1 //===-- Type.cpp ----------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include <cstdio>
10 #include <optional>
11
12 #include "lldb/Core/Module.h"
13 #include "lldb/Utility/DataBufferHeap.h"
14 #include "lldb/Utility/DataExtractor.h"
15 #include "lldb/Utility/LLDBLog.h"
16 #include "lldb/Utility/Log.h"
17 #include "lldb/Utility/Scalar.h"
18 #include "lldb/Utility/StreamString.h"
19
20 #include "lldb/Symbol/CompilerType.h"
21 #include "lldb/Symbol/ObjectFile.h"
22 #include "lldb/Symbol/SymbolContextScope.h"
23 #include "lldb/Symbol/SymbolFile.h"
24 #include "lldb/Symbol/SymbolVendor.h"
25 #include "lldb/Symbol/Type.h"
26 #include "lldb/Symbol/TypeList.h"
27 #include "lldb/Symbol/TypeSystem.h"
28
29 #include "lldb/Target/ExecutionContext.h"
30 #include "lldb/Target/Process.h"
31 #include "lldb/Target/Target.h"
32
33 #include "llvm/ADT/StringRef.h"
34
35 using namespace lldb;
36 using namespace lldb_private;
37
contextMatches(llvm::ArrayRef<CompilerContext> context_chain,llvm::ArrayRef<CompilerContext> pattern)38 bool lldb_private::contextMatches(llvm::ArrayRef<CompilerContext> context_chain,
39 llvm::ArrayRef<CompilerContext> pattern) {
40 auto ctx = context_chain.begin();
41 auto ctx_end = context_chain.end();
42 for (const CompilerContext &pat : pattern) {
43 // Early exit if the pattern is too long.
44 if (ctx == ctx_end)
45 return false;
46 if (*ctx != pat) {
47 // Skip any number of module matches.
48 if (pat.kind == CompilerContextKind::AnyModule) {
49 // Greedily match 0..n modules.
50 ctx = std::find_if(ctx, ctx_end, [](const CompilerContext &ctx) {
51 return ctx.kind != CompilerContextKind::Module;
52 });
53 continue;
54 }
55 // See if there is a kind mismatch; they should have 1 bit in common.
56 if (((uint16_t)ctx->kind & (uint16_t)pat.kind) == 0)
57 return false;
58 // The name is ignored for AnyModule, but not for AnyType.
59 if (pat.kind != CompilerContextKind::AnyModule && ctx->name != pat.name)
60 return false;
61 }
62 ++ctx;
63 }
64 return true;
65 }
66
Dump() const67 void CompilerContext::Dump() const {
68 switch (kind) {
69 default:
70 printf("Invalid");
71 break;
72 case CompilerContextKind::TranslationUnit:
73 printf("TranslationUnit");
74 break;
75 case CompilerContextKind::Module:
76 printf("Module");
77 break;
78 case CompilerContextKind::Namespace:
79 printf("Namespace");
80 break;
81 case CompilerContextKind::Class:
82 printf("Class");
83 break;
84 case CompilerContextKind::Struct:
85 printf("Structure");
86 break;
87 case CompilerContextKind::Union:
88 printf("Union");
89 break;
90 case CompilerContextKind::Function:
91 printf("Function");
92 break;
93 case CompilerContextKind::Variable:
94 printf("Variable");
95 break;
96 case CompilerContextKind::Enum:
97 printf("Enumeration");
98 break;
99 case CompilerContextKind::Typedef:
100 printf("Typedef");
101 break;
102 case CompilerContextKind::AnyModule:
103 printf("AnyModule");
104 break;
105 case CompilerContextKind::AnyType:
106 printf("AnyType");
107 break;
108 }
109 printf("(\"%s\")\n", name.GetCString());
110 }
111
112 class TypeAppendVisitor {
113 public:
TypeAppendVisitor(TypeListImpl & type_list)114 TypeAppendVisitor(TypeListImpl &type_list) : m_type_list(type_list) {}
115
operator ()(const lldb::TypeSP & type)116 bool operator()(const lldb::TypeSP &type) {
117 m_type_list.Append(TypeImplSP(new TypeImpl(type)));
118 return true;
119 }
120
121 private:
122 TypeListImpl &m_type_list;
123 };
124
Append(const lldb_private::TypeList & type_list)125 void TypeListImpl::Append(const lldb_private::TypeList &type_list) {
126 TypeAppendVisitor cb(*this);
127 type_list.ForEach(cb);
128 }
129
SymbolFileType(SymbolFile & symbol_file,const lldb::TypeSP & type_sp)130 SymbolFileType::SymbolFileType(SymbolFile &symbol_file,
131 const lldb::TypeSP &type_sp)
132 : UserID(type_sp ? type_sp->GetID() : LLDB_INVALID_UID),
133 m_symbol_file(symbol_file), m_type_sp(type_sp) {}
134
GetType()135 Type *SymbolFileType::GetType() {
136 if (!m_type_sp) {
137 Type *resolved_type = m_symbol_file.ResolveTypeUID(GetID());
138 if (resolved_type)
139 m_type_sp = resolved_type->shared_from_this();
140 }
141 return m_type_sp.get();
142 }
143
Type(lldb::user_id_t uid,SymbolFile * symbol_file,ConstString name,std::optional<uint64_t> byte_size,SymbolContextScope * context,user_id_t encoding_uid,EncodingDataType encoding_uid_type,const Declaration & decl,const CompilerType & compiler_type,ResolveState compiler_type_resolve_state,uint32_t opaque_payload)144 Type::Type(lldb::user_id_t uid, SymbolFile *symbol_file, ConstString name,
145 std::optional<uint64_t> byte_size, SymbolContextScope *context,
146 user_id_t encoding_uid, EncodingDataType encoding_uid_type,
147 const Declaration &decl, const CompilerType &compiler_type,
148 ResolveState compiler_type_resolve_state, uint32_t opaque_payload)
149 : std::enable_shared_from_this<Type>(), UserID(uid), m_name(name),
150 m_symbol_file(symbol_file), m_context(context),
151 m_encoding_uid(encoding_uid), m_encoding_uid_type(encoding_uid_type),
152 m_decl(decl), m_compiler_type(compiler_type),
153 m_compiler_type_resolve_state(compiler_type ? compiler_type_resolve_state
154 : ResolveState::Unresolved),
155 m_payload(opaque_payload) {
156 if (byte_size) {
157 m_byte_size = *byte_size;
158 m_byte_size_has_value = true;
159 } else {
160 m_byte_size = 0;
161 m_byte_size_has_value = false;
162 }
163 }
164
Type()165 Type::Type()
166 : std::enable_shared_from_this<Type>(), UserID(0), m_name("<INVALID TYPE>"),
167 m_payload(0) {
168 m_byte_size = 0;
169 m_byte_size_has_value = false;
170 }
171
GetDescription(Stream * s,lldb::DescriptionLevel level,bool show_name,ExecutionContextScope * exe_scope)172 void Type::GetDescription(Stream *s, lldb::DescriptionLevel level,
173 bool show_name, ExecutionContextScope *exe_scope) {
174 *s << "id = " << (const UserID &)*this;
175
176 // Call the name accessor to make sure we resolve the type name
177 if (show_name) {
178 ConstString type_name = GetName();
179 if (type_name) {
180 *s << ", name = \"" << type_name << '"';
181 ConstString qualified_type_name(GetQualifiedName());
182 if (qualified_type_name != type_name) {
183 *s << ", qualified = \"" << qualified_type_name << '"';
184 }
185 }
186 }
187
188 // Call the get byte size accessor so we resolve our byte size
189 if (GetByteSize(exe_scope))
190 s->Printf(", byte-size = %" PRIu64, m_byte_size);
191 bool show_fullpaths = (level == lldb::eDescriptionLevelVerbose);
192 m_decl.Dump(s, show_fullpaths);
193
194 if (m_compiler_type.IsValid()) {
195 *s << ", compiler_type = \"";
196 GetForwardCompilerType().DumpTypeDescription(s);
197 *s << '"';
198 } else if (m_encoding_uid != LLDB_INVALID_UID) {
199 s->Printf(", type_uid = 0x%8.8" PRIx64, m_encoding_uid);
200 switch (m_encoding_uid_type) {
201 case eEncodingInvalid:
202 break;
203 case eEncodingIsUID:
204 s->PutCString(" (unresolved type)");
205 break;
206 case eEncodingIsConstUID:
207 s->PutCString(" (unresolved const type)");
208 break;
209 case eEncodingIsRestrictUID:
210 s->PutCString(" (unresolved restrict type)");
211 break;
212 case eEncodingIsVolatileUID:
213 s->PutCString(" (unresolved volatile type)");
214 break;
215 case eEncodingIsAtomicUID:
216 s->PutCString(" (unresolved atomic type)");
217 break;
218 case eEncodingIsTypedefUID:
219 s->PutCString(" (unresolved typedef)");
220 break;
221 case eEncodingIsPointerUID:
222 s->PutCString(" (unresolved pointer)");
223 break;
224 case eEncodingIsLValueReferenceUID:
225 s->PutCString(" (unresolved L value reference)");
226 break;
227 case eEncodingIsRValueReferenceUID:
228 s->PutCString(" (unresolved R value reference)");
229 break;
230 case eEncodingIsSyntheticUID:
231 s->PutCString(" (synthetic type)");
232 break;
233 }
234 }
235 }
236
Dump(Stream * s,bool show_context,lldb::DescriptionLevel level)237 void Type::Dump(Stream *s, bool show_context, lldb::DescriptionLevel level) {
238 s->Printf("%p: ", static_cast<void *>(this));
239 s->Indent();
240 *s << "Type" << static_cast<const UserID &>(*this) << ' ';
241 if (m_name)
242 *s << ", name = \"" << m_name << "\"";
243
244 if (m_byte_size_has_value)
245 s->Printf(", size = %" PRIu64, m_byte_size);
246
247 if (show_context && m_context != nullptr) {
248 s->PutCString(", context = ( ");
249 m_context->DumpSymbolContext(s);
250 s->PutCString(" )");
251 }
252
253 bool show_fullpaths = false;
254 m_decl.Dump(s, show_fullpaths);
255
256 if (m_compiler_type.IsValid()) {
257 *s << ", compiler_type = " << m_compiler_type.GetOpaqueQualType() << ' ';
258 GetForwardCompilerType().DumpTypeDescription(s, level);
259 } else if (m_encoding_uid != LLDB_INVALID_UID) {
260 s->Format(", type_data = {0:x-16}", m_encoding_uid);
261 switch (m_encoding_uid_type) {
262 case eEncodingInvalid:
263 break;
264 case eEncodingIsUID:
265 s->PutCString(" (unresolved type)");
266 break;
267 case eEncodingIsConstUID:
268 s->PutCString(" (unresolved const type)");
269 break;
270 case eEncodingIsRestrictUID:
271 s->PutCString(" (unresolved restrict type)");
272 break;
273 case eEncodingIsVolatileUID:
274 s->PutCString(" (unresolved volatile type)");
275 break;
276 case eEncodingIsAtomicUID:
277 s->PutCString(" (unresolved atomic type)");
278 break;
279 case eEncodingIsTypedefUID:
280 s->PutCString(" (unresolved typedef)");
281 break;
282 case eEncodingIsPointerUID:
283 s->PutCString(" (unresolved pointer)");
284 break;
285 case eEncodingIsLValueReferenceUID:
286 s->PutCString(" (unresolved L value reference)");
287 break;
288 case eEncodingIsRValueReferenceUID:
289 s->PutCString(" (unresolved R value reference)");
290 break;
291 case eEncodingIsSyntheticUID:
292 s->PutCString(" (synthetic type)");
293 break;
294 }
295 }
296
297 //
298 // if (m_access)
299 // s->Printf(", access = %u", m_access);
300 s->EOL();
301 }
302
GetName()303 ConstString Type::GetName() {
304 if (!m_name)
305 m_name = GetForwardCompilerType().GetTypeName();
306 return m_name;
307 }
308
GetBaseName()309 ConstString Type::GetBaseName() {
310 return GetForwardCompilerType().GetTypeName(/*BaseOnly*/ true);
311 }
312
DumpTypeName(Stream * s)313 void Type::DumpTypeName(Stream *s) { GetName().Dump(s, "<invalid-type-name>"); }
314
DumpValue(ExecutionContext * exe_ctx,Stream * s,const DataExtractor & data,uint32_t data_byte_offset,bool show_types,bool show_summary,bool verbose,lldb::Format format)315 void Type::DumpValue(ExecutionContext *exe_ctx, Stream *s,
316 const DataExtractor &data, uint32_t data_byte_offset,
317 bool show_types, bool show_summary, bool verbose,
318 lldb::Format format) {
319 if (ResolveCompilerType(ResolveState::Forward)) {
320 if (show_types) {
321 s->PutChar('(');
322 if (verbose)
323 s->Printf("Type{0x%8.8" PRIx64 "} ", GetID());
324 DumpTypeName(s);
325 s->PutCString(") ");
326 }
327
328 GetForwardCompilerType().DumpValue(
329 exe_ctx, s, format == lldb::eFormatDefault ? GetFormat() : format, data,
330 data_byte_offset,
331 GetByteSize(exe_ctx ? exe_ctx->GetBestExecutionContextScope() : nullptr)
332 .value_or(0),
333 0, // Bitfield bit size
334 0, // Bitfield bit offset
335 show_types, show_summary, verbose, 0);
336 }
337 }
338
GetEncodingType()339 Type *Type::GetEncodingType() {
340 if (m_encoding_type == nullptr && m_encoding_uid != LLDB_INVALID_UID)
341 m_encoding_type = m_symbol_file->ResolveTypeUID(m_encoding_uid);
342 return m_encoding_type;
343 }
344
GetByteSize(ExecutionContextScope * exe_scope)345 std::optional<uint64_t> Type::GetByteSize(ExecutionContextScope *exe_scope) {
346 if (m_byte_size_has_value)
347 return static_cast<uint64_t>(m_byte_size);
348
349 switch (m_encoding_uid_type) {
350 case eEncodingInvalid:
351 case eEncodingIsSyntheticUID:
352 break;
353 case eEncodingIsUID:
354 case eEncodingIsConstUID:
355 case eEncodingIsRestrictUID:
356 case eEncodingIsVolatileUID:
357 case eEncodingIsAtomicUID:
358 case eEncodingIsTypedefUID: {
359 Type *encoding_type = GetEncodingType();
360 if (encoding_type)
361 if (std::optional<uint64_t> size =
362 encoding_type->GetByteSize(exe_scope)) {
363 m_byte_size = *size;
364 m_byte_size_has_value = true;
365 return static_cast<uint64_t>(m_byte_size);
366 }
367
368 if (std::optional<uint64_t> size =
369 GetLayoutCompilerType().GetByteSize(exe_scope)) {
370 m_byte_size = *size;
371 m_byte_size_has_value = true;
372 return static_cast<uint64_t>(m_byte_size);
373 }
374 } break;
375
376 // If we are a pointer or reference, then this is just a pointer size;
377 case eEncodingIsPointerUID:
378 case eEncodingIsLValueReferenceUID:
379 case eEncodingIsRValueReferenceUID: {
380 if (ArchSpec arch = m_symbol_file->GetObjectFile()->GetArchitecture()) {
381 m_byte_size = arch.GetAddressByteSize();
382 m_byte_size_has_value = true;
383 return static_cast<uint64_t>(m_byte_size);
384 }
385 } break;
386 }
387 return {};
388 }
389
GetNumChildren(bool omit_empty_base_classes)390 uint32_t Type::GetNumChildren(bool omit_empty_base_classes) {
391 return GetForwardCompilerType().GetNumChildren(omit_empty_base_classes, nullptr);
392 }
393
IsAggregateType()394 bool Type::IsAggregateType() {
395 return GetForwardCompilerType().IsAggregateType();
396 }
397
IsTemplateType()398 bool Type::IsTemplateType() {
399 return GetForwardCompilerType().IsTemplateType();
400 }
401
GetTypedefType()402 lldb::TypeSP Type::GetTypedefType() {
403 lldb::TypeSP type_sp;
404 if (IsTypedef()) {
405 Type *typedef_type = m_symbol_file->ResolveTypeUID(m_encoding_uid);
406 if (typedef_type)
407 type_sp = typedef_type->shared_from_this();
408 }
409 return type_sp;
410 }
411
GetFormat()412 lldb::Format Type::GetFormat() { return GetForwardCompilerType().GetFormat(); }
413
GetEncoding(uint64_t & count)414 lldb::Encoding Type::GetEncoding(uint64_t &count) {
415 // Make sure we resolve our type if it already hasn't been.
416 return GetForwardCompilerType().GetEncoding(count);
417 }
418
DumpValueInMemory(ExecutionContext * exe_ctx,Stream * s,lldb::addr_t address,AddressType address_type,bool show_types,bool show_summary,bool verbose)419 bool Type::DumpValueInMemory(ExecutionContext *exe_ctx, Stream *s,
420 lldb::addr_t address, AddressType address_type,
421 bool show_types, bool show_summary, bool verbose) {
422 if (address != LLDB_INVALID_ADDRESS) {
423 DataExtractor data;
424 Target *target = nullptr;
425 if (exe_ctx)
426 target = exe_ctx->GetTargetPtr();
427 if (target)
428 data.SetByteOrder(target->GetArchitecture().GetByteOrder());
429 if (ReadFromMemory(exe_ctx, address, address_type, data)) {
430 DumpValue(exe_ctx, s, data, 0, show_types, show_summary, verbose);
431 return true;
432 }
433 }
434 return false;
435 }
436
ReadFromMemory(ExecutionContext * exe_ctx,lldb::addr_t addr,AddressType address_type,DataExtractor & data)437 bool Type::ReadFromMemory(ExecutionContext *exe_ctx, lldb::addr_t addr,
438 AddressType address_type, DataExtractor &data) {
439 if (address_type == eAddressTypeFile) {
440 // Can't convert a file address to anything valid without more context
441 // (which Module it came from)
442 return false;
443 }
444
445 const uint64_t byte_size =
446 GetByteSize(exe_ctx ? exe_ctx->GetBestExecutionContextScope() : nullptr)
447 .value_or(0);
448 if (data.GetByteSize() < byte_size) {
449 lldb::DataBufferSP data_sp(new DataBufferHeap(byte_size, '\0'));
450 data.SetData(data_sp);
451 }
452
453 uint8_t *dst = const_cast<uint8_t *>(data.PeekData(0, byte_size));
454 if (dst != nullptr) {
455 if (address_type == eAddressTypeHost) {
456 // The address is an address in this process, so just copy it
457 if (addr == 0)
458 return false;
459 memcpy(dst, reinterpret_cast<uint8_t *>(addr), byte_size);
460 return true;
461 } else {
462 if (exe_ctx) {
463 Process *process = exe_ctx->GetProcessPtr();
464 if (process) {
465 Status error;
466 return exe_ctx->GetProcessPtr()->ReadMemory(addr, dst, byte_size,
467 error) == byte_size;
468 }
469 }
470 }
471 }
472 return false;
473 }
474
WriteToMemory(ExecutionContext * exe_ctx,lldb::addr_t addr,AddressType address_type,DataExtractor & data)475 bool Type::WriteToMemory(ExecutionContext *exe_ctx, lldb::addr_t addr,
476 AddressType address_type, DataExtractor &data) {
477 return false;
478 }
479
GetDeclaration() const480 const Declaration &Type::GetDeclaration() const { return m_decl; }
481
ResolveCompilerType(ResolveState compiler_type_resolve_state)482 bool Type::ResolveCompilerType(ResolveState compiler_type_resolve_state) {
483 // TODO: This needs to consider the correct type system to use.
484 Type *encoding_type = nullptr;
485 if (!m_compiler_type.IsValid()) {
486 encoding_type = GetEncodingType();
487 if (encoding_type) {
488 switch (m_encoding_uid_type) {
489 case eEncodingIsUID: {
490 CompilerType encoding_compiler_type =
491 encoding_type->GetForwardCompilerType();
492 if (encoding_compiler_type.IsValid()) {
493 m_compiler_type = encoding_compiler_type;
494 m_compiler_type_resolve_state =
495 encoding_type->m_compiler_type_resolve_state;
496 }
497 } break;
498
499 case eEncodingIsConstUID:
500 m_compiler_type =
501 encoding_type->GetForwardCompilerType().AddConstModifier();
502 break;
503
504 case eEncodingIsRestrictUID:
505 m_compiler_type =
506 encoding_type->GetForwardCompilerType().AddRestrictModifier();
507 break;
508
509 case eEncodingIsVolatileUID:
510 m_compiler_type =
511 encoding_type->GetForwardCompilerType().AddVolatileModifier();
512 break;
513
514 case eEncodingIsAtomicUID:
515 m_compiler_type =
516 encoding_type->GetForwardCompilerType().GetAtomicType();
517 break;
518
519 case eEncodingIsTypedefUID:
520 m_compiler_type = encoding_type->GetForwardCompilerType().CreateTypedef(
521 m_name.AsCString("__lldb_invalid_typedef_name"),
522 GetSymbolFile()->GetDeclContextContainingUID(GetID()), m_payload);
523 m_name.Clear();
524 break;
525
526 case eEncodingIsPointerUID:
527 m_compiler_type =
528 encoding_type->GetForwardCompilerType().GetPointerType();
529 break;
530
531 case eEncodingIsLValueReferenceUID:
532 m_compiler_type =
533 encoding_type->GetForwardCompilerType().GetLValueReferenceType();
534 break;
535
536 case eEncodingIsRValueReferenceUID:
537 m_compiler_type =
538 encoding_type->GetForwardCompilerType().GetRValueReferenceType();
539 break;
540
541 default:
542 llvm_unreachable("Unhandled encoding_data_type.");
543 }
544 } else {
545 // We have no encoding type, return void?
546 auto type_system_or_err =
547 m_symbol_file->GetTypeSystemForLanguage(eLanguageTypeC);
548 if (auto err = type_system_or_err.takeError()) {
549 LLDB_LOG_ERROR(GetLog(LLDBLog::Symbols), std::move(err),
550 "Unable to construct void type from TypeSystemClang");
551 } else {
552 CompilerType void_compiler_type;
553 auto ts = *type_system_or_err;
554 if (ts)
555 void_compiler_type = ts->GetBasicTypeFromAST(eBasicTypeVoid);
556 switch (m_encoding_uid_type) {
557 case eEncodingIsUID:
558 m_compiler_type = void_compiler_type;
559 break;
560
561 case eEncodingIsConstUID:
562 m_compiler_type = void_compiler_type.AddConstModifier();
563 break;
564
565 case eEncodingIsRestrictUID:
566 m_compiler_type = void_compiler_type.AddRestrictModifier();
567 break;
568
569 case eEncodingIsVolatileUID:
570 m_compiler_type = void_compiler_type.AddVolatileModifier();
571 break;
572
573 case eEncodingIsAtomicUID:
574 m_compiler_type = void_compiler_type.GetAtomicType();
575 break;
576
577 case eEncodingIsTypedefUID:
578 m_compiler_type = void_compiler_type.CreateTypedef(
579 m_name.AsCString("__lldb_invalid_typedef_name"),
580 GetSymbolFile()->GetDeclContextContainingUID(GetID()), m_payload);
581 break;
582
583 case eEncodingIsPointerUID:
584 m_compiler_type = void_compiler_type.GetPointerType();
585 break;
586
587 case eEncodingIsLValueReferenceUID:
588 m_compiler_type = void_compiler_type.GetLValueReferenceType();
589 break;
590
591 case eEncodingIsRValueReferenceUID:
592 m_compiler_type = void_compiler_type.GetRValueReferenceType();
593 break;
594
595 default:
596 llvm_unreachable("Unhandled encoding_data_type.");
597 }
598 }
599 }
600
601 // When we have a EncodingUID, our "m_flags.compiler_type_resolve_state" is
602 // set to eResolveStateUnresolved so we need to update it to say that we
603 // now have a forward declaration since that is what we created above.
604 if (m_compiler_type.IsValid())
605 m_compiler_type_resolve_state = ResolveState::Forward;
606 }
607
608 // Check if we have a forward reference to a class/struct/union/enum?
609 if (compiler_type_resolve_state == ResolveState::Layout ||
610 compiler_type_resolve_state == ResolveState::Full) {
611 // Check if we have a forward reference to a class/struct/union/enum?
612 if (m_compiler_type.IsValid() &&
613 m_compiler_type_resolve_state < compiler_type_resolve_state) {
614 m_compiler_type_resolve_state = ResolveState::Full;
615 if (!m_compiler_type.IsDefined()) {
616 // We have a forward declaration, we need to resolve it to a complete
617 // definition.
618 m_symbol_file->CompleteType(m_compiler_type);
619 }
620 }
621 }
622
623 // If we have an encoding type, then we need to make sure it is resolved
624 // appropriately.
625 if (m_encoding_uid != LLDB_INVALID_UID) {
626 if (encoding_type == nullptr)
627 encoding_type = GetEncodingType();
628 if (encoding_type) {
629 ResolveState encoding_compiler_type_resolve_state =
630 compiler_type_resolve_state;
631
632 if (compiler_type_resolve_state == ResolveState::Layout) {
633 switch (m_encoding_uid_type) {
634 case eEncodingIsPointerUID:
635 case eEncodingIsLValueReferenceUID:
636 case eEncodingIsRValueReferenceUID:
637 encoding_compiler_type_resolve_state = ResolveState::Forward;
638 break;
639 default:
640 break;
641 }
642 }
643 encoding_type->ResolveCompilerType(encoding_compiler_type_resolve_state);
644 }
645 }
646 return m_compiler_type.IsValid();
647 }
GetEncodingMask()648 uint32_t Type::GetEncodingMask() {
649 uint32_t encoding_mask = 1u << m_encoding_uid_type;
650 Type *encoding_type = GetEncodingType();
651 assert(encoding_type != this);
652 if (encoding_type)
653 encoding_mask |= encoding_type->GetEncodingMask();
654 return encoding_mask;
655 }
656
GetFullCompilerType()657 CompilerType Type::GetFullCompilerType() {
658 ResolveCompilerType(ResolveState::Full);
659 return m_compiler_type;
660 }
661
GetLayoutCompilerType()662 CompilerType Type::GetLayoutCompilerType() {
663 ResolveCompilerType(ResolveState::Layout);
664 return m_compiler_type;
665 }
666
GetForwardCompilerType()667 CompilerType Type::GetForwardCompilerType() {
668 ResolveCompilerType(ResolveState::Forward);
669 return m_compiler_type;
670 }
671
GetQualifiedName()672 ConstString Type::GetQualifiedName() {
673 return GetForwardCompilerType().GetTypeName();
674 }
675
GetTypeScopeAndBasename(llvm::StringRef name,llvm::StringRef & scope,llvm::StringRef & basename,TypeClass & type_class)676 bool Type::GetTypeScopeAndBasename(llvm::StringRef name,
677 llvm::StringRef &scope,
678 llvm::StringRef &basename,
679 TypeClass &type_class) {
680 type_class = eTypeClassAny;
681
682 if (name.empty())
683 return false;
684
685 basename = name;
686 if (basename.consume_front("struct "))
687 type_class = eTypeClassStruct;
688 else if (basename.consume_front("class "))
689 type_class = eTypeClassClass;
690 else if (basename.consume_front("union "))
691 type_class = eTypeClassUnion;
692 else if (basename.consume_front("enum "))
693 type_class = eTypeClassEnumeration;
694 else if (basename.consume_front("typedef "))
695 type_class = eTypeClassTypedef;
696
697 size_t namespace_separator = basename.find("::");
698 if (namespace_separator == llvm::StringRef::npos)
699 return false;
700
701 size_t template_begin = basename.find('<');
702 while (namespace_separator != llvm::StringRef::npos) {
703 if (template_begin != llvm::StringRef::npos &&
704 namespace_separator > template_begin) {
705 size_t template_depth = 1;
706 llvm::StringRef template_arg =
707 basename.drop_front(template_begin + 1);
708 while (template_depth > 0 && !template_arg.empty()) {
709 if (template_arg.front() == '<')
710 template_depth++;
711 else if (template_arg.front() == '>')
712 template_depth--;
713 template_arg = template_arg.drop_front(1);
714 }
715 if (template_depth != 0)
716 return false; // We have an invalid type name. Bail out.
717 if (template_arg.empty())
718 break; // The template ends at the end of the full name.
719 basename = template_arg;
720 } else {
721 basename = basename.drop_front(namespace_separator + 2);
722 }
723 template_begin = basename.find('<');
724 namespace_separator = basename.find("::");
725 }
726 if (basename.size() < name.size()) {
727 scope = name.take_front(name.size() - basename.size());
728 return true;
729 }
730 return false;
731 }
732
GetModule()733 ModuleSP Type::GetModule() {
734 if (m_symbol_file)
735 return m_symbol_file->GetObjectFile()->GetModule();
736 return ModuleSP();
737 }
738
GetExeModule()739 ModuleSP Type::GetExeModule() {
740 if (m_compiler_type) {
741 auto ts = m_compiler_type.GetTypeSystem();
742 if (!ts)
743 return {};
744 SymbolFile *symbol_file = ts->GetSymbolFile();
745 if (symbol_file)
746 return symbol_file->GetObjectFile()->GetModule();
747 }
748 return {};
749 }
750
TypeAndOrName(TypeSP & in_type_sp)751 TypeAndOrName::TypeAndOrName(TypeSP &in_type_sp) {
752 if (in_type_sp) {
753 m_compiler_type = in_type_sp->GetForwardCompilerType();
754 m_type_name = in_type_sp->GetName();
755 }
756 }
757
TypeAndOrName(const char * in_type_str)758 TypeAndOrName::TypeAndOrName(const char *in_type_str)
759 : m_type_name(in_type_str) {}
760
TypeAndOrName(ConstString & in_type_const_string)761 TypeAndOrName::TypeAndOrName(ConstString &in_type_const_string)
762 : m_type_name(in_type_const_string) {}
763
operator ==(const TypeAndOrName & other) const764 bool TypeAndOrName::operator==(const TypeAndOrName &other) const {
765 if (m_compiler_type != other.m_compiler_type)
766 return false;
767 if (m_type_name != other.m_type_name)
768 return false;
769 return true;
770 }
771
operator !=(const TypeAndOrName & other) const772 bool TypeAndOrName::operator!=(const TypeAndOrName &other) const {
773 return !(*this == other);
774 }
775
GetName() const776 ConstString TypeAndOrName::GetName() const {
777 if (m_type_name)
778 return m_type_name;
779 if (m_compiler_type)
780 return m_compiler_type.GetTypeName();
781 return ConstString("<invalid>");
782 }
783
SetName(ConstString type_name)784 void TypeAndOrName::SetName(ConstString type_name) {
785 m_type_name = type_name;
786 }
787
SetName(const char * type_name_cstr)788 void TypeAndOrName::SetName(const char *type_name_cstr) {
789 m_type_name.SetCString(type_name_cstr);
790 }
791
SetTypeSP(lldb::TypeSP type_sp)792 void TypeAndOrName::SetTypeSP(lldb::TypeSP type_sp) {
793 if (type_sp) {
794 m_compiler_type = type_sp->GetForwardCompilerType();
795 m_type_name = type_sp->GetName();
796 } else
797 Clear();
798 }
799
SetCompilerType(CompilerType compiler_type)800 void TypeAndOrName::SetCompilerType(CompilerType compiler_type) {
801 m_compiler_type = compiler_type;
802 if (m_compiler_type)
803 m_type_name = m_compiler_type.GetTypeName();
804 }
805
IsEmpty() const806 bool TypeAndOrName::IsEmpty() const {
807 return !((bool)m_type_name || (bool)m_compiler_type);
808 }
809
Clear()810 void TypeAndOrName::Clear() {
811 m_type_name.Clear();
812 m_compiler_type.Clear();
813 }
814
HasName() const815 bool TypeAndOrName::HasName() const { return (bool)m_type_name; }
816
HasCompilerType() const817 bool TypeAndOrName::HasCompilerType() const {
818 return m_compiler_type.IsValid();
819 }
820
TypeImpl(const lldb::TypeSP & type_sp)821 TypeImpl::TypeImpl(const lldb::TypeSP &type_sp)
822 : m_module_wp(), m_static_type(), m_dynamic_type() {
823 SetType(type_sp);
824 }
825
TypeImpl(const CompilerType & compiler_type)826 TypeImpl::TypeImpl(const CompilerType &compiler_type)
827 : m_module_wp(), m_static_type(), m_dynamic_type() {
828 SetType(compiler_type);
829 }
830
TypeImpl(const lldb::TypeSP & type_sp,const CompilerType & dynamic)831 TypeImpl::TypeImpl(const lldb::TypeSP &type_sp, const CompilerType &dynamic)
832 : m_module_wp(), m_static_type(), m_dynamic_type(dynamic) {
833 SetType(type_sp, dynamic);
834 }
835
TypeImpl(const CompilerType & static_type,const CompilerType & dynamic_type)836 TypeImpl::TypeImpl(const CompilerType &static_type,
837 const CompilerType &dynamic_type)
838 : m_module_wp(), m_static_type(), m_dynamic_type() {
839 SetType(static_type, dynamic_type);
840 }
841
SetType(const lldb::TypeSP & type_sp)842 void TypeImpl::SetType(const lldb::TypeSP &type_sp) {
843 if (type_sp) {
844 m_static_type = type_sp->GetForwardCompilerType();
845 m_exe_module_wp = type_sp->GetExeModule();
846 m_module_wp = type_sp->GetModule();
847 } else {
848 m_static_type.Clear();
849 m_module_wp = lldb::ModuleWP();
850 }
851 }
852
SetType(const CompilerType & compiler_type)853 void TypeImpl::SetType(const CompilerType &compiler_type) {
854 m_module_wp = lldb::ModuleWP();
855 m_static_type = compiler_type;
856 }
857
SetType(const lldb::TypeSP & type_sp,const CompilerType & dynamic)858 void TypeImpl::SetType(const lldb::TypeSP &type_sp,
859 const CompilerType &dynamic) {
860 SetType(type_sp);
861 m_dynamic_type = dynamic;
862 }
863
SetType(const CompilerType & compiler_type,const CompilerType & dynamic)864 void TypeImpl::SetType(const CompilerType &compiler_type,
865 const CompilerType &dynamic) {
866 m_module_wp = lldb::ModuleWP();
867 m_static_type = compiler_type;
868 m_dynamic_type = dynamic;
869 }
870
CheckModule(lldb::ModuleSP & module_sp) const871 bool TypeImpl::CheckModule(lldb::ModuleSP &module_sp) const {
872 return CheckModuleCommon(m_module_wp, module_sp);
873 }
874
CheckExeModule(lldb::ModuleSP & module_sp) const875 bool TypeImpl::CheckExeModule(lldb::ModuleSP &module_sp) const {
876 return CheckModuleCommon(m_exe_module_wp, module_sp);
877 }
878
CheckModuleCommon(const lldb::ModuleWP & input_module_wp,lldb::ModuleSP & module_sp) const879 bool TypeImpl::CheckModuleCommon(const lldb::ModuleWP &input_module_wp,
880 lldb::ModuleSP &module_sp) const {
881 // Check if we have a module for this type. If we do and the shared pointer
882 // is can be successfully initialized with m_module_wp, return true. Else
883 // return false if we didn't have a module, or if we had a module and it has
884 // been deleted. Any functions doing anything with a TypeSP in this TypeImpl
885 // class should call this function and only do anything with the ivars if
886 // this function returns true. If we have a module, the "module_sp" will be
887 // filled in with a strong reference to the module so that the module will at
888 // least stay around long enough for the type query to succeed.
889 module_sp = input_module_wp.lock();
890 if (!module_sp) {
891 lldb::ModuleWP empty_module_wp;
892 // If either call to "std::weak_ptr::owner_before(...) value returns true,
893 // this indicates that m_module_wp once contained (possibly still does) a
894 // reference to a valid shared pointer. This helps us know if we had a
895 // valid reference to a section which is now invalid because the module it
896 // was in was deleted
897 if (empty_module_wp.owner_before(input_module_wp) ||
898 input_module_wp.owner_before(empty_module_wp)) {
899 // input_module_wp had a valid reference to a module, but all strong
900 // references have been released and the module has been deleted
901 return false;
902 }
903 }
904 // We either successfully locked the module, or didn't have one to begin with
905 return true;
906 }
907
operator ==(const TypeImpl & rhs) const908 bool TypeImpl::operator==(const TypeImpl &rhs) const {
909 return m_static_type == rhs.m_static_type &&
910 m_dynamic_type == rhs.m_dynamic_type;
911 }
912
operator !=(const TypeImpl & rhs) const913 bool TypeImpl::operator!=(const TypeImpl &rhs) const {
914 return !(*this == rhs);
915 }
916
IsValid() const917 bool TypeImpl::IsValid() const {
918 // just a name is not valid
919 ModuleSP module_sp;
920 if (CheckModule(module_sp))
921 return m_static_type.IsValid() || m_dynamic_type.IsValid();
922 return false;
923 }
924
operator bool() const925 TypeImpl::operator bool() const { return IsValid(); }
926
Clear()927 void TypeImpl::Clear() {
928 m_module_wp = lldb::ModuleWP();
929 m_static_type.Clear();
930 m_dynamic_type.Clear();
931 }
932
GetModule() const933 ModuleSP TypeImpl::GetModule() const {
934 lldb::ModuleSP module_sp;
935 if (CheckExeModule(module_sp))
936 return module_sp;
937 return nullptr;
938 }
939
GetName() const940 ConstString TypeImpl::GetName() const {
941 ModuleSP module_sp;
942 if (CheckModule(module_sp)) {
943 if (m_dynamic_type)
944 return m_dynamic_type.GetTypeName();
945 return m_static_type.GetTypeName();
946 }
947 return ConstString();
948 }
949
GetDisplayTypeName() const950 ConstString TypeImpl::GetDisplayTypeName() const {
951 ModuleSP module_sp;
952 if (CheckModule(module_sp)) {
953 if (m_dynamic_type)
954 return m_dynamic_type.GetDisplayTypeName();
955 return m_static_type.GetDisplayTypeName();
956 }
957 return ConstString();
958 }
959
GetPointerType() const960 TypeImpl TypeImpl::GetPointerType() const {
961 ModuleSP module_sp;
962 if (CheckModule(module_sp)) {
963 if (m_dynamic_type.IsValid()) {
964 return TypeImpl(m_static_type.GetPointerType(),
965 m_dynamic_type.GetPointerType());
966 }
967 return TypeImpl(m_static_type.GetPointerType());
968 }
969 return TypeImpl();
970 }
971
GetPointeeType() const972 TypeImpl TypeImpl::GetPointeeType() const {
973 ModuleSP module_sp;
974 if (CheckModule(module_sp)) {
975 if (m_dynamic_type.IsValid()) {
976 return TypeImpl(m_static_type.GetPointeeType(),
977 m_dynamic_type.GetPointeeType());
978 }
979 return TypeImpl(m_static_type.GetPointeeType());
980 }
981 return TypeImpl();
982 }
983
GetReferenceType() const984 TypeImpl TypeImpl::GetReferenceType() const {
985 ModuleSP module_sp;
986 if (CheckModule(module_sp)) {
987 if (m_dynamic_type.IsValid()) {
988 return TypeImpl(m_static_type.GetLValueReferenceType(),
989 m_dynamic_type.GetLValueReferenceType());
990 }
991 return TypeImpl(m_static_type.GetLValueReferenceType());
992 }
993 return TypeImpl();
994 }
995
GetTypedefedType() const996 TypeImpl TypeImpl::GetTypedefedType() const {
997 ModuleSP module_sp;
998 if (CheckModule(module_sp)) {
999 if (m_dynamic_type.IsValid()) {
1000 return TypeImpl(m_static_type.GetTypedefedType(),
1001 m_dynamic_type.GetTypedefedType());
1002 }
1003 return TypeImpl(m_static_type.GetTypedefedType());
1004 }
1005 return TypeImpl();
1006 }
1007
GetDereferencedType() const1008 TypeImpl TypeImpl::GetDereferencedType() const {
1009 ModuleSP module_sp;
1010 if (CheckModule(module_sp)) {
1011 if (m_dynamic_type.IsValid()) {
1012 return TypeImpl(m_static_type.GetNonReferenceType(),
1013 m_dynamic_type.GetNonReferenceType());
1014 }
1015 return TypeImpl(m_static_type.GetNonReferenceType());
1016 }
1017 return TypeImpl();
1018 }
1019
GetUnqualifiedType() const1020 TypeImpl TypeImpl::GetUnqualifiedType() const {
1021 ModuleSP module_sp;
1022 if (CheckModule(module_sp)) {
1023 if (m_dynamic_type.IsValid()) {
1024 return TypeImpl(m_static_type.GetFullyUnqualifiedType(),
1025 m_dynamic_type.GetFullyUnqualifiedType());
1026 }
1027 return TypeImpl(m_static_type.GetFullyUnqualifiedType());
1028 }
1029 return TypeImpl();
1030 }
1031
GetCanonicalType() const1032 TypeImpl TypeImpl::GetCanonicalType() const {
1033 ModuleSP module_sp;
1034 if (CheckModule(module_sp)) {
1035 if (m_dynamic_type.IsValid()) {
1036 return TypeImpl(m_static_type.GetCanonicalType(),
1037 m_dynamic_type.GetCanonicalType());
1038 }
1039 return TypeImpl(m_static_type.GetCanonicalType());
1040 }
1041 return TypeImpl();
1042 }
1043
GetCompilerType(bool prefer_dynamic)1044 CompilerType TypeImpl::GetCompilerType(bool prefer_dynamic) {
1045 ModuleSP module_sp;
1046 if (CheckModule(module_sp)) {
1047 if (prefer_dynamic) {
1048 if (m_dynamic_type.IsValid())
1049 return m_dynamic_type;
1050 }
1051 return m_static_type;
1052 }
1053 return CompilerType();
1054 }
1055
GetTypeSystem(bool prefer_dynamic)1056 CompilerType::TypeSystemSPWrapper TypeImpl::GetTypeSystem(bool prefer_dynamic) {
1057 ModuleSP module_sp;
1058 if (CheckModule(module_sp)) {
1059 if (prefer_dynamic) {
1060 if (m_dynamic_type.IsValid())
1061 return m_dynamic_type.GetTypeSystem();
1062 }
1063 return m_static_type.GetTypeSystem();
1064 }
1065 return {};
1066 }
1067
GetDescription(lldb_private::Stream & strm,lldb::DescriptionLevel description_level)1068 bool TypeImpl::GetDescription(lldb_private::Stream &strm,
1069 lldb::DescriptionLevel description_level) {
1070 ModuleSP module_sp;
1071 if (CheckModule(module_sp)) {
1072 if (m_dynamic_type.IsValid()) {
1073 strm.Printf("Dynamic:\n");
1074 m_dynamic_type.DumpTypeDescription(&strm);
1075 strm.Printf("\nStatic:\n");
1076 }
1077 m_static_type.DumpTypeDescription(&strm);
1078 } else {
1079 strm.PutCString("Invalid TypeImpl module for type has been deleted\n");
1080 }
1081 return true;
1082 }
1083
IsValid()1084 bool TypeMemberFunctionImpl::IsValid() {
1085 return m_type.IsValid() && m_kind != lldb::eMemberFunctionKindUnknown;
1086 }
1087
GetName() const1088 ConstString TypeMemberFunctionImpl::GetName() const { return m_name; }
1089
GetMangledName() const1090 ConstString TypeMemberFunctionImpl::GetMangledName() const {
1091 return m_decl.GetMangledName();
1092 }
1093
GetType() const1094 CompilerType TypeMemberFunctionImpl::GetType() const { return m_type; }
1095
GetKind() const1096 lldb::MemberFunctionKind TypeMemberFunctionImpl::GetKind() const {
1097 return m_kind;
1098 }
1099
GetDescription(Stream & stream)1100 bool TypeMemberFunctionImpl::GetDescription(Stream &stream) {
1101 switch (m_kind) {
1102 case lldb::eMemberFunctionKindUnknown:
1103 return false;
1104 case lldb::eMemberFunctionKindConstructor:
1105 stream.Printf("constructor for %s",
1106 m_type.GetTypeName().AsCString("<unknown>"));
1107 break;
1108 case lldb::eMemberFunctionKindDestructor:
1109 stream.Printf("destructor for %s",
1110 m_type.GetTypeName().AsCString("<unknown>"));
1111 break;
1112 case lldb::eMemberFunctionKindInstanceMethod:
1113 stream.Printf("instance method %s of type %s", m_name.AsCString(),
1114 m_decl.GetDeclContext().GetName().AsCString());
1115 break;
1116 case lldb::eMemberFunctionKindStaticMethod:
1117 stream.Printf("static method %s of type %s", m_name.AsCString(),
1118 m_decl.GetDeclContext().GetName().AsCString());
1119 break;
1120 }
1121 return true;
1122 }
1123
GetReturnType() const1124 CompilerType TypeMemberFunctionImpl::GetReturnType() const {
1125 if (m_type)
1126 return m_type.GetFunctionReturnType();
1127 return m_decl.GetFunctionReturnType();
1128 }
1129
GetNumArguments() const1130 size_t TypeMemberFunctionImpl::GetNumArguments() const {
1131 if (m_type)
1132 return m_type.GetNumberOfFunctionArguments();
1133 else
1134 return m_decl.GetNumFunctionArguments();
1135 }
1136
GetArgumentAtIndex(size_t idx) const1137 CompilerType TypeMemberFunctionImpl::GetArgumentAtIndex(size_t idx) const {
1138 if (m_type)
1139 return m_type.GetFunctionArgumentAtIndex(idx);
1140 else
1141 return m_decl.GetFunctionArgumentType(idx);
1142 }
1143
TypeEnumMemberImpl(const lldb::TypeImplSP & integer_type_sp,ConstString name,const llvm::APSInt & value)1144 TypeEnumMemberImpl::TypeEnumMemberImpl(const lldb::TypeImplSP &integer_type_sp,
1145 ConstString name,
1146 const llvm::APSInt &value)
1147 : m_integer_type_sp(integer_type_sp), m_name(name), m_value(value),
1148 m_valid((bool)name && (bool)integer_type_sp)
1149
1150 {}
1151