length.
8273 ///
8274 /// Used when handling the OpenCL conditional operator where the
8275 /// condition is a vector while the other operands are scalar.
8276 ///
8277 /// We first compute the "result type" for the scalar operands
8278 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
8279 /// into a vector of that type where the length matches the condition
8280 /// vector type. s6.11.6 requires that the element types of the result
8281 /// and the condition must have the same number of bits.
8282 static QualType
8283 OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
8284                               QualType CondTy, SourceLocation QuestionLoc) {
8285   QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
8286   if (ResTy.isNull()) return QualType();
8287 
8288   const VectorType *CV = CondTy->getAs<VectorType>();
8289   assert(CV);
8290 
8291   // Determine the vector result type
8292   unsigned NumElements = CV->getNumElements();
8293   QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
8294 
8295   // Ensure that all types have the same number of bits
8296   if (S.Context.getTypeSize(CV->getElementType())
8297       != S.Context.getTypeSize(ResTy)) {
8298     // Since VectorTy is created internally, it does not pretty print
8299     // with an OpenCL name. Instead, we just print a description.
8300     std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
8301     SmallString<64> Str;
8302     llvm::raw_svector_ostream OS(Str);
8303     OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
8304     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8305       << CondTy << OS.str();
8306     return QualType();
8307   }
8308 
8309   // Convert operands to the vector result type
8310   LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
8311   RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
8312 
8313   return VectorTy;
8314 }
8315 
8316 /// Return false if this is a valid OpenCL condition vector
8317 static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
8318                                        SourceLocation QuestionLoc) {
8319   // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
8320   // integral type.
8321   const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
8322   assert(CondTy);
8323   QualType EleTy = CondTy->getElementType();
8324   if (EleTy->isIntegerType()) return false;
8325 
8326   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8327     << Cond->getType() << Cond->getSourceRange();
8328   return true;
8329 }
8330 
8331 /// Return false if the vector condition type and the vector
8332 ///        result type are compatible.
8333 ///
8334 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
8335 /// number of elements, and their element types have the same number
8336 /// of bits.
8337 static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
8338                               SourceLocation QuestionLoc) {
8339   const VectorType *CV = CondTy->getAs<VectorType>();
8340   const VectorType *RV = VecResTy->getAs<VectorType>();
8341   assert(CV && RV);
8342 
8343   if (CV->getNumElements() != RV->getNumElements()) {
8344     S.Diag(QuestionLoc, diag::err_conditional_vector_size)
8345       << CondTy << VecResTy;
8346     return true;
8347   }
8348 
8349   QualType CVE = CV->getElementType();
8350   QualType RVE = RV->getElementType();
8351 
8352   if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
8353     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8354       << CondTy << VecResTy;
8355     return true;
8356   }
8357 
8358   return false;
8359 }
8360 
8361 /// Return the resulting type for the conditional operator in
8362 ///        OpenCL (aka "ternary selection operator", OpenCL v1.1
8363 ///        s6.3.i) when the condition is a vector type.
8364 static QualType
8365 OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
8366                              ExprResult &LHS, ExprResult &RHS,
8367                              SourceLocation QuestionLoc) {
8368   Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
8369   if (Cond.isInvalid())
8370     return QualType();
8371   QualType CondTy = Cond.get()->getType();
8372 
8373   if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
8374     return QualType();
8375 
8376   // If either operand is a vector then find the vector type of the
8377   // result as specified in OpenCL v1.1 s6.3.i.
8378   if (LHS.get()->getType()->isVectorType() ||
8379       RHS.get()->getType()->isVectorType()) {
8380     bool IsBoolVecLang =
8381         !S.getLangOpts().OpenCL && !S.getLangOpts().OpenCLCPlusPlus;
8382     QualType VecResTy =
8383         S.CheckVectorOperands(LHS, RHS, QuestionLoc,
8384                               /*isCompAssign*/ false,
8385                               /*AllowBothBool*/ true,
8386                               /*AllowBoolConversions*/ false,
8387                               /*AllowBooleanOperation*/ IsBoolVecLang,
8388                               /*ReportInvalid*/ true);
8389     if (VecResTy.isNull())
8390       return QualType();
8391     // The result type must match the condition type as specified in
8392     // OpenCL v1.1 s6.11.6.
8393     if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
8394       return QualType();
8395     return VecResTy;
8396   }
8397 
8398   // Both operands are scalar.
8399   return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
8400 }
8401 
8402 /// Return true if the Expr is block type
8403 static bool checkBlockType(Sema &S, const Expr *E) {
8404   if (E->getType()->isBlockPointerType()) {
8405     S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
8406     return true;
8407   }
8408 
8409   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
8410     QualType Ty = CE->getCallee()->getType();
8411     if (Ty->isBlockPointerType()) {
8412       S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
8413       return true;
8414     }
8415   }
8416   return false;
8417 }
8418 
8419 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
8420 /// In that case, LHS = cond.
8421 /// C99 6.5.15
8422 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
8423                                         ExprResult &RHS, ExprValueKind &VK,
8424                                         ExprObjectKind &OK,
8425                                         SourceLocation QuestionLoc) {
8426 
8427   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
8428   if (!LHSResult.isUsable()) return QualType();
8429   LHS = LHSResult;
8430 
8431   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
8432   if (!RHSResult.isUsable()) return QualType();
8433   RHS = RHSResult;
8434 
8435   // C++ is sufficiently different to merit its own checker.
8436   if (getLangOpts().CPlusPlus)
8437     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
8438 
8439   VK = VK_PRValue;
8440   OK = OK_Ordinary;
8441 
8442   if (Context.isDependenceAllowed() &&
8443       (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() ||
8444        RHS.get()->isTypeDependent())) {
8445     assert(!getLangOpts().CPlusPlus);
8446     assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||
8447             RHS.get()->containsErrors()) &&
8448            "should only occur in error-recovery path.");
8449     return Context.DependentTy;
8450   }
8451 
8452   // The OpenCL operator with a vector condition is sufficiently
8453   // different to merit its own checker.
8454   if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
8455       Cond.get()->getType()->isExtVectorType())
8456     return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
8457 
8458   // First, check the condition.
8459   Cond = UsualUnaryConversions(Cond.get());
8460   if (Cond.isInvalid())
8461     return QualType();
8462   if (checkCondition(*this, Cond.get(), QuestionLoc))
8463     return QualType();
8464 
8465   // Handle vectors.
8466   if (LHS.get()->getType()->isVectorType() ||
8467       RHS.get()->getType()->isVectorType())
8468     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
8469                                /*AllowBothBool*/ true,
8470                                /*AllowBoolConversions*/ false,
8471                                /*AllowBooleanOperation*/ false,
8472                                /*ReportInvalid*/ true);
8473 
8474   QualType ResTy =
8475       UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
8476   if (LHS.isInvalid() || RHS.isInvalid())
8477     return QualType();
8478 
8479   // WebAssembly tables are not allowed as conditional LHS or RHS.
8480   QualType LHSTy = LHS.get()->getType();
8481   QualType RHSTy = RHS.get()->getType();
8482   if (LHSTy->isWebAssemblyTableType() || RHSTy->isWebAssemblyTableType()) {
8483     Diag(QuestionLoc, diag::err_wasm_table_conditional_expression)
8484         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8485     return QualType();
8486   }
8487 
8488   // Diagnose attempts to convert between __ibm128, __float128 and long double
8489   // where such conversions currently can't be handled.
8490   if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
8491     Diag(QuestionLoc,
8492          diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
8493       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8494     return QualType();
8495   }
8496 
8497   // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
8498   // selection operator (?:).
8499   if (getLangOpts().OpenCL &&
8500       ((int)checkBlockType(*this, LHS.get()) | (int)checkBlockType(*this, RHS.get()))) {
8501     return QualType();
8502   }
8503 
8504   // If both operands have arithmetic type, do the usual arithmetic conversions
8505   // to find a common type: C99 6.5.15p3,5.
8506   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
8507     // Disallow invalid arithmetic conversions, such as those between bit-
8508     // precise integers types of different sizes, or between a bit-precise
8509     // integer and another type.
8510     if (ResTy.isNull() && (LHSTy->isBitIntType() || RHSTy->isBitIntType())) {
8511       Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8512           << LHSTy << RHSTy << LHS.get()->getSourceRange()
8513           << RHS.get()->getSourceRange();
8514       return QualType();
8515     }
8516 
8517     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
8518     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
8519 
8520     return ResTy;
8521   }
8522 
8523   // If both operands are the same structure or union type, the result is that
8524   // type.
8525   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
8526     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
8527       if (LHSRT->getDecl() == RHSRT->getDecl())
8528         // "If both the operands have structure or union type, the result has
8529         // that type."  This implies that CV qualifiers are dropped.
8530         return Context.getCommonSugaredType(LHSTy.getUnqualifiedType(),
8531                                             RHSTy.getUnqualifiedType());
8532     // FIXME: Type of conditional expression must be complete in C mode.
8533   }
8534 
8535   // C99 6.5.15p5: "If both operands have void type, the result has void type."
8536   // The following || allows only one side to be void (a GCC-ism).
8537   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
8538     QualType ResTy;
8539     if (LHSTy->isVoidType() && RHSTy->isVoidType()) {
8540       ResTy = Context.getCommonSugaredType(LHSTy, RHSTy);
8541     } else if (RHSTy->isVoidType()) {
8542       ResTy = RHSTy;
8543       Diag(RHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
8544           << RHS.get()->getSourceRange();
8545     } else {
8546       ResTy = LHSTy;
8547       Diag(LHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
8548           << LHS.get()->getSourceRange();
8549     }
8550     LHS = ImpCastExprToType(LHS.get(), ResTy, CK_ToVoid);
8551     RHS = ImpCastExprToType(RHS.get(), ResTy, CK_ToVoid);
8552     return ResTy;
8553   }
8554 
8555   // C23 6.5.15p7:
8556   //   ... if both the second and third operands have nullptr_t type, the
8557   //   result also has that type.
8558   if (LHSTy->isNullPtrType() && Context.hasSameType(LHSTy, RHSTy))
8559     return ResTy;
8560 
8561   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
8562   // the type of the other operand."
8563   if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
8564   if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
8565 
8566   // All objective-c pointer type analysis is done here.
8567   QualType compositeType =
8568       ObjC().FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
8569   if (LHS.isInvalid() || RHS.isInvalid())
8570     return QualType();
8571   if (!compositeType.isNull())
8572     return compositeType;
8573 
8574 
8575   // Handle block pointer types.
8576   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
8577     return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
8578                                                      QuestionLoc);
8579 
8580   // Check constraints for C object pointers types (C99 6.5.15p3,6).
8581   if (LHSTy->isPointerType() && RHSTy->isPointerType())
8582     return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
8583                                                        QuestionLoc);
8584 
8585   // GCC compatibility: soften pointer/integer mismatch.  Note that
8586   // null pointers have been filtered out by this point.
8587   if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
8588       /*IsIntFirstExpr=*/true))
8589     return RHSTy;
8590   if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
8591       /*IsIntFirstExpr=*/false))
8592     return LHSTy;
8593 
8594   // Emit a better diagnostic if one of the expressions is a null pointer
8595   // constant and the other is not a pointer type. In this case, the user most
8596   // likely forgot to take the address of the other expression.
8597   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
8598     return QualType();
8599 
8600   // Finally, if the LHS and RHS types are canonically the same type, we can
8601   // use the common sugared type.
8602   if (Context.hasSameType(LHSTy, RHSTy))
8603     return Context.getCommonSugaredType(LHSTy, RHSTy);
8604 
8605   // Otherwise, the operands are not compatible.
8606   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8607     << LHSTy << RHSTy << LHS.get()->getSourceRange()
8608     << RHS.get()->getSourceRange();
8609   return QualType();
8610 }
8611 
8612 /// SuggestParentheses - Emit a note with a fixit hint that wraps
8613 /// ParenRange in parentheses.
8614 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
8615                                const PartialDiagnostic &Note,
8616                                SourceRange ParenRange) {
8617   SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
8618   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
8619       EndLoc.isValid()) {
8620     Self.Diag(Loc, Note)
8621       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
8622       << FixItHint::CreateInsertion(EndLoc, ")");
8623   } else {
8624     // We can't display the parentheses, so just show the bare note.
8625     Self.Diag(Loc, Note) << ParenRange;
8626   }
8627 }
8628 
8629 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
8630   return BinaryOperator::isAdditiveOp(Opc) ||
8631          BinaryOperator::isMultiplicativeOp(Opc) ||
8632          BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
8633   // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
8634   // not any of the logical operators.  Bitwise-xor is commonly used as a
8635   // logical-xor because there is no logical-xor operator.  The logical
8636   // operators, including uses of xor, have a high false positive rate for
8637   // precedence warnings.
8638 }
8639 
8640 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
8641 /// expression, either using a built-in or overloaded operator,
8642 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
8643 /// expression.
8644 static bool IsArithmeticBinaryExpr(const Expr *E, BinaryOperatorKind *Opcode,
8645                                    const Expr **RHSExprs) {
8646   // Don't strip parenthesis: we should not warn if E is in parenthesis.
8647   E = E->IgnoreImpCasts();
8648   E = E->IgnoreConversionOperatorSingleStep();
8649   E = E->IgnoreImpCasts();
8650   if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
8651     E = MTE->getSubExpr();
8652     E = E->IgnoreImpCasts();
8653   }
8654 
8655   // Built-in binary operator.
8656   if (const auto *OP = dyn_cast<BinaryOperator>(E);
8657       OP && IsArithmeticOp(OP->getOpcode())) {
8658     *Opcode = OP->getOpcode();
8659     *RHSExprs = OP->getRHS();
8660     return true;
8661   }
8662 
8663   // Overloaded operator.
8664   if (const auto *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
8665     if (Call->getNumArgs() != 2)
8666       return false;
8667 
8668     // Make sure this is really a binary operator that is safe to pass into
8669     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
8670     OverloadedOperatorKind OO = Call->getOperator();
8671     if (OO < OO_Plus || OO > OO_Arrow ||
8672         OO == OO_PlusPlus || OO == OO_MinusMinus)
8673       return false;
8674 
8675     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
8676     if (IsArithmeticOp(OpKind)) {
8677       *Opcode = OpKind;
8678       *RHSExprs = Call->getArg(1);
8679       return true;
8680     }
8681   }
8682 
8683   return false;
8684 }
8685 
8686 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
8687 /// or is a logical expression such as (x==y) which has int type, but is
8688 /// commonly interpreted as boolean.
8689 static bool ExprLooksBoolean(const Expr *E) {
8690   E = E->IgnoreParenImpCasts();
8691 
8692   if (E->getType()->isBooleanType())
8693     return true;
8694   if (const auto *OP = dyn_cast<BinaryOperator>(E))
8695     return OP->isComparisonOp() || OP->isLogicalOp();
8696   if (const auto *OP = dyn_cast<UnaryOperator>(E))
8697     return OP->getOpcode() == UO_LNot;
8698   if (E->getType()->isPointerType())
8699     return true;
8700   // FIXME: What about overloaded operator calls returning "unspecified boolean
8701   // type"s (commonly pointer-to-members)?
8702 
8703   return false;
8704 }
8705 
8706 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
8707 /// and binary operator are mixed in a way that suggests the programmer assumed
8708 /// the conditional operator has higher precedence, for example:
8709 /// "int x = a + someBinaryCondition ? 1 : 2".
8710 static void DiagnoseConditionalPrecedence(Sema &Self, SourceLocation OpLoc,
8711                                           Expr *Condition, const Expr *LHSExpr,
8712                                           const Expr *RHSExpr) {
8713   BinaryOperatorKind CondOpcode;
8714   const Expr *CondRHS;
8715 
8716   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
8717     return;
8718   if (!ExprLooksBoolean(CondRHS))
8719     return;
8720 
8721   // The condition is an arithmetic binary expression, with a right-
8722   // hand side that looks boolean, so warn.
8723 
8724   unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
8725                         ? diag::warn_precedence_bitwise_conditional
8726                         : diag::warn_precedence_conditional;
8727 
8728   Self.Diag(OpLoc, DiagID)
8729       << Condition->getSourceRange()
8730       << BinaryOperator::getOpcodeStr(CondOpcode);
8731 
8732   SuggestParentheses(
8733       Self, OpLoc,
8734       Self.PDiag(diag::note_precedence_silence)
8735           << BinaryOperator::getOpcodeStr(CondOpcode),
8736       SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
8737 
8738   SuggestParentheses(Self, OpLoc,
8739                      Self.PDiag(diag::note_precedence_conditional_first),
8740                      SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
8741 }
8742 
8743 /// Compute the nullability of a conditional expression.
8744 static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
8745                                               QualType LHSTy, QualType RHSTy,
8746                                               ASTContext &Ctx) {
8747   if (!ResTy->isAnyPointerType())
8748     return ResTy;
8749 
8750   auto GetNullability = [](QualType Ty) {
8751     std::optional<NullabilityKind> Kind = Ty->getNullability();
8752     if (Kind) {
8753       // For our purposes, treat _Nullable_result as _Nullable.
8754       if (*Kind == NullabilityKind::NullableResult)
8755         return NullabilityKind::Nullable;
8756       return *Kind;
8757     }
8758     return NullabilityKind::Unspecified;
8759   };
8760 
8761   auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
8762   NullabilityKind MergedKind;
8763 
8764   // Compute nullability of a binary conditional expression.
8765   if (IsBin) {
8766     if (LHSKind == NullabilityKind::NonNull)
8767       MergedKind = NullabilityKind::NonNull;
8768     else
8769       MergedKind = RHSKind;
8770   // Compute nullability of a normal conditional expression.
8771   } else {
8772     if (LHSKind == NullabilityKind::Nullable ||
8773         RHSKind == NullabilityKind::Nullable)
8774       MergedKind = NullabilityKind::Nullable;
8775     else if (LHSKind == NullabilityKind::NonNull)
8776       MergedKind = RHSKind;
8777     else if (RHSKind == NullabilityKind::NonNull)
8778       MergedKind = LHSKind;
8779     else
8780       MergedKind = NullabilityKind::Unspecified;
8781   }
8782 
8783   // Return if ResTy already has the correct nullability.
8784   if (GetNullability(ResTy) == MergedKind)
8785     return ResTy;
8786 
8787   // Strip all nullability from ResTy.
8788   while (ResTy->getNullability())
8789     ResTy = ResTy.getSingleStepDesugaredType(Ctx);
8790 
8791   // Create a new AttributedType with the new nullability kind.
8792   return Ctx.getAttributedType(MergedKind, ResTy, ResTy);
8793 }
8794 
8795 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
8796                                     SourceLocation ColonLoc,
8797                                     Expr *CondExpr, Expr *LHSExpr,
8798                                     Expr *RHSExpr) {
8799   if (!Context.isDependenceAllowed()) {
8800     // C cannot handle TypoExpr nodes in the condition because it
8801     // doesn't handle dependent types properly, so make sure any TypoExprs have
8802     // been dealt with before checking the operands.
8803     ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
8804     ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
8805     ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
8806 
8807     if (!CondResult.isUsable())
8808       return ExprError();
8809 
8810     if (LHSExpr) {
8811       if (!LHSResult.isUsable())
8812         return ExprError();
8813     }
8814 
8815     if (!RHSResult.isUsable())
8816       return ExprError();
8817 
8818     CondExpr = CondResult.get();
8819     LHSExpr = LHSResult.get();
8820     RHSExpr = RHSResult.get();
8821   }
8822 
8823   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
8824   // was the condition.
8825   OpaqueValueExpr *opaqueValue = nullptr;
8826   Expr *commonExpr = nullptr;
8827   if (!LHSExpr) {
8828     commonExpr = CondExpr;
8829     // Lower out placeholder types first.  This is important so that we don't
8830     // try to capture a placeholder. This happens in few cases in C++; such
8831     // as Objective-C++'s dictionary subscripting syntax.
8832     if (commonExpr->hasPlaceholderType()) {
8833       ExprResult result = CheckPlaceholderExpr(commonExpr);
8834       if (!result.isUsable()) return ExprError();
8835       commonExpr = result.get();
8836     }
8837     // We usually want to apply unary conversions *before* saving, except
8838     // in the special case of a C++ l-value conditional.
8839     if (!(getLangOpts().CPlusPlus
8840           && !commonExpr->isTypeDependent()
8841           && commonExpr->getValueKind() == RHSExpr->getValueKind()
8842           && commonExpr->isGLValue()
8843           && commonExpr->isOrdinaryOrBitFieldObject()
8844           && RHSExpr->isOrdinaryOrBitFieldObject()
8845           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
8846       ExprResult commonRes = UsualUnaryConversions(commonExpr);
8847       if (commonRes.isInvalid())
8848         return ExprError();
8849       commonExpr = commonRes.get();
8850     }
8851 
8852     // If the common expression is a class or array prvalue, materialize it
8853     // so that we can safely refer to it multiple times.
8854     if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() ||
8855                                     commonExpr->getType()->isArrayType())) {
8856       ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
8857       if (MatExpr.isInvalid())
8858         return ExprError();
8859       commonExpr = MatExpr.get();
8860     }
8861 
8862     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
8863                                                 commonExpr->getType(),
8864                                                 commonExpr->getValueKind(),
8865                                                 commonExpr->getObjectKind(),
8866                                                 commonExpr);
8867     LHSExpr = CondExpr = opaqueValue;
8868   }
8869 
8870   QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
8871   ExprValueKind VK = VK_PRValue;
8872   ExprObjectKind OK = OK_Ordinary;
8873   ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
8874   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
8875                                              VK, OK, QuestionLoc);
8876   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
8877       RHS.isInvalid())
8878     return ExprError();
8879 
8880   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
8881                                 RHS.get());
8882 
8883   CheckBoolLikeConversion(Cond.get(), QuestionLoc);
8884 
8885   result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
8886                                          Context);
8887 
8888   if (!commonExpr)
8889     return new (Context)
8890         ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
8891                             RHS.get(), result, VK, OK);
8892 
8893   return new (Context) BinaryConditionalOperator(
8894       commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
8895       ColonLoc, result, VK, OK);
8896 }
8897 
8898 bool Sema::IsInvalidSMECallConversion(QualType FromType, QualType ToType) {
8899   unsigned FromAttributes = 0, ToAttributes = 0;
8900   if (const auto *FromFn =
8901           dyn_cast<FunctionProtoType>(Context.getCanonicalType(FromType)))
8902     FromAttributes =
8903         FromFn->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask;
8904   if (const auto *ToFn =
8905           dyn_cast<FunctionProtoType>(Context.getCanonicalType(ToType)))
8906     ToAttributes =
8907         ToFn->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask;
8908 
8909   return FromAttributes != ToAttributes;
8910 }
8911 
8912 // Check if we have a conversion between incompatible cmse function pointer
8913 // types, that is, a conversion between a function pointer with the
8914 // cmse_nonsecure_call attribute and one without.
8915 static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
8916                                           QualType ToType) {
8917   if (const auto *ToFn =
8918           dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) {
8919     if (const auto *FromFn =
8920             dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) {
8921       FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
8922       FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
8923 
8924       return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
8925     }
8926   }
8927   return false;
8928 }
8929 
8930 // checkPointerTypesForAssignment - This is a very tricky routine (despite
8931 // being closely modeled after the C99 spec:-). The odd characteristic of this
8932 // routine is it effectively iqnores the qualifiers on the top level pointee.
8933 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
8934 // FIXME: add a couple examples in this comment.
8935 static Sema::AssignConvertType
8936 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType,
8937                                SourceLocation Loc) {
8938   assert(LHSType.isCanonical() && "LHS not canonicalized!");
8939   assert(RHSType.isCanonical() && "RHS not canonicalized!");
8940 
8941   // get the "pointed to" type (ignoring qualifiers at the top level)
8942   const Type *lhptee, *rhptee;
8943   Qualifiers lhq, rhq;
8944   std::tie(lhptee, lhq) =
8945       cast<PointerType>(LHSType)->getPointeeType().split().asPair();
8946   std::tie(rhptee, rhq) =
8947       cast<PointerType>(RHSType)->getPointeeType().split().asPair();
8948 
8949   Sema::AssignConvertType ConvTy = Sema::Compatible;
8950 
8951   // C99 6.5.16.1p1: This following citation is common to constraints
8952   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
8953   // qualifiers of the type *pointed to* by the right;
8954 
8955   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
8956   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
8957       lhq.compatiblyIncludesObjCLifetime(rhq)) {
8958     // Ignore lifetime for further calculation.
8959     lhq.removeObjCLifetime();
8960     rhq.removeObjCLifetime();
8961   }
8962 
8963   if (!lhq.compatiblyIncludes(rhq, S.getASTContext())) {
8964     // Treat address-space mismatches as fatal.
8965     if (!lhq.isAddressSpaceSupersetOf(rhq, S.getASTContext()))
8966       return Sema::IncompatiblePointerDiscardsQualifiers;
8967 
8968     // It's okay to add or remove GC or lifetime qualifiers when converting to
8969     // and from void*.
8970     else if (lhq.withoutObjCGCAttr().withoutObjCLifetime().compatiblyIncludes(
8971                  rhq.withoutObjCGCAttr().withoutObjCLifetime(),
8972                  S.getASTContext()) &&
8973              (lhptee->isVoidType() || rhptee->isVoidType()))
8974       ; // keep old
8975 
8976     // Treat lifetime mismatches as fatal.
8977     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
8978       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
8979 
8980     // For GCC/MS compatibility, other qualifier mismatches are treated
8981     // as still compatible in C.
8982     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
8983   }
8984 
8985   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
8986   // incomplete type and the other is a pointer to a qualified or unqualified
8987   // version of void...
8988   if (lhptee->isVoidType()) {
8989     if (rhptee->isIncompleteOrObjectType())
8990       return ConvTy;
8991 
8992     // As an extension, we allow cast to/from void* to function pointer.
8993     assert(rhptee->isFunctionType());
8994     return Sema::FunctionVoidPointer;
8995   }
8996 
8997   if (rhptee->isVoidType()) {
8998     if (lhptee->isIncompleteOrObjectType())
8999       return ConvTy;
9000 
9001     // As an extension, we allow cast to/from void* to function pointer.
9002     assert(lhptee->isFunctionType());
9003     return Sema::FunctionVoidPointer;
9004   }
9005 
9006   if (!S.Diags.isIgnored(
9007           diag::warn_typecheck_convert_incompatible_function_pointer_strict,
9008           Loc) &&
9009       RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType() &&
9010       !S.IsFunctionConversion(RHSType, LHSType, RHSType))
9011     return Sema::IncompatibleFunctionPointerStrict;
9012 
9013   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
9014   // unqualified versions of compatible types, ...
9015   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
9016   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
9017     // Check if the pointee types are compatible ignoring the sign.
9018     // We explicitly check for char so that we catch "char" vs
9019     // "unsigned char" on systems where "char" is unsigned.
9020     if (lhptee->isCharType())
9021       ltrans = S.Context.UnsignedCharTy;
9022     else if (lhptee->hasSignedIntegerRepresentation())
9023       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
9024 
9025     if (rhptee->isCharType())
9026       rtrans = S.Context.UnsignedCharTy;
9027     else if (rhptee->hasSignedIntegerRepresentation())
9028       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
9029 
9030     if (ltrans == rtrans) {
9031       // Types are compatible ignoring the sign. Qualifier incompatibility
9032       // takes priority over sign incompatibility because the sign
9033       // warning can be disabled.
9034       if (ConvTy != Sema::Compatible)
9035         return ConvTy;
9036 
9037       return Sema::IncompatiblePointerSign;
9038     }
9039 
9040     // If we are a multi-level pointer, it's possible that our issue is simply
9041     // one of qualification - e.g. char ** -> const char ** is not allowed. If
9042     // the eventual target type is the same and the pointers have the same
9043     // level of indirection, this must be the issue.
9044     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
9045       do {
9046         std::tie(lhptee, lhq) =
9047           cast<PointerType>(lhptee)->getPointeeType().split().asPair();
9048         std::tie(rhptee, rhq) =
9049           cast<PointerType>(rhptee)->getPointeeType().split().asPair();
9050 
9051         // Inconsistent address spaces at this point is invalid, even if the
9052         // address spaces would be compatible.
9053         // FIXME: This doesn't catch address space mismatches for pointers of
9054         // different nesting levels, like:
9055         //   __local int *** a;
9056         //   int ** b = a;
9057         // It's not clear how to actually determine when such pointers are
9058         // invalidly incompatible.
9059         if (lhq.getAddressSpace() != rhq.getAddressSpace())
9060           return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
9061 
9062       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
9063 
9064       if (lhptee == rhptee)
9065         return Sema::IncompatibleNestedPointerQualifiers;
9066     }
9067 
9068     // General pointer incompatibility takes priority over qualifiers.
9069     if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
9070       return Sema::IncompatibleFunctionPointer;
9071     return Sema::IncompatiblePointer;
9072   }
9073   if (!S.getLangOpts().CPlusPlus &&
9074       S.IsFunctionConversion(ltrans, rtrans, ltrans))
9075     return Sema::IncompatibleFunctionPointer;
9076   if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans))
9077     return Sema::IncompatibleFunctionPointer;
9078   if (S.IsInvalidSMECallConversion(rtrans, ltrans))
9079     return Sema::IncompatibleFunctionPointer;
9080   return ConvTy;
9081 }
9082 
9083 /// checkBlockPointerTypesForAssignment - This routine determines whether two
9084 /// block pointer types are compatible or whether a block and normal pointer
9085 /// are compatible. It is more restrict than comparing two function pointer
9086 // types.
9087 static Sema::AssignConvertType
9088 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
9089                                     QualType RHSType) {
9090   assert(LHSType.isCanonical() && "LHS not canonicalized!");
9091   assert(RHSType.isCanonical() && "RHS not canonicalized!");
9092 
9093   QualType lhptee, rhptee;
9094 
9095   // get the "pointed to" type (ignoring qualifiers at the top level)
9096   lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
9097   rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
9098 
9099   // In C++, the types have to match exactly.
9100   if (S.getLangOpts().CPlusPlus)
9101     return Sema::IncompatibleBlockPointer;
9102 
9103   Sema::AssignConvertType ConvTy = Sema::Compatible;
9104 
9105   // For blocks we enforce that qualifiers are identical.
9106   Qualifiers LQuals = lhptee.getLocalQualifiers();
9107   Qualifiers RQuals = rhptee.getLocalQualifiers();
9108   if (S.getLangOpts().OpenCL) {
9109     LQuals.removeAddressSpace();
9110     RQuals.removeAddressSpace();
9111   }
9112   if (LQuals != RQuals)
9113     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9114 
9115   // FIXME: OpenCL doesn't define the exact compile time semantics for a block
9116   // assignment.
9117   // The current behavior is similar to C++ lambdas. A block might be
9118   // assigned to a variable iff its return type and parameters are compatible
9119   // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
9120   // an assignment. Presumably it should behave in way that a function pointer
9121   // assignment does in C, so for each parameter and return type:
9122   //  * CVR and address space of LHS should be a superset of CVR and address
9123   //  space of RHS.
9124   //  * unqualified types should be compatible.
9125   if (S.getLangOpts().OpenCL) {
9126     if (!S.Context.typesAreBlockPointerCompatible(
9127             S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
9128             S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
9129       return Sema::IncompatibleBlockPointer;
9130   } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
9131     return Sema::IncompatibleBlockPointer;
9132 
9133   return ConvTy;
9134 }
9135 
9136 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
9137 /// for assignment compatibility.
9138 static Sema::AssignConvertType
9139 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
9140                                    QualType RHSType) {
9141   assert(LHSType.isCanonical() && "LHS was not canonicalized!");
9142   assert(RHSType.isCanonical() && "RHS was not canonicalized!");
9143 
9144   if (LHSType->isObjCBuiltinType()) {
9145     // Class is not compatible with ObjC object pointers.
9146     if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
9147         !RHSType->isObjCQualifiedClassType())
9148       return Sema::IncompatiblePointer;
9149     return Sema::Compatible;
9150   }
9151   if (RHSType->isObjCBuiltinType()) {
9152     if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
9153         !LHSType->isObjCQualifiedClassType())
9154       return Sema::IncompatiblePointer;
9155     return Sema::Compatible;
9156   }
9157   QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9158   QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9159 
9160   if (!lhptee.isAtLeastAsQualifiedAs(rhptee, S.getASTContext()) &&
9161       // make an exception for id<P>
9162       !LHSType->isObjCQualifiedIdType())
9163     return Sema::CompatiblePointerDiscardsQualifiers;
9164 
9165   if (S.Context.typesAreCompatible(LHSType, RHSType))
9166     return Sema::Compatible;
9167   if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
9168     return Sema::IncompatibleObjCQualifiedId;
9169   return Sema::IncompatiblePointer;
9170 }
9171 
9172 Sema::AssignConvertType
9173 Sema::CheckAssignmentConstraints(SourceLocation Loc,
9174                                  QualType LHSType, QualType RHSType) {
9175   // Fake up an opaque expression.  We don't actually care about what
9176   // cast operations are required, so if CheckAssignmentConstraints
9177   // adds casts to this they'll be wasted, but fortunately that doesn't
9178   // usually happen on valid code.
9179   OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue);
9180   ExprResult RHSPtr = &RHSExpr;
9181   CastKind K;
9182 
9183   return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
9184 }
9185 
9186 /// This helper function returns true if QT is a vector type that has element
9187 /// type ElementType.
9188 static bool isVector(QualType QT, QualType ElementType) {
9189   if (const VectorType *VT = QT->getAs<VectorType>())
9190     return VT->getElementType().getCanonicalType() == ElementType;
9191   return false;
9192 }
9193 
9194 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
9195 /// has code to accommodate several GCC extensions when type checking
9196 /// pointers. Here are some objectionable examples that GCC considers warnings:
9197 ///
9198 ///  int a, *pint;
9199 ///  short *pshort;
9200 ///  struct foo *pfoo;
9201 ///
9202 ///  pint = pshort; // warning: assignment from incompatible pointer type
9203 ///  a = pint; // warning: assignment makes integer from pointer without a cast
9204 ///  pint = a; // warning: assignment makes pointer from integer without a cast
9205 ///  pint = pfoo; // warning: assignment from incompatible pointer type
9206 ///
9207 /// As a result, the code for dealing with pointers is more complex than the
9208 /// C99 spec dictates.
9209 ///
9210 /// Sets 'Kind' for any result kind except Incompatible.
9211 Sema::AssignConvertType
9212 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
9213                                  CastKind &Kind, bool ConvertRHS) {
9214   QualType RHSType = RHS.get()->getType();
9215   QualType OrigLHSType = LHSType;
9216 
9217   // Get canonical types.  We're not formatting these types, just comparing
9218   // them.
9219   LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
9220   RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
9221 
9222   // Common case: no conversion required.
9223   if (LHSType == RHSType) {
9224     Kind = CK_NoOp;
9225     return Compatible;
9226   }
9227 
9228   // If the LHS has an __auto_type, there are no additional type constraints
9229   // to be worried about.
9230   if (const auto *AT = dyn_cast<AutoType>(LHSType)) {
9231     if (AT->isGNUAutoType()) {
9232       Kind = CK_NoOp;
9233       return Compatible;
9234     }
9235   }
9236 
9237   // If we have an atomic type, try a non-atomic assignment, then just add an
9238   // atomic qualification step.
9239   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
9240     Sema::AssignConvertType result =
9241       CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
9242     if (result != Compatible)
9243       return result;
9244     if (Kind != CK_NoOp && ConvertRHS)
9245       RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
9246     Kind = CK_NonAtomicToAtomic;
9247     return Compatible;
9248   }
9249 
9250   // If the left-hand side is a reference type, then we are in a
9251   // (rare!) case where we've allowed the use of references in C,
9252   // e.g., as a parameter type in a built-in function. In this case,
9253   // just make sure that the type referenced is compatible with the
9254   // right-hand side type. The caller is responsible for adjusting
9255   // LHSType so that the resulting expression does not have reference
9256   // type.
9257   if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
9258     if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
9259       Kind = CK_LValueBitCast;
9260       return Compatible;
9261     }
9262     return Incompatible;
9263   }
9264 
9265   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
9266   // to the same ExtVector type.
9267   if (LHSType->isExtVectorType()) {
9268     if (RHSType->isExtVectorType())
9269       return Incompatible;
9270     if (RHSType->isArithmeticType()) {
9271       // CK_VectorSplat does T -> vector T, so first cast to the element type.
9272       if (ConvertRHS)
9273         RHS = prepareVectorSplat(LHSType, RHS.get());
9274       Kind = CK_VectorSplat;
9275       return Compatible;
9276     }
9277   }
9278 
9279   // Conversions to or from vector type.
9280   if (LHSType->isVectorType() || RHSType->isVectorType()) {
9281     if (LHSType->isVectorType() && RHSType->isVectorType()) {
9282       // Allow assignments of an AltiVec vector type to an equivalent GCC
9283       // vector type and vice versa
9284       if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
9285         Kind = CK_BitCast;
9286         return Compatible;
9287       }
9288 
9289       // If we are allowing lax vector conversions, and LHS and RHS are both
9290       // vectors, the total size only needs to be the same. This is a bitcast;
9291       // no bits are changed but the result type is different.
9292       if (isLaxVectorConversion(RHSType, LHSType)) {
9293         // The default for lax vector conversions with Altivec vectors will
9294         // change, so if we are converting between vector types where
9295         // at least one is an Altivec vector, emit a warning.
9296         if (Context.getTargetInfo().getTriple().isPPC() &&
9297             anyAltivecTypes(RHSType, LHSType) &&
9298             !Context.areCompatibleVectorTypes(RHSType, LHSType))
9299           Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
9300               << RHSType << LHSType;
9301         Kind = CK_BitCast;
9302         return IncompatibleVectors;
9303       }
9304     }
9305 
9306     // When the RHS comes from another lax conversion (e.g. binops between
9307     // scalars and vectors) the result is canonicalized as a vector. When the
9308     // LHS is also a vector, the lax is allowed by the condition above. Handle
9309     // the case where LHS is a scalar.
9310     if (LHSType->isScalarType()) {
9311       const VectorType *VecType = RHSType->getAs<VectorType>();
9312       if (VecType && VecType->getNumElements() == 1 &&
9313           isLaxVectorConversion(RHSType, LHSType)) {
9314         if (Context.getTargetInfo().getTriple().isPPC() &&
9315             (VecType->getVectorKind() == VectorKind::AltiVecVector ||
9316              VecType->getVectorKind() == VectorKind::AltiVecBool ||
9317              VecType->getVectorKind() == VectorKind::AltiVecPixel))
9318           Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
9319               << RHSType << LHSType;
9320         ExprResult *VecExpr = &RHS;
9321         *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
9322         Kind = CK_BitCast;
9323         return Compatible;
9324       }
9325     }
9326 
9327     // Allow assignments between fixed-length and sizeless SVE vectors.
9328     if ((LHSType->isSVESizelessBuiltinType() && RHSType->isVectorType()) ||
9329         (LHSType->isVectorType() && RHSType->isSVESizelessBuiltinType()))
9330       if (Context.areCompatibleSveTypes(LHSType, RHSType) ||
9331           Context.areLaxCompatibleSveTypes(LHSType, RHSType)) {
9332         Kind = CK_BitCast;
9333         return Compatible;
9334       }
9335 
9336     // Allow assignments between fixed-length and sizeless RVV vectors.
9337     if ((LHSType->isRVVSizelessBuiltinType() && RHSType->isVectorType()) ||
9338         (LHSType->isVectorType() && RHSType->isRVVSizelessBuiltinType())) {
9339       if (Context.areCompatibleRVVTypes(LHSType, RHSType) ||
9340           Context.areLaxCompatibleRVVTypes(LHSType, RHSType)) {
9341         Kind = CK_BitCast;
9342         return Compatible;
9343       }
9344     }
9345 
9346     return Incompatible;
9347   }
9348 
9349   // Diagnose attempts to convert between __ibm128, __float128 and long double
9350   // where such conversions currently can't be handled.
9351   if (unsupportedTypeConversion(*this, LHSType, RHSType))
9352     return Incompatible;
9353 
9354   // Disallow assigning a _Complex to a real type in C++ mode since it simply
9355   // discards the imaginary part.
9356   if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
9357       !LHSType->getAs<ComplexType>())
9358     return Incompatible;
9359 
9360   // Arithmetic conversions.
9361   if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
9362       !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
9363     if (ConvertRHS)
9364       Kind = PrepareScalarCast(RHS, LHSType);
9365     return Compatible;
9366   }
9367 
9368   // Conversions to normal pointers.
9369   if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
9370     // U* -> T*
9371     if (isa<PointerType>(RHSType)) {
9372       LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9373       LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
9374       if (AddrSpaceL != AddrSpaceR)
9375         Kind = CK_AddressSpaceConversion;
9376       else if (Context.hasCvrSimilarType(RHSType, LHSType))
9377         Kind = CK_NoOp;
9378       else
9379         Kind = CK_BitCast;
9380       return checkPointerTypesForAssignment(*this, LHSType, RHSType,
9381                                             RHS.get()->getBeginLoc());
9382     }
9383 
9384     // int -> T*
9385     if (RHSType->isIntegerType()) {
9386       Kind = CK_IntegralToPointer; // FIXME: null?
9387       return IntToPointer;
9388     }
9389 
9390     // C pointers are not compatible with ObjC object pointers,
9391     // with two exceptions:
9392     if (isa<ObjCObjectPointerType>(RHSType)) {
9393       //  - conversions to void*
9394       if (LHSPointer->getPointeeType()->isVoidType()) {
9395         Kind = CK_BitCast;
9396         return Compatible;
9397       }
9398 
9399       //  - conversions from 'Class' to the redefinition type
9400       if (RHSType->isObjCClassType() &&
9401           Context.hasSameType(LHSType,
9402                               Context.getObjCClassRedefinitionType())) {
9403         Kind = CK_BitCast;
9404         return Compatible;
9405       }
9406 
9407       Kind = CK_BitCast;
9408       return IncompatiblePointer;
9409     }
9410 
9411     // U^ -> void*
9412     if (RHSType->getAs<BlockPointerType>()) {
9413       if (LHSPointer->getPointeeType()->isVoidType()) {
9414         LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9415         LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9416                                 ->getPointeeType()
9417                                 .getAddressSpace();
9418         Kind =
9419             AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9420         return Compatible;
9421       }
9422     }
9423 
9424     return Incompatible;
9425   }
9426 
9427   // Conversions to block pointers.
9428   if (isa<BlockPointerType>(LHSType)) {
9429     // U^ -> T^
9430     if (RHSType->isBlockPointerType()) {
9431       LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
9432                               ->getPointeeType()
9433                               .getAddressSpace();
9434       LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9435                               ->getPointeeType()
9436                               .getAddressSpace();
9437       Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9438       return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
9439     }
9440 
9441     // int or null -> T^
9442     if (RHSType->isIntegerType()) {
9443       Kind = CK_IntegralToPointer; // FIXME: null
9444       return IntToBlockPointer;
9445     }
9446 
9447     // id -> T^
9448     if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
9449       Kind = CK_AnyPointerToBlockPointerCast;
9450       return Compatible;
9451     }
9452 
9453     // void* -> T^
9454     if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
9455       if (RHSPT->getPointeeType()->isVoidType()) {
9456         Kind = CK_AnyPointerToBlockPointerCast;
9457         return Compatible;
9458       }
9459 
9460     return Incompatible;
9461   }
9462 
9463   // Conversions to Objective-C pointers.
9464   if (isa<ObjCObjectPointerType>(LHSType)) {
9465     // A* -> B*
9466     if (RHSType->isObjCObjectPointerType()) {
9467       Kind = CK_BitCast;
9468       Sema::AssignConvertType result =
9469         checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
9470       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9471           result == Compatible &&
9472           !ObjC().CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
9473         result = IncompatibleObjCWeakRef;
9474       return result;
9475     }
9476 
9477     // int or null -> A*
9478     if (RHSType->isIntegerType()) {
9479       Kind = CK_IntegralToPointer; // FIXME: null
9480       return IntToPointer;
9481     }
9482 
9483     // In general, C pointers are not compatible with ObjC object pointers,
9484     // with two exceptions:
9485     if (isa<PointerType>(RHSType)) {
9486       Kind = CK_CPointerToObjCPointerCast;
9487 
9488       //  - conversions from 'void*'
9489       if (RHSType->isVoidPointerType()) {
9490         return Compatible;
9491       }
9492 
9493       //  - conversions to 'Class' from its redefinition type
9494       if (LHSType->isObjCClassType() &&
9495           Context.hasSameType(RHSType,
9496                               Context.getObjCClassRedefinitionType())) {
9497         return Compatible;
9498       }
9499 
9500       return IncompatiblePointer;
9501     }
9502 
9503     // Only under strict condition T^ is compatible with an Objective-C pointer.
9504     if (RHSType->isBlockPointerType() &&
9505         LHSType->isBlockCompatibleObjCPointerType(Context)) {
9506       if (ConvertRHS)
9507         maybeExtendBlockObject(RHS);
9508       Kind = CK_BlockPointerToObjCPointerCast;
9509       return Compatible;
9510     }
9511 
9512     return Incompatible;
9513   }
9514 
9515   // Conversion to nullptr_t (C23 only)
9516   if (getLangOpts().C23 && LHSType->isNullPtrType() &&
9517       RHS.get()->isNullPointerConstant(Context,
9518                                        Expr::NPC_ValueDependentIsNull)) {
9519     // null -> nullptr_t
9520     Kind = CK_NullToPointer;
9521     return Compatible;
9522   }
9523 
9524   // Conversions from pointers that are not covered by the above.
9525   if (isa<PointerType>(RHSType)) {
9526     // T* -> _Bool
9527     if (LHSType == Context.BoolTy) {
9528       Kind = CK_PointerToBoolean;
9529       return Compatible;
9530     }
9531 
9532     // T* -> int
9533     if (LHSType->isIntegerType()) {
9534       Kind = CK_PointerToIntegral;
9535       return PointerToInt;
9536     }
9537 
9538     return Incompatible;
9539   }
9540 
9541   // Conversions from Objective-C pointers that are not covered by the above.
9542   if (isa<ObjCObjectPointerType>(RHSType)) {
9543     // T* -> _Bool
9544     if (LHSType == Context.BoolTy) {
9545       Kind = CK_PointerToBoolean;
9546       return Compatible;
9547     }
9548 
9549     // T* -> int
9550     if (LHSType->isIntegerType()) {
9551       Kind = CK_PointerToIntegral;
9552       return PointerToInt;
9553     }
9554 
9555     return Incompatible;
9556   }
9557 
9558   // struct A -> struct B
9559   if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
9560     if (Context.typesAreCompatible(LHSType, RHSType)) {
9561       Kind = CK_NoOp;
9562       return Compatible;
9563     }
9564   }
9565 
9566   if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
9567     Kind = CK_IntToOCLSampler;
9568     return Compatible;
9569   }
9570 
9571   return Incompatible;
9572 }
9573 
9574 /// Constructs a transparent union from an expression that is
9575 /// used to initialize the transparent union.
9576 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
9577                                       ExprResult &EResult, QualType UnionType,
9578                                       FieldDecl *Field) {
9579   // Build an initializer list that designates the appropriate member
9580   // of the transparent union.
9581   Expr *E = EResult.get();
9582   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
9583                                                    E, SourceLocation());
9584   Initializer->setType(UnionType);
9585   Initializer->setInitializedFieldInUnion(Field);
9586 
9587   // Build a compound literal constructing a value of the transparent
9588   // union type from this initializer list.
9589   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
9590   EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
9591                                         VK_PRValue, Initializer, false);
9592 }
9593 
9594 Sema::AssignConvertType
9595 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
9596                                                ExprResult &RHS) {
9597   QualType RHSType = RHS.get()->getType();
9598 
9599   // If the ArgType is a Union type, we want to handle a potential
9600   // transparent_union GCC extension.
9601   const RecordType *UT = ArgType->getAsUnionType();
9602   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
9603     return Incompatible;
9604 
9605   // The field to initialize within the transparent union.
9606   RecordDecl *UD = UT->getDecl();
9607   FieldDecl *InitField = nullptr;
9608   // It's compatible if the expression matches any of the fields.
9609   for (auto *it : UD->fields()) {
9610     if (it->getType()->isPointerType()) {
9611       // If the transparent union contains a pointer type, we allow:
9612       // 1) void pointer
9613       // 2) null pointer constant
9614       if (RHSType->isPointerType())
9615         if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
9616           RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
9617           InitField = it;
9618           break;
9619         }
9620 
9621       if (RHS.get()->isNullPointerConstant(Context,
9622                                            Expr::NPC_ValueDependentIsNull)) {
9623         RHS = ImpCastExprToType(RHS.get(), it->getType(),
9624                                 CK_NullToPointer);
9625         InitField = it;
9626         break;
9627       }
9628     }
9629 
9630     CastKind Kind;
9631     if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
9632           == Compatible) {
9633       RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
9634       InitField = it;
9635       break;
9636     }
9637   }
9638 
9639   if (!InitField)
9640     return Incompatible;
9641 
9642   ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
9643   return Compatible;
9644 }
9645 
9646 Sema::AssignConvertType
9647 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
9648                                        bool Diagnose,
9649                                        bool DiagnoseCFAudited,
9650                                        bool ConvertRHS) {
9651   // We need to be able to tell the caller whether we diagnosed a problem, if
9652   // they ask us to issue diagnostics.
9653   assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
9654 
9655   // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
9656   // we can't avoid *all* modifications at the moment, so we need some somewhere
9657   // to put the updated value.
9658   ExprResult LocalRHS = CallerRHS;
9659   ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
9660 
9661   if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
9662     if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
9663       if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
9664           !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
9665         Diag(RHS.get()->getExprLoc(),
9666              diag::warn_noderef_to_dereferenceable_pointer)
9667             << RHS.get()->getSourceRange();
9668       }
9669     }
9670   }
9671 
9672   if (getLangOpts().CPlusPlus) {
9673     if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
9674       // C++ 5.17p3: If the left operand is not of class type, the
9675       // expression is implicitly converted (C++ 4) to the
9676       // cv-unqualified type of the left operand.
9677       QualType RHSType = RHS.get()->getType();
9678       if (Diagnose) {
9679         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9680                                         AssignmentAction::Assigning);
9681       } else {
9682         ImplicitConversionSequence ICS =
9683             TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9684                                   /*SuppressUserConversions=*/false,
9685                                   AllowedExplicit::None,
9686                                   /*InOverloadResolution=*/false,
9687                                   /*CStyle=*/false,
9688                                   /*AllowObjCWritebackConversion=*/false);
9689         if (ICS.isFailure())
9690           return Incompatible;
9691         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9692                                         ICS, AssignmentAction::Assigning);
9693       }
9694       if (RHS.isInvalid())
9695         return Incompatible;
9696       Sema::AssignConvertType result = Compatible;
9697       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9698           !ObjC().CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
9699         result = IncompatibleObjCWeakRef;
9700       return result;
9701     }
9702 
9703     // FIXME: Currently, we fall through and treat C++ classes like C
9704     // structures.
9705     // FIXME: We also fall through for atomics; not sure what should
9706     // happen there, though.
9707   } else if (RHS.get()->getType() == Context.OverloadTy) {
9708     // As a set of extensions to C, we support overloading on functions. These
9709     // functions need to be resolved here.
9710     DeclAccessPair DAP;
9711     if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
9712             RHS.get(), LHSType, /*Complain=*/false, DAP))
9713       RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
9714     else
9715       return Incompatible;
9716   }
9717 
9718   // This check seems unnatural, however it is necessary to ensure the proper
9719   // conversion of functions/arrays. If the conversion were done for all
9720   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
9721   // expressions that suppress this implicit conversion (&, sizeof). This needs
9722   // to happen before we check for null pointer conversions because C does not
9723   // undergo the same implicit conversions as C++ does above (by the calls to
9724   // TryImplicitConversion() and PerformImplicitConversion()) which insert the
9725   // lvalue to rvalue cast before checking for null pointer constraints. This
9726   // addresses code like: nullptr_t val; int *ptr; ptr = val;
9727   //
9728   // Suppress this for references: C++ 8.5.3p5.
9729   if (!LHSType->isReferenceType()) {
9730     // FIXME: We potentially allocate here even if ConvertRHS is false.
9731     RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
9732     if (RHS.isInvalid())
9733       return Incompatible;
9734   }
9735 
9736   // The constraints are expressed in terms of the atomic, qualified, or
9737   // unqualified type of the LHS.
9738   QualType LHSTypeAfterConversion = LHSType.getAtomicUnqualifiedType();
9739 
9740   // C99 6.5.16.1p1: the left operand is a pointer and the right is
9741   // a null pointer constant <C23>or its type is nullptr_t;</C23>.
9742   if ((LHSTypeAfterConversion->isPointerType() ||
9743        LHSTypeAfterConversion->isObjCObjectPointerType() ||
9744        LHSTypeAfterConversion->isBlockPointerType()) &&
9745       ((getLangOpts().C23 && RHS.get()->getType()->isNullPtrType()) ||
9746        RHS.get()->isNullPointerConstant(Context,
9747                                         Expr::NPC_ValueDependentIsNull))) {
9748     if (Diagnose || ConvertRHS) {
9749       CastKind Kind;
9750       CXXCastPath Path;
9751       CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
9752                              /*IgnoreBaseAccess=*/false, Diagnose);
9753       if (ConvertRHS)
9754         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_PRValue, &Path);
9755     }
9756     return Compatible;
9757   }
9758   // C23 6.5.16.1p1: the left operand has type atomic, qualified, or
9759   // unqualified bool, and the right operand is a pointer or its type is
9760   // nullptr_t.
9761   if (getLangOpts().C23 && LHSType->isBooleanType() &&
9762       RHS.get()->getType()->isNullPtrType()) {
9763     // NB: T* -> _Bool is handled in CheckAssignmentConstraints, this only
9764     // only handles nullptr -> _Bool due to needing an extra conversion
9765     // step.
9766     // We model this by converting from nullptr -> void * and then let the
9767     // conversion from void * -> _Bool happen naturally.
9768     if (Diagnose || ConvertRHS) {
9769       CastKind Kind;
9770       CXXCastPath Path;
9771       CheckPointerConversion(RHS.get(), Context.VoidPtrTy, Kind, Path,
9772                              /*IgnoreBaseAccess=*/false, Diagnose);
9773       if (ConvertRHS)
9774         RHS = ImpCastExprToType(RHS.get(), Context.VoidPtrTy, Kind, VK_PRValue,
9775                                 &Path);
9776     }
9777   }
9778 
9779   // OpenCL queue_t type assignment.
9780   if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
9781                                  Context, Expr::NPC_ValueDependentIsNull)) {
9782     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
9783     return Compatible;
9784   }
9785 
9786   CastKind Kind;
9787   Sema::AssignConvertType result =
9788     CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
9789 
9790   // C99 6.5.16.1p2: The value of the right operand is converted to the
9791   // type of the assignment expression.
9792   // CheckAssignmentConstraints allows the left-hand side to be a reference,
9793   // so that we can use references in built-in functions even in C.
9794   // The getNonReferenceType() call makes sure that the resulting expression
9795   // does not have reference type.
9796   if (result != Incompatible && RHS.get()->getType() != LHSType) {
9797     QualType Ty = LHSType.getNonLValueExprType(Context);
9798     Expr *E = RHS.get();
9799 
9800     // Check for various Objective-C errors. If we are not reporting
9801     // diagnostics and just checking for errors, e.g., during overload
9802     // resolution, return Incompatible to indicate the failure.
9803     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9804         ObjC().CheckObjCConversion(SourceRange(), Ty, E,
9805                                    CheckedConversionKind::Implicit, Diagnose,
9806                                    DiagnoseCFAudited) != SemaObjC::ACR_okay) {
9807       if (!Diagnose)
9808         return Incompatible;
9809     }
9810     if (getLangOpts().ObjC &&
9811         (ObjC().CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
9812                                                   E->getType(), E, Diagnose) ||
9813          ObjC().CheckConversionToObjCLiteral(LHSType, E, Diagnose))) {
9814       if (!Diagnose)
9815         return Incompatible;
9816       // Replace the expression with a corrected version and continue so we
9817       // can find further errors.
9818       RHS = E;
9819       return Compatible;
9820     }
9821 
9822     if (ConvertRHS)
9823       RHS = ImpCastExprToType(E, Ty, Kind);
9824   }
9825 
9826   return result;
9827 }
9828 
9829 namespace {
9830 /// The original operand to an operator, prior to the application of the usual
9831 /// arithmetic conversions and converting the arguments of a builtin operator
9832 /// candidate.
9833 struct OriginalOperand {
9834   explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
9835     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
9836       Op = MTE->getSubExpr();
9837     if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
9838       Op = BTE->getSubExpr();
9839     if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
9840       Orig = ICE->getSubExprAsWritten();
9841       Conversion = ICE->getConversionFunction();
9842     }
9843   }
9844 
9845   QualType getType() const { return Orig->getType(); }
9846 
9847   Expr *Orig;
9848   NamedDecl *Conversion;
9849 };
9850 }
9851 
9852 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
9853                                ExprResult &RHS) {
9854   OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
9855 
9856   Diag(Loc, diag::err_typecheck_invalid_operands)
9857     << OrigLHS.getType() << OrigRHS.getType()
9858     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9859 
9860   // If a user-defined conversion was applied to either of the operands prior
9861   // to applying the built-in operator rules, tell the user about it.
9862   if (OrigLHS.Conversion) {
9863     Diag(OrigLHS.Conversion->getLocation(),
9864          diag::note_typecheck_invalid_operands_converted)
9865       << 0 << LHS.get()->getType();
9866   }
9867   if (OrigRHS.Conversion) {
9868     Diag(OrigRHS.Conversion->getLocation(),
9869          diag::note_typecheck_invalid_operands_converted)
9870       << 1 << RHS.get()->getType();
9871   }
9872 
9873   return QualType();
9874 }
9875 
9876 QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
9877                                             ExprResult &RHS) {
9878   QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
9879   QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
9880 
9881   bool LHSNatVec = LHSType->isVectorType();
9882   bool RHSNatVec = RHSType->isVectorType();
9883 
9884   if (!(LHSNatVec && RHSNatVec)) {
9885     Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
9886     Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
9887     Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9888         << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
9889         << Vector->getSourceRange();
9890     return QualType();
9891   }
9892 
9893   Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9894       << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
9895       << RHS.get()->getSourceRange();
9896 
9897   return QualType();
9898 }
9899 
9900 /// Try to convert a value of non-vector type to a vector type by converting
9901 /// the type to the element type of the vector and then performing a splat.
9902 /// If the language is OpenCL, we only use conversions that promote scalar
9903 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
9904 /// for float->int.
9905 ///
9906 /// OpenCL V2.0 6.2.6.p2:
9907 /// An error shall occur if any scalar operand type has greater rank
9908 /// than the type of the vector element.
9909 ///
9910 /// \param scalar - if non-null, actually perform the conversions
9911 /// \return true if the operation fails (but without diagnosing the failure)
9912 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
9913                                      QualType scalarTy,
9914                                      QualType vectorEltTy,
9915                                      QualType vectorTy,
9916                                      unsigned &DiagID) {
9917   // The conversion to apply to the scalar before splatting it,
9918   // if necessary.
9919   CastKind scalarCast = CK_NoOp;
9920 
9921   if (vectorEltTy->isBooleanType() && scalarTy->isIntegralType(S.Context)) {
9922     scalarCast = CK_IntegralToBoolean;
9923   } else if (vectorEltTy->isIntegralType(S.Context)) {
9924     if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
9925         (scalarTy->isIntegerType() &&
9926          S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
9927       DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
9928       return true;
9929     }
9930     if (!scalarTy->isIntegralType(S.Context))
9931       return true;
9932     scalarCast = CK_IntegralCast;
9933   } else if (vectorEltTy->isRealFloatingType()) {
9934     if (scalarTy->isRealFloatingType()) {
9935       if (S.getLangOpts().OpenCL &&
9936           S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
9937         DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
9938         return true;
9939       }
9940       scalarCast = CK_FloatingCast;
9941     }
9942     else if (scalarTy->isIntegralType(S.Context))
9943       scalarCast = CK_IntegralToFloating;
9944     else
9945       return true;
9946   } else {
9947     return true;
9948   }
9949 
9950   // Adjust scalar if desired.
9951   if (scalar) {
9952     if (scalarCast != CK_NoOp)
9953       *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
9954     *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
9955   }
9956   return false;
9957 }
9958 
9959 /// Convert vector E to a vector with the same number of elements but different
9960 /// element type.
9961 static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
9962   const auto *VecTy = E->getType()->getAs<VectorType>();
9963   assert(VecTy && "Expression E must be a vector");
9964   QualType NewVecTy =
9965       VecTy->isExtVectorType()
9966           ? S.Context.getExtVectorType(ElementType, VecTy->getNumElements())
9967           : S.Context.getVectorType(ElementType, VecTy->getNumElements(),
9968                                     VecTy->getVectorKind());
9969 
9970   // Look through the implicit cast. Return the subexpression if its type is
9971   // NewVecTy.
9972   if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
9973     if (ICE->getSubExpr()->getType() == NewVecTy)
9974       return ICE->getSubExpr();
9975 
9976   auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
9977   return S.ImpCastExprToType(E, NewVecTy, Cast);
9978 }
9979 
9980 /// Test if a (constant) integer Int can be casted to another integer type
9981 /// IntTy without losing precision.
9982 static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
9983                                       QualType OtherIntTy) {
9984   if (Int->get()->containsErrors())
9985     return false;
9986 
9987   QualType IntTy = Int->get()->getType().getUnqualifiedType();
9988 
9989   // Reject cases where the value of the Int is unknown as that would
9990   // possibly cause truncation, but accept cases where the scalar can be
9991   // demoted without loss of precision.
9992   Expr::EvalResult EVResult;
9993   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
9994   int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
9995   bool IntSigned = IntTy->hasSignedIntegerRepresentation();
9996   bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
9997 
9998   if (CstInt) {
9999     // If the scalar is constant and is of a higher order and has more active
10000     // bits that the vector element type, reject it.
10001     llvm::APSInt Result = EVResult.Val.getInt();
10002     unsigned NumBits = IntSigned
10003                            ? (Result.isNegative() ? Result.getSignificantBits()
10004                                                   : Result.getActiveBits())
10005                            : Result.getActiveBits();
10006     if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
10007       return true;
10008 
10009     // If the signedness of the scalar type and the vector element type
10010     // differs and the number of bits is greater than that of the vector
10011     // element reject it.
10012     return (IntSigned != OtherIntSigned &&
10013             NumBits > S.Context.getIntWidth(OtherIntTy));
10014   }
10015 
10016   // Reject cases where the value of the scalar is not constant and it's
10017   // order is greater than that of the vector element type.
10018   return (Order < 0);
10019 }
10020 
10021 /// Test if a (constant) integer Int can be casted to floating point type
10022 /// FloatTy without losing precision.
10023 static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
10024                                      QualType FloatTy) {
10025   if (Int->get()->containsErrors())
10026     return false;
10027 
10028   QualType IntTy = Int->get()->getType().getUnqualifiedType();
10029 
10030   // Determine if the integer constant can be expressed as a floating point
10031   // number of the appropriate type.
10032   Expr::EvalResult EVResult;
10033   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
10034 
10035   uint64_t Bits = 0;
10036   if (CstInt) {
10037     // Reject constants that would be truncated if they were converted to
10038     // the floating point type. Test by simple to/from conversion.
10039     // FIXME: Ideally the conversion to an APFloat and from an APFloat
10040     //        could be avoided if there was a convertFromAPInt method
10041     //        which could signal back if implicit truncation occurred.
10042     llvm::APSInt Result = EVResult.Val.getInt();
10043     llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
10044     Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
10045                            llvm::APFloat::rmTowardZero);
10046     llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
10047                              !IntTy->hasSignedIntegerRepresentation());
10048     bool Ignored = false;
10049     Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
10050                            &Ignored);
10051     if (Result != ConvertBack)
10052       return true;
10053   } else {
10054     // Reject types that cannot be fully encoded into the mantissa of
10055     // the float.
10056     Bits = S.Context.getTypeSize(IntTy);
10057     unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
10058         S.Context.getFloatTypeSemantics(FloatTy));
10059     if (Bits > FloatPrec)
10060       return true;
10061   }
10062 
10063   return false;
10064 }
10065 
10066 /// Attempt to convert and splat Scalar into a vector whose types matches
10067 /// Vector following GCC conversion rules. The rule is that implicit
10068 /// conversion can occur when Scalar can be casted to match Vector's element
10069 /// type without causing truncation of Scalar.
10070 static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
10071                                         ExprResult *Vector) {
10072   QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
10073   QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
10074   QualType VectorEltTy;
10075 
10076   if (const auto *VT = VectorTy->getAs<VectorType>()) {
10077     assert(!isa<ExtVectorType>(VT) &&
10078            "ExtVectorTypes should not be handled here!");
10079     VectorEltTy = VT->getElementType();
10080   } else if (VectorTy->isSveVLSBuiltinType()) {
10081     VectorEltTy =
10082         VectorTy->castAs<BuiltinType>()->getSveEltType(S.getASTContext());
10083   } else {
10084     llvm_unreachable("Only Fixed-Length and SVE Vector types are handled here");
10085   }
10086 
10087   // Reject cases where the vector element type or the scalar element type are
10088   // not integral or floating point types.
10089   if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
10090     return true;
10091 
10092   // The conversion to apply to the scalar before splatting it,
10093   // if necessary.
10094   CastKind ScalarCast = CK_NoOp;
10095 
10096   // Accept cases where the vector elements are integers and the scalar is
10097   // an integer.
10098   // FIXME: Notionally if the scalar was a floating point value with a precise
10099   //        integral representation, we could cast it to an appropriate integer
10100   //        type and then perform the rest of the checks here. GCC will perform
10101   //        this conversion in some cases as determined by the input language.
10102   //        We should accept it on a language independent basis.
10103   if (VectorEltTy->isIntegralType(S.Context) &&
10104       ScalarTy->isIntegralType(S.Context) &&
10105       S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
10106 
10107     if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
10108       return true;
10109 
10110     ScalarCast = CK_IntegralCast;
10111   } else if (VectorEltTy->isIntegralType(S.Context) &&
10112              ScalarTy->isRealFloatingType()) {
10113     if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
10114       ScalarCast = CK_FloatingToIntegral;
10115     else
10116       return true;
10117   } else if (VectorEltTy->isRealFloatingType()) {
10118     if (ScalarTy->isRealFloatingType()) {
10119 
10120       // Reject cases where the scalar type is not a constant and has a higher
10121       // Order than the vector element type.
10122       llvm::APFloat Result(0.0);
10123 
10124       // Determine whether this is a constant scalar. In the event that the
10125       // value is dependent (and thus cannot be evaluated by the constant
10126       // evaluator), skip the evaluation. This will then diagnose once the
10127       // expression is instantiated.
10128       bool CstScalar = Scalar->get()->isValueDependent() ||
10129                        Scalar->get()->EvaluateAsFloat(Result, S.Context);
10130       int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
10131       if (!CstScalar && Order < 0)
10132         return true;
10133 
10134       // If the scalar cannot be safely casted to the vector element type,
10135       // reject it.
10136       if (CstScalar) {
10137         bool Truncated = false;
10138         Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
10139                        llvm::APFloat::rmNearestTiesToEven, &Truncated);
10140         if (Truncated)
10141           return true;
10142       }
10143 
10144       ScalarCast = CK_FloatingCast;
10145     } else if (ScalarTy->isIntegralType(S.Context)) {
10146       if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
10147         return true;
10148 
10149       ScalarCast = CK_IntegralToFloating;
10150     } else
10151       return true;
10152   } else if (ScalarTy->isEnumeralType())
10153     return true;
10154 
10155   // Adjust scalar if desired.
10156   if (ScalarCast != CK_NoOp)
10157     *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
10158   *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
10159   return false;
10160 }
10161 
10162 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
10163                                    SourceLocation Loc, bool IsCompAssign,
10164                                    bool AllowBothBool,
10165                                    bool AllowBoolConversions,
10166                                    bool AllowBoolOperation,
10167                                    bool ReportInvalid) {
10168   if (!IsCompAssign) {
10169     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
10170     if (LHS.isInvalid())
10171       return QualType();
10172   }
10173   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
10174   if (RHS.isInvalid())
10175     return QualType();
10176 
10177   // For conversion purposes, we ignore any qualifiers.
10178   // For example, "const float" and "float" are equivalent.
10179   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10180   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10181 
10182   const VectorType *LHSVecType = LHSType->getAs<VectorType>();
10183   const VectorType *RHSVecType = RHSType->getAs<VectorType>();
10184   assert(LHSVecType || RHSVecType);
10185 
10186   if (getLangOpts().HLSL)
10187     return HLSL().handleVectorBinOpConversion(LHS, RHS, LHSType, RHSType,
10188                                               IsCompAssign);
10189 
10190   // Any operation with MFloat8 type is only possible with C intrinsics
10191   if ((LHSVecType && LHSVecType->getElementType()->isMFloat8Type()) ||
10192       (RHSVecType && RHSVecType->getElementType()->isMFloat8Type()))
10193     return InvalidOperands(Loc, LHS, RHS);
10194 
10195   // AltiVec-style "vector bool op vector bool" combinations are allowed
10196   // for some operators but not others.
10197   if (!AllowBothBool && LHSVecType &&
10198       LHSVecType->getVectorKind() == VectorKind::AltiVecBool && RHSVecType &&
10199       RHSVecType->getVectorKind() == VectorKind::AltiVecBool)
10200     return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10201 
10202   // This operation may not be performed on boolean vectors.
10203   if (!AllowBoolOperation &&
10204       (LHSType->isExtVectorBoolType() || RHSType->isExtVectorBoolType()))
10205     return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10206 
10207   // If the vector types are identical, return.
10208   if (Context.hasSameType(LHSType, RHSType))
10209     return Context.getCommonSugaredType(LHSType, RHSType);
10210 
10211   // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
10212   if (LHSVecType && RHSVecType &&
10213       Context.areCompatibleVectorTypes(LHSType, RHSType)) {
10214     if (isa<ExtVectorType>(LHSVecType)) {
10215       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10216       return LHSType;
10217     }
10218 
10219     if (!IsCompAssign)
10220       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10221     return RHSType;
10222   }
10223 
10224   // AllowBoolConversions says that bool and non-bool AltiVec vectors
10225   // can be mixed, with the result being the non-bool type.  The non-bool
10226   // operand must have integer element type.
10227   if (AllowBoolConversions && LHSVecType && RHSVecType &&
10228       LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
10229       (Context.getTypeSize(LHSVecType->getElementType()) ==
10230        Context.getTypeSize(RHSVecType->getElementType()))) {
10231     if (LHSVecType->getVectorKind() == VectorKind::AltiVecVector &&
10232         LHSVecType->getElementType()->isIntegerType() &&
10233         RHSVecType->getVectorKind() == VectorKind::AltiVecBool) {
10234       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10235       return LHSType;
10236     }
10237     if (!IsCompAssign &&
10238         LHSVecType->getVectorKind() == VectorKind::AltiVecBool &&
10239         RHSVecType->getVectorKind() == VectorKind::AltiVecVector &&
10240         RHSVecType->getElementType()->isIntegerType()) {
10241       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10242       return RHSType;
10243     }
10244   }
10245 
10246   // Expressions containing fixed-length and sizeless SVE/RVV vectors are
10247   // invalid since the ambiguity can affect the ABI.
10248   auto IsSveRVVConversion = [](QualType FirstType, QualType SecondType,
10249                                unsigned &SVEorRVV) {
10250     const VectorType *VecType = SecondType->getAs<VectorType>();
10251     SVEorRVV = 0;
10252     if (FirstType->isSizelessBuiltinType() && VecType) {
10253       if (VecType->getVectorKind() == VectorKind::SveFixedLengthData ||
10254           VecType->getVectorKind() == VectorKind::SveFixedLengthPredicate)
10255         return true;
10256       if (VecType->getVectorKind() == VectorKind::RVVFixedLengthData ||
10257           VecType->getVectorKind() == VectorKind::RVVFixedLengthMask ||
10258           VecType->getVectorKind() == VectorKind::RVVFixedLengthMask_1 ||
10259           VecType->getVectorKind() == VectorKind::RVVFixedLengthMask_2 ||
10260           VecType->getVectorKind() == VectorKind::RVVFixedLengthMask_4) {
10261         SVEorRVV = 1;
10262         return true;
10263       }
10264     }
10265 
10266     return false;
10267   };
10268 
10269   unsigned SVEorRVV;
10270   if (IsSveRVVConversion(LHSType, RHSType, SVEorRVV) ||
10271       IsSveRVVConversion(RHSType, LHSType, SVEorRVV)) {
10272     Diag(Loc, diag::err_typecheck_sve_rvv_ambiguous)
10273         << SVEorRVV << LHSType << RHSType;
10274     return QualType();
10275   }
10276 
10277   // Expressions containing GNU and SVE or RVV (fixed or sizeless) vectors are
10278   // invalid since the ambiguity can affect the ABI.
10279   auto IsSveRVVGnuConversion = [](QualType FirstType, QualType SecondType,
10280                                   unsigned &SVEorRVV) {
10281     const VectorType *FirstVecType = FirstType->getAs<VectorType>();
10282     const VectorType *SecondVecType = SecondType->getAs<VectorType>();
10283 
10284     SVEorRVV = 0;
10285     if (FirstVecType && SecondVecType) {
10286       if (FirstVecType->getVectorKind() == VectorKind::Generic) {
10287         if (SecondVecType->getVectorKind() == VectorKind::SveFixedLengthData ||
10288             SecondVecType->getVectorKind() ==
10289                 VectorKind::SveFixedLengthPredicate)
10290           return true;
10291         if (SecondVecType->getVectorKind() == VectorKind::RVVFixedLengthData ||
10292             SecondVecType->getVectorKind() == VectorKind::RVVFixedLengthMask ||
10293             SecondVecType->getVectorKind() ==
10294                 VectorKind::RVVFixedLengthMask_1 ||
10295             SecondVecType->getVectorKind() ==
10296                 VectorKind::RVVFixedLengthMask_2 ||
10297             SecondVecType->getVectorKind() ==
10298                 VectorKind::RVVFixedLengthMask_4) {
10299           SVEorRVV = 1;
10300           return true;
10301         }
10302       }
10303       return false;
10304     }
10305 
10306     if (SecondVecType &&
10307         SecondVecType->getVectorKind() == VectorKind::Generic) {
10308       if (FirstType->isSVESizelessBuiltinType())
10309         return true;
10310       if (FirstType->isRVVSizelessBuiltinType()) {
10311         SVEorRVV = 1;
10312         return true;
10313       }
10314     }
10315 
10316     return false;
10317   };
10318 
10319   if (IsSveRVVGnuConversion(LHSType, RHSType, SVEorRVV) ||
10320       IsSveRVVGnuConversion(RHSType, LHSType, SVEorRVV)) {
10321     Diag(Loc, diag::err_typecheck_sve_rvv_gnu_ambiguous)
10322         << SVEorRVV << LHSType << RHSType;
10323     return QualType();
10324   }
10325 
10326   // If there's a vector type and a scalar, try to convert the scalar to
10327   // the vector element type and splat.
10328   unsigned DiagID = diag::err_typecheck_vector_not_convertable;
10329   if (!RHSVecType) {
10330     if (isa<ExtVectorType>(LHSVecType)) {
10331       if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
10332                                     LHSVecType->getElementType(), LHSType,
10333                                     DiagID))
10334         return LHSType;
10335     } else {
10336       if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
10337         return LHSType;
10338     }
10339   }
10340   if (!LHSVecType) {
10341     if (isa<ExtVectorType>(RHSVecType)) {
10342       if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
10343                                     LHSType, RHSVecType->getElementType(),
10344                                     RHSType, DiagID))
10345         return RHSType;
10346     } else {
10347       if (LHS.get()->isLValue() ||
10348           !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
10349         return RHSType;
10350     }
10351   }
10352 
10353   // FIXME: The code below also handles conversion between vectors and
10354   // non-scalars, we should break this down into fine grained specific checks
10355   // and emit proper diagnostics.
10356   QualType VecType = LHSVecType ? LHSType : RHSType;
10357   const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
10358   QualType OtherType = LHSVecType ? RHSType : LHSType;
10359   ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
10360   if (isLaxVectorConversion(OtherType, VecType)) {
10361     if (Context.getTargetInfo().getTriple().isPPC() &&
10362         anyAltivecTypes(RHSType, LHSType) &&
10363         !Context.areCompatibleVectorTypes(RHSType, LHSType))
10364       Diag(Loc, diag::warn_deprecated_lax_vec_conv_all) << RHSType << LHSType;
10365     // If we're allowing lax vector conversions, only the total (data) size
10366     // needs to be the same. For non compound assignment, if one of the types is
10367     // scalar, the result is always the vector type.
10368     if (!IsCompAssign) {
10369       *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
10370       return VecType;
10371     // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
10372     // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
10373     // type. Note that this is already done by non-compound assignments in
10374     // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
10375     // <1 x T> -> T. The result is also a vector type.
10376     } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
10377                (OtherType->isScalarType() && VT->getNumElements() == 1)) {
10378       ExprResult *RHSExpr = &RHS;
10379       *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
10380       return VecType;
10381     }
10382   }
10383 
10384   // Okay, the expression is invalid.
10385 
10386   // If there's a non-vector, non-real operand, diagnose that.
10387   if ((!RHSVecType && !RHSType->isRealType()) ||
10388       (!LHSVecType && !LHSType->isRealType())) {
10389     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10390       << LHSType << RHSType
10391       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10392     return QualType();
10393   }
10394 
10395   // OpenCL V1.1 6.2.6.p1:
10396   // If the operands are of more than one vector type, then an error shall
10397   // occur. Implicit conversions between vector types are not permitted, per
10398   // section 6.2.1.
10399   if (getLangOpts().OpenCL &&
10400       RHSVecType && isa<ExtVectorType>(RHSVecType) &&
10401       LHSVecType && isa<ExtVectorType>(LHSVecType)) {
10402     Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
10403                                                            << RHSType;
10404     return QualType();
10405   }
10406 
10407 
10408   // If there is a vector type that is not a ExtVector and a scalar, we reach
10409   // this point if scalar could not be converted to the vector's element type
10410   // without truncation.
10411   if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
10412       (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
10413     QualType Scalar = LHSVecType ? RHSType : LHSType;
10414     QualType Vector = LHSVecType ? LHSType : RHSType;
10415     unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
10416     Diag(Loc,
10417          diag::err_typecheck_vector_not_convertable_implict_truncation)
10418         << ScalarOrVector << Scalar << Vector;
10419 
10420     return QualType();
10421   }
10422 
10423   // Otherwise, use the generic diagnostic.
10424   Diag(Loc, DiagID)
10425     << LHSType << RHSType
10426     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10427   return QualType();
10428 }
10429 
10430 QualType Sema::CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS,
10431                                            SourceLocation Loc,
10432                                            bool IsCompAssign,
10433                                            ArithConvKind OperationKind) {
10434   if (!IsCompAssign) {
10435     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
10436     if (LHS.isInvalid())
10437       return QualType();
10438   }
10439   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
10440   if (RHS.isInvalid())
10441     return QualType();
10442 
10443   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10444   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10445 
10446   const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
10447   const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>();
10448 
10449   unsigned DiagID = diag::err_typecheck_invalid_operands;
10450   if ((OperationKind == ACK_Arithmetic) &&
10451       ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
10452        (RHSBuiltinTy && RHSBuiltinTy->isSVEBool()))) {
10453     Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
10454                       << RHS.get()->getSourceRange();
10455     return QualType();
10456   }
10457 
10458   if (Context.hasSameType(LHSType, RHSType))
10459     return LHSType;
10460 
10461   if (LHSType->isSveVLSBuiltinType() && !RHSType->isSveVLSBuiltinType()) {
10462     if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
10463       return LHSType;
10464   }
10465   if (RHSType->isSveVLSBuiltinType() && !LHSType->isSveVLSBuiltinType()) {
10466     if (LHS.get()->isLValue() ||
10467         !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
10468       return RHSType;
10469   }
10470 
10471   if ((!LHSType->isSveVLSBuiltinType() && !LHSType->isRealType()) ||
10472       (!RHSType->isSveVLSBuiltinType() && !RHSType->isRealType())) {
10473     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10474         << LHSType << RHSType << LHS.get()->getSourceRange()
10475         << RHS.get()->getSourceRange();
10476     return QualType();
10477   }
10478 
10479   if (LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType() &&
10480       Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
10481           Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC) {
10482     Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
10483         << LHSType << RHSType << LHS.get()->getSourceRange()
10484         << RHS.get()->getSourceRange();
10485     return QualType();
10486   }
10487 
10488   if (LHSType->isSveVLSBuiltinType() || RHSType->isSveVLSBuiltinType()) {
10489     QualType Scalar = LHSType->isSveVLSBuiltinType() ? RHSType : LHSType;
10490     QualType Vector = LHSType->isSveVLSBuiltinType() ? LHSType : RHSType;
10491     bool ScalarOrVector =
10492         LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType();
10493 
10494     Diag(Loc, diag::err_typecheck_vector_not_convertable_implict_truncation)
10495         << ScalarOrVector << Scalar << Vector;
10496 
10497     return QualType();
10498   }
10499 
10500   Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
10501                     << RHS.get()->getSourceRange();
10502   return QualType();
10503 }
10504 
10505 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
10506 // expression.  These are mainly cases where the null pointer is used as an
10507 // integer instead of a pointer.
10508 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
10509                                 SourceLocation Loc, bool IsCompare) {
10510   // The canonical way to check for a GNU null is with isNullPointerConstant,
10511   // but we use a bit of a hack here for speed; this is a relatively
10512   // hot path, and isNullPointerConstant is slow.
10513   bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
10514   bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
10515 
10516   QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
10517 
10518   // Avoid analyzing cases where the result will either be invalid (and
10519   // diagnosed as such) or entirely valid and not something to warn about.
10520   if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
10521       NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
10522     return;
10523 
10524   // Comparison operations would not make sense with a null pointer no matter
10525   // what the other expression is.
10526   if (!IsCompare) {
10527     S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
10528         << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
10529         << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
10530     return;
10531   }
10532 
10533   // The rest of the operations only make sense with a null pointer
10534   // if the other expression is a pointer.
10535   if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
10536       NonNullType->canDecayToPointerType())
10537     return;
10538 
10539   S.Diag(Loc, diag::warn_null_in_comparison_operation)
10540       << LHSNull /* LHS is NULL */ << NonNullType
10541       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10542 }
10543 
10544 static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
10545                                           SourceLocation Loc) {
10546   const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
10547   const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
10548   if (!LUE || !RUE)
10549     return;
10550   if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
10551       RUE->getKind() != UETT_SizeOf)
10552     return;
10553 
10554   const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
10555   QualType LHSTy = LHSArg->getType();
10556   QualType RHSTy;
10557 
10558   if (RUE->isArgumentType())
10559     RHSTy = RUE->getArgumentType().getNonReferenceType();
10560   else
10561     RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
10562 
10563   if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
10564     if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
10565       return;
10566 
10567     S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
10568     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10569       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10570         S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
10571             << LHSArgDecl;
10572     }
10573   } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
10574     QualType ArrayElemTy = ArrayTy->getElementType();
10575     if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
10576         ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
10577         RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
10578         S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
10579       return;
10580     S.Diag(Loc, diag::warn_division_sizeof_array)
10581         << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
10582     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10583       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10584         S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
10585             << LHSArgDecl;
10586     }
10587 
10588     S.Diag(Loc, diag::note_precedence_silence) << RHS;
10589   }
10590 }
10591 
10592 static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
10593                                                ExprResult &RHS,
10594                                                SourceLocation Loc, bool IsDiv) {
10595   // Check for division/remainder by zero.
10596   Expr::EvalResult RHSValue;
10597   if (!RHS.get()->isValueDependent() &&
10598       RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
10599       RHSValue.Val.getInt() == 0)
10600     S.DiagRuntimeBehavior(Loc, RHS.get(),
10601                           S.PDiag(diag::warn_remainder_division_by_zero)
10602                             << IsDiv << RHS.get()->getSourceRange());
10603 }
10604 
10605 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
10606                                            SourceLocation Loc,
10607                                            bool IsCompAssign, bool IsDiv) {
10608   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10609 
10610   QualType LHSTy = LHS.get()->getType();
10611   QualType RHSTy = RHS.get()->getType();
10612   if (LHSTy->isVectorType() || RHSTy->isVectorType())
10613     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10614                                /*AllowBothBool*/ getLangOpts().AltiVec,
10615                                /*AllowBoolConversions*/ false,
10616                                /*AllowBooleanOperation*/ false,
10617                                /*ReportInvalid*/ true);
10618   if (LHSTy->isSveVLSBuiltinType() || RHSTy->isSveVLSBuiltinType())
10619     return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
10620                                        ACK_Arithmetic);
10621   if (!IsDiv &&
10622       (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType()))
10623     return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
10624   // For division, only matrix-by-scalar is supported. Other combinations with
10625   // matrix types are invalid.
10626   if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType())
10627     return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
10628 
10629   QualType compType = UsualArithmeticConversions(
10630       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10631   if (LHS.isInvalid() || RHS.isInvalid())
10632     return QualType();
10633 
10634 
10635   if (compType.isNull() || !compType->isArithmeticType())
10636     return InvalidOperands(Loc, LHS, RHS);
10637   if (IsDiv) {
10638     DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
10639     DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
10640   }
10641   return compType;
10642 }
10643 
10644 QualType Sema::CheckRemainderOperands(
10645   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
10646   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10647 
10648   if (LHS.get()->getType()->isVectorType() ||
10649       RHS.get()->getType()->isVectorType()) {
10650     if (LHS.get()->getType()->hasIntegerRepresentation() &&
10651         RHS.get()->getType()->hasIntegerRepresentation())
10652       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10653                                  /*AllowBothBool*/ getLangOpts().AltiVec,
10654                                  /*AllowBoolConversions*/ false,
10655                                  /*AllowBooleanOperation*/ false,
10656                                  /*ReportInvalid*/ true);
10657     return InvalidOperands(Loc, LHS, RHS);
10658   }
10659 
10660   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
10661       RHS.get()->getType()->isSveVLSBuiltinType()) {
10662     if (LHS.get()->getType()->hasIntegerRepresentation() &&
10663         RHS.get()->getType()->hasIntegerRepresentation())
10664       return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
10665                                          ACK_Arithmetic);
10666 
10667     return InvalidOperands(Loc, LHS, RHS);
10668   }
10669 
10670   QualType compType = UsualArithmeticConversions(
10671       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10672   if (LHS.isInvalid() || RHS.isInvalid())
10673     return QualType();
10674 
10675   if (compType.isNull() || !compType->isIntegerType())
10676     return InvalidOperands(Loc, LHS, RHS);
10677   DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
10678   return compType;
10679 }
10680 
10681 /// Diagnose invalid arithmetic on two void pointers.
10682 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
10683                                                 Expr *LHSExpr, Expr *RHSExpr) {
10684   S.Diag(Loc, S.getLangOpts().CPlusPlus
10685                 ? diag::err_typecheck_pointer_arith_void_type
10686                 : diag::ext_gnu_void_ptr)
10687     << 1 /* two pointers */ << LHSExpr->getSourceRange()
10688                             << RHSExpr->getSourceRange();
10689 }
10690 
10691 /// Diagnose invalid arithmetic on a void pointer.
10692 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
10693                                             Expr *Pointer) {
10694   S.Diag(Loc, S.getLangOpts().CPlusPlus
10695                 ? diag::err_typecheck_pointer_arith_void_type
10696                 : diag::ext_gnu_void_ptr)
10697     << 0 /* one pointer */ << Pointer->getSourceRange();
10698 }
10699 
10700 /// Diagnose invalid arithmetic on a null pointer.
10701 ///
10702 /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
10703 /// idiom, which we recognize as a GNU extension.
10704 ///
10705 static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
10706                                             Expr *Pointer, bool IsGNUIdiom) {
10707   if (IsGNUIdiom)
10708     S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
10709       << Pointer->getSourceRange();
10710   else
10711     S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
10712       << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
10713 }
10714 
10715 /// Diagnose invalid subraction on a null pointer.
10716 ///
10717 static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc,
10718                                              Expr *Pointer, bool BothNull) {
10719   // Null - null is valid in C++ [expr.add]p7
10720   if (BothNull && S.getLangOpts().CPlusPlus)
10721     return;
10722 
10723   // Is this s a macro from a system header?
10724   if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(Loc))
10725     return;
10726 
10727   S.DiagRuntimeBehavior(Loc, Pointer,
10728                         S.PDiag(diag::warn_pointer_sub_null_ptr)
10729                             << S.getLangOpts().CPlusPlus
10730                             << Pointer->getSourceRange());
10731 }
10732 
10733 /// Diagnose invalid arithmetic on two function pointers.
10734 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
10735                                                     Expr *LHS, Expr *RHS) {
10736   assert(LHS->getType()->isAnyPointerType());
10737   assert(RHS->getType()->isAnyPointerType());
10738   S.Diag(Loc, S.getLangOpts().CPlusPlus
10739                 ? diag::err_typecheck_pointer_arith_function_type
10740                 : diag::ext_gnu_ptr_func_arith)
10741     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
10742     // We only show the second type if it differs from the first.
10743     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
10744                                                    RHS->getType())
10745     << RHS->getType()->getPointeeType()
10746     << LHS->getSourceRange() << RHS->getSourceRange();
10747 }
10748 
10749 /// Diagnose invalid arithmetic on a function pointer.
10750 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
10751                                                 Expr *Pointer) {
10752   assert(Pointer->getType()->isAnyPointerType());
10753   S.Diag(Loc, S.getLangOpts().CPlusPlus
10754                 ? diag::err_typecheck_pointer_arith_function_type
10755                 : diag::ext_gnu_ptr_func_arith)
10756     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
10757     << 0 /* one pointer, so only one type */
10758     << Pointer->getSourceRange();
10759 }
10760 
10761 /// Emit error if Operand is incomplete pointer type
10762 ///
10763 /// \returns True if pointer has incomplete type
10764 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
10765                                                  Expr *Operand) {
10766   QualType ResType = Operand->getType();
10767   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10768     ResType = ResAtomicType->getValueType();
10769 
10770   assert(ResType->isAnyPointerType());
10771   QualType PointeeTy = ResType->getPointeeType();
10772   return S.RequireCompleteSizedType(
10773       Loc, PointeeTy,
10774       diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
10775       Operand->getSourceRange());
10776 }
10777 
10778 /// Check the validity of an arithmetic pointer operand.
10779 ///
10780 /// If the operand has pointer type, this code will check for pointer types
10781 /// which are invalid in arithmetic operations. These will be diagnosed
10782 /// appropriately, including whether or not the use is supported as an
10783 /// extension.
10784 ///
10785 /// \returns True when the operand is valid to use (even if as an extension).
10786 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
10787                                             Expr *Operand) {
10788   QualType ResType = Operand->getType();
10789   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10790     ResType = ResAtomicType->getValueType();
10791 
10792   if (!ResType->isAnyPointerType()) return true;
10793 
10794   QualType PointeeTy = ResType->getPointeeType();
10795   if (PointeeTy->isVoidType()) {
10796     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
10797     return !S.getLangOpts().CPlusPlus;
10798   }
10799   if (PointeeTy->isFunctionType()) {
10800     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
10801     return !S.getLangOpts().CPlusPlus;
10802   }
10803 
10804   if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
10805 
10806   return true;
10807 }
10808 
10809 /// Check the validity of a binary arithmetic operation w.r.t. pointer
10810 /// operands.
10811 ///
10812 /// This routine will diagnose any invalid arithmetic on pointer operands much
10813 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
10814 /// for emitting a single diagnostic even for operations where both LHS and RHS
10815 /// are (potentially problematic) pointers.
10816 ///
10817 /// \returns True when the operand is valid to use (even if as an extension).
10818 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
10819                                                 Expr *LHSExpr, Expr *RHSExpr) {
10820   bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
10821   bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
10822   if (!isLHSPointer && !isRHSPointer) return true;
10823 
10824   QualType LHSPointeeTy, RHSPointeeTy;
10825   if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
10826   if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
10827 
10828   // if both are pointers check if operation is valid wrt address spaces
10829   if (isLHSPointer && isRHSPointer) {
10830     if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy,
10831                                                 S.getASTContext())) {
10832       S.Diag(Loc,
10833              diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
10834           << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
10835           << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
10836       return false;
10837     }
10838   }
10839 
10840   // Check for arithmetic on pointers to incomplete types.
10841   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
10842   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
10843   if (isLHSVoidPtr || isRHSVoidPtr) {
10844     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
10845     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
10846     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
10847 
10848     return !S.getLangOpts().CPlusPlus;
10849   }
10850 
10851   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
10852   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
10853   if (isLHSFuncPtr || isRHSFuncPtr) {
10854     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
10855     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
10856                                                                 RHSExpr);
10857     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
10858 
10859     return !S.getLangOpts().CPlusPlus;
10860   }
10861 
10862   if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
10863     return false;
10864   if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
10865     return false;
10866 
10867   return true;
10868 }
10869 
10870 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
10871 /// literal.
10872 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
10873                                   Expr *LHSExpr, Expr *RHSExpr) {
10874   StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
10875   Expr* IndexExpr = RHSExpr;
10876   if (!StrExpr) {
10877     StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
10878     IndexExpr = LHSExpr;
10879   }
10880 
10881   bool IsStringPlusInt = StrExpr &&
10882       IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
10883   if (!IsStringPlusInt || IndexExpr->isValueDependent())
10884     return;
10885 
10886   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
10887   Self.Diag(OpLoc, diag::warn_string_plus_int)
10888       << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
10889 
10890   // Only print a fixit for "str" + int, not for int + "str".
10891   if (IndexExpr == RHSExpr) {
10892     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
10893     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
10894         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
10895         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
10896         << FixItHint::CreateInsertion(EndLoc, "]");
10897   } else
10898     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
10899 }
10900 
10901 /// Emit a warning when adding a char literal to a string.
10902 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
10903                                    Expr *LHSExpr, Expr *RHSExpr) {
10904   const Expr *StringRefExpr = LHSExpr;
10905   const CharacterLiteral *CharExpr =
10906       dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
10907 
10908   if (!CharExpr) {
10909     CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
10910     StringRefExpr = RHSExpr;
10911   }
10912 
10913   if (!CharExpr || !StringRefExpr)
10914     return;
10915 
10916   const QualType StringType = StringRefExpr->getType();
10917 
10918   // Return if not a PointerType.
10919   if (!StringType->isAnyPointerType())
10920     return;
10921 
10922   // Return if not a CharacterType.
10923   if (!StringType->getPointeeType()->isAnyCharacterType())
10924     return;
10925 
10926   ASTContext &Ctx = Self.getASTContext();
10927   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
10928 
10929   const QualType CharType = CharExpr->getType();
10930   if (!CharType->isAnyCharacterType() &&
10931       CharType->isIntegerType() &&
10932       llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
10933     Self.Diag(OpLoc, diag::warn_string_plus_char)
10934         << DiagRange << Ctx.CharTy;
10935   } else {
10936     Self.Diag(OpLoc, diag::warn_string_plus_char)
10937         << DiagRange << CharExpr->getType();
10938   }
10939 
10940   // Only print a fixit for str + char, not for char + str.
10941   if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
10942     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
10943     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
10944         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
10945         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
10946         << FixItHint::CreateInsertion(EndLoc, "]");
10947   } else {
10948     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
10949   }
10950 }
10951 
10952 /// Emit error when two pointers are incompatible.
10953 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
10954                                            Expr *LHSExpr, Expr *RHSExpr) {
10955   assert(LHSExpr->getType()->isAnyPointerType());
10956   assert(RHSExpr->getType()->isAnyPointerType());
10957   S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
10958     << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
10959     << RHSExpr->getSourceRange();
10960 }
10961 
10962 // C99 6.5.6
10963 QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
10964                                      SourceLocation Loc, BinaryOperatorKind Opc,
10965                                      QualType* CompLHSTy) {
10966   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10967 
10968   if (LHS.get()->getType()->isVectorType() ||
10969       RHS.get()->getType()->isVectorType()) {
10970     QualType compType =
10971         CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
10972                             /*AllowBothBool*/ getLangOpts().AltiVec,
10973                             /*AllowBoolConversions*/ getLangOpts().ZVector,
10974                             /*AllowBooleanOperation*/ false,
10975                             /*ReportInvalid*/ true);
10976     if (CompLHSTy) *CompLHSTy = compType;
10977     return compType;
10978   }
10979 
10980   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
10981       RHS.get()->getType()->isSveVLSBuiltinType()) {
10982     QualType compType =
10983         CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
10984     if (CompLHSTy)
10985       *CompLHSTy = compType;
10986     return compType;
10987   }
10988 
10989   if (LHS.get()->getType()->isConstantMatrixType() ||
10990       RHS.get()->getType()->isConstantMatrixType()) {
10991     QualType compType =
10992         CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
10993     if (CompLHSTy)
10994       *CompLHSTy = compType;
10995     return compType;
10996   }
10997 
10998   QualType compType = UsualArithmeticConversions(
10999       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11000   if (LHS.isInvalid() || RHS.isInvalid())
11001     return QualType();
11002 
11003   // Diagnose "string literal" '+' int and string '+' "char literal".
11004   if (Opc == BO_Add) {
11005     diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
11006     diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
11007   }
11008 
11009   // handle the common case first (both operands are arithmetic).
11010   if (!compType.isNull() && compType->isArithmeticType()) {
11011     if (CompLHSTy) *CompLHSTy = compType;
11012     return compType;
11013   }
11014 
11015   // Type-checking.  Ultimately the pointer's going to be in PExp;
11016   // note that we bias towards the LHS being the pointer.
11017   Expr *PExp = LHS.get(), *IExp = RHS.get();
11018 
11019   bool isObjCPointer;
11020   if (PExp->getType()->isPointerType()) {
11021     isObjCPointer = false;
11022   } else if (PExp->getType()->isObjCObjectPointerType()) {
11023     isObjCPointer = true;
11024   } else {
11025     std::swap(PExp, IExp);
11026     if (PExp->getType()->isPointerType()) {
11027       isObjCPointer = false;
11028     } else if (PExp->getType()->isObjCObjectPointerType()) {
11029       isObjCPointer = true;
11030     } else {
11031       return InvalidOperands(Loc, LHS, RHS);
11032     }
11033   }
11034   assert(PExp->getType()->isAnyPointerType());
11035 
11036   if (!IExp->getType()->isIntegerType())
11037     return InvalidOperands(Loc, LHS, RHS);
11038 
11039   // Adding to a null pointer results in undefined behavior.
11040   if (PExp->IgnoreParenCasts()->isNullPointerConstant(
11041           Context, Expr::NPC_ValueDependentIsNotNull)) {
11042     // In C++ adding zero to a null pointer is defined.
11043     Expr::EvalResult KnownVal;
11044     if (!getLangOpts().CPlusPlus ||
11045         (!IExp->isValueDependent() &&
11046          (!IExp->EvaluateAsInt(KnownVal, Context) ||
11047           KnownVal.Val.getInt() != 0))) {
11048       // Check the conditions to see if this is the 'p = nullptr + n' idiom.
11049       bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
11050           Context, BO_Add, PExp, IExp);
11051       diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
11052     }
11053   }
11054 
11055   if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
11056     return QualType();
11057 
11058   if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
11059     return QualType();
11060 
11061   // Arithmetic on label addresses is normally allowed, except when we add
11062   // a ptrauth signature to the addresses.
11063   if (isa<AddrLabelExpr>(PExp) && getLangOpts().PointerAuthIndirectGotos) {
11064     Diag(Loc, diag::err_ptrauth_indirect_goto_addrlabel_arithmetic)
11065         << /*addition*/ 1;
11066     return QualType();
11067   }
11068 
11069   // Check array bounds for pointer arithemtic
11070   CheckArrayAccess(PExp, IExp);
11071 
11072   if (CompLHSTy) {
11073     QualType LHSTy = Context.isPromotableBitField(LHS.get());
11074     if (LHSTy.isNull()) {
11075       LHSTy = LHS.get()->getType();
11076       if (Context.isPromotableIntegerType(LHSTy))
11077         LHSTy = Context.getPromotedIntegerType(LHSTy);
11078     }
11079     *CompLHSTy = LHSTy;
11080   }
11081 
11082   return PExp->getType();
11083 }
11084 
11085 // C99 6.5.6
11086 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
11087                                         SourceLocation Loc,
11088                                         QualType* CompLHSTy) {
11089   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11090 
11091   if (LHS.get()->getType()->isVectorType() ||
11092       RHS.get()->getType()->isVectorType()) {
11093     QualType compType =
11094         CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
11095                             /*AllowBothBool*/ getLangOpts().AltiVec,
11096                             /*AllowBoolConversions*/ getLangOpts().ZVector,
11097                             /*AllowBooleanOperation*/ false,
11098                             /*ReportInvalid*/ true);
11099     if (CompLHSTy) *CompLHSTy = compType;
11100     return compType;
11101   }
11102 
11103   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11104       RHS.get()->getType()->isSveVLSBuiltinType()) {
11105     QualType compType =
11106         CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
11107     if (CompLHSTy)
11108       *CompLHSTy = compType;
11109     return compType;
11110   }
11111 
11112   if (LHS.get()->getType()->isConstantMatrixType() ||
11113       RHS.get()->getType()->isConstantMatrixType()) {
11114     QualType compType =
11115         CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
11116     if (CompLHSTy)
11117       *CompLHSTy = compType;
11118     return compType;
11119   }
11120 
11121   QualType compType = UsualArithmeticConversions(
11122       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11123   if (LHS.isInvalid() || RHS.isInvalid())
11124     return QualType();
11125 
11126   // Enforce type constraints: C99 6.5.6p3.
11127 
11128   // Handle the common case first (both operands are arithmetic).
11129   if (!compType.isNull() && compType->isArithmeticType()) {
11130     if (CompLHSTy) *CompLHSTy = compType;
11131     return compType;
11132   }
11133 
11134   // Either ptr - int   or   ptr - ptr.
11135   if (LHS.get()->getType()->isAnyPointerType()) {
11136     QualType lpointee = LHS.get()->getType()->getPointeeType();
11137 
11138     // Diagnose bad cases where we step over interface counts.
11139     if (LHS.get()->getType()->isObjCObjectPointerType() &&
11140         checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
11141       return QualType();
11142 
11143     // Arithmetic on label addresses is normally allowed, except when we add
11144     // a ptrauth signature to the addresses.
11145     if (isa<AddrLabelExpr>(LHS.get()) &&
11146         getLangOpts().PointerAuthIndirectGotos) {
11147       Diag(Loc, diag::err_ptrauth_indirect_goto_addrlabel_arithmetic)
11148           << /*subtraction*/ 0;
11149       return QualType();
11150     }
11151 
11152     // The result type of a pointer-int computation is the pointer type.
11153     if (RHS.get()->getType()->isIntegerType()) {
11154       // Subtracting from a null pointer should produce a warning.
11155       // The last argument to the diagnose call says this doesn't match the
11156       // GNU int-to-pointer idiom.
11157       if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
11158                                            Expr::NPC_ValueDependentIsNotNull)) {
11159         // In C++ adding zero to a null pointer is defined.
11160         Expr::EvalResult KnownVal;
11161         if (!getLangOpts().CPlusPlus ||
11162             (!RHS.get()->isValueDependent() &&
11163              (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
11164               KnownVal.Val.getInt() != 0))) {
11165           diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
11166         }
11167       }
11168 
11169       if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
11170         return QualType();
11171 
11172       // Check array bounds for pointer arithemtic
11173       CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
11174                        /*AllowOnePastEnd*/true, /*IndexNegated*/true);
11175 
11176       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11177       return LHS.get()->getType();
11178     }
11179 
11180     // Handle pointer-pointer subtractions.
11181     if (const PointerType *RHSPTy
11182           = RHS.get()->getType()->getAs<PointerType>()) {
11183       QualType rpointee = RHSPTy->getPointeeType();
11184 
11185       if (getLangOpts().CPlusPlus) {
11186         // Pointee types must be the same: C++ [expr.add]
11187         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
11188           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
11189         }
11190       } else {
11191         // Pointee types must be compatible C99 6.5.6p3
11192         if (!Context.typesAreCompatible(
11193                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
11194                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
11195           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
11196           return QualType();
11197         }
11198       }
11199 
11200       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
11201                                                LHS.get(), RHS.get()))
11202         return QualType();
11203 
11204       bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11205           Context, Expr::NPC_ValueDependentIsNotNull);
11206       bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11207           Context, Expr::NPC_ValueDependentIsNotNull);
11208 
11209       // Subtracting nullptr or from nullptr is suspect
11210       if (LHSIsNullPtr)
11211         diagnoseSubtractionOnNullPointer(*this, Loc, LHS.get(), RHSIsNullPtr);
11212       if (RHSIsNullPtr)
11213         diagnoseSubtractionOnNullPointer(*this, Loc, RHS.get(), LHSIsNullPtr);
11214 
11215       // The pointee type may have zero size.  As an extension, a structure or
11216       // union may have zero size or an array may have zero length.  In this
11217       // case subtraction does not make sense.
11218       if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
11219         CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
11220         if (ElementSize.isZero()) {
11221           Diag(Loc,diag::warn_sub_ptr_zero_size_types)
11222             << rpointee.getUnqualifiedType()
11223             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11224         }
11225       }
11226 
11227       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11228       return Context.getPointerDiffType();
11229     }
11230   }
11231 
11232   return InvalidOperands(Loc, LHS, RHS);
11233 }
11234 
11235 static bool isScopedEnumerationType(QualType T) {
11236   if (const EnumType *ET = T->getAs<EnumType>())
11237     return ET->getDecl()->isScoped();
11238   return false;
11239 }
11240 
11241 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
11242                                    SourceLocation Loc, BinaryOperatorKind Opc,
11243                                    QualType LHSType) {
11244   // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
11245   // so skip remaining warnings as we don't want to modify values within Sema.
11246   if (S.getLangOpts().OpenCL)
11247     return;
11248 
11249   // Check right/shifter operand
11250   Expr::EvalResult RHSResult;
11251   if (RHS.get()->isValueDependent() ||
11252       !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
11253     return;
11254   llvm::APSInt Right = RHSResult.Val.getInt();
11255 
11256   if (Right.isNegative()) {
11257     S.DiagRuntimeBehavior(Loc, RHS.get(),
11258                           S.PDiag(diag::warn_shift_negative)
11259                               << RHS.get()->getSourceRange());
11260     return;
11261   }
11262 
11263   QualType LHSExprType = LHS.get()->getType();
11264   uint64_t LeftSize = S.Context.getTypeSize(LHSExprType);
11265   if (LHSExprType->isBitIntType())
11266     LeftSize = S.Context.getIntWidth(LHSExprType);
11267   else if (LHSExprType->isFixedPointType()) {
11268     auto FXSema = S.Context.getFixedPointSemantics(LHSExprType);
11269     LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
11270   }
11271   if (Right.uge(LeftSize)) {
11272     S.DiagRuntimeBehavior(Loc, RHS.get(),
11273                           S.PDiag(diag::warn_shift_gt_typewidth)
11274                               << RHS.get()->getSourceRange());
11275     return;
11276   }
11277 
11278   // FIXME: We probably need to handle fixed point types specially here.
11279   if (Opc != BO_Shl || LHSExprType->isFixedPointType())
11280     return;
11281 
11282   // When left shifting an ICE which is signed, we can check for overflow which
11283   // according to C++ standards prior to C++2a has undefined behavior
11284   // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
11285   // more than the maximum value representable in the result type, so never
11286   // warn for those. (FIXME: Unsigned left-shift overflow in a constant
11287   // expression is still probably a bug.)
11288   Expr::EvalResult LHSResult;
11289   if (LHS.get()->isValueDependent() ||
11290       LHSType->hasUnsignedIntegerRepresentation() ||
11291       !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
11292     return;
11293   llvm::APSInt Left = LHSResult.Val.getInt();
11294 
11295   // Don't warn if signed overflow is defined, then all the rest of the
11296   // diagnostics will not be triggered because the behavior is defined.
11297   // Also don't warn in C++20 mode (and newer), as signed left shifts
11298   // always wrap and never overflow.
11299   if (S.getLangOpts().isSignedOverflowDefined() || S.getLangOpts().CPlusPlus20)
11300     return;
11301 
11302   // If LHS does not have a non-negative value then, the
11303   // behavior is undefined before C++2a. Warn about it.
11304   if (Left.isNegative()) {
11305     S.DiagRuntimeBehavior(Loc, LHS.get(),
11306                           S.PDiag(diag::warn_shift_lhs_negative)
11307                               << LHS.get()->getSourceRange());
11308     return;
11309   }
11310 
11311   llvm::APInt ResultBits =
11312       static_cast<llvm::APInt &>(Right) + Left.getSignificantBits();
11313   if (ResultBits.ule(LeftSize))
11314     return;
11315   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
11316   Result = Result.shl(Right);
11317 
11318   // Print the bit representation of the signed integer as an unsigned
11319   // hexadecimal number.
11320   SmallString<40> HexResult;
11321   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
11322 
11323   // If we are only missing a sign bit, this is less likely to result in actual
11324   // bugs -- if the result is cast back to an unsigned type, it will have the
11325   // expected value. Thus we place this behind a different warning that can be
11326   // turned off separately if needed.
11327   if (ResultBits - 1 == LeftSize) {
11328     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
11329         << HexResult << LHSType
11330         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11331     return;
11332   }
11333 
11334   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
11335       << HexResult.str() << Result.getSignificantBits() << LHSType
11336       << Left.getBitWidth() << LHS.get()->getSourceRange()
11337       << RHS.get()->getSourceRange();
11338 }
11339 
11340 /// Return the resulting type when a vector is shifted
11341 ///        by a scalar or vector shift amount.
11342 static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
11343                                  SourceLocation Loc, bool IsCompAssign) {
11344   // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
11345   if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
11346       !LHS.get()->getType()->isVectorType()) {
11347     S.Diag(Loc, diag::err_shift_rhs_only_vector)
11348       << RHS.get()->getType() << LHS.get()->getType()
11349       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11350     return QualType();
11351   }
11352 
11353   if (!IsCompAssign) {
11354     LHS = S.UsualUnaryConversions(LHS.get());
11355     if (LHS.isInvalid()) return QualType();
11356   }
11357 
11358   RHS = S.UsualUnaryConversions(RHS.get());
11359   if (RHS.isInvalid()) return QualType();
11360 
11361   QualType LHSType = LHS.get()->getType();
11362   // Note that LHS might be a scalar because the routine calls not only in
11363   // OpenCL case.
11364   const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
11365   QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
11366 
11367   // Note that RHS might not be a vector.
11368   QualType RHSType = RHS.get()->getType();
11369   const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
11370   QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
11371 
11372   // Do not allow shifts for boolean vectors.
11373   if ((LHSVecTy && LHSVecTy->isExtVectorBoolType()) ||
11374       (RHSVecTy && RHSVecTy->isExtVectorBoolType())) {
11375     S.Diag(Loc, diag::err_typecheck_invalid_operands)
11376         << LHS.get()->getType() << RHS.get()->getType()
11377         << LHS.get()->getSourceRange();
11378     return QualType();
11379   }
11380 
11381   // The operands need to be integers.
11382   if (!LHSEleType->isIntegerType()) {
11383     S.Diag(Loc, diag::err_typecheck_expect_int)
11384       << LHS.get()->getType() << LHS.get()->getSourceRange();
11385     return QualType();
11386   }
11387 
11388   if (!RHSEleType->isIntegerType()) {
11389     S.Diag(Loc, diag::err_typecheck_expect_int)
11390       << RHS.get()->getType() << RHS.get()->getSourceRange();
11391     return QualType();
11392   }
11393 
11394   if (!LHSVecTy) {
11395     assert(RHSVecTy);
11396     if (IsCompAssign)
11397       return RHSType;
11398     if (LHSEleType != RHSEleType) {
11399       LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
11400       LHSEleType = RHSEleType;
11401     }
11402     QualType VecTy =
11403         S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
11404     LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
11405     LHSType = VecTy;
11406   } else if (RHSVecTy) {
11407     // OpenCL v1.1 s6.3.j says that for vector types, the operators
11408     // are applied component-wise. So if RHS is a vector, then ensure
11409     // that the number of elements is the same as LHS...
11410     if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
11411       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11412         << LHS.get()->getType() << RHS.get()->getType()
11413         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11414       return QualType();
11415     }
11416     if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
11417       const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
11418       const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
11419       if (LHSBT != RHSBT &&
11420           S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
11421         S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
11422             << LHS.get()->getType() << RHS.get()->getType()
11423             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11424       }
11425     }
11426   } else {
11427     // ...else expand RHS to match the number of elements in LHS.
11428     QualType VecTy =
11429       S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
11430     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
11431   }
11432 
11433   return LHSType;
11434 }
11435 
11436 static QualType checkSizelessVectorShift(Sema &S, ExprResult &LHS,
11437                                          ExprResult &RHS, SourceLocation Loc,
11438                                          bool IsCompAssign) {
11439   if (!IsCompAssign) {
11440     LHS = S.UsualUnaryConversions(LHS.get());
11441     if (LHS.isInvalid())
11442       return QualType();
11443   }
11444 
11445   RHS = S.UsualUnaryConversions(RHS.get());
11446   if (RHS.isInvalid())
11447     return QualType();
11448 
11449   QualType LHSType = LHS.get()->getType();
11450   const BuiltinType *LHSBuiltinTy = LHSType->castAs<BuiltinType>();
11451   QualType LHSEleType = LHSType->isSveVLSBuiltinType()
11452                             ? LHSBuiltinTy->getSveEltType(S.getASTContext())
11453                             : LHSType;
11454 
11455   // Note that RHS might not be a vector
11456   QualType RHSType = RHS.get()->getType();
11457   const BuiltinType *RHSBuiltinTy = RHSType->castAs<BuiltinType>();
11458   QualType RHSEleType = RHSType->isSveVLSBuiltinType()
11459                             ? RHSBuiltinTy->getSveEltType(S.getASTContext())
11460                             : RHSType;
11461 
11462   if ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
11463       (RHSBuiltinTy && RHSBuiltinTy->isSVEBool())) {
11464     S.Diag(Loc, diag::err_typecheck_invalid_operands)
11465         << LHSType << RHSType << LHS.get()->getSourceRange();
11466     return QualType();
11467   }
11468 
11469   if (!LHSEleType->isIntegerType()) {
11470     S.Diag(Loc, diag::err_typecheck_expect_int)
11471         << LHS.get()->getType() << LHS.get()->getSourceRange();
11472     return QualType();
11473   }
11474 
11475   if (!RHSEleType->isIntegerType()) {
11476     S.Diag(Loc, diag::err_typecheck_expect_int)
11477         << RHS.get()->getType() << RHS.get()->getSourceRange();
11478     return QualType();
11479   }
11480 
11481   if (LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType() &&
11482       (S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
11483        S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC)) {
11484     S.Diag(Loc, diag::err_typecheck_invalid_operands)
11485         << LHSType << RHSType << LHS.get()->getSourceRange()
11486         << RHS.get()->getSourceRange();
11487     return QualType();
11488   }
11489 
11490   if (!LHSType->isSveVLSBuiltinType()) {
11491     assert(RHSType->isSveVLSBuiltinType());
11492     if (IsCompAssign)
11493       return RHSType;
11494     if (LHSEleType != RHSEleType) {
11495       LHS = S.ImpCastExprToType(LHS.get(), RHSEleType, clang::CK_IntegralCast);
11496       LHSEleType = RHSEleType;
11497     }
11498     const llvm::ElementCount VecSize =
11499         S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC;
11500     QualType VecTy =
11501         S.Context.getScalableVectorType(LHSEleType, VecSize.getKnownMinValue());
11502     LHS = S.ImpCastExprToType(LHS.get(), VecTy, clang::CK_VectorSplat);
11503     LHSType = VecTy;
11504   } else if (RHSBuiltinTy && RHSBuiltinTy->isSveVLSBuiltinType()) {
11505     if (S.Context.getTypeSize(RHSBuiltinTy) !=
11506         S.Context.getTypeSize(LHSBuiltinTy)) {
11507       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11508           << LHSType << RHSType << LHS.get()->getSourceRange()
11509           << RHS.get()->getSourceRange();
11510       return QualType();
11511     }
11512   } else {
11513     const llvm::ElementCount VecSize =
11514         S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC;
11515     if (LHSEleType != RHSEleType) {
11516       RHS = S.ImpCastExprToType(RHS.get(), LHSEleType, clang::CK_IntegralCast);
11517       RHSEleType = LHSEleType;
11518     }
11519     QualType VecTy =
11520         S.Context.getScalableVectorType(RHSEleType, VecSize.getKnownMinValue());
11521     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
11522   }
11523 
11524   return LHSType;
11525 }
11526 
11527 // C99 6.5.7
11528 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
11529                                   SourceLocation Loc, BinaryOperatorKind Opc,
11530                                   bool IsCompAssign) {
11531   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11532 
11533   // Vector shifts promote their scalar inputs to vector type.
11534   if (LHS.get()->getType()->isVectorType() ||
11535       RHS.get()->getType()->isVectorType()) {
11536     if (LangOpts.ZVector) {
11537       // The shift operators for the z vector extensions work basically
11538       // like general shifts, except that neither the LHS nor the RHS is
11539       // allowed to be a "vector bool".
11540       if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
11541         if (LHSVecType->getVectorKind() == VectorKind::AltiVecBool)
11542           return InvalidOperands(Loc, LHS, RHS);
11543       if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
11544         if (RHSVecType->getVectorKind() == VectorKind::AltiVecBool)
11545           return InvalidOperands(Loc, LHS, RHS);
11546     }
11547     return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
11548   }
11549 
11550   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11551       RHS.get()->getType()->isSveVLSBuiltinType())
11552     return checkSizelessVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
11553 
11554   // Shifts don't perform usual arithmetic conversions, they just do integer
11555   // promotions on each operand. C99 6.5.7p3
11556 
11557   // For the LHS, do usual unary conversions, but then reset them away
11558   // if this is a compound assignment.
11559   ExprResult OldLHS = LHS;
11560   LHS = UsualUnaryConversions(LHS.get());
11561   if (LHS.isInvalid())
11562     return QualType();
11563   QualType LHSType = LHS.get()->getType();
11564   if (IsCompAssign) LHS = OldLHS;
11565 
11566   // The RHS is simpler.
11567   RHS = UsualUnaryConversions(RHS.get());
11568   if (RHS.isInvalid())
11569     return QualType();
11570   QualType RHSType = RHS.get()->getType();
11571 
11572   // C99 6.5.7p2: Each of the operands shall have integer type.
11573   // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
11574   if ((!LHSType->isFixedPointOrIntegerType() &&
11575        !LHSType->hasIntegerRepresentation()) ||
11576       !RHSType->hasIntegerRepresentation())
11577     return InvalidOperands(Loc, LHS, RHS);
11578 
11579   // C++0x: Don't allow scoped enums. FIXME: Use something better than
11580   // hasIntegerRepresentation() above instead of this.
11581   if (isScopedEnumerationType(LHSType) ||
11582       isScopedEnumerationType(RHSType)) {
11583     return InvalidOperands(Loc, LHS, RHS);
11584   }
11585   DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
11586 
11587   // "The type of the result is that of the promoted left operand."
11588   return LHSType;
11589 }
11590 
11591 /// Diagnose bad pointer comparisons.
11592 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
11593                                               ExprResult &LHS, ExprResult &RHS,
11594                                               bool IsError) {
11595   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
11596                       : diag::ext_typecheck_comparison_of_distinct_pointers)
11597     << LHS.get()->getType() << RHS.get()->getType()
11598     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11599 }
11600 
11601 /// Returns false if the pointers are converted to a composite type,
11602 /// true otherwise.
11603 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
11604                                            ExprResult &LHS, ExprResult &RHS) {
11605   // C++ [expr.rel]p2:
11606   //   [...] Pointer conversions (4.10) and qualification
11607   //   conversions (4.4) are performed on pointer operands (or on
11608   //   a pointer operand and a null pointer constant) to bring
11609   //   them to their composite pointer type. [...]
11610   //
11611   // C++ [expr.eq]p1 uses the same notion for (in)equality
11612   // comparisons of pointers.
11613 
11614   QualType LHSType = LHS.get()->getType();
11615   QualType RHSType = RHS.get()->getType();
11616   assert(LHSType->isPointerType() || RHSType->isPointerType() ||
11617          LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
11618 
11619   QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
11620   if (T.isNull()) {
11621     if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
11622         (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
11623       diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
11624     else
11625       S.InvalidOperands(Loc, LHS, RHS);
11626     return true;
11627   }
11628 
11629   return false;
11630 }
11631 
11632 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
11633                                                     ExprResult &LHS,
11634                                                     ExprResult &RHS,
11635                                                     bool IsError) {
11636   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
11637                       : diag::ext_typecheck_comparison_of_fptr_to_void)
11638     << LHS.get()->getType() << RHS.get()->getType()
11639     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11640 }
11641 
11642 static bool isObjCObjectLiteral(ExprResult &E) {
11643   switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
11644   case Stmt::ObjCArrayLiteralClass:
11645   case Stmt::ObjCDictionaryLiteralClass:
11646   case Stmt::ObjCStringLiteralClass:
11647   case Stmt::ObjCBoxedExprClass:
11648     return true;
11649   default:
11650     // Note that ObjCBoolLiteral is NOT an object literal!
11651     return false;
11652   }
11653 }
11654 
11655 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
11656   const ObjCObjectPointerType *Type =
11657     LHS->getType()->getAs<ObjCObjectPointerType>();
11658 
11659   // If this is not actually an Objective-C object, bail out.
11660   if (!Type)
11661     return false;
11662 
11663   // Get the LHS object's interface type.
11664   QualType InterfaceType = Type->getPointeeType();
11665 
11666   // If the RHS isn't an Objective-C object, bail out.
11667   if (!RHS->getType()->isObjCObjectPointerType())
11668     return false;
11669 
11670   // Try to find the -isEqual: method.
11671   Selector IsEqualSel = S.ObjC().NSAPIObj->getIsEqualSelector();
11672   ObjCMethodDecl *Method =
11673       S.ObjC().LookupMethodInObjectType(IsEqualSel, InterfaceType,
11674                                         /*IsInstance=*/true);
11675   if (!Method) {
11676     if (Type->isObjCIdType()) {
11677       // For 'id', just check the global pool.
11678       Method =
11679           S.ObjC().LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
11680                                                     /*receiverId=*/true);
11681     } else {
11682       // Check protocols.
11683       Method = S.ObjC().LookupMethodInQualifiedType(IsEqualSel, Type,
11684                                                     /*IsInstance=*/true);
11685     }
11686   }
11687 
11688   if (!Method)
11689     return false;
11690 
11691   QualType T = Method->parameters()[0]->getType();
11692   if (!T->isObjCObjectPointerType())
11693     return false;
11694 
11695   QualType R = Method->getReturnType();
11696   if (!R->isScalarType())
11697     return false;
11698 
11699   return true;
11700 }
11701 
11702 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
11703                                           ExprResult &LHS, ExprResult &RHS,
11704                                           BinaryOperator::Opcode Opc){
11705   Expr *Literal;
11706   Expr *Other;
11707   if (isObjCObjectLiteral(LHS)) {
11708     Literal = LHS.get();
11709     Other = RHS.get();
11710   } else {
11711     Literal = RHS.get();
11712     Other = LHS.get();
11713   }
11714 
11715   // Don't warn on comparisons against nil.
11716   Other = Other->IgnoreParenCasts();
11717   if (Other->isNullPointerConstant(S.getASTContext(),
11718                                    Expr::NPC_ValueDependentIsNotNull))
11719     return;
11720 
11721   // This should be kept in sync with warn_objc_literal_comparison.
11722   // LK_String should always be after the other literals, since it has its own
11723   // warning flag.
11724   SemaObjC::ObjCLiteralKind LiteralKind = S.ObjC().CheckLiteralKind(Literal);
11725   assert(LiteralKind != SemaObjC::LK_Block);
11726   if (LiteralKind == SemaObjC::LK_None) {
11727     llvm_unreachable("Unknown Objective-C object literal kind");
11728   }
11729 
11730   if (LiteralKind == SemaObjC::LK_String)
11731     S.Diag(Loc, diag::warn_objc_string_literal_comparison)
11732       << Literal->getSourceRange();
11733   else
11734     S.Diag(Loc, diag::warn_objc_literal_comparison)
11735       << LiteralKind << Literal->getSourceRange();
11736 
11737   if (BinaryOperator::isEqualityOp(Opc) &&
11738       hasIsEqualMethod(S, LHS.get(), RHS.get())) {
11739     SourceLocation Start = LHS.get()->getBeginLoc();
11740     SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
11741     CharSourceRange OpRange =
11742       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
11743 
11744     S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
11745       << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
11746       << FixItHint::CreateReplacement(OpRange, " isEqual:")
11747       << FixItHint::CreateInsertion(End, "]");
11748   }
11749 }
11750 
11751 /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
11752 static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
11753                                            ExprResult &RHS, SourceLocation Loc,
11754                                            BinaryOperatorKind Opc) {
11755   // Check that left hand side is !something.
11756   UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
11757   if (!UO || UO->getOpcode() != UO_LNot) return;
11758 
11759   // Only check if the right hand side is non-bool arithmetic type.
11760   if (RHS.get()->isKnownToHaveBooleanValue()) return;
11761 
11762   // Make sure that the something in !something is not bool.
11763   Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
11764   if (SubExpr->isKnownToHaveBooleanValue()) return;
11765 
11766   // Emit warning.
11767   bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
11768   S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
11769       << Loc << IsBitwiseOp;
11770 
11771   // First note suggest !(x < y)
11772   SourceLocation FirstOpen = SubExpr->getBeginLoc();
11773   SourceLocation FirstClose = RHS.get()->getEndLoc();
11774   FirstClose = S.getLocForEndOfToken(FirstClose);
11775   if (FirstClose.isInvalid())
11776     FirstOpen = SourceLocation();
11777   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
11778       << IsBitwiseOp
11779       << FixItHint::CreateInsertion(FirstOpen, "(")
11780       << FixItHint::CreateInsertion(FirstClose, ")");
11781 
11782   // Second note suggests (!x) < y
11783   SourceLocation SecondOpen = LHS.get()->getBeginLoc();
11784   SourceLocation SecondClose = LHS.get()->getEndLoc();
11785   SecondClose = S.getLocForEndOfToken(SecondClose);
11786   if (SecondClose.isInvalid())
11787     SecondOpen = SourceLocation();
11788   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
11789       << FixItHint::CreateInsertion(SecondOpen, "(")
11790       << FixItHint::CreateInsertion(SecondClose, ")");
11791 }
11792 
11793 // Returns true if E refers to a non-weak array.
11794 static bool checkForArray(const Expr *E) {
11795   const ValueDecl *D = nullptr;
11796   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
11797     D = DR->getDecl();
11798   } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
11799     if (Mem->isImplicitAccess())
11800       D = Mem->getMemberDecl();
11801   }
11802   if (!D)
11803     return false;
11804   return D->getType()->isArrayType() && !D->isWeak();
11805 }
11806 
11807 /// Detect patterns ptr + size >= ptr and ptr + size < ptr, where ptr is a
11808 /// pointer and size is an unsigned integer. Return whether the result is
11809 /// always true/false.
11810 static std::optional<bool> isTautologicalBoundsCheck(Sema &S, const Expr *LHS,
11811                                                      const Expr *RHS,
11812                                                      BinaryOperatorKind Opc) {
11813   if (!LHS->getType()->isPointerType() ||
11814       S.getLangOpts().PointerOverflowDefined)
11815     return std::nullopt;
11816 
11817   // Canonicalize to >= or < predicate.
11818   switch (Opc) {
11819   case BO_GE:
11820   case BO_LT:
11821     break;
11822   case BO_GT:
11823     std::swap(LHS, RHS);
11824     Opc = BO_LT;
11825     break;
11826   case BO_LE:
11827     std::swap(LHS, RHS);
11828     Opc = BO_GE;
11829     break;
11830   default:
11831     return std::nullopt;
11832   }
11833 
11834   auto *BO = dyn_cast<BinaryOperator>(LHS);
11835   if (!BO || BO->getOpcode() != BO_Add)
11836     return std::nullopt;
11837 
11838   Expr *Other;
11839   if (Expr::isSameComparisonOperand(BO->getLHS(), RHS))
11840     Other = BO->getRHS();
11841   else if (Expr::isSameComparisonOperand(BO->getRHS(), RHS))
11842     Other = BO->getLHS();
11843   else
11844     return std::nullopt;
11845 
11846   if (!Other->getType()->isUnsignedIntegerType())
11847     return std::nullopt;
11848 
11849   return Opc == BO_GE;
11850 }
11851 
11852 /// Diagnose some forms of syntactically-obvious tautological comparison.
11853 static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
11854                                            Expr *LHS, Expr *RHS,
11855                                            BinaryOperatorKind Opc) {
11856   Expr *LHSStripped = LHS->IgnoreParenImpCasts();
11857   Expr *RHSStripped = RHS->IgnoreParenImpCasts();
11858 
11859   QualType LHSType = LHS->getType();
11860   QualType RHSType = RHS->getType();
11861   if (LHSType->hasFloatingRepresentation() ||
11862       (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
11863       S.inTemplateInstantiation())
11864     return;
11865 
11866   // WebAssembly Tables cannot be compared, therefore shouldn't emit
11867   // Tautological diagnostics.
11868   if (LHSType->isWebAssemblyTableType() || RHSType->isWebAssemblyTableType())
11869     return;
11870 
11871   // Comparisons between two array types are ill-formed for operator<=>, so
11872   // we shouldn't emit any additional warnings about it.
11873   if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
11874     return;
11875 
11876   // For non-floating point types, check for self-comparisons of the form
11877   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
11878   // often indicate logic errors in the program.
11879   //
11880   // NOTE: Don't warn about comparison expressions resulting from macro
11881   // expansion. Also don't warn about comparisons which are only self
11882   // comparisons within a template instantiation. The warnings should catch
11883   // obvious cases in the definition of the template anyways. The idea is to
11884   // warn when the typed comparison operator will always evaluate to the same
11885   // result.
11886 
11887   // Used for indexing into %select in warn_comparison_always
11888   enum {
11889     AlwaysConstant,
11890     AlwaysTrue,
11891     AlwaysFalse,
11892     AlwaysEqual, // std::strong_ordering::equal from operator<=>
11893   };
11894 
11895   // C++1a [array.comp]:
11896   //   Equality and relational comparisons ([expr.eq], [expr.rel]) between two
11897   //   operands of array type.
11898   // C++2a [depr.array.comp]:
11899   //   Equality and relational comparisons ([expr.eq], [expr.rel]) between two
11900   //   operands of array type are deprecated.
11901   if (S.getLangOpts().CPlusPlus && LHSStripped->getType()->isArrayType() &&
11902       RHSStripped->getType()->isArrayType()) {
11903     auto IsDeprArrayComparionIgnored =
11904         S.getDiagnostics().isIgnored(diag::warn_depr_array_comparison, Loc);
11905     auto DiagID = S.getLangOpts().CPlusPlus26
11906                       ? diag::warn_array_comparison_cxx26
11907                   : !S.getLangOpts().CPlusPlus20 || IsDeprArrayComparionIgnored
11908                       ? diag::warn_array_comparison
11909                       : diag::warn_depr_array_comparison;
11910     S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
11911                         << LHSStripped->getType() << RHSStripped->getType();
11912     // Carry on to produce the tautological comparison warning, if this
11913     // expression is potentially-evaluated, we can resolve the array to a
11914     // non-weak declaration, and so on.
11915   }
11916 
11917   if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
11918     if (Expr::isSameComparisonOperand(LHS, RHS)) {
11919       unsigned Result;
11920       switch (Opc) {
11921       case BO_EQ:
11922       case BO_LE:
11923       case BO_GE:
11924         Result = AlwaysTrue;
11925         break;
11926       case BO_NE:
11927       case BO_LT:
11928       case BO_GT:
11929         Result = AlwaysFalse;
11930         break;
11931       case BO_Cmp:
11932         Result = AlwaysEqual;
11933         break;
11934       default:
11935         Result = AlwaysConstant;
11936         break;
11937       }
11938       S.DiagRuntimeBehavior(Loc, nullptr,
11939                             S.PDiag(diag::warn_comparison_always)
11940                                 << 0 /*self-comparison*/
11941                                 << Result);
11942     } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
11943       // What is it always going to evaluate to?
11944       unsigned Result;
11945       switch (Opc) {
11946       case BO_EQ: // e.g. array1 == array2
11947         Result = AlwaysFalse;
11948         break;
11949       case BO_NE: // e.g. array1 != array2
11950         Result = AlwaysTrue;
11951         break;
11952       default: // e.g. array1 <= array2
11953         // The best we can say is 'a constant'
11954         Result = AlwaysConstant;
11955         break;
11956       }
11957       S.DiagRuntimeBehavior(Loc, nullptr,
11958                             S.PDiag(diag::warn_comparison_always)
11959                                 << 1 /*array comparison*/
11960                                 << Result);
11961     } else if (std::optional<bool> Res =
11962                    isTautologicalBoundsCheck(S, LHS, RHS, Opc)) {
11963       S.DiagRuntimeBehavior(Loc, nullptr,
11964                             S.PDiag(diag::warn_comparison_always)
11965                                 << 2 /*pointer comparison*/
11966                                 << (*Res ? AlwaysTrue : AlwaysFalse));
11967     }
11968   }
11969 
11970   if (isa<CastExpr>(LHSStripped))
11971     LHSStripped = LHSStripped->IgnoreParenCasts();
11972   if (isa<CastExpr>(RHSStripped))
11973     RHSStripped = RHSStripped->IgnoreParenCasts();
11974 
11975   // Warn about comparisons against a string constant (unless the other
11976   // operand is null); the user probably wants string comparison function.
11977   Expr *LiteralString = nullptr;
11978   Expr *LiteralStringStripped = nullptr;
11979   if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
11980       !RHSStripped->isNullPointerConstant(S.Context,
11981                                           Expr::NPC_ValueDependentIsNull)) {
11982     LiteralString = LHS;
11983     LiteralStringStripped = LHSStripped;
11984   } else if ((isa<StringLiteral>(RHSStripped) ||
11985               isa<ObjCEncodeExpr>(RHSStripped)) &&
11986              !LHSStripped->isNullPointerConstant(S.Context,
11987                                           Expr::NPC_ValueDependentIsNull)) {
11988     LiteralString = RHS;
11989     LiteralStringStripped = RHSStripped;
11990   }
11991 
11992   if (LiteralString) {
11993     S.DiagRuntimeBehavior(Loc, nullptr,
11994                           S.PDiag(diag::warn_stringcompare)
11995                               << isa<ObjCEncodeExpr>(LiteralStringStripped)
11996                               << LiteralString->getSourceRange());
11997   }
11998 }
11999 
12000 static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
12001   switch (CK) {
12002   default: {
12003 #ifndef NDEBUG
12004     llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
12005                  << "\n";
12006 #endif
12007     llvm_unreachable("unhandled cast kind");
12008   }
12009   case CK_UserDefinedConversion:
12010     return ICK_Identity;
12011   case CK_LValueToRValue:
12012     return ICK_Lvalue_To_Rvalue;
12013   case CK_ArrayToPointerDecay:
12014     return ICK_Array_To_Pointer;
12015   case CK_FunctionToPointerDecay:
12016     return ICK_Function_To_Pointer;
12017   case CK_IntegralCast:
12018     return ICK_Integral_Conversion;
12019   case CK_FloatingCast:
12020     return ICK_Floating_Conversion;
12021   case CK_IntegralToFloating:
12022   case CK_FloatingToIntegral:
12023     return ICK_Floating_Integral;
12024   case CK_IntegralComplexCast:
12025   case CK_FloatingComplexCast:
12026   case CK_FloatingComplexToIntegralComplex:
12027   case CK_IntegralComplexToFloatingComplex:
12028     return ICK_Complex_Conversion;
12029   case CK_FloatingComplexToReal:
12030   case CK_FloatingRealToComplex:
12031   case CK_IntegralComplexToReal:
12032   case CK_IntegralRealToComplex:
12033     return ICK_Complex_Real;
12034   case CK_HLSLArrayRValue:
12035     return ICK_HLSL_Array_RValue;
12036   }
12037 }
12038 
12039 static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
12040                                              QualType FromType,
12041                                              SourceLocation Loc) {
12042   // Check for a narrowing implicit conversion.
12043   StandardConversionSequence SCS;
12044   SCS.setAsIdentityConversion();
12045   SCS.setToType(0, FromType);
12046   SCS.setToType(1, ToType);
12047   if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
12048     SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
12049 
12050   APValue PreNarrowingValue;
12051   QualType PreNarrowingType;
12052   switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
12053                                PreNarrowingType,
12054                                /*IgnoreFloatToIntegralConversion*/ true)) {
12055   case NK_Dependent_Narrowing:
12056     // Implicit conversion to a narrower type, but the expression is
12057     // value-dependent so we can't tell whether it's actually narrowing.
12058   case NK_Not_Narrowing:
12059     return false;
12060 
12061   case NK_Constant_Narrowing:
12062     // Implicit conversion to a narrower type, and the value is not a constant
12063     // expression.
12064     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12065         << /*Constant*/ 1
12066         << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
12067     return true;
12068 
12069   case NK_Variable_Narrowing:
12070     // Implicit conversion to a narrower type, and the value is not a constant
12071     // expression.
12072   case NK_Type_Narrowing:
12073     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12074         << /*Constant*/ 0 << FromType << ToType;
12075     // TODO: It's not a constant expression, but what if the user intended it
12076     // to be? Can we produce notes to help them figure out why it isn't?
12077     return true;
12078   }
12079   llvm_unreachable("unhandled case in switch");
12080 }
12081 
12082 static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
12083                                                          ExprResult &LHS,
12084                                                          ExprResult &RHS,
12085                                                          SourceLocation Loc) {
12086   QualType LHSType = LHS.get()->getType();
12087   QualType RHSType = RHS.get()->getType();
12088   // Dig out the original argument type and expression before implicit casts
12089   // were applied. These are the types/expressions we need to check the
12090   // [expr.spaceship] requirements against.
12091   ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
12092   ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
12093   QualType LHSStrippedType = LHSStripped.get()->getType();
12094   QualType RHSStrippedType = RHSStripped.get()->getType();
12095 
12096   // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
12097   // other is not, the program is ill-formed.
12098   if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
12099     S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12100     return QualType();
12101   }
12102 
12103   // FIXME: Consider combining this with checkEnumArithmeticConversions.
12104   int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
12105                     RHSStrippedType->isEnumeralType();
12106   if (NumEnumArgs == 1) {
12107     bool LHSIsEnum = LHSStrippedType->isEnumeralType();
12108     QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
12109     if (OtherTy->hasFloatingRepresentation()) {
12110       S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12111       return QualType();
12112     }
12113   }
12114   if (NumEnumArgs == 2) {
12115     // C++2a [expr.spaceship]p5: If both operands have the same enumeration
12116     // type E, the operator yields the result of converting the operands
12117     // to the underlying type of E and applying <=> to the converted operands.
12118     if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
12119       S.InvalidOperands(Loc, LHS, RHS);
12120       return QualType();
12121     }
12122     QualType IntType =
12123         LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
12124     assert(IntType->isArithmeticType());
12125 
12126     // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
12127     // promote the boolean type, and all other promotable integer types, to
12128     // avoid this.
12129     if (S.Context.isPromotableIntegerType(IntType))
12130       IntType = S.Context.getPromotedIntegerType(IntType);
12131 
12132     LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
12133     RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
12134     LHSType = RHSType = IntType;
12135   }
12136 
12137   // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
12138   // usual arithmetic conversions are applied to the operands.
12139   QualType Type =
12140       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
12141   if (LHS.isInvalid() || RHS.isInvalid())
12142     return QualType();
12143   if (Type.isNull())
12144     return S.InvalidOperands(Loc, LHS, RHS);
12145 
12146   std::optional<ComparisonCategoryType> CCT =
12147       getComparisonCategoryForBuiltinCmp(Type);
12148   if (!CCT)
12149     return S.InvalidOperands(Loc, LHS, RHS);
12150 
12151   bool HasNarrowing = checkThreeWayNarrowingConversion(
12152       S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
12153   HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
12154                                                    RHS.get()->getBeginLoc());
12155   if (HasNarrowing)
12156     return QualType();
12157 
12158   assert(!Type.isNull() && "composite type for <=> has not been set");
12159 
12160   return S.CheckComparisonCategoryType(
12161       *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
12162 }
12163 
12164 static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
12165                                                  ExprResult &RHS,
12166                                                  SourceLocation Loc,
12167                                                  BinaryOperatorKind Opc) {
12168   if (Opc == BO_Cmp)
12169     return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
12170 
12171   // C99 6.5.8p3 / C99 6.5.9p4
12172   QualType Type =
12173       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
12174   if (LHS.isInvalid() || RHS.isInvalid())
12175     return QualType();
12176   if (Type.isNull())
12177     return S.InvalidOperands(Loc, LHS, RHS);
12178   assert(Type->isArithmeticType() || Type->isEnumeralType());
12179 
12180   if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
12181     return S.InvalidOperands(Loc, LHS, RHS);
12182 
12183   // Check for comparisons of floating point operands using != and ==.
12184   if (Type->hasFloatingRepresentation())
12185     S.CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
12186 
12187   // The result of comparisons is 'bool' in C++, 'int' in C.
12188   return S.Context.getLogicalOperationType();
12189 }
12190 
12191 void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
12192   if (!NullE.get()->getType()->isAnyPointerType())
12193     return;
12194   int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
12195   if (!E.get()->getType()->isAnyPointerType() &&
12196       E.get()->isNullPointerConstant(Context,
12197                                      Expr::NPC_ValueDependentIsNotNull) ==
12198         Expr::NPCK_ZeroExpression) {
12199     if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
12200       if (CL->getValue() == 0)
12201         Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
12202             << NullValue
12203             << FixItHint::CreateReplacement(E.get()->getExprLoc(),
12204                                             NullValue ? "NULL" : "(void *)0");
12205     } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
12206         TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
12207         QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
12208         if (T == Context.CharTy)
12209           Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
12210               << NullValue
12211               << FixItHint::CreateReplacement(E.get()->getExprLoc(),
12212                                               NullValue ? "NULL" : "(void *)0");
12213       }
12214   }
12215 }
12216 
12217 // C99 6.5.8, C++ [expr.rel]
12218 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
12219                                     SourceLocation Loc,
12220                                     BinaryOperatorKind Opc) {
12221   bool IsRelational = BinaryOperator::isRelationalOp(Opc);
12222   bool IsThreeWay = Opc == BO_Cmp;
12223   bool IsOrdered = IsRelational || IsThreeWay;
12224   auto IsAnyPointerType = [](ExprResult E) {
12225     QualType Ty = E.get()->getType();
12226     return Ty->isPointerType() || Ty->isMemberPointerType();
12227   };
12228 
12229   // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
12230   // type, array-to-pointer, ..., conversions are performed on both operands to
12231   // bring them to their composite type.
12232   // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
12233   // any type-related checks.
12234   if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
12235     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12236     if (LHS.isInvalid())
12237       return QualType();
12238     RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12239     if (RHS.isInvalid())
12240       return QualType();
12241   } else {
12242     LHS = DefaultLvalueConversion(LHS.get());
12243     if (LHS.isInvalid())
12244       return QualType();
12245     RHS = DefaultLvalueConversion(RHS.get());
12246     if (RHS.isInvalid())
12247       return QualType();
12248   }
12249 
12250   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
12251   if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
12252     CheckPtrComparisonWithNullChar(LHS, RHS);
12253     CheckPtrComparisonWithNullChar(RHS, LHS);
12254   }
12255 
12256   // Handle vector comparisons separately.
12257   if (LHS.get()->getType()->isVectorType() ||
12258       RHS.get()->getType()->isVectorType())
12259     return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
12260 
12261   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
12262       RHS.get()->getType()->isSveVLSBuiltinType())
12263     return CheckSizelessVectorCompareOperands(LHS, RHS, Loc, Opc);
12264 
12265   diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
12266   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12267 
12268   QualType LHSType = LHS.get()->getType();
12269   QualType RHSType = RHS.get()->getType();
12270   if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
12271       (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
12272     return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
12273 
12274   if ((LHSType->isPointerType() &&
12275        LHSType->getPointeeType().isWebAssemblyReferenceType()) ||
12276       (RHSType->isPointerType() &&
12277        RHSType->getPointeeType().isWebAssemblyReferenceType()))
12278     return InvalidOperands(Loc, LHS, RHS);
12279 
12280   const Expr::NullPointerConstantKind LHSNullKind =
12281       LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
12282   const Expr::NullPointerConstantKind RHSNullKind =
12283       RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
12284   bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
12285   bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
12286 
12287   auto computeResultTy = [&]() {
12288     if (Opc != BO_Cmp)
12289       return Context.getLogicalOperationType();
12290     assert(getLangOpts().CPlusPlus);
12291     assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
12292 
12293     QualType CompositeTy = LHS.get()->getType();
12294     assert(!CompositeTy->isReferenceType());
12295 
12296     std::optional<ComparisonCategoryType> CCT =
12297         getComparisonCategoryForBuiltinCmp(CompositeTy);
12298     if (!CCT)
12299       return InvalidOperands(Loc, LHS, RHS);
12300 
12301     if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
12302       // P0946R0: Comparisons between a null pointer constant and an object
12303       // pointer result in std::strong_equality, which is ill-formed under
12304       // P1959R0.
12305       Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
12306           << (LHSIsNull ? LHS.get()->getSourceRange()
12307                         : RHS.get()->getSourceRange());
12308       return QualType();
12309     }
12310 
12311     return CheckComparisonCategoryType(
12312         *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
12313   };
12314 
12315   if (!IsOrdered && LHSIsNull != RHSIsNull) {
12316     bool IsEquality = Opc == BO_EQ;
12317     if (RHSIsNull)
12318       DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
12319                                    RHS.get()->getSourceRange());
12320     else
12321       DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
12322                                    LHS.get()->getSourceRange());
12323   }
12324 
12325   if (IsOrdered && LHSType->isFunctionPointerType() &&
12326       RHSType->isFunctionPointerType()) {
12327     // Valid unless a relational comparison of function pointers
12328     bool IsError = Opc == BO_Cmp;
12329     auto DiagID =
12330         IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers
12331         : getLangOpts().CPlusPlus
12332             ? diag::warn_typecheck_ordered_comparison_of_function_pointers
12333             : diag::ext_typecheck_ordered_comparison_of_function_pointers;
12334     Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
12335                       << RHS.get()->getSourceRange();
12336     if (IsError)
12337       return QualType();
12338   }
12339 
12340   if ((LHSType->isIntegerType() && !LHSIsNull) ||
12341       (RHSType->isIntegerType() && !RHSIsNull)) {
12342     // Skip normal pointer conversion checks in this case; we have better
12343     // diagnostics for this below.
12344   } else if (getLangOpts().CPlusPlus) {
12345     // Equality comparison of a function pointer to a void pointer is invalid,
12346     // but we allow it as an extension.
12347     // FIXME: If we really want to allow this, should it be part of composite
12348     // pointer type computation so it works in conditionals too?
12349     if (!IsOrdered &&
12350         ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
12351          (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
12352       // This is a gcc extension compatibility comparison.
12353       // In a SFINAE context, we treat this as a hard error to maintain
12354       // conformance with the C++ standard.
12355       diagnoseFunctionPointerToVoidComparison(
12356           *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
12357 
12358       if (isSFINAEContext())
12359         return QualType();
12360 
12361       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12362       return computeResultTy();
12363     }
12364 
12365     // C++ [expr.eq]p2:
12366     //   If at least one operand is a pointer [...] bring them to their
12367     //   composite pointer type.
12368     // C++ [expr.spaceship]p6
12369     //  If at least one of the operands is of pointer type, [...] bring them
12370     //  to their composite pointer type.
12371     // C++ [expr.rel]p2:
12372     //   If both operands are pointers, [...] bring them to their composite
12373     //   pointer type.
12374     // For <=>, the only valid non-pointer types are arrays and functions, and
12375     // we already decayed those, so this is really the same as the relational
12376     // comparison rule.
12377     if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
12378             (IsOrdered ? 2 : 1) &&
12379         (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
12380                                          RHSType->isObjCObjectPointerType()))) {
12381       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
12382         return QualType();
12383       return computeResultTy();
12384     }
12385   } else if (LHSType->isPointerType() &&
12386              RHSType->isPointerType()) { // C99 6.5.8p2
12387     // All of the following pointer-related warnings are GCC extensions, except
12388     // when handling null pointer constants.
12389     QualType LCanPointeeTy =
12390       LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12391     QualType RCanPointeeTy =
12392       RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12393 
12394     // C99 6.5.9p2 and C99 6.5.8p2
12395     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
12396                                    RCanPointeeTy.getUnqualifiedType())) {
12397       if (IsRelational) {
12398         // Pointers both need to point to complete or incomplete types
12399         if ((LCanPointeeTy->isIncompleteType() !=
12400              RCanPointeeTy->isIncompleteType()) &&
12401             !getLangOpts().C11) {
12402           Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
12403               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
12404               << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
12405               << RCanPointeeTy->isIncompleteType();
12406         }
12407       }
12408     } else if (!IsRelational &&
12409                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
12410       // Valid unless comparison between non-null pointer and function pointer
12411       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
12412           && !LHSIsNull && !RHSIsNull)
12413         diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
12414                                                 /*isError*/false);
12415     } else {
12416       // Invalid
12417       diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
12418     }
12419     if (LCanPointeeTy != RCanPointeeTy) {
12420       // Treat NULL constant as a special case in OpenCL.
12421       if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
12422         if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy,
12423                                                      getASTContext())) {
12424           Diag(Loc,
12425                diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
12426               << LHSType << RHSType << 0 /* comparison */
12427               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12428         }
12429       }
12430       LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
12431       LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
12432       CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
12433                                                : CK_BitCast;
12434       if (LHSIsNull && !RHSIsNull)
12435         LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
12436       else
12437         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
12438     }
12439     return computeResultTy();
12440   }
12441 
12442 
12443   // C++ [expr.eq]p4:
12444   //   Two operands of type std::nullptr_t or one operand of type
12445   //   std::nullptr_t and the other a null pointer constant compare
12446   //   equal.
12447   // C23 6.5.9p5:
12448   //   If both operands have type nullptr_t or one operand has type nullptr_t
12449   //   and the other is a null pointer constant, they compare equal if the
12450   //   former is a null pointer.
12451   if (!IsOrdered && LHSIsNull && RHSIsNull) {
12452     if (LHSType->isNullPtrType()) {
12453       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12454       return computeResultTy();
12455     }
12456     if (RHSType->isNullPtrType()) {
12457       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12458       return computeResultTy();
12459     }
12460   }
12461 
12462   if (!getLangOpts().CPlusPlus && !IsOrdered && (LHSIsNull || RHSIsNull)) {
12463     // C23 6.5.9p6:
12464     //   Otherwise, at least one operand is a pointer. If one is a pointer and
12465     //   the other is a null pointer constant or has type nullptr_t, they
12466     //   compare equal
12467     if (LHSIsNull && RHSType->isPointerType()) {
12468       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12469       return computeResultTy();
12470     }
12471     if (RHSIsNull && LHSType->isPointerType()) {
12472       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12473       return computeResultTy();
12474     }
12475   }
12476 
12477   // Comparison of Objective-C pointers and block pointers against nullptr_t.
12478   // These aren't covered by the composite pointer type rules.
12479   if (!IsOrdered && RHSType->isNullPtrType() &&
12480       (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
12481     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12482     return computeResultTy();
12483   }
12484   if (!IsOrdered && LHSType->isNullPtrType() &&
12485       (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
12486     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12487     return computeResultTy();
12488   }
12489 
12490   if (getLangOpts().CPlusPlus) {
12491     if (IsRelational &&
12492         ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
12493          (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
12494       // HACK: Relational comparison of nullptr_t against a pointer type is
12495       // invalid per DR583, but we allow it within std::less<> and friends,
12496       // since otherwise common uses of it break.
12497       // FIXME: Consider removing this hack once LWG fixes std::less<> and
12498       // friends to have std::nullptr_t overload candidates.
12499       DeclContext *DC = CurContext;
12500       if (isa<FunctionDecl>(DC))
12501         DC = DC->getParent();
12502       if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
12503         if (CTSD->isInStdNamespace() &&
12504             llvm::StringSwitch<bool>(CTSD->getName())
12505                 .Cases("less", "less_equal", "greater", "greater_equal", true)
12506                 .Default(false)) {
12507           if (RHSType->isNullPtrType())
12508             RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12509           else
12510             LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12511           return computeResultTy();
12512         }
12513       }
12514     }
12515 
12516     // C++ [expr.eq]p2:
12517     //   If at least one operand is a pointer to member, [...] bring them to
12518     //   their composite pointer type.
12519     if (!IsOrdered &&
12520         (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
12521       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
12522         return QualType();
12523       else
12524         return computeResultTy();
12525     }
12526   }
12527 
12528   // Handle block pointer types.
12529   if (!IsOrdered && LHSType->isBlockPointerType() &&
12530       RHSType->isBlockPointerType()) {
12531     QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
12532     QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
12533 
12534     if (!LHSIsNull && !RHSIsNull &&
12535         !Context.typesAreCompatible(lpointee, rpointee)) {
12536       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12537         << LHSType << RHSType << LHS.get()->getSourceRange()
12538         << RHS.get()->getSourceRange();
12539     }
12540     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12541     return computeResultTy();
12542   }
12543 
12544   // Allow block pointers to be compared with null pointer constants.
12545   if (!IsOrdered
12546       && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
12547           || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
12548     if (!LHSIsNull && !RHSIsNull) {
12549       if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
12550              ->getPointeeType()->isVoidType())
12551             || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
12552                 ->getPointeeType()->isVoidType())))
12553         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12554           << LHSType << RHSType << LHS.get()->getSourceRange()
12555           << RHS.get()->getSourceRange();
12556     }
12557     if (LHSIsNull && !RHSIsNull)
12558       LHS = ImpCastExprToType(LHS.get(), RHSType,
12559                               RHSType->isPointerType() ? CK_BitCast
12560                                 : CK_AnyPointerToBlockPointerCast);
12561     else
12562       RHS = ImpCastExprToType(RHS.get(), LHSType,
12563                               LHSType->isPointerType() ? CK_BitCast
12564                                 : CK_AnyPointerToBlockPointerCast);
12565     return computeResultTy();
12566   }
12567 
12568   if (LHSType->isObjCObjectPointerType() ||
12569       RHSType->isObjCObjectPointerType()) {
12570     const PointerType *LPT = LHSType->getAs<PointerType>();
12571     const PointerType *RPT = RHSType->getAs<PointerType>();
12572     if (LPT || RPT) {
12573       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
12574       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
12575 
12576       if (!LPtrToVoid && !RPtrToVoid &&
12577           !Context.typesAreCompatible(LHSType, RHSType)) {
12578         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
12579                                           /*isError*/false);
12580       }
12581       // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
12582       // the RHS, but we have test coverage for this behavior.
12583       // FIXME: Consider using convertPointersToCompositeType in C++.
12584       if (LHSIsNull && !RHSIsNull) {
12585         Expr *E = LHS.get();
12586         if (getLangOpts().ObjCAutoRefCount)
12587           ObjC().CheckObjCConversion(SourceRange(), RHSType, E,
12588                                      CheckedConversionKind::Implicit);
12589         LHS = ImpCastExprToType(E, RHSType,
12590                                 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12591       }
12592       else {
12593         Expr *E = RHS.get();
12594         if (getLangOpts().ObjCAutoRefCount)
12595           ObjC().CheckObjCConversion(SourceRange(), LHSType, E,
12596                                      CheckedConversionKind::Implicit,
12597                                      /*Diagnose=*/true,
12598                                      /*DiagnoseCFAudited=*/false, Opc);
12599         RHS = ImpCastExprToType(E, LHSType,
12600                                 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12601       }
12602       return computeResultTy();
12603     }
12604     if (LHSType->isObjCObjectPointerType() &&
12605         RHSType->isObjCObjectPointerType()) {
12606       if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
12607         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
12608                                           /*isError*/false);
12609       if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
12610         diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
12611 
12612       if (LHSIsNull && !RHSIsNull)
12613         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
12614       else
12615         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12616       return computeResultTy();
12617     }
12618 
12619     if (!IsOrdered && LHSType->isBlockPointerType() &&
12620         RHSType->isBlockCompatibleObjCPointerType(Context)) {
12621       LHS = ImpCastExprToType(LHS.get(), RHSType,
12622                               CK_BlockPointerToObjCPointerCast);
12623       return computeResultTy();
12624     } else if (!IsOrdered &&
12625                LHSType->isBlockCompatibleObjCPointerType(Context) &&
12626                RHSType->isBlockPointerType()) {
12627       RHS = ImpCastExprToType(RHS.get(), LHSType,
12628                               CK_BlockPointerToObjCPointerCast);
12629       return computeResultTy();
12630     }
12631   }
12632   if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
12633       (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
12634     unsigned DiagID = 0;
12635     bool isError = false;
12636     if (LangOpts.DebuggerSupport) {
12637       // Under a debugger, allow the comparison of pointers to integers,
12638       // since users tend to want to compare addresses.
12639     } else if ((LHSIsNull && LHSType->isIntegerType()) ||
12640                (RHSIsNull && RHSType->isIntegerType())) {
12641       if (IsOrdered) {
12642         isError = getLangOpts().CPlusPlus;
12643         DiagID =
12644           isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
12645                   : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
12646       }
12647     } else if (getLangOpts().CPlusPlus) {
12648       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
12649       isError = true;
12650     } else if (IsOrdered)
12651       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
12652     else
12653       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
12654 
12655     if (DiagID) {
12656       Diag(Loc, DiagID)
12657         << LHSType << RHSType << LHS.get()->getSourceRange()
12658         << RHS.get()->getSourceRange();
12659       if (isError)
12660         return QualType();
12661     }
12662 
12663     if (LHSType->isIntegerType())
12664       LHS = ImpCastExprToType(LHS.get(), RHSType,
12665                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12666     else
12667       RHS = ImpCastExprToType(RHS.get(), LHSType,
12668                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12669     return computeResultTy();
12670   }
12671 
12672   // Handle block pointers.
12673   if (!IsOrdered && RHSIsNull
12674       && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
12675     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12676     return computeResultTy();
12677   }
12678   if (!IsOrdered && LHSIsNull
12679       && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
12680     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12681     return computeResultTy();
12682   }
12683 
12684   if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
12685     if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
12686       return computeResultTy();
12687     }
12688 
12689     if (LHSType->isQueueT() && RHSType->isQueueT()) {
12690       return computeResultTy();
12691     }
12692 
12693     if (LHSIsNull && RHSType->isQueueT()) {
12694       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12695       return computeResultTy();
12696     }
12697 
12698     if (LHSType->isQueueT() && RHSIsNull) {
12699       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12700       return computeResultTy();
12701     }
12702   }
12703 
12704   return InvalidOperands(Loc, LHS, RHS);
12705 }
12706 
12707 QualType Sema::GetSignedVectorType(QualType V) {
12708   const VectorType *VTy = V->castAs<VectorType>();
12709   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
12710 
12711   if (isa<ExtVectorType>(VTy)) {
12712     if (VTy->isExtVectorBoolType())
12713       return Context.getExtVectorType(Context.BoolTy, VTy->getNumElements());
12714     if (TypeSize == Context.getTypeSize(Context.CharTy))
12715       return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
12716     if (TypeSize == Context.getTypeSize(Context.ShortTy))
12717       return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
12718     if (TypeSize == Context.getTypeSize(Context.IntTy))
12719       return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
12720     if (TypeSize == Context.getTypeSize(Context.Int128Ty))
12721       return Context.getExtVectorType(Context.Int128Ty, VTy->getNumElements());
12722     if (TypeSize == Context.getTypeSize(Context.LongTy))
12723       return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
12724     assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
12725            "Unhandled vector element size in vector compare");
12726     return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
12727   }
12728 
12729   if (TypeSize == Context.getTypeSize(Context.Int128Ty))
12730     return Context.getVectorType(Context.Int128Ty, VTy->getNumElements(),
12731                                  VectorKind::Generic);
12732   if (TypeSize == Context.getTypeSize(Context.LongLongTy))
12733     return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
12734                                  VectorKind::Generic);
12735   if (TypeSize == Context.getTypeSize(Context.LongTy))
12736     return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
12737                                  VectorKind::Generic);
12738   if (TypeSize == Context.getTypeSize(Context.IntTy))
12739     return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
12740                                  VectorKind::Generic);
12741   if (TypeSize == Context.getTypeSize(Context.ShortTy))
12742     return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
12743                                  VectorKind::Generic);
12744   assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
12745          "Unhandled vector element size in vector compare");
12746   return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
12747                                VectorKind::Generic);
12748 }
12749 
12750 QualType Sema::GetSignedSizelessVectorType(QualType V) {
12751   const BuiltinType *VTy = V->castAs<BuiltinType>();
12752   assert(VTy->isSizelessBuiltinType() && "expected sizeless type");
12753 
12754   const QualType ETy = V->getSveEltType(Context);
12755   const auto TypeSize = Context.getTypeSize(ETy);
12756 
12757   const QualType IntTy = Context.getIntTypeForBitwidth(TypeSize, true);
12758   const llvm::ElementCount VecSize = Context.getBuiltinVectorTypeInfo(VTy).EC;
12759   return Context.getScalableVectorType(IntTy, VecSize.getKnownMinValue());
12760 }
12761 
12762 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
12763                                           SourceLocation Loc,
12764                                           BinaryOperatorKind Opc) {
12765   if (Opc == BO_Cmp) {
12766     Diag(Loc, diag::err_three_way_vector_comparison);
12767     return QualType();
12768   }
12769 
12770   // Check to make sure we're operating on vectors of the same type and width,
12771   // Allowing one side to be a scalar of element type.
12772   QualType vType =
12773       CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/ false,
12774                           /*AllowBothBool*/ true,
12775                           /*AllowBoolConversions*/ getLangOpts().ZVector,
12776                           /*AllowBooleanOperation*/ true,
12777                           /*ReportInvalid*/ true);
12778   if (vType.isNull())
12779     return vType;
12780 
12781   QualType LHSType = LHS.get()->getType();
12782 
12783   // Determine the return type of a vector compare. By default clang will return
12784   // a scalar for all vector compares except vector bool and vector pixel.
12785   // With the gcc compiler we will always return a vector type and with the xl
12786   // compiler we will always return a scalar type. This switch allows choosing
12787   // which behavior is prefered.
12788   if (getLangOpts().AltiVec) {
12789     switch (getLangOpts().getAltivecSrcCompat()) {
12790     case LangOptions::AltivecSrcCompatKind::Mixed:
12791       // If AltiVec, the comparison results in a numeric type, i.e.
12792       // bool for C++, int for C
12793       if (vType->castAs<VectorType>()->getVectorKind() ==
12794           VectorKind::AltiVecVector)
12795         return Context.getLogicalOperationType();
12796       else
12797         Diag(Loc, diag::warn_deprecated_altivec_src_compat);
12798       break;
12799     case LangOptions::AltivecSrcCompatKind::GCC:
12800       // For GCC we always return the vector type.
12801       break;
12802     case LangOptions::AltivecSrcCompatKind::XL:
12803       return Context.getLogicalOperationType();
12804       break;
12805     }
12806   }
12807 
12808   // For non-floating point types, check for self-comparisons of the form
12809   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
12810   // often indicate logic errors in the program.
12811   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12812 
12813   // Check for comparisons of floating point operands using != and ==.
12814   if (LHSType->hasFloatingRepresentation()) {
12815     assert(RHS.get()->getType()->hasFloatingRepresentation());
12816     CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
12817   }
12818 
12819   // Return a signed type for the vector.
12820   return GetSignedVectorType(vType);
12821 }
12822 
12823 QualType Sema::CheckSizelessVectorCompareOperands(ExprResult &LHS,
12824                                                   ExprResult &RHS,
12825                                                   SourceLocation Loc,
12826                                                   BinaryOperatorKind Opc) {
12827   if (Opc == BO_Cmp) {
12828     Diag(Loc, diag::err_three_way_vector_comparison);
12829     return QualType();
12830   }
12831 
12832   // Check to make sure we're operating on vectors of the same type and width,
12833   // Allowing one side to be a scalar of element type.
12834   QualType vType = CheckSizelessVectorOperands(
12835       LHS, RHS, Loc, /*isCompAssign*/ false, ACK_Comparison);
12836 
12837   if (vType.isNull())
12838     return vType;
12839 
12840   QualType LHSType = LHS.get()->getType();
12841 
12842   // For non-floating point types, check for self-comparisons of the form
12843   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
12844   // often indicate logic errors in the program.
12845   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12846 
12847   // Check for comparisons of floating point operands using != and ==.
12848   if (LHSType->hasFloatingRepresentation()) {
12849     assert(RHS.get()->getType()->hasFloatingRepresentation());
12850     CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
12851   }
12852 
12853   const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
12854   const BuiltinType *RHSBuiltinTy = RHS.get()->getType()->getAs<BuiltinType>();
12855 
12856   if (LHSBuiltinTy && RHSBuiltinTy && LHSBuiltinTy->isSVEBool() &&
12857       RHSBuiltinTy->isSVEBool())
12858     return LHSType;
12859 
12860   // Return a signed type for the vector.
12861   return GetSignedSizelessVectorType(vType);
12862 }
12863 
12864 static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
12865                                     const ExprResult &XorRHS,
12866                                     const SourceLocation Loc) {
12867   // Do not diagnose macros.
12868   if (Loc.isMacroID())
12869     return;
12870 
12871   // Do not diagnose if both LHS and RHS are macros.
12872   if (XorLHS.get()->getExprLoc().isMacroID() &&
12873       XorRHS.get()->getExprLoc().isMacroID())
12874     return;
12875 
12876   bool Negative = false;
12877   bool ExplicitPlus = false;
12878   const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
12879   const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
12880 
12881   if (!LHSInt)
12882     return;
12883   if (!RHSInt) {
12884     // Check negative literals.
12885     if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
12886       UnaryOperatorKind Opc = UO->getOpcode();
12887       if (Opc != UO_Minus && Opc != UO_Plus)
12888         return;
12889       RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
12890       if (!RHSInt)
12891         return;
12892       Negative = (Opc == UO_Minus);
12893       ExplicitPlus = !Negative;
12894     } else {
12895       return;
12896     }
12897   }
12898 
12899   const llvm::APInt &LeftSideValue = LHSInt->getValue();
12900   llvm::APInt RightSideValue = RHSInt->getValue();
12901   if (LeftSideValue != 2 && LeftSideValue != 10)
12902     return;
12903 
12904   if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
12905     return;
12906 
12907   CharSourceRange ExprRange = CharSourceRange::getCharRange(
12908       LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
12909   llvm::StringRef ExprStr =
12910       Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
12911 
12912   CharSourceRange XorRange =
12913       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
12914   llvm::StringRef XorStr =
12915       Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
12916   // Do not diagnose if xor keyword/macro is used.
12917   if (XorStr == "xor")
12918     return;
12919 
12920   std::string LHSStr = std::string(Lexer::getSourceText(
12921       CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
12922       S.getSourceManager(), S.getLangOpts()));
12923   std::string RHSStr = std::string(Lexer::getSourceText(
12924       CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
12925       S.getSourceManager(), S.getLangOpts()));
12926 
12927   if (Negative) {
12928     RightSideValue = -RightSideValue;
12929     RHSStr = "-" + RHSStr;
12930   } else if (ExplicitPlus) {
12931     RHSStr = "+" + RHSStr;
12932   }
12933 
12934   StringRef LHSStrRef = LHSStr;
12935   StringRef RHSStrRef = RHSStr;
12936   // Do not diagnose literals with digit separators, binary, hexadecimal, octal
12937   // literals.
12938   if (LHSStrRef.starts_with("0b") || LHSStrRef.starts_with("0B") ||
12939       RHSStrRef.starts_with("0b") || RHSStrRef.starts_with("0B") ||
12940       LHSStrRef.starts_with("0x") || LHSStrRef.starts_with("0X") ||
12941       RHSStrRef.starts_with("0x") || RHSStrRef.starts_with("0X") ||
12942       (LHSStrRef.size() > 1 && LHSStrRef.starts_with("0")) ||
12943       (RHSStrRef.size() > 1 && RHSStrRef.starts_with("0")) ||
12944       LHSStrRef.contains('\'') || RHSStrRef.contains('\''))
12945     return;
12946 
12947   bool SuggestXor =
12948       S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
12949   const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
12950   int64_t RightSideIntValue = RightSideValue.getSExtValue();
12951   if (LeftSideValue == 2 && RightSideIntValue >= 0) {
12952     std::string SuggestedExpr = "1 << " + RHSStr;
12953     bool Overflow = false;
12954     llvm::APInt One = (LeftSideValue - 1);
12955     llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
12956     if (Overflow) {
12957       if (RightSideIntValue < 64)
12958         S.Diag(Loc, diag::warn_xor_used_as_pow_base)
12959             << ExprStr << toString(XorValue, 10, true) << ("1LL << " + RHSStr)
12960             << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
12961       else if (RightSideIntValue == 64)
12962         S.Diag(Loc, diag::warn_xor_used_as_pow)
12963             << ExprStr << toString(XorValue, 10, true);
12964       else
12965         return;
12966     } else {
12967       S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
12968           << ExprStr << toString(XorValue, 10, true) << SuggestedExpr
12969           << toString(PowValue, 10, true)
12970           << FixItHint::CreateReplacement(
12971                  ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
12972     }
12973 
12974     S.Diag(Loc, diag::note_xor_used_as_pow_silence)
12975         << ("0x2 ^ " + RHSStr) << SuggestXor;
12976   } else if (LeftSideValue == 10) {
12977     std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
12978     S.Diag(Loc, diag::warn_xor_used_as_pow_base)
12979         << ExprStr << toString(XorValue, 10, true) << SuggestedValue
12980         << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
12981     S.Diag(Loc, diag::note_xor_used_as_pow_silence)
12982         << ("0xA ^ " + RHSStr) << SuggestXor;
12983   }
12984 }
12985 
12986 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
12987                                           SourceLocation Loc,
12988                                           BinaryOperatorKind Opc) {
12989   // Ensure that either both operands are of the same vector type, or
12990   // one operand is of a vector type and the other is of its element type.
12991   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
12992                                        /*AllowBothBool*/ true,
12993                                        /*AllowBoolConversions*/ false,
12994                                        /*AllowBooleanOperation*/ false,
12995                                        /*ReportInvalid*/ false);
12996   if (vType.isNull())
12997     return InvalidOperands(Loc, LHS, RHS);
12998   if (getLangOpts().OpenCL &&
12999       getLangOpts().getOpenCLCompatibleVersion() < 120 &&
13000       vType->hasFloatingRepresentation())
13001     return InvalidOperands(Loc, LHS, RHS);
13002   // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
13003   //        usage of the logical operators && and || with vectors in C. This
13004   //        check could be notionally dropped.
13005   if (!getLangOpts().CPlusPlus &&
13006       !(isa<ExtVectorType>(vType->getAs<VectorType>())))
13007     return InvalidLogicalVectorOperands(Loc, LHS, RHS);
13008   // Beginning with HLSL 2021, HLSL disallows logical operators on vector
13009   // operands and instead requires the use of the `and`, `or`, `any`, `all`, and
13010   // `select` functions.
13011   if (getLangOpts().HLSL &&
13012       getLangOpts().getHLSLVersion() >= LangOptionsBase::HLSL_2021) {
13013     (void)InvalidOperands(Loc, LHS, RHS);
13014     HLSL().emitLogicalOperatorFixIt(LHS.get(), RHS.get(), Opc);
13015     return QualType();
13016   }
13017 
13018   return GetSignedVectorType(LHS.get()->getType());
13019 }
13020 
13021 QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
13022                                               SourceLocation Loc,
13023                                               bool IsCompAssign) {
13024   if (!IsCompAssign) {
13025     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13026     if (LHS.isInvalid())
13027       return QualType();
13028   }
13029   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13030   if (RHS.isInvalid())
13031     return QualType();
13032 
13033   // For conversion purposes, we ignore any qualifiers.
13034   // For example, "const float" and "float" are equivalent.
13035   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
13036   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
13037 
13038   const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
13039   const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
13040   assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13041 
13042   if (Context.hasSameType(LHSType, RHSType))
13043     return Context.getCommonSugaredType(LHSType, RHSType);
13044 
13045   // Type conversion may change LHS/RHS. Keep copies to the original results, in
13046   // case we have to return InvalidOperands.
13047   ExprResult OriginalLHS = LHS;
13048   ExprResult OriginalRHS = RHS;
13049   if (LHSMatType && !RHSMatType) {
13050     RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType());
13051     if (!RHS.isInvalid())
13052       return LHSType;
13053 
13054     return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
13055   }
13056 
13057   if (!LHSMatType && RHSMatType) {
13058     LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType());
13059     if (!LHS.isInvalid())
13060       return RHSType;
13061     return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
13062   }
13063 
13064   return InvalidOperands(Loc, LHS, RHS);
13065 }
13066 
13067 QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
13068                                            SourceLocation Loc,
13069                                            bool IsCompAssign) {
13070   if (!IsCompAssign) {
13071     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13072     if (LHS.isInvalid())
13073       return QualType();
13074   }
13075   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13076   if (RHS.isInvalid())
13077     return QualType();
13078 
13079   auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
13080   auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
13081   assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13082 
13083   if (LHSMatType && RHSMatType) {
13084     if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
13085       return InvalidOperands(Loc, LHS, RHS);
13086 
13087     if (Context.hasSameType(LHSMatType, RHSMatType))
13088       return Context.getCommonSugaredType(
13089           LHS.get()->getType().getUnqualifiedType(),
13090           RHS.get()->getType().getUnqualifiedType());
13091 
13092     QualType LHSELTy = LHSMatType->getElementType(),
13093              RHSELTy = RHSMatType->getElementType();
13094     if (!Context.hasSameType(LHSELTy, RHSELTy))
13095       return InvalidOperands(Loc, LHS, RHS);
13096 
13097     return Context.getConstantMatrixType(
13098         Context.getCommonSugaredType(LHSELTy, RHSELTy),
13099         LHSMatType->getNumRows(), RHSMatType->getNumColumns());
13100   }
13101   return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
13102 }
13103 
13104 static bool isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc) {
13105   switch (Opc) {
13106   default:
13107     return false;
13108   case BO_And:
13109   case BO_AndAssign:
13110   case BO_Or:
13111   case BO_OrAssign:
13112   case BO_Xor:
13113   case BO_XorAssign:
13114     return true;
13115   }
13116 }
13117 
13118 inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
13119                                            SourceLocation Loc,
13120                                            BinaryOperatorKind Opc) {
13121   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
13122 
13123   bool IsCompAssign =
13124       Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
13125 
13126   bool LegalBoolVecOperator = isLegalBoolVectorBinaryOp(Opc);
13127 
13128   if (LHS.get()->getType()->isVectorType() ||
13129       RHS.get()->getType()->isVectorType()) {
13130     if (LHS.get()->getType()->hasIntegerRepresentation() &&
13131         RHS.get()->getType()->hasIntegerRepresentation())
13132       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
13133                                  /*AllowBothBool*/ true,
13134                                  /*AllowBoolConversions*/ getLangOpts().ZVector,
13135                                  /*AllowBooleanOperation*/ LegalBoolVecOperator,
13136                                  /*ReportInvalid*/ true);
13137     return InvalidOperands(Loc, LHS, RHS);
13138   }
13139 
13140   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
13141       RHS.get()->getType()->isSveVLSBuiltinType()) {
13142     if (LHS.get()->getType()->hasIntegerRepresentation() &&
13143         RHS.get()->getType()->hasIntegerRepresentation())
13144       return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13145                                          ACK_BitwiseOp);
13146     return InvalidOperands(Loc, LHS, RHS);
13147   }
13148 
13149   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
13150       RHS.get()->getType()->isSveVLSBuiltinType()) {
13151     if (LHS.get()->getType()->hasIntegerRepresentation() &&
13152         RHS.get()->getType()->hasIntegerRepresentation())
13153       return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13154                                          ACK_BitwiseOp);
13155     return InvalidOperands(Loc, LHS, RHS);
13156   }
13157 
13158   if (Opc == BO_And)
13159     diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
13160 
13161   if (LHS.get()->getType()->hasFloatingRepresentation() ||
13162       RHS.get()->getType()->hasFloatingRepresentation())
13163     return InvalidOperands(Loc, LHS, RHS);
13164 
13165   ExprResult LHSResult = LHS, RHSResult = RHS;
13166   QualType compType = UsualArithmeticConversions(
13167       LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
13168   if (LHSResult.isInvalid() || RHSResult.isInvalid())
13169     return QualType();
13170   LHS = LHSResult.get();
13171   RHS = RHSResult.get();
13172 
13173   if (Opc == BO_Xor)
13174     diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
13175 
13176   if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
13177     return compType;
13178   return InvalidOperands(Loc, LHS, RHS);
13179 }
13180 
13181 // C99 6.5.[13,14]
13182 inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
13183                                            SourceLocation Loc,
13184                                            BinaryOperatorKind Opc) {
13185   // Check vector operands differently.
13186   if (LHS.get()->getType()->isVectorType() ||
13187       RHS.get()->getType()->isVectorType())
13188     return CheckVectorLogicalOperands(LHS, RHS, Loc, Opc);
13189 
13190   bool EnumConstantInBoolContext = false;
13191   for (const ExprResult &HS : {LHS, RHS}) {
13192     if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
13193       const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
13194       if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
13195         EnumConstantInBoolContext = true;
13196     }
13197   }
13198 
13199   if (EnumConstantInBoolContext)
13200     Diag(Loc, diag::warn_enum_constant_in_bool_context);
13201 
13202   // WebAssembly tables can't be used with logical operators.
13203   QualType LHSTy = LHS.get()->getType();
13204   QualType RHSTy = RHS.get()->getType();
13205   const auto *LHSATy = dyn_cast<ArrayType>(LHSTy);
13206   const auto *RHSATy = dyn_cast<ArrayType>(RHSTy);
13207   if ((LHSATy && LHSATy->getElementType().isWebAssemblyReferenceType()) ||
13208       (RHSATy && RHSATy->getElementType().isWebAssemblyReferenceType())) {
13209     return InvalidOperands(Loc, LHS, RHS);
13210   }
13211 
13212   // Diagnose cases where the user write a logical and/or but probably meant a
13213   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
13214   // is a constant.
13215   if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
13216       !LHS.get()->getType()->isBooleanType() &&
13217       RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
13218       // Don't warn in macros or template instantiations.
13219       !Loc.isMacroID() && !inTemplateInstantiation()) {
13220     // If the RHS can be constant folded, and if it constant folds to something
13221     // that isn't 0 or 1 (which indicate a potential logical operation that
13222     // happened to fold to true/false) then warn.
13223     // Parens on the RHS are ignored.
13224     Expr::EvalResult EVResult;
13225     if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
13226       llvm::APSInt Result = EVResult.Val.getInt();
13227       if ((getLangOpts().CPlusPlus && !RHS.get()->getType()->isBooleanType() &&
13228            !RHS.get()->getExprLoc().isMacroID()) ||
13229           (Result != 0 && Result != 1)) {
13230         Diag(Loc, diag::warn_logical_instead_of_bitwise)
13231             << RHS.get()->getSourceRange() << (Opc == BO_LAnd ? "&&" : "||");
13232         // Suggest replacing the logical operator with the bitwise version
13233         Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
13234             << (Opc == BO_LAnd ? "&" : "|")
13235             << FixItHint::CreateReplacement(
13236                    SourceRange(Loc, getLocForEndOfToken(Loc)),
13237                    Opc == BO_LAnd ? "&" : "|");
13238         if (Opc == BO_LAnd)
13239           // Suggest replacing "Foo() && kNonZero" with "Foo()"
13240           Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
13241               << FixItHint::CreateRemoval(
13242                      SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
13243                                  RHS.get()->getEndLoc()));
13244       }
13245     }
13246   }
13247 
13248   if (!Context.getLangOpts().CPlusPlus) {
13249     // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
13250     // not operate on the built-in scalar and vector float types.
13251     if (Context.getLangOpts().OpenCL &&
13252         Context.getLangOpts().OpenCLVersion < 120) {
13253       if (LHS.get()->getType()->isFloatingType() ||
13254           RHS.get()->getType()->isFloatingType())
13255         return InvalidOperands(Loc, LHS, RHS);
13256     }
13257 
13258     LHS = UsualUnaryConversions(LHS.get());
13259     if (LHS.isInvalid())
13260       return QualType();
13261 
13262     RHS = UsualUnaryConversions(RHS.get());
13263     if (RHS.isInvalid())
13264       return QualType();
13265 
13266     if (!LHS.get()->getType()->isScalarType() ||
13267         !RHS.get()->getType()->isScalarType())
13268       return InvalidOperands(Loc, LHS, RHS);
13269 
13270     return Context.IntTy;
13271   }
13272 
13273   // The following is safe because we only use this method for
13274   // non-overloadable operands.
13275 
13276   // C++ [expr.log.and]p1
13277   // C++ [expr.log.or]p1
13278   // The operands are both contextually converted to type bool.
13279   ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
13280   if (LHSRes.isInvalid())
13281     return InvalidOperands(Loc, LHS, RHS);
13282   LHS = LHSRes;
13283 
13284   ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
13285   if (RHSRes.isInvalid())
13286     return InvalidOperands(Loc, LHS, RHS);
13287   RHS = RHSRes;
13288 
13289   // C++ [expr.log.and]p2
13290   // C++ [expr.log.or]p2
13291   // The result is a bool.
13292   return Context.BoolTy;
13293 }
13294 
13295 static bool IsReadonlyMessage(Expr *E, Sema &S) {
13296   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
13297   if (!ME) return false;
13298   if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
13299   ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
13300       ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
13301   if (!Base) return false;
13302   return Base->getMethodDecl() != nullptr;
13303 }
13304 
13305 /// Is the given expression (which must be 'const') a reference to a
13306 /// variable which was originally non-const, but which has become
13307 /// 'const' due to being captured within a block?
13308 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
13309 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
13310   assert(E->isLValue() && E->getType().isConstQualified());
13311   E = E->IgnoreParens();
13312 
13313   // Must be a reference to a declaration from an enclosing scope.
13314   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
13315   if (!DRE) return NCCK_None;
13316   if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
13317 
13318   ValueDecl *Value = dyn_cast<ValueDecl>(DRE->getDecl());
13319 
13320   // The declaration must be a value which is not declared 'const'.
13321   if (!Value || Value->getType().isConstQualified())
13322     return NCCK_None;
13323 
13324   BindingDecl *Binding = dyn_cast<BindingDecl>(Value);
13325   if (Binding) {
13326     assert(S.getLangOpts().CPlusPlus && "BindingDecl outside of C++?");
13327     assert(!isa<BlockDecl>(Binding->getDeclContext()));
13328     return NCCK_Lambda;
13329   }
13330 
13331   VarDecl *Var = dyn_cast<VarDecl>(Value);
13332   if (!Var)
13333     return NCCK_None;
13334 
13335   assert(Var->hasLocalStorage() && "capture added 'const' to non-local?");
13336 
13337   // Decide whether the first capture was for a block or a lambda.
13338   DeclContext *DC = S.CurContext, *Prev = nullptr;
13339   // Decide whether the first capture was for a block or a lambda.
13340   while (DC) {
13341     // For init-capture, it is possible that the variable belongs to the
13342     // template pattern of the current context.
13343     if (auto *FD = dyn_cast<FunctionDecl>(DC))
13344       if (Var->isInitCapture() &&
13345           FD->getTemplateInstantiationPattern() == Var->getDeclContext())
13346         break;
13347     if (DC == Var->getDeclContext())
13348       break;
13349     Prev = DC;
13350     DC = DC->getParent();
13351   }
13352   // Unless we have an init-capture, we've gone one step too far.
13353   if (!Var->isInitCapture())
13354     DC = Prev;
13355   return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
13356 }
13357 
13358 static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
13359   Ty = Ty.getNonReferenceType();
13360   if (IsDereference && Ty->isPointerType())
13361     Ty = Ty->getPointeeType();
13362   return !Ty.isConstQualified();
13363 }
13364 
13365 // Update err_typecheck_assign_const and note_typecheck_assign_const
13366 // when this enum is changed.
13367 enum {
13368   ConstFunction,
13369   ConstVariable,
13370   ConstMember,
13371   ConstMethod,
13372   NestedConstMember,
13373   ConstUnknown,  // Keep as last element
13374 };
13375 
13376 /// Emit the "read-only variable not assignable" error and print notes to give
13377 /// more information about why the variable is not assignable, such as pointing
13378 /// to the declaration of a const variable, showing that a method is const, or
13379 /// that the function is returning a const reference.
13380 static void DiagnoseConstAssignment(Sema &S, const Expr *E,
13381                                     SourceLocation Loc) {
13382   SourceRange ExprRange = E->getSourceRange();
13383 
13384   // Only emit one error on the first const found.  All other consts will emit
13385   // a note to the error.
13386   bool DiagnosticEmitted = false;
13387 
13388   // Track if the current expression is the result of a dereference, and if the
13389   // next checked expression is the result of a dereference.
13390   bool IsDereference = false;
13391   bool NextIsDereference = false;
13392 
13393   // Loop to process MemberExpr chains.
13394   while (true) {
13395     IsDereference = NextIsDereference;
13396 
13397     E = E->IgnoreImplicit()->IgnoreParenImpCasts();
13398     if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
13399       NextIsDereference = ME->isArrow();
13400       const ValueDecl *VD = ME->getMemberDecl();
13401       if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
13402         // Mutable fields can be modified even if the class is const.
13403         if (Field->isMutable()) {
13404           assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
13405           break;
13406         }
13407 
13408         if (!IsTypeModifiable(Field->getType(), IsDereference)) {
13409           if (!DiagnosticEmitted) {
13410             S.Diag(Loc, diag::err_typecheck_assign_const)
13411                 << ExprRange << ConstMember << false /*static*/ << Field
13412                 << Field->getType();
13413             DiagnosticEmitted = true;
13414           }
13415           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13416               << ConstMember << false /*static*/ << Field << Field->getType()
13417               << Field->getSourceRange();
13418         }
13419         E = ME->getBase();
13420         continue;
13421       } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
13422         if (VDecl->getType().isConstQualified()) {
13423           if (!DiagnosticEmitted) {
13424             S.Diag(Loc, diag::err_typecheck_assign_const)
13425                 << ExprRange << ConstMember << true /*static*/ << VDecl
13426                 << VDecl->getType();
13427             DiagnosticEmitted = true;
13428           }
13429           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13430               << ConstMember << true /*static*/ << VDecl << VDecl->getType()
13431               << VDecl->getSourceRange();
13432         }
13433         // Static fields do not inherit constness from parents.
13434         break;
13435       }
13436       break; // End MemberExpr
13437     } else if (const ArraySubscriptExpr *ASE =
13438                    dyn_cast<ArraySubscriptExpr>(E)) {
13439       E = ASE->getBase()->IgnoreParenImpCasts();
13440       continue;
13441     } else if (const ExtVectorElementExpr *EVE =
13442                    dyn_cast<ExtVectorElementExpr>(E)) {
13443       E = EVE->getBase()->IgnoreParenImpCasts();
13444       continue;
13445     }
13446     break;
13447   }
13448 
13449   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
13450     // Function calls
13451     const FunctionDecl *FD = CE->getDirectCallee();
13452     if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
13453       if (!DiagnosticEmitted) {
13454         S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
13455                                                       << ConstFunction << FD;
13456         DiagnosticEmitted = true;
13457       }
13458       S.Diag(FD->getReturnTypeSourceRange().getBegin(),
13459              diag::note_typecheck_assign_const)
13460           << ConstFunction << FD << FD->getReturnType()
13461           << FD->getReturnTypeSourceRange();
13462     }
13463   } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
13464     // Point to variable declaration.
13465     if (const ValueDecl *VD = DRE->getDecl()) {
13466       if (!IsTypeModifiable(VD->getType(), IsDereference)) {
13467         if (!DiagnosticEmitted) {
13468           S.Diag(Loc, diag::err_typecheck_assign_const)
13469               << ExprRange << ConstVariable << VD << VD->getType();
13470           DiagnosticEmitted = true;
13471         }
13472         S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13473             << ConstVariable << VD << VD->getType() << VD->getSourceRange();
13474       }
13475     }
13476   } else if (isa<CXXThisExpr>(E)) {
13477     if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
13478       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
13479         if (MD->isConst()) {
13480           if (!DiagnosticEmitted) {
13481             S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
13482                                                           << ConstMethod << MD;
13483             DiagnosticEmitted = true;
13484           }
13485           S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
13486               << ConstMethod << MD << MD->getSourceRange();
13487         }
13488       }
13489     }
13490   }
13491 
13492   if (DiagnosticEmitted)
13493     return;
13494 
13495   // Can't determine a more specific message, so display the generic error.
13496   S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
13497 }
13498 
13499 enum OriginalExprKind {
13500   OEK_Variable,
13501   OEK_Member,
13502   OEK_LValue
13503 };
13504 
13505 static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
13506                                          const RecordType *Ty,
13507                                          SourceLocation Loc, SourceRange Range,
13508                                          OriginalExprKind OEK,
13509                                          bool &DiagnosticEmitted) {
13510   std::vector<const RecordType *> RecordTypeList;
13511   RecordTypeList.push_back(Ty);
13512   unsigned NextToCheckIndex = 0;
13513   // We walk the record hierarchy breadth-first to ensure that we print
13514   // diagnostics in field nesting order.
13515   while (RecordTypeList.size() > NextToCheckIndex) {
13516     bool IsNested = NextToCheckIndex > 0;
13517     for (const FieldDecl *Field :
13518          RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
13519       // First, check every field for constness.
13520       QualType FieldTy = Field->getType();
13521       if (FieldTy.isConstQualified()) {
13522         if (!DiagnosticEmitted) {
13523           S.Diag(Loc, diag::err_typecheck_assign_const)
13524               << Range << NestedConstMember << OEK << VD
13525               << IsNested << Field;
13526           DiagnosticEmitted = true;
13527         }
13528         S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
13529             << NestedConstMember << IsNested << Field
13530             << FieldTy << Field->getSourceRange();
13531       }
13532 
13533       // Then we append it to the list to check next in order.
13534       FieldTy = FieldTy.getCanonicalType();
13535       if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
13536         if (!llvm::is_contained(RecordTypeList, FieldRecTy))
13537           RecordTypeList.push_back(FieldRecTy);
13538       }
13539     }
13540     ++NextToCheckIndex;
13541   }
13542 }
13543 
13544 /// Emit an error for the case where a record we are trying to assign to has a
13545 /// const-qualified field somewhere in its hierarchy.
13546 static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
13547                                          SourceLocation Loc) {
13548   QualType Ty = E->getType();
13549   assert(Ty->isRecordType() && "lvalue was not record?");
13550   SourceRange Range = E->getSourceRange();
13551   const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
13552   bool DiagEmitted = false;
13553 
13554   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
13555     DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
13556             Range, OEK_Member, DiagEmitted);
13557   else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13558     DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
13559             Range, OEK_Variable, DiagEmitted);
13560   else
13561     DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
13562             Range, OEK_LValue, DiagEmitted);
13563   if (!DiagEmitted)
13564     DiagnoseConstAssignment(S, E, Loc);
13565 }
13566 
13567 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
13568 /// emit an error and return true.  If so, return false.
13569 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
13570   assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
13571 
13572   S.CheckShadowingDeclModification(E, Loc);
13573 
13574   SourceLocation OrigLoc = Loc;
13575   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
13576                                                               &Loc);
13577   if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
13578     IsLV = Expr::MLV_InvalidMessageExpression;
13579   if (IsLV == Expr::MLV_Valid)
13580     return false;
13581 
13582   unsigned DiagID = 0;
13583   bool NeedType = false;
13584   switch (IsLV) { // C99 6.5.16p2
13585   case Expr::MLV_ConstQualified:
13586     // Use a specialized diagnostic when we're assigning to an object
13587     // from an enclosing function or block.
13588     if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
13589       if (NCCK == NCCK_Block)
13590         DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
13591       else
13592         DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
13593       break;
13594     }
13595 
13596     // In ARC, use some specialized diagnostics for occasions where we
13597     // infer 'const'.  These are always pseudo-strong variables.
13598     if (S.getLangOpts().ObjCAutoRefCount) {
13599       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
13600       if (declRef && isa<VarDecl>(declRef->getDecl())) {
13601         VarDecl *var = cast<VarDecl>(declRef->getDecl());
13602 
13603         // Use the normal diagnostic if it's pseudo-__strong but the
13604         // user actually wrote 'const'.
13605         if (var->isARCPseudoStrong() &&
13606             (!var->getTypeSourceInfo() ||
13607              !var->getTypeSourceInfo()->getType().isConstQualified())) {
13608           // There are three pseudo-strong cases:
13609           //  - self
13610           ObjCMethodDecl *method = S.getCurMethodDecl();
13611           if (method && var == method->getSelfDecl()) {
13612             DiagID = method->isClassMethod()
13613               ? diag::err_typecheck_arc_assign_self_class_method
13614               : diag::err_typecheck_arc_assign_self;
13615 
13616           //  - Objective-C externally_retained attribute.
13617           } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
13618                      isa<ParmVarDecl>(var)) {
13619             DiagID = diag::err_typecheck_arc_assign_externally_retained;
13620 
13621           //  - fast enumeration variables
13622           } else {
13623             DiagID = diag::err_typecheck_arr_assign_enumeration;
13624           }
13625 
13626           SourceRange Assign;
13627           if (Loc != OrigLoc)
13628             Assign = SourceRange(OrigLoc, OrigLoc);
13629           S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
13630           // We need to preserve the AST regardless, so migration tool
13631           // can do its job.
13632           return false;
13633         }
13634       }
13635     }
13636 
13637     // If none of the special cases above are triggered, then this is a
13638     // simple const assignment.
13639     if (DiagID == 0) {
13640       DiagnoseConstAssignment(S, E, Loc);
13641       return true;
13642     }
13643 
13644     break;
13645   case Expr::MLV_ConstAddrSpace:
13646     DiagnoseConstAssignment(S, E, Loc);
13647     return true;
13648   case Expr::MLV_ConstQualifiedField:
13649     DiagnoseRecursiveConstFields(S, E, Loc);
13650     return true;
13651   case Expr::MLV_ArrayType:
13652   case Expr::MLV_ArrayTemporary:
13653     DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
13654     NeedType = true;
13655     break;
13656   case Expr::MLV_NotObjectType:
13657     DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
13658     NeedType = true;
13659     break;
13660   case Expr::MLV_LValueCast:
13661     DiagID = diag::err_typecheck_lvalue_casts_not_supported;
13662     break;
13663   case Expr::MLV_Valid:
13664     llvm_unreachable("did not take early return for MLV_Valid");
13665   case Expr::MLV_InvalidExpression:
13666   case Expr::MLV_MemberFunction:
13667   case Expr::MLV_ClassTemporary:
13668     DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
13669     break;
13670   case Expr::MLV_IncompleteType:
13671   case Expr::MLV_IncompleteVoidType:
13672     return S.RequireCompleteType(Loc, E->getType(),
13673              diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
13674   case Expr::MLV_DuplicateVectorComponents:
13675     DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
13676     break;
13677   case Expr::MLV_NoSetterProperty:
13678     llvm_unreachable("readonly properties should be processed differently");
13679   case Expr::MLV_InvalidMessageExpression:
13680     DiagID = diag::err_readonly_message_assignment;
13681     break;
13682   case Expr::MLV_SubObjCPropertySetting:
13683     DiagID = diag::err_no_subobject_property_setting;
13684     break;
13685   }
13686 
13687   SourceRange Assign;
13688   if (Loc != OrigLoc)
13689     Assign = SourceRange(OrigLoc, OrigLoc);
13690   if (NeedType)
13691     S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
13692   else
13693     S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
13694   return true;
13695 }
13696 
13697 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
13698                                          SourceLocation Loc,
13699                                          Sema &Sema) {
13700   if (Sema.inTemplateInstantiation())
13701     return;
13702   if (Sema.isUnevaluatedContext())
13703     return;
13704   if (Loc.isInvalid() || Loc.isMacroID())
13705     return;
13706   if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
13707     return;
13708 
13709   // C / C++ fields
13710   MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
13711   MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
13712   if (ML && MR) {
13713     if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
13714       return;
13715     const ValueDecl *LHSDecl =
13716         cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
13717     const ValueDecl *RHSDecl =
13718         cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
13719     if (LHSDecl != RHSDecl)
13720       return;
13721     if (LHSDecl->getType().isVolatileQualified())
13722       return;
13723     if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
13724       if (RefTy->getPointeeType().isVolatileQualified())
13725         return;
13726 
13727     Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
13728   }
13729 
13730   // Objective-C instance variables
13731   ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
13732   ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
13733   if (OL && OR && OL->getDecl() == OR->getDecl()) {
13734     DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
13735     DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
13736     if (RL && RR && RL->getDecl() == RR->getDecl())
13737       Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
13738   }
13739 }
13740 
13741 // C99 6.5.16.1
13742 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
13743                                        SourceLocation Loc,
13744                                        QualType CompoundType,
13745                                        BinaryOperatorKind Opc) {
13746   assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
13747 
13748   // Verify that LHS is a modifiable lvalue, and emit error if not.
13749   if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
13750     return QualType();
13751 
13752   QualType LHSType = LHSExpr->getType();
13753   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
13754                                              CompoundType;
13755   // OpenCL v1.2 s6.1.1.1 p2:
13756   // The half data type can only be used to declare a pointer to a buffer that
13757   // contains half values
13758   if (getLangOpts().OpenCL &&
13759       !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
13760       LHSType->isHalfType()) {
13761     Diag(Loc, diag::err_opencl_half_load_store) << 1
13762         << LHSType.getUnqualifiedType();
13763     return QualType();
13764   }
13765 
13766   // WebAssembly tables can't be used on RHS of an assignment expression.
13767   if (RHSType->isWebAssemblyTableType()) {
13768     Diag(Loc, diag::err_wasm_table_art) << 0;
13769     return QualType();
13770   }
13771 
13772   AssignConvertType ConvTy;
13773   if (CompoundType.isNull()) {
13774     Expr *RHSCheck = RHS.get();
13775 
13776     CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
13777 
13778     QualType LHSTy(LHSType);
13779     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
13780     if (RHS.isInvalid())
13781       return QualType();
13782     // Special case of NSObject attributes on c-style pointer types.
13783     if (ConvTy == IncompatiblePointer &&
13784         ((Context.isObjCNSObjectType(LHSType) &&
13785           RHSType->isObjCObjectPointerType()) ||
13786          (Context.isObjCNSObjectType(RHSType) &&
13787           LHSType->isObjCObjectPointerType())))
13788       ConvTy = Compatible;
13789 
13790     if (ConvTy == Compatible &&
13791         LHSType->isObjCObjectType())
13792         Diag(Loc, diag::err_objc_object_assignment)
13793           << LHSType;
13794 
13795     // If the RHS is a unary plus or minus, check to see if they = and + are
13796     // right next to each other.  If so, the user may have typo'd "x =+ 4"
13797     // instead of "x += 4".
13798     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
13799       RHSCheck = ICE->getSubExpr();
13800     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
13801       if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
13802           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
13803           // Only if the two operators are exactly adjacent.
13804           Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
13805           // And there is a space or other character before the subexpr of the
13806           // unary +/-.  We don't want to warn on "x=-1".
13807           Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
13808           UO->getSubExpr()->getBeginLoc().isFileID()) {
13809         Diag(Loc, diag::warn_not_compound_assign)
13810           << (UO->getOpcode() == UO_Plus ? "+" : "-")
13811           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
13812       }
13813     }
13814 
13815     if (ConvTy == Compatible) {
13816       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
13817         // Warn about retain cycles where a block captures the LHS, but
13818         // not if the LHS is a simple variable into which the block is
13819         // being stored...unless that variable can be captured by reference!
13820         const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
13821         const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
13822         if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
13823           ObjC().checkRetainCycles(LHSExpr, RHS.get());
13824       }
13825 
13826       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
13827           LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
13828         // It is safe to assign a weak reference into a strong variable.
13829         // Although this code can still have problems:
13830         //   id x = self.weakProp;
13831         //   id y = self.weakProp;
13832         // we do not warn to warn spuriously when 'x' and 'y' are on separate
13833         // paths through the function. This should be revisited if
13834         // -Wrepeated-use-of-weak is made flow-sensitive.
13835         // For ObjCWeak only, we do not warn if the assign is to a non-weak
13836         // variable, which will be valid for the current autorelease scope.
13837         if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
13838                              RHS.get()->getBeginLoc()))
13839           getCurFunction()->markSafeWeakUse(RHS.get());
13840 
13841       } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
13842         checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
13843       }
13844     }
13845   } else {
13846     // Compound assignment "x += y"
13847     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
13848   }
13849 
13850   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType, RHS.get(),
13851                                AssignmentAction::Assigning))
13852     return QualType();
13853 
13854   CheckForNullPointerDereference(*this, LHSExpr);
13855 
13856   AssignedEntity AE{LHSExpr};
13857   checkAssignmentLifetime(*this, AE, RHS.get());
13858 
13859   if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
13860     if (CompoundType.isNull()) {
13861       // C++2a [expr.ass]p5:
13862       //   A simple-assignment whose left operand is of a volatile-qualified
13863       //   type is deprecated unless the assignment is either a discarded-value
13864       //   expression or an unevaluated operand
13865       ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
13866     }
13867   }
13868 
13869   // C11 6.5.16p3: The type of an assignment expression is the type of the
13870   // left operand would have after lvalue conversion.
13871   // C11 6.3.2.1p2: ...this is called lvalue conversion. If the lvalue has
13872   // qualified type, the value has the unqualified version of the type of the
13873   // lvalue; additionally, if the lvalue has atomic type, the value has the
13874   // non-atomic version of the type of the lvalue.
13875   // C++ 5.17p1: the type of the assignment expression is that of its left
13876   // operand.
13877   return getLangOpts().CPlusPlus ? LHSType : LHSType.getAtomicUnqualifiedType();
13878 }
13879 
13880 // Scenarios to ignore if expression E is:
13881 // 1. an explicit cast expression into void
13882 // 2. a function call expression that returns void
13883 static bool IgnoreCommaOperand(const Expr *E, const ASTContext &Context) {
13884   E = E->IgnoreParens();
13885 
13886   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
13887     if (CE->getCastKind() == CK_ToVoid) {
13888       return true;
13889     }
13890 
13891     // static_cast<void> on a dependent type will not show up as CK_ToVoid.
13892     if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
13893         CE->getSubExpr()->getType()->isDependentType()) {
13894       return true;
13895     }
13896   }
13897 
13898   if (const auto *CE = dyn_cast<CallExpr>(E))
13899     return CE->getCallReturnType(Context)->isVoidType();
13900   return false;
13901 }
13902 
13903 void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
13904   // No warnings in macros
13905   if (Loc.isMacroID())
13906     return;
13907 
13908   // Don't warn in template instantiations.
13909   if (inTemplateInstantiation())
13910     return;
13911 
13912   // Scope isn't fine-grained enough to explicitly list the specific cases, so
13913   // instead, skip more than needed, then call back into here with the
13914   // CommaVisitor in SemaStmt.cpp.
13915   // The listed locations are the initialization and increment portions
13916   // of a for loop.  The additional checks are on the condition of
13917   // if statements, do/while loops, and for loops.
13918   // Differences in scope flags for C89 mode requires the extra logic.
13919   const unsigned ForIncrementFlags =
13920       getLangOpts().C99 || getLangOpts().CPlusPlus
13921           ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
13922           : Scope::ContinueScope | Scope::BreakScope;
13923   const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
13924   const unsigned ScopeFlags = getCurScope()->getFlags();
13925   if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
13926       (ScopeFlags & ForInitFlags) == ForInitFlags)
13927     return;
13928 
13929   // If there are multiple comma operators used together, get the RHS of the
13930   // of the comma operator as the LHS.
13931   while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
13932     if (BO->getOpcode() != BO_Comma)
13933       break;
13934     LHS = BO->getRHS();
13935   }
13936 
13937   // Only allow some expressions on LHS to not warn.
13938   if (IgnoreCommaOperand(LHS, Context))
13939     return;
13940 
13941   Diag(Loc, diag::warn_comma_operator);
13942   Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
13943       << LHS->getSourceRange()
13944       << FixItHint::CreateInsertion(LHS->getBeginLoc(),
13945                                     LangOpts.CPlusPlus ? "static_cast<void>("
13946                                                        : "(void)(")
13947       << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
13948                                     ")");
13949 }
13950 
13951 // C99 6.5.17
13952 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
13953                                    SourceLocation Loc) {
13954   LHS = S.CheckPlaceholderExpr(LHS.get());
13955   RHS = S.CheckPlaceholderExpr(RHS.get());
13956   if (LHS.isInvalid() || RHS.isInvalid())
13957     return QualType();
13958 
13959   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
13960   // operands, but not unary promotions.
13961   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
13962 
13963   // So we treat the LHS as a ignored value, and in C++ we allow the
13964   // containing site to determine what should be done with the RHS.
13965   LHS = S.IgnoredValueConversions(LHS.get());
13966   if (LHS.isInvalid())
13967     return QualType();
13968 
13969   S.DiagnoseUnusedExprResult(LHS.get(), diag::warn_unused_comma_left_operand);
13970 
13971   if (!S.getLangOpts().CPlusPlus) {
13972     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
13973     if (RHS.isInvalid())
13974       return QualType();
13975     if (!RHS.get()->getType()->isVoidType())
13976       S.RequireCompleteType(Loc, RHS.get()->getType(),
13977                             diag::err_incomplete_type);
13978   }
13979 
13980   if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
13981     S.DiagnoseCommaOperator(LHS.get(), Loc);
13982 
13983   return RHS.get()->getType();
13984 }
13985 
13986 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
13987 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
13988 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
13989                                                ExprValueKind &VK,
13990                                                ExprObjectKind &OK,
13991                                                SourceLocation OpLoc, bool IsInc,
13992                                                bool IsPrefix) {
13993   QualType ResType = Op->getType();
13994   // Atomic types can be used for increment / decrement where the non-atomic
13995   // versions can, so ignore the _Atomic() specifier for the purpose of
13996   // checking.
13997   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
13998     ResType = ResAtomicType->getValueType();
13999 
14000   assert(!ResType.isNull() && "no type for increment/decrement expression");
14001 
14002   if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
14003     // Decrement of bool is not allowed.
14004     if (!IsInc) {
14005       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
14006       return QualType();
14007     }
14008     // Increment of bool sets it to true, but is deprecated.
14009     S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
14010                                               : diag::warn_increment_bool)
14011       << Op->getSourceRange();
14012   } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
14013     // Error on enum increments and decrements in C++ mode
14014     S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
14015     return QualType();
14016   } else if (ResType->isRealType()) {
14017     // OK!
14018   } else if (ResType->isPointerType()) {
14019     // C99 6.5.2.4p2, 6.5.6p2
14020     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
14021       return QualType();
14022   } else if (ResType->isObjCObjectPointerType()) {
14023     // On modern runtimes, ObjC pointer arithmetic is forbidden.
14024     // Otherwise, we just need a complete type.
14025     if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
14026         checkArithmeticOnObjCPointer(S, OpLoc, Op))
14027       return QualType();
14028   } else if (ResType->isAnyComplexType()) {
14029     // C99 does not support ++/-- on complex types, we allow as an extension.
14030     S.Diag(OpLoc, S.getLangOpts().C2y ? diag::warn_c2y_compat_increment_complex
14031                                       : diag::ext_c2y_increment_complex)
14032         << IsInc << Op->getSourceRange();
14033   } else if (ResType->isPlaceholderType()) {
14034     ExprResult PR = S.CheckPlaceholderExpr(Op);
14035     if (PR.isInvalid()) return QualType();
14036     return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
14037                                           IsInc, IsPrefix);
14038   } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
14039     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
14040   } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
14041              (ResType->castAs<VectorType>()->getVectorKind() !=
14042               VectorKind::AltiVecBool)) {
14043     // The z vector extensions allow ++ and -- for non-bool vectors.
14044   } else if (S.getLangOpts().OpenCL && ResType->isVectorType() &&
14045              ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
14046     // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
14047   } else {
14048     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
14049       << ResType << int(IsInc) << Op->getSourceRange();
14050     return QualType();
14051   }
14052   // At this point, we know we have a real, complex or pointer type.
14053   // Now make sure the operand is a modifiable lvalue.
14054   if (CheckForModifiableLvalue(Op, OpLoc, S))
14055     return QualType();
14056   if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
14057     // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
14058     //   An operand with volatile-qualified type is deprecated
14059     S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
14060         << IsInc << ResType;
14061   }
14062   // In C++, a prefix increment is the same type as the operand. Otherwise
14063   // (in C or with postfix), the increment is the unqualified type of the
14064   // operand.
14065   if (IsPrefix && S.getLangOpts().CPlusPlus) {
14066     VK = VK_LValue;
14067     OK = Op->getObjectKind();
14068     return ResType;
14069   } else {
14070     VK = VK_PRValue;
14071     return ResType.getUnqualifiedType();
14072   }
14073 }
14074 
14075 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
14076 /// This routine allows us to typecheck complex/recursive expressions
14077 /// where the declaration is needed for type checking. We only need to
14078 /// handle cases when the expression references a function designator
14079 /// or is an lvalue. Here are some examples:
14080 ///  - &(x) => x
14081 ///  - &*****f => f for f a function designator.
14082 ///  - &s.xx => s
14083 ///  - &s.zz[1].yy -> s, if zz is an array
14084 ///  - *(x + 1) -> x, if x is an array
14085 ///  - &"123"[2] -> 0
14086 ///  - & __real__ x -> x
14087 ///
14088 /// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
14089 /// members.
14090 static ValueDecl *getPrimaryDecl(Expr *E) {
14091   switch (E->getStmtClass()) {
14092   case Stmt::DeclRefExprClass:
14093     return cast<DeclRefExpr>(E)->getDecl();
14094   case Stmt::MemberExprClass:
14095     // If this is an arrow operator, the address is an offset from
14096     // the base's value, so the object the base refers to is
14097     // irrelevant.
14098     if (cast<MemberExpr>(E)->isArrow())
14099       return nullptr;
14100     // Otherwise, the expression refers to a part of the base
14101     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
14102   case Stmt::ArraySubscriptExprClass: {
14103     // FIXME: This code shouldn't be necessary!  We should catch the implicit
14104     // promotion of register arrays earlier.
14105     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
14106     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
14107       if (ICE->getSubExpr()->getType()->isArrayType())
14108         return getPrimaryDecl(ICE->getSubExpr());
14109     }
14110     return nullptr;
14111   }
14112   case Stmt::UnaryOperatorClass: {
14113     UnaryOperator *UO = cast<UnaryOperator>(E);
14114 
14115     switch(UO->getOpcode()) {
14116     case UO_Real:
14117     case UO_Imag:
14118     case UO_Extension:
14119       return getPrimaryDecl(UO->getSubExpr());
14120     default:
14121       return nullptr;
14122     }
14123   }
14124   case Stmt::ParenExprClass:
14125     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
14126   case Stmt::ImplicitCastExprClass:
14127     // If the result of an implicit cast is an l-value, we care about
14128     // the sub-expression; otherwise, the result here doesn't matter.
14129     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
14130   case Stmt::CXXUuidofExprClass:
14131     return cast<CXXUuidofExpr>(E)->getGuidDecl();
14132   default:
14133     return nullptr;
14134   }
14135 }
14136 
14137 namespace {
14138 enum {
14139   AO_Bit_Field = 0,
14140   AO_Vector_Element = 1,
14141   AO_Property_Expansion = 2,
14142   AO_Register_Variable = 3,
14143   AO_Matrix_Element = 4,
14144   AO_No_Error = 5
14145 };
14146 }
14147 /// Diagnose invalid operand for address of operations.
14148 ///
14149 /// \param Type The type of operand which cannot have its address taken.
14150 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
14151                                          Expr *E, unsigned Type) {
14152   S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
14153 }
14154 
14155 bool Sema::CheckUseOfCXXMethodAsAddressOfOperand(SourceLocation OpLoc,
14156                                                  const Expr *Op,
14157                                                  const CXXMethodDecl *MD) {
14158   const auto *DRE = cast<DeclRefExpr>(Op->IgnoreParens());
14159 
14160   if (Op != DRE)
14161     return Diag(OpLoc, diag::err_parens_pointer_member_function)
14162            << Op->getSourceRange();
14163 
14164   // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
14165   if (isa<CXXDestructorDecl>(MD))
14166     return Diag(OpLoc, diag::err_typecheck_addrof_dtor)
14167            << DRE->getSourceRange();
14168 
14169   if (DRE->getQualifier())
14170     return false;
14171 
14172   if (MD->getParent()->getName().empty())
14173     return Diag(OpLoc, diag::err_unqualified_pointer_member_function)
14174            << DRE->getSourceRange();
14175 
14176   SmallString<32> Str;
14177   StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
14178   return Diag(OpLoc, diag::err_unqualified_pointer_member_function)
14179          << DRE->getSourceRange()
14180          << FixItHint::CreateInsertion(DRE->getSourceRange().getBegin(), Qual);
14181 }
14182 
14183 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
14184   if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
14185     if (PTy->getKind() == BuiltinType::Overload) {
14186       Expr *E = OrigOp.get()->IgnoreParens();
14187       if (!isa<OverloadExpr>(E)) {
14188         assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
14189         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
14190           << OrigOp.get()->getSourceRange();
14191         return QualType();
14192       }
14193 
14194       OverloadExpr *Ovl = cast<OverloadExpr>(E);
14195       if (isa<UnresolvedMemberExpr>(Ovl))
14196         if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
14197           Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14198             << OrigOp.get()->getSourceRange();
14199           return QualType();
14200         }
14201 
14202       return Context.OverloadTy;
14203     }
14204 
14205     if (PTy->getKind() == BuiltinType::UnknownAny)
14206       return Context.UnknownAnyTy;
14207 
14208     if (PTy->getKind() == BuiltinType::BoundMember) {
14209       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14210         << OrigOp.get()->getSourceRange();
14211       return QualType();
14212     }
14213 
14214     OrigOp = CheckPlaceholderExpr(OrigOp.get());
14215     if (OrigOp.isInvalid()) return QualType();
14216   }
14217 
14218   if (OrigOp.get()->isTypeDependent())
14219     return Context.DependentTy;
14220 
14221   assert(!OrigOp.get()->hasPlaceholderType());
14222 
14223   // Make sure to ignore parentheses in subsequent checks
14224   Expr *op = OrigOp.get()->IgnoreParens();
14225 
14226   // In OpenCL captures for blocks called as lambda functions
14227   // are located in the private address space. Blocks used in
14228   // enqueue_kernel can be located in a different address space
14229   // depending on a vendor implementation. Thus preventing
14230   // taking an address of the capture to avoid invalid AS casts.
14231   if (LangOpts.OpenCL) {
14232     auto* VarRef = dyn_cast<DeclRefExpr>(op);
14233     if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
14234       Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
14235       return QualType();
14236     }
14237   }
14238 
14239   if (getLangOpts().C99) {
14240     // Implement C99-only parts of addressof rules.
14241     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
14242       if (uOp->getOpcode() == UO_Deref)
14243         // Per C99 6.5.3.2, the address of a deref always returns a valid result
14244         // (assuming the deref expression is valid).
14245         return uOp->getSubExpr()->getType();
14246     }
14247     // Technically, there should be a check for array subscript
14248     // expressions here, but the result of one is always an lvalue anyway.
14249   }
14250   ValueDecl *dcl = getPrimaryDecl(op);
14251 
14252   if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
14253     if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
14254                                            op->getBeginLoc()))
14255       return QualType();
14256 
14257   Expr::LValueClassification lval = op->ClassifyLValue(Context);
14258   unsigned AddressOfError = AO_No_Error;
14259 
14260   if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
14261     bool sfinae = (bool)isSFINAEContext();
14262     Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
14263                                   : diag::ext_typecheck_addrof_temporary)
14264       << op->getType() << op->getSourceRange();
14265     if (sfinae)
14266       return QualType();
14267     // Materialize the temporary as an lvalue so that we can take its address.
14268     OrigOp = op =
14269         CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
14270   } else if (isa<ObjCSelectorExpr>(op)) {
14271     return Context.getPointerType(op->getType());
14272   } else if (lval == Expr::LV_MemberFunction) {
14273     // If it's an instance method, make a member pointer.
14274     // The expression must have exactly the form &A::foo.
14275 
14276     // If the underlying expression isn't a decl ref, give up.
14277     if (!isa<DeclRefExpr>(op)) {
14278       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14279         << OrigOp.get()->getSourceRange();
14280       return QualType();
14281     }
14282     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
14283     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
14284 
14285     CheckUseOfCXXMethodAsAddressOfOperand(OpLoc, OrigOp.get(), MD);
14286 
14287     QualType MPTy = Context.getMemberPointerType(
14288         op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
14289 
14290     if (getLangOpts().PointerAuthCalls && MD->isVirtual() &&
14291         !isUnevaluatedContext() && !MPTy->isDependentType()) {
14292       // When pointer authentication is enabled, argument and return types of
14293       // vitual member functions must be complete. This is because vitrual
14294       // member function pointers are implemented using virtual dispatch
14295       // thunks and the thunks cannot be emitted if the argument or return
14296       // types are incomplete.
14297       auto ReturnOrParamTypeIsIncomplete = [&](QualType T,
14298                                                SourceLocation DeclRefLoc,
14299                                                SourceLocation RetArgTypeLoc) {
14300         if (RequireCompleteType(DeclRefLoc, T, diag::err_incomplete_type)) {
14301           Diag(DeclRefLoc,
14302                diag::note_ptrauth_virtual_function_pointer_incomplete_arg_ret);
14303           Diag(RetArgTypeLoc,
14304                diag::note_ptrauth_virtual_function_incomplete_arg_ret_type)
14305               << T;
14306           return true;
14307         }
14308         return false;
14309       };
14310       QualType RetTy = MD->getReturnType();
14311       bool IsIncomplete =
14312           !RetTy->isVoidType() &&
14313           ReturnOrParamTypeIsIncomplete(
14314               RetTy, OpLoc, MD->getReturnTypeSourceRange().getBegin());
14315       for (auto *PVD : MD->parameters())
14316         IsIncomplete |= ReturnOrParamTypeIsIncomplete(PVD->getType(), OpLoc,
14317                                                       PVD->getBeginLoc());
14318       if (IsIncomplete)
14319         return QualType();
14320     }
14321 
14322     // Under the MS ABI, lock down the inheritance model now.
14323     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14324       (void)isCompleteType(OpLoc, MPTy);
14325     return MPTy;
14326   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
14327     // C99 6.5.3.2p1
14328     // The operand must be either an l-value or a function designator
14329     if (!op->getType()->isFunctionType()) {
14330       // Use a special diagnostic for loads from property references.
14331       if (isa<PseudoObjectExpr>(op)) {
14332         AddressOfError = AO_Property_Expansion;
14333       } else {
14334         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
14335           << op->getType() << op->getSourceRange();
14336         return QualType();
14337       }
14338     } else if (const auto *DRE = dyn_cast<DeclRefExpr>(op)) {
14339       if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(DRE->getDecl()))
14340         CheckUseOfCXXMethodAsAddressOfOperand(OpLoc, OrigOp.get(), MD);
14341     }
14342 
14343   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
14344     // The operand cannot be a bit-field
14345     AddressOfError = AO_Bit_Field;
14346   } else if (op->getObjectKind() == OK_VectorComponent) {
14347     // The operand cannot be an element of a vector
14348     AddressOfError = AO_Vector_Element;
14349   } else if (op->getObjectKind() == OK_MatrixComponent) {
14350     // The operand cannot be an element of a matrix.
14351     AddressOfError = AO_Matrix_Element;
14352   } else if (dcl) { // C99 6.5.3.2p1
14353     // We have an lvalue with a decl. Make sure the decl is not declared
14354     // with the register storage-class specifier.
14355     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
14356       // in C++ it is not error to take address of a register
14357       // variable (c++03 7.1.1P3)
14358       if (vd->getStorageClass() == SC_Register &&
14359           !getLangOpts().CPlusPlus) {
14360         AddressOfError = AO_Register_Variable;
14361       }
14362     } else if (isa<MSPropertyDecl>(dcl)) {
14363       AddressOfError = AO_Property_Expansion;
14364     } else if (isa<FunctionTemplateDecl>(dcl)) {
14365       return Context.OverloadTy;
14366     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
14367       // Okay: we can take the address of a field.
14368       // Could be a pointer to member, though, if there is an explicit
14369       // scope qualifier for the class.
14370 
14371       // [C++26] [expr.prim.id.general]
14372       // If an id-expression E denotes a non-static non-type member
14373       // of some class C [...] and if E is a qualified-id, E is
14374       // not the un-parenthesized operand of the unary & operator [...]
14375       // the id-expression is transformed into a class member access expression.
14376       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() &&
14377           !isa<ParenExpr>(OrigOp.get())) {
14378         DeclContext *Ctx = dcl->getDeclContext();
14379         if (Ctx && Ctx->isRecord()) {
14380           if (dcl->getType()->isReferenceType()) {
14381             Diag(OpLoc,
14382                  diag::err_cannot_form_pointer_to_member_of_reference_type)
14383               << dcl->getDeclName() << dcl->getType();
14384             return QualType();
14385           }
14386 
14387           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
14388             Ctx = Ctx->getParent();
14389 
14390           QualType MPTy = Context.getMemberPointerType(
14391               op->getType(),
14392               Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
14393           // Under the MS ABI, lock down the inheritance model now.
14394           if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14395             (void)isCompleteType(OpLoc, MPTy);
14396           return MPTy;
14397         }
14398       }
14399     } else if (!isa<FunctionDecl, NonTypeTemplateParmDecl, BindingDecl,
14400                     MSGuidDecl, UnnamedGlobalConstantDecl>(dcl))
14401       llvm_unreachable("Unknown/unexpected decl type");
14402   }
14403 
14404   if (AddressOfError != AO_No_Error) {
14405     diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
14406     return QualType();
14407   }
14408 
14409   if (lval == Expr::LV_IncompleteVoidType) {
14410     // Taking the address of a void variable is technically illegal, but we
14411     // allow it in cases which are otherwise valid.
14412     // Example: "extern void x; void* y = &x;".
14413     Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
14414   }
14415 
14416   // If the operand has type "type", the result has type "pointer to type".
14417   if (op->getType()->isObjCObjectType())
14418     return Context.getObjCObjectPointerType(op->getType());
14419 
14420   // Cannot take the address of WebAssembly references or tables.
14421   if (Context.getTargetInfo().getTriple().isWasm()) {
14422     QualType OpTy = op->getType();
14423     if (OpTy.isWebAssemblyReferenceType()) {
14424       Diag(OpLoc, diag::err_wasm_ca_reference)
14425           << 1 << OrigOp.get()->getSourceRange();
14426       return QualType();
14427     }
14428     if (OpTy->isWebAssemblyTableType()) {
14429       Diag(OpLoc, diag::err_wasm_table_pr)
14430           << 1 << OrigOp.get()->getSourceRange();
14431       return QualType();
14432     }
14433   }
14434 
14435   CheckAddressOfPackedMember(op);
14436 
14437   return Context.getPointerType(op->getType());
14438 }
14439 
14440 static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
14441   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
14442   if (!DRE)
14443     return;
14444   const Decl *D = DRE->getDecl();
14445   if (!D)
14446     return;
14447   const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
14448   if (!Param)
14449     return;
14450   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
14451     if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
14452       return;
14453   if (FunctionScopeInfo *FD = S.getCurFunction())
14454     FD->ModifiedNonNullParams.insert(Param);
14455 }
14456 
14457 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
14458 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
14459                                         SourceLocation OpLoc,
14460                                         bool IsAfterAmp = false) {
14461   ExprResult ConvResult = S.UsualUnaryConversions(Op);
14462   if (ConvResult.isInvalid())
14463     return QualType();
14464   Op = ConvResult.get();
14465   QualType OpTy = Op->getType();
14466   QualType Result;
14467 
14468   if (isa<CXXReinterpretCastExpr>(Op)) {
14469     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
14470     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
14471                                      Op->getSourceRange());
14472   }
14473 
14474   if (const PointerType *PT = OpTy->getAs<PointerType>())
14475   {
14476     Result = PT->getPointeeType();
14477   }
14478   else if (const ObjCObjectPointerType *OPT =
14479              OpTy->getAs<ObjCObjectPointerType>())
14480     Result = OPT->getPointeeType();
14481   else {
14482     ExprResult PR = S.CheckPlaceholderExpr(Op);
14483     if (PR.isInvalid()) return QualType();
14484     if (PR.get() != Op)
14485       return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
14486   }
14487 
14488   if (Result.isNull()) {
14489     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
14490       << OpTy << Op->getSourceRange();
14491     return QualType();
14492   }
14493 
14494   if (Result->isVoidType()) {
14495     // C++ [expr.unary.op]p1:
14496     //   [...] the expression to which [the unary * operator] is applied shall
14497     //   be a pointer to an object type, or a pointer to a function type
14498     LangOptions LO = S.getLangOpts();
14499     if (LO.CPlusPlus)
14500       S.Diag(OpLoc, diag::err_typecheck_indirection_through_void_pointer_cpp)
14501           << OpTy << Op->getSourceRange();
14502     else if (!(LO.C99 && IsAfterAmp) && !S.isUnevaluatedContext())
14503       S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
14504           << OpTy << Op->getSourceRange();
14505   }
14506 
14507   // Dereferences are usually l-values...
14508   VK = VK_LValue;
14509 
14510   // ...except that certain expressions are never l-values in C.
14511   if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
14512     VK = VK_PRValue;
14513 
14514   return Result;
14515 }
14516 
14517 BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
14518   BinaryOperatorKind Opc;
14519   switch (Kind) {
14520   default: llvm_unreachable("Unknown binop!");
14521   case tok::periodstar:           Opc = BO_PtrMemD; break;
14522   case tok::arrowstar:            Opc = BO_PtrMemI; break;
14523   case tok::star:                 Opc = BO_Mul; break;
14524   case tok::slash:                Opc = BO_Div; break;
14525   case tok::percent:              Opc = BO_Rem; break;
14526   case tok::plus:                 Opc = BO_Add; break;
14527   case tok::minus:                Opc = BO_Sub; break;
14528   case tok::lessless:             Opc = BO_Shl; break;
14529   case tok::greatergreater:       Opc = BO_Shr; break;
14530   case tok::lessequal:            Opc = BO_LE; break;
14531   case tok::less:                 Opc = BO_LT; break;
14532   case tok::greaterequal:         Opc = BO_GE; break;
14533   case tok::greater:              Opc = BO_GT; break;
14534   case tok::exclaimequal:         Opc = BO_NE; break;
14535   case tok::equalequal:           Opc = BO_EQ; break;
14536   case tok::spaceship:            Opc = BO_Cmp; break;
14537   case tok::amp:                  Opc = BO_And; break;
14538   case tok::caret:                Opc = BO_Xor; break;
14539   case tok::pipe:                 Opc = BO_Or; break;
14540   case tok::ampamp:               Opc = BO_LAnd; break;
14541   case tok::pipepipe:             Opc = BO_LOr; break;
14542   case tok::equal:                Opc = BO_Assign; break;
14543   case tok::starequal:            Opc = BO_MulAssign; break;
14544   case tok::slashequal:           Opc = BO_DivAssign; break;
14545   case tok::percentequal:         Opc = BO_RemAssign; break;
14546   case tok::plusequal:            Opc = BO_AddAssign; break;
14547   case tok::minusequal:           Opc = BO_SubAssign; break;
14548   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
14549   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
14550   case tok::ampequal:             Opc = BO_AndAssign; break;
14551   case tok::caretequal:           Opc = BO_XorAssign; break;
14552   case tok::pipeequal:            Opc = BO_OrAssign; break;
14553   case tok::comma:                Opc = BO_Comma; break;
14554   }
14555   return Opc;
14556 }
14557 
14558 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
14559   tok::TokenKind Kind) {
14560   UnaryOperatorKind Opc;
14561   switch (Kind) {
14562   default: llvm_unreachable("Unknown unary op!");
14563   case tok::plusplus:     Opc = UO_PreInc; break;
14564   case tok::minusminus:   Opc = UO_PreDec; break;
14565   case tok::amp:          Opc = UO_AddrOf; break;
14566   case tok::star:         Opc = UO_Deref; break;
14567   case tok::plus:         Opc = UO_Plus; break;
14568   case tok::minus:        Opc = UO_Minus; break;
14569   case tok::tilde:        Opc = UO_Not; break;
14570   case tok::exclaim:      Opc = UO_LNot; break;
14571   case tok::kw___real:    Opc = UO_Real; break;
14572   case tok::kw___imag:    Opc = UO_Imag; break;
14573   case tok::kw___extension__: Opc = UO_Extension; break;
14574   }
14575   return Opc;
14576 }
14577 
14578 const FieldDecl *
14579 Sema::getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned) {
14580   // Explore the case for adding 'this->' to the LHS of a self assignment, very
14581   // common for setters.
14582   // struct A {
14583   // int X;
14584   // -void setX(int X) { X = X; }
14585   // +void setX(int X) { this->X = X; }
14586   // };
14587 
14588   // Only consider parameters for self assignment fixes.
14589   if (!isa<ParmVarDecl>(SelfAssigned))
14590     return nullptr;
14591   const auto *Method =
14592       dyn_cast_or_null<CXXMethodDecl>(getCurFunctionDecl(true));
14593   if (!Method)
14594     return nullptr;
14595 
14596   const CXXRecordDecl *Parent = Method->getParent();
14597   // In theory this is fixable if the lambda explicitly captures this, but
14598   // that's added complexity that's rarely going to be used.
14599   if (Parent->isLambda())
14600     return nullptr;
14601 
14602   // FIXME: Use an actual Lookup operation instead of just traversing fields
14603   // in order to get base class fields.
14604   auto Field =
14605       llvm::find_if(Parent->fields(),
14606                     [Name(SelfAssigned->getDeclName())](const FieldDecl *F) {
14607                       return F->getDeclName() == Name;
14608                     });
14609   return (Field != Parent->field_end()) ? *Field : nullptr;
14610 }
14611 
14612 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
14613 /// This warning suppressed in the event of macro expansions.
14614 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
14615                                    SourceLocation OpLoc, bool IsBuiltin) {
14616   if (S.inTemplateInstantiation())
14617     return;
14618   if (S.isUnevaluatedContext())
14619     return;
14620   if (OpLoc.isInvalid() || OpLoc.isMacroID())
14621     return;
14622   LHSExpr = LHSExpr->IgnoreParenImpCasts();
14623   RHSExpr = RHSExpr->IgnoreParenImpCasts();
14624   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
14625   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
14626   if (!LHSDeclRef || !RHSDeclRef ||
14627       LHSDeclRef->getLocation().isMacroID() ||
14628       RHSDeclRef->getLocation().isMacroID())
14629     return;
14630   const ValueDecl *LHSDecl =
14631     cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
14632   const ValueDecl *RHSDecl =
14633     cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
14634   if (LHSDecl != RHSDecl)
14635     return;
14636   if (LHSDecl->getType().isVolatileQualified())
14637     return;
14638   if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
14639     if (RefTy->getPointeeType().isVolatileQualified())
14640       return;
14641 
14642   auto Diag = S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
14643                                       : diag::warn_self_assignment_overloaded)
14644               << LHSDeclRef->getType() << LHSExpr->getSourceRange()
14645               << RHSExpr->getSourceRange();
14646   if (const FieldDecl *SelfAssignField =
14647           S.getSelfAssignmentClassMemberCandidate(RHSDecl))
14648     Diag << 1 << SelfAssignField
14649          << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->");
14650   else
14651     Diag << 0;
14652 }
14653 
14654 /// Check if a bitwise-& is performed on an Objective-C pointer.  This
14655 /// is usually indicative of introspection within the Objective-C pointer.
14656 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
14657                                           SourceLocation OpLoc) {
14658   if (!S.getLangOpts().ObjC)
14659     return;
14660 
14661   const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
14662   const Expr *LHS = L.get();
14663   const Expr *RHS = R.get();
14664 
14665   if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14666     ObjCPointerExpr = LHS;
14667     OtherExpr = RHS;
14668   }
14669   else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14670     ObjCPointerExpr = RHS;
14671     OtherExpr = LHS;
14672   }
14673 
14674   // This warning is deliberately made very specific to reduce false
14675   // positives with logic that uses '&' for hashing.  This logic mainly
14676   // looks for code trying to introspect into tagged pointers, which
14677   // code should generally never do.
14678   if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
14679     unsigned Diag = diag::warn_objc_pointer_masking;
14680     // Determine if we are introspecting the result of performSelectorXXX.
14681     const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
14682     // Special case messages to -performSelector and friends, which
14683     // can return non-pointer values boxed in a pointer value.
14684     // Some clients may wish to silence warnings in this subcase.
14685     if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
14686       Selector S = ME->getSelector();
14687       StringRef SelArg0 = S.getNameForSlot(0);
14688       if (SelArg0.starts_with("performSelector"))
14689         Diag = diag::warn_objc_pointer_masking_performSelector;
14690     }
14691 
14692     S.Diag(OpLoc, Diag)
14693       << ObjCPointerExpr->getSourceRange();
14694   }
14695 }
14696 
14697 static NamedDecl *getDeclFromExpr(Expr *E) {
14698   if (!E)
14699     return nullptr;
14700   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
14701     return DRE->getDecl();
14702   if (auto *ME = dyn_cast<MemberExpr>(E))
14703     return ME->getMemberDecl();
14704   if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
14705     return IRE->getDecl();
14706   return nullptr;
14707 }
14708 
14709 // This helper function promotes a binary operator's operands (which are of a
14710 // half vector type) to a vector of floats and then truncates the result to
14711 // a vector of either half or short.
14712 static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
14713                                       BinaryOperatorKind Opc, QualType ResultTy,
14714                                       ExprValueKind VK, ExprObjectKind OK,
14715                                       bool IsCompAssign, SourceLocation OpLoc,
14716                                       FPOptionsOverride FPFeatures) {
14717   auto &Context = S.getASTContext();
14718   assert((isVector(ResultTy, Context.HalfTy) ||
14719           isVector(ResultTy, Context.ShortTy)) &&
14720          "Result must be a vector of half or short");
14721   assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
14722          isVector(RHS.get()->getType(), Context.HalfTy) &&
14723          "both operands expected to be a half vector");
14724 
14725   RHS = convertVector(RHS.get(), Context.FloatTy, S);
14726   QualType BinOpResTy = RHS.get()->getType();
14727 
14728   // If Opc is a comparison, ResultType is a vector of shorts. In that case,
14729   // change BinOpResTy to a vector of ints.
14730   if (isVector(ResultTy, Context.ShortTy))
14731     BinOpResTy = S.GetSignedVectorType(BinOpResTy);
14732 
14733   if (IsCompAssign)
14734     return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc,
14735                                           ResultTy, VK, OK, OpLoc, FPFeatures,
14736                                           BinOpResTy, BinOpResTy);
14737 
14738   LHS = convertVector(LHS.get(), Context.FloatTy, S);
14739   auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc,
14740                                     BinOpResTy, VK, OK, OpLoc, FPFeatures);
14741   return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
14742 }
14743 
14744 static std::pair<ExprResult, ExprResult>
14745 CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
14746                            Expr *RHSExpr) {
14747   ExprResult LHS = LHSExpr, RHS = RHSExpr;
14748   if (!S.Context.isDependenceAllowed()) {
14749     // C cannot handle TypoExpr nodes on either side of a binop because it
14750     // doesn't handle dependent types properly, so make sure any TypoExprs have
14751     // been dealt with before checking the operands.
14752     LHS = S.CorrectDelayedTyposInExpr(LHS);
14753     RHS = S.CorrectDelayedTyposInExpr(
14754         RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
14755         [Opc, LHS](Expr *E) {
14756           if (Opc != BO_Assign)
14757             return ExprResult(E);
14758           // Avoid correcting the RHS to the same Expr as the LHS.
14759           Decl *D = getDeclFromExpr(E);
14760           return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
14761         });
14762   }
14763   return std::make_pair(LHS, RHS);
14764 }
14765 
14766 /// Returns true if conversion between vectors of halfs and vectors of floats
14767 /// is needed.
14768 static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
14769                                      Expr *E0, Expr *E1 = nullptr) {
14770   if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
14771       Ctx.getTargetInfo().useFP16ConversionIntrinsics())
14772     return false;
14773 
14774   auto HasVectorOfHalfType = [&Ctx](Expr *E) {
14775     QualType Ty = E->IgnoreImplicit()->getType();
14776 
14777     // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
14778     // to vectors of floats. Although the element type of the vectors is __fp16,
14779     // the vectors shouldn't be treated as storage-only types. See the
14780     // discussion here: https://reviews.llvm.org/rG825235c140e7
14781     if (const VectorType *VT = Ty->getAs<VectorType>()) {
14782       if (VT->getVectorKind() == VectorKind::Neon)
14783         return false;
14784       return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
14785     }
14786     return false;
14787   };
14788 
14789   return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
14790 }
14791 
14792 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
14793                                     BinaryOperatorKind Opc,
14794                                     Expr *LHSExpr, Expr *RHSExpr) {
14795   if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
14796     // The syntax only allows initializer lists on the RHS of assignment,
14797     // so we don't need to worry about accepting invalid code for
14798     // non-assignment operators.
14799     // C++11 5.17p9:
14800     //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
14801     //   of x = {} is x = T().
14802     InitializationKind Kind = InitializationKind::CreateDirectList(
14803         RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
14804     InitializedEntity Entity =
14805         InitializedEntity::InitializeTemporary(LHSExpr->getType());
14806     InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
14807     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
14808     if (Init.isInvalid())
14809       return Init;
14810     RHSExpr = Init.get();
14811   }
14812 
14813   ExprResult LHS = LHSExpr, RHS = RHSExpr;
14814   QualType ResultTy;     // Result type of the binary operator.
14815   // The following two variables are used for compound assignment operators
14816   QualType CompLHSTy;    // Type of LHS after promotions for computation
14817   QualType CompResultTy; // Type of computation result
14818   ExprValueKind VK = VK_PRValue;
14819   ExprObjectKind OK = OK_Ordinary;
14820   bool ConvertHalfVec = false;
14821 
14822   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
14823   if (!LHS.isUsable() || !RHS.isUsable())
14824     return ExprError();
14825 
14826   if (getLangOpts().OpenCL) {
14827     QualType LHSTy = LHSExpr->getType();
14828     QualType RHSTy = RHSExpr->getType();
14829     // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
14830     // the ATOMIC_VAR_INIT macro.
14831     if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
14832       SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
14833       if (BO_Assign == Opc)
14834         Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
14835       else
14836         ResultTy = InvalidOperands(OpLoc, LHS, RHS);
14837       return ExprError();
14838     }
14839 
14840     // OpenCL special types - image, sampler, pipe, and blocks are to be used
14841     // only with a builtin functions and therefore should be disallowed here.
14842     if (LHSTy->isImageType() || RHSTy->isImageType() ||
14843         LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
14844         LHSTy->isPipeType() || RHSTy->isPipeType() ||
14845         LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
14846       ResultTy = InvalidOperands(OpLoc, LHS, RHS);
14847       return ExprError();
14848     }
14849   }
14850 
14851   checkTypeSupport(LHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
14852   checkTypeSupport(RHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
14853 
14854   switch (Opc) {
14855   case BO_Assign:
14856     ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType(), Opc);
14857     if (getLangOpts().CPlusPlus &&
14858         LHS.get()->getObjectKind() != OK_ObjCProperty) {
14859       VK = LHS.get()->getValueKind();
14860       OK = LHS.get()->getObjectKind();
14861     }
14862     if (!ResultTy.isNull()) {
14863       DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
14864       DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
14865 
14866       // Avoid copying a block to the heap if the block is assigned to a local
14867       // auto variable that is declared in the same scope as the block. This
14868       // optimization is unsafe if the local variable is declared in an outer
14869       // scope. For example:
14870       //
14871       // BlockTy b;
14872       // {
14873       //   b = ^{...};
14874       // }
14875       // // It is unsafe to invoke the block here if it wasn't copied to the
14876       // // heap.
14877       // b();
14878 
14879       if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
14880         if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
14881           if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
14882             if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
14883               BE->getBlockDecl()->setCanAvoidCopyToHeap();
14884 
14885       if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
14886         checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
14887                               NTCUC_Assignment, NTCUK_Copy);
14888     }
14889     RecordModifiableNonNullParam(*this, LHS.get());
14890     break;
14891   case BO_PtrMemD:
14892   case BO_PtrMemI:
14893     ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
14894                                             Opc == BO_PtrMemI);
14895     break;
14896   case BO_Mul:
14897   case BO_Div:
14898     ConvertHalfVec = true;
14899     ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
14900                                            Opc == BO_Div);
14901     break;
14902   case BO_Rem:
14903     ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
14904     break;
14905   case BO_Add:
14906     ConvertHalfVec = true;
14907     ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
14908     break;
14909   case BO_Sub:
14910     ConvertHalfVec = true;
14911     ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
14912     break;
14913   case BO_Shl:
14914   case BO_Shr:
14915     ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
14916     break;
14917   case BO_LE:
14918   case BO_LT:
14919   case BO_GE:
14920   case BO_GT:
14921     ConvertHalfVec = true;
14922     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14923 
14924     if (const auto *BI = dyn_cast<BinaryOperator>(LHSExpr);
14925         BI && BI->isComparisonOp())
14926       Diag(OpLoc, diag::warn_consecutive_comparison);
14927 
14928     break;
14929   case BO_EQ:
14930   case BO_NE:
14931     ConvertHalfVec = true;
14932     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14933     break;
14934   case BO_Cmp:
14935     ConvertHalfVec = true;
14936     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14937     assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
14938     break;
14939   case BO_And:
14940     checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
14941     [[fallthrough]];
14942   case BO_Xor:
14943   case BO_Or:
14944     ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
14945     break;
14946   case BO_LAnd:
14947   case BO_LOr:
14948     ConvertHalfVec = true;
14949     ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
14950     break;
14951   case BO_MulAssign:
14952   case BO_DivAssign:
14953     ConvertHalfVec = true;
14954     CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
14955                                                Opc == BO_DivAssign);
14956     CompLHSTy = CompResultTy;
14957     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14958       ResultTy =
14959           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14960     break;
14961   case BO_RemAssign:
14962     CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
14963     CompLHSTy = CompResultTy;
14964     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14965       ResultTy =
14966           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14967     break;
14968   case BO_AddAssign:
14969     ConvertHalfVec = true;
14970     CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
14971     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14972       ResultTy =
14973           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14974     break;
14975   case BO_SubAssign:
14976     ConvertHalfVec = true;
14977     CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
14978     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14979       ResultTy =
14980           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14981     break;
14982   case BO_ShlAssign:
14983   case BO_ShrAssign:
14984     CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
14985     CompLHSTy = CompResultTy;
14986     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14987       ResultTy =
14988           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14989     break;
14990   case BO_AndAssign:
14991   case BO_OrAssign: // fallthrough
14992     DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
14993     [[fallthrough]];
14994   case BO_XorAssign:
14995     CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
14996     CompLHSTy = CompResultTy;
14997     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14998       ResultTy =
14999           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15000     break;
15001   case BO_Comma:
15002     ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
15003     if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
15004       VK = RHS.get()->getValueKind();
15005       OK = RHS.get()->getObjectKind();
15006     }
15007     break;
15008   }
15009   if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
15010     return ExprError();
15011 
15012   // Some of the binary operations require promoting operands of half vector to
15013   // float vectors and truncating the result back to half vector. For now, we do
15014   // this only when HalfArgsAndReturn is set (that is, when the target is arm or
15015   // arm64).
15016   assert(
15017       (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==
15018                               isVector(LHS.get()->getType(), Context.HalfTy)) &&
15019       "both sides are half vectors or neither sides are");
15020   ConvertHalfVec =
15021       needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get());
15022 
15023   // Check for array bounds violations for both sides of the BinaryOperator
15024   CheckArrayAccess(LHS.get());
15025   CheckArrayAccess(RHS.get());
15026 
15027   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
15028     NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
15029                                                  &Context.Idents.get("object_setClass"),
15030                                                  SourceLocation(), LookupOrdinaryName);
15031     if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
15032       SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
15033       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
15034           << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
15035                                         "object_setClass(")
15036           << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
15037                                           ",")
15038           << FixItHint::CreateInsertion(RHSLocEnd, ")");
15039     }
15040     else
15041       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
15042   }
15043   else if (const ObjCIvarRefExpr *OIRE =
15044            dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
15045     DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
15046 
15047   // Opc is not a compound assignment if CompResultTy is null.
15048   if (CompResultTy.isNull()) {
15049     if (ConvertHalfVec)
15050       return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
15051                                  OpLoc, CurFPFeatureOverrides());
15052     return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy,
15053                                   VK, OK, OpLoc, CurFPFeatureOverrides());
15054   }
15055 
15056   // Handle compound assignments.
15057   if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
15058       OK_ObjCProperty) {
15059     VK = VK_LValue;
15060     OK = LHS.get()->getObjectKind();
15061   }
15062 
15063   // The LHS is not converted to the result type for fixed-point compound
15064   // assignment as the common type is computed on demand. Reset the CompLHSTy
15065   // to the LHS type we would have gotten after unary conversions.
15066   if (CompResultTy->isFixedPointType())
15067     CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType();
15068 
15069   if (ConvertHalfVec)
15070     return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
15071                                OpLoc, CurFPFeatureOverrides());
15072 
15073   return CompoundAssignOperator::Create(
15074       Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc,
15075       CurFPFeatureOverrides(), CompLHSTy, CompResultTy);
15076 }
15077 
15078 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
15079 /// operators are mixed in a way that suggests that the programmer forgot that
15080 /// comparison operators have higher precedence. The most typical example of
15081 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
15082 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
15083                                       SourceLocation OpLoc, Expr *LHSExpr,
15084                                       Expr *RHSExpr) {
15085   BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
15086   BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
15087 
15088   // Check that one of the sides is a comparison operator and the other isn't.
15089   bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
15090   bool isRightComp = RHSBO && RHSBO->isComparisonOp();
15091   if (isLeftComp == isRightComp)
15092     return;
15093 
15094   // Bitwise operations are sometimes used as eager logical ops.
15095   // Don't diagnose this.
15096   bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
15097   bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
15098   if (isLeftBitwise || isRightBitwise)
15099     return;
15100 
15101   SourceRange DiagRange = isLeftComp
15102                               ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
15103                               : SourceRange(OpLoc, RHSExpr->getEndLoc());
15104   StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
15105   SourceRange ParensRange =
15106       isLeftComp
15107           ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
15108           : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
15109 
15110   Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
15111     << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
15112   SuggestParentheses(Self, OpLoc,
15113     Self.PDiag(diag::note_precedence_silence) << OpStr,
15114     (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
15115   SuggestParentheses(Self, OpLoc,
15116     Self.PDiag(diag::note_precedence_bitwise_first)
15117       << BinaryOperator::getOpcodeStr(Opc),
15118     ParensRange);
15119 }
15120 
15121 /// It accepts a '&&' expr that is inside a '||' one.
15122 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
15123 /// in parentheses.
15124 static void
15125 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
15126                                        BinaryOperator *Bop) {
15127   assert(Bop->getOpcode() == BO_LAnd);
15128   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
15129       << Bop->getSourceRange() << OpLoc;
15130   SuggestParentheses(Self, Bop->getOperatorLoc(),
15131     Self.PDiag(diag::note_precedence_silence)
15132       << Bop->getOpcodeStr(),
15133     Bop->getSourceRange());
15134 }
15135 
15136 /// Look for '&&' in the left hand of a '||' expr.
15137 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
15138                                              Expr *LHSExpr, Expr *RHSExpr) {
15139   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
15140     if (Bop->getOpcode() == BO_LAnd) {
15141       // If it's "string_literal && a || b" don't warn since the precedence
15142       // doesn't matter.
15143       if (!isa<StringLiteral>(Bop->getLHS()->IgnoreParenImpCasts()))
15144         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15145     } else if (Bop->getOpcode() == BO_LOr) {
15146       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
15147         // If it's "a || b && string_literal || c" we didn't warn earlier for
15148         // "a || b && string_literal", but warn now.
15149         if (RBop->getOpcode() == BO_LAnd &&
15150             isa<StringLiteral>(RBop->getRHS()->IgnoreParenImpCasts()))
15151           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
15152       }
15153     }
15154   }
15155 }
15156 
15157 /// Look for '&&' in the right hand of a '||' expr.
15158 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
15159                                              Expr *LHSExpr, Expr *RHSExpr) {
15160   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
15161     if (Bop->getOpcode() == BO_LAnd) {
15162       // If it's "a || b && string_literal" don't warn since the precedence
15163       // doesn't matter.
15164       if (!isa<StringLiteral>(Bop->getRHS()->IgnoreParenImpCasts()))
15165         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15166     }
15167   }
15168 }
15169 
15170 /// Look for bitwise op in the left or right hand of a bitwise op with
15171 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
15172 /// the '&' expression in parentheses.
15173 static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
15174                                          SourceLocation OpLoc, Expr *SubExpr) {
15175   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
15176     if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
15177       S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
15178         << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
15179         << Bop->getSourceRange() << OpLoc;
15180       SuggestParentheses(S, Bop->getOperatorLoc(),
15181         S.PDiag(diag::note_precedence_silence)
15182           << Bop->getOpcodeStr(),
15183         Bop->getSourceRange());
15184     }
15185   }
15186 }
15187 
15188 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
15189                                     Expr *SubExpr, StringRef Shift) {
15190   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
15191     if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
15192       StringRef Op = Bop->getOpcodeStr();
15193       S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
15194           << Bop->getSourceRange() << OpLoc << Shift << Op;
15195       SuggestParentheses(S, Bop->getOperatorLoc(),
15196           S.PDiag(diag::note_precedence_silence) << Op,
15197           Bop->getSourceRange());
15198     }
15199   }
15200 }
15201 
15202 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
15203                                  Expr *LHSExpr, Expr *RHSExpr) {
15204   CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
15205   if (!OCE)
15206     return;
15207 
15208   FunctionDecl *FD = OCE->getDirectCallee();
15209   if (!FD || !FD->isOverloadedOperator())
15210     return;
15211 
15212   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
15213   if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
15214     return;
15215 
15216   S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
15217       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
15218       << (Kind == OO_LessLess);
15219   SuggestParentheses(S, OCE->getOperatorLoc(),
15220                      S.PDiag(diag::note_precedence_silence)
15221                          << (Kind == OO_LessLess ? "<<" : ">>"),
15222                      OCE->getSourceRange());
15223   SuggestParentheses(
15224       S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
15225       SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
15226 }
15227 
15228 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
15229 /// precedence.
15230 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
15231                                     SourceLocation OpLoc, Expr *LHSExpr,
15232                                     Expr *RHSExpr){
15233   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
15234   if (BinaryOperator::isBitwiseOp(Opc))
15235     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
15236 
15237   // Diagnose "arg1 & arg2 | arg3"
15238   if ((Opc == BO_Or || Opc == BO_Xor) &&
15239       !OpLoc.isMacroID()/* Don't warn in macros. */) {
15240     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
15241     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
15242   }
15243 
15244   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
15245   // We don't warn for 'assert(a || b && "bad")' since this is safe.
15246   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
15247     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
15248     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
15249   }
15250 
15251   if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
15252       || Opc == BO_Shr) {
15253     StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
15254     DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
15255     DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
15256   }
15257 
15258   // Warn on overloaded shift operators and comparisons, such as:
15259   // cout << 5 == 4;
15260   if (BinaryOperator::isComparisonOp(Opc))
15261     DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
15262 }
15263 
15264 static void DetectPrecisionLossInComplexDivision(Sema &S, SourceLocation OpLoc,
15265                                                  Expr *Operand) {
15266   if (auto *CT = Operand->getType()->getAs<ComplexType>()) {
15267     QualType ElementType = CT->getElementType();
15268     bool IsComplexRangePromoted = S.getLangOpts().getComplexRange() ==
15269                                   LangOptions::ComplexRangeKind::CX_Promoted;
15270     if (ElementType->isFloatingType() && IsComplexRangePromoted) {
15271       ASTContext &Ctx = S.getASTContext();
15272       QualType HigherElementType = Ctx.GetHigherPrecisionFPType(ElementType);
15273       const llvm::fltSemantics &ElementTypeSemantics =
15274           Ctx.getFloatTypeSemantics(ElementType);
15275       const llvm::fltSemantics &HigherElementTypeSemantics =
15276           Ctx.getFloatTypeSemantics(HigherElementType);
15277       if (llvm::APFloat::semanticsMaxExponent(ElementTypeSemantics) * 2 + 1 >
15278           llvm::APFloat::semanticsMaxExponent(HigherElementTypeSemantics)) {
15279         // Retain the location of the first use of higher precision type.
15280         if (!S.LocationOfExcessPrecisionNotSatisfied.isValid())
15281           S.LocationOfExcessPrecisionNotSatisfied = OpLoc;
15282         for (auto &[Type, Num] : S.ExcessPrecisionNotSatisfied) {
15283           if (Type == HigherElementType) {
15284             Num++;
15285             return;
15286           }
15287         }
15288         S.ExcessPrecisionNotSatisfied.push_back(std::make_pair(
15289             HigherElementType, S.ExcessPrecisionNotSatisfied.size()));
15290       }
15291     }
15292   }
15293 }
15294 
15295 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
15296                             tok::TokenKind Kind,
15297                             Expr *LHSExpr, Expr *RHSExpr) {
15298   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
15299   assert(LHSExpr && "ActOnBinOp(): missing left expression");
15300   assert(RHSExpr && "ActOnBinOp(): missing right expression");
15301 
15302   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
15303   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
15304 
15305   // Emit warnings if the requested higher precision type equal to the current
15306   // type precision.
15307   if (Kind == tok::TokenKind::slash)
15308     DetectPrecisionLossInComplexDivision(*this, TokLoc, LHSExpr);
15309 
15310   BuiltinCountedByRefKind K =
15311       BinaryOperator::isAssignmentOp(Opc) ? AssignmentKind : BinaryExprKind;
15312 
15313   CheckInvalidBuiltinCountedByRef(LHSExpr, K);
15314   CheckInvalidBuiltinCountedByRef(RHSExpr, K);
15315 
15316   return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
15317 }
15318 
15319 void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
15320                        UnresolvedSetImpl &Functions) {
15321   OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
15322   if (OverOp != OO_None && OverOp != OO_Equal)
15323     LookupOverloadedOperatorName(OverOp, S, Functions);
15324 
15325   // In C++20 onwards, we may have a second operator to look up.
15326   if (getLangOpts().CPlusPlus20) {
15327     if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
15328       LookupOverloadedOperatorName(ExtraOp, S, Functions);
15329   }
15330 }
15331 
15332 /// Build an overloaded binary operator expression in the given scope.
15333 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
15334                                        BinaryOperatorKind Opc,
15335                                        Expr *LHS, Expr *RHS) {
15336   switch (Opc) {
15337   case BO_Assign:
15338     // In the non-overloaded case, we warn about self-assignment (x = x) for
15339     // both simple assignment and certain compound assignments where algebra
15340     // tells us the operation yields a constant result.  When the operator is
15341     // overloaded, we can't do the latter because we don't want to assume that
15342     // those algebraic identities still apply; for example, a path-building
15343     // library might use operator/= to append paths.  But it's still reasonable
15344     // to assume that simple assignment is just moving/copying values around
15345     // and so self-assignment is likely a bug.
15346     DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
15347     [[fallthrough]];
15348   case BO_DivAssign:
15349   case BO_RemAssign:
15350   case BO_SubAssign:
15351   case BO_AndAssign:
15352   case BO_OrAssign:
15353   case BO_XorAssign:
15354     CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
15355     break;
15356   default:
15357     break;
15358   }
15359 
15360   // Find all of the overloaded operators visible from this point.
15361   UnresolvedSet<16> Functions;
15362   S.LookupBinOp(Sc, OpLoc, Opc, Functions);
15363 
15364   // Build the (potentially-overloaded, potentially-dependent)
15365   // binary operation.
15366   return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
15367 }
15368 
15369 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
15370                             BinaryOperatorKind Opc,
15371                             Expr *LHSExpr, Expr *RHSExpr) {
15372   ExprResult LHS, RHS;
15373   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
15374   if (!LHS.isUsable() || !RHS.isUsable())
15375     return ExprError();
15376   LHSExpr = LHS.get();
15377   RHSExpr = RHS.get();
15378 
15379   // We want to end up calling one of SemaPseudoObject::checkAssignment
15380   // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
15381   // both expressions are overloadable or either is type-dependent),
15382   // or CreateBuiltinBinOp (in any other case).  We also want to get
15383   // any placeholder types out of the way.
15384 
15385   // Handle pseudo-objects in the LHS.
15386   if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
15387     // Assignments with a pseudo-object l-value need special analysis.
15388     if (pty->getKind() == BuiltinType::PseudoObject &&
15389         BinaryOperator::isAssignmentOp(Opc))
15390       return PseudoObject().checkAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
15391 
15392     // Don't resolve overloads if the other type is overloadable.
15393     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
15394       // We can't actually test that if we still have a placeholder,
15395       // though.  Fortunately, none of the exceptions we see in that
15396       // code below are valid when the LHS is an overload set.  Note
15397       // that an overload set can be dependently-typed, but it never
15398       // instantiates to having an overloadable type.
15399       ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
15400       if (resolvedRHS.isInvalid()) return ExprError();
15401       RHSExpr = resolvedRHS.get();
15402 
15403       if (RHSExpr->isTypeDependent() ||
15404           RHSExpr->getType()->isOverloadableType())
15405         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15406     }
15407 
15408     // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
15409     // template, diagnose the missing 'template' keyword instead of diagnosing
15410     // an invalid use of a bound member function.
15411     //
15412     // Note that "A::x < b" might be valid if 'b' has an overloadable type due
15413     // to C++1z [over.over]/1.4, but we already checked for that case above.
15414     if (Opc == BO_LT && inTemplateInstantiation() &&
15415         (pty->getKind() == BuiltinType::BoundMember ||
15416          pty->getKind() == BuiltinType::Overload)) {
15417       auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
15418       if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
15419           llvm::any_of(OE->decls(), [](NamedDecl *ND) {
15420             return isa<FunctionTemplateDecl>(ND);
15421           })) {
15422         Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
15423                                 : OE->getNameLoc(),
15424              diag::err_template_kw_missing)
15425           << OE->getName().getAsString() << "";
15426         return ExprError();
15427       }
15428     }
15429 
15430     ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
15431     if (LHS.isInvalid()) return ExprError();
15432     LHSExpr = LHS.get();
15433   }
15434 
15435   // Handle pseudo-objects in the RHS.
15436   if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
15437     // An overload in the RHS can potentially be resolved by the type
15438     // being assigned to.
15439     if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
15440       if (getLangOpts().CPlusPlus &&
15441           (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
15442            LHSExpr->getType()->isOverloadableType()))
15443         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15444 
15445       return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
15446     }
15447 
15448     // Don't resolve overloads if the other type is overloadable.
15449     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
15450         LHSExpr->getType()->isOverloadableType())
15451       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15452 
15453     ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
15454     if (!resolvedRHS.isUsable()) return ExprError();
15455     RHSExpr = resolvedRHS.get();
15456   }
15457 
15458   if (getLangOpts().CPlusPlus) {
15459     // Otherwise, build an overloaded op if either expression is type-dependent
15460     // or has an overloadable type.
15461     if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
15462         LHSExpr->getType()->isOverloadableType() ||
15463         RHSExpr->getType()->isOverloadableType())
15464       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15465   }
15466 
15467   if (getLangOpts().RecoveryAST &&
15468       (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) {
15469     assert(!getLangOpts().CPlusPlus);
15470     assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&
15471            "Should only occur in error-recovery path.");
15472     if (BinaryOperator::isCompoundAssignmentOp(Opc))
15473       // C [6.15.16] p3:
15474       // An assignment expression has the value of the left operand after the
15475       // assignment, but is not an lvalue.
15476       return CompoundAssignOperator::Create(
15477           Context, LHSExpr, RHSExpr, Opc,
15478           LHSExpr->getType().getUnqualifiedType(), VK_PRValue, OK_Ordinary,
15479           OpLoc, CurFPFeatureOverrides());
15480     QualType ResultType;
15481     switch (Opc) {
15482     case BO_Assign:
15483       ResultType = LHSExpr->getType().getUnqualifiedType();
15484       break;
15485     case BO_LT:
15486     case BO_GT:
15487     case BO_LE:
15488     case BO_GE:
15489     case BO_EQ:
15490     case BO_NE:
15491     case BO_LAnd:
15492     case BO_LOr:
15493       // These operators have a fixed result type regardless of operands.
15494       ResultType = Context.IntTy;
15495       break;
15496     case BO_Comma:
15497       ResultType = RHSExpr->getType();
15498       break;
15499     default:
15500       ResultType = Context.DependentTy;
15501       break;
15502     }
15503     return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType,
15504                                   VK_PRValue, OK_Ordinary, OpLoc,
15505                                   CurFPFeatureOverrides());
15506   }
15507 
15508   // Build a built-in binary operation.
15509   return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
15510 }
15511 
15512 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
15513   if (T.isNull() || T->isDependentType())
15514     return false;
15515 
15516   if (!Ctx.isPromotableIntegerType(T))
15517     return true;
15518 
15519   return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
15520 }
15521 
15522 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
15523                                       UnaryOperatorKind Opc, Expr *InputExpr,
15524                                       bool IsAfterAmp) {
15525   ExprResult Input = InputExpr;
15526   ExprValueKind VK = VK_PRValue;
15527   ExprObjectKind OK = OK_Ordinary;
15528   QualType resultType;
15529   bool CanOverflow = false;
15530 
15531   bool ConvertHalfVec = false;
15532   if (getLangOpts().OpenCL) {
15533     QualType Ty = InputExpr->getType();
15534     // The only legal unary operation for atomics is '&'.
15535     if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
15536     // OpenCL special types - image, sampler, pipe, and blocks are to be used
15537     // only with a builtin functions and therefore should be disallowed here.
15538         (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
15539         || Ty->isBlockPointerType())) {
15540       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15541                        << InputExpr->getType()
15542                        << Input.get()->getSourceRange());
15543     }
15544   }
15545 
15546   if (getLangOpts().HLSL && OpLoc.isValid()) {
15547     if (Opc == UO_AddrOf)
15548       return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 0);
15549     if (Opc == UO_Deref)
15550       return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 1);
15551   }
15552 
15553   if (InputExpr->isTypeDependent() &&
15554       InputExpr->getType()->isSpecificBuiltinType(BuiltinType::Dependent)) {
15555     resultType = Context.DependentTy;
15556   } else {
15557     switch (Opc) {
15558     case UO_PreInc:
15559     case UO_PreDec:
15560     case UO_PostInc:
15561     case UO_PostDec:
15562       resultType =
15563           CheckIncrementDecrementOperand(*this, Input.get(), VK, OK, OpLoc,
15564                                          Opc == UO_PreInc || Opc == UO_PostInc,
15565                                          Opc == UO_PreInc || Opc == UO_PreDec);
15566       CanOverflow = isOverflowingIntegerType(Context, resultType);
15567       break;
15568     case UO_AddrOf:
15569       resultType = CheckAddressOfOperand(Input, OpLoc);
15570       CheckAddressOfNoDeref(InputExpr);
15571       RecordModifiableNonNullParam(*this, InputExpr);
15572       break;
15573     case UO_Deref: {
15574       Input = DefaultFunctionArrayLvalueConversion(Input.get());
15575       if (Input.isInvalid())
15576         return ExprError();
15577       resultType =
15578           CheckIndirectionOperand(*this, Input.get(), VK, OpLoc, IsAfterAmp);
15579       break;
15580     }
15581     case UO_Plus:
15582     case UO_Minus:
15583       CanOverflow = Opc == UO_Minus &&
15584                     isOverflowingIntegerType(Context, Input.get()->getType());
15585       Input = UsualUnaryConversions(Input.get());
15586       if (Input.isInvalid())
15587         return ExprError();
15588       // Unary plus and minus require promoting an operand of half vector to a
15589       // float vector and truncating the result back to a half vector. For now,
15590       // we do this only when HalfArgsAndReturns is set (that is, when the
15591       // target is arm or arm64).
15592       ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get());
15593 
15594       // If the operand is a half vector, promote it to a float vector.
15595       if (ConvertHalfVec)
15596         Input = convertVector(Input.get(), Context.FloatTy, *this);
15597       resultType = Input.get()->getType();
15598       if (resultType->isArithmeticType()) // C99 6.5.3.3p1
15599         break;
15600       else if (resultType->isVectorType() &&
15601                // The z vector extensions don't allow + or - with bool vectors.
15602                (!Context.getLangOpts().ZVector ||
15603                 resultType->castAs<VectorType>()->getVectorKind() !=
15604                     VectorKind::AltiVecBool))
15605         break;
15606       else if (resultType->isSveVLSBuiltinType()) // SVE vectors allow + and -
15607         break;
15608       else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
15609                Opc == UO_Plus && resultType->isPointerType())
15610         break;
15611 
15612       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15613                        << resultType << Input.get()->getSourceRange());
15614 
15615     case UO_Not: // bitwise complement
15616       Input = UsualUnaryConversions(Input.get());
15617       if (Input.isInvalid())
15618         return ExprError();
15619       resultType = Input.get()->getType();
15620       // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
15621       if (resultType->isComplexType() || resultType->isComplexIntegerType())
15622         // C99 does not support '~' for complex conjugation.
15623         Diag(OpLoc, diag::ext_integer_complement_complex)
15624             << resultType << Input.get()->getSourceRange();
15625       else if (resultType->hasIntegerRepresentation())
15626         break;
15627       else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
15628         // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
15629         // on vector float types.
15630         QualType T = resultType->castAs<ExtVectorType>()->getElementType();
15631         if (!T->isIntegerType())
15632           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15633                            << resultType << Input.get()->getSourceRange());
15634       } else {
15635         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15636                          << resultType << Input.get()->getSourceRange());
15637       }
15638       break;
15639 
15640     case UO_LNot: // logical negation
15641       // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
15642       Input = DefaultFunctionArrayLvalueConversion(Input.get());
15643       if (Input.isInvalid())
15644         return ExprError();
15645       resultType = Input.get()->getType();
15646 
15647       // Though we still have to promote half FP to float...
15648       if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
15649         Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast)
15650                     .get();
15651         resultType = Context.FloatTy;
15652       }
15653 
15654       // WebAsembly tables can't be used in unary expressions.
15655       if (resultType->isPointerType() &&
15656           resultType->getPointeeType().isWebAssemblyReferenceType()) {
15657         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15658                          << resultType << Input.get()->getSourceRange());
15659       }
15660 
15661       if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
15662         // C99 6.5.3.3p1: ok, fallthrough;
15663         if (Context.getLangOpts().CPlusPlus) {
15664           // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
15665           // operand contextually converted to bool.
15666           Input = ImpCastExprToType(Input.get(), Context.BoolTy,
15667                                     ScalarTypeToBooleanCastKind(resultType));
15668         } else if (Context.getLangOpts().OpenCL &&
15669                    Context.getLangOpts().OpenCLVersion < 120) {
15670           // OpenCL v1.1 6.3.h: The logical operator not (!) does not
15671           // operate on scalar float types.
15672           if (!resultType->isIntegerType() && !resultType->isPointerType())
15673             return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15674                              << resultType << Input.get()->getSourceRange());
15675         }
15676       } else if (resultType->isExtVectorType()) {
15677         if (Context.getLangOpts().OpenCL &&
15678             Context.getLangOpts().getOpenCLCompatibleVersion() < 120) {
15679           // OpenCL v1.1 6.3.h: The logical operator not (!) does not
15680           // operate on vector float types.
15681           QualType T = resultType->castAs<ExtVectorType>()->getElementType();
15682           if (!T->isIntegerType())
15683             return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15684                              << resultType << Input.get()->getSourceRange());
15685         }
15686         // Vector logical not returns the signed variant of the operand type.
15687         resultType = GetSignedVectorType(resultType);
15688         break;
15689       } else if (Context.getLangOpts().CPlusPlus &&
15690                  resultType->isVectorType()) {
15691         const VectorType *VTy = resultType->castAs<VectorType>();
15692         if (VTy->getVectorKind() != VectorKind::Generic)
15693           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15694                            << resultType << Input.get()->getSourceRange());
15695 
15696         // Vector logical not returns the signed variant of the operand type.
15697         resultType = GetSignedVectorType(resultType);
15698         break;
15699       } else {
15700         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15701                          << resultType << Input.get()->getSourceRange());
15702       }
15703 
15704       // LNot always has type int. C99 6.5.3.3p5.
15705       // In C++, it's bool. C++ 5.3.1p8
15706       resultType = Context.getLogicalOperationType();
15707       break;
15708     case UO_Real:
15709     case UO_Imag:
15710       resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
15711       // _Real maps ordinary l-values into ordinary l-values. _Imag maps
15712       // ordinary complex l-values to ordinary l-values and all other values to
15713       // r-values.
15714       if (Input.isInvalid())
15715         return ExprError();
15716       if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
15717         if (Input.get()->isGLValue() &&
15718             Input.get()->getObjectKind() == OK_Ordinary)
15719           VK = Input.get()->getValueKind();
15720       } else if (!getLangOpts().CPlusPlus) {
15721         // In C, a volatile scalar is read by __imag. In C++, it is not.
15722         Input = DefaultLvalueConversion(Input.get());
15723       }
15724       break;
15725     case UO_Extension:
15726       resultType = Input.get()->getType();
15727       VK = Input.get()->getValueKind();
15728       OK = Input.get()->getObjectKind();
15729       break;
15730     case UO_Coawait:
15731       // It's unnecessary to represent the pass-through operator co_await in the
15732       // AST; just return the input expression instead.
15733       assert(!Input.get()->getType()->isDependentType() &&
15734              "the co_await expression must be non-dependant before "
15735              "building operator co_await");
15736       return Input;
15737     }
15738   }
15739   if (resultType.isNull() || Input.isInvalid())
15740     return ExprError();
15741 
15742   // Check for array bounds violations in the operand of the UnaryOperator,
15743   // except for the '*' and '&' operators that have to be handled specially
15744   // by CheckArrayAccess (as there are special cases like &array[arraysize]
15745   // that are explicitly defined as valid by the standard).
15746   if (Opc != UO_AddrOf && Opc != UO_Deref)
15747     CheckArrayAccess(Input.get());
15748 
15749   auto *UO =
15750       UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK,
15751                             OpLoc, CanOverflow, CurFPFeatureOverrides());
15752 
15753   if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
15754       !isa<ArrayType>(UO->getType().getDesugaredType(Context)) &&
15755       !isUnevaluatedContext())
15756     ExprEvalContexts.back().PossibleDerefs.insert(UO);
15757 
15758   // Convert the result back to a half vector.
15759   if (ConvertHalfVec)
15760     return convertVector(UO, Context.HalfTy, *this);
15761   return UO;
15762 }
15763 
15764 bool Sema::isQualifiedMemberAccess(Expr *E) {
15765   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
15766     if (!DRE->getQualifier())
15767       return false;
15768 
15769     ValueDecl *VD = DRE->getDecl();
15770     if (!VD->isCXXClassMember())
15771       return false;
15772 
15773     if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
15774       return true;
15775     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
15776       return Method->isImplicitObjectMemberFunction();
15777 
15778     return false;
15779   }
15780 
15781   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
15782     if (!ULE->getQualifier())
15783       return false;
15784 
15785     for (NamedDecl *D : ULE->decls()) {
15786       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
15787         if (Method->isImplicitObjectMemberFunction())
15788           return true;
15789       } else {
15790         // Overload set does not contain methods.
15791         break;
15792       }
15793     }
15794 
15795     return false;
15796   }
15797 
15798   return false;
15799 }
15800 
15801 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
15802                               UnaryOperatorKind Opc, Expr *Input,
15803                               bool IsAfterAmp) {
15804   // First things first: handle placeholders so that the
15805   // overloaded-operator check considers the right type.
15806   if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
15807     // Increment and decrement of pseudo-object references.
15808     if (pty->getKind() == BuiltinType::PseudoObject &&
15809         UnaryOperator::isIncrementDecrementOp(Opc))
15810       return PseudoObject().checkIncDec(S, OpLoc, Opc, Input);
15811 
15812     // extension is always a builtin operator.
15813     if (Opc == UO_Extension)
15814       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
15815 
15816     // & gets special logic for several kinds of placeholder.
15817     // The builtin code knows what to do.
15818     if (Opc == UO_AddrOf &&
15819         (pty->getKind() == BuiltinType::Overload ||
15820          pty->getKind() == BuiltinType::UnknownAny ||
15821          pty->getKind() == BuiltinType::BoundMember))
15822       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
15823 
15824     // Anything else needs to be handled now.
15825     ExprResult Result = CheckPlaceholderExpr(Input);
15826     if (Result.isInvalid()) return ExprError();
15827     Input = Result.get();
15828   }
15829 
15830   if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
15831       UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
15832       !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
15833     // Find all of the overloaded operators visible from this point.
15834     UnresolvedSet<16> Functions;
15835     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
15836     if (S && OverOp != OO_None)
15837       LookupOverloadedOperatorName(OverOp, S, Functions);
15838 
15839     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
15840   }
15841 
15842   return CreateBuiltinUnaryOp(OpLoc, Opc, Input, IsAfterAmp);
15843 }
15844 
15845 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op,
15846                               Expr *Input, bool IsAfterAmp) {
15847   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input,
15848                       IsAfterAmp);
15849 }
15850 
15851 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
15852                                 LabelDecl *TheDecl) {
15853   TheDecl->markUsed(Context);
15854   // Create the AST node.  The address of a label always has type 'void*'.
15855   auto *Res = new (Context) AddrLabelExpr(
15856       OpLoc, LabLoc, TheDecl, Context.getPointerType(Context.VoidTy));
15857 
15858   if (getCurFunction())
15859     getCurFunction()->AddrLabels.push_back(Res);
15860 
15861   return Res;
15862 }
15863 
15864 void Sema::ActOnStartStmtExpr() {
15865   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
15866   // Make sure we diagnose jumping into a statement expression.
15867   setFunctionHasBranchProtectedScope();
15868 }
15869 
15870 void Sema::ActOnStmtExprError() {
15871   // Note that function is also called by TreeTransform when leaving a
15872   // StmtExpr scope without rebuilding anything.
15873 
15874   DiscardCleanupsInEvaluationContext();
15875   PopExpressionEvaluationContext();
15876 }
15877 
15878 ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
15879                                SourceLocation RPLoc) {
15880   return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
15881 }
15882 
15883 ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
15884                                SourceLocation RPLoc, unsigned TemplateDepth) {
15885   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
15886   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
15887 
15888   if (hasAnyUnrecoverableErrorsInThisFunction())
15889     DiscardCleanupsInEvaluationContext();
15890   assert(!Cleanup.exprNeedsCleanups() &&
15891          "cleanups within StmtExpr not correctly bound!");
15892   PopExpressionEvaluationContext();
15893 
15894   // FIXME: there are a variety of strange constraints to enforce here, for
15895   // example, it is not possible to goto into a stmt expression apparently.
15896   // More semantic analysis is needed.
15897 
15898   // If there are sub-stmts in the compound stmt, take the type of the last one
15899   // as the type of the stmtexpr.
15900   QualType Ty = Context.VoidTy;
15901   bool StmtExprMayBindToTemp = false;
15902   if (!Compound->body_empty()) {
15903     // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
15904     if (const auto *LastStmt =
15905             dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
15906       if (const Expr *Value = LastStmt->getExprStmt()) {
15907         StmtExprMayBindToTemp = true;
15908         Ty = Value->getType();
15909       }
15910     }
15911   }
15912 
15913   // FIXME: Check that expression type is complete/non-abstract; statement
15914   // expressions are not lvalues.
15915   Expr *ResStmtExpr =
15916       new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
15917   if (StmtExprMayBindToTemp)
15918     return MaybeBindToTemporary(ResStmtExpr);
15919   return ResStmtExpr;
15920 }
15921 
15922 ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
15923   if (ER.isInvalid())
15924     return ExprError();
15925 
15926   // Do function/array conversion on the last expression, but not
15927   // lvalue-to-rvalue.  However, initialize an unqualified type.
15928   ER = DefaultFunctionArrayConversion(ER.get());
15929   if (ER.isInvalid())
15930     return ExprError();
15931   Expr *E = ER.get();
15932 
15933   if (E->isTypeDependent())
15934     return E;
15935 
15936   // In ARC, if the final expression ends in a consume, splice
15937   // the consume out and bind it later.  In the alternate case
15938   // (when dealing with a retainable type), the result
15939   // initialization will create a produce.  In both cases the
15940   // result will be +1, and we'll need to balance that out with
15941   // a bind.
15942   auto *Cast = dyn_cast<ImplicitCastExpr>(E);
15943   if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
15944     return Cast->getSubExpr();
15945 
15946   // FIXME: Provide a better location for the initialization.
15947   return PerformCopyInitialization(
15948       InitializedEntity::InitializeStmtExprResult(
15949           E->getBeginLoc(), E->getType().getUnqualifiedType()),
15950       SourceLocation(), E);
15951 }
15952 
15953 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
15954                                       TypeSourceInfo *TInfo,
15955                                       ArrayRef<OffsetOfComponent> Components,
15956                                       SourceLocation RParenLoc) {
15957   QualType ArgTy = TInfo->getType();
15958   bool Dependent = ArgTy->isDependentType();
15959   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
15960 
15961   // We must have at least one component that refers to the type, and the first
15962   // one is known to be a field designator.  Verify that the ArgTy represents
15963   // a struct/union/class.
15964   if (!Dependent && !ArgTy->isRecordType())
15965     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
15966                        << ArgTy << TypeRange);
15967 
15968   // Type must be complete per C99 7.17p3 because a declaring a variable
15969   // with an incomplete type would be ill-formed.
15970   if (!Dependent
15971       && RequireCompleteType(BuiltinLoc, ArgTy,
15972                              diag::err_offsetof_incomplete_type, TypeRange))
15973     return ExprError();
15974 
15975   bool DidWarnAboutNonPOD = false;
15976   QualType CurrentType = ArgTy;
15977   SmallVector<OffsetOfNode, 4> Comps;
15978   SmallVector<Expr*, 4> Exprs;
15979   for (const OffsetOfComponent &OC : Components) {
15980     if (OC.isBrackets) {
15981       // Offset of an array sub-field.  TODO: Should we allow vector elements?
15982       if (!CurrentType->isDependentType()) {
15983         const ArrayType *AT = Context.getAsArrayType(CurrentType);
15984         if(!AT)
15985           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
15986                            << CurrentType);
15987         CurrentType = AT->getElementType();
15988       } else
15989         CurrentType = Context.DependentTy;
15990 
15991       ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
15992       if (IdxRval.isInvalid())
15993         return ExprError();
15994       Expr *Idx = IdxRval.get();
15995 
15996       // The expression must be an integral expression.
15997       // FIXME: An integral constant expression?
15998       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
15999           !Idx->getType()->isIntegerType())
16000         return ExprError(
16001             Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
16002             << Idx->getSourceRange());
16003 
16004       // Record this array index.
16005       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
16006       Exprs.push_back(Idx);
16007       continue;
16008     }
16009 
16010     // Offset of a field.
16011     if (CurrentType->isDependentType()) {
16012       // We have the offset of a field, but we can't look into the dependent
16013       // type. Just record the identifier of the field.
16014       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
16015       CurrentType = Context.DependentTy;
16016       continue;
16017     }
16018 
16019     // We need to have a complete type to look into.
16020     if (RequireCompleteType(OC.LocStart, CurrentType,
16021                             diag::err_offsetof_incomplete_type))
16022       return ExprError();
16023 
16024     // Look for the designated field.
16025     const RecordType *RC = CurrentType->getAs<RecordType>();
16026     if (!RC)
16027       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
16028                        << CurrentType);
16029     RecordDecl *RD = RC->getDecl();
16030 
16031     // C++ [lib.support.types]p5:
16032     //   The macro offsetof accepts a restricted set of type arguments in this
16033     //   International Standard. type shall be a POD structure or a POD union
16034     //   (clause 9).
16035     // C++11 [support.types]p4:
16036     //   If type is not a standard-layout class (Clause 9), the results are
16037     //   undefined.
16038     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
16039       bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
16040       unsigned DiagID =
16041         LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
16042                             : diag::ext_offsetof_non_pod_type;
16043 
16044       if (!IsSafe && !DidWarnAboutNonPOD && !isUnevaluatedContext()) {
16045         Diag(BuiltinLoc, DiagID)
16046             << SourceRange(Components[0].LocStart, OC.LocEnd) << CurrentType;
16047         DidWarnAboutNonPOD = true;
16048       }
16049     }
16050 
16051     // Look for the field.
16052     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
16053     LookupQualifiedName(R, RD);
16054     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
16055     IndirectFieldDecl *IndirectMemberDecl = nullptr;
16056     if (!MemberDecl) {
16057       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
16058         MemberDecl = IndirectMemberDecl->getAnonField();
16059     }
16060 
16061     if (!MemberDecl) {
16062       // Lookup could be ambiguous when looking up a placeholder variable
16063       // __builtin_offsetof(S, _).
16064       // In that case we would already have emitted a diagnostic
16065       if (!R.isAmbiguous())
16066         Diag(BuiltinLoc, diag::err_no_member)
16067             << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd);
16068       return ExprError();
16069     }
16070 
16071     // C99 7.17p3:
16072     //   (If the specified member is a bit-field, the behavior is undefined.)
16073     //
16074     // We diagnose this as an error.
16075     if (MemberDecl->isBitField()) {
16076       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
16077         << MemberDecl->getDeclName()
16078         << SourceRange(BuiltinLoc, RParenLoc);
16079       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
16080       return ExprError();
16081     }
16082 
16083     RecordDecl *Parent = MemberDecl->getParent();
16084     if (IndirectMemberDecl)
16085       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
16086 
16087     // If the member was found in a base class, introduce OffsetOfNodes for
16088     // the base class indirections.
16089     CXXBasePaths Paths;
16090     if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
16091                       Paths)) {
16092       if (Paths.getDetectedVirtual()) {
16093         Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
16094           << MemberDecl->getDeclName()
16095           << SourceRange(BuiltinLoc, RParenLoc);
16096         return ExprError();
16097       }
16098 
16099       CXXBasePath &Path = Paths.front();
16100       for (const CXXBasePathElement &B : Path)
16101         Comps.push_back(OffsetOfNode(B.Base));
16102     }
16103 
16104     if (IndirectMemberDecl) {
16105       for (auto *FI : IndirectMemberDecl->chain()) {
16106         assert(isa<FieldDecl>(FI));
16107         Comps.push_back(OffsetOfNode(OC.LocStart,
16108                                      cast<FieldDecl>(FI), OC.LocEnd));
16109       }
16110     } else
16111       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
16112 
16113     CurrentType = MemberDecl->getType().getNonReferenceType();
16114   }
16115 
16116   return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
16117                               Comps, Exprs, RParenLoc);
16118 }
16119 
16120 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
16121                                       SourceLocation BuiltinLoc,
16122                                       SourceLocation TypeLoc,
16123                                       ParsedType ParsedArgTy,
16124                                       ArrayRef<OffsetOfComponent> Components,
16125                                       SourceLocation RParenLoc) {
16126 
16127   TypeSourceInfo *ArgTInfo;
16128   QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
16129   if (ArgTy.isNull())
16130     return ExprError();
16131 
16132   if (!ArgTInfo)
16133     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
16134 
16135   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
16136 }
16137 
16138 
16139 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
16140                                  Expr *CondExpr,
16141                                  Expr *LHSExpr, Expr *RHSExpr,
16142                                  SourceLocation RPLoc) {
16143   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
16144 
16145   ExprValueKind VK = VK_PRValue;
16146   ExprObjectKind OK = OK_Ordinary;
16147   QualType resType;
16148   bool CondIsTrue = false;
16149   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
16150     resType = Context.DependentTy;
16151   } else {
16152     // The conditional expression is required to be a constant expression.
16153     llvm::APSInt condEval(32);
16154     ExprResult CondICE = VerifyIntegerConstantExpression(
16155         CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant);
16156     if (CondICE.isInvalid())
16157       return ExprError();
16158     CondExpr = CondICE.get();
16159     CondIsTrue = condEval.getZExtValue();
16160 
16161     // If the condition is > zero, then the AST type is the same as the LHSExpr.
16162     Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
16163 
16164     resType = ActiveExpr->getType();
16165     VK = ActiveExpr->getValueKind();
16166     OK = ActiveExpr->getObjectKind();
16167   }
16168 
16169   return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
16170                                   resType, VK, OK, RPLoc, CondIsTrue);
16171 }
16172 
16173 //===----------------------------------------------------------------------===//
16174 // Clang Extensions.
16175 //===----------------------------------------------------------------------===//
16176 
16177 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
16178   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
16179 
16180   if (LangOpts.CPlusPlus) {
16181     MangleNumberingContext *MCtx;
16182     Decl *ManglingContextDecl;
16183     std::tie(MCtx, ManglingContextDecl) =
16184         getCurrentMangleNumberContext(Block->getDeclContext());
16185     if (MCtx) {
16186       unsigned ManglingNumber = MCtx->getManglingNumber(Block);
16187       Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
16188     }
16189   }
16190 
16191   PushBlockScope(CurScope, Block);
16192   CurContext->addDecl(Block);
16193   if (CurScope)
16194     PushDeclContext(CurScope, Block);
16195   else
16196     CurContext = Block;
16197 
16198   getCurBlock()->HasImplicitReturnType = true;
16199 
16200   // Enter a new evaluation context to insulate the block from any
16201   // cleanups from the enclosing full-expression.
16202   PushExpressionEvaluationContext(
16203       ExpressionEvaluationContext::PotentiallyEvaluated);
16204 }
16205 
16206 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
16207                                Scope *CurScope) {
16208   assert(ParamInfo.getIdentifier() == nullptr &&
16209          "block-id should have no identifier!");
16210   assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral);
16211   BlockScopeInfo *CurBlock = getCurBlock();
16212 
16213   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo);
16214   QualType T = Sig->getType();
16215   DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block);
16216 
16217   // GetTypeForDeclarator always produces a function type for a block
16218   // literal signature.  Furthermore, it is always a FunctionProtoType
16219   // unless the function was written with a typedef.
16220   assert(T->isFunctionType() &&
16221          "GetTypeForDeclarator made a non-function block signature");
16222 
16223   // Look for an explicit signature in that function type.
16224   FunctionProtoTypeLoc ExplicitSignature;
16225 
16226   if ((ExplicitSignature = Sig->getTypeLoc()
16227                                .getAsAdjusted<FunctionProtoTypeLoc>())) {
16228 
16229     // Check whether that explicit signature was synthesized by
16230     // GetTypeForDeclarator.  If so, don't save that as part of the
16231     // written signature.
16232     if (ExplicitSignature.getLocalRangeBegin() ==
16233         ExplicitSignature.getLocalRangeEnd()) {
16234       // This would be much cheaper if we stored TypeLocs instead of
16235       // TypeSourceInfos.
16236       TypeLoc Result = ExplicitSignature.getReturnLoc();
16237       unsigned Size = Result.getFullDataSize();
16238       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
16239       Sig->getTypeLoc().initializeFullCopy(Result, Size);
16240 
16241       ExplicitSignature = FunctionProtoTypeLoc();
16242     }
16243   }
16244 
16245   CurBlock->TheDecl->setSignatureAsWritten(Sig);
16246   CurBlock->FunctionType = T;
16247 
16248   const auto *Fn = T->castAs<FunctionType>();
16249   QualType RetTy = Fn->getReturnType();
16250   bool isVariadic =
16251       (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
16252 
16253   CurBlock->TheDecl->setIsVariadic(isVariadic);
16254 
16255   // Context.DependentTy is used as a placeholder for a missing block
16256   // return type.  TODO:  what should we do with declarators like:
16257   //   ^ * { ... }
16258   // If the answer is "apply template argument deduction"....
16259   if (RetTy != Context.DependentTy) {
16260     CurBlock->ReturnType = RetTy;
16261     CurBlock->TheDecl->setBlockMissingReturnType(false);
16262     CurBlock->HasImplicitReturnType = false;
16263   }
16264 
16265   // Push block parameters from the declarator if we had them.
16266   SmallVector<ParmVarDecl*, 8> Params;
16267   if (ExplicitSignature) {
16268     for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
16269       ParmVarDecl *Param = ExplicitSignature.getParam(I);
16270       if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
16271           !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
16272         // Diagnose this as an extension in C17 and earlier.
16273         if (!getLangOpts().C23)
16274           Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c23);
16275       }
16276       Params.push_back(Param);
16277     }
16278 
16279   // Fake up parameter variables if we have a typedef, like
16280   //   ^ fntype { ... }
16281   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
16282     for (const auto &I : Fn->param_types()) {
16283       ParmVarDecl *Param = BuildParmVarDeclForTypedef(
16284           CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
16285       Params.push_back(Param);
16286     }
16287   }
16288 
16289   // Set the parameters on the block decl.
16290   if (!Params.empty()) {
16291     CurBlock->TheDecl->setParams(Params);
16292     CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
16293                              /*CheckParameterNames=*/false);
16294   }
16295 
16296   // Finally we can process decl attributes.
16297   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
16298 
16299   // Put the parameter variables in scope.
16300   for (auto *AI : CurBlock->TheDecl->parameters()) {
16301     AI->setOwningFunction(CurBlock->TheDecl);
16302 
16303     // If this has an identifier, add it to the scope stack.
16304     if (AI->getIdentifier()) {
16305       CheckShadow(CurBlock->TheScope, AI);
16306 
16307       PushOnScopeChains(AI, CurBlock->TheScope);
16308     }
16309 
16310     if (AI->isInvalidDecl())
16311       CurBlock->TheDecl->setInvalidDecl();
16312   }
16313 }
16314 
16315 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
16316   // Leave the expression-evaluation context.
16317   DiscardCleanupsInEvaluationContext();
16318   PopExpressionEvaluationContext();
16319 
16320   // Pop off CurBlock, handle nested blocks.
16321   PopDeclContext();
16322   PopFunctionScopeInfo();
16323 }
16324 
16325 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
16326                                     Stmt *Body, Scope *CurScope) {
16327   // If blocks are disabled, emit an error.
16328   if (!LangOpts.Blocks)
16329     Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
16330 
16331   // Leave the expression-evaluation context.
16332   if (hasAnyUnrecoverableErrorsInThisFunction())
16333     DiscardCleanupsInEvaluationContext();
16334   assert(!Cleanup.exprNeedsCleanups() &&
16335          "cleanups within block not correctly bound!");
16336   PopExpressionEvaluationContext();
16337 
16338   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
16339   BlockDecl *BD = BSI->TheDecl;
16340 
16341   maybeAddDeclWithEffects(BD);
16342 
16343   if (BSI->HasImplicitReturnType)
16344     deduceClosureReturnType(*BSI);
16345 
16346   QualType RetTy = Context.VoidTy;
16347   if (!BSI->ReturnType.isNull())
16348     RetTy = BSI->ReturnType;
16349 
16350   bool NoReturn = BD->hasAttr<NoReturnAttr>();
16351   QualType BlockTy;
16352 
16353   // If the user wrote a function type in some form, try to use that.
16354   if (!BSI->FunctionType.isNull()) {
16355     const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
16356 
16357     FunctionType::ExtInfo Ext = FTy->getExtInfo();
16358     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
16359 
16360     // Turn protoless block types into nullary block types.
16361     if (isa<FunctionNoProtoType>(FTy)) {
16362       FunctionProtoType::ExtProtoInfo EPI;
16363       EPI.ExtInfo = Ext;
16364       BlockTy = Context.getFunctionType(RetTy, {}, EPI);
16365 
16366       // Otherwise, if we don't need to change anything about the function type,
16367       // preserve its sugar structure.
16368     } else if (FTy->getReturnType() == RetTy &&
16369                (!NoReturn || FTy->getNoReturnAttr())) {
16370       BlockTy = BSI->FunctionType;
16371 
16372     // Otherwise, make the minimal modifications to the function type.
16373     } else {
16374       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
16375       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
16376       EPI.TypeQuals = Qualifiers();
16377       EPI.ExtInfo = Ext;
16378       BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
16379     }
16380 
16381   // If we don't have a function type, just build one from nothing.
16382   } else {
16383     FunctionProtoType::ExtProtoInfo EPI;
16384     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
16385     BlockTy = Context.getFunctionType(RetTy, {}, EPI);
16386   }
16387 
16388   DiagnoseUnusedParameters(BD->parameters());
16389   BlockTy = Context.getBlockPointerType(BlockTy);
16390 
16391   // If needed, diagnose invalid gotos and switches in the block.
16392   if (getCurFunction()->NeedsScopeChecking() &&
16393       !PP.isCodeCompletionEnabled())
16394     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
16395 
16396   BD->setBody(cast<CompoundStmt>(Body));
16397 
16398   if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
16399     DiagnoseUnguardedAvailabilityViolations(BD);
16400 
16401   // Try to apply the named return value optimization. We have to check again
16402   // if we can do this, though, because blocks keep return statements around
16403   // to deduce an implicit return type.
16404   if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
16405       !BD->isDependentContext())
16406     computeNRVO(Body, BSI);
16407 
16408   if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
16409       RetTy.hasNonTrivialToPrimitiveCopyCUnion())
16410     checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
16411                           NTCUK_Destruct|NTCUK_Copy);
16412 
16413   PopDeclContext();
16414 
16415   // Set the captured variables on the block.
16416   SmallVector<BlockDecl::Capture, 4> Captures;
16417   for (Capture &Cap : BSI->Captures) {
16418     if (Cap.isInvalid() || Cap.isThisCapture())
16419       continue;
16420     // Cap.getVariable() is always a VarDecl because
16421     // blocks cannot capture structured bindings or other ValueDecl kinds.
16422     auto *Var = cast<VarDecl>(Cap.getVariable());
16423     Expr *CopyExpr = nullptr;
16424     if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
16425       if (const RecordType *Record =
16426               Cap.getCaptureType()->getAs<RecordType>()) {
16427         // The capture logic needs the destructor, so make sure we mark it.
16428         // Usually this is unnecessary because most local variables have
16429         // their destructors marked at declaration time, but parameters are
16430         // an exception because it's technically only the call site that
16431         // actually requires the destructor.
16432         if (isa<ParmVarDecl>(Var))
16433           FinalizeVarWithDestructor(Var, Record);
16434 
16435         // Enter a separate potentially-evaluated context while building block
16436         // initializers to isolate their cleanups from those of the block
16437         // itself.
16438         // FIXME: Is this appropriate even when the block itself occurs in an
16439         // unevaluated operand?
16440         EnterExpressionEvaluationContext EvalContext(
16441             *this, ExpressionEvaluationContext::PotentiallyEvaluated);
16442 
16443         SourceLocation Loc = Cap.getLocation();
16444 
16445         ExprResult Result = BuildDeclarationNameExpr(
16446             CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
16447 
16448         // According to the blocks spec, the capture of a variable from
16449         // the stack requires a const copy constructor.  This is not true
16450         // of the copy/move done to move a __block variable to the heap.
16451         if (!Result.isInvalid() &&
16452             !Result.get()->getType().isConstQualified()) {
16453           Result = ImpCastExprToType(Result.get(),
16454                                      Result.get()->getType().withConst(),
16455                                      CK_NoOp, VK_LValue);
16456         }
16457 
16458         if (!Result.isInvalid()) {
16459           Result = PerformCopyInitialization(
16460               InitializedEntity::InitializeBlock(Var->getLocation(),
16461                                                  Cap.getCaptureType()),
16462               Loc, Result.get());
16463         }
16464 
16465         // Build a full-expression copy expression if initialization
16466         // succeeded and used a non-trivial constructor.  Recover from
16467         // errors by pretending that the copy isn't necessary.
16468         if (!Result.isInvalid() &&
16469             !cast<CXXConstructExpr>(Result.get())->getConstructor()
16470                 ->isTrivial()) {
16471           Result = MaybeCreateExprWithCleanups(Result);
16472           CopyExpr = Result.get();
16473         }
16474       }
16475     }
16476 
16477     BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
16478                               CopyExpr);
16479     Captures.push_back(NewCap);
16480   }
16481   BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
16482 
16483   // Pop the block scope now but keep it alive to the end of this function.
16484   AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
16485   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
16486 
16487   BlockExpr *Result = new (Context)
16488       BlockExpr(BD, BlockTy, BSI->ContainsUnexpandedParameterPack);
16489 
16490   // If the block isn't obviously global, i.e. it captures anything at
16491   // all, then we need to do a few things in the surrounding context:
16492   if (Result->getBlockDecl()->hasCaptures()) {
16493     // First, this expression has a new cleanup object.
16494     ExprCleanupObjects.push_back(Result->getBlockDecl());
16495     Cleanup.setExprNeedsCleanups(true);
16496 
16497     // It also gets a branch-protected scope if any of the captured
16498     // variables needs destruction.
16499     for (const auto &CI : Result->getBlockDecl()->captures()) {
16500       const VarDecl *var = CI.getVariable();
16501       if (var->getType().isDestructedType() != QualType::DK_none) {
16502         setFunctionHasBranchProtectedScope();
16503         break;
16504       }
16505     }
16506   }
16507 
16508   if (getCurFunction())
16509     getCurFunction()->addBlock(BD);
16510 
16511   // This can happen if the block's return type is deduced, but
16512   // the return expression is invalid.
16513   if (BD->isInvalidDecl())
16514     return CreateRecoveryExpr(Result->getBeginLoc(), Result->getEndLoc(),
16515                               {Result}, Result->getType());
16516   return Result;
16517 }
16518 
16519 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
16520                             SourceLocation RPLoc) {
16521   TypeSourceInfo *TInfo;
16522   GetTypeFromParser(Ty, &TInfo);
16523   return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
16524 }
16525 
16526 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
16527                                 Expr *E, TypeSourceInfo *TInfo,
16528                                 SourceLocation RPLoc) {
16529   Expr *OrigExpr = E;
16530   bool IsMS = false;
16531 
16532   // CUDA device code does not support varargs.
16533   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
16534     if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
16535       CUDAFunctionTarget T = CUDA().IdentifyTarget(F);
16536       if (T == CUDAFunctionTarget::Global || T == CUDAFunctionTarget::Device ||
16537           T == CUDAFunctionTarget::HostDevice)
16538         return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
16539     }
16540   }
16541 
16542   // NVPTX does not support va_arg expression.
16543   if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice &&
16544       Context.getTargetInfo().getTriple().isNVPTX())
16545     targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
16546 
16547   // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
16548   // as Microsoft ABI on an actual Microsoft platform, where
16549   // __builtin_ms_va_list and __builtin_va_list are the same.)
16550   if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
16551       Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
16552     QualType MSVaListType = Context.getBuiltinMSVaListType();
16553     if (Context.hasSameType(MSVaListType, E->getType())) {
16554       if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
16555         return ExprError();
16556       IsMS = true;
16557     }
16558   }
16559 
16560   // Get the va_list type
16561   QualType VaListType = Context.getBuiltinVaListType();
16562   if (!IsMS) {
16563     if (VaListType->isArrayType()) {
16564       // Deal with implicit array decay; for example, on x86-64,
16565       // va_list is an array, but it's supposed to decay to
16566       // a pointer for va_arg.
16567       VaListType = Context.getArrayDecayedType(VaListType);
16568       // Make sure the input expression also decays appropriately.
16569       ExprResult Result = UsualUnaryConversions(E);
16570       if (Result.isInvalid())
16571         return ExprError();
16572       E = Result.get();
16573     } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
16574       // If va_list is a record type and we are compiling in C++ mode,
16575       // check the argument using reference binding.
16576       InitializedEntity Entity = InitializedEntity::InitializeParameter(
16577           Context, Context.getLValueReferenceType(VaListType), false);
16578       ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
16579       if (Init.isInvalid())
16580         return ExprError();
16581       E = Init.getAs<Expr>();
16582     } else {
16583       // Otherwise, the va_list argument must be an l-value because
16584       // it is modified by va_arg.
16585       if (!E->isTypeDependent() &&
16586           CheckForModifiableLvalue(E, BuiltinLoc, *this))
16587         return ExprError();
16588     }
16589   }
16590 
16591   if (!IsMS && !E->isTypeDependent() &&
16592       !Context.hasSameType(VaListType, E->getType()))
16593     return ExprError(
16594         Diag(E->getBeginLoc(),
16595              diag::err_first_argument_to_va_arg_not_of_type_va_list)
16596         << OrigExpr->getType() << E->getSourceRange());
16597 
16598   if (!TInfo->getType()->isDependentType()) {
16599     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
16600                             diag::err_second_parameter_to_va_arg_incomplete,
16601                             TInfo->getTypeLoc()))
16602       return ExprError();
16603 
16604     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
16605                                TInfo->getType(),
16606                                diag::err_second_parameter_to_va_arg_abstract,
16607                                TInfo->getTypeLoc()))
16608       return ExprError();
16609 
16610     if (!TInfo->getType().isPODType(Context)) {
16611       Diag(TInfo->getTypeLoc().getBeginLoc(),
16612            TInfo->getType()->isObjCLifetimeType()
16613              ? diag::warn_second_parameter_to_va_arg_ownership_qualified
16614              : diag::warn_second_parameter_to_va_arg_not_pod)
16615         << TInfo->getType()
16616         << TInfo->getTypeLoc().getSourceRange();
16617     }
16618 
16619     if (TInfo->getType()->isArrayType()) {
16620       DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
16621                           PDiag(diag::warn_second_parameter_to_va_arg_array)
16622                               << TInfo->getType()
16623                               << TInfo->getTypeLoc().getSourceRange());
16624     }
16625 
16626     // Check for va_arg where arguments of the given type will be promoted
16627     // (i.e. this va_arg is guaranteed to have undefined behavior).
16628     QualType PromoteType;
16629     if (Context.isPromotableIntegerType(TInfo->getType())) {
16630       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
16631       // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says,
16632       // and C23 7.16.1.1p2 says, in part:
16633       //   If type is not compatible with the type of the actual next argument
16634       //   (as promoted according to the default argument promotions), the
16635       //   behavior is undefined, except for the following cases:
16636       //     - both types are pointers to qualified or unqualified versions of
16637       //       compatible types;
16638       //     - one type is compatible with a signed integer type, the other
16639       //       type is compatible with the corresponding unsigned integer type,
16640       //       and the value is representable in both types;
16641       //     - one type is pointer to qualified or unqualified void and the
16642       //       other is a pointer to a qualified or unqualified character type;
16643       //     - or, the type of the next argument is nullptr_t and type is a
16644       //       pointer type that has the same representation and alignment
16645       //       requirements as a pointer to a character type.
16646       // Given that type compatibility is the primary requirement (ignoring
16647       // qualifications), you would think we could call typesAreCompatible()
16648       // directly to test this. However, in C++, that checks for *same type*,
16649       // which causes false positives when passing an enumeration type to
16650       // va_arg. Instead, get the underlying type of the enumeration and pass
16651       // that.
16652       QualType UnderlyingType = TInfo->getType();
16653       if (const auto *ET = UnderlyingType->getAs<EnumType>())
16654         UnderlyingType = ET->getDecl()->getIntegerType();
16655       if (Context.typesAreCompatible(PromoteType, UnderlyingType,
16656                                      /*CompareUnqualified*/ true))
16657         PromoteType = QualType();
16658 
16659       // If the types are still not compatible, we need to test whether the
16660       // promoted type and the underlying type are the same except for
16661       // signedness. Ask the AST for the correctly corresponding type and see
16662       // if that's compatible.
16663       if (!PromoteType.isNull() && !UnderlyingType->isBooleanType() &&
16664           PromoteType->isUnsignedIntegerType() !=
16665               UnderlyingType->isUnsignedIntegerType()) {
16666         UnderlyingType =
16667             UnderlyingType->isUnsignedIntegerType()
16668                 ? Context.getCorrespondingSignedType(UnderlyingType)
16669                 : Context.getCorrespondingUnsignedType(UnderlyingType);
16670         if (Context.typesAreCompatible(PromoteType, UnderlyingType,
16671                                        /*CompareUnqualified*/ true))
16672           PromoteType = QualType();
16673       }
16674     }
16675     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
16676       PromoteType = Context.DoubleTy;
16677     if (!PromoteType.isNull())
16678       DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
16679                   PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
16680                           << TInfo->getType()
16681                           << PromoteType
16682                           << TInfo->getTypeLoc().getSourceRange());
16683   }
16684 
16685   QualType T = TInfo->getType().getNonLValueExprType(Context);
16686   return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
16687 }
16688 
16689 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
16690   // The type of __null will be int or long, depending on the size of
16691   // pointers on the target.
16692   QualType Ty;
16693   unsigned pw = Context.getTargetInfo().getPointerWidth(LangAS::Default);
16694   if (pw == Context.getTargetInfo().getIntWidth())
16695     Ty = Context.IntTy;
16696   else if (pw == Context.getTargetInfo().getLongWidth())
16697     Ty = Context.LongTy;
16698   else if (pw == Context.getTargetInfo().getLongLongWidth())
16699     Ty = Context.LongLongTy;
16700   else {
16701     llvm_unreachable("I don't know size of pointer!");
16702   }
16703 
16704   return new (Context) GNUNullExpr(Ty, TokenLoc);
16705 }
16706 
16707 static CXXRecordDecl *LookupStdSourceLocationImpl(Sema &S, SourceLocation Loc) {
16708   CXXRecordDecl *ImplDecl = nullptr;
16709 
16710   // Fetch the std::source_location::__impl decl.
16711   if (NamespaceDecl *Std = S.getStdNamespace()) {
16712     LookupResult ResultSL(S, &S.PP.getIdentifierTable().get("source_location"),
16713                           Loc, Sema::LookupOrdinaryName);
16714     if (S.LookupQualifiedName(ResultSL, Std)) {
16715       if (auto *SLDecl = ResultSL.getAsSingle<RecordDecl>()) {
16716         LookupResult ResultImpl(S, &S.PP.getIdentifierTable().get("__impl"),
16717                                 Loc, Sema::LookupOrdinaryName);
16718         if ((SLDecl->isCompleteDefinition() || SLDecl->isBeingDefined()) &&
16719             S.LookupQualifiedName(ResultImpl, SLDecl)) {
16720           ImplDecl = ResultImpl.getAsSingle<CXXRecordDecl>();
16721         }
16722       }
16723     }
16724   }
16725 
16726   if (!ImplDecl || !ImplDecl->isCompleteDefinition()) {
16727     S.Diag(Loc, diag::err_std_source_location_impl_not_found);
16728     return nullptr;
16729   }
16730 
16731   // Verify that __impl is a trivial struct type, with no base classes, and with
16732   // only the four expected fields.
16733   if (ImplDecl->isUnion() || !ImplDecl->isStandardLayout() ||
16734       ImplDecl->getNumBases() != 0) {
16735     S.Diag(Loc, diag::err_std_source_location_impl_malformed);
16736     return nullptr;
16737   }
16738 
16739   unsigned Count = 0;
16740   for (FieldDecl *F : ImplDecl->fields()) {
16741     StringRef Name = F->getName();
16742 
16743     if (Name == "_M_file_name") {
16744       if (F->getType() !=
16745           S.Context.getPointerType(S.Context.CharTy.withConst()))
16746         break;
16747       Count++;
16748     } else if (Name == "_M_function_name") {
16749       if (F->getType() !=
16750           S.Context.getPointerType(S.Context.CharTy.withConst()))
16751         break;
16752       Count++;
16753     } else if (Name == "_M_line") {
16754       if (!F->getType()->isIntegerType())
16755         break;
16756       Count++;
16757     } else if (Name == "_M_column") {
16758       if (!F->getType()->isIntegerType())
16759         break;
16760       Count++;
16761     } else {
16762       Count = 100; // invalid
16763       break;
16764     }
16765   }
16766   if (Count != 4) {
16767     S.Diag(Loc, diag::err_std_source_location_impl_malformed);
16768     return nullptr;
16769   }
16770 
16771   return ImplDecl;
16772 }
16773 
16774 ExprResult Sema::ActOnSourceLocExpr(SourceLocIdentKind Kind,
16775                                     SourceLocation BuiltinLoc,
16776                                     SourceLocation RPLoc) {
16777   QualType ResultTy;
16778   switch (Kind) {
16779   case SourceLocIdentKind::File:
16780   case SourceLocIdentKind::FileName:
16781   case SourceLocIdentKind::Function:
16782   case SourceLocIdentKind::FuncSig: {
16783     QualType ArrTy = Context.getStringLiteralArrayType(Context.CharTy, 0);
16784     ResultTy =
16785         Context.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
16786     break;
16787   }
16788   case SourceLocIdentKind::Line:
16789   case SourceLocIdentKind::Column:
16790     ResultTy = Context.UnsignedIntTy;
16791     break;
16792   case SourceLocIdentKind::SourceLocStruct:
16793     if (!StdSourceLocationImplDecl) {
16794       StdSourceLocationImplDecl =
16795           LookupStdSourceLocationImpl(*this, BuiltinLoc);
16796       if (!StdSourceLocationImplDecl)
16797         return ExprError();
16798     }
16799     ResultTy = Context.getPointerType(
16800         Context.getRecordType(StdSourceLocationImplDecl).withConst());
16801     break;
16802   }
16803 
16804   return BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc, CurContext);
16805 }
16806 
16807 ExprResult Sema::BuildSourceLocExpr(SourceLocIdentKind Kind, QualType ResultTy,
16808                                     SourceLocation BuiltinLoc,
16809                                     SourceLocation RPLoc,
16810                                     DeclContext *ParentContext) {
16811   return new (Context)
16812       SourceLocExpr(Context, Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext);
16813 }
16814 
16815 ExprResult Sema::ActOnEmbedExpr(SourceLocation EmbedKeywordLoc,
16816                                 StringLiteral *BinaryData) {
16817   EmbedDataStorage *Data = new (Context) EmbedDataStorage;
16818   Data->BinaryData = BinaryData;
16819   return new (Context)
16820       EmbedExpr(Context, EmbedKeywordLoc, Data, /*NumOfElements=*/0,
16821                 Data->getDataElementCount());
16822 }
16823 
16824 static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
16825                                               const Expr *SrcExpr) {
16826   if (!DstType->isFunctionPointerType() ||
16827       !SrcExpr->getType()->isFunctionType())
16828     return false;
16829 
16830   auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
16831   if (!DRE)
16832     return false;
16833 
16834   auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
16835   if (!FD)
16836     return false;
16837 
16838   return !S.checkAddressOfFunctionIsAvailable(FD,
16839                                               /*Complain=*/true,
16840                                               SrcExpr->getBeginLoc());
16841 }
16842 
16843 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
16844                                     SourceLocation Loc,
16845                                     QualType DstType, QualType SrcType,
16846                                     Expr *SrcExpr, AssignmentAction Action,
16847                                     bool *Complained) {
16848   if (Complained)
16849     *Complained = false;
16850 
16851   // Decode the result (notice that AST's are still created for extensions).
16852   bool CheckInferredResultType = false;
16853   bool isInvalid = false;
16854   unsigned DiagKind = 0;
16855   ConversionFixItGenerator ConvHints;
16856   bool MayHaveConvFixit = false;
16857   bool MayHaveFunctionDiff = false;
16858   const ObjCInterfaceDecl *IFace = nullptr;
16859   const ObjCProtocolDecl *PDecl = nullptr;
16860 
16861   switch (ConvTy) {
16862   case Compatible:
16863       DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
16864       return false;
16865 
16866   case PointerToInt:
16867     if (getLangOpts().CPlusPlus) {
16868       DiagKind = diag::err_typecheck_convert_pointer_int;
16869       isInvalid = true;
16870     } else {
16871       DiagKind = diag::ext_typecheck_convert_pointer_int;
16872     }
16873     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16874     MayHaveConvFixit = true;
16875     break;
16876   case IntToPointer:
16877     if (getLangOpts().CPlusPlus) {
16878       DiagKind = diag::err_typecheck_convert_int_pointer;
16879       isInvalid = true;
16880     } else {
16881       DiagKind = diag::ext_typecheck_convert_int_pointer;
16882     }
16883     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16884     MayHaveConvFixit = true;
16885     break;
16886   case IncompatibleFunctionPointerStrict:
16887     DiagKind =
16888         diag::warn_typecheck_convert_incompatible_function_pointer_strict;
16889     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16890     MayHaveConvFixit = true;
16891     break;
16892   case IncompatibleFunctionPointer:
16893     if (getLangOpts().CPlusPlus) {
16894       DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
16895       isInvalid = true;
16896     } else {
16897       DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
16898     }
16899     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16900     MayHaveConvFixit = true;
16901     break;
16902   case IncompatiblePointer:
16903     if (Action == AssignmentAction::Passing_CFAudited) {
16904       DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
16905     } else if (getLangOpts().CPlusPlus) {
16906       DiagKind = diag::err_typecheck_convert_incompatible_pointer;
16907       isInvalid = true;
16908     } else {
16909       DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
16910     }
16911     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
16912       SrcType->isObjCObjectPointerType();
16913     if (CheckInferredResultType) {
16914       SrcType = SrcType.getUnqualifiedType();
16915       DstType = DstType.getUnqualifiedType();
16916     } else {
16917       ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16918     }
16919     MayHaveConvFixit = true;
16920     break;
16921   case IncompatiblePointerSign:
16922     if (getLangOpts().CPlusPlus) {
16923       DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
16924       isInvalid = true;
16925     } else {
16926       DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
16927     }
16928     break;
16929   case FunctionVoidPointer:
16930     if (getLangOpts().CPlusPlus) {
16931       DiagKind = diag::err_typecheck_convert_pointer_void_func;
16932       isInvalid = true;
16933     } else {
16934       DiagKind = diag::ext_typecheck_convert_pointer_void_func;
16935     }
16936     break;
16937   case IncompatiblePointerDiscardsQualifiers: {
16938     // Perform array-to-pointer decay if necessary.
16939     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
16940 
16941     isInvalid = true;
16942 
16943     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
16944     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
16945     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
16946       DiagKind = diag::err_typecheck_incompatible_address_space;
16947       break;
16948     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
16949       DiagKind = diag::err_typecheck_incompatible_ownership;
16950       break;
16951     }
16952 
16953     llvm_unreachable("unknown error case for discarding qualifiers!");
16954     // fallthrough
16955   }
16956   case CompatiblePointerDiscardsQualifiers:
16957     // If the qualifiers lost were because we were applying the
16958     // (deprecated) C++ conversion from a string literal to a char*
16959     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
16960     // Ideally, this check would be performed in
16961     // checkPointerTypesForAssignment. However, that would require a
16962     // bit of refactoring (so that the second argument is an
16963     // expression, rather than a type), which should be done as part
16964     // of a larger effort to fix checkPointerTypesForAssignment for
16965     // C++ semantics.
16966     if (getLangOpts().CPlusPlus &&
16967         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
16968       return false;
16969     if (getLangOpts().CPlusPlus) {
16970       DiagKind =  diag::err_typecheck_convert_discards_qualifiers;
16971       isInvalid = true;
16972     } else {
16973       DiagKind =  diag::ext_typecheck_convert_discards_qualifiers;
16974     }
16975 
16976     break;
16977   case IncompatibleNestedPointerQualifiers:
16978     if (getLangOpts().CPlusPlus) {
16979       isInvalid = true;
16980       DiagKind = diag::err_nested_pointer_qualifier_mismatch;
16981     } else {
16982       DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
16983     }
16984     break;
16985   case IncompatibleNestedPointerAddressSpaceMismatch:
16986     DiagKind = diag::err_typecheck_incompatible_nested_address_space;
16987     isInvalid = true;
16988     break;
16989   case IntToBlockPointer:
16990     DiagKind = diag::err_int_to_block_pointer;
16991     isInvalid = true;
16992     break;
16993   case IncompatibleBlockPointer:
16994     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
16995     isInvalid = true;
16996     break;
16997   case IncompatibleObjCQualifiedId: {
16998     if (SrcType->isObjCQualifiedIdType()) {
16999       const ObjCObjectPointerType *srcOPT =
17000                 SrcType->castAs<ObjCObjectPointerType>();
17001       for (auto *srcProto : srcOPT->quals()) {
17002         PDecl = srcProto;
17003         break;
17004       }
17005       if (const ObjCInterfaceType *IFaceT =
17006             DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17007         IFace = IFaceT->getDecl();
17008     }
17009     else if (DstType->isObjCQualifiedIdType()) {
17010       const ObjCObjectPointerType *dstOPT =
17011         DstType->castAs<ObjCObjectPointerType>();
17012       for (auto *dstProto : dstOPT->quals()) {
17013         PDecl = dstProto;
17014         break;
17015       }
17016       if (const ObjCInterfaceType *IFaceT =
17017             SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17018         IFace = IFaceT->getDecl();
17019     }
17020     if (getLangOpts().CPlusPlus) {
17021       DiagKind = diag::err_incompatible_qualified_id;
17022       isInvalid = true;
17023     } else {
17024       DiagKind = diag::warn_incompatible_qualified_id;
17025     }
17026     break;
17027   }
17028   case IncompatibleVectors:
17029     if (getLangOpts().CPlusPlus) {
17030       DiagKind = diag::err_incompatible_vectors;
17031       isInvalid = true;
17032     } else {
17033       DiagKind = diag::warn_incompatible_vectors;
17034     }
17035     break;
17036   case IncompatibleObjCWeakRef:
17037     DiagKind = diag::err_arc_weak_unavailable_assign;
17038     isInvalid = true;
17039     break;
17040   case Incompatible:
17041     if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
17042       if (Complained)
17043         *Complained = true;
17044       return true;
17045     }
17046 
17047     DiagKind = diag::err_typecheck_convert_incompatible;
17048     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17049     MayHaveConvFixit = true;
17050     isInvalid = true;
17051     MayHaveFunctionDiff = true;
17052     break;
17053   }
17054 
17055   QualType FirstType, SecondType;
17056   switch (Action) {
17057   case AssignmentAction::Assigning:
17058   case AssignmentAction::Initializing:
17059     // The destination type comes first.
17060     FirstType = DstType;
17061     SecondType = SrcType;
17062     break;
17063 
17064   case AssignmentAction::Returning:
17065   case AssignmentAction::Passing:
17066   case AssignmentAction::Passing_CFAudited:
17067   case AssignmentAction::Converting:
17068   case AssignmentAction::Sending:
17069   case AssignmentAction::Casting:
17070     // The source type comes first.
17071     FirstType = SrcType;
17072     SecondType = DstType;
17073     break;
17074   }
17075 
17076   PartialDiagnostic FDiag = PDiag(DiagKind);
17077   AssignmentAction ActionForDiag = Action;
17078   if (Action == AssignmentAction::Passing_CFAudited)
17079     ActionForDiag = AssignmentAction::Passing;
17080 
17081   FDiag << FirstType << SecondType << ActionForDiag
17082         << SrcExpr->getSourceRange();
17083 
17084   if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign ||
17085       DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) {
17086     auto isPlainChar = [](const clang::Type *Type) {
17087       return Type->isSpecificBuiltinType(BuiltinType::Char_S) ||
17088              Type->isSpecificBuiltinType(BuiltinType::Char_U);
17089     };
17090     FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) ||
17091               isPlainChar(SecondType->getPointeeOrArrayElementType()));
17092   }
17093 
17094   // If we can fix the conversion, suggest the FixIts.
17095   if (!ConvHints.isNull()) {
17096     for (FixItHint &H : ConvHints.Hints)
17097       FDiag << H;
17098   }
17099 
17100   if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
17101 
17102   if (MayHaveFunctionDiff)
17103     HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
17104 
17105   Diag(Loc, FDiag);
17106   if ((DiagKind == diag::warn_incompatible_qualified_id ||
17107        DiagKind == diag::err_incompatible_qualified_id) &&
17108       PDecl && IFace && !IFace->hasDefinition())
17109     Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
17110         << IFace << PDecl;
17111 
17112   if (SecondType == Context.OverloadTy)
17113     NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
17114                               FirstType, /*TakingAddress=*/true);
17115 
17116   if (CheckInferredResultType)
17117     ObjC().EmitRelatedResultTypeNote(SrcExpr);
17118 
17119   if (Action == AssignmentAction::Returning && ConvTy == IncompatiblePointer)
17120     ObjC().EmitRelatedResultTypeNoteForReturn(DstType);
17121 
17122   if (Complained)
17123     *Complained = true;
17124   return isInvalid;
17125 }
17126 
17127 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17128                                                  llvm::APSInt *Result,
17129                                                  AllowFoldKind CanFold) {
17130   class SimpleICEDiagnoser : public VerifyICEDiagnoser {
17131   public:
17132     SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
17133                                              QualType T) override {
17134       return S.Diag(Loc, diag::err_ice_not_integral)
17135              << T << S.LangOpts.CPlusPlus;
17136     }
17137     SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17138       return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
17139     }
17140   } Diagnoser;
17141 
17142   return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17143 }
17144 
17145 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17146                                                  llvm::APSInt *Result,
17147                                                  unsigned DiagID,
17148                                                  AllowFoldKind CanFold) {
17149   class IDDiagnoser : public VerifyICEDiagnoser {
17150     unsigned DiagID;
17151 
17152   public:
17153     IDDiagnoser(unsigned DiagID)
17154       : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
17155 
17156     SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17157       return S.Diag(Loc, DiagID);
17158     }
17159   } Diagnoser(DiagID);
17160 
17161   return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17162 }
17163 
17164 Sema::SemaDiagnosticBuilder
17165 Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
17166                                              QualType T) {
17167   return diagnoseNotICE(S, Loc);
17168 }
17169 
17170 Sema::SemaDiagnosticBuilder
17171 Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
17172   return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
17173 }
17174 
17175 ExprResult
17176 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
17177                                       VerifyICEDiagnoser &Diagnoser,
17178                                       AllowFoldKind CanFold) {
17179   SourceLocation DiagLoc = E->getBeginLoc();
17180 
17181   if (getLangOpts().CPlusPlus11) {
17182     // C++11 [expr.const]p5:
17183     //   If an expression of literal class type is used in a context where an
17184     //   integral constant expression is required, then that class type shall
17185     //   have a single non-explicit conversion function to an integral or
17186     //   unscoped enumeration type
17187     ExprResult Converted;
17188     class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
17189       VerifyICEDiagnoser &BaseDiagnoser;
17190     public:
17191       CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
17192           : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
17193                                 BaseDiagnoser.Suppress, true),
17194             BaseDiagnoser(BaseDiagnoser) {}
17195 
17196       SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
17197                                            QualType T) override {
17198         return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
17199       }
17200 
17201       SemaDiagnosticBuilder diagnoseIncomplete(
17202           Sema &S, SourceLocation Loc, QualType T) override {
17203         return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
17204       }
17205 
17206       SemaDiagnosticBuilder diagnoseExplicitConv(
17207           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
17208         return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
17209       }
17210 
17211       SemaDiagnosticBuilder noteExplicitConv(
17212           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
17213         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
17214                  << ConvTy->isEnumeralType() << ConvTy;
17215       }
17216 
17217       SemaDiagnosticBuilder diagnoseAmbiguous(
17218           Sema &S, SourceLocation Loc, QualType T) override {
17219         return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
17220       }
17221 
17222       SemaDiagnosticBuilder noteAmbiguous(
17223           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
17224         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
17225                  << ConvTy->isEnumeralType() << ConvTy;
17226       }
17227 
17228       SemaDiagnosticBuilder diagnoseConversion(
17229           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
17230         llvm_unreachable("conversion functions are permitted");
17231       }
17232     } ConvertDiagnoser(Diagnoser);
17233 
17234     Converted = PerformContextualImplicitConversion(DiagLoc, E,
17235                                                     ConvertDiagnoser);
17236     if (Converted.isInvalid())
17237       return Converted;
17238     E = Converted.get();
17239     // The 'explicit' case causes us to get a RecoveryExpr.  Give up here so we
17240     // don't try to evaluate it later. We also don't want to return the
17241     // RecoveryExpr here, as it results in this call succeeding, thus callers of
17242     // this function will attempt to use 'Value'.
17243     if (isa<RecoveryExpr>(E))
17244       return ExprError();
17245     if (!E->getType()->isIntegralOrUnscopedEnumerationType())
17246       return ExprError();
17247   } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
17248     // An ICE must be of integral or unscoped enumeration type.
17249     if (!Diagnoser.Suppress)
17250       Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType())
17251           << E->getSourceRange();
17252     return ExprError();
17253   }
17254 
17255   ExprResult RValueExpr = DefaultLvalueConversion(E);
17256   if (RValueExpr.isInvalid())
17257     return ExprError();
17258 
17259   E = RValueExpr.get();
17260 
17261   // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
17262   // in the non-ICE case.
17263   if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
17264     SmallVector<PartialDiagnosticAt, 8> Notes;
17265     if (Result)
17266       *Result = E->EvaluateKnownConstIntCheckOverflow(Context, &Notes);
17267     if (!isa<ConstantExpr>(E))
17268       E = Result ? ConstantExpr::Create(Context, E, APValue(*Result))
17269                  : ConstantExpr::Create(Context, E);
17270 
17271     if (Notes.empty())
17272       return E;
17273 
17274     // If our only note is the usual "invalid subexpression" note, just point
17275     // the caret at its location rather than producing an essentially
17276     // redundant note.
17277     if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
17278           diag::note_invalid_subexpr_in_const_expr) {
17279       DiagLoc = Notes[0].first;
17280       Notes.clear();
17281     }
17282 
17283     if (getLangOpts().CPlusPlus) {
17284       if (!Diagnoser.Suppress) {
17285         Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
17286         for (const PartialDiagnosticAt &Note : Notes)
17287           Diag(Note.first, Note.second);
17288       }
17289       return ExprError();
17290     }
17291 
17292     Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
17293     for (const PartialDiagnosticAt &Note : Notes)
17294       Diag(Note.first, Note.second);
17295 
17296     return E;
17297   }
17298 
17299   Expr::EvalResult EvalResult;
17300   SmallVector<PartialDiagnosticAt, 8> Notes;
17301   EvalResult.Diag = &Notes;
17302 
17303   // Try to evaluate the expression, and produce diagnostics explaining why it's
17304   // not a constant expression as a side-effect.
17305   bool Folded =
17306       E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
17307       EvalResult.Val.isInt() && !EvalResult.HasSideEffects &&
17308       (!getLangOpts().CPlusPlus || !EvalResult.HasUndefinedBehavior);
17309 
17310   if (!isa<ConstantExpr>(E))
17311     E = ConstantExpr::Create(Context, E, EvalResult.Val);
17312 
17313   // In C++11, we can rely on diagnostics being produced for any expression
17314   // which is not a constant expression. If no diagnostics were produced, then
17315   // this is a constant expression.
17316   if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
17317     if (Result)
17318       *Result = EvalResult.Val.getInt();
17319     return E;
17320   }
17321 
17322   // If our only note is the usual "invalid subexpression" note, just point
17323   // the caret at its location rather than producing an essentially
17324   // redundant note.
17325   if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
17326         diag::note_invalid_subexpr_in_const_expr) {
17327     DiagLoc = Notes[0].first;
17328     Notes.clear();
17329   }
17330 
17331   if (!Folded || !CanFold) {
17332     if (!Diagnoser.Suppress) {
17333       Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
17334       for (const PartialDiagnosticAt &Note : Notes)
17335         Diag(Note.first, Note.second);
17336     }
17337 
17338     return ExprError();
17339   }
17340 
17341   Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
17342   for (const PartialDiagnosticAt &Note : Notes)
17343     Diag(Note.first, Note.second);
17344 
17345   if (Result)
17346     *Result = EvalResult.Val.getInt();
17347   return E;
17348 }
17349 
17350 namespace {
17351   // Handle the case where we conclude a expression which we speculatively
17352   // considered to be unevaluated is actually evaluated.
17353   class TransformToPE : public TreeTransform<TransformToPE> {
17354     typedef TreeTransform<TransformToPE> BaseTransform;
17355 
17356   public:
17357     TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
17358 
17359     // Make sure we redo semantic analysis
17360     bool AlwaysRebuild() { return true; }
17361     bool ReplacingOriginal() { return true; }
17362 
17363     // We need to special-case DeclRefExprs referring to FieldDecls which
17364     // are not part of a member pointer formation; normal TreeTransforming
17365     // doesn't catch this case because of the way we represent them in the AST.
17366     // FIXME: This is a bit ugly; is it really the best way to handle this
17367     // case?
17368     //
17369     // Error on DeclRefExprs referring to FieldDecls.
17370     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
17371       if (isa<FieldDecl>(E->getDecl()) &&
17372           !SemaRef.isUnevaluatedContext())
17373         return SemaRef.Diag(E->getLocation(),
17374                             diag::err_invalid_non_static_member_use)
17375             << E->getDecl() << E->getSourceRange();
17376 
17377       return BaseTransform::TransformDeclRefExpr(E);
17378     }
17379 
17380     // Exception: filter out member pointer formation
17381     ExprResult TransformUnaryOperator(UnaryOperator *E) {
17382       if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
17383         return E;
17384 
17385       return BaseTransform::TransformUnaryOperator(E);
17386     }
17387 
17388     // The body of a lambda-expression is in a separate expression evaluation
17389     // context so never needs to be transformed.
17390     // FIXME: Ideally we wouldn't transform the closure type either, and would
17391     // just recreate the capture expressions and lambda expression.
17392     StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
17393       return SkipLambdaBody(E, Body);
17394     }
17395   };
17396 }
17397 
17398 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
17399   assert(isUnevaluatedContext() &&
17400          "Should only transform unevaluated expressions");
17401   ExprEvalContexts.back().Context =
17402       ExprEvalContexts[ExprEvalContexts.size()-2].Context;
17403   if (isUnevaluatedContext())
17404     return E;
17405   return TransformToPE(*this).TransformExpr(E);
17406 }
17407 
17408 TypeSourceInfo *Sema::TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo) {
17409   assert(isUnevaluatedContext() &&
17410          "Should only transform unevaluated expressions");
17411   ExprEvalContexts.back().Context = parentEvaluationContext().Context;
17412   if (isUnevaluatedContext())
17413     return TInfo;
17414   return TransformToPE(*this).TransformType(TInfo);
17415 }
17416 
17417 void
17418 Sema::PushExpressionEvaluationContext(
17419     ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
17420     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
17421   ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
17422                                 LambdaContextDecl, ExprContext);
17423 
17424   // Discarded statements and immediate contexts nested in other
17425   // discarded statements or immediate context are themselves
17426   // a discarded statement or an immediate context, respectively.
17427   ExprEvalContexts.back().InDiscardedStatement =
17428       parentEvaluationContext().isDiscardedStatementContext();
17429 
17430   // C++23 [expr.const]/p15
17431   // An expression or conversion is in an immediate function context if [...]
17432   // it is a subexpression of a manifestly constant-evaluated expression or
17433   // conversion.
17434   const auto &Prev = parentEvaluationContext();
17435   ExprEvalContexts.back().InImmediateFunctionContext =
17436       Prev.isImmediateFunctionContext() || Prev.isConstantEvaluated();
17437 
17438   ExprEvalContexts.back().InImmediateEscalatingFunctionContext =
17439       Prev.InImmediateEscalatingFunctionContext;
17440 
17441   Cleanup.reset();
17442   if (!MaybeODRUseExprs.empty())
17443     std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
17444 }
17445 
17446 void
17447 Sema::PushExpressionEvaluationContext(
17448     ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
17449     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
17450   Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
17451   PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
17452 }
17453 
17454 namespace {
17455 
17456 const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
17457   PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
17458   if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
17459     if (E->getOpcode() == UO_Deref)
17460       return CheckPossibleDeref(S, E->getSubExpr());
17461   } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
17462     return CheckPossibleDeref(S, E->getBase());
17463   } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
17464     return CheckPossibleDeref(S, E->getBase());
17465   } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
17466     QualType Inner;
17467     QualType Ty = E->getType();
17468     if (const auto *Ptr = Ty->getAs<PointerType>())
17469       Inner = Ptr->getPointeeType();
17470     else if (const auto *Arr = S.Context.getAsArrayType(Ty))
17471       Inner = Arr->getElementType();
17472     else
17473       return nullptr;
17474 
17475     if (Inner->hasAttr(attr::NoDeref))
17476       return E;
17477   }
17478   return nullptr;
17479 }
17480 
17481 } // namespace
17482 
17483 void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
17484   for (const Expr *E : Rec.PossibleDerefs) {
17485     const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
17486     if (DeclRef) {
17487       const ValueDecl *Decl = DeclRef->getDecl();
17488       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
17489           << Decl->getName() << E->getSourceRange();
17490       Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
17491     } else {
17492       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
17493           << E->getSourceRange();
17494     }
17495   }
17496   Rec.PossibleDerefs.clear();
17497 }
17498 
17499 void Sema::CheckUnusedVolatileAssignment(Expr *E) {
17500   if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
17501     return;
17502 
17503   // Note: ignoring parens here is not justified by the standard rules, but
17504   // ignoring parentheses seems like a more reasonable approach, and this only
17505   // drives a deprecation warning so doesn't affect conformance.
17506   if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
17507     if (BO->getOpcode() == BO_Assign) {
17508       auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
17509       llvm::erase(LHSs, BO->getLHS());
17510     }
17511   }
17512 }
17513 
17514 void Sema::MarkExpressionAsImmediateEscalating(Expr *E) {
17515   assert(getLangOpts().CPlusPlus20 &&
17516          ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
17517          "Cannot mark an immediate escalating expression outside of an "
17518          "immediate escalating context");
17519   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreImplicit());
17520       Call && Call->getCallee()) {
17521     if (auto *DeclRef =
17522             dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
17523       DeclRef->setIsImmediateEscalating(true);
17524   } else if (auto *Ctr = dyn_cast<CXXConstructExpr>(E->IgnoreImplicit())) {
17525     Ctr->setIsImmediateEscalating(true);
17526   } else if (auto *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreImplicit())) {
17527     DeclRef->setIsImmediateEscalating(true);
17528   } else {
17529     assert(false && "expected an immediately escalating expression");
17530   }
17531   if (FunctionScopeInfo *FI = getCurFunction())
17532     FI->FoundImmediateEscalatingExpression = true;
17533 }
17534 
17535 ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
17536   if (isUnevaluatedContext() || !E.isUsable() || !Decl ||
17537       !Decl->isImmediateFunction() || isAlwaysConstantEvaluatedContext() ||
17538       isCheckingDefaultArgumentOrInitializer() ||
17539       RebuildingImmediateInvocation || isImmediateFunctionContext())
17540     return E;
17541 
17542   /// Opportunistically remove the callee from ReferencesToConsteval if we can.
17543   /// It's OK if this fails; we'll also remove this in
17544   /// HandleImmediateInvocations, but catching it here allows us to avoid
17545   /// walking the AST looking for it in simple cases.
17546   if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit()))
17547     if (auto *DeclRef =
17548             dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
17549       ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef);
17550 
17551   // C++23 [expr.const]/p16
17552   // An expression or conversion is immediate-escalating if it is not initially
17553   // in an immediate function context and it is [...] an immediate invocation
17554   // that is not a constant expression and is not a subexpression of an
17555   // immediate invocation.
17556   APValue Cached;
17557   auto CheckConstantExpressionAndKeepResult = [&]() {
17558     llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
17559     Expr::EvalResult Eval;
17560     Eval.Diag = &Notes;
17561     bool Res = E.get()->EvaluateAsConstantExpr(
17562         Eval, getASTContext(), ConstantExprKind::ImmediateInvocation);
17563     if (Res && Notes.empty()) {
17564       Cached = std::move(Eval.Val);
17565       return true;
17566     }
17567     return false;
17568   };
17569 
17570   if (!E.get()->isValueDependent() &&
17571       ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
17572       !CheckConstantExpressionAndKeepResult()) {
17573     MarkExpressionAsImmediateEscalating(E.get());
17574     return E;
17575   }
17576 
17577   if (Cleanup.exprNeedsCleanups()) {
17578     // Since an immediate invocation is a full expression itself - it requires
17579     // an additional ExprWithCleanups node, but it can participate to a bigger
17580     // full expression which actually requires cleanups to be run after so
17581     // create ExprWithCleanups without using MaybeCreateExprWithCleanups as it
17582     // may discard cleanups for outer expression too early.
17583 
17584     // Note that ExprWithCleanups created here must always have empty cleanup
17585     // objects:
17586     // - compound literals do not create cleanup objects in C++ and immediate
17587     // invocations are C++-only.
17588     // - blocks are not allowed inside constant expressions and compiler will
17589     // issue an error if they appear there.
17590     //
17591     // Hence, in correct code any cleanup objects created inside current
17592     // evaluation context must be outside the immediate invocation.
17593     E = ExprWithCleanups::Create(getASTContext(), E.get(),
17594                                  Cleanup.cleanupsHaveSideEffects(), {});
17595   }
17596 
17597   ConstantExpr *Res = ConstantExpr::Create(
17598       getASTContext(), E.get(),
17599       ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(),
17600                                    getASTContext()),
17601       /*IsImmediateInvocation*/ true);
17602   if (Cached.hasValue())
17603     Res->MoveIntoResult(Cached, getASTContext());
17604   /// Value-dependent constant expressions should not be immediately
17605   /// evaluated until they are instantiated.
17606   if (!Res->isValueDependent())
17607     ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0);
17608   return Res;
17609 }
17610 
17611 static void EvaluateAndDiagnoseImmediateInvocation(
17612     Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
17613   llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
17614   Expr::EvalResult Eval;
17615   Eval.Diag = &Notes;
17616   ConstantExpr *CE = Candidate.getPointer();
17617   bool Result = CE->EvaluateAsConstantExpr(
17618       Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation);
17619   if (!Result || !Notes.empty()) {
17620     SemaRef.FailedImmediateInvocations.insert(CE);
17621     Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
17622     if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
17623       InnerExpr = FunctionalCast->getSubExpr()->IgnoreImplicit();
17624     FunctionDecl *FD = nullptr;
17625     if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
17626       FD = cast<FunctionDecl>(Call->getCalleeDecl());
17627     else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
17628       FD = Call->getConstructor();
17629     else if (auto *Cast = dyn_cast<CastExpr>(InnerExpr))
17630       FD = dyn_cast_or_null<FunctionDecl>(Cast->getConversionFunction());
17631 
17632     assert(FD && FD->isImmediateFunction() &&
17633            "could not find an immediate function in this expression");
17634     if (FD->isInvalidDecl())
17635       return;
17636     SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call)
17637         << FD << FD->isConsteval();
17638     if (auto Context =
17639             SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
17640       SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer)
17641           << Context->Decl;
17642       SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at);
17643     }
17644     if (!FD->isConsteval())
17645       SemaRef.DiagnoseImmediateEscalatingReason(FD);
17646     for (auto &Note : Notes)
17647       SemaRef.Diag(Note.first, Note.second);
17648     return;
17649   }
17650   CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext());
17651 }
17652 
17653 static void RemoveNestedImmediateInvocation(
17654     Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
17655     SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
17656   struct ComplexRemove : TreeTransform<ComplexRemove> {
17657     using Base = TreeTransform<ComplexRemove>;
17658     llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
17659     SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
17660     SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
17661         CurrentII;
17662     ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
17663                   SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
17664                   SmallVector<Sema::ImmediateInvocationCandidate,
17665                               4>::reverse_iterator Current)
17666         : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
17667     void RemoveImmediateInvocation(ConstantExpr* E) {
17668       auto It = std::find_if(CurrentII, IISet.rend(),
17669                              [E](Sema::ImmediateInvocationCandidate Elem) {
17670                                return Elem.getPointer() == E;
17671                              });
17672       // It is possible that some subexpression of the current immediate
17673       // invocation was handled from another expression evaluation context. Do
17674       // not handle the current immediate invocation if some of its
17675       // subexpressions failed before.
17676       if (It == IISet.rend()) {
17677         if (SemaRef.FailedImmediateInvocations.contains(E))
17678           CurrentII->setInt(1);
17679       } else {
17680         It->setInt(1); // Mark as deleted
17681       }
17682     }
17683     ExprResult TransformConstantExpr(ConstantExpr *E) {
17684       if (!E->isImmediateInvocation())
17685         return Base::TransformConstantExpr(E);
17686       RemoveImmediateInvocation(E);
17687       return Base::TransformExpr(E->getSubExpr());
17688     }
17689     /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
17690     /// we need to remove its DeclRefExpr from the DRSet.
17691     ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
17692       DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
17693       return Base::TransformCXXOperatorCallExpr(E);
17694     }
17695     /// Base::TransformUserDefinedLiteral doesn't preserve the
17696     /// UserDefinedLiteral node.
17697     ExprResult TransformUserDefinedLiteral(UserDefinedLiteral *E) { return E; }
17698     /// Base::TransformInitializer skips ConstantExpr so we need to visit them
17699     /// here.
17700     ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
17701       if (!Init)
17702         return Init;
17703 
17704       // We cannot use IgnoreImpCasts because we need to preserve
17705       // full expressions.
17706       while (true) {
17707         if (auto *ICE = dyn_cast<ImplicitCastExpr>(Init))
17708           Init = ICE->getSubExpr();
17709         else if (auto *ICE = dyn_cast<MaterializeTemporaryExpr>(Init))
17710           Init = ICE->getSubExpr();
17711         else
17712           break;
17713       }
17714       /// ConstantExprs are the first layer of implicit node to be removed so if
17715       /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
17716       if (auto *CE = dyn_cast<ConstantExpr>(Init);
17717           CE && CE->isImmediateInvocation())
17718         RemoveImmediateInvocation(CE);
17719       return Base::TransformInitializer(Init, NotCopyInit);
17720     }
17721     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
17722       DRSet.erase(E);
17723       return E;
17724     }
17725     ExprResult TransformLambdaExpr(LambdaExpr *E) {
17726       // Do not rebuild lambdas to avoid creating a new type.
17727       // Lambdas have already been processed inside their eval contexts.
17728       return E;
17729     }
17730     bool AlwaysRebuild() { return false; }
17731     bool ReplacingOriginal() { return true; }
17732     bool AllowSkippingCXXConstructExpr() {
17733       bool Res = AllowSkippingFirstCXXConstructExpr;
17734       AllowSkippingFirstCXXConstructExpr = true;
17735       return Res;
17736     }
17737     bool AllowSkippingFirstCXXConstructExpr = true;
17738   } Transformer(SemaRef, Rec.ReferenceToConsteval,
17739                 Rec.ImmediateInvocationCandidates, It);
17740 
17741   /// CXXConstructExpr with a single argument are getting skipped by
17742   /// TreeTransform in some situtation because they could be implicit. This
17743   /// can only occur for the top-level CXXConstructExpr because it is used
17744   /// nowhere in the expression being transformed therefore will not be rebuilt.
17745   /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
17746   /// skipping the first CXXConstructExpr.
17747   if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
17748     Transformer.AllowSkippingFirstCXXConstructExpr = false;
17749 
17750   ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
17751   // The result may not be usable in case of previous compilation errors.
17752   // In this case evaluation of the expression may result in crash so just
17753   // don't do anything further with the result.
17754   if (Res.isUsable()) {
17755     Res = SemaRef.MaybeCreateExprWithCleanups(Res);
17756     It->getPointer()->setSubExpr(Res.get());
17757   }
17758 }
17759 
17760 static void
17761 HandleImmediateInvocations(Sema &SemaRef,
17762                            Sema::ExpressionEvaluationContextRecord &Rec) {
17763   if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
17764        Rec.ReferenceToConsteval.size() == 0) ||
17765       Rec.isImmediateFunctionContext() || SemaRef.RebuildingImmediateInvocation)
17766     return;
17767 
17768   /// When we have more than 1 ImmediateInvocationCandidates or previously
17769   /// failed immediate invocations, we need to check for nested
17770   /// ImmediateInvocationCandidates in order to avoid duplicate diagnostics.
17771   /// Otherwise we only need to remove ReferenceToConsteval in the immediate
17772   /// invocation.
17773   if (Rec.ImmediateInvocationCandidates.size() > 1 ||
17774       !SemaRef.FailedImmediateInvocations.empty()) {
17775 
17776     /// Prevent sema calls during the tree transform from adding pointers that
17777     /// are already in the sets.
17778     llvm::SaveAndRestore DisableIITracking(
17779         SemaRef.RebuildingImmediateInvocation, true);
17780 
17781     /// Prevent diagnostic during tree transfrom as they are duplicates
17782     Sema::TentativeAnalysisScope DisableDiag(SemaRef);
17783 
17784     for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
17785          It != Rec.ImmediateInvocationCandidates.rend(); It++)
17786       if (!It->getInt())
17787         RemoveNestedImmediateInvocation(SemaRef, Rec, It);
17788   } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
17789              Rec.ReferenceToConsteval.size()) {
17790     struct SimpleRemove : DynamicRecursiveASTVisitor {
17791       llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
17792       SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
17793       bool VisitDeclRefExpr(DeclRefExpr *E) override {
17794         DRSet.erase(E);
17795         return DRSet.size();
17796       }
17797     } Visitor(Rec.ReferenceToConsteval);
17798     Visitor.TraverseStmt(
17799         Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
17800   }
17801   for (auto CE : Rec.ImmediateInvocationCandidates)
17802     if (!CE.getInt())
17803       EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE);
17804   for (auto *DR : Rec.ReferenceToConsteval) {
17805     // If the expression is immediate escalating, it is not an error;
17806     // The outer context itself becomes immediate and further errors,
17807     // if any, will be handled by DiagnoseImmediateEscalatingReason.
17808     if (DR->isImmediateEscalating())
17809       continue;
17810     auto *FD = cast<FunctionDecl>(DR->getDecl());
17811     const NamedDecl *ND = FD;
17812     if (const auto *MD = dyn_cast<CXXMethodDecl>(ND);
17813         MD && (MD->isLambdaStaticInvoker() || isLambdaCallOperator(MD)))
17814       ND = MD->getParent();
17815 
17816     // C++23 [expr.const]/p16
17817     // An expression or conversion is immediate-escalating if it is not
17818     // initially in an immediate function context and it is [...] a
17819     // potentially-evaluated id-expression that denotes an immediate function
17820     // that is not a subexpression of an immediate invocation.
17821     bool ImmediateEscalating = false;
17822     bool IsPotentiallyEvaluated =
17823         Rec.Context ==
17824             Sema::ExpressionEvaluationContext::PotentiallyEvaluated ||
17825         Rec.Context ==
17826             Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed;
17827     if (SemaRef.inTemplateInstantiation() && IsPotentiallyEvaluated)
17828       ImmediateEscalating = Rec.InImmediateEscalatingFunctionContext;
17829 
17830     if (!Rec.InImmediateEscalatingFunctionContext ||
17831         (SemaRef.inTemplateInstantiation() && !ImmediateEscalating)) {
17832       SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
17833           << ND << isa<CXXRecordDecl>(ND) << FD->isConsteval();
17834       if (!FD->getBuiltinID())
17835         SemaRef.Diag(ND->getLocation(), diag::note_declared_at);
17836       if (auto Context =
17837               SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
17838         SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer)
17839             << Context->Decl;
17840         SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at);
17841       }
17842       if (FD->isImmediateEscalating() && !FD->isConsteval())
17843         SemaRef.DiagnoseImmediateEscalatingReason(FD);
17844 
17845     } else {
17846       SemaRef.MarkExpressionAsImmediateEscalating(DR);
17847     }
17848   }
17849 }
17850 
17851 void Sema::PopExpressionEvaluationContext() {
17852   ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
17853   unsigned NumTypos = Rec.NumTypos;
17854 
17855   if (!Rec.Lambdas.empty()) {
17856     using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
17857     if (!getLangOpts().CPlusPlus20 &&
17858         (Rec.ExprContext == ExpressionKind::EK_TemplateArgument ||
17859          Rec.isUnevaluated() ||
17860          (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) {
17861       unsigned D;
17862       if (Rec.isUnevaluated()) {
17863         // C++11 [expr.prim.lambda]p2:
17864         //   A lambda-expression shall not appear in an unevaluated operand
17865         //   (Clause 5).
17866         D = diag::err_lambda_unevaluated_operand;
17867       } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
17868         // C++1y [expr.const]p2:
17869         //   A conditional-expression e is a core constant expression unless the
17870         //   evaluation of e, following the rules of the abstract machine, would
17871         //   evaluate [...] a lambda-expression.
17872         D = diag::err_lambda_in_constant_expression;
17873       } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
17874         // C++17 [expr.prim.lamda]p2:
17875         // A lambda-expression shall not appear [...] in a template-argument.
17876         D = diag::err_lambda_in_invalid_context;
17877       } else
17878         llvm_unreachable("Couldn't infer lambda error message.");
17879 
17880       for (const auto *L : Rec.Lambdas)
17881         Diag(L->getBeginLoc(), D);
17882     }
17883   }
17884 
17885   // Append the collected materialized temporaries into previous context before
17886   // exit if the previous also is a lifetime extending context.
17887   if (getLangOpts().CPlusPlus23 && Rec.InLifetimeExtendingContext &&
17888       parentEvaluationContext().InLifetimeExtendingContext &&
17889       !Rec.ForRangeLifetimeExtendTemps.empty()) {
17890     parentEvaluationContext().ForRangeLifetimeExtendTemps.append(
17891         Rec.ForRangeLifetimeExtendTemps);
17892   }
17893 
17894   WarnOnPendingNoDerefs(Rec);
17895   HandleImmediateInvocations(*this, Rec);
17896 
17897   // Warn on any volatile-qualified simple-assignments that are not discarded-
17898   // value expressions nor unevaluated operands (those cases get removed from
17899   // this list by CheckUnusedVolatileAssignment).
17900   for (auto *BO : Rec.VolatileAssignmentLHSs)
17901     Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
17902         << BO->getType();
17903 
17904   // When are coming out of an unevaluated context, clear out any
17905   // temporaries that we may have created as part of the evaluation of
17906   // the expression in that context: they aren't relevant because they
17907   // will never be constructed.
17908   if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
17909     ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
17910                              ExprCleanupObjects.end());
17911     Cleanup = Rec.ParentCleanup;
17912     CleanupVarDeclMarking();
17913     std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
17914   // Otherwise, merge the contexts together.
17915   } else {
17916     Cleanup.mergeFrom(Rec.ParentCleanup);
17917     MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
17918                             Rec.SavedMaybeODRUseExprs.end());
17919   }
17920 
17921   // Pop the current expression evaluation context off the stack.
17922   ExprEvalContexts.pop_back();
17923 
17924   // The global expression evaluation context record is never popped.
17925   ExprEvalContexts.back().NumTypos += NumTypos;
17926 }
17927 
17928 void Sema::DiscardCleanupsInEvaluationContext() {
17929   ExprCleanupObjects.erase(
17930          ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
17931          ExprCleanupObjects.end());
17932   Cleanup.reset();
17933   MaybeODRUseExprs.clear();
17934 }
17935 
17936 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
17937   ExprResult Result = CheckPlaceholderExpr(E);
17938   if (Result.isInvalid())
17939     return ExprError();
17940   E = Result.get();
17941   if (!E->getType()->isVariablyModifiedType())
17942     return E;
17943   return TransformToPotentiallyEvaluated(E);
17944 }
17945 
17946 /// Are we in a context that is potentially constant evaluated per C++20
17947 /// [expr.const]p12?
17948 static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
17949   /// C++2a [expr.const]p12:
17950   //   An expression or conversion is potentially constant evaluated if it is
17951   switch (SemaRef.ExprEvalContexts.back().Context) {
17952     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
17953     case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
17954 
17955       // -- a manifestly constant-evaluated expression,
17956     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
17957     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
17958     case Sema::ExpressionEvaluationContext::DiscardedStatement:
17959       // -- a potentially-evaluated expression,
17960     case Sema::ExpressionEvaluationContext::UnevaluatedList:
17961       // -- an immediate subexpression of a braced-init-list,
17962 
17963       // -- [FIXME] an expression of the form & cast-expression that occurs
17964       //    within a templated entity
17965       // -- a subexpression of one of the above that is not a subexpression of
17966       // a nested unevaluated operand.
17967       return true;
17968 
17969     case Sema::ExpressionEvaluationContext::Unevaluated:
17970     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
17971       // Expressions in this context are never evaluated.
17972       return false;
17973   }
17974   llvm_unreachable("Invalid context");
17975 }
17976 
17977 /// Return true if this function has a calling convention that requires mangling
17978 /// in the size of the parameter pack.
17979 static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
17980   // These manglings don't do anything on non-Windows or non-x86 platforms, so
17981   // we don't need parameter type sizes.
17982   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
17983   if (!TT.isOSWindows() || !TT.isX86())
17984     return false;
17985 
17986   // If this is C++ and this isn't an extern "C" function, parameters do not
17987   // need to be complete. In this case, C++ mangling will apply, which doesn't
17988   // use the size of the parameters.
17989   if (S.getLangOpts().CPlusPlus && !FD->isExternC())
17990     return false;
17991 
17992   // Stdcall, fastcall, and vectorcall need this special treatment.
17993   CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
17994   switch (CC) {
17995   case CC_X86StdCall:
17996   case CC_X86FastCall:
17997   case CC_X86VectorCall:
17998     return true;
17999   default:
18000     break;
18001   }
18002   return false;
18003 }
18004 
18005 /// Require that all of the parameter types of function be complete. Normally,
18006 /// parameter types are only required to be complete when a function is called
18007 /// or defined, but to mangle functions with certain calling conventions, the
18008 /// mangler needs to know the size of the parameter list. In this situation,
18009 /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
18010 /// the function as _foo@0, i.e. zero bytes of parameters, which will usually
18011 /// result in a linker error. Clang doesn't implement this behavior, and instead
18012 /// attempts to error at compile time.
18013 static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
18014                                                   SourceLocation Loc) {
18015   class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
18016     FunctionDecl *FD;
18017     ParmVarDecl *Param;
18018 
18019   public:
18020     ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
18021         : FD(FD), Param(Param) {}
18022 
18023     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
18024       CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
18025       StringRef CCName;
18026       switch (CC) {
18027       case CC_X86StdCall:
18028         CCName = "stdcall";
18029         break;
18030       case CC_X86FastCall:
18031         CCName = "fastcall";
18032         break;
18033       case CC_X86VectorCall:
18034         CCName = "vectorcall";
18035         break;
18036       default:
18037         llvm_unreachable("CC does not need mangling");
18038       }
18039 
18040       S.Diag(Loc, diag::err_cconv_incomplete_param_type)
18041           << Param->getDeclName() << FD->getDeclName() << CCName;
18042     }
18043   };
18044 
18045   for (ParmVarDecl *Param : FD->parameters()) {
18046     ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
18047     S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
18048   }
18049 }
18050 
18051 namespace {
18052 enum class OdrUseContext {
18053   /// Declarations in this context are not odr-used.
18054   None,
18055   /// Declarations in this context are formally odr-used, but this is a
18056   /// dependent context.
18057   Dependent,
18058   /// Declarations in this context are odr-used but not actually used (yet).
18059   FormallyOdrUsed,
18060   /// Declarations in this context are used.
18061   Used
18062 };
18063 }
18064 
18065 /// Are we within a context in which references to resolved functions or to
18066 /// variables result in odr-use?
18067 static OdrUseContext isOdrUseContext(Sema &SemaRef) {
18068   OdrUseContext Result;
18069 
18070   switch (SemaRef.ExprEvalContexts.back().Context) {
18071     case Sema::ExpressionEvaluationContext::Unevaluated:
18072     case Sema::ExpressionEvaluationContext::UnevaluatedList:
18073     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
18074       return OdrUseContext::None;
18075 
18076     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
18077     case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
18078     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
18079       Result = OdrUseContext::Used;
18080       break;
18081 
18082     case Sema::ExpressionEvaluationContext::DiscardedStatement:
18083       Result = OdrUseContext::FormallyOdrUsed;
18084       break;
18085 
18086     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
18087       // A default argument formally results in odr-use, but doesn't actually
18088       // result in a use in any real sense until it itself is used.
18089       Result = OdrUseContext::FormallyOdrUsed;
18090       break;
18091   }
18092 
18093   if (SemaRef.CurContext->isDependentContext())
18094     return OdrUseContext::Dependent;
18095 
18096   return Result;
18097 }
18098 
18099 static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
18100   if (!Func->isConstexpr())
18101     return false;
18102 
18103   if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
18104     return true;
18105   auto *CCD = dyn_cast<CXXConstructorDecl>(Func);
18106   return CCD && CCD->getInheritedConstructor();
18107 }
18108 
18109 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
18110                                   bool MightBeOdrUse) {
18111   assert(Func && "No function?");
18112 
18113   Func->setReferenced();
18114 
18115   // Recursive functions aren't really used until they're used from some other
18116   // context.
18117   bool IsRecursiveCall = CurContext == Func;
18118 
18119   // C++11 [basic.def.odr]p3:
18120   //   A function whose name appears as a potentially-evaluated expression is
18121   //   odr-used if it is the unique lookup result or the selected member of a
18122   //   set of overloaded functions [...].
18123   //
18124   // We (incorrectly) mark overload resolution as an unevaluated context, so we
18125   // can just check that here.
18126   OdrUseContext OdrUse =
18127       MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
18128   if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
18129     OdrUse = OdrUseContext::FormallyOdrUsed;
18130 
18131   // Trivial default constructors and destructors are never actually used.
18132   // FIXME: What about other special members?
18133   if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
18134       OdrUse == OdrUseContext::Used) {
18135     if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
18136       if (Constructor->isDefaultConstructor())
18137         OdrUse = OdrUseContext::FormallyOdrUsed;
18138     if (isa<CXXDestructorDecl>(Func))
18139       OdrUse = OdrUseContext::FormallyOdrUsed;
18140   }
18141 
18142   // C++20 [expr.const]p12:
18143   //   A function [...] is needed for constant evaluation if it is [...] a
18144   //   constexpr function that is named by an expression that is potentially
18145   //   constant evaluated
18146   bool NeededForConstantEvaluation =
18147       isPotentiallyConstantEvaluatedContext(*this) &&
18148       isImplicitlyDefinableConstexprFunction(Func);
18149 
18150   // Determine whether we require a function definition to exist, per
18151   // C++11 [temp.inst]p3:
18152   //   Unless a function template specialization has been explicitly
18153   //   instantiated or explicitly specialized, the function template
18154   //   specialization is implicitly instantiated when the specialization is
18155   //   referenced in a context that requires a function definition to exist.
18156   // C++20 [temp.inst]p7:
18157   //   The existence of a definition of a [...] function is considered to
18158   //   affect the semantics of the program if the [...] function is needed for
18159   //   constant evaluation by an expression
18160   // C++20 [basic.def.odr]p10:
18161   //   Every program shall contain exactly one definition of every non-inline
18162   //   function or variable that is odr-used in that program outside of a
18163   //   discarded statement
18164   // C++20 [special]p1:
18165   //   The implementation will implicitly define [defaulted special members]
18166   //   if they are odr-used or needed for constant evaluation.
18167   //
18168   // Note that we skip the implicit instantiation of templates that are only
18169   // used in unused default arguments or by recursive calls to themselves.
18170   // This is formally non-conforming, but seems reasonable in practice.
18171   bool NeedDefinition =
18172       !IsRecursiveCall &&
18173       (OdrUse == OdrUseContext::Used ||
18174        (NeededForConstantEvaluation && !Func->isPureVirtual()));
18175 
18176   // C++14 [temp.expl.spec]p6:
18177   //   If a template [...] is explicitly specialized then that specialization
18178   //   shall be declared before the first use of that specialization that would
18179   //   cause an implicit instantiation to take place, in every translation unit
18180   //   in which such a use occurs
18181   if (NeedDefinition &&
18182       (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
18183        Func->getMemberSpecializationInfo()))
18184     checkSpecializationReachability(Loc, Func);
18185 
18186   if (getLangOpts().CUDA)
18187     CUDA().CheckCall(Loc, Func);
18188 
18189   // If we need a definition, try to create one.
18190   if (NeedDefinition && !Func->getBody()) {
18191     runWithSufficientStackSpace(Loc, [&] {
18192       if (CXXConstructorDecl *Constructor =
18193               dyn_cast<CXXConstructorDecl>(Func)) {
18194         Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
18195         if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
18196           if (Constructor->isDefaultConstructor()) {
18197             if (Constructor->isTrivial() &&
18198                 !Constructor->hasAttr<DLLExportAttr>())
18199               return;
18200             DefineImplicitDefaultConstructor(Loc, Constructor);
18201           } else if (Constructor->isCopyConstructor()) {
18202             DefineImplicitCopyConstructor(Loc, Constructor);
18203           } else if (Constructor->isMoveConstructor()) {
18204             DefineImplicitMoveConstructor(Loc, Constructor);
18205           }
18206         } else if (Constructor->getInheritedConstructor()) {
18207           DefineInheritingConstructor(Loc, Constructor);
18208         }
18209       } else if (CXXDestructorDecl *Destructor =
18210                      dyn_cast<CXXDestructorDecl>(Func)) {
18211         Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
18212         if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
18213           if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
18214             return;
18215           DefineImplicitDestructor(Loc, Destructor);
18216         }
18217         if (Destructor->isVirtual() && getLangOpts().AppleKext)
18218           MarkVTableUsed(Loc, Destructor->getParent());
18219       } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
18220         if (MethodDecl->isOverloadedOperator() &&
18221             MethodDecl->getOverloadedOperator() == OO_Equal) {
18222           MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
18223           if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
18224             if (MethodDecl->isCopyAssignmentOperator())
18225               DefineImplicitCopyAssignment(Loc, MethodDecl);
18226             else if (MethodDecl->isMoveAssignmentOperator())
18227               DefineImplicitMoveAssignment(Loc, MethodDecl);
18228           }
18229         } else if (isa<CXXConversionDecl>(MethodDecl) &&
18230                    MethodDecl->getParent()->isLambda()) {
18231           CXXConversionDecl *Conversion =
18232               cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
18233           if (Conversion->isLambdaToBlockPointerConversion())
18234             DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
18235           else
18236             DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
18237         } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
18238           MarkVTableUsed(Loc, MethodDecl->getParent());
18239       }
18240 
18241       if (Func->isDefaulted() && !Func->isDeleted()) {
18242         DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
18243         if (DCK != DefaultedComparisonKind::None)
18244           DefineDefaultedComparison(Loc, Func, DCK);
18245       }
18246 
18247       // Implicit instantiation of function templates and member functions of
18248       // class templates.
18249       if (Func->isImplicitlyInstantiable()) {
18250         TemplateSpecializationKind TSK =
18251             Func->getTemplateSpecializationKindForInstantiation();
18252         SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
18253         bool FirstInstantiation = PointOfInstantiation.isInvalid();
18254         if (FirstInstantiation) {
18255           PointOfInstantiation = Loc;
18256           if (auto *MSI = Func->getMemberSpecializationInfo())
18257             MSI->setPointOfInstantiation(Loc);
18258             // FIXME: Notify listener.
18259           else
18260             Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
18261         } else if (TSK != TSK_ImplicitInstantiation) {
18262           // Use the point of use as the point of instantiation, instead of the
18263           // point of explicit instantiation (which we track as the actual point
18264           // of instantiation). This gives better backtraces in diagnostics.
18265           PointOfInstantiation = Loc;
18266         }
18267 
18268         if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
18269             Func->isConstexpr()) {
18270           if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
18271               cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
18272               CodeSynthesisContexts.size())
18273             PendingLocalImplicitInstantiations.push_back(
18274                 std::make_pair(Func, PointOfInstantiation));
18275           else if (Func->isConstexpr())
18276             // Do not defer instantiations of constexpr functions, to avoid the
18277             // expression evaluator needing to call back into Sema if it sees a
18278             // call to such a function.
18279             InstantiateFunctionDefinition(PointOfInstantiation, Func);
18280           else {
18281             Func->setInstantiationIsPending(true);
18282             PendingInstantiations.push_back(
18283                 std::make_pair(Func, PointOfInstantiation));
18284             if (llvm::isTimeTraceVerbose()) {
18285               llvm::timeTraceAddInstantEvent("DeferInstantiation", [&] {
18286                 std::string Name;
18287                 llvm::raw_string_ostream OS(Name);
18288                 Func->getNameForDiagnostic(OS, getPrintingPolicy(),
18289                                            /*Qualified=*/true);
18290                 return Name;
18291               });
18292             }
18293             // Notify the consumer that a function was implicitly instantiated.
18294             Consumer.HandleCXXImplicitFunctionInstantiation(Func);
18295           }
18296         }
18297       } else {
18298         // Walk redefinitions, as some of them may be instantiable.
18299         for (auto *i : Func->redecls()) {
18300           if (!i->isUsed(false) && i->isImplicitlyInstantiable())
18301             MarkFunctionReferenced(Loc, i, MightBeOdrUse);
18302         }
18303       }
18304     });
18305   }
18306 
18307   // If a constructor was defined in the context of a default parameter
18308   // or of another default member initializer (ie a PotentiallyEvaluatedIfUsed
18309   // context), its initializers may not be referenced yet.
18310   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
18311     EnterExpressionEvaluationContext EvalContext(
18312         *this,
18313         Constructor->isImmediateFunction()
18314             ? ExpressionEvaluationContext::ImmediateFunctionContext
18315             : ExpressionEvaluationContext::PotentiallyEvaluated,
18316         Constructor);
18317     for (CXXCtorInitializer *Init : Constructor->inits()) {
18318       if (Init->isInClassMemberInitializer())
18319         runWithSufficientStackSpace(Init->getSourceLocation(), [&]() {
18320           MarkDeclarationsReferencedInExpr(Init->getInit());
18321         });
18322     }
18323   }
18324 
18325   // C++14 [except.spec]p17:
18326   //   An exception-specification is considered to be needed when:
18327   //   - the function is odr-used or, if it appears in an unevaluated operand,
18328   //     would be odr-used if the expression were potentially-evaluated;
18329   //
18330   // Note, we do this even if MightBeOdrUse is false. That indicates that the
18331   // function is a pure virtual function we're calling, and in that case the
18332   // function was selected by overload resolution and we need to resolve its
18333   // exception specification for a different reason.
18334   const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
18335   if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
18336     ResolveExceptionSpec(Loc, FPT);
18337 
18338   // A callee could be called by a host function then by a device function.
18339   // If we only try recording once, we will miss recording the use on device
18340   // side. Therefore keep trying until it is recorded.
18341   if (LangOpts.OffloadImplicitHostDeviceTemplates && LangOpts.CUDAIsDevice &&
18342       !getASTContext().CUDAImplicitHostDeviceFunUsedByDevice.count(Func))
18343     CUDA().RecordImplicitHostDeviceFuncUsedByDevice(Func);
18344 
18345   // If this is the first "real" use, act on that.
18346   if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
18347     // Keep track of used but undefined functions.
18348     if (!Func->isDefined()) {
18349       if (mightHaveNonExternalLinkage(Func))
18350         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18351       else if (Func->getMostRecentDecl()->isInlined() &&
18352                !LangOpts.GNUInline &&
18353                !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
18354         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18355       else if (isExternalWithNoLinkageType(Func))
18356         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18357     }
18358 
18359     // Some x86 Windows calling conventions mangle the size of the parameter
18360     // pack into the name. Computing the size of the parameters requires the
18361     // parameter types to be complete. Check that now.
18362     if (funcHasParameterSizeMangling(*this, Func))
18363       CheckCompleteParameterTypesForMangler(*this, Func, Loc);
18364 
18365     // In the MS C++ ABI, the compiler emits destructor variants where they are
18366     // used. If the destructor is used here but defined elsewhere, mark the
18367     // virtual base destructors referenced. If those virtual base destructors
18368     // are inline, this will ensure they are defined when emitting the complete
18369     // destructor variant. This checking may be redundant if the destructor is
18370     // provided later in this TU.
18371     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
18372       if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) {
18373         CXXRecordDecl *Parent = Dtor->getParent();
18374         if (Parent->getNumVBases() > 0 && !Dtor->getBody())
18375           CheckCompleteDestructorVariant(Loc, Dtor);
18376       }
18377     }
18378 
18379     Func->markUsed(Context);
18380   }
18381 }
18382 
18383 /// Directly mark a variable odr-used. Given a choice, prefer to use
18384 /// MarkVariableReferenced since it does additional checks and then
18385 /// calls MarkVarDeclODRUsed.
18386 /// If the variable must be captured:
18387 ///  - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
18388 ///  - else capture it in the DeclContext that maps to the
18389 ///    *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
18390 static void
18391 MarkVarDeclODRUsed(ValueDecl *V, SourceLocation Loc, Sema &SemaRef,
18392                    const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
18393   // Keep track of used but undefined variables.
18394   // FIXME: We shouldn't suppress this warning for static data members.
18395   VarDecl *Var = V->getPotentiallyDecomposedVarDecl();
18396   assert(Var && "expected a capturable variable");
18397 
18398   if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
18399       (!Var->isExternallyVisible() || Var->isInline() ||
18400        SemaRef.isExternalWithNoLinkageType(Var)) &&
18401       !(Var->isStaticDataMember() && Var->hasInit())) {
18402     SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
18403     if (old.isInvalid())
18404       old = Loc;
18405   }
18406   QualType CaptureType, DeclRefType;
18407   if (SemaRef.LangOpts.OpenMP)
18408     SemaRef.OpenMP().tryCaptureOpenMPLambdas(V);
18409   SemaRef.tryCaptureVariable(V, Loc, Sema::TryCapture_Implicit,
18410                              /*EllipsisLoc*/ SourceLocation(),
18411                              /*BuildAndDiagnose*/ true, CaptureType,
18412                              DeclRefType, FunctionScopeIndexToStopAt);
18413 
18414   if (SemaRef.LangOpts.CUDA && Var->hasGlobalStorage()) {
18415     auto *FD = dyn_cast_or_null<FunctionDecl>(SemaRef.CurContext);
18416     auto VarTarget = SemaRef.CUDA().IdentifyTarget(Var);
18417     auto UserTarget = SemaRef.CUDA().IdentifyTarget(FD);
18418     if (VarTarget == SemaCUDA::CVT_Host &&
18419         (UserTarget == CUDAFunctionTarget::Device ||
18420          UserTarget == CUDAFunctionTarget::HostDevice ||
18421          UserTarget == CUDAFunctionTarget::Global)) {
18422       // Diagnose ODR-use of host global variables in device functions.
18423       // Reference of device global variables in host functions is allowed
18424       // through shadow variables therefore it is not diagnosed.
18425       if (SemaRef.LangOpts.CUDAIsDevice && !SemaRef.LangOpts.HIPStdPar) {
18426         SemaRef.targetDiag(Loc, diag::err_ref_bad_target)
18427             << /*host*/ 2 << /*variable*/ 1 << Var
18428             << llvm::to_underlying(UserTarget);
18429         SemaRef.targetDiag(Var->getLocation(),
18430                            Var->getType().isConstQualified()
18431                                ? diag::note_cuda_const_var_unpromoted
18432                                : diag::note_cuda_host_var);
18433       }
18434     } else if (VarTarget == SemaCUDA::CVT_Device &&
18435                !Var->hasAttr<CUDASharedAttr>() &&
18436                (UserTarget == CUDAFunctionTarget::Host ||
18437                 UserTarget == CUDAFunctionTarget::HostDevice)) {
18438       // Record a CUDA/HIP device side variable if it is ODR-used
18439       // by host code. This is done conservatively, when the variable is
18440       // referenced in any of the following contexts:
18441       //   - a non-function context
18442       //   - a host function
18443       //   - a host device function
18444       // This makes the ODR-use of the device side variable by host code to
18445       // be visible in the device compilation for the compiler to be able to
18446       // emit template variables instantiated by host code only and to
18447       // externalize the static device side variable ODR-used by host code.
18448       if (!Var->hasExternalStorage())
18449         SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(Var);
18450       else if (SemaRef.LangOpts.GPURelocatableDeviceCode &&
18451                (!FD || (!FD->getDescribedFunctionTemplate() &&
18452                         SemaRef.getASTContext().GetGVALinkageForFunction(FD) ==
18453                             GVA_StrongExternal)))
18454         SemaRef.getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Var);
18455     }
18456   }
18457 
18458   V->markUsed(SemaRef.Context);
18459 }
18460 
18461 void Sema::MarkCaptureUsedInEnclosingContext(ValueDecl *Capture,
18462                                              SourceLocation Loc,
18463                                              unsigned CapturingScopeIndex) {
18464   MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
18465 }
18466 
18467 void diagnoseUncapturableValueReferenceOrBinding(Sema &S, SourceLocation loc,
18468                                                  ValueDecl *var) {
18469   DeclContext *VarDC = var->getDeclContext();
18470 
18471   //  If the parameter still belongs to the translation unit, then
18472   //  we're actually just using one parameter in the declaration of
18473   //  the next.
18474   if (isa<ParmVarDecl>(var) &&
18475       isa<TranslationUnitDecl>(VarDC))
18476     return;
18477 
18478   // For C code, don't diagnose about capture if we're not actually in code
18479   // right now; it's impossible to write a non-constant expression outside of
18480   // function context, so we'll get other (more useful) diagnostics later.
18481   //
18482   // For C++, things get a bit more nasty... it would be nice to suppress this
18483   // diagnostic for certain cases like using a local variable in an array bound
18484   // for a member of a local class, but the correct predicate is not obvious.
18485   if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
18486     return;
18487 
18488   unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
18489   unsigned ContextKind = 3; // unknown
18490   if (isa<CXXMethodDecl>(VarDC) &&
18491       cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
18492     ContextKind = 2;
18493   } else if (isa<FunctionDecl>(VarDC)) {
18494     ContextKind = 0;
18495   } else if (isa<BlockDecl>(VarDC)) {
18496     ContextKind = 1;
18497   }
18498 
18499   S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
18500     << var << ValueKind << ContextKind << VarDC;
18501   S.Diag(var->getLocation(), diag::note_entity_declared_at)
18502       << var;
18503 
18504   // FIXME: Add additional diagnostic info about class etc. which prevents
18505   // capture.
18506 }
18507 
18508 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI,
18509                                                  ValueDecl *Var,
18510                                                  bool &SubCapturesAreNested,
18511                                                  QualType &CaptureType,
18512                                                  QualType &DeclRefType) {
18513   // Check whether we've already captured it.
18514   if (CSI->CaptureMap.count(Var)) {
18515     // If we found a capture, any subcaptures are nested.
18516     SubCapturesAreNested = true;
18517 
18518     // Retrieve the capture type for this variable.
18519     CaptureType = CSI->getCapture(Var).getCaptureType();
18520 
18521     // Compute the type of an expression that refers to this variable.
18522     DeclRefType = CaptureType.getNonReferenceType();
18523 
18524     // Similarly to mutable captures in lambda, all the OpenMP captures by copy
18525     // are mutable in the sense that user can change their value - they are
18526     // private instances of the captured declarations.
18527     const Capture &Cap = CSI->getCapture(Var);
18528     // C++ [expr.prim.lambda]p10:
18529     //   The type of such a data member is [...] an lvalue reference to the
18530     //   referenced function type if the entity is a reference to a function.
18531     //   [...]
18532     if (Cap.isCopyCapture() && !DeclRefType->isFunctionType() &&
18533         !(isa<LambdaScopeInfo>(CSI) &&
18534           !cast<LambdaScopeInfo>(CSI)->lambdaCaptureShouldBeConst()) &&
18535         !(isa<CapturedRegionScopeInfo>(CSI) &&
18536           cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
18537       DeclRefType.addConst();
18538     return true;
18539   }
18540   return false;
18541 }
18542 
18543 // Only block literals, captured statements, and lambda expressions can
18544 // capture; other scopes don't work.
18545 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC,
18546                                                       ValueDecl *Var,
18547                                                       SourceLocation Loc,
18548                                                       const bool Diagnose,
18549                                                       Sema &S) {
18550   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
18551     return getLambdaAwareParentOfDeclContext(DC);
18552 
18553   VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl();
18554   if (Underlying) {
18555     if (Underlying->hasLocalStorage() && Diagnose)
18556       diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
18557   }
18558   return nullptr;
18559 }
18560 
18561 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
18562 // certain types of variables (unnamed, variably modified types etc.)
18563 // so check for eligibility.
18564 static bool isVariableCapturable(CapturingScopeInfo *CSI, ValueDecl *Var,
18565                                  SourceLocation Loc, const bool Diagnose,
18566                                  Sema &S) {
18567 
18568   assert((isa<VarDecl, BindingDecl>(Var)) &&
18569          "Only variables and structured bindings can be captured");
18570 
18571   bool IsBlock = isa<BlockScopeInfo>(CSI);
18572   bool IsLambda = isa<LambdaScopeInfo>(CSI);
18573 
18574   // Lambdas are not allowed to capture unnamed variables
18575   // (e.g. anonymous unions).
18576   // FIXME: The C++11 rule don't actually state this explicitly, but I'm
18577   // assuming that's the intent.
18578   if (IsLambda && !Var->getDeclName()) {
18579     if (Diagnose) {
18580       S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
18581       S.Diag(Var->getLocation(), diag::note_declared_at);
18582     }
18583     return false;
18584   }
18585 
18586   // Prohibit variably-modified types in blocks; they're difficult to deal with.
18587   if (Var->getType()->isVariablyModifiedType() && IsBlock) {
18588     if (Diagnose) {
18589       S.Diag(Loc, diag::err_ref_vm_type);
18590       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18591     }
18592     return false;
18593   }
18594   // Prohibit structs with flexible array members too.
18595   // We cannot capture what is in the tail end of the struct.
18596   if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
18597     if (VTTy->getDecl()->hasFlexibleArrayMember()) {
18598       if (Diagnose) {
18599         if (IsBlock)
18600           S.Diag(Loc, diag::err_ref_flexarray_type);
18601         else
18602           S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var;
18603         S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18604       }
18605       return false;
18606     }
18607   }
18608   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
18609   // Lambdas and captured statements are not allowed to capture __block
18610   // variables; they don't support the expected semantics.
18611   if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
18612     if (Diagnose) {
18613       S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda;
18614       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18615     }
18616     return false;
18617   }
18618   // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
18619   if (S.getLangOpts().OpenCL && IsBlock &&
18620       Var->getType()->isBlockPointerType()) {
18621     if (Diagnose)
18622       S.Diag(Loc, diag::err_opencl_block_ref_block);
18623     return false;
18624   }
18625 
18626   if (isa<BindingDecl>(Var)) {
18627     if (!IsLambda || !S.getLangOpts().CPlusPlus) {
18628       if (Diagnose)
18629         diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
18630       return false;
18631     } else if (Diagnose && S.getLangOpts().CPlusPlus) {
18632       S.Diag(Loc, S.LangOpts.CPlusPlus20
18633                       ? diag::warn_cxx17_compat_capture_binding
18634                       : diag::ext_capture_binding)
18635           << Var;
18636       S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
18637     }
18638   }
18639 
18640   return true;
18641 }
18642 
18643 // Returns true if the capture by block was successful.
18644 static bool captureInBlock(BlockScopeInfo *BSI, ValueDecl *Var,
18645                            SourceLocation Loc, const bool BuildAndDiagnose,
18646                            QualType &CaptureType, QualType &DeclRefType,
18647                            const bool Nested, Sema &S, bool Invalid) {
18648   bool ByRef = false;
18649 
18650   // Blocks are not allowed to capture arrays, excepting OpenCL.
18651   // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
18652   // (decayed to pointers).
18653   if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
18654     if (BuildAndDiagnose) {
18655       S.Diag(Loc, diag::err_ref_array_type);
18656       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18657       Invalid = true;
18658     } else {
18659       return false;
18660     }
18661   }
18662 
18663   // Forbid the block-capture of autoreleasing variables.
18664   if (!Invalid &&
18665       CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
18666     if (BuildAndDiagnose) {
18667       S.Diag(Loc, diag::err_arc_autoreleasing_capture)
18668         << /*block*/ 0;
18669       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18670       Invalid = true;
18671     } else {
18672       return false;
18673     }
18674   }
18675 
18676   // Warn about implicitly autoreleasing indirect parameters captured by blocks.
18677   if (const auto *PT = CaptureType->getAs<PointerType>()) {
18678     QualType PointeeTy = PT->getPointeeType();
18679 
18680     if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
18681         PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
18682         !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
18683       if (BuildAndDiagnose) {
18684         SourceLocation VarLoc = Var->getLocation();
18685         S.Diag(Loc, diag::warn_block_capture_autoreleasing);
18686         S.Diag(VarLoc, diag::note_declare_parameter_strong);
18687       }
18688     }
18689   }
18690 
18691   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
18692   if (HasBlocksAttr || CaptureType->isReferenceType() ||
18693       (S.getLangOpts().OpenMP && S.OpenMP().isOpenMPCapturedDecl(Var))) {
18694     // Block capture by reference does not change the capture or
18695     // declaration reference types.
18696     ByRef = true;
18697   } else {
18698     // Block capture by copy introduces 'const'.
18699     CaptureType = CaptureType.getNonReferenceType().withConst();
18700     DeclRefType = CaptureType;
18701   }
18702 
18703   // Actually capture the variable.
18704   if (BuildAndDiagnose)
18705     BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
18706                     CaptureType, Invalid);
18707 
18708   return !Invalid;
18709 }
18710 
18711 /// Capture the given variable in the captured region.
18712 static bool captureInCapturedRegion(
18713     CapturedRegionScopeInfo *RSI, ValueDecl *Var, SourceLocation Loc,
18714     const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType,
18715     const bool RefersToCapturedVariable, Sema::TryCaptureKind Kind,
18716     bool IsTopScope, Sema &S, bool Invalid) {
18717   // By default, capture variables by reference.
18718   bool ByRef = true;
18719   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
18720     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
18721   } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
18722     // Using an LValue reference type is consistent with Lambdas (see below).
18723     if (S.OpenMP().isOpenMPCapturedDecl(Var)) {
18724       bool HasConst = DeclRefType.isConstQualified();
18725       DeclRefType = DeclRefType.getUnqualifiedType();
18726       // Don't lose diagnostics about assignments to const.
18727       if (HasConst)
18728         DeclRefType.addConst();
18729     }
18730     // Do not capture firstprivates in tasks.
18731     if (S.OpenMP().isOpenMPPrivateDecl(Var, RSI->OpenMPLevel,
18732                                        RSI->OpenMPCaptureLevel) != OMPC_unknown)
18733       return true;
18734     ByRef = S.OpenMP().isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
18735                                              RSI->OpenMPCaptureLevel);
18736   }
18737 
18738   if (ByRef)
18739     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
18740   else
18741     CaptureType = DeclRefType;
18742 
18743   // Actually capture the variable.
18744   if (BuildAndDiagnose)
18745     RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
18746                     Loc, SourceLocation(), CaptureType, Invalid);
18747 
18748   return !Invalid;
18749 }
18750 
18751 /// Capture the given variable in the lambda.
18752 static bool captureInLambda(LambdaScopeInfo *LSI, ValueDecl *Var,
18753                             SourceLocation Loc, const bool BuildAndDiagnose,
18754                             QualType &CaptureType, QualType &DeclRefType,
18755                             const bool RefersToCapturedVariable,
18756                             const Sema::TryCaptureKind Kind,
18757                             SourceLocation EllipsisLoc, const bool IsTopScope,
18758                             Sema &S, bool Invalid) {
18759   // Determine whether we are capturing by reference or by value.
18760   bool ByRef = false;
18761   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
18762     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
18763   } else {
18764     ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
18765   }
18766 
18767   if (BuildAndDiagnose && S.Context.getTargetInfo().getTriple().isWasm() &&
18768       CaptureType.getNonReferenceType().isWebAssemblyReferenceType()) {
18769     S.Diag(Loc, diag::err_wasm_ca_reference) << 0;
18770     Invalid = true;
18771   }
18772 
18773   // Compute the type of the field that will capture this variable.
18774   if (ByRef) {
18775     // C++11 [expr.prim.lambda]p15:
18776     //   An entity is captured by reference if it is implicitly or
18777     //   explicitly captured but not captured by copy. It is
18778     //   unspecified whether additional unnamed non-static data
18779     //   members are declared in the closure type for entities
18780     //   captured by reference.
18781     //
18782     // FIXME: It is not clear whether we want to build an lvalue reference
18783     // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
18784     // to do the former, while EDG does the latter. Core issue 1249 will
18785     // clarify, but for now we follow GCC because it's a more permissive and
18786     // easily defensible position.
18787     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
18788   } else {
18789     // C++11 [expr.prim.lambda]p14:
18790     //   For each entity captured by copy, an unnamed non-static
18791     //   data member is declared in the closure type. The
18792     //   declaration order of these members is unspecified. The type
18793     //   of such a data member is the type of the corresponding
18794     //   captured entity if the entity is not a reference to an
18795     //   object, or the referenced type otherwise. [Note: If the
18796     //   captured entity is a reference to a function, the
18797     //   corresponding data member is also a reference to a
18798     //   function. - end note ]
18799     if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
18800       if (!RefType->getPointeeType()->isFunctionType())
18801         CaptureType = RefType->getPointeeType();
18802     }
18803 
18804     // Forbid the lambda copy-capture of autoreleasing variables.
18805     if (!Invalid &&
18806         CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
18807       if (BuildAndDiagnose) {
18808         S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
18809         S.Diag(Var->getLocation(), diag::note_previous_decl)
18810           << Var->getDeclName();
18811         Invalid = true;
18812       } else {
18813         return false;
18814       }
18815     }
18816 
18817     // Make sure that by-copy captures are of a complete and non-abstract type.
18818     if (!Invalid && BuildAndDiagnose) {
18819       if (!CaptureType->isDependentType() &&
18820           S.RequireCompleteSizedType(
18821               Loc, CaptureType,
18822               diag::err_capture_of_incomplete_or_sizeless_type,
18823               Var->getDeclName()))
18824         Invalid = true;
18825       else if (S.RequireNonAbstractType(Loc, CaptureType,
18826                                         diag::err_capture_of_abstract_type))
18827         Invalid = true;
18828     }
18829   }
18830 
18831   // Compute the type of a reference to this captured variable.
18832   if (ByRef)
18833     DeclRefType = CaptureType.getNonReferenceType();
18834   else {
18835     // C++ [expr.prim.lambda]p5:
18836     //   The closure type for a lambda-expression has a public inline
18837     //   function call operator [...]. This function call operator is
18838     //   declared const (9.3.1) if and only if the lambda-expression's
18839     //   parameter-declaration-clause is not followed by mutable.
18840     DeclRefType = CaptureType.getNonReferenceType();
18841     bool Const = LSI->lambdaCaptureShouldBeConst();
18842     // C++ [expr.prim.lambda]p10:
18843     //   The type of such a data member is [...] an lvalue reference to the
18844     //   referenced function type if the entity is a reference to a function.
18845     //   [...]
18846     if (Const && !CaptureType->isReferenceType() &&
18847         !DeclRefType->isFunctionType())
18848       DeclRefType.addConst();
18849   }
18850 
18851   // Add the capture.
18852   if (BuildAndDiagnose)
18853     LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
18854                     Loc, EllipsisLoc, CaptureType, Invalid);
18855 
18856   return !Invalid;
18857 }
18858 
18859 static bool canCaptureVariableByCopy(ValueDecl *Var,
18860                                      const ASTContext &Context) {
18861   // Offer a Copy fix even if the type is dependent.
18862   if (Var->getType()->isDependentType())
18863     return true;
18864   QualType T = Var->getType().getNonReferenceType();
18865   if (T.isTriviallyCopyableType(Context))
18866     return true;
18867   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
18868 
18869     if (!(RD = RD->getDefinition()))
18870       return false;
18871     if (RD->hasSimpleCopyConstructor())
18872       return true;
18873     if (RD->hasUserDeclaredCopyConstructor())
18874       for (CXXConstructorDecl *Ctor : RD->ctors())
18875         if (Ctor->isCopyConstructor())
18876           return !Ctor->isDeleted();
18877   }
18878   return false;
18879 }
18880 
18881 /// Create up to 4 fix-its for explicit reference and value capture of \p Var or
18882 /// default capture. Fixes may be omitted if they aren't allowed by the
18883 /// standard, for example we can't emit a default copy capture fix-it if we
18884 /// already explicitly copy capture capture another variable.
18885 static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI,
18886                                     ValueDecl *Var) {
18887   assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None);
18888   // Don't offer Capture by copy of default capture by copy fixes if Var is
18889   // known not to be copy constructible.
18890   bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Sema.getASTContext());
18891 
18892   SmallString<32> FixBuffer;
18893   StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : "";
18894   if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) {
18895     SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd();
18896     if (ShouldOfferCopyFix) {
18897       // Offer fixes to insert an explicit capture for the variable.
18898       // [] -> [VarName]
18899       // [OtherCapture] -> [OtherCapture, VarName]
18900       FixBuffer.assign({Separator, Var->getName()});
18901       Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
18902           << Var << /*value*/ 0
18903           << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
18904     }
18905     // As above but capture by reference.
18906     FixBuffer.assign({Separator, "&", Var->getName()});
18907     Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
18908         << Var << /*reference*/ 1
18909         << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
18910   }
18911 
18912   // Only try to offer default capture if there are no captures excluding this
18913   // and init captures.
18914   // [this]: OK.
18915   // [X = Y]: OK.
18916   // [&A, &B]: Don't offer.
18917   // [A, B]: Don't offer.
18918   if (llvm::any_of(LSI->Captures, [](Capture &C) {
18919         return !C.isThisCapture() && !C.isInitCapture();
18920       }))
18921     return;
18922 
18923   // The default capture specifiers, '=' or '&', must appear first in the
18924   // capture body.
18925   SourceLocation DefaultInsertLoc =
18926       LSI->IntroducerRange.getBegin().getLocWithOffset(1);
18927 
18928   if (ShouldOfferCopyFix) {
18929     bool CanDefaultCopyCapture = true;
18930     // [=, *this] OK since c++17
18931     // [=, this] OK since c++20
18932     if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20)
18933       CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17
18934                                   ? LSI->getCXXThisCapture().isCopyCapture()
18935                                   : false;
18936     // We can't use default capture by copy if any captures already specified
18937     // capture by copy.
18938     if (CanDefaultCopyCapture && llvm::none_of(LSI->Captures, [](Capture &C) {
18939           return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture();
18940         })) {
18941       FixBuffer.assign({"=", Separator});
18942       Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
18943           << /*value*/ 0
18944           << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
18945     }
18946   }
18947 
18948   // We can't use default capture by reference if any captures already specified
18949   // capture by reference.
18950   if (llvm::none_of(LSI->Captures, [](Capture &C) {
18951         return !C.isInitCapture() && C.isReferenceCapture() &&
18952                !C.isThisCapture();
18953       })) {
18954     FixBuffer.assign({"&", Separator});
18955     Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
18956         << /*reference*/ 1
18957         << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
18958   }
18959 }
18960 
18961 bool Sema::tryCaptureVariable(
18962     ValueDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
18963     SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
18964     QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
18965   // An init-capture is notionally from the context surrounding its
18966   // declaration, but its parent DC is the lambda class.
18967   DeclContext *VarDC = Var->getDeclContext();
18968   DeclContext *DC = CurContext;
18969 
18970   // Skip past RequiresExprBodys because they don't constitute function scopes.
18971   while (DC->isRequiresExprBody())
18972     DC = DC->getParent();
18973 
18974   // tryCaptureVariable is called every time a DeclRef is formed,
18975   // it can therefore have non-negigible impact on performances.
18976   // For local variables and when there is no capturing scope,
18977   // we can bailout early.
18978   if (CapturingFunctionScopes == 0 && (!BuildAndDiagnose || VarDC == DC))
18979     return true;
18980 
18981   // Exception: Function parameters are not tied to the function's DeclContext
18982   // until we enter the function definition. Capturing them anyway would result
18983   // in an out-of-bounds error while traversing DC and its parents.
18984   if (isa<ParmVarDecl>(Var) && !VarDC->isFunctionOrMethod())
18985     return true;
18986 
18987   const auto *VD = dyn_cast<VarDecl>(Var);
18988   if (VD) {
18989     if (VD->isInitCapture())
18990       VarDC = VarDC->getParent();
18991   } else {
18992     VD = Var->getPotentiallyDecomposedVarDecl();
18993   }
18994   assert(VD && "Cannot capture a null variable");
18995 
18996   const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
18997       ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
18998   // We need to sync up the Declaration Context with the
18999   // FunctionScopeIndexToStopAt
19000   if (FunctionScopeIndexToStopAt) {
19001     assert(!FunctionScopes.empty() && "No function scopes to stop at?");
19002     unsigned FSIndex = FunctionScopes.size() - 1;
19003     // When we're parsing the lambda parameter list, the current DeclContext is
19004     // NOT the lambda but its parent. So move away the current LSI before
19005     // aligning DC and FunctionScopeIndexToStopAt.
19006     if (auto *LSI = dyn_cast<LambdaScopeInfo>(FunctionScopes[FSIndex]);
19007         FSIndex && LSI && !LSI->AfterParameterList)
19008       --FSIndex;
19009     assert(MaxFunctionScopesIndex <= FSIndex &&
19010            "FunctionScopeIndexToStopAt should be no greater than FSIndex into "
19011            "FunctionScopes.");
19012     while (FSIndex != MaxFunctionScopesIndex) {
19013       DC = getLambdaAwareParentOfDeclContext(DC);
19014       --FSIndex;
19015     }
19016   }
19017 
19018   // Capture global variables if it is required to use private copy of this
19019   // variable.
19020   bool IsGlobal = !VD->hasLocalStorage();
19021   if (IsGlobal && !(LangOpts.OpenMP &&
19022                     OpenMP().isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
19023                                                   MaxFunctionScopesIndex)))
19024     return true;
19025 
19026   if (isa<VarDecl>(Var))
19027     Var = cast<VarDecl>(Var->getCanonicalDecl());
19028 
19029   // Walk up the stack to determine whether we can capture the variable,
19030   // performing the "simple" checks that don't depend on type. We stop when
19031   // we've either hit the declared scope of the variable or find an existing
19032   // capture of that variable.  We start from the innermost capturing-entity
19033   // (the DC) and ensure that all intervening capturing-entities
19034   // (blocks/lambdas etc.) between the innermost capturer and the variable`s
19035   // declcontext can either capture the variable or have already captured
19036   // the variable.
19037   CaptureType = Var->getType();
19038   DeclRefType = CaptureType.getNonReferenceType();
19039   bool Nested = false;
19040   bool Explicit = (Kind != TryCapture_Implicit);
19041   unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
19042   do {
19043 
19044     LambdaScopeInfo *LSI = nullptr;
19045     if (!FunctionScopes.empty())
19046       LSI = dyn_cast_or_null<LambdaScopeInfo>(
19047           FunctionScopes[FunctionScopesIndex]);
19048 
19049     bool IsInScopeDeclarationContext =
19050         !LSI || LSI->AfterParameterList || CurContext == LSI->CallOperator;
19051 
19052     if (LSI && !LSI->AfterParameterList) {
19053       // This allows capturing parameters from a default value which does not
19054       // seems correct
19055       if (isa<ParmVarDecl>(Var) && !Var->getDeclContext()->isFunctionOrMethod())
19056         return true;
19057     }
19058     // If the variable is declared in the current context, there is no need to
19059     // capture it.
19060     if (IsInScopeDeclarationContext &&
19061         FunctionScopesIndex == MaxFunctionScopesIndex && VarDC == DC)
19062       return true;
19063 
19064     // Only block literals, captured statements, and lambda expressions can
19065     // capture; other scopes don't work.
19066     DeclContext *ParentDC =
19067         !IsInScopeDeclarationContext
19068             ? DC->getParent()
19069             : getParentOfCapturingContextOrNull(DC, Var, ExprLoc,
19070                                                 BuildAndDiagnose, *this);
19071     // We need to check for the parent *first* because, if we *have*
19072     // private-captured a global variable, we need to recursively capture it in
19073     // intermediate blocks, lambdas, etc.
19074     if (!ParentDC) {
19075       if (IsGlobal) {
19076         FunctionScopesIndex = MaxFunctionScopesIndex - 1;
19077         break;
19078       }
19079       return true;
19080     }
19081 
19082     FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
19083     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
19084 
19085     // Check whether we've already captured it.
19086     if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
19087                                              DeclRefType)) {
19088       CSI->getCapture(Var).markUsed(BuildAndDiagnose);
19089       break;
19090     }
19091 
19092     // When evaluating some attributes (like enable_if) we might refer to a
19093     // function parameter appertaining to the same declaration as that
19094     // attribute.
19095     if (const auto *Parm = dyn_cast<ParmVarDecl>(Var);
19096         Parm && Parm->getDeclContext() == DC)
19097       return true;
19098 
19099     // If we are instantiating a generic lambda call operator body,
19100     // we do not want to capture new variables.  What was captured
19101     // during either a lambdas transformation or initial parsing
19102     // should be used.
19103     if (isGenericLambdaCallOperatorSpecialization(DC)) {
19104       if (BuildAndDiagnose) {
19105         LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
19106         if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
19107           Diag(ExprLoc, diag::err_lambda_impcap) << Var;
19108           Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19109           Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
19110           buildLambdaCaptureFixit(*this, LSI, Var);
19111         } else
19112           diagnoseUncapturableValueReferenceOrBinding(*this, ExprLoc, Var);
19113       }
19114       return true;
19115     }
19116 
19117     // Try to capture variable-length arrays types.
19118     if (Var->getType()->isVariablyModifiedType()) {
19119       // We're going to walk down into the type and look for VLA
19120       // expressions.
19121       QualType QTy = Var->getType();
19122       if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
19123         QTy = PVD->getOriginalType();
19124       captureVariablyModifiedType(Context, QTy, CSI);
19125     }
19126 
19127     if (getLangOpts().OpenMP) {
19128       if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
19129         // OpenMP private variables should not be captured in outer scope, so
19130         // just break here. Similarly, global variables that are captured in a
19131         // target region should not be captured outside the scope of the region.
19132         if (RSI->CapRegionKind == CR_OpenMP) {
19133           // FIXME: We should support capturing structured bindings in OpenMP.
19134           if (isa<BindingDecl>(Var)) {
19135             if (BuildAndDiagnose) {
19136               Diag(ExprLoc, diag::err_capture_binding_openmp) << Var;
19137               Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
19138             }
19139             return true;
19140           }
19141           OpenMPClauseKind IsOpenMPPrivateDecl = OpenMP().isOpenMPPrivateDecl(
19142               Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
19143           // If the variable is private (i.e. not captured) and has variably
19144           // modified type, we still need to capture the type for correct
19145           // codegen in all regions, associated with the construct. Currently,
19146           // it is captured in the innermost captured region only.
19147           if (IsOpenMPPrivateDecl != OMPC_unknown &&
19148               Var->getType()->isVariablyModifiedType()) {
19149             QualType QTy = Var->getType();
19150             if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
19151               QTy = PVD->getOriginalType();
19152             for (int I = 1,
19153                      E = OpenMP().getNumberOfConstructScopes(RSI->OpenMPLevel);
19154                  I < E; ++I) {
19155               auto *OuterRSI = cast<CapturedRegionScopeInfo>(
19156                   FunctionScopes[FunctionScopesIndex - I]);
19157               assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
19158                      "Wrong number of captured regions associated with the "
19159                      "OpenMP construct.");
19160               captureVariablyModifiedType(Context, QTy, OuterRSI);
19161             }
19162           }
19163           bool IsTargetCap =
19164               IsOpenMPPrivateDecl != OMPC_private &&
19165               OpenMP().isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
19166                                                   RSI->OpenMPCaptureLevel);
19167           // Do not capture global if it is not privatized in outer regions.
19168           bool IsGlobalCap =
19169               IsGlobal && OpenMP().isOpenMPGlobalCapturedDecl(
19170                               Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
19171 
19172           // When we detect target captures we are looking from inside the
19173           // target region, therefore we need to propagate the capture from the
19174           // enclosing region. Therefore, the capture is not initially nested.
19175           if (IsTargetCap)
19176             OpenMP().adjustOpenMPTargetScopeIndex(FunctionScopesIndex,
19177                                                   RSI->OpenMPLevel);
19178 
19179           if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
19180               (IsGlobal && !IsGlobalCap)) {
19181             Nested = !IsTargetCap;
19182             bool HasConst = DeclRefType.isConstQualified();
19183             DeclRefType = DeclRefType.getUnqualifiedType();
19184             // Don't lose diagnostics about assignments to const.
19185             if (HasConst)
19186               DeclRefType.addConst();
19187             CaptureType = Context.getLValueReferenceType(DeclRefType);
19188             break;
19189           }
19190         }
19191       }
19192     }
19193     if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
19194       // No capture-default, and this is not an explicit capture
19195       // so cannot capture this variable.
19196       if (BuildAndDiagnose) {
19197         Diag(ExprLoc, diag::err_lambda_impcap) << Var;
19198         Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19199         auto *LSI = cast<LambdaScopeInfo>(CSI);
19200         if (LSI->Lambda) {
19201           Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
19202           buildLambdaCaptureFixit(*this, LSI, Var);
19203         }
19204         // FIXME: If we error out because an outer lambda can not implicitly
19205         // capture a variable that an inner lambda explicitly captures, we
19206         // should have the inner lambda do the explicit capture - because
19207         // it makes for cleaner diagnostics later.  This would purely be done
19208         // so that the diagnostic does not misleadingly claim that a variable
19209         // can not be captured by a lambda implicitly even though it is captured
19210         // explicitly.  Suggestion:
19211         //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
19212         //    at the function head
19213         //  - cache the StartingDeclContext - this must be a lambda
19214         //  - captureInLambda in the innermost lambda the variable.
19215       }
19216       return true;
19217     }
19218     Explicit = false;
19219     FunctionScopesIndex--;
19220     if (IsInScopeDeclarationContext)
19221       DC = ParentDC;
19222   } while (!VarDC->Equals(DC));
19223 
19224   // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
19225   // computing the type of the capture at each step, checking type-specific
19226   // requirements, and adding captures if requested.
19227   // If the variable had already been captured previously, we start capturing
19228   // at the lambda nested within that one.
19229   bool Invalid = false;
19230   for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
19231        ++I) {
19232     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
19233 
19234     // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
19235     // certain types of variables (unnamed, variably modified types etc.)
19236     // so check for eligibility.
19237     if (!Invalid)
19238       Invalid =
19239           !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
19240 
19241     // After encountering an error, if we're actually supposed to capture, keep
19242     // capturing in nested contexts to suppress any follow-on diagnostics.
19243     if (Invalid && !BuildAndDiagnose)
19244       return true;
19245 
19246     if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
19247       Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
19248                                DeclRefType, Nested, *this, Invalid);
19249       Nested = true;
19250     } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
19251       Invalid = !captureInCapturedRegion(
19252           RSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested,
19253           Kind, /*IsTopScope*/ I == N - 1, *this, Invalid);
19254       Nested = true;
19255     } else {
19256       LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
19257       Invalid =
19258           !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
19259                            DeclRefType, Nested, Kind, EllipsisLoc,
19260                            /*IsTopScope*/ I == N - 1, *this, Invalid);
19261       Nested = true;
19262     }
19263 
19264     if (Invalid && !BuildAndDiagnose)
19265       return true;
19266   }
19267   return Invalid;
19268 }
19269 
19270 bool Sema::tryCaptureVariable(ValueDecl *Var, SourceLocation Loc,
19271                               TryCaptureKind Kind, SourceLocation EllipsisLoc) {
19272   QualType CaptureType;
19273   QualType DeclRefType;
19274   return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
19275                             /*BuildAndDiagnose=*/true, CaptureType,
19276                             DeclRefType, nullptr);
19277 }
19278 
19279 bool Sema::NeedToCaptureVariable(ValueDecl *Var, SourceLocation Loc) {
19280   QualType CaptureType;
19281   QualType DeclRefType;
19282   return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
19283                              /*BuildAndDiagnose=*/false, CaptureType,
19284                              DeclRefType, nullptr);
19285 }
19286 
19287 QualType Sema::getCapturedDeclRefType(ValueDecl *Var, SourceLocation Loc) {
19288   assert(Var && "Null value cannot be captured");
19289 
19290   QualType CaptureType;
19291   QualType DeclRefType;
19292 
19293   // Determine whether we can capture this variable.
19294   if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
19295                          /*BuildAndDiagnose=*/false, CaptureType,
19296                          DeclRefType, nullptr))
19297     return QualType();
19298 
19299   return DeclRefType;
19300 }
19301 
19302 namespace {
19303 // Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
19304 // The produced TemplateArgumentListInfo* points to data stored within this
19305 // object, so should only be used in contexts where the pointer will not be
19306 // used after the CopiedTemplateArgs object is destroyed.
19307 class CopiedTemplateArgs {
19308   bool HasArgs;
19309   TemplateArgumentListInfo TemplateArgStorage;
19310 public:
19311   template<typename RefExpr>
19312   CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
19313     if (HasArgs)
19314       E->copyTemplateArgumentsInto(TemplateArgStorage);
19315   }
19316   operator TemplateArgumentListInfo*()
19317 #ifdef __has_cpp_attribute
19318 #if __has_cpp_attribute(clang::lifetimebound)
19319   [[clang::lifetimebound]]
19320 #endif
19321 #endif
19322   {
19323     return HasArgs ? &TemplateArgStorage : nullptr;
19324   }
19325 };
19326 }
19327 
19328 /// Walk the set of potential results of an expression and mark them all as
19329 /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
19330 ///
19331 /// \return A new expression if we found any potential results, ExprEmpty() if
19332 ///         not, and ExprError() if we diagnosed an error.
19333 static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
19334                                                       NonOdrUseReason NOUR) {
19335   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
19336   // an object that satisfies the requirements for appearing in a
19337   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
19338   // is immediately applied."  This function handles the lvalue-to-rvalue
19339   // conversion part.
19340   //
19341   // If we encounter a node that claims to be an odr-use but shouldn't be, we
19342   // transform it into the relevant kind of non-odr-use node and rebuild the
19343   // tree of nodes leading to it.
19344   //
19345   // This is a mini-TreeTransform that only transforms a restricted subset of
19346   // nodes (and only certain operands of them).
19347 
19348   // Rebuild a subexpression.
19349   auto Rebuild = [&](Expr *Sub) {
19350     return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
19351   };
19352 
19353   // Check whether a potential result satisfies the requirements of NOUR.
19354   auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
19355     // Any entity other than a VarDecl is always odr-used whenever it's named
19356     // in a potentially-evaluated expression.
19357     auto *VD = dyn_cast<VarDecl>(D);
19358     if (!VD)
19359       return true;
19360 
19361     // C++2a [basic.def.odr]p4:
19362     //   A variable x whose name appears as a potentially-evalauted expression
19363     //   e is odr-used by e unless
19364     //   -- x is a reference that is usable in constant expressions, or
19365     //   -- x is a variable of non-reference type that is usable in constant
19366     //      expressions and has no mutable subobjects, and e is an element of
19367     //      the set of potential results of an expression of
19368     //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
19369     //      conversion is applied, or
19370     //   -- x is a variable of non-reference type, and e is an element of the
19371     //      set of potential results of a discarded-value expression to which
19372     //      the lvalue-to-rvalue conversion is not applied
19373     //
19374     // We check the first bullet and the "potentially-evaluated" condition in
19375     // BuildDeclRefExpr. We check the type requirements in the second bullet
19376     // in CheckLValueToRValueConversionOperand below.
19377     switch (NOUR) {
19378     case NOUR_None:
19379     case NOUR_Unevaluated:
19380       llvm_unreachable("unexpected non-odr-use-reason");
19381 
19382     case NOUR_Constant:
19383       // Constant references were handled when they were built.
19384       if (VD->getType()->isReferenceType())
19385         return true;
19386       if (auto *RD = VD->getType()->getAsCXXRecordDecl())
19387         if (RD->hasDefinition() && RD->hasMutableFields())
19388           return true;
19389       if (!VD->isUsableInConstantExpressions(S.Context))
19390         return true;
19391       break;
19392 
19393     case NOUR_Discarded:
19394       if (VD->getType()->isReferenceType())
19395         return true;
19396       break;
19397     }
19398     return false;
19399   };
19400 
19401   // Mark that this expression does not constitute an odr-use.
19402   auto MarkNotOdrUsed = [&] {
19403     S.MaybeODRUseExprs.remove(E);
19404     if (LambdaScopeInfo *LSI = S.getCurLambda())
19405       LSI->markVariableExprAsNonODRUsed(E);
19406   };
19407 
19408   // C++2a [basic.def.odr]p2:
19409   //   The set of potential results of an expression e is defined as follows:
19410   switch (E->getStmtClass()) {
19411   //   -- If e is an id-expression, ...
19412   case Expr::DeclRefExprClass: {
19413     auto *DRE = cast<DeclRefExpr>(E);
19414     if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
19415       break;
19416 
19417     // Rebuild as a non-odr-use DeclRefExpr.
19418     MarkNotOdrUsed();
19419     return DeclRefExpr::Create(
19420         S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
19421         DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
19422         DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
19423         DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
19424   }
19425 
19426   case Expr::FunctionParmPackExprClass: {
19427     auto *FPPE = cast<FunctionParmPackExpr>(E);
19428     // If any of the declarations in the pack is odr-used, then the expression
19429     // as a whole constitutes an odr-use.
19430     for (VarDecl *D : *FPPE)
19431       if (IsPotentialResultOdrUsed(D))
19432         return ExprEmpty();
19433 
19434     // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
19435     // nothing cares about whether we marked this as an odr-use, but it might
19436     // be useful for non-compiler tools.
19437     MarkNotOdrUsed();
19438     break;
19439   }
19440 
19441   //   -- If e is a subscripting operation with an array operand...
19442   case Expr::ArraySubscriptExprClass: {
19443     auto *ASE = cast<ArraySubscriptExpr>(E);
19444     Expr *OldBase = ASE->getBase()->IgnoreImplicit();
19445     if (!OldBase->getType()->isArrayType())
19446       break;
19447     ExprResult Base = Rebuild(OldBase);
19448     if (!Base.isUsable())
19449       return Base;
19450     Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
19451     Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
19452     SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
19453     return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
19454                                      ASE->getRBracketLoc());
19455   }
19456 
19457   case Expr::MemberExprClass: {
19458     auto *ME = cast<MemberExpr>(E);
19459     // -- If e is a class member access expression [...] naming a non-static
19460     //    data member...
19461     if (isa<FieldDecl>(ME->getMemberDecl())) {
19462       ExprResult Base = Rebuild(ME->getBase());
19463       if (!Base.isUsable())
19464         return Base;
19465       return MemberExpr::Create(
19466           S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
19467           ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
19468           ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
19469           CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
19470           ME->getObjectKind(), ME->isNonOdrUse());
19471     }
19472 
19473     if (ME->getMemberDecl()->isCXXInstanceMember())
19474       break;
19475 
19476     // -- If e is a class member access expression naming a static data member,
19477     //    ...
19478     if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
19479       break;
19480 
19481     // Rebuild as a non-odr-use MemberExpr.
19482     MarkNotOdrUsed();
19483     return MemberExpr::Create(
19484         S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
19485         ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
19486         ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
19487         ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
19488   }
19489 
19490   case Expr::BinaryOperatorClass: {
19491     auto *BO = cast<BinaryOperator>(E);
19492     Expr *LHS = BO->getLHS();
19493     Expr *RHS = BO->getRHS();
19494     // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
19495     if (BO->getOpcode() == BO_PtrMemD) {
19496       ExprResult Sub = Rebuild(LHS);
19497       if (!Sub.isUsable())
19498         return Sub;
19499       BO->setLHS(Sub.get());
19500     //   -- If e is a comma expression, ...
19501     } else if (BO->getOpcode() == BO_Comma) {
19502       ExprResult Sub = Rebuild(RHS);
19503       if (!Sub.isUsable())
19504         return Sub;
19505       BO->setRHS(Sub.get());
19506     } else {
19507       break;
19508     }
19509     return ExprResult(BO);
19510   }
19511 
19512   //   -- If e has the form (e1)...
19513   case Expr::ParenExprClass: {
19514     auto *PE = cast<ParenExpr>(E);
19515     ExprResult Sub = Rebuild(PE->getSubExpr());
19516     if (!Sub.isUsable())
19517       return Sub;
19518     return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
19519   }
19520 
19521   //   -- If e is a glvalue conditional expression, ...
19522   // We don't apply this to a binary conditional operator. FIXME: Should we?
19523   case Expr::ConditionalOperatorClass: {
19524     auto *CO = cast<ConditionalOperator>(E);
19525     ExprResult LHS = Rebuild(CO->getLHS());
19526     if (LHS.isInvalid())
19527       return ExprError();
19528     ExprResult RHS = Rebuild(CO->getRHS());
19529     if (RHS.isInvalid())
19530       return ExprError();
19531     if (!LHS.isUsable() && !RHS.isUsable())
19532       return ExprEmpty();
19533     if (!LHS.isUsable())
19534       LHS = CO->getLHS();
19535     if (!RHS.isUsable())
19536       RHS = CO->getRHS();
19537     return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
19538                                 CO->getCond(), LHS.get(), RHS.get());
19539   }
19540 
19541   // [Clang extension]
19542   //   -- If e has the form __extension__ e1...
19543   case Expr::UnaryOperatorClass: {
19544     auto *UO = cast<UnaryOperator>(E);
19545     if (UO->getOpcode() != UO_Extension)
19546       break;
19547     ExprResult Sub = Rebuild(UO->getSubExpr());
19548     if (!Sub.isUsable())
19549       return Sub;
19550     return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
19551                           Sub.get());
19552   }
19553 
19554   // [Clang extension]
19555   //   -- If e has the form _Generic(...), the set of potential results is the
19556   //      union of the sets of potential results of the associated expressions.
19557   case Expr::GenericSelectionExprClass: {
19558     auto *GSE = cast<GenericSelectionExpr>(E);
19559 
19560     SmallVector<Expr *, 4> AssocExprs;
19561     bool AnyChanged = false;
19562     for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
19563       ExprResult AssocExpr = Rebuild(OrigAssocExpr);
19564       if (AssocExpr.isInvalid())
19565         return ExprError();
19566       if (AssocExpr.isUsable()) {
19567         AssocExprs.push_back(AssocExpr.get());
19568         AnyChanged = true;
19569       } else {
19570         AssocExprs.push_back(OrigAssocExpr);
19571       }
19572     }
19573 
19574     void *ExOrTy = nullptr;
19575     bool IsExpr = GSE->isExprPredicate();
19576     if (IsExpr)
19577       ExOrTy = GSE->getControllingExpr();
19578     else
19579       ExOrTy = GSE->getControllingType();
19580     return AnyChanged ? S.CreateGenericSelectionExpr(
19581                             GSE->getGenericLoc(), GSE->getDefaultLoc(),
19582                             GSE->getRParenLoc(), IsExpr, ExOrTy,
19583                             GSE->getAssocTypeSourceInfos(), AssocExprs)
19584                       : ExprEmpty();
19585   }
19586 
19587   // [Clang extension]
19588   //   -- If e has the form __builtin_choose_expr(...), the set of potential
19589   //      results is the union of the sets of potential results of the
19590   //      second and third subexpressions.
19591   case Expr::ChooseExprClass: {
19592     auto *CE = cast<ChooseExpr>(E);
19593 
19594     ExprResult LHS = Rebuild(CE->getLHS());
19595     if (LHS.isInvalid())
19596       return ExprError();
19597 
19598     ExprResult RHS = Rebuild(CE->getLHS());
19599     if (RHS.isInvalid())
19600       return ExprError();
19601 
19602     if (!LHS.get() && !RHS.get())
19603       return ExprEmpty();
19604     if (!LHS.isUsable())
19605       LHS = CE->getLHS();
19606     if (!RHS.isUsable())
19607       RHS = CE->getRHS();
19608 
19609     return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
19610                              RHS.get(), CE->getRParenLoc());
19611   }
19612 
19613   // Step through non-syntactic nodes.
19614   case Expr::ConstantExprClass: {
19615     auto *CE = cast<ConstantExpr>(E);
19616     ExprResult Sub = Rebuild(CE->getSubExpr());
19617     if (!Sub.isUsable())
19618       return Sub;
19619     return ConstantExpr::Create(S.Context, Sub.get());
19620   }
19621 
19622   // We could mostly rely on the recursive rebuilding to rebuild implicit
19623   // casts, but not at the top level, so rebuild them here.
19624   case Expr::ImplicitCastExprClass: {
19625     auto *ICE = cast<ImplicitCastExpr>(E);
19626     // Only step through the narrow set of cast kinds we expect to encounter.
19627     // Anything else suggests we've left the region in which potential results
19628     // can be found.
19629     switch (ICE->getCastKind()) {
19630     case CK_NoOp:
19631     case CK_DerivedToBase:
19632     case CK_UncheckedDerivedToBase: {
19633       ExprResult Sub = Rebuild(ICE->getSubExpr());
19634       if (!Sub.isUsable())
19635         return Sub;
19636       CXXCastPath Path(ICE->path());
19637       return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
19638                                  ICE->getValueKind(), &Path);
19639     }
19640 
19641     default:
19642       break;
19643     }
19644     break;
19645   }
19646 
19647   default:
19648     break;
19649   }
19650 
19651   // Can't traverse through this node. Nothing to do.
19652   return ExprEmpty();
19653 }
19654 
19655 ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
19656   // Check whether the operand is or contains an object of non-trivial C union
19657   // type.
19658   if (E->getType().isVolatileQualified() &&
19659       (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
19660        E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
19661     checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
19662                           Sema::NTCUC_LValueToRValueVolatile,
19663                           NTCUK_Destruct|NTCUK_Copy);
19664 
19665   // C++2a [basic.def.odr]p4:
19666   //   [...] an expression of non-volatile-qualified non-class type to which
19667   //   the lvalue-to-rvalue conversion is applied [...]
19668   if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
19669     return E;
19670 
19671   ExprResult Result =
19672       rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
19673   if (Result.isInvalid())
19674     return ExprError();
19675   return Result.get() ? Result : E;
19676 }
19677 
19678 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
19679   Res = CorrectDelayedTyposInExpr(Res);
19680 
19681   if (!Res.isUsable())
19682     return Res;
19683 
19684   // If a constant-expression is a reference to a variable where we delay
19685   // deciding whether it is an odr-use, just assume we will apply the
19686   // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
19687   // (a non-type template argument), we have special handling anyway.
19688   return CheckLValueToRValueConversionOperand(Res.get());
19689 }
19690 
19691 void Sema::CleanupVarDeclMarking() {
19692   // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
19693   // call.
19694   MaybeODRUseExprSet LocalMaybeODRUseExprs;
19695   std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
19696 
19697   for (Expr *E : LocalMaybeODRUseExprs) {
19698     if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
19699       MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
19700                          DRE->getLocation(), *this);
19701     } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
19702       MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
19703                          *this);
19704     } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
19705       for (VarDecl *VD : *FP)
19706         MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
19707     } else {
19708       llvm_unreachable("Unexpected expression");
19709     }
19710   }
19711 
19712   assert(MaybeODRUseExprs.empty() &&
19713          "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
19714 }
19715 
19716 static void DoMarkPotentialCapture(Sema &SemaRef, SourceLocation Loc,
19717                                    ValueDecl *Var, Expr *E) {
19718   VarDecl *VD = Var->getPotentiallyDecomposedVarDecl();
19719   if (!VD)
19720     return;
19721 
19722   const bool RefersToEnclosingScope =
19723       (SemaRef.CurContext != VD->getDeclContext() &&
19724        VD->getDeclContext()->isFunctionOrMethod() && VD->hasLocalStorage());
19725   if (RefersToEnclosingScope) {
19726     LambdaScopeInfo *const LSI =
19727         SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
19728     if (LSI && (!LSI->CallOperator ||
19729                 !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
19730       // If a variable could potentially be odr-used, defer marking it so
19731       // until we finish analyzing the full expression for any
19732       // lvalue-to-rvalue
19733       // or discarded value conversions that would obviate odr-use.
19734       // Add it to the list of potential captures that will be analyzed
19735       // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
19736       // unless the variable is a reference that was initialized by a constant
19737       // expression (this will never need to be captured or odr-used).
19738       //
19739       // FIXME: We can simplify this a lot after implementing P0588R1.
19740       assert(E && "Capture variable should be used in an expression.");
19741       if (!Var->getType()->isReferenceType() ||
19742           !VD->isUsableInConstantExpressions(SemaRef.Context))
19743         LSI->addPotentialCapture(E->IgnoreParens());
19744     }
19745   }
19746 }
19747 
19748 static void DoMarkVarDeclReferenced(
19749     Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E,
19750     llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
19751   assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
19752           isa<FunctionParmPackExpr>(E)) &&
19753          "Invalid Expr argument to DoMarkVarDeclReferenced");
19754   Var->setReferenced();
19755 
19756   if (Var->isInvalidDecl())
19757     return;
19758 
19759   auto *MSI = Var->getMemberSpecializationInfo();
19760   TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
19761                                        : Var->getTemplateSpecializationKind();
19762 
19763   OdrUseContext OdrUse = isOdrUseContext(SemaRef);
19764   bool UsableInConstantExpr =
19765       Var->mightBeUsableInConstantExpressions(SemaRef.Context);
19766 
19767   if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) {
19768     RefsMinusAssignments.insert({Var, 0}).first->getSecond()++;
19769   }
19770 
19771   // C++20 [expr.const]p12:
19772   //   A variable [...] is needed for constant evaluation if it is [...] a
19773   //   variable whose name appears as a potentially constant evaluated
19774   //   expression that is either a contexpr variable or is of non-volatile
19775   //   const-qualified integral type or of reference type
19776   bool NeededForConstantEvaluation =
19777       isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
19778 
19779   bool NeedDefinition =
19780       OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
19781 
19782   assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
19783          "Can't instantiate a partial template specialization.");
19784 
19785   // If this might be a member specialization of a static data member, check
19786   // the specialization is visible. We already did the checks for variable
19787   // template specializations when we created them.
19788   if (NeedDefinition && TSK != TSK_Undeclared &&
19789       !isa<VarTemplateSpecializationDecl>(Var))
19790     SemaRef.checkSpecializationVisibility(Loc, Var);
19791 
19792   // Perform implicit instantiation of static data members, static data member
19793   // templates of class templates, and variable template specializations. Delay
19794   // instantiations of variable templates, except for those that could be used
19795   // in a constant expression.
19796   if (NeedDefinition && isTemplateInstantiation(TSK)) {
19797     // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
19798     // instantiation declaration if a variable is usable in a constant
19799     // expression (among other cases).
19800     bool TryInstantiating =
19801         TSK == TSK_ImplicitInstantiation ||
19802         (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
19803 
19804     if (TryInstantiating) {
19805       SourceLocation PointOfInstantiation =
19806           MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
19807       bool FirstInstantiation = PointOfInstantiation.isInvalid();
19808       if (FirstInstantiation) {
19809         PointOfInstantiation = Loc;
19810         if (MSI)
19811           MSI->setPointOfInstantiation(PointOfInstantiation);
19812           // FIXME: Notify listener.
19813         else
19814           Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
19815       }
19816 
19817       if (UsableInConstantExpr) {
19818         // Do not defer instantiations of variables that could be used in a
19819         // constant expression.
19820         SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
19821           SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
19822         });
19823 
19824         // Re-set the member to trigger a recomputation of the dependence bits
19825         // for the expression.
19826         if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(E))
19827           DRE->setDecl(DRE->getDecl());
19828         else if (auto *ME = dyn_cast_or_null<MemberExpr>(E))
19829           ME->setMemberDecl(ME->getMemberDecl());
19830       } else if (FirstInstantiation) {
19831         SemaRef.PendingInstantiations
19832             .push_back(std::make_pair(Var, PointOfInstantiation));
19833       } else {
19834         bool Inserted = false;
19835         for (auto &I : SemaRef.SavedPendingInstantiations) {
19836           auto Iter = llvm::find_if(
19837               I, [Var](const Sema::PendingImplicitInstantiation &P) {
19838                 return P.first == Var;
19839               });
19840           if (Iter != I.end()) {
19841             SemaRef.PendingInstantiations.push_back(*Iter);
19842             I.erase(Iter);
19843             Inserted = true;
19844             break;
19845           }
19846         }
19847 
19848         // FIXME: For a specialization of a variable template, we don't
19849         // distinguish between "declaration and type implicitly instantiated"
19850         // and "implicit instantiation of definition requested", so we have
19851         // no direct way to avoid enqueueing the pending instantiation
19852         // multiple times.
19853         if (isa<VarTemplateSpecializationDecl>(Var) && !Inserted)
19854           SemaRef.PendingInstantiations
19855             .push_back(std::make_pair(Var, PointOfInstantiation));
19856       }
19857     }
19858   }
19859 
19860   // C++2a [basic.def.odr]p4:
19861   //   A variable x whose name appears as a potentially-evaluated expression e
19862   //   is odr-used by e unless
19863   //   -- x is a reference that is usable in constant expressions
19864   //   -- x is a variable of non-reference type that is usable in constant
19865   //      expressions and has no mutable subobjects [FIXME], and e is an
19866   //      element of the set of potential results of an expression of
19867   //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
19868   //      conversion is applied
19869   //   -- x is a variable of non-reference type, and e is an element of the set
19870   //      of potential results of a discarded-value expression to which the
19871   //      lvalue-to-rvalue conversion is not applied [FIXME]
19872   //
19873   // We check the first part of the second bullet here, and
19874   // Sema::CheckLValueToRValueConversionOperand deals with the second part.
19875   // FIXME: To get the third bullet right, we need to delay this even for
19876   // variables that are not usable in constant expressions.
19877 
19878   // If we already know this isn't an odr-use, there's nothing more to do.
19879   if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
19880     if (DRE->isNonOdrUse())
19881       return;
19882   if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
19883     if (ME->isNonOdrUse())
19884       return;
19885 
19886   switch (OdrUse) {
19887   case OdrUseContext::None:
19888     // In some cases, a variable may not have been marked unevaluated, if it
19889     // appears in a defaukt initializer.
19890     assert((!E || isa<FunctionParmPackExpr>(E) ||
19891             SemaRef.isUnevaluatedContext()) &&
19892            "missing non-odr-use marking for unevaluated decl ref");
19893     break;
19894 
19895   case OdrUseContext::FormallyOdrUsed:
19896     // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
19897     // behavior.
19898     break;
19899 
19900   case OdrUseContext::Used:
19901     // If we might later find that this expression isn't actually an odr-use,
19902     // delay the marking.
19903     if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
19904       SemaRef.MaybeODRUseExprs.insert(E);
19905     else
19906       MarkVarDeclODRUsed(Var, Loc, SemaRef);
19907     break;
19908 
19909   case OdrUseContext::Dependent:
19910     // If this is a dependent context, we don't need to mark variables as
19911     // odr-used, but we may still need to track them for lambda capture.
19912     // FIXME: Do we also need to do this inside dependent typeid expressions
19913     // (which are modeled as unevaluated at this point)?
19914     DoMarkPotentialCapture(SemaRef, Loc, Var, E);
19915     break;
19916   }
19917 }
19918 
19919 static void DoMarkBindingDeclReferenced(Sema &SemaRef, SourceLocation Loc,
19920                                         BindingDecl *BD, Expr *E) {
19921   BD->setReferenced();
19922 
19923   if (BD->isInvalidDecl())
19924     return;
19925 
19926   OdrUseContext OdrUse = isOdrUseContext(SemaRef);
19927   if (OdrUse == OdrUseContext::Used) {
19928     QualType CaptureType, DeclRefType;
19929     SemaRef.tryCaptureVariable(BD, Loc, Sema::TryCapture_Implicit,
19930                                /*EllipsisLoc*/ SourceLocation(),
19931                                /*BuildAndDiagnose*/ true, CaptureType,
19932                                DeclRefType,
19933                                /*FunctionScopeIndexToStopAt*/ nullptr);
19934   } else if (OdrUse == OdrUseContext::Dependent) {
19935     DoMarkPotentialCapture(SemaRef, Loc, BD, E);
19936   }
19937 }
19938 
19939 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
19940   DoMarkVarDeclReferenced(*this, Loc, Var, nullptr, RefsMinusAssignments);
19941 }
19942 
19943 // C++ [temp.dep.expr]p3:
19944 //   An id-expression is type-dependent if it contains:
19945 //     - an identifier associated by name lookup with an entity captured by copy
19946 //       in a lambda-expression that has an explicit object parameter whose type
19947 //       is dependent ([dcl.fct]),
19948 static void FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(
19949     Sema &SemaRef, ValueDecl *D, Expr *E) {
19950   auto *ID = dyn_cast<DeclRefExpr>(E);
19951   if (!ID || ID->isTypeDependent() || !ID->refersToEnclosingVariableOrCapture())
19952     return;
19953 
19954   // If any enclosing lambda with a dependent explicit object parameter either
19955   // explicitly captures the variable by value, or has a capture default of '='
19956   // and does not capture the variable by reference, then the type of the DRE
19957   // is dependent on the type of that lambda's explicit object parameter.
19958   auto IsDependent = [&]() {
19959     for (auto *Scope : llvm::reverse(SemaRef.FunctionScopes)) {
19960       auto *LSI = dyn_cast<sema::LambdaScopeInfo>(Scope);
19961       if (!LSI)
19962         continue;
19963 
19964       if (LSI->Lambda && !LSI->Lambda->Encloses(SemaRef.CurContext) &&
19965           LSI->AfterParameterList)
19966         return false;
19967 
19968       const auto *MD = LSI->CallOperator;
19969       if (MD->getType().isNull())
19970         continue;
19971 
19972       const auto *Ty = MD->getType()->getAs<FunctionProtoType>();
19973       if (!Ty || !MD->isExplicitObjectMemberFunction() ||
19974           !Ty->getParamType(0)->isDependentType())
19975         continue;
19976 
19977       if (auto *C = LSI->CaptureMap.count(D) ? &LSI->getCapture(D) : nullptr) {
19978         if (C->isCopyCapture())
19979           return true;
19980         continue;
19981       }
19982 
19983       if (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByval)
19984         return true;
19985     }
19986     return false;
19987   }();
19988 
19989   ID->setCapturedByCopyInLambdaWithExplicitObjectParameter(
19990       IsDependent, SemaRef.getASTContext());
19991 }
19992 
19993 static void
19994 MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E,
19995                    bool MightBeOdrUse,
19996                    llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
19997   if (SemaRef.OpenMP().isInOpenMPDeclareTargetContext())
19998     SemaRef.OpenMP().checkDeclIsAllowedInOpenMPTarget(E, D);
19999 
20000   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
20001     DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments);
20002     if (SemaRef.getLangOpts().CPlusPlus)
20003       FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef,
20004                                                                        Var, E);
20005     return;
20006   }
20007 
20008   if (BindingDecl *Decl = dyn_cast<BindingDecl>(D)) {
20009     DoMarkBindingDeclReferenced(SemaRef, Loc, Decl, E);
20010     if (SemaRef.getLangOpts().CPlusPlus)
20011       FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef,
20012                                                                        Decl, E);
20013     return;
20014   }
20015   SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
20016 
20017   // If this is a call to a method via a cast, also mark the method in the
20018   // derived class used in case codegen can devirtualize the call.
20019   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
20020   if (!ME)
20021     return;
20022   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
20023   if (!MD)
20024     return;
20025   // Only attempt to devirtualize if this is truly a virtual call.
20026   bool IsVirtualCall = MD->isVirtual() &&
20027                           ME->performsVirtualDispatch(SemaRef.getLangOpts());
20028   if (!IsVirtualCall)
20029     return;
20030 
20031   // If it's possible to devirtualize the call, mark the called function
20032   // referenced.
20033   CXXMethodDecl *DM = MD->getDevirtualizedMethod(
20034       ME->getBase(), SemaRef.getLangOpts().AppleKext);
20035   if (DM)
20036     SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
20037 }
20038 
20039 void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
20040   // TODO: update this with DR# once a defect report is filed.
20041   // C++11 defect. The address of a pure member should not be an ODR use, even
20042   // if it's a qualified reference.
20043   bool OdrUse = true;
20044   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
20045     if (Method->isVirtual() &&
20046         !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
20047       OdrUse = false;
20048 
20049   if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl())) {
20050     if (!isUnevaluatedContext() && !isConstantEvaluatedContext() &&
20051         !isImmediateFunctionContext() &&
20052         !isCheckingDefaultArgumentOrInitializer() &&
20053         FD->isImmediateFunction() && !RebuildingImmediateInvocation &&
20054         !FD->isDependentContext())
20055       ExprEvalContexts.back().ReferenceToConsteval.insert(E);
20056   }
20057   MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse,
20058                      RefsMinusAssignments);
20059 }
20060 
20061 void Sema::MarkMemberReferenced(MemberExpr *E) {
20062   // C++11 [basic.def.odr]p2:
20063   //   A non-overloaded function whose name appears as a potentially-evaluated
20064   //   expression or a member of a set of candidate functions, if selected by
20065   //   overload resolution when referred to from a potentially-evaluated
20066   //   expression, is odr-used, unless it is a pure virtual function and its
20067   //   name is not explicitly qualified.
20068   bool MightBeOdrUse = true;
20069   if (E->performsVirtualDispatch(getLangOpts())) {
20070     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
20071       if (Method->isPureVirtual())
20072         MightBeOdrUse = false;
20073   }
20074   SourceLocation Loc =
20075       E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
20076   MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse,
20077                      RefsMinusAssignments);
20078 }
20079 
20080 void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
20081   for (VarDecl *VD : *E)
20082     MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true,
20083                        RefsMinusAssignments);
20084 }
20085 
20086 /// Perform marking for a reference to an arbitrary declaration.  It
20087 /// marks the declaration referenced, and performs odr-use checking for
20088 /// functions and variables. This method should not be used when building a
20089 /// normal expression which refers to a variable.
20090 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
20091                                  bool MightBeOdrUse) {
20092   if (MightBeOdrUse) {
20093     if (auto *VD = dyn_cast<VarDecl>(D)) {
20094       MarkVariableReferenced(Loc, VD);
20095       return;
20096     }
20097   }
20098   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
20099     MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
20100     return;
20101   }
20102   D->setReferenced();
20103 }
20104 
20105 namespace {
20106   // Mark all of the declarations used by a type as referenced.
20107   // FIXME: Not fully implemented yet! We need to have a better understanding
20108   // of when we're entering a context we should not recurse into.
20109   // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
20110   // TreeTransforms rebuilding the type in a new context. Rather than
20111   // duplicating the TreeTransform logic, we should consider reusing it here.
20112   // Currently that causes problems when rebuilding LambdaExprs.
20113 class MarkReferencedDecls : public DynamicRecursiveASTVisitor {
20114   Sema &S;
20115   SourceLocation Loc;
20116 
20117 public:
20118   MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) {}
20119 
20120   bool TraverseTemplateArgument(const TemplateArgument &Arg) override;
20121 };
20122 }
20123 
20124 bool MarkReferencedDecls::TraverseTemplateArgument(
20125     const TemplateArgument &Arg) {
20126   {
20127     // A non-type template argument is a constant-evaluated context.
20128     EnterExpressionEvaluationContext Evaluated(
20129         S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
20130     if (Arg.getKind() == TemplateArgument::Declaration) {
20131       if (Decl *D = Arg.getAsDecl())
20132         S.MarkAnyDeclReferenced(Loc, D, true);
20133     } else if (Arg.getKind() == TemplateArgument::Expression) {
20134       S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
20135     }
20136   }
20137 
20138   return DynamicRecursiveASTVisitor::TraverseTemplateArgument(Arg);
20139 }
20140 
20141 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
20142   MarkReferencedDecls Marker(*this, Loc);
20143   Marker.TraverseType(T);
20144 }
20145 
20146 namespace {
20147 /// Helper class that marks all of the declarations referenced by
20148 /// potentially-evaluated subexpressions as "referenced".
20149 class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
20150 public:
20151   typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
20152   bool SkipLocalVariables;
20153   ArrayRef<const Expr *> StopAt;
20154 
20155   EvaluatedExprMarker(Sema &S, bool SkipLocalVariables,
20156                       ArrayRef<const Expr *> StopAt)
20157       : Inherited(S), SkipLocalVariables(SkipLocalVariables), StopAt(StopAt) {}
20158 
20159   void visitUsedDecl(SourceLocation Loc, Decl *D) {
20160     S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D));
20161   }
20162 
20163   void Visit(Expr *E) {
20164     if (llvm::is_contained(StopAt, E))
20165       return;
20166     Inherited::Visit(E);
20167   }
20168 
20169   void VisitConstantExpr(ConstantExpr *E) {
20170     // Don't mark declarations within a ConstantExpression, as this expression
20171     // will be evaluated and folded to a value.
20172   }
20173 
20174   void VisitDeclRefExpr(DeclRefExpr *E) {
20175     // If we were asked not to visit local variables, don't.
20176     if (SkipLocalVariables) {
20177       if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
20178         if (VD->hasLocalStorage())
20179           return;
20180     }
20181 
20182     // FIXME: This can trigger the instantiation of the initializer of a
20183     // variable, which can cause the expression to become value-dependent
20184     // or error-dependent. Do we need to propagate the new dependence bits?
20185     S.MarkDeclRefReferenced(E);
20186   }
20187 
20188   void VisitMemberExpr(MemberExpr *E) {
20189     S.MarkMemberReferenced(E);
20190     Visit(E->getBase());
20191   }
20192 };
20193 } // namespace
20194 
20195 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
20196                                             bool SkipLocalVariables,
20197                                             ArrayRef<const Expr*> StopAt) {
20198   EvaluatedExprMarker(*this, SkipLocalVariables, StopAt).Visit(E);
20199 }
20200 
20201 /// Emit a diagnostic when statements are reachable.
20202 /// FIXME: check for reachability even in expressions for which we don't build a
20203 ///        CFG (eg, in the initializer of a global or in a constant expression).
20204 ///        For example,
20205 ///        namespace { auto *p = new double[3][false ? (1, 2) : 3]; }
20206 bool Sema::DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
20207                            const PartialDiagnostic &PD) {
20208   if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
20209     if (!FunctionScopes.empty())
20210       FunctionScopes.back()->PossiblyUnreachableDiags.push_back(
20211           sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
20212     return true;
20213   }
20214 
20215   // The initializer of a constexpr variable or of the first declaration of a
20216   // static data member is not syntactically a constant evaluated constant,
20217   // but nonetheless is always required to be a constant expression, so we
20218   // can skip diagnosing.
20219   // FIXME: Using the mangling context here is a hack.
20220   if (auto *VD = dyn_cast_or_null<VarDecl>(
20221           ExprEvalContexts.back().ManglingContextDecl)) {
20222     if (VD->isConstexpr() ||
20223         (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
20224       return false;
20225     // FIXME: For any other kind of variable, we should build a CFG for its
20226     // initializer and check whether the context in question is reachable.
20227   }
20228 
20229   Diag(Loc, PD);
20230   return true;
20231 }
20232 
20233 /// Emit a diagnostic that describes an effect on the run-time behavior
20234 /// of the program being compiled.
20235 ///
20236 /// This routine emits the given diagnostic when the code currently being
20237 /// type-checked is "potentially evaluated", meaning that there is a
20238 /// possibility that the code will actually be executable. Code in sizeof()
20239 /// expressions, code used only during overload resolution, etc., are not
20240 /// potentially evaluated. This routine will suppress such diagnostics or,
20241 /// in the absolutely nutty case of potentially potentially evaluated
20242 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
20243 /// later.
20244 ///
20245 /// This routine should be used for all diagnostics that describe the run-time
20246 /// behavior of a program, such as passing a non-POD value through an ellipsis.
20247 /// Failure to do so will likely result in spurious diagnostics or failures
20248 /// during overload resolution or within sizeof/alignof/typeof/typeid.
20249 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
20250                                const PartialDiagnostic &PD) {
20251 
20252   if (ExprEvalContexts.back().isDiscardedStatementContext())
20253     return false;
20254 
20255   switch (ExprEvalContexts.back().Context) {
20256   case ExpressionEvaluationContext::Unevaluated:
20257   case ExpressionEvaluationContext::UnevaluatedList:
20258   case ExpressionEvaluationContext::UnevaluatedAbstract:
20259   case ExpressionEvaluationContext::DiscardedStatement:
20260     // The argument will never be evaluated, so don't complain.
20261     break;
20262 
20263   case ExpressionEvaluationContext::ConstantEvaluated:
20264   case ExpressionEvaluationContext::ImmediateFunctionContext:
20265     // Relevant diagnostics should be produced by constant evaluation.
20266     break;
20267 
20268   case ExpressionEvaluationContext::PotentiallyEvaluated:
20269   case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
20270     return DiagIfReachable(Loc, Stmts, PD);
20271   }
20272 
20273   return false;
20274 }
20275 
20276 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
20277                                const PartialDiagnostic &PD) {
20278   return DiagRuntimeBehavior(
20279       Loc, Statement ? llvm::ArrayRef(Statement) : llvm::ArrayRef<Stmt *>(),
20280       PD);
20281 }
20282 
20283 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
20284                                CallExpr *CE, FunctionDecl *FD) {
20285   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
20286     return false;
20287 
20288   // If we're inside a decltype's expression, don't check for a valid return
20289   // type or construct temporaries until we know whether this is the last call.
20290   if (ExprEvalContexts.back().ExprContext ==
20291       ExpressionEvaluationContextRecord::EK_Decltype) {
20292     ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
20293     return false;
20294   }
20295 
20296   class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
20297     FunctionDecl *FD;
20298     CallExpr *CE;
20299 
20300   public:
20301     CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
20302       : FD(FD), CE(CE) { }
20303 
20304     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
20305       if (!FD) {
20306         S.Diag(Loc, diag::err_call_incomplete_return)
20307           << T << CE->getSourceRange();
20308         return;
20309       }
20310 
20311       S.Diag(Loc, diag::err_call_function_incomplete_return)
20312           << CE->getSourceRange() << FD << T;
20313       S.Diag(FD->getLocation(), diag::note_entity_declared_at)
20314           << FD->getDeclName();
20315     }
20316   } Diagnoser(FD, CE);
20317 
20318   if (RequireCompleteType(Loc, ReturnType, Diagnoser))
20319     return true;
20320 
20321   return false;
20322 }
20323 
20324 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
20325 // will prevent this condition from triggering, which is what we want.
20326 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
20327   SourceLocation Loc;
20328 
20329   unsigned diagnostic = diag::warn_condition_is_assignment;
20330   bool IsOrAssign = false;
20331 
20332   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
20333     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
20334       return;
20335 
20336     IsOrAssign = Op->getOpcode() == BO_OrAssign;
20337 
20338     // Greylist some idioms by putting them into a warning subcategory.
20339     if (ObjCMessageExpr *ME
20340           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
20341       Selector Sel = ME->getSelector();
20342 
20343       // self = [<foo> init...]
20344       if (ObjC().isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
20345         diagnostic = diag::warn_condition_is_idiomatic_assignment;
20346 
20347       // <foo> = [<bar> nextObject]
20348       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
20349         diagnostic = diag::warn_condition_is_idiomatic_assignment;
20350     }
20351 
20352     Loc = Op->getOperatorLoc();
20353   } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
20354     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
20355       return;
20356 
20357     IsOrAssign = Op->getOperator() == OO_PipeEqual;
20358     Loc = Op->getOperatorLoc();
20359   } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
20360     return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
20361   else {
20362     // Not an assignment.
20363     return;
20364   }
20365 
20366   Diag(Loc, diagnostic) << E->getSourceRange();
20367 
20368   SourceLocation Open = E->getBeginLoc();
20369   SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
20370   Diag(Loc, diag::note_condition_assign_silence)
20371         << FixItHint::CreateInsertion(Open, "(")
20372         << FixItHint::CreateInsertion(Close, ")");
20373 
20374   if (IsOrAssign)
20375     Diag(Loc, diag::note_condition_or_assign_to_comparison)
20376       << FixItHint::CreateReplacement(Loc, "!=");
20377   else
20378     Diag(Loc, diag::note_condition_assign_to_comparison)
20379       << FixItHint::CreateReplacement(Loc, "==");
20380 }
20381 
20382 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
20383   // Don't warn if the parens came from a macro.
20384   SourceLocation parenLoc = ParenE->getBeginLoc();
20385   if (parenLoc.isInvalid() || parenLoc.isMacroID())
20386     return;
20387   // Don't warn for dependent expressions.
20388   if (ParenE->isTypeDependent())
20389     return;
20390 
20391   Expr *E = ParenE->IgnoreParens();
20392   if (ParenE->isProducedByFoldExpansion() && ParenE->getSubExpr() == E)
20393     return;
20394 
20395   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
20396     if (opE->getOpcode() == BO_EQ &&
20397         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
20398                                                            == Expr::MLV_Valid) {
20399       SourceLocation Loc = opE->getOperatorLoc();
20400 
20401       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
20402       SourceRange ParenERange = ParenE->getSourceRange();
20403       Diag(Loc, diag::note_equality_comparison_silence)
20404         << FixItHint::CreateRemoval(ParenERange.getBegin())
20405         << FixItHint::CreateRemoval(ParenERange.getEnd());
20406       Diag(Loc, diag::note_equality_comparison_to_assign)
20407         << FixItHint::CreateReplacement(Loc, "=");
20408     }
20409 }
20410 
20411 ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
20412                                        bool IsConstexpr) {
20413   DiagnoseAssignmentAsCondition(E);
20414   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
20415     DiagnoseEqualityWithExtraParens(parenE);
20416 
20417   ExprResult result = CheckPlaceholderExpr(E);
20418   if (result.isInvalid()) return ExprError();
20419   E = result.get();
20420 
20421   if (!E->isTypeDependent()) {
20422     if (getLangOpts().CPlusPlus)
20423       return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
20424 
20425     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
20426     if (ERes.isInvalid())
20427       return ExprError();
20428     E = ERes.get();
20429 
20430     QualType T = E->getType();
20431     if (!T->isScalarType()) { // C99 6.8.4.1p1
20432       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
20433         << T << E->getSourceRange();
20434       return ExprError();
20435     }
20436     CheckBoolLikeConversion(E, Loc);
20437   }
20438 
20439   return E;
20440 }
20441 
20442 Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
20443                                            Expr *SubExpr, ConditionKind CK,
20444                                            bool MissingOK) {
20445   // MissingOK indicates whether having no condition expression is valid
20446   // (for loop) or invalid (e.g. while loop).
20447   if (!SubExpr)
20448     return MissingOK ? ConditionResult() : ConditionError();
20449 
20450   ExprResult Cond;
20451   switch (CK) {
20452   case ConditionKind::Boolean:
20453     Cond = CheckBooleanCondition(Loc, SubExpr);
20454     break;
20455 
20456   case ConditionKind::ConstexprIf:
20457     Cond = CheckBooleanCondition(Loc, SubExpr, true);
20458     break;
20459 
20460   case ConditionKind::Switch:
20461     Cond = CheckSwitchCondition(Loc, SubExpr);
20462     break;
20463   }
20464   if (Cond.isInvalid()) {
20465     Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(),
20466                               {SubExpr}, PreferredConditionType(CK));
20467     if (!Cond.get())
20468       return ConditionError();
20469   }
20470   // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
20471   FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
20472   if (!FullExpr.get())
20473     return ConditionError();
20474 
20475   return ConditionResult(*this, nullptr, FullExpr,
20476                          CK == ConditionKind::ConstexprIf);
20477 }
20478 
20479 namespace {
20480   /// A visitor for rebuilding a call to an __unknown_any expression
20481   /// to have an appropriate type.
20482   struct RebuildUnknownAnyFunction
20483     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
20484 
20485     Sema &S;
20486 
20487     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
20488 
20489     ExprResult VisitStmt(Stmt *S) {
20490       llvm_unreachable("unexpected statement!");
20491     }
20492 
20493     ExprResult VisitExpr(Expr *E) {
20494       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
20495         << E->getSourceRange();
20496       return ExprError();
20497     }
20498 
20499     /// Rebuild an expression which simply semantically wraps another
20500     /// expression which it shares the type and value kind of.
20501     template <class T> ExprResult rebuildSugarExpr(T *E) {
20502       ExprResult SubResult = Visit(E->getSubExpr());
20503       if (SubResult.isInvalid()) return ExprError();
20504 
20505       Expr *SubExpr = SubResult.get();
20506       E->setSubExpr(SubExpr);
20507       E->setType(SubExpr->getType());
20508       E->setValueKind(SubExpr->getValueKind());
20509       assert(E->getObjectKind() == OK_Ordinary);
20510       return E;
20511     }
20512 
20513     ExprResult VisitParenExpr(ParenExpr *E) {
20514       return rebuildSugarExpr(E);
20515     }
20516 
20517     ExprResult VisitUnaryExtension(UnaryOperator *E) {
20518       return rebuildSugarExpr(E);
20519     }
20520 
20521     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
20522       ExprResult SubResult = Visit(E->getSubExpr());
20523       if (SubResult.isInvalid()) return ExprError();
20524 
20525       Expr *SubExpr = SubResult.get();
20526       E->setSubExpr(SubExpr);
20527       E->setType(S.Context.getPointerType(SubExpr->getType()));
20528       assert(E->isPRValue());
20529       assert(E->getObjectKind() == OK_Ordinary);
20530       return E;
20531     }
20532 
20533     ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
20534       if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
20535 
20536       E->setType(VD->getType());
20537 
20538       assert(E->isPRValue());
20539       if (S.getLangOpts().CPlusPlus &&
20540           !(isa<CXXMethodDecl>(VD) &&
20541             cast<CXXMethodDecl>(VD)->isInstance()))
20542         E->setValueKind(VK_LValue);
20543 
20544       return E;
20545     }
20546 
20547     ExprResult VisitMemberExpr(MemberExpr *E) {
20548       return resolveDecl(E, E->getMemberDecl());
20549     }
20550 
20551     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
20552       return resolveDecl(E, E->getDecl());
20553     }
20554   };
20555 }
20556 
20557 /// Given a function expression of unknown-any type, try to rebuild it
20558 /// to have a function type.
20559 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
20560   ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
20561   if (Result.isInvalid()) return ExprError();
20562   return S.DefaultFunctionArrayConversion(Result.get());
20563 }
20564 
20565 namespace {
20566   /// A visitor for rebuilding an expression of type __unknown_anytype
20567   /// into one which resolves the type directly on the referring
20568   /// expression.  Strict preservation of the original source
20569   /// structure is not a goal.
20570   struct RebuildUnknownAnyExpr
20571     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
20572 
20573     Sema &S;
20574 
20575     /// The current destination type.
20576     QualType DestType;
20577 
20578     RebuildUnknownAnyExpr(Sema &S, QualType CastType)
20579       : S(S), DestType(CastType) {}
20580 
20581     ExprResult VisitStmt(Stmt *S) {
20582       llvm_unreachable("unexpected statement!");
20583     }
20584 
20585     ExprResult VisitExpr(Expr *E) {
20586       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
20587         << E->getSourceRange();
20588       return ExprError();
20589     }
20590 
20591     ExprResult VisitCallExpr(CallExpr *E);
20592     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
20593 
20594     /// Rebuild an expression which simply semantically wraps another
20595     /// expression which it shares the type and value kind of.
20596     template <class T> ExprResult rebuildSugarExpr(T *E) {
20597       ExprResult SubResult = Visit(E->getSubExpr());
20598       if (SubResult.isInvalid()) return ExprError();
20599       Expr *SubExpr = SubResult.get();
20600       E->setSubExpr(SubExpr);
20601       E->setType(SubExpr->getType());
20602       E->setValueKind(SubExpr->getValueKind());
20603       assert(E->getObjectKind() == OK_Ordinary);
20604       return E;
20605     }
20606 
20607     ExprResult VisitParenExpr(ParenExpr *E) {
20608       return rebuildSugarExpr(E);
20609     }
20610 
20611     ExprResult VisitUnaryExtension(UnaryOperator *E) {
20612       return rebuildSugarExpr(E);
20613     }
20614 
20615     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
20616       const PointerType *Ptr = DestType->getAs<PointerType>();
20617       if (!Ptr) {
20618         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
20619           << E->getSourceRange();
20620         return ExprError();
20621       }
20622 
20623       if (isa<CallExpr>(E->getSubExpr())) {
20624         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
20625           << E->getSourceRange();
20626         return ExprError();
20627       }
20628 
20629       assert(E->isPRValue());
20630       assert(E->getObjectKind() == OK_Ordinary);
20631       E->setType(DestType);
20632 
20633       // Build the sub-expression as if it were an object of the pointee type.
20634       DestType = Ptr->getPointeeType();
20635       ExprResult SubResult = Visit(E->getSubExpr());
20636       if (SubResult.isInvalid()) return ExprError();
20637       E->setSubExpr(SubResult.get());
20638       return E;
20639     }
20640 
20641     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
20642 
20643     ExprResult resolveDecl(Expr *E, ValueDecl *VD);
20644 
20645     ExprResult VisitMemberExpr(MemberExpr *E) {
20646       return resolveDecl(E, E->getMemberDecl());
20647     }
20648 
20649     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
20650       return resolveDecl(E, E->getDecl());
20651     }
20652   };
20653 }
20654 
20655 /// Rebuilds a call expression which yielded __unknown_anytype.
20656 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
20657   Expr *CalleeExpr = E->getCallee();
20658 
20659   enum FnKind {
20660     FK_MemberFunction,
20661     FK_FunctionPointer,
20662     FK_BlockPointer
20663   };
20664 
20665   FnKind Kind;
20666   QualType CalleeType = CalleeExpr->getType();
20667   if (CalleeType == S.Context.BoundMemberTy) {
20668     assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
20669     Kind = FK_MemberFunction;
20670     CalleeType = Expr::findBoundMemberType(CalleeExpr);
20671   } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
20672     CalleeType = Ptr->getPointeeType();
20673     Kind = FK_FunctionPointer;
20674   } else {
20675     CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
20676     Kind = FK_BlockPointer;
20677   }
20678   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
20679 
20680   // Verify that this is a legal result type of a function.
20681   if (DestType->isArrayType() || DestType->isFunctionType()) {
20682     unsigned diagID = diag::err_func_returning_array_function;
20683     if (Kind == FK_BlockPointer)
20684       diagID = diag::err_block_returning_array_function;
20685 
20686     S.Diag(E->getExprLoc(), diagID)
20687       << DestType->isFunctionType() << DestType;
20688     return ExprError();
20689   }
20690 
20691   // Otherwise, go ahead and set DestType as the call's result.
20692   E->setType(DestType.getNonLValueExprType(S.Context));
20693   E->setValueKind(Expr::getValueKindForType(DestType));
20694   assert(E->getObjectKind() == OK_Ordinary);
20695 
20696   // Rebuild the function type, replacing the result type with DestType.
20697   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
20698   if (Proto) {
20699     // __unknown_anytype(...) is a special case used by the debugger when
20700     // it has no idea what a function's signature is.
20701     //
20702     // We want to build this call essentially under the K&R
20703     // unprototyped rules, but making a FunctionNoProtoType in C++
20704     // would foul up all sorts of assumptions.  However, we cannot
20705     // simply pass all arguments as variadic arguments, nor can we
20706     // portably just call the function under a non-variadic type; see
20707     // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
20708     // However, it turns out that in practice it is generally safe to
20709     // call a function declared as "A foo(B,C,D);" under the prototype
20710     // "A foo(B,C,D,...);".  The only known exception is with the
20711     // Windows ABI, where any variadic function is implicitly cdecl
20712     // regardless of its normal CC.  Therefore we change the parameter
20713     // types to match the types of the arguments.
20714     //
20715     // This is a hack, but it is far superior to moving the
20716     // corresponding target-specific code from IR-gen to Sema/AST.
20717 
20718     ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
20719     SmallVector<QualType, 8> ArgTypes;
20720     if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
20721       ArgTypes.reserve(E->getNumArgs());
20722       for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
20723         ArgTypes.push_back(S.Context.getReferenceQualifiedType(E->getArg(i)));
20724       }
20725       ParamTypes = ArgTypes;
20726     }
20727     DestType = S.Context.getFunctionType(DestType, ParamTypes,
20728                                          Proto->getExtProtoInfo());
20729   } else {
20730     DestType = S.Context.getFunctionNoProtoType(DestType,
20731                                                 FnType->getExtInfo());
20732   }
20733 
20734   // Rebuild the appropriate pointer-to-function type.
20735   switch (Kind) {
20736   case FK_MemberFunction:
20737     // Nothing to do.
20738     break;
20739 
20740   case FK_FunctionPointer:
20741     DestType = S.Context.getPointerType(DestType);
20742     break;
20743 
20744   case FK_BlockPointer:
20745     DestType = S.Context.getBlockPointerType(DestType);
20746     break;
20747   }
20748 
20749   // Finally, we can recurse.
20750   ExprResult CalleeResult = Visit(CalleeExpr);
20751   if (!CalleeResult.isUsable()) return ExprError();
20752   E->setCallee(CalleeResult.get());
20753 
20754   // Bind a temporary if necessary.
20755   return S.MaybeBindToTemporary(E);
20756 }
20757 
20758 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
20759   // Verify that this is a legal result type of a call.
20760   if (DestType->isArrayType() || DestType->isFunctionType()) {
20761     S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
20762       << DestType->isFunctionType() << DestType;
20763     return ExprError();
20764   }
20765 
20766   // Rewrite the method result type if available.
20767   if (ObjCMethodDecl *Method = E->getMethodDecl()) {
20768     assert(Method->getReturnType() == S.Context.UnknownAnyTy);
20769     Method->setReturnType(DestType);
20770   }
20771 
20772   // Change the type of the message.
20773   E->setType(DestType.getNonReferenceType());
20774   E->setValueKind(Expr::getValueKindForType(DestType));
20775 
20776   return S.MaybeBindToTemporary(E);
20777 }
20778 
20779 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
20780   // The only case we should ever see here is a function-to-pointer decay.
20781   if (E->getCastKind() == CK_FunctionToPointerDecay) {
20782     assert(E->isPRValue());
20783     assert(E->getObjectKind() == OK_Ordinary);
20784 
20785     E->setType(DestType);
20786 
20787     // Rebuild the sub-expression as the pointee (function) type.
20788     DestType = DestType->castAs<PointerType>()->getPointeeType();
20789 
20790     ExprResult Result = Visit(E->getSubExpr());
20791     if (!Result.isUsable()) return ExprError();
20792 
20793     E->setSubExpr(Result.get());
20794     return E;
20795   } else if (E->getCastKind() == CK_LValueToRValue) {
20796     assert(E->isPRValue());
20797     assert(E->getObjectKind() == OK_Ordinary);
20798 
20799     assert(isa<BlockPointerType>(E->getType()));
20800 
20801     E->setType(DestType);
20802 
20803     // The sub-expression has to be a lvalue reference, so rebuild it as such.
20804     DestType = S.Context.getLValueReferenceType(DestType);
20805 
20806     ExprResult Result = Visit(E->getSubExpr());
20807     if (!Result.isUsable()) return ExprError();
20808 
20809     E->setSubExpr(Result.get());
20810     return E;
20811   } else {
20812     llvm_unreachable("Unhandled cast type!");
20813   }
20814 }
20815 
20816 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
20817   ExprValueKind ValueKind = VK_LValue;
20818   QualType Type = DestType;
20819 
20820   // We know how to make this work for certain kinds of decls:
20821 
20822   //  - functions
20823   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
20824     if (const PointerType *Ptr = Type->getAs<PointerType>()) {
20825       DestType = Ptr->getPointeeType();
20826       ExprResult Result = resolveDecl(E, VD);
20827       if (Result.isInvalid()) return ExprError();
20828       return S.ImpCastExprToType(Result.get(), Type, CK_FunctionToPointerDecay,
20829                                  VK_PRValue);
20830     }
20831 
20832     if (!Type->isFunctionType()) {
20833       S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
20834         << VD << E->getSourceRange();
20835       return ExprError();
20836     }
20837     if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
20838       // We must match the FunctionDecl's type to the hack introduced in
20839       // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
20840       // type. See the lengthy commentary in that routine.
20841       QualType FDT = FD->getType();
20842       const FunctionType *FnType = FDT->castAs<FunctionType>();
20843       const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
20844       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
20845       if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
20846         SourceLocation Loc = FD->getLocation();
20847         FunctionDecl *NewFD = FunctionDecl::Create(
20848             S.Context, FD->getDeclContext(), Loc, Loc,
20849             FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
20850             SC_None, S.getCurFPFeatures().isFPConstrained(),
20851             false /*isInlineSpecified*/, FD->hasPrototype(),
20852             /*ConstexprKind*/ ConstexprSpecKind::Unspecified);
20853 
20854         if (FD->getQualifier())
20855           NewFD->setQualifierInfo(FD->getQualifierLoc());
20856 
20857         SmallVector<ParmVarDecl*, 16> Params;
20858         for (const auto &AI : FT->param_types()) {
20859           ParmVarDecl *Param =
20860             S.BuildParmVarDeclForTypedef(FD, Loc, AI);
20861           Param->setScopeInfo(0, Params.size());
20862           Params.push_back(Param);
20863         }
20864         NewFD->setParams(Params);
20865         DRE->setDecl(NewFD);
20866         VD = DRE->getDecl();
20867       }
20868     }
20869 
20870     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
20871       if (MD->isInstance()) {
20872         ValueKind = VK_PRValue;
20873         Type = S.Context.BoundMemberTy;
20874       }
20875 
20876     // Function references aren't l-values in C.
20877     if (!S.getLangOpts().CPlusPlus)
20878       ValueKind = VK_PRValue;
20879 
20880   //  - variables
20881   } else if (isa<VarDecl>(VD)) {
20882     if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
20883       Type = RefTy->getPointeeType();
20884     } else if (Type->isFunctionType()) {
20885       S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
20886         << VD << E->getSourceRange();
20887       return ExprError();
20888     }
20889 
20890   //  - nothing else
20891   } else {
20892     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
20893       << VD << E->getSourceRange();
20894     return ExprError();
20895   }
20896 
20897   // Modifying the declaration like this is friendly to IR-gen but
20898   // also really dangerous.
20899   VD->setType(DestType);
20900   E->setType(Type);
20901   E->setValueKind(ValueKind);
20902   return E;
20903 }
20904 
20905 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
20906                                      Expr *CastExpr, CastKind &CastKind,
20907                                      ExprValueKind &VK, CXXCastPath &Path) {
20908   // The type we're casting to must be either void or complete.
20909   if (!CastType->isVoidType() &&
20910       RequireCompleteType(TypeRange.getBegin(), CastType,
20911                           diag::err_typecheck_cast_to_incomplete))
20912     return ExprError();
20913 
20914   // Rewrite the casted expression from scratch.
20915   ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
20916   if (!result.isUsable()) return ExprError();
20917 
20918   CastExpr = result.get();
20919   VK = CastExpr->getValueKind();
20920   CastKind = CK_NoOp;
20921 
20922   return CastExpr;
20923 }
20924 
20925 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
20926   return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
20927 }
20928 
20929 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
20930                                     Expr *arg, QualType &paramType) {
20931   // If the syntactic form of the argument is not an explicit cast of
20932   // any sort, just do default argument promotion.
20933   ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
20934   if (!castArg) {
20935     ExprResult result = DefaultArgumentPromotion(arg);
20936     if (result.isInvalid()) return ExprError();
20937     paramType = result.get()->getType();
20938     return result;
20939   }
20940 
20941   // Otherwise, use the type that was written in the explicit cast.
20942   assert(!arg->hasPlaceholderType());
20943   paramType = castArg->getTypeAsWritten();
20944 
20945   // Copy-initialize a parameter of that type.
20946   InitializedEntity entity =
20947     InitializedEntity::InitializeParameter(Context, paramType,
20948                                            /*consumed*/ false);
20949   return PerformCopyInitialization(entity, callLoc, arg);
20950 }
20951 
20952 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
20953   Expr *orig = E;
20954   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
20955   while (true) {
20956     E = E->IgnoreParenImpCasts();
20957     if (CallExpr *call = dyn_cast<CallExpr>(E)) {
20958       E = call->getCallee();
20959       diagID = diag::err_uncasted_call_of_unknown_any;
20960     } else {
20961       break;
20962     }
20963   }
20964 
20965   SourceLocation loc;
20966   NamedDecl *d;
20967   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
20968     loc = ref->getLocation();
20969     d = ref->getDecl();
20970   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
20971     loc = mem->getMemberLoc();
20972     d = mem->getMemberDecl();
20973   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
20974     diagID = diag::err_uncasted_call_of_unknown_any;
20975     loc = msg->getSelectorStartLoc();
20976     d = msg->getMethodDecl();
20977     if (!d) {
20978       S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
20979         << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
20980         << orig->getSourceRange();
20981       return ExprError();
20982     }
20983   } else {
20984     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
20985       << E->getSourceRange();
20986     return ExprError();
20987   }
20988 
20989   S.Diag(loc, diagID) << d << orig->getSourceRange();
20990 
20991   // Never recoverable.
20992   return ExprError();
20993 }
20994 
20995 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
20996   if (!Context.isDependenceAllowed()) {
20997     // C cannot handle TypoExpr nodes on either side of a binop because it
20998     // doesn't handle dependent types properly, so make sure any TypoExprs have
20999     // been dealt with before checking the operands.
21000     ExprResult Result = CorrectDelayedTyposInExpr(E);
21001     if (!Result.isUsable()) return ExprError();
21002     E = Result.get();
21003   }
21004 
21005   const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
21006   if (!placeholderType) return E;
21007 
21008   switch (placeholderType->getKind()) {
21009   case BuiltinType::UnresolvedTemplate: {
21010     auto *ULE = cast<UnresolvedLookupExpr>(E);
21011     const DeclarationNameInfo &NameInfo = ULE->getNameInfo();
21012     // There's only one FoundDecl for UnresolvedTemplate type. See
21013     // BuildTemplateIdExpr.
21014     NamedDecl *Temp = *ULE->decls_begin();
21015     const bool IsTypeAliasTemplateDecl = isa<TypeAliasTemplateDecl>(Temp);
21016 
21017     if (NestedNameSpecifierLoc Loc = ULE->getQualifierLoc(); Loc.hasQualifier())
21018       Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_type_template)
21019           << Loc.getNestedNameSpecifier() << NameInfo.getName().getAsString()
21020           << Loc.getSourceRange() << IsTypeAliasTemplateDecl;
21021     else
21022       Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_type_template)
21023           << "" << NameInfo.getName().getAsString() << ULE->getSourceRange()
21024           << IsTypeAliasTemplateDecl;
21025     Diag(Temp->getLocation(), diag::note_referenced_type_template)
21026         << IsTypeAliasTemplateDecl;
21027 
21028     return CreateRecoveryExpr(NameInfo.getBeginLoc(), NameInfo.getEndLoc(), {});
21029   }
21030 
21031   // Overloaded expressions.
21032   case BuiltinType::Overload: {
21033     // Try to resolve a single function template specialization.
21034     // This is obligatory.
21035     ExprResult Result = E;
21036     if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
21037       return Result;
21038 
21039     // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
21040     // leaves Result unchanged on failure.
21041     Result = E;
21042     if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
21043       return Result;
21044 
21045     // If that failed, try to recover with a call.
21046     tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
21047                          /*complain*/ true);
21048     return Result;
21049   }
21050 
21051   // Bound member functions.
21052   case BuiltinType::BoundMember: {
21053     ExprResult result = E;
21054     const Expr *BME = E->IgnoreParens();
21055     PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
21056     // Try to give a nicer diagnostic if it is a bound member that we recognize.
21057     if (isa<CXXPseudoDestructorExpr>(BME)) {
21058       PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
21059     } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
21060       if (ME->getMemberNameInfo().getName().getNameKind() ==
21061           DeclarationName::CXXDestructorName)
21062         PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
21063     }
21064     tryToRecoverWithCall(result, PD,
21065                          /*complain*/ true);
21066     return result;
21067   }
21068 
21069   // ARC unbridged casts.
21070   case BuiltinType::ARCUnbridgedCast: {
21071     Expr *realCast = ObjC().stripARCUnbridgedCast(E);
21072     ObjC().diagnoseARCUnbridgedCast(realCast);
21073     return realCast;
21074   }
21075 
21076   // Expressions of unknown type.
21077   case BuiltinType::UnknownAny:
21078     return diagnoseUnknownAnyExpr(*this, E);
21079 
21080   // Pseudo-objects.
21081   case BuiltinType::PseudoObject:
21082     return PseudoObject().checkRValue(E);
21083 
21084   case BuiltinType::BuiltinFn: {
21085     // Accept __noop without parens by implicitly converting it to a call expr.
21086     auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
21087     if (DRE) {
21088       auto *FD = cast<FunctionDecl>(DRE->getDecl());
21089       unsigned BuiltinID = FD->getBuiltinID();
21090       if (BuiltinID == Builtin::BI__noop) {
21091         E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
21092                               CK_BuiltinFnToFnPtr)
21093                 .get();
21094         return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
21095                                 VK_PRValue, SourceLocation(),
21096                                 FPOptionsOverride());
21097       }
21098 
21099       if (Context.BuiltinInfo.isInStdNamespace(BuiltinID)) {
21100         // Any use of these other than a direct call is ill-formed as of C++20,
21101         // because they are not addressable functions. In earlier language
21102         // modes, warn and force an instantiation of the real body.
21103         Diag(E->getBeginLoc(),
21104              getLangOpts().CPlusPlus20
21105                  ? diag::err_use_of_unaddressable_function
21106                  : diag::warn_cxx20_compat_use_of_unaddressable_function);
21107         if (FD->isImplicitlyInstantiable()) {
21108           // Require a definition here because a normal attempt at
21109           // instantiation for a builtin will be ignored, and we won't try
21110           // again later. We assume that the definition of the template
21111           // precedes this use.
21112           InstantiateFunctionDefinition(E->getBeginLoc(), FD,
21113                                         /*Recursive=*/false,
21114                                         /*DefinitionRequired=*/true,
21115                                         /*AtEndOfTU=*/false);
21116         }
21117         // Produce a properly-typed reference to the function.
21118         CXXScopeSpec SS;
21119         SS.Adopt(DRE->getQualifierLoc());
21120         TemplateArgumentListInfo TemplateArgs;
21121         DRE->copyTemplateArgumentsInto(TemplateArgs);
21122         return BuildDeclRefExpr(
21123             FD, FD->getType(), VK_LValue, DRE->getNameInfo(),
21124             DRE->hasQualifier() ? &SS : nullptr, DRE->getFoundDecl(),
21125             DRE->getTemplateKeywordLoc(),
21126             DRE->hasExplicitTemplateArgs() ? &TemplateArgs : nullptr);
21127       }
21128     }
21129 
21130     Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
21131     return ExprError();
21132   }
21133 
21134   case BuiltinType::IncompleteMatrixIdx:
21135     Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
21136              ->getRowIdx()
21137              ->getBeginLoc(),
21138          diag::err_matrix_incomplete_index);
21139     return ExprError();
21140 
21141   // Expressions of unknown type.
21142   case BuiltinType::ArraySection:
21143     Diag(E->getBeginLoc(), diag::err_array_section_use)
21144         << cast<ArraySectionExpr>(E)->isOMPArraySection();
21145     return ExprError();
21146 
21147   // Expressions of unknown type.
21148   case BuiltinType::OMPArrayShaping:
21149     return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));
21150 
21151   case BuiltinType::OMPIterator:
21152     return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));
21153 
21154   // Everything else should be impossible.
21155 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
21156   case BuiltinType::Id:
21157 #include "clang/Basic/OpenCLImageTypes.def"
21158 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
21159   case BuiltinType::Id:
21160 #include "clang/Basic/OpenCLExtensionTypes.def"
21161 #define SVE_TYPE(Name, Id, SingletonId) \
21162   case BuiltinType::Id:
21163 #include "clang/Basic/AArch64SVEACLETypes.def"
21164 #define PPC_VECTOR_TYPE(Name, Id, Size) \
21165   case BuiltinType::Id:
21166 #include "clang/Basic/PPCTypes.def"
21167 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21168 #include "clang/Basic/RISCVVTypes.def"
21169 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21170 #include "clang/Basic/WebAssemblyReferenceTypes.def"
21171 #define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) case BuiltinType::Id:
21172 #include "clang/Basic/AMDGPUTypes.def"
21173 #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21174 #include "clang/Basic/HLSLIntangibleTypes.def"
21175 #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
21176 #define PLACEHOLDER_TYPE(Id, SingletonId)
21177 #include "clang/AST/BuiltinTypes.def"
21178     break;
21179   }
21180 
21181   llvm_unreachable("invalid placeholder type!");
21182 }
21183 
21184 bool Sema::CheckCaseExpression(Expr *E) {
21185   if (E->isTypeDependent())
21186     return true;
21187   if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
21188     return E->getType()->isIntegralOrEnumerationType();
21189   return false;
21190 }
21191 
21192 ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
21193                                     ArrayRef<Expr *> SubExprs, QualType T) {
21194   if (!Context.getLangOpts().RecoveryAST)
21195     return ExprError();
21196 
21197   if (isSFINAEContext())
21198     return ExprError();
21199 
21200   if (T.isNull() || T->isUndeducedType() ||
21201       !Context.getLangOpts().RecoveryASTType)
21202     // We don't know the concrete type, fallback to dependent type.
21203     T = Context.DependentTy;
21204 
21205   return RecoveryExpr::Create(Context, T, Begin, End, SubExprs);
21206 }
21207