1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Expr constant evaluator. 10 // 11 // Constant expression evaluation produces four main results: 12 // 13 // * A success/failure flag indicating whether constant folding was successful. 14 // This is the 'bool' return value used by most of the code in this file. A 15 // 'false' return value indicates that constant folding has failed, and any 16 // appropriate diagnostic has already been produced. 17 // 18 // * An evaluated result, valid only if constant folding has not failed. 19 // 20 // * A flag indicating if evaluation encountered (unevaluated) side-effects. 21 // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1), 22 // where it is possible to determine the evaluated result regardless. 23 // 24 // * A set of notes indicating why the evaluation was not a constant expression 25 // (under the C++11 / C++1y rules only, at the moment), or, if folding failed 26 // too, why the expression could not be folded. 27 // 28 // If we are checking for a potential constant expression, failure to constant 29 // fold a potential constant sub-expression will be indicated by a 'false' 30 // return value (the expression could not be folded) and no diagnostic (the 31 // expression is not necessarily non-constant). 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "ByteCode/Context.h" 36 #include "ByteCode/Frame.h" 37 #include "ByteCode/State.h" 38 #include "ExprConstShared.h" 39 #include "clang/AST/APValue.h" 40 #include "clang/AST/ASTContext.h" 41 #include "clang/AST/ASTLambda.h" 42 #include "clang/AST/Attr.h" 43 #include "clang/AST/CXXInheritance.h" 44 #include "clang/AST/CharUnits.h" 45 #include "clang/AST/CurrentSourceLocExprScope.h" 46 #include "clang/AST/Expr.h" 47 #include "clang/AST/OSLog.h" 48 #include "clang/AST/OptionalDiagnostic.h" 49 #include "clang/AST/RecordLayout.h" 50 #include "clang/AST/StmtVisitor.h" 51 #include "clang/AST/TypeLoc.h" 52 #include "clang/Basic/Builtins.h" 53 #include "clang/Basic/DiagnosticSema.h" 54 #include "clang/Basic/TargetBuiltins.h" 55 #include "clang/Basic/TargetInfo.h" 56 #include "llvm/ADT/APFixedPoint.h" 57 #include "llvm/ADT/Sequence.h" 58 #include "llvm/ADT/SmallBitVector.h" 59 #include "llvm/ADT/StringExtras.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/SaveAndRestore.h" 63 #include "llvm/Support/SipHash.h" 64 #include "llvm/Support/TimeProfiler.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include <cstring> 67 #include <functional> 68 #include <optional> 69 70 #define DEBUG_TYPE "exprconstant" 71 72 using namespace clang; 73 using llvm::APFixedPoint; 74 using llvm::APInt; 75 using llvm::APSInt; 76 using llvm::APFloat; 77 using llvm::FixedPointSemantics; 78 79 namespace { 80 struct LValue; 81 class CallStackFrame; 82 class EvalInfo; 83 84 using SourceLocExprScopeGuard = 85 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 86 87 static QualType getType(APValue::LValueBase B) { 88 return B.getType(); 89 } 90 91 /// Get an LValue path entry, which is known to not be an array index, as a 92 /// field declaration. 93 static const FieldDecl *getAsField(APValue::LValuePathEntry E) { 94 return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer()); 95 } 96 /// Get an LValue path entry, which is known to not be an array index, as a 97 /// base class declaration. 98 static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) { 99 return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer()); 100 } 101 /// Determine whether this LValue path entry for a base class names a virtual 102 /// base class. 103 static bool isVirtualBaseClass(APValue::LValuePathEntry E) { 104 return E.getAsBaseOrMember().getInt(); 105 } 106 107 /// Given an expression, determine the type used to store the result of 108 /// evaluating that expression. 109 static QualType getStorageType(const ASTContext &Ctx, const Expr *E) { 110 if (E->isPRValue()) 111 return E->getType(); 112 return Ctx.getLValueReferenceType(E->getType()); 113 } 114 115 /// Given a CallExpr, try to get the alloc_size attribute. May return null. 116 static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) { 117 if (const FunctionDecl *DirectCallee = CE->getDirectCallee()) 118 return DirectCallee->getAttr<AllocSizeAttr>(); 119 if (const Decl *IndirectCallee = CE->getCalleeDecl()) 120 return IndirectCallee->getAttr<AllocSizeAttr>(); 121 return nullptr; 122 } 123 124 /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr. 125 /// This will look through a single cast. 126 /// 127 /// Returns null if we couldn't unwrap a function with alloc_size. 128 static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) { 129 if (!E->getType()->isPointerType()) 130 return nullptr; 131 132 E = E->IgnoreParens(); 133 // If we're doing a variable assignment from e.g. malloc(N), there will 134 // probably be a cast of some kind. In exotic cases, we might also see a 135 // top-level ExprWithCleanups. Ignore them either way. 136 if (const auto *FE = dyn_cast<FullExpr>(E)) 137 E = FE->getSubExpr()->IgnoreParens(); 138 139 if (const auto *Cast = dyn_cast<CastExpr>(E)) 140 E = Cast->getSubExpr()->IgnoreParens(); 141 142 if (const auto *CE = dyn_cast<CallExpr>(E)) 143 return getAllocSizeAttr(CE) ? CE : nullptr; 144 return nullptr; 145 } 146 147 /// Determines whether or not the given Base contains a call to a function 148 /// with the alloc_size attribute. 149 static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) { 150 const auto *E = Base.dyn_cast<const Expr *>(); 151 return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E); 152 } 153 154 /// Determines whether the given kind of constant expression is only ever 155 /// used for name mangling. If so, it's permitted to reference things that we 156 /// can't generate code for (in particular, dllimported functions). 157 static bool isForManglingOnly(ConstantExprKind Kind) { 158 switch (Kind) { 159 case ConstantExprKind::Normal: 160 case ConstantExprKind::ClassTemplateArgument: 161 case ConstantExprKind::ImmediateInvocation: 162 // Note that non-type template arguments of class type are emitted as 163 // template parameter objects. 164 return false; 165 166 case ConstantExprKind::NonClassTemplateArgument: 167 return true; 168 } 169 llvm_unreachable("unknown ConstantExprKind"); 170 } 171 172 static bool isTemplateArgument(ConstantExprKind Kind) { 173 switch (Kind) { 174 case ConstantExprKind::Normal: 175 case ConstantExprKind::ImmediateInvocation: 176 return false; 177 178 case ConstantExprKind::ClassTemplateArgument: 179 case ConstantExprKind::NonClassTemplateArgument: 180 return true; 181 } 182 llvm_unreachable("unknown ConstantExprKind"); 183 } 184 185 /// The bound to claim that an array of unknown bound has. 186 /// The value in MostDerivedArraySize is undefined in this case. So, set it 187 /// to an arbitrary value that's likely to loudly break things if it's used. 188 static const uint64_t AssumedSizeForUnsizedArray = 189 std::numeric_limits<uint64_t>::max() / 2; 190 191 /// Determines if an LValue with the given LValueBase will have an unsized 192 /// array in its designator. 193 /// Find the path length and type of the most-derived subobject in the given 194 /// path, and find the size of the containing array, if any. 195 static unsigned 196 findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base, 197 ArrayRef<APValue::LValuePathEntry> Path, 198 uint64_t &ArraySize, QualType &Type, bool &IsArray, 199 bool &FirstEntryIsUnsizedArray) { 200 // This only accepts LValueBases from APValues, and APValues don't support 201 // arrays that lack size info. 202 assert(!isBaseAnAllocSizeCall(Base) && 203 "Unsized arrays shouldn't appear here"); 204 unsigned MostDerivedLength = 0; 205 Type = getType(Base); 206 207 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 208 if (Type->isArrayType()) { 209 const ArrayType *AT = Ctx.getAsArrayType(Type); 210 Type = AT->getElementType(); 211 MostDerivedLength = I + 1; 212 IsArray = true; 213 214 if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 215 ArraySize = CAT->getZExtSize(); 216 } else { 217 assert(I == 0 && "unexpected unsized array designator"); 218 FirstEntryIsUnsizedArray = true; 219 ArraySize = AssumedSizeForUnsizedArray; 220 } 221 } else if (Type->isAnyComplexType()) { 222 const ComplexType *CT = Type->castAs<ComplexType>(); 223 Type = CT->getElementType(); 224 ArraySize = 2; 225 MostDerivedLength = I + 1; 226 IsArray = true; 227 } else if (const auto *VT = Type->getAs<VectorType>()) { 228 Type = VT->getElementType(); 229 ArraySize = VT->getNumElements(); 230 MostDerivedLength = I + 1; 231 IsArray = true; 232 } else if (const FieldDecl *FD = getAsField(Path[I])) { 233 Type = FD->getType(); 234 ArraySize = 0; 235 MostDerivedLength = I + 1; 236 IsArray = false; 237 } else { 238 // Path[I] describes a base class. 239 ArraySize = 0; 240 IsArray = false; 241 } 242 } 243 return MostDerivedLength; 244 } 245 246 /// A path from a glvalue to a subobject of that glvalue. 247 struct SubobjectDesignator { 248 /// True if the subobject was named in a manner not supported by C++11. Such 249 /// lvalues can still be folded, but they are not core constant expressions 250 /// and we cannot perform lvalue-to-rvalue conversions on them. 251 LLVM_PREFERRED_TYPE(bool) 252 unsigned Invalid : 1; 253 254 /// Is this a pointer one past the end of an object? 255 LLVM_PREFERRED_TYPE(bool) 256 unsigned IsOnePastTheEnd : 1; 257 258 /// Indicator of whether the first entry is an unsized array. 259 LLVM_PREFERRED_TYPE(bool) 260 unsigned FirstEntryIsAnUnsizedArray : 1; 261 262 /// Indicator of whether the most-derived object is an array element. 263 LLVM_PREFERRED_TYPE(bool) 264 unsigned MostDerivedIsArrayElement : 1; 265 266 /// The length of the path to the most-derived object of which this is a 267 /// subobject. 268 unsigned MostDerivedPathLength : 28; 269 270 /// The size of the array of which the most-derived object is an element. 271 /// This will always be 0 if the most-derived object is not an array 272 /// element. 0 is not an indicator of whether or not the most-derived object 273 /// is an array, however, because 0-length arrays are allowed. 274 /// 275 /// If the current array is an unsized array, the value of this is 276 /// undefined. 277 uint64_t MostDerivedArraySize; 278 /// The type of the most derived object referred to by this address. 279 QualType MostDerivedType; 280 281 typedef APValue::LValuePathEntry PathEntry; 282 283 /// The entries on the path from the glvalue to the designated subobject. 284 SmallVector<PathEntry, 8> Entries; 285 286 SubobjectDesignator() : Invalid(true) {} 287 288 explicit SubobjectDesignator(QualType T) 289 : Invalid(false), IsOnePastTheEnd(false), 290 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), 291 MostDerivedPathLength(0), MostDerivedArraySize(0), 292 MostDerivedType(T) {} 293 294 SubobjectDesignator(ASTContext &Ctx, const APValue &V) 295 : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false), 296 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), 297 MostDerivedPathLength(0), MostDerivedArraySize(0) { 298 assert(V.isLValue() && "Non-LValue used to make an LValue designator?"); 299 if (!Invalid) { 300 IsOnePastTheEnd = V.isLValueOnePastTheEnd(); 301 ArrayRef<PathEntry> VEntries = V.getLValuePath(); 302 Entries.insert(Entries.end(), VEntries.begin(), VEntries.end()); 303 if (V.getLValueBase()) { 304 bool IsArray = false; 305 bool FirstIsUnsizedArray = false; 306 MostDerivedPathLength = findMostDerivedSubobject( 307 Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize, 308 MostDerivedType, IsArray, FirstIsUnsizedArray); 309 MostDerivedIsArrayElement = IsArray; 310 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray; 311 } 312 } 313 } 314 315 void truncate(ASTContext &Ctx, APValue::LValueBase Base, 316 unsigned NewLength) { 317 if (Invalid) 318 return; 319 320 assert(Base && "cannot truncate path for null pointer"); 321 assert(NewLength <= Entries.size() && "not a truncation"); 322 323 if (NewLength == Entries.size()) 324 return; 325 Entries.resize(NewLength); 326 327 bool IsArray = false; 328 bool FirstIsUnsizedArray = false; 329 MostDerivedPathLength = findMostDerivedSubobject( 330 Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray, 331 FirstIsUnsizedArray); 332 MostDerivedIsArrayElement = IsArray; 333 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray; 334 } 335 336 void setInvalid() { 337 Invalid = true; 338 Entries.clear(); 339 } 340 341 /// Determine whether the most derived subobject is an array without a 342 /// known bound. 343 bool isMostDerivedAnUnsizedArray() const { 344 assert(!Invalid && "Calling this makes no sense on invalid designators"); 345 return Entries.size() == 1 && FirstEntryIsAnUnsizedArray; 346 } 347 348 /// Determine what the most derived array's size is. Results in an assertion 349 /// failure if the most derived array lacks a size. 350 uint64_t getMostDerivedArraySize() const { 351 assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size"); 352 return MostDerivedArraySize; 353 } 354 355 /// Determine whether this is a one-past-the-end pointer. 356 bool isOnePastTheEnd() const { 357 assert(!Invalid); 358 if (IsOnePastTheEnd) 359 return true; 360 if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement && 361 Entries[MostDerivedPathLength - 1].getAsArrayIndex() == 362 MostDerivedArraySize) 363 return true; 364 return false; 365 } 366 367 /// Get the range of valid index adjustments in the form 368 /// {maximum value that can be subtracted from this pointer, 369 /// maximum value that can be added to this pointer} 370 std::pair<uint64_t, uint64_t> validIndexAdjustments() { 371 if (Invalid || isMostDerivedAnUnsizedArray()) 372 return {0, 0}; 373 374 // [expr.add]p4: For the purposes of these operators, a pointer to a 375 // nonarray object behaves the same as a pointer to the first element of 376 // an array of length one with the type of the object as its element type. 377 bool IsArray = MostDerivedPathLength == Entries.size() && 378 MostDerivedIsArrayElement; 379 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex() 380 : (uint64_t)IsOnePastTheEnd; 381 uint64_t ArraySize = 382 IsArray ? getMostDerivedArraySize() : (uint64_t)1; 383 return {ArrayIndex, ArraySize - ArrayIndex}; 384 } 385 386 /// Check that this refers to a valid subobject. 387 bool isValidSubobject() const { 388 if (Invalid) 389 return false; 390 return !isOnePastTheEnd(); 391 } 392 /// Check that this refers to a valid subobject, and if not, produce a 393 /// relevant diagnostic and set the designator as invalid. 394 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK); 395 396 /// Get the type of the designated object. 397 QualType getType(ASTContext &Ctx) const { 398 assert(!Invalid && "invalid designator has no subobject type"); 399 return MostDerivedPathLength == Entries.size() 400 ? MostDerivedType 401 : Ctx.getRecordType(getAsBaseClass(Entries.back())); 402 } 403 404 /// Update this designator to refer to the first element within this array. 405 void addArrayUnchecked(const ConstantArrayType *CAT) { 406 Entries.push_back(PathEntry::ArrayIndex(0)); 407 408 // This is a most-derived object. 409 MostDerivedType = CAT->getElementType(); 410 MostDerivedIsArrayElement = true; 411 MostDerivedArraySize = CAT->getZExtSize(); 412 MostDerivedPathLength = Entries.size(); 413 } 414 /// Update this designator to refer to the first element within the array of 415 /// elements of type T. This is an array of unknown size. 416 void addUnsizedArrayUnchecked(QualType ElemTy) { 417 Entries.push_back(PathEntry::ArrayIndex(0)); 418 419 MostDerivedType = ElemTy; 420 MostDerivedIsArrayElement = true; 421 // The value in MostDerivedArraySize is undefined in this case. So, set it 422 // to an arbitrary value that's likely to loudly break things if it's 423 // used. 424 MostDerivedArraySize = AssumedSizeForUnsizedArray; 425 MostDerivedPathLength = Entries.size(); 426 } 427 /// Update this designator to refer to the given base or member of this 428 /// object. 429 void addDeclUnchecked(const Decl *D, bool Virtual = false) { 430 Entries.push_back(APValue::BaseOrMemberType(D, Virtual)); 431 432 // If this isn't a base class, it's a new most-derived object. 433 if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) { 434 MostDerivedType = FD->getType(); 435 MostDerivedIsArrayElement = false; 436 MostDerivedArraySize = 0; 437 MostDerivedPathLength = Entries.size(); 438 } 439 } 440 /// Update this designator to refer to the given complex component. 441 void addComplexUnchecked(QualType EltTy, bool Imag) { 442 Entries.push_back(PathEntry::ArrayIndex(Imag)); 443 444 // This is technically a most-derived object, though in practice this 445 // is unlikely to matter. 446 MostDerivedType = EltTy; 447 MostDerivedIsArrayElement = true; 448 MostDerivedArraySize = 2; 449 MostDerivedPathLength = Entries.size(); 450 } 451 452 void addVectorElementUnchecked(QualType EltTy, uint64_t Size, 453 uint64_t Idx) { 454 Entries.push_back(PathEntry::ArrayIndex(Idx)); 455 MostDerivedType = EltTy; 456 MostDerivedPathLength = Entries.size(); 457 MostDerivedArraySize = 0; 458 MostDerivedIsArrayElement = false; 459 } 460 461 void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E); 462 void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, 463 const APSInt &N); 464 /// Add N to the address of this subobject. 465 void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) { 466 if (Invalid || !N) return; 467 uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue(); 468 if (isMostDerivedAnUnsizedArray()) { 469 diagnoseUnsizedArrayPointerArithmetic(Info, E); 470 // Can't verify -- trust that the user is doing the right thing (or if 471 // not, trust that the caller will catch the bad behavior). 472 // FIXME: Should we reject if this overflows, at least? 473 Entries.back() = PathEntry::ArrayIndex( 474 Entries.back().getAsArrayIndex() + TruncatedN); 475 return; 476 } 477 478 // [expr.add]p4: For the purposes of these operators, a pointer to a 479 // nonarray object behaves the same as a pointer to the first element of 480 // an array of length one with the type of the object as its element type. 481 bool IsArray = MostDerivedPathLength == Entries.size() && 482 MostDerivedIsArrayElement; 483 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex() 484 : (uint64_t)IsOnePastTheEnd; 485 uint64_t ArraySize = 486 IsArray ? getMostDerivedArraySize() : (uint64_t)1; 487 488 if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) { 489 // Calculate the actual index in a wide enough type, so we can include 490 // it in the note. 491 N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65)); 492 (llvm::APInt&)N += ArrayIndex; 493 assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index"); 494 diagnosePointerArithmetic(Info, E, N); 495 setInvalid(); 496 return; 497 } 498 499 ArrayIndex += TruncatedN; 500 assert(ArrayIndex <= ArraySize && 501 "bounds check succeeded for out-of-bounds index"); 502 503 if (IsArray) 504 Entries.back() = PathEntry::ArrayIndex(ArrayIndex); 505 else 506 IsOnePastTheEnd = (ArrayIndex != 0); 507 } 508 }; 509 510 /// A scope at the end of which an object can need to be destroyed. 511 enum class ScopeKind { 512 Block, 513 FullExpression, 514 Call 515 }; 516 517 /// A reference to a particular call and its arguments. 518 struct CallRef { 519 CallRef() : OrigCallee(), CallIndex(0), Version() {} 520 CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version) 521 : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {} 522 523 explicit operator bool() const { return OrigCallee; } 524 525 /// Get the parameter that the caller initialized, corresponding to the 526 /// given parameter in the callee. 527 const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const { 528 return OrigCallee ? OrigCallee->getParamDecl(PVD->getFunctionScopeIndex()) 529 : PVD; 530 } 531 532 /// The callee at the point where the arguments were evaluated. This might 533 /// be different from the actual callee (a different redeclaration, or a 534 /// virtual override), but this function's parameters are the ones that 535 /// appear in the parameter map. 536 const FunctionDecl *OrigCallee; 537 /// The call index of the frame that holds the argument values. 538 unsigned CallIndex; 539 /// The version of the parameters corresponding to this call. 540 unsigned Version; 541 }; 542 543 /// A stack frame in the constexpr call stack. 544 class CallStackFrame : public interp::Frame { 545 public: 546 EvalInfo &Info; 547 548 /// Parent - The caller of this stack frame. 549 CallStackFrame *Caller; 550 551 /// Callee - The function which was called. 552 const FunctionDecl *Callee; 553 554 /// This - The binding for the this pointer in this call, if any. 555 const LValue *This; 556 557 /// CallExpr - The syntactical structure of member function calls 558 const Expr *CallExpr; 559 560 /// Information on how to find the arguments to this call. Our arguments 561 /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a 562 /// key and this value as the version. 563 CallRef Arguments; 564 565 /// Source location information about the default argument or default 566 /// initializer expression we're evaluating, if any. 567 CurrentSourceLocExprScope CurSourceLocExprScope; 568 569 // Note that we intentionally use std::map here so that references to 570 // values are stable. 571 typedef std::pair<const void *, unsigned> MapKeyTy; 572 typedef std::map<MapKeyTy, APValue> MapTy; 573 /// Temporaries - Temporary lvalues materialized within this stack frame. 574 MapTy Temporaries; 575 MapTy ConstexprUnknownAPValues; 576 577 /// CallRange - The source range of the call expression for this call. 578 SourceRange CallRange; 579 580 /// Index - The call index of this call. 581 unsigned Index; 582 583 /// The stack of integers for tracking version numbers for temporaries. 584 SmallVector<unsigned, 2> TempVersionStack = {1}; 585 unsigned CurTempVersion = TempVersionStack.back(); 586 587 unsigned getTempVersion() const { return TempVersionStack.back(); } 588 589 void pushTempVersion() { 590 TempVersionStack.push_back(++CurTempVersion); 591 } 592 593 void popTempVersion() { 594 TempVersionStack.pop_back(); 595 } 596 597 CallRef createCall(const FunctionDecl *Callee) { 598 return {Callee, Index, ++CurTempVersion}; 599 } 600 601 // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact 602 // on the overall stack usage of deeply-recursing constexpr evaluations. 603 // (We should cache this map rather than recomputing it repeatedly.) 604 // But let's try this and see how it goes; we can look into caching the map 605 // as a later change. 606 607 /// LambdaCaptureFields - Mapping from captured variables/this to 608 /// corresponding data members in the closure class. 609 llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields; 610 FieldDecl *LambdaThisCaptureField = nullptr; 611 612 CallStackFrame(EvalInfo &Info, SourceRange CallRange, 613 const FunctionDecl *Callee, const LValue *This, 614 const Expr *CallExpr, CallRef Arguments); 615 ~CallStackFrame(); 616 617 // Return the temporary for Key whose version number is Version. 618 APValue *getTemporary(const void *Key, unsigned Version) { 619 MapKeyTy KV(Key, Version); 620 auto LB = Temporaries.lower_bound(KV); 621 if (LB != Temporaries.end() && LB->first == KV) 622 return &LB->second; 623 return nullptr; 624 } 625 626 // Return the current temporary for Key in the map. 627 APValue *getCurrentTemporary(const void *Key) { 628 auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX)); 629 if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key) 630 return &std::prev(UB)->second; 631 return nullptr; 632 } 633 634 // Return the version number of the current temporary for Key. 635 unsigned getCurrentTemporaryVersion(const void *Key) const { 636 auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX)); 637 if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key) 638 return std::prev(UB)->first.second; 639 return 0; 640 } 641 642 /// Allocate storage for an object of type T in this stack frame. 643 /// Populates LV with a handle to the created object. Key identifies 644 /// the temporary within the stack frame, and must not be reused without 645 /// bumping the temporary version number. 646 template<typename KeyT> 647 APValue &createTemporary(const KeyT *Key, QualType T, 648 ScopeKind Scope, LValue &LV); 649 650 APValue &createConstexprUnknownAPValues(const VarDecl *Key, 651 APValue::LValueBase Base); 652 653 /// Allocate storage for a parameter of a function call made in this frame. 654 APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV); 655 656 void describe(llvm::raw_ostream &OS) const override; 657 658 Frame *getCaller() const override { return Caller; } 659 SourceRange getCallRange() const override { return CallRange; } 660 const FunctionDecl *getCallee() const override { return Callee; } 661 662 bool isStdFunction() const { 663 for (const DeclContext *DC = Callee; DC; DC = DC->getParent()) 664 if (DC->isStdNamespace()) 665 return true; 666 return false; 667 } 668 669 /// Whether we're in a context where [[msvc::constexpr]] evaluation is 670 /// permitted. See MSConstexprDocs for description of permitted contexts. 671 bool CanEvalMSConstexpr = false; 672 673 private: 674 APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T, 675 ScopeKind Scope); 676 }; 677 678 /// Temporarily override 'this'. 679 class ThisOverrideRAII { 680 public: 681 ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable) 682 : Frame(Frame), OldThis(Frame.This) { 683 if (Enable) 684 Frame.This = NewThis; 685 } 686 ~ThisOverrideRAII() { 687 Frame.This = OldThis; 688 } 689 private: 690 CallStackFrame &Frame; 691 const LValue *OldThis; 692 }; 693 694 // A shorthand time trace scope struct, prints source range, for example 695 // {"name":"EvaluateAsRValue","args":{"detail":"<test.cc:8:21, col:25>"}}} 696 class ExprTimeTraceScope { 697 public: 698 ExprTimeTraceScope(const Expr *E, const ASTContext &Ctx, StringRef Name) 699 : TimeScope(Name, [E, &Ctx] { 700 return E->getSourceRange().printToString(Ctx.getSourceManager()); 701 }) {} 702 703 private: 704 llvm::TimeTraceScope TimeScope; 705 }; 706 707 /// RAII object used to change the current ability of 708 /// [[msvc::constexpr]] evaulation. 709 struct MSConstexprContextRAII { 710 CallStackFrame &Frame; 711 bool OldValue; 712 explicit MSConstexprContextRAII(CallStackFrame &Frame, bool Value) 713 : Frame(Frame), OldValue(Frame.CanEvalMSConstexpr) { 714 Frame.CanEvalMSConstexpr = Value; 715 } 716 717 ~MSConstexprContextRAII() { Frame.CanEvalMSConstexpr = OldValue; } 718 }; 719 } 720 721 static bool HandleDestruction(EvalInfo &Info, const Expr *E, 722 const LValue &This, QualType ThisType); 723 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc, 724 APValue::LValueBase LVBase, APValue &Value, 725 QualType T); 726 727 namespace { 728 /// A cleanup, and a flag indicating whether it is lifetime-extended. 729 class Cleanup { 730 llvm::PointerIntPair<APValue*, 2, ScopeKind> Value; 731 APValue::LValueBase Base; 732 QualType T; 733 734 public: 735 Cleanup(APValue *Val, APValue::LValueBase Base, QualType T, 736 ScopeKind Scope) 737 : Value(Val, Scope), Base(Base), T(T) {} 738 739 /// Determine whether this cleanup should be performed at the end of the 740 /// given kind of scope. 741 bool isDestroyedAtEndOf(ScopeKind K) const { 742 return (int)Value.getInt() >= (int)K; 743 } 744 bool endLifetime(EvalInfo &Info, bool RunDestructors) { 745 if (RunDestructors) { 746 SourceLocation Loc; 747 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) 748 Loc = VD->getLocation(); 749 else if (const Expr *E = Base.dyn_cast<const Expr*>()) 750 Loc = E->getExprLoc(); 751 return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T); 752 } 753 *Value.getPointer() = APValue(); 754 return true; 755 } 756 757 bool hasSideEffect() { 758 return T.isDestructedType(); 759 } 760 }; 761 762 /// A reference to an object whose construction we are currently evaluating. 763 struct ObjectUnderConstruction { 764 APValue::LValueBase Base; 765 ArrayRef<APValue::LValuePathEntry> Path; 766 friend bool operator==(const ObjectUnderConstruction &LHS, 767 const ObjectUnderConstruction &RHS) { 768 return LHS.Base == RHS.Base && LHS.Path == RHS.Path; 769 } 770 friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) { 771 return llvm::hash_combine(Obj.Base, Obj.Path); 772 } 773 }; 774 enum class ConstructionPhase { 775 None, 776 Bases, 777 AfterBases, 778 AfterFields, 779 Destroying, 780 DestroyingBases 781 }; 782 } 783 784 namespace llvm { 785 template<> struct DenseMapInfo<ObjectUnderConstruction> { 786 using Base = DenseMapInfo<APValue::LValueBase>; 787 static ObjectUnderConstruction getEmptyKey() { 788 return {Base::getEmptyKey(), {}}; } 789 static ObjectUnderConstruction getTombstoneKey() { 790 return {Base::getTombstoneKey(), {}}; 791 } 792 static unsigned getHashValue(const ObjectUnderConstruction &Object) { 793 return hash_value(Object); 794 } 795 static bool isEqual(const ObjectUnderConstruction &LHS, 796 const ObjectUnderConstruction &RHS) { 797 return LHS == RHS; 798 } 799 }; 800 } 801 802 namespace { 803 /// A dynamically-allocated heap object. 804 struct DynAlloc { 805 /// The value of this heap-allocated object. 806 APValue Value; 807 /// The allocating expression; used for diagnostics. Either a CXXNewExpr 808 /// or a CallExpr (the latter is for direct calls to operator new inside 809 /// std::allocator<T>::allocate). 810 const Expr *AllocExpr = nullptr; 811 812 enum Kind { 813 New, 814 ArrayNew, 815 StdAllocator 816 }; 817 818 /// Get the kind of the allocation. This must match between allocation 819 /// and deallocation. 820 Kind getKind() const { 821 if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr)) 822 return NE->isArray() ? ArrayNew : New; 823 assert(isa<CallExpr>(AllocExpr)); 824 return StdAllocator; 825 } 826 }; 827 828 struct DynAllocOrder { 829 bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const { 830 return L.getIndex() < R.getIndex(); 831 } 832 }; 833 834 /// EvalInfo - This is a private struct used by the evaluator to capture 835 /// information about a subexpression as it is folded. It retains information 836 /// about the AST context, but also maintains information about the folded 837 /// expression. 838 /// 839 /// If an expression could be evaluated, it is still possible it is not a C 840 /// "integer constant expression" or constant expression. If not, this struct 841 /// captures information about how and why not. 842 /// 843 /// One bit of information passed *into* the request for constant folding 844 /// indicates whether the subexpression is "evaluated" or not according to C 845 /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can 846 /// evaluate the expression regardless of what the RHS is, but C only allows 847 /// certain things in certain situations. 848 class EvalInfo : public interp::State { 849 public: 850 ASTContext &Ctx; 851 852 /// EvalStatus - Contains information about the evaluation. 853 Expr::EvalStatus &EvalStatus; 854 855 /// CurrentCall - The top of the constexpr call stack. 856 CallStackFrame *CurrentCall; 857 858 /// CallStackDepth - The number of calls in the call stack right now. 859 unsigned CallStackDepth; 860 861 /// NextCallIndex - The next call index to assign. 862 unsigned NextCallIndex; 863 864 /// StepsLeft - The remaining number of evaluation steps we're permitted 865 /// to perform. This is essentially a limit for the number of statements 866 /// we will evaluate. 867 unsigned StepsLeft; 868 869 /// Enable the experimental new constant interpreter. If an expression is 870 /// not supported by the interpreter, an error is triggered. 871 bool EnableNewConstInterp; 872 873 /// BottomFrame - The frame in which evaluation started. This must be 874 /// initialized after CurrentCall and CallStackDepth. 875 CallStackFrame BottomFrame; 876 877 /// A stack of values whose lifetimes end at the end of some surrounding 878 /// evaluation frame. 879 llvm::SmallVector<Cleanup, 16> CleanupStack; 880 881 /// EvaluatingDecl - This is the declaration whose initializer is being 882 /// evaluated, if any. 883 APValue::LValueBase EvaluatingDecl; 884 885 enum class EvaluatingDeclKind { 886 None, 887 /// We're evaluating the construction of EvaluatingDecl. 888 Ctor, 889 /// We're evaluating the destruction of EvaluatingDecl. 890 Dtor, 891 }; 892 EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None; 893 894 /// EvaluatingDeclValue - This is the value being constructed for the 895 /// declaration whose initializer is being evaluated, if any. 896 APValue *EvaluatingDeclValue; 897 898 /// Set of objects that are currently being constructed. 899 llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase> 900 ObjectsUnderConstruction; 901 902 /// Current heap allocations, along with the location where each was 903 /// allocated. We use std::map here because we need stable addresses 904 /// for the stored APValues. 905 std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs; 906 907 /// The number of heap allocations performed so far in this evaluation. 908 unsigned NumHeapAllocs = 0; 909 910 struct EvaluatingConstructorRAII { 911 EvalInfo &EI; 912 ObjectUnderConstruction Object; 913 bool DidInsert; 914 EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object, 915 bool HasBases) 916 : EI(EI), Object(Object) { 917 DidInsert = 918 EI.ObjectsUnderConstruction 919 .insert({Object, HasBases ? ConstructionPhase::Bases 920 : ConstructionPhase::AfterBases}) 921 .second; 922 } 923 void finishedConstructingBases() { 924 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases; 925 } 926 void finishedConstructingFields() { 927 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields; 928 } 929 ~EvaluatingConstructorRAII() { 930 if (DidInsert) EI.ObjectsUnderConstruction.erase(Object); 931 } 932 }; 933 934 struct EvaluatingDestructorRAII { 935 EvalInfo &EI; 936 ObjectUnderConstruction Object; 937 bool DidInsert; 938 EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object) 939 : EI(EI), Object(Object) { 940 DidInsert = EI.ObjectsUnderConstruction 941 .insert({Object, ConstructionPhase::Destroying}) 942 .second; 943 } 944 void startedDestroyingBases() { 945 EI.ObjectsUnderConstruction[Object] = 946 ConstructionPhase::DestroyingBases; 947 } 948 ~EvaluatingDestructorRAII() { 949 if (DidInsert) 950 EI.ObjectsUnderConstruction.erase(Object); 951 } 952 }; 953 954 ConstructionPhase 955 isEvaluatingCtorDtor(APValue::LValueBase Base, 956 ArrayRef<APValue::LValuePathEntry> Path) { 957 return ObjectsUnderConstruction.lookup({Base, Path}); 958 } 959 960 /// If we're currently speculatively evaluating, the outermost call stack 961 /// depth at which we can mutate state, otherwise 0. 962 unsigned SpeculativeEvaluationDepth = 0; 963 964 /// The current array initialization index, if we're performing array 965 /// initialization. 966 uint64_t ArrayInitIndex = -1; 967 968 /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further 969 /// notes attached to it will also be stored, otherwise they will not be. 970 bool HasActiveDiagnostic; 971 972 /// Have we emitted a diagnostic explaining why we couldn't constant 973 /// fold (not just why it's not strictly a constant expression)? 974 bool HasFoldFailureDiagnostic; 975 976 /// Whether we're checking that an expression is a potential constant 977 /// expression. If so, do not fail on constructs that could become constant 978 /// later on (such as a use of an undefined global). 979 bool CheckingPotentialConstantExpression = false; 980 981 /// Whether we're checking for an expression that has undefined behavior. 982 /// If so, we will produce warnings if we encounter an operation that is 983 /// always undefined. 984 /// 985 /// Note that we still need to evaluate the expression normally when this 986 /// is set; this is used when evaluating ICEs in C. 987 bool CheckingForUndefinedBehavior = false; 988 989 enum EvaluationMode { 990 /// Evaluate as a constant expression. Stop if we find that the expression 991 /// is not a constant expression. 992 EM_ConstantExpression, 993 994 /// Evaluate as a constant expression. Stop if we find that the expression 995 /// is not a constant expression. Some expressions can be retried in the 996 /// optimizer if we don't constant fold them here, but in an unevaluated 997 /// context we try to fold them immediately since the optimizer never 998 /// gets a chance to look at it. 999 EM_ConstantExpressionUnevaluated, 1000 1001 /// Fold the expression to a constant. Stop if we hit a side-effect that 1002 /// we can't model. 1003 EM_ConstantFold, 1004 1005 /// Evaluate in any way we know how. Don't worry about side-effects that 1006 /// can't be modeled. 1007 EM_IgnoreSideEffects, 1008 } EvalMode; 1009 1010 /// Are we checking whether the expression is a potential constant 1011 /// expression? 1012 bool checkingPotentialConstantExpression() const override { 1013 return CheckingPotentialConstantExpression; 1014 } 1015 1016 /// Are we checking an expression for overflow? 1017 // FIXME: We should check for any kind of undefined or suspicious behavior 1018 // in such constructs, not just overflow. 1019 bool checkingForUndefinedBehavior() const override { 1020 return CheckingForUndefinedBehavior; 1021 } 1022 1023 EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode) 1024 : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr), 1025 CallStackDepth(0), NextCallIndex(1), 1026 StepsLeft(C.getLangOpts().ConstexprStepLimit), 1027 EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp), 1028 BottomFrame(*this, SourceLocation(), /*Callee=*/nullptr, 1029 /*This=*/nullptr, 1030 /*CallExpr=*/nullptr, CallRef()), 1031 EvaluatingDecl((const ValueDecl *)nullptr), 1032 EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false), 1033 HasFoldFailureDiagnostic(false), EvalMode(Mode) {} 1034 1035 ~EvalInfo() { 1036 discardCleanups(); 1037 } 1038 1039 ASTContext &getASTContext() const override { return Ctx; } 1040 1041 void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value, 1042 EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) { 1043 EvaluatingDecl = Base; 1044 IsEvaluatingDecl = EDK; 1045 EvaluatingDeclValue = &Value; 1046 } 1047 1048 bool CheckCallLimit(SourceLocation Loc) { 1049 // Don't perform any constexpr calls (other than the call we're checking) 1050 // when checking a potential constant expression. 1051 if (checkingPotentialConstantExpression() && CallStackDepth > 1) 1052 return false; 1053 if (NextCallIndex == 0) { 1054 // NextCallIndex has wrapped around. 1055 FFDiag(Loc, diag::note_constexpr_call_limit_exceeded); 1056 return false; 1057 } 1058 if (CallStackDepth <= getLangOpts().ConstexprCallDepth) 1059 return true; 1060 FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded) 1061 << getLangOpts().ConstexprCallDepth; 1062 return false; 1063 } 1064 1065 bool CheckArraySize(SourceLocation Loc, unsigned BitWidth, 1066 uint64_t ElemCount, bool Diag) { 1067 // FIXME: GH63562 1068 // APValue stores array extents as unsigned, 1069 // so anything that is greater that unsigned would overflow when 1070 // constructing the array, we catch this here. 1071 if (BitWidth > ConstantArrayType::getMaxSizeBits(Ctx) || 1072 ElemCount > uint64_t(std::numeric_limits<unsigned>::max())) { 1073 if (Diag) 1074 FFDiag(Loc, diag::note_constexpr_new_too_large) << ElemCount; 1075 return false; 1076 } 1077 1078 // FIXME: GH63562 1079 // Arrays allocate an APValue per element. 1080 // We use the number of constexpr steps as a proxy for the maximum size 1081 // of arrays to avoid exhausting the system resources, as initialization 1082 // of each element is likely to take some number of steps anyway. 1083 uint64_t Limit = Ctx.getLangOpts().ConstexprStepLimit; 1084 if (ElemCount > Limit) { 1085 if (Diag) 1086 FFDiag(Loc, diag::note_constexpr_new_exceeds_limits) 1087 << ElemCount << Limit; 1088 return false; 1089 } 1090 return true; 1091 } 1092 1093 std::pair<CallStackFrame *, unsigned> 1094 getCallFrameAndDepth(unsigned CallIndex) { 1095 assert(CallIndex && "no call index in getCallFrameAndDepth"); 1096 // We will eventually hit BottomFrame, which has Index 1, so Frame can't 1097 // be null in this loop. 1098 unsigned Depth = CallStackDepth; 1099 CallStackFrame *Frame = CurrentCall; 1100 while (Frame->Index > CallIndex) { 1101 Frame = Frame->Caller; 1102 --Depth; 1103 } 1104 if (Frame->Index == CallIndex) 1105 return {Frame, Depth}; 1106 return {nullptr, 0}; 1107 } 1108 1109 bool nextStep(const Stmt *S) { 1110 if (!StepsLeft) { 1111 FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded); 1112 return false; 1113 } 1114 --StepsLeft; 1115 return true; 1116 } 1117 1118 APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV); 1119 1120 std::optional<DynAlloc *> lookupDynamicAlloc(DynamicAllocLValue DA) { 1121 std::optional<DynAlloc *> Result; 1122 auto It = HeapAllocs.find(DA); 1123 if (It != HeapAllocs.end()) 1124 Result = &It->second; 1125 return Result; 1126 } 1127 1128 /// Get the allocated storage for the given parameter of the given call. 1129 APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) { 1130 CallStackFrame *Frame = getCallFrameAndDepth(Call.CallIndex).first; 1131 return Frame ? Frame->getTemporary(Call.getOrigParam(PVD), Call.Version) 1132 : nullptr; 1133 } 1134 1135 /// Information about a stack frame for std::allocator<T>::[de]allocate. 1136 struct StdAllocatorCaller { 1137 unsigned FrameIndex; 1138 QualType ElemType; 1139 const Expr *Call; 1140 explicit operator bool() const { return FrameIndex != 0; }; 1141 }; 1142 1143 StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const { 1144 for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame; 1145 Call = Call->Caller) { 1146 const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee); 1147 if (!MD) 1148 continue; 1149 const IdentifierInfo *FnII = MD->getIdentifier(); 1150 if (!FnII || !FnII->isStr(FnName)) 1151 continue; 1152 1153 const auto *CTSD = 1154 dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent()); 1155 if (!CTSD) 1156 continue; 1157 1158 const IdentifierInfo *ClassII = CTSD->getIdentifier(); 1159 const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); 1160 if (CTSD->isInStdNamespace() && ClassII && 1161 ClassII->isStr("allocator") && TAL.size() >= 1 && 1162 TAL[0].getKind() == TemplateArgument::Type) 1163 return {Call->Index, TAL[0].getAsType(), Call->CallExpr}; 1164 } 1165 1166 return {}; 1167 } 1168 1169 void performLifetimeExtension() { 1170 // Disable the cleanups for lifetime-extended temporaries. 1171 llvm::erase_if(CleanupStack, [](Cleanup &C) { 1172 return !C.isDestroyedAtEndOf(ScopeKind::FullExpression); 1173 }); 1174 } 1175 1176 /// Throw away any remaining cleanups at the end of evaluation. If any 1177 /// cleanups would have had a side-effect, note that as an unmodeled 1178 /// side-effect and return false. Otherwise, return true. 1179 bool discardCleanups() { 1180 for (Cleanup &C : CleanupStack) { 1181 if (C.hasSideEffect() && !noteSideEffect()) { 1182 CleanupStack.clear(); 1183 return false; 1184 } 1185 } 1186 CleanupStack.clear(); 1187 return true; 1188 } 1189 1190 private: 1191 interp::Frame *getCurrentFrame() override { return CurrentCall; } 1192 const interp::Frame *getBottomFrame() const override { return &BottomFrame; } 1193 1194 bool hasActiveDiagnostic() override { return HasActiveDiagnostic; } 1195 void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; } 1196 1197 void setFoldFailureDiagnostic(bool Flag) override { 1198 HasFoldFailureDiagnostic = Flag; 1199 } 1200 1201 Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; } 1202 1203 // If we have a prior diagnostic, it will be noting that the expression 1204 // isn't a constant expression. This diagnostic is more important, 1205 // unless we require this evaluation to produce a constant expression. 1206 // 1207 // FIXME: We might want to show both diagnostics to the user in 1208 // EM_ConstantFold mode. 1209 bool hasPriorDiagnostic() override { 1210 if (!EvalStatus.Diag->empty()) { 1211 switch (EvalMode) { 1212 case EM_ConstantFold: 1213 case EM_IgnoreSideEffects: 1214 if (!HasFoldFailureDiagnostic) 1215 break; 1216 // We've already failed to fold something. Keep that diagnostic. 1217 [[fallthrough]]; 1218 case EM_ConstantExpression: 1219 case EM_ConstantExpressionUnevaluated: 1220 setActiveDiagnostic(false); 1221 return true; 1222 } 1223 } 1224 return false; 1225 } 1226 1227 unsigned getCallStackDepth() override { return CallStackDepth; } 1228 1229 public: 1230 /// Should we continue evaluation after encountering a side-effect that we 1231 /// couldn't model? 1232 bool keepEvaluatingAfterSideEffect() const override { 1233 switch (EvalMode) { 1234 case EM_IgnoreSideEffects: 1235 return true; 1236 1237 case EM_ConstantExpression: 1238 case EM_ConstantExpressionUnevaluated: 1239 case EM_ConstantFold: 1240 // By default, assume any side effect might be valid in some other 1241 // evaluation of this expression from a different context. 1242 return checkingPotentialConstantExpression() || 1243 checkingForUndefinedBehavior(); 1244 } 1245 llvm_unreachable("Missed EvalMode case"); 1246 } 1247 1248 /// Note that we have had a side-effect, and determine whether we should 1249 /// keep evaluating. 1250 bool noteSideEffect() override { 1251 EvalStatus.HasSideEffects = true; 1252 return keepEvaluatingAfterSideEffect(); 1253 } 1254 1255 /// Should we continue evaluation after encountering undefined behavior? 1256 bool keepEvaluatingAfterUndefinedBehavior() { 1257 switch (EvalMode) { 1258 case EM_IgnoreSideEffects: 1259 case EM_ConstantFold: 1260 return true; 1261 1262 case EM_ConstantExpression: 1263 case EM_ConstantExpressionUnevaluated: 1264 return checkingForUndefinedBehavior(); 1265 } 1266 llvm_unreachable("Missed EvalMode case"); 1267 } 1268 1269 /// Note that we hit something that was technically undefined behavior, but 1270 /// that we can evaluate past it (such as signed overflow or floating-point 1271 /// division by zero.) 1272 bool noteUndefinedBehavior() override { 1273 EvalStatus.HasUndefinedBehavior = true; 1274 return keepEvaluatingAfterUndefinedBehavior(); 1275 } 1276 1277 /// Should we continue evaluation as much as possible after encountering a 1278 /// construct which can't be reduced to a value? 1279 bool keepEvaluatingAfterFailure() const override { 1280 if (!StepsLeft) 1281 return false; 1282 1283 switch (EvalMode) { 1284 case EM_ConstantExpression: 1285 case EM_ConstantExpressionUnevaluated: 1286 case EM_ConstantFold: 1287 case EM_IgnoreSideEffects: 1288 return checkingPotentialConstantExpression() || 1289 checkingForUndefinedBehavior(); 1290 } 1291 llvm_unreachable("Missed EvalMode case"); 1292 } 1293 1294 /// Notes that we failed to evaluate an expression that other expressions 1295 /// directly depend on, and determine if we should keep evaluating. This 1296 /// should only be called if we actually intend to keep evaluating. 1297 /// 1298 /// Call noteSideEffect() instead if we may be able to ignore the value that 1299 /// we failed to evaluate, e.g. if we failed to evaluate Foo() in: 1300 /// 1301 /// (Foo(), 1) // use noteSideEffect 1302 /// (Foo() || true) // use noteSideEffect 1303 /// Foo() + 1 // use noteFailure 1304 [[nodiscard]] bool noteFailure() { 1305 // Failure when evaluating some expression often means there is some 1306 // subexpression whose evaluation was skipped. Therefore, (because we 1307 // don't track whether we skipped an expression when unwinding after an 1308 // evaluation failure) every evaluation failure that bubbles up from a 1309 // subexpression implies that a side-effect has potentially happened. We 1310 // skip setting the HasSideEffects flag to true until we decide to 1311 // continue evaluating after that point, which happens here. 1312 bool KeepGoing = keepEvaluatingAfterFailure(); 1313 EvalStatus.HasSideEffects |= KeepGoing; 1314 return KeepGoing; 1315 } 1316 1317 class ArrayInitLoopIndex { 1318 EvalInfo &Info; 1319 uint64_t OuterIndex; 1320 1321 public: 1322 ArrayInitLoopIndex(EvalInfo &Info) 1323 : Info(Info), OuterIndex(Info.ArrayInitIndex) { 1324 Info.ArrayInitIndex = 0; 1325 } 1326 ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; } 1327 1328 operator uint64_t&() { return Info.ArrayInitIndex; } 1329 }; 1330 }; 1331 1332 /// Object used to treat all foldable expressions as constant expressions. 1333 struct FoldConstant { 1334 EvalInfo &Info; 1335 bool Enabled; 1336 bool HadNoPriorDiags; 1337 EvalInfo::EvaluationMode OldMode; 1338 1339 explicit FoldConstant(EvalInfo &Info, bool Enabled) 1340 : Info(Info), 1341 Enabled(Enabled), 1342 HadNoPriorDiags(Info.EvalStatus.Diag && 1343 Info.EvalStatus.Diag->empty() && 1344 !Info.EvalStatus.HasSideEffects), 1345 OldMode(Info.EvalMode) { 1346 if (Enabled) 1347 Info.EvalMode = EvalInfo::EM_ConstantFold; 1348 } 1349 void keepDiagnostics() { Enabled = false; } 1350 ~FoldConstant() { 1351 if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() && 1352 !Info.EvalStatus.HasSideEffects) 1353 Info.EvalStatus.Diag->clear(); 1354 Info.EvalMode = OldMode; 1355 } 1356 }; 1357 1358 /// RAII object used to set the current evaluation mode to ignore 1359 /// side-effects. 1360 struct IgnoreSideEffectsRAII { 1361 EvalInfo &Info; 1362 EvalInfo::EvaluationMode OldMode; 1363 explicit IgnoreSideEffectsRAII(EvalInfo &Info) 1364 : Info(Info), OldMode(Info.EvalMode) { 1365 Info.EvalMode = EvalInfo::EM_IgnoreSideEffects; 1366 } 1367 1368 ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; } 1369 }; 1370 1371 /// RAII object used to optionally suppress diagnostics and side-effects from 1372 /// a speculative evaluation. 1373 class SpeculativeEvaluationRAII { 1374 EvalInfo *Info = nullptr; 1375 Expr::EvalStatus OldStatus; 1376 unsigned OldSpeculativeEvaluationDepth = 0; 1377 1378 void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) { 1379 Info = Other.Info; 1380 OldStatus = Other.OldStatus; 1381 OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth; 1382 Other.Info = nullptr; 1383 } 1384 1385 void maybeRestoreState() { 1386 if (!Info) 1387 return; 1388 1389 Info->EvalStatus = OldStatus; 1390 Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth; 1391 } 1392 1393 public: 1394 SpeculativeEvaluationRAII() = default; 1395 1396 SpeculativeEvaluationRAII( 1397 EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr) 1398 : Info(&Info), OldStatus(Info.EvalStatus), 1399 OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) { 1400 Info.EvalStatus.Diag = NewDiag; 1401 Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1; 1402 } 1403 1404 SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete; 1405 SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) { 1406 moveFromAndCancel(std::move(Other)); 1407 } 1408 1409 SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) { 1410 maybeRestoreState(); 1411 moveFromAndCancel(std::move(Other)); 1412 return *this; 1413 } 1414 1415 ~SpeculativeEvaluationRAII() { maybeRestoreState(); } 1416 }; 1417 1418 /// RAII object wrapping a full-expression or block scope, and handling 1419 /// the ending of the lifetime of temporaries created within it. 1420 template<ScopeKind Kind> 1421 class ScopeRAII { 1422 EvalInfo &Info; 1423 unsigned OldStackSize; 1424 public: 1425 ScopeRAII(EvalInfo &Info) 1426 : Info(Info), OldStackSize(Info.CleanupStack.size()) { 1427 // Push a new temporary version. This is needed to distinguish between 1428 // temporaries created in different iterations of a loop. 1429 Info.CurrentCall->pushTempVersion(); 1430 } 1431 bool destroy(bool RunDestructors = true) { 1432 bool OK = cleanup(Info, RunDestructors, OldStackSize); 1433 OldStackSize = -1U; 1434 return OK; 1435 } 1436 ~ScopeRAII() { 1437 if (OldStackSize != -1U) 1438 destroy(false); 1439 // Body moved to a static method to encourage the compiler to inline away 1440 // instances of this class. 1441 Info.CurrentCall->popTempVersion(); 1442 } 1443 private: 1444 static bool cleanup(EvalInfo &Info, bool RunDestructors, 1445 unsigned OldStackSize) { 1446 assert(OldStackSize <= Info.CleanupStack.size() && 1447 "running cleanups out of order?"); 1448 1449 // Run all cleanups for a block scope, and non-lifetime-extended cleanups 1450 // for a full-expression scope. 1451 bool Success = true; 1452 for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) { 1453 if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) { 1454 if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) { 1455 Success = false; 1456 break; 1457 } 1458 } 1459 } 1460 1461 // Compact any retained cleanups. 1462 auto NewEnd = Info.CleanupStack.begin() + OldStackSize; 1463 if (Kind != ScopeKind::Block) 1464 NewEnd = 1465 std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) { 1466 return C.isDestroyedAtEndOf(Kind); 1467 }); 1468 Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end()); 1469 return Success; 1470 } 1471 }; 1472 typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII; 1473 typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII; 1474 typedef ScopeRAII<ScopeKind::Call> CallScopeRAII; 1475 } 1476 1477 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E, 1478 CheckSubobjectKind CSK) { 1479 if (Invalid) 1480 return false; 1481 if (isOnePastTheEnd()) { 1482 Info.CCEDiag(E, diag::note_constexpr_past_end_subobject) 1483 << CSK; 1484 setInvalid(); 1485 return false; 1486 } 1487 // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there 1488 // must actually be at least one array element; even a VLA cannot have a 1489 // bound of zero. And if our index is nonzero, we already had a CCEDiag. 1490 return true; 1491 } 1492 1493 void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, 1494 const Expr *E) { 1495 Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed); 1496 // Do not set the designator as invalid: we can represent this situation, 1497 // and correct handling of __builtin_object_size requires us to do so. 1498 } 1499 1500 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info, 1501 const Expr *E, 1502 const APSInt &N) { 1503 // If we're complaining, we must be able to statically determine the size of 1504 // the most derived array. 1505 if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement) 1506 Info.CCEDiag(E, diag::note_constexpr_array_index) 1507 << N << /*array*/ 0 1508 << static_cast<unsigned>(getMostDerivedArraySize()); 1509 else 1510 Info.CCEDiag(E, diag::note_constexpr_array_index) 1511 << N << /*non-array*/ 1; 1512 setInvalid(); 1513 } 1514 1515 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceRange CallRange, 1516 const FunctionDecl *Callee, const LValue *This, 1517 const Expr *CallExpr, CallRef Call) 1518 : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This), 1519 CallExpr(CallExpr), Arguments(Call), CallRange(CallRange), 1520 Index(Info.NextCallIndex++) { 1521 Info.CurrentCall = this; 1522 ++Info.CallStackDepth; 1523 } 1524 1525 CallStackFrame::~CallStackFrame() { 1526 assert(Info.CurrentCall == this && "calls retired out of order"); 1527 --Info.CallStackDepth; 1528 Info.CurrentCall = Caller; 1529 } 1530 1531 static bool isRead(AccessKinds AK) { 1532 return AK == AK_Read || AK == AK_ReadObjectRepresentation || 1533 AK == AK_IsWithinLifetime; 1534 } 1535 1536 static bool isModification(AccessKinds AK) { 1537 switch (AK) { 1538 case AK_Read: 1539 case AK_ReadObjectRepresentation: 1540 case AK_MemberCall: 1541 case AK_DynamicCast: 1542 case AK_TypeId: 1543 case AK_IsWithinLifetime: 1544 return false; 1545 case AK_Assign: 1546 case AK_Increment: 1547 case AK_Decrement: 1548 case AK_Construct: 1549 case AK_Destroy: 1550 return true; 1551 } 1552 llvm_unreachable("unknown access kind"); 1553 } 1554 1555 static bool isAnyAccess(AccessKinds AK) { 1556 return isRead(AK) || isModification(AK); 1557 } 1558 1559 /// Is this an access per the C++ definition? 1560 static bool isFormalAccess(AccessKinds AK) { 1561 return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy && 1562 AK != AK_IsWithinLifetime; 1563 } 1564 1565 /// Is this kind of axcess valid on an indeterminate object value? 1566 static bool isValidIndeterminateAccess(AccessKinds AK) { 1567 switch (AK) { 1568 case AK_Read: 1569 case AK_Increment: 1570 case AK_Decrement: 1571 // These need the object's value. 1572 return false; 1573 1574 case AK_IsWithinLifetime: 1575 case AK_ReadObjectRepresentation: 1576 case AK_Assign: 1577 case AK_Construct: 1578 case AK_Destroy: 1579 // Construction and destruction don't need the value. 1580 return true; 1581 1582 case AK_MemberCall: 1583 case AK_DynamicCast: 1584 case AK_TypeId: 1585 // These aren't really meaningful on scalars. 1586 return true; 1587 } 1588 llvm_unreachable("unknown access kind"); 1589 } 1590 1591 namespace { 1592 struct ComplexValue { 1593 private: 1594 bool IsInt; 1595 1596 public: 1597 APSInt IntReal, IntImag; 1598 APFloat FloatReal, FloatImag; 1599 1600 ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {} 1601 1602 void makeComplexFloat() { IsInt = false; } 1603 bool isComplexFloat() const { return !IsInt; } 1604 APFloat &getComplexFloatReal() { return FloatReal; } 1605 APFloat &getComplexFloatImag() { return FloatImag; } 1606 1607 void makeComplexInt() { IsInt = true; } 1608 bool isComplexInt() const { return IsInt; } 1609 APSInt &getComplexIntReal() { return IntReal; } 1610 APSInt &getComplexIntImag() { return IntImag; } 1611 1612 void moveInto(APValue &v) const { 1613 if (isComplexFloat()) 1614 v = APValue(FloatReal, FloatImag); 1615 else 1616 v = APValue(IntReal, IntImag); 1617 } 1618 void setFrom(const APValue &v) { 1619 assert(v.isComplexFloat() || v.isComplexInt()); 1620 if (v.isComplexFloat()) { 1621 makeComplexFloat(); 1622 FloatReal = v.getComplexFloatReal(); 1623 FloatImag = v.getComplexFloatImag(); 1624 } else { 1625 makeComplexInt(); 1626 IntReal = v.getComplexIntReal(); 1627 IntImag = v.getComplexIntImag(); 1628 } 1629 } 1630 }; 1631 1632 struct LValue { 1633 APValue::LValueBase Base; 1634 CharUnits Offset; 1635 SubobjectDesignator Designator; 1636 bool IsNullPtr : 1; 1637 bool InvalidBase : 1; 1638 // P2280R4 track if we have an unknown reference or pointer. 1639 bool AllowConstexprUnknown = false; 1640 1641 const APValue::LValueBase getLValueBase() const { return Base; } 1642 bool allowConstexprUnknown() const { return AllowConstexprUnknown; } 1643 CharUnits &getLValueOffset() { return Offset; } 1644 const CharUnits &getLValueOffset() const { return Offset; } 1645 SubobjectDesignator &getLValueDesignator() { return Designator; } 1646 const SubobjectDesignator &getLValueDesignator() const { return Designator;} 1647 bool isNullPointer() const { return IsNullPtr;} 1648 1649 unsigned getLValueCallIndex() const { return Base.getCallIndex(); } 1650 unsigned getLValueVersion() const { return Base.getVersion(); } 1651 1652 void moveInto(APValue &V) const { 1653 if (Designator.Invalid) 1654 V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr); 1655 else { 1656 assert(!InvalidBase && "APValues can't handle invalid LValue bases"); 1657 V = APValue(Base, Offset, Designator.Entries, 1658 Designator.IsOnePastTheEnd, IsNullPtr); 1659 } 1660 if (AllowConstexprUnknown) 1661 V.setConstexprUnknown(); 1662 } 1663 void setFrom(ASTContext &Ctx, const APValue &V) { 1664 assert(V.isLValue() && "Setting LValue from a non-LValue?"); 1665 Base = V.getLValueBase(); 1666 Offset = V.getLValueOffset(); 1667 InvalidBase = false; 1668 Designator = SubobjectDesignator(Ctx, V); 1669 IsNullPtr = V.isNullPointer(); 1670 AllowConstexprUnknown = V.allowConstexprUnknown(); 1671 } 1672 1673 void set(APValue::LValueBase B, bool BInvalid = false) { 1674 #ifndef NDEBUG 1675 // We only allow a few types of invalid bases. Enforce that here. 1676 if (BInvalid) { 1677 const auto *E = B.get<const Expr *>(); 1678 assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) && 1679 "Unexpected type of invalid base"); 1680 } 1681 #endif 1682 1683 Base = B; 1684 Offset = CharUnits::fromQuantity(0); 1685 InvalidBase = BInvalid; 1686 Designator = SubobjectDesignator(getType(B)); 1687 IsNullPtr = false; 1688 AllowConstexprUnknown = false; 1689 } 1690 1691 void setNull(ASTContext &Ctx, QualType PointerTy) { 1692 Base = (const ValueDecl *)nullptr; 1693 Offset = 1694 CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy)); 1695 InvalidBase = false; 1696 Designator = SubobjectDesignator(PointerTy->getPointeeType()); 1697 IsNullPtr = true; 1698 AllowConstexprUnknown = false; 1699 } 1700 1701 void setInvalid(APValue::LValueBase B, unsigned I = 0) { 1702 set(B, true); 1703 } 1704 1705 std::string toString(ASTContext &Ctx, QualType T) const { 1706 APValue Printable; 1707 moveInto(Printable); 1708 return Printable.getAsString(Ctx, T); 1709 } 1710 1711 private: 1712 // Check that this LValue is not based on a null pointer. If it is, produce 1713 // a diagnostic and mark the designator as invalid. 1714 template <typename GenDiagType> 1715 bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) { 1716 if (Designator.Invalid) 1717 return false; 1718 if (IsNullPtr) { 1719 GenDiag(); 1720 Designator.setInvalid(); 1721 return false; 1722 } 1723 return true; 1724 } 1725 1726 public: 1727 bool checkNullPointer(EvalInfo &Info, const Expr *E, 1728 CheckSubobjectKind CSK) { 1729 return checkNullPointerDiagnosingWith([&Info, E, CSK] { 1730 Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK; 1731 }); 1732 } 1733 1734 bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E, 1735 AccessKinds AK) { 1736 return checkNullPointerDiagnosingWith([&Info, E, AK] { 1737 Info.FFDiag(E, diag::note_constexpr_access_null) << AK; 1738 }); 1739 } 1740 1741 // Check this LValue refers to an object. If not, set the designator to be 1742 // invalid and emit a diagnostic. 1743 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) { 1744 return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) && 1745 Designator.checkSubobject(Info, E, CSK); 1746 } 1747 1748 void addDecl(EvalInfo &Info, const Expr *E, 1749 const Decl *D, bool Virtual = false) { 1750 if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base)) 1751 Designator.addDeclUnchecked(D, Virtual); 1752 } 1753 void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) { 1754 if (!Designator.Entries.empty()) { 1755 Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array); 1756 Designator.setInvalid(); 1757 return; 1758 } 1759 if (checkSubobject(Info, E, CSK_ArrayToPointer)) { 1760 assert(getType(Base)->isPointerType() || getType(Base)->isArrayType()); 1761 Designator.FirstEntryIsAnUnsizedArray = true; 1762 Designator.addUnsizedArrayUnchecked(ElemTy); 1763 } 1764 } 1765 void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) { 1766 if (checkSubobject(Info, E, CSK_ArrayToPointer)) 1767 Designator.addArrayUnchecked(CAT); 1768 } 1769 void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) { 1770 if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real)) 1771 Designator.addComplexUnchecked(EltTy, Imag); 1772 } 1773 void addVectorElement(EvalInfo &Info, const Expr *E, QualType EltTy, 1774 uint64_t Size, uint64_t Idx) { 1775 if (checkSubobject(Info, E, CSK_VectorElement)) 1776 Designator.addVectorElementUnchecked(EltTy, Size, Idx); 1777 } 1778 void clearIsNullPointer() { 1779 IsNullPtr = false; 1780 } 1781 void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E, 1782 const APSInt &Index, CharUnits ElementSize) { 1783 // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB, 1784 // but we're not required to diagnose it and it's valid in C++.) 1785 if (!Index) 1786 return; 1787 1788 // Compute the new offset in the appropriate width, wrapping at 64 bits. 1789 // FIXME: When compiling for a 32-bit target, we should use 32-bit 1790 // offsets. 1791 uint64_t Offset64 = Offset.getQuantity(); 1792 uint64_t ElemSize64 = ElementSize.getQuantity(); 1793 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue(); 1794 Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64); 1795 1796 if (checkNullPointer(Info, E, CSK_ArrayIndex)) 1797 Designator.adjustIndex(Info, E, Index); 1798 clearIsNullPointer(); 1799 } 1800 void adjustOffset(CharUnits N) { 1801 Offset += N; 1802 if (N.getQuantity()) 1803 clearIsNullPointer(); 1804 } 1805 }; 1806 1807 struct MemberPtr { 1808 MemberPtr() {} 1809 explicit MemberPtr(const ValueDecl *Decl) 1810 : DeclAndIsDerivedMember(Decl, false) {} 1811 1812 /// The member or (direct or indirect) field referred to by this member 1813 /// pointer, or 0 if this is a null member pointer. 1814 const ValueDecl *getDecl() const { 1815 return DeclAndIsDerivedMember.getPointer(); 1816 } 1817 /// Is this actually a member of some type derived from the relevant class? 1818 bool isDerivedMember() const { 1819 return DeclAndIsDerivedMember.getInt(); 1820 } 1821 /// Get the class which the declaration actually lives in. 1822 const CXXRecordDecl *getContainingRecord() const { 1823 return cast<CXXRecordDecl>( 1824 DeclAndIsDerivedMember.getPointer()->getDeclContext()); 1825 } 1826 1827 void moveInto(APValue &V) const { 1828 V = APValue(getDecl(), isDerivedMember(), Path); 1829 } 1830 void setFrom(const APValue &V) { 1831 assert(V.isMemberPointer()); 1832 DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl()); 1833 DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember()); 1834 Path.clear(); 1835 ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath(); 1836 Path.insert(Path.end(), P.begin(), P.end()); 1837 } 1838 1839 /// DeclAndIsDerivedMember - The member declaration, and a flag indicating 1840 /// whether the member is a member of some class derived from the class type 1841 /// of the member pointer. 1842 llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember; 1843 /// Path - The path of base/derived classes from the member declaration's 1844 /// class (exclusive) to the class type of the member pointer (inclusive). 1845 SmallVector<const CXXRecordDecl*, 4> Path; 1846 1847 /// Perform a cast towards the class of the Decl (either up or down the 1848 /// hierarchy). 1849 bool castBack(const CXXRecordDecl *Class) { 1850 assert(!Path.empty()); 1851 const CXXRecordDecl *Expected; 1852 if (Path.size() >= 2) 1853 Expected = Path[Path.size() - 2]; 1854 else 1855 Expected = getContainingRecord(); 1856 if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) { 1857 // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*), 1858 // if B does not contain the original member and is not a base or 1859 // derived class of the class containing the original member, the result 1860 // of the cast is undefined. 1861 // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to 1862 // (D::*). We consider that to be a language defect. 1863 return false; 1864 } 1865 Path.pop_back(); 1866 return true; 1867 } 1868 /// Perform a base-to-derived member pointer cast. 1869 bool castToDerived(const CXXRecordDecl *Derived) { 1870 if (!getDecl()) 1871 return true; 1872 if (!isDerivedMember()) { 1873 Path.push_back(Derived); 1874 return true; 1875 } 1876 if (!castBack(Derived)) 1877 return false; 1878 if (Path.empty()) 1879 DeclAndIsDerivedMember.setInt(false); 1880 return true; 1881 } 1882 /// Perform a derived-to-base member pointer cast. 1883 bool castToBase(const CXXRecordDecl *Base) { 1884 if (!getDecl()) 1885 return true; 1886 if (Path.empty()) 1887 DeclAndIsDerivedMember.setInt(true); 1888 if (isDerivedMember()) { 1889 Path.push_back(Base); 1890 return true; 1891 } 1892 return castBack(Base); 1893 } 1894 }; 1895 1896 /// Compare two member pointers, which are assumed to be of the same type. 1897 static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) { 1898 if (!LHS.getDecl() || !RHS.getDecl()) 1899 return !LHS.getDecl() && !RHS.getDecl(); 1900 if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl()) 1901 return false; 1902 return LHS.Path == RHS.Path; 1903 } 1904 } 1905 1906 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E); 1907 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, 1908 const LValue &This, const Expr *E, 1909 bool AllowNonLiteralTypes = false); 1910 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info, 1911 bool InvalidBaseOK = false); 1912 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info, 1913 bool InvalidBaseOK = false); 1914 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, 1915 EvalInfo &Info); 1916 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info); 1917 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info); 1918 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, 1919 EvalInfo &Info); 1920 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info); 1921 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info); 1922 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result, 1923 EvalInfo &Info); 1924 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result); 1925 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result, 1926 EvalInfo &Info, 1927 std::string *StringResult = nullptr); 1928 1929 /// Evaluate an integer or fixed point expression into an APResult. 1930 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result, 1931 EvalInfo &Info); 1932 1933 /// Evaluate only a fixed point expression into an APResult. 1934 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result, 1935 EvalInfo &Info); 1936 1937 //===----------------------------------------------------------------------===// 1938 // Misc utilities 1939 //===----------------------------------------------------------------------===// 1940 1941 /// Negate an APSInt in place, converting it to a signed form if necessary, and 1942 /// preserving its value (by extending by up to one bit as needed). 1943 static void negateAsSigned(APSInt &Int) { 1944 if (Int.isUnsigned() || Int.isMinSignedValue()) { 1945 Int = Int.extend(Int.getBitWidth() + 1); 1946 Int.setIsSigned(true); 1947 } 1948 Int = -Int; 1949 } 1950 1951 template<typename KeyT> 1952 APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T, 1953 ScopeKind Scope, LValue &LV) { 1954 unsigned Version = getTempVersion(); 1955 APValue::LValueBase Base(Key, Index, Version); 1956 LV.set(Base); 1957 return createLocal(Base, Key, T, Scope); 1958 } 1959 1960 APValue & 1961 CallStackFrame::createConstexprUnknownAPValues(const VarDecl *Key, 1962 APValue::LValueBase Base) { 1963 APValue &Result = ConstexprUnknownAPValues[MapKeyTy(Key, Base.getVersion())]; 1964 Result = APValue(Base, CharUnits::Zero(), APValue::ConstexprUnknown{}); 1965 1966 return Result; 1967 } 1968 1969 /// Allocate storage for a parameter of a function call made in this frame. 1970 APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD, 1971 LValue &LV) { 1972 assert(Args.CallIndex == Index && "creating parameter in wrong frame"); 1973 APValue::LValueBase Base(PVD, Index, Args.Version); 1974 LV.set(Base); 1975 // We always destroy parameters at the end of the call, even if we'd allow 1976 // them to live to the end of the full-expression at runtime, in order to 1977 // give portable results and match other compilers. 1978 return createLocal(Base, PVD, PVD->getType(), ScopeKind::Call); 1979 } 1980 1981 APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key, 1982 QualType T, ScopeKind Scope) { 1983 assert(Base.getCallIndex() == Index && "lvalue for wrong frame"); 1984 unsigned Version = Base.getVersion(); 1985 APValue &Result = Temporaries[MapKeyTy(Key, Version)]; 1986 assert(Result.isAbsent() && "local created multiple times"); 1987 1988 // If we're creating a local immediately in the operand of a speculative 1989 // evaluation, don't register a cleanup to be run outside the speculative 1990 // evaluation context, since we won't actually be able to initialize this 1991 // object. 1992 if (Index <= Info.SpeculativeEvaluationDepth) { 1993 if (T.isDestructedType()) 1994 Info.noteSideEffect(); 1995 } else { 1996 Info.CleanupStack.push_back(Cleanup(&Result, Base, T, Scope)); 1997 } 1998 return Result; 1999 } 2000 2001 APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) { 2002 if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) { 2003 FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded); 2004 return nullptr; 2005 } 2006 2007 DynamicAllocLValue DA(NumHeapAllocs++); 2008 LV.set(APValue::LValueBase::getDynamicAlloc(DA, T)); 2009 auto Result = HeapAllocs.emplace(std::piecewise_construct, 2010 std::forward_as_tuple(DA), std::tuple<>()); 2011 assert(Result.second && "reused a heap alloc index?"); 2012 Result.first->second.AllocExpr = E; 2013 return &Result.first->second.Value; 2014 } 2015 2016 /// Produce a string describing the given constexpr call. 2017 void CallStackFrame::describe(raw_ostream &Out) const { 2018 unsigned ArgIndex = 0; 2019 bool IsMemberCall = 2020 isa<CXXMethodDecl>(Callee) && !isa<CXXConstructorDecl>(Callee) && 2021 cast<CXXMethodDecl>(Callee)->isImplicitObjectMemberFunction(); 2022 2023 if (!IsMemberCall) 2024 Callee->getNameForDiagnostic(Out, Info.Ctx.getPrintingPolicy(), 2025 /*Qualified=*/false); 2026 2027 if (This && IsMemberCall) { 2028 if (const auto *MCE = dyn_cast_if_present<CXXMemberCallExpr>(CallExpr)) { 2029 const Expr *Object = MCE->getImplicitObjectArgument(); 2030 Object->printPretty(Out, /*Helper=*/nullptr, Info.Ctx.getPrintingPolicy(), 2031 /*Indentation=*/0); 2032 if (Object->getType()->isPointerType()) 2033 Out << "->"; 2034 else 2035 Out << "."; 2036 } else if (const auto *OCE = 2037 dyn_cast_if_present<CXXOperatorCallExpr>(CallExpr)) { 2038 OCE->getArg(0)->printPretty(Out, /*Helper=*/nullptr, 2039 Info.Ctx.getPrintingPolicy(), 2040 /*Indentation=*/0); 2041 Out << "."; 2042 } else { 2043 APValue Val; 2044 This->moveInto(Val); 2045 Val.printPretty( 2046 Out, Info.Ctx, 2047 Info.Ctx.getLValueReferenceType(This->Designator.MostDerivedType)); 2048 Out << "."; 2049 } 2050 Callee->getNameForDiagnostic(Out, Info.Ctx.getPrintingPolicy(), 2051 /*Qualified=*/false); 2052 IsMemberCall = false; 2053 } 2054 2055 Out << '('; 2056 2057 for (FunctionDecl::param_const_iterator I = Callee->param_begin(), 2058 E = Callee->param_end(); I != E; ++I, ++ArgIndex) { 2059 if (ArgIndex > (unsigned)IsMemberCall) 2060 Out << ", "; 2061 2062 const ParmVarDecl *Param = *I; 2063 APValue *V = Info.getParamSlot(Arguments, Param); 2064 if (V) 2065 V->printPretty(Out, Info.Ctx, Param->getType()); 2066 else 2067 Out << "<...>"; 2068 2069 if (ArgIndex == 0 && IsMemberCall) 2070 Out << "->" << *Callee << '('; 2071 } 2072 2073 Out << ')'; 2074 } 2075 2076 /// Evaluate an expression to see if it had side-effects, and discard its 2077 /// result. 2078 /// \return \c true if the caller should keep evaluating. 2079 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) { 2080 assert(!E->isValueDependent()); 2081 APValue Scratch; 2082 if (!Evaluate(Scratch, Info, E)) 2083 // We don't need the value, but we might have skipped a side effect here. 2084 return Info.noteSideEffect(); 2085 return true; 2086 } 2087 2088 /// Should this call expression be treated as forming an opaque constant? 2089 static bool IsOpaqueConstantCall(const CallExpr *E) { 2090 unsigned Builtin = E->getBuiltinCallee(); 2091 return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString || 2092 Builtin == Builtin::BI__builtin___NSStringMakeConstantString || 2093 Builtin == Builtin::BI__builtin_ptrauth_sign_constant || 2094 Builtin == Builtin::BI__builtin_function_start); 2095 } 2096 2097 static bool IsOpaqueConstantCall(const LValue &LVal) { 2098 const auto *BaseExpr = 2099 llvm::dyn_cast_if_present<CallExpr>(LVal.Base.dyn_cast<const Expr *>()); 2100 return BaseExpr && IsOpaqueConstantCall(BaseExpr); 2101 } 2102 2103 static bool IsGlobalLValue(APValue::LValueBase B) { 2104 // C++11 [expr.const]p3 An address constant expression is a prvalue core 2105 // constant expression of pointer type that evaluates to... 2106 2107 // ... a null pointer value, or a prvalue core constant expression of type 2108 // std::nullptr_t. 2109 if (!B) 2110 return true; 2111 2112 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { 2113 // ... the address of an object with static storage duration, 2114 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 2115 return VD->hasGlobalStorage(); 2116 if (isa<TemplateParamObjectDecl>(D)) 2117 return true; 2118 // ... the address of a function, 2119 // ... the address of a GUID [MS extension], 2120 // ... the address of an unnamed global constant 2121 return isa<FunctionDecl, MSGuidDecl, UnnamedGlobalConstantDecl>(D); 2122 } 2123 2124 if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>()) 2125 return true; 2126 2127 const Expr *E = B.get<const Expr*>(); 2128 switch (E->getStmtClass()) { 2129 default: 2130 return false; 2131 case Expr::CompoundLiteralExprClass: { 2132 const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E); 2133 return CLE->isFileScope() && CLE->isLValue(); 2134 } 2135 case Expr::MaterializeTemporaryExprClass: 2136 // A materialized temporary might have been lifetime-extended to static 2137 // storage duration. 2138 return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static; 2139 // A string literal has static storage duration. 2140 case Expr::StringLiteralClass: 2141 case Expr::PredefinedExprClass: 2142 case Expr::ObjCStringLiteralClass: 2143 case Expr::ObjCEncodeExprClass: 2144 return true; 2145 case Expr::ObjCBoxedExprClass: 2146 return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer(); 2147 case Expr::CallExprClass: 2148 return IsOpaqueConstantCall(cast<CallExpr>(E)); 2149 // For GCC compatibility, &&label has static storage duration. 2150 case Expr::AddrLabelExprClass: 2151 return true; 2152 // A Block literal expression may be used as the initialization value for 2153 // Block variables at global or local static scope. 2154 case Expr::BlockExprClass: 2155 return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures(); 2156 // The APValue generated from a __builtin_source_location will be emitted as a 2157 // literal. 2158 case Expr::SourceLocExprClass: 2159 return true; 2160 case Expr::ImplicitValueInitExprClass: 2161 // FIXME: 2162 // We can never form an lvalue with an implicit value initialization as its 2163 // base through expression evaluation, so these only appear in one case: the 2164 // implicit variable declaration we invent when checking whether a constexpr 2165 // constructor can produce a constant expression. We must assume that such 2166 // an expression might be a global lvalue. 2167 return true; 2168 } 2169 } 2170 2171 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) { 2172 return LVal.Base.dyn_cast<const ValueDecl*>(); 2173 } 2174 2175 // Information about an LValueBase that is some kind of string. 2176 struct LValueBaseString { 2177 std::string ObjCEncodeStorage; 2178 StringRef Bytes; 2179 int CharWidth; 2180 }; 2181 2182 // Gets the lvalue base of LVal as a string. 2183 static bool GetLValueBaseAsString(const EvalInfo &Info, const LValue &LVal, 2184 LValueBaseString &AsString) { 2185 const auto *BaseExpr = LVal.Base.dyn_cast<const Expr *>(); 2186 if (!BaseExpr) 2187 return false; 2188 2189 // For ObjCEncodeExpr, we need to compute and store the string. 2190 if (const auto *EE = dyn_cast<ObjCEncodeExpr>(BaseExpr)) { 2191 Info.Ctx.getObjCEncodingForType(EE->getEncodedType(), 2192 AsString.ObjCEncodeStorage); 2193 AsString.Bytes = AsString.ObjCEncodeStorage; 2194 AsString.CharWidth = 1; 2195 return true; 2196 } 2197 2198 // Otherwise, we have a StringLiteral. 2199 const auto *Lit = dyn_cast<StringLiteral>(BaseExpr); 2200 if (const auto *PE = dyn_cast<PredefinedExpr>(BaseExpr)) 2201 Lit = PE->getFunctionName(); 2202 2203 if (!Lit) 2204 return false; 2205 2206 AsString.Bytes = Lit->getBytes(); 2207 AsString.CharWidth = Lit->getCharByteWidth(); 2208 return true; 2209 } 2210 2211 // Determine whether two string literals potentially overlap. This will be the 2212 // case if they agree on the values of all the bytes on the overlapping region 2213 // between them. 2214 // 2215 // The overlapping region is the portion of the two string literals that must 2216 // overlap in memory if the pointers actually point to the same address at 2217 // runtime. For example, if LHS is "abcdef" + 3 and RHS is "cdef\0gh" + 1 then 2218 // the overlapping region is "cdef\0", which in this case does agree, so the 2219 // strings are potentially overlapping. Conversely, for "foobar" + 3 versus 2220 // "bazbar" + 3, the overlapping region contains all of both strings, so they 2221 // are not potentially overlapping, even though they agree from the given 2222 // addresses onwards. 2223 // 2224 // See open core issue CWG2765 which is discussing the desired rule here. 2225 static bool ArePotentiallyOverlappingStringLiterals(const EvalInfo &Info, 2226 const LValue &LHS, 2227 const LValue &RHS) { 2228 LValueBaseString LHSString, RHSString; 2229 if (!GetLValueBaseAsString(Info, LHS, LHSString) || 2230 !GetLValueBaseAsString(Info, RHS, RHSString)) 2231 return false; 2232 2233 // This is the byte offset to the location of the first character of LHS 2234 // within RHS. We don't need to look at the characters of one string that 2235 // would appear before the start of the other string if they were merged. 2236 CharUnits Offset = RHS.Offset - LHS.Offset; 2237 if (Offset.isNegative()) 2238 LHSString.Bytes = LHSString.Bytes.drop_front(-Offset.getQuantity()); 2239 else 2240 RHSString.Bytes = RHSString.Bytes.drop_front(Offset.getQuantity()); 2241 2242 bool LHSIsLonger = LHSString.Bytes.size() > RHSString.Bytes.size(); 2243 StringRef Longer = LHSIsLonger ? LHSString.Bytes : RHSString.Bytes; 2244 StringRef Shorter = LHSIsLonger ? RHSString.Bytes : LHSString.Bytes; 2245 int ShorterCharWidth = (LHSIsLonger ? RHSString : LHSString).CharWidth; 2246 2247 // The null terminator isn't included in the string data, so check for it 2248 // manually. If the longer string doesn't have a null terminator where the 2249 // shorter string ends, they aren't potentially overlapping. 2250 for (int NullByte : llvm::seq(ShorterCharWidth)) { 2251 if (Shorter.size() + NullByte >= Longer.size()) 2252 break; 2253 if (Longer[Shorter.size() + NullByte]) 2254 return false; 2255 } 2256 2257 // Otherwise, they're potentially overlapping if and only if the overlapping 2258 // region is the same. 2259 return Shorter == Longer.take_front(Shorter.size()); 2260 } 2261 2262 static bool IsWeakLValue(const LValue &Value) { 2263 const ValueDecl *Decl = GetLValueBaseDecl(Value); 2264 return Decl && Decl->isWeak(); 2265 } 2266 2267 static bool isZeroSized(const LValue &Value) { 2268 const ValueDecl *Decl = GetLValueBaseDecl(Value); 2269 if (isa_and_nonnull<VarDecl>(Decl)) { 2270 QualType Ty = Decl->getType(); 2271 if (Ty->isArrayType()) 2272 return Ty->isIncompleteType() || 2273 Decl->getASTContext().getTypeSize(Ty) == 0; 2274 } 2275 return false; 2276 } 2277 2278 static bool HasSameBase(const LValue &A, const LValue &B) { 2279 if (!A.getLValueBase()) 2280 return !B.getLValueBase(); 2281 if (!B.getLValueBase()) 2282 return false; 2283 2284 if (A.getLValueBase().getOpaqueValue() != 2285 B.getLValueBase().getOpaqueValue()) 2286 return false; 2287 2288 return A.getLValueCallIndex() == B.getLValueCallIndex() && 2289 A.getLValueVersion() == B.getLValueVersion(); 2290 } 2291 2292 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) { 2293 assert(Base && "no location for a null lvalue"); 2294 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); 2295 2296 // For a parameter, find the corresponding call stack frame (if it still 2297 // exists), and point at the parameter of the function definition we actually 2298 // invoked. 2299 if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(VD)) { 2300 unsigned Idx = PVD->getFunctionScopeIndex(); 2301 for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) { 2302 if (F->Arguments.CallIndex == Base.getCallIndex() && 2303 F->Arguments.Version == Base.getVersion() && F->Callee && 2304 Idx < F->Callee->getNumParams()) { 2305 VD = F->Callee->getParamDecl(Idx); 2306 break; 2307 } 2308 } 2309 } 2310 2311 if (VD) 2312 Info.Note(VD->getLocation(), diag::note_declared_at); 2313 else if (const Expr *E = Base.dyn_cast<const Expr*>()) 2314 Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here); 2315 else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) { 2316 // FIXME: Produce a note for dangling pointers too. 2317 if (std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA)) 2318 Info.Note((*Alloc)->AllocExpr->getExprLoc(), 2319 diag::note_constexpr_dynamic_alloc_here); 2320 } 2321 2322 // We have no information to show for a typeid(T) object. 2323 } 2324 2325 enum class CheckEvaluationResultKind { 2326 ConstantExpression, 2327 FullyInitialized, 2328 }; 2329 2330 /// Materialized temporaries that we've already checked to determine if they're 2331 /// initializsed by a constant expression. 2332 using CheckedTemporaries = 2333 llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>; 2334 2335 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK, 2336 EvalInfo &Info, SourceLocation DiagLoc, 2337 QualType Type, const APValue &Value, 2338 ConstantExprKind Kind, 2339 const FieldDecl *SubobjectDecl, 2340 CheckedTemporaries &CheckedTemps); 2341 2342 /// Check that this reference or pointer core constant expression is a valid 2343 /// value for an address or reference constant expression. Return true if we 2344 /// can fold this expression, whether or not it's a constant expression. 2345 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc, 2346 QualType Type, const LValue &LVal, 2347 ConstantExprKind Kind, 2348 CheckedTemporaries &CheckedTemps) { 2349 bool IsReferenceType = Type->isReferenceType(); 2350 2351 APValue::LValueBase Base = LVal.getLValueBase(); 2352 const SubobjectDesignator &Designator = LVal.getLValueDesignator(); 2353 2354 const Expr *BaseE = Base.dyn_cast<const Expr *>(); 2355 const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>(); 2356 2357 // Additional restrictions apply in a template argument. We only enforce the 2358 // C++20 restrictions here; additional syntactic and semantic restrictions 2359 // are applied elsewhere. 2360 if (isTemplateArgument(Kind)) { 2361 int InvalidBaseKind = -1; 2362 StringRef Ident; 2363 if (Base.is<TypeInfoLValue>()) 2364 InvalidBaseKind = 0; 2365 else if (isa_and_nonnull<StringLiteral>(BaseE)) 2366 InvalidBaseKind = 1; 2367 else if (isa_and_nonnull<MaterializeTemporaryExpr>(BaseE) || 2368 isa_and_nonnull<LifetimeExtendedTemporaryDecl>(BaseVD)) 2369 InvalidBaseKind = 2; 2370 else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(BaseE)) { 2371 InvalidBaseKind = 3; 2372 Ident = PE->getIdentKindName(); 2373 } 2374 2375 if (InvalidBaseKind != -1) { 2376 Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg) 2377 << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind 2378 << Ident; 2379 return false; 2380 } 2381 } 2382 2383 if (auto *FD = dyn_cast_or_null<FunctionDecl>(BaseVD); 2384 FD && FD->isImmediateFunction()) { 2385 Info.FFDiag(Loc, diag::note_consteval_address_accessible) 2386 << !Type->isAnyPointerType(); 2387 Info.Note(FD->getLocation(), diag::note_declared_at); 2388 return false; 2389 } 2390 2391 // Check that the object is a global. Note that the fake 'this' object we 2392 // manufacture when checking potential constant expressions is conservatively 2393 // assumed to be global here. 2394 if (!IsGlobalLValue(Base)) { 2395 if (Info.getLangOpts().CPlusPlus11) { 2396 Info.FFDiag(Loc, diag::note_constexpr_non_global, 1) 2397 << IsReferenceType << !Designator.Entries.empty() << !!BaseVD 2398 << BaseVD; 2399 auto *VarD = dyn_cast_or_null<VarDecl>(BaseVD); 2400 if (VarD && VarD->isConstexpr()) { 2401 // Non-static local constexpr variables have unintuitive semantics: 2402 // constexpr int a = 1; 2403 // constexpr const int *p = &a; 2404 // ... is invalid because the address of 'a' is not constant. Suggest 2405 // adding a 'static' in this case. 2406 Info.Note(VarD->getLocation(), diag::note_constexpr_not_static) 2407 << VarD 2408 << FixItHint::CreateInsertion(VarD->getBeginLoc(), "static "); 2409 } else { 2410 NoteLValueLocation(Info, Base); 2411 } 2412 } else { 2413 Info.FFDiag(Loc); 2414 } 2415 // Don't allow references to temporaries to escape. 2416 return false; 2417 } 2418 assert((Info.checkingPotentialConstantExpression() || 2419 LVal.getLValueCallIndex() == 0) && 2420 "have call index for global lvalue"); 2421 2422 if (Base.is<DynamicAllocLValue>()) { 2423 Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc) 2424 << IsReferenceType << !Designator.Entries.empty(); 2425 NoteLValueLocation(Info, Base); 2426 return false; 2427 } 2428 2429 if (BaseVD) { 2430 if (const VarDecl *Var = dyn_cast<const VarDecl>(BaseVD)) { 2431 // Check if this is a thread-local variable. 2432 if (Var->getTLSKind()) 2433 // FIXME: Diagnostic! 2434 return false; 2435 2436 // A dllimport variable never acts like a constant, unless we're 2437 // evaluating a value for use only in name mangling. 2438 if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>()) 2439 // FIXME: Diagnostic! 2440 return false; 2441 2442 // In CUDA/HIP device compilation, only device side variables have 2443 // constant addresses. 2444 if (Info.getASTContext().getLangOpts().CUDA && 2445 Info.getASTContext().getLangOpts().CUDAIsDevice && 2446 Info.getASTContext().CUDAConstantEvalCtx.NoWrongSidedVars) { 2447 if ((!Var->hasAttr<CUDADeviceAttr>() && 2448 !Var->hasAttr<CUDAConstantAttr>() && 2449 !Var->getType()->isCUDADeviceBuiltinSurfaceType() && 2450 !Var->getType()->isCUDADeviceBuiltinTextureType()) || 2451 Var->hasAttr<HIPManagedAttr>()) 2452 return false; 2453 } 2454 } 2455 if (const auto *FD = dyn_cast<const FunctionDecl>(BaseVD)) { 2456 // __declspec(dllimport) must be handled very carefully: 2457 // We must never initialize an expression with the thunk in C++. 2458 // Doing otherwise would allow the same id-expression to yield 2459 // different addresses for the same function in different translation 2460 // units. However, this means that we must dynamically initialize the 2461 // expression with the contents of the import address table at runtime. 2462 // 2463 // The C language has no notion of ODR; furthermore, it has no notion of 2464 // dynamic initialization. This means that we are permitted to 2465 // perform initialization with the address of the thunk. 2466 if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) && 2467 FD->hasAttr<DLLImportAttr>()) 2468 // FIXME: Diagnostic! 2469 return false; 2470 } 2471 } else if (const auto *MTE = 2472 dyn_cast_or_null<MaterializeTemporaryExpr>(BaseE)) { 2473 if (CheckedTemps.insert(MTE).second) { 2474 QualType TempType = getType(Base); 2475 if (TempType.isDestructedType()) { 2476 Info.FFDiag(MTE->getExprLoc(), 2477 diag::note_constexpr_unsupported_temporary_nontrivial_dtor) 2478 << TempType; 2479 return false; 2480 } 2481 2482 APValue *V = MTE->getOrCreateValue(false); 2483 assert(V && "evasluation result refers to uninitialised temporary"); 2484 if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression, 2485 Info, MTE->getExprLoc(), TempType, *V, Kind, 2486 /*SubobjectDecl=*/nullptr, CheckedTemps)) 2487 return false; 2488 } 2489 } 2490 2491 // Allow address constant expressions to be past-the-end pointers. This is 2492 // an extension: the standard requires them to point to an object. 2493 if (!IsReferenceType) 2494 return true; 2495 2496 // A reference constant expression must refer to an object. 2497 if (!Base) { 2498 // FIXME: diagnostic 2499 Info.CCEDiag(Loc); 2500 return true; 2501 } 2502 2503 // Does this refer one past the end of some object? 2504 if (!Designator.Invalid && Designator.isOnePastTheEnd()) { 2505 Info.FFDiag(Loc, diag::note_constexpr_past_end, 1) 2506 << !Designator.Entries.empty() << !!BaseVD << BaseVD; 2507 NoteLValueLocation(Info, Base); 2508 } 2509 2510 return true; 2511 } 2512 2513 /// Member pointers are constant expressions unless they point to a 2514 /// non-virtual dllimport member function. 2515 static bool CheckMemberPointerConstantExpression(EvalInfo &Info, 2516 SourceLocation Loc, 2517 QualType Type, 2518 const APValue &Value, 2519 ConstantExprKind Kind) { 2520 const ValueDecl *Member = Value.getMemberPointerDecl(); 2521 const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member); 2522 if (!FD) 2523 return true; 2524 if (FD->isImmediateFunction()) { 2525 Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0; 2526 Info.Note(FD->getLocation(), diag::note_declared_at); 2527 return false; 2528 } 2529 return isForManglingOnly(Kind) || FD->isVirtual() || 2530 !FD->hasAttr<DLLImportAttr>(); 2531 } 2532 2533 /// Check that this core constant expression is of literal type, and if not, 2534 /// produce an appropriate diagnostic. 2535 static bool CheckLiteralType(EvalInfo &Info, const Expr *E, 2536 const LValue *This = nullptr) { 2537 // The restriction to literal types does not exist in C++23 anymore. 2538 if (Info.getLangOpts().CPlusPlus23) 2539 return true; 2540 2541 if (!E->isPRValue() || E->getType()->isLiteralType(Info.Ctx)) 2542 return true; 2543 2544 // C++1y: A constant initializer for an object o [...] may also invoke 2545 // constexpr constructors for o and its subobjects even if those objects 2546 // are of non-literal class types. 2547 // 2548 // C++11 missed this detail for aggregates, so classes like this: 2549 // struct foo_t { union { int i; volatile int j; } u; }; 2550 // are not (obviously) initializable like so: 2551 // __attribute__((__require_constant_initialization__)) 2552 // static const foo_t x = {{0}}; 2553 // because "i" is a subobject with non-literal initialization (due to the 2554 // volatile member of the union). See: 2555 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677 2556 // Therefore, we use the C++1y behavior. 2557 if (This && Info.EvaluatingDecl == This->getLValueBase()) 2558 return true; 2559 2560 // Prvalue constant expressions must be of literal types. 2561 if (Info.getLangOpts().CPlusPlus11) 2562 Info.FFDiag(E, diag::note_constexpr_nonliteral) 2563 << E->getType(); 2564 else 2565 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 2566 return false; 2567 } 2568 2569 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK, 2570 EvalInfo &Info, SourceLocation DiagLoc, 2571 QualType Type, const APValue &Value, 2572 ConstantExprKind Kind, 2573 const FieldDecl *SubobjectDecl, 2574 CheckedTemporaries &CheckedTemps) { 2575 if (!Value.hasValue()) { 2576 if (SubobjectDecl) { 2577 Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized) 2578 << /*(name)*/ 1 << SubobjectDecl; 2579 Info.Note(SubobjectDecl->getLocation(), 2580 diag::note_constexpr_subobject_declared_here); 2581 } else { 2582 Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized) 2583 << /*of type*/ 0 << Type; 2584 } 2585 return false; 2586 } 2587 2588 // We allow _Atomic(T) to be initialized from anything that T can be 2589 // initialized from. 2590 if (const AtomicType *AT = Type->getAs<AtomicType>()) 2591 Type = AT->getValueType(); 2592 2593 // Core issue 1454: For a literal constant expression of array or class type, 2594 // each subobject of its value shall have been initialized by a constant 2595 // expression. 2596 if (Value.isArray()) { 2597 QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType(); 2598 for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) { 2599 if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy, 2600 Value.getArrayInitializedElt(I), Kind, 2601 SubobjectDecl, CheckedTemps)) 2602 return false; 2603 } 2604 if (!Value.hasArrayFiller()) 2605 return true; 2606 return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy, 2607 Value.getArrayFiller(), Kind, SubobjectDecl, 2608 CheckedTemps); 2609 } 2610 if (Value.isUnion() && Value.getUnionField()) { 2611 return CheckEvaluationResult( 2612 CERK, Info, DiagLoc, Value.getUnionField()->getType(), 2613 Value.getUnionValue(), Kind, Value.getUnionField(), CheckedTemps); 2614 } 2615 if (Value.isStruct()) { 2616 RecordDecl *RD = Type->castAs<RecordType>()->getDecl(); 2617 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 2618 unsigned BaseIndex = 0; 2619 for (const CXXBaseSpecifier &BS : CD->bases()) { 2620 const APValue &BaseValue = Value.getStructBase(BaseIndex); 2621 if (!BaseValue.hasValue()) { 2622 SourceLocation TypeBeginLoc = BS.getBaseTypeLoc(); 2623 Info.FFDiag(TypeBeginLoc, diag::note_constexpr_uninitialized_base) 2624 << BS.getType() << SourceRange(TypeBeginLoc, BS.getEndLoc()); 2625 return false; 2626 } 2627 if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(), BaseValue, 2628 Kind, /*SubobjectDecl=*/nullptr, 2629 CheckedTemps)) 2630 return false; 2631 ++BaseIndex; 2632 } 2633 } 2634 for (const auto *I : RD->fields()) { 2635 if (I->isUnnamedBitField()) 2636 continue; 2637 2638 if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(), 2639 Value.getStructField(I->getFieldIndex()), Kind, 2640 I, CheckedTemps)) 2641 return false; 2642 } 2643 } 2644 2645 if (Value.isLValue() && 2646 CERK == CheckEvaluationResultKind::ConstantExpression) { 2647 LValue LVal; 2648 LVal.setFrom(Info.Ctx, Value); 2649 return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Kind, 2650 CheckedTemps); 2651 } 2652 2653 if (Value.isMemberPointer() && 2654 CERK == CheckEvaluationResultKind::ConstantExpression) 2655 return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Kind); 2656 2657 // Everything else is fine. 2658 return true; 2659 } 2660 2661 /// Check that this core constant expression value is a valid value for a 2662 /// constant expression. If not, report an appropriate diagnostic. Does not 2663 /// check that the expression is of literal type. 2664 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc, 2665 QualType Type, const APValue &Value, 2666 ConstantExprKind Kind) { 2667 // Nothing to check for a constant expression of type 'cv void'. 2668 if (Type->isVoidType()) 2669 return true; 2670 2671 CheckedTemporaries CheckedTemps; 2672 return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression, 2673 Info, DiagLoc, Type, Value, Kind, 2674 /*SubobjectDecl=*/nullptr, CheckedTemps); 2675 } 2676 2677 /// Check that this evaluated value is fully-initialized and can be loaded by 2678 /// an lvalue-to-rvalue conversion. 2679 static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc, 2680 QualType Type, const APValue &Value) { 2681 CheckedTemporaries CheckedTemps; 2682 return CheckEvaluationResult( 2683 CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value, 2684 ConstantExprKind::Normal, /*SubobjectDecl=*/nullptr, CheckedTemps); 2685 } 2686 2687 /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless 2688 /// "the allocated storage is deallocated within the evaluation". 2689 static bool CheckMemoryLeaks(EvalInfo &Info) { 2690 if (!Info.HeapAllocs.empty()) { 2691 // We can still fold to a constant despite a compile-time memory leak, 2692 // so long as the heap allocation isn't referenced in the result (we check 2693 // that in CheckConstantExpression). 2694 Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr, 2695 diag::note_constexpr_memory_leak) 2696 << unsigned(Info.HeapAllocs.size() - 1); 2697 } 2698 return true; 2699 } 2700 2701 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) { 2702 // A null base expression indicates a null pointer. These are always 2703 // evaluatable, and they are false unless the offset is zero. 2704 if (!Value.getLValueBase()) { 2705 // TODO: Should a non-null pointer with an offset of zero evaluate to true? 2706 Result = !Value.getLValueOffset().isZero(); 2707 return true; 2708 } 2709 2710 // We have a non-null base. These are generally known to be true, but if it's 2711 // a weak declaration it can be null at runtime. 2712 Result = true; 2713 const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>(); 2714 return !Decl || !Decl->isWeak(); 2715 } 2716 2717 static bool HandleConversionToBool(const APValue &Val, bool &Result) { 2718 // TODO: This function should produce notes if it fails. 2719 switch (Val.getKind()) { 2720 case APValue::None: 2721 case APValue::Indeterminate: 2722 return false; 2723 case APValue::Int: 2724 Result = Val.getInt().getBoolValue(); 2725 return true; 2726 case APValue::FixedPoint: 2727 Result = Val.getFixedPoint().getBoolValue(); 2728 return true; 2729 case APValue::Float: 2730 Result = !Val.getFloat().isZero(); 2731 return true; 2732 case APValue::ComplexInt: 2733 Result = Val.getComplexIntReal().getBoolValue() || 2734 Val.getComplexIntImag().getBoolValue(); 2735 return true; 2736 case APValue::ComplexFloat: 2737 Result = !Val.getComplexFloatReal().isZero() || 2738 !Val.getComplexFloatImag().isZero(); 2739 return true; 2740 case APValue::LValue: 2741 return EvalPointerValueAsBool(Val, Result); 2742 case APValue::MemberPointer: 2743 if (Val.getMemberPointerDecl() && Val.getMemberPointerDecl()->isWeak()) { 2744 return false; 2745 } 2746 Result = Val.getMemberPointerDecl(); 2747 return true; 2748 case APValue::Vector: 2749 case APValue::Array: 2750 case APValue::Struct: 2751 case APValue::Union: 2752 case APValue::AddrLabelDiff: 2753 return false; 2754 } 2755 2756 llvm_unreachable("unknown APValue kind"); 2757 } 2758 2759 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result, 2760 EvalInfo &Info) { 2761 assert(!E->isValueDependent()); 2762 assert(E->isPRValue() && "missing lvalue-to-rvalue conv in bool condition"); 2763 APValue Val; 2764 if (!Evaluate(Val, Info, E)) 2765 return false; 2766 return HandleConversionToBool(Val, Result); 2767 } 2768 2769 template<typename T> 2770 static bool HandleOverflow(EvalInfo &Info, const Expr *E, 2771 const T &SrcValue, QualType DestType) { 2772 Info.CCEDiag(E, diag::note_constexpr_overflow) 2773 << SrcValue << DestType; 2774 return Info.noteUndefinedBehavior(); 2775 } 2776 2777 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E, 2778 QualType SrcType, const APFloat &Value, 2779 QualType DestType, APSInt &Result) { 2780 unsigned DestWidth = Info.Ctx.getIntWidth(DestType); 2781 // Determine whether we are converting to unsigned or signed. 2782 bool DestSigned = DestType->isSignedIntegerOrEnumerationType(); 2783 2784 Result = APSInt(DestWidth, !DestSigned); 2785 bool ignored; 2786 if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored) 2787 & APFloat::opInvalidOp) 2788 return HandleOverflow(Info, E, Value, DestType); 2789 return true; 2790 } 2791 2792 /// Get rounding mode to use in evaluation of the specified expression. 2793 /// 2794 /// If rounding mode is unknown at compile time, still try to evaluate the 2795 /// expression. If the result is exact, it does not depend on rounding mode. 2796 /// So return "tonearest" mode instead of "dynamic". 2797 static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E) { 2798 llvm::RoundingMode RM = 2799 E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).getRoundingMode(); 2800 if (RM == llvm::RoundingMode::Dynamic) 2801 RM = llvm::RoundingMode::NearestTiesToEven; 2802 return RM; 2803 } 2804 2805 /// Check if the given evaluation result is allowed for constant evaluation. 2806 static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E, 2807 APFloat::opStatus St) { 2808 // In a constant context, assume that any dynamic rounding mode or FP 2809 // exception state matches the default floating-point environment. 2810 if (Info.InConstantContext) 2811 return true; 2812 2813 FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()); 2814 if ((St & APFloat::opInexact) && 2815 FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) { 2816 // Inexact result means that it depends on rounding mode. If the requested 2817 // mode is dynamic, the evaluation cannot be made in compile time. 2818 Info.FFDiag(E, diag::note_constexpr_dynamic_rounding); 2819 return false; 2820 } 2821 2822 if ((St != APFloat::opOK) && 2823 (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic || 2824 FPO.getExceptionMode() != LangOptions::FPE_Ignore || 2825 FPO.getAllowFEnvAccess())) { 2826 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict); 2827 return false; 2828 } 2829 2830 if ((St & APFloat::opStatus::opInvalidOp) && 2831 FPO.getExceptionMode() != LangOptions::FPE_Ignore) { 2832 // There is no usefully definable result. 2833 Info.FFDiag(E); 2834 return false; 2835 } 2836 2837 // FIXME: if: 2838 // - evaluation triggered other FP exception, and 2839 // - exception mode is not "ignore", and 2840 // - the expression being evaluated is not a part of global variable 2841 // initializer, 2842 // the evaluation probably need to be rejected. 2843 return true; 2844 } 2845 2846 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E, 2847 QualType SrcType, QualType DestType, 2848 APFloat &Result) { 2849 assert((isa<CastExpr>(E) || isa<CompoundAssignOperator>(E) || 2850 isa<ConvertVectorExpr>(E)) && 2851 "HandleFloatToFloatCast has been checked with only CastExpr, " 2852 "CompoundAssignOperator and ConvertVectorExpr. Please either validate " 2853 "the new expression or address the root cause of this usage."); 2854 llvm::RoundingMode RM = getActiveRoundingMode(Info, E); 2855 APFloat::opStatus St; 2856 APFloat Value = Result; 2857 bool ignored; 2858 St = Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), RM, &ignored); 2859 return checkFloatingPointResult(Info, E, St); 2860 } 2861 2862 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E, 2863 QualType DestType, QualType SrcType, 2864 const APSInt &Value) { 2865 unsigned DestWidth = Info.Ctx.getIntWidth(DestType); 2866 // Figure out if this is a truncate, extend or noop cast. 2867 // If the input is signed, do a sign extend, noop, or truncate. 2868 APSInt Result = Value.extOrTrunc(DestWidth); 2869 Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType()); 2870 if (DestType->isBooleanType()) 2871 Result = Value.getBoolValue(); 2872 return Result; 2873 } 2874 2875 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E, 2876 const FPOptions FPO, 2877 QualType SrcType, const APSInt &Value, 2878 QualType DestType, APFloat &Result) { 2879 Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1); 2880 llvm::RoundingMode RM = getActiveRoundingMode(Info, E); 2881 APFloat::opStatus St = Result.convertFromAPInt(Value, Value.isSigned(), RM); 2882 return checkFloatingPointResult(Info, E, St); 2883 } 2884 2885 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E, 2886 APValue &Value, const FieldDecl *FD) { 2887 assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield"); 2888 2889 if (!Value.isInt()) { 2890 // Trying to store a pointer-cast-to-integer into a bitfield. 2891 // FIXME: In this case, we should provide the diagnostic for casting 2892 // a pointer to an integer. 2893 assert(Value.isLValue() && "integral value neither int nor lvalue?"); 2894 Info.FFDiag(E); 2895 return false; 2896 } 2897 2898 APSInt &Int = Value.getInt(); 2899 unsigned OldBitWidth = Int.getBitWidth(); 2900 unsigned NewBitWidth = FD->getBitWidthValue(); 2901 if (NewBitWidth < OldBitWidth) 2902 Int = Int.trunc(NewBitWidth).extend(OldBitWidth); 2903 return true; 2904 } 2905 2906 /// Perform the given integer operation, which is known to need at most BitWidth 2907 /// bits, and check for overflow in the original type (if that type was not an 2908 /// unsigned type). 2909 template<typename Operation> 2910 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E, 2911 const APSInt &LHS, const APSInt &RHS, 2912 unsigned BitWidth, Operation Op, 2913 APSInt &Result) { 2914 if (LHS.isUnsigned()) { 2915 Result = Op(LHS, RHS); 2916 return true; 2917 } 2918 2919 APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false); 2920 Result = Value.trunc(LHS.getBitWidth()); 2921 if (Result.extend(BitWidth) != Value) { 2922 if (Info.checkingForUndefinedBehavior()) 2923 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 2924 diag::warn_integer_constant_overflow) 2925 << toString(Result, 10, Result.isSigned(), /*formatAsCLiteral=*/false, 2926 /*UpperCase=*/true, /*InsertSeparators=*/true) 2927 << E->getType() << E->getSourceRange(); 2928 return HandleOverflow(Info, E, Value, E->getType()); 2929 } 2930 return true; 2931 } 2932 2933 /// Perform the given binary integer operation. 2934 static bool handleIntIntBinOp(EvalInfo &Info, const BinaryOperator *E, 2935 const APSInt &LHS, BinaryOperatorKind Opcode, 2936 APSInt RHS, APSInt &Result) { 2937 bool HandleOverflowResult = true; 2938 switch (Opcode) { 2939 default: 2940 Info.FFDiag(E); 2941 return false; 2942 case BO_Mul: 2943 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2, 2944 std::multiplies<APSInt>(), Result); 2945 case BO_Add: 2946 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, 2947 std::plus<APSInt>(), Result); 2948 case BO_Sub: 2949 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, 2950 std::minus<APSInt>(), Result); 2951 case BO_And: Result = LHS & RHS; return true; 2952 case BO_Xor: Result = LHS ^ RHS; return true; 2953 case BO_Or: Result = LHS | RHS; return true; 2954 case BO_Div: 2955 case BO_Rem: 2956 if (RHS == 0) { 2957 Info.FFDiag(E, diag::note_expr_divide_by_zero) 2958 << E->getRHS()->getSourceRange(); 2959 return false; 2960 } 2961 // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports 2962 // this operation and gives the two's complement result. 2963 if (RHS.isNegative() && RHS.isAllOnes() && LHS.isSigned() && 2964 LHS.isMinSignedValue()) 2965 HandleOverflowResult = HandleOverflow( 2966 Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType()); 2967 Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS); 2968 return HandleOverflowResult; 2969 case BO_Shl: { 2970 if (Info.getLangOpts().OpenCL) 2971 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2972 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), 2973 static_cast<uint64_t>(LHS.getBitWidth() - 1)), 2974 RHS.isUnsigned()); 2975 else if (RHS.isSigned() && RHS.isNegative()) { 2976 // During constant-folding, a negative shift is an opposite shift. Such 2977 // a shift is not a constant expression. 2978 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; 2979 if (!Info.noteUndefinedBehavior()) 2980 return false; 2981 RHS = -RHS; 2982 goto shift_right; 2983 } 2984 shift_left: 2985 // C++11 [expr.shift]p1: Shift width must be less than the bit width of 2986 // the shifted type. 2987 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); 2988 if (SA != RHS) { 2989 Info.CCEDiag(E, diag::note_constexpr_large_shift) 2990 << RHS << E->getType() << LHS.getBitWidth(); 2991 if (!Info.noteUndefinedBehavior()) 2992 return false; 2993 } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) { 2994 // C++11 [expr.shift]p2: A signed left shift must have a non-negative 2995 // operand, and must not overflow the corresponding unsigned type. 2996 // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to 2997 // E1 x 2^E2 module 2^N. 2998 if (LHS.isNegative()) { 2999 Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS; 3000 if (!Info.noteUndefinedBehavior()) 3001 return false; 3002 } else if (LHS.countl_zero() < SA) { 3003 Info.CCEDiag(E, diag::note_constexpr_lshift_discards); 3004 if (!Info.noteUndefinedBehavior()) 3005 return false; 3006 } 3007 } 3008 Result = LHS << SA; 3009 return true; 3010 } 3011 case BO_Shr: { 3012 if (Info.getLangOpts().OpenCL) 3013 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3014 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), 3015 static_cast<uint64_t>(LHS.getBitWidth() - 1)), 3016 RHS.isUnsigned()); 3017 else if (RHS.isSigned() && RHS.isNegative()) { 3018 // During constant-folding, a negative shift is an opposite shift. Such a 3019 // shift is not a constant expression. 3020 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; 3021 if (!Info.noteUndefinedBehavior()) 3022 return false; 3023 RHS = -RHS; 3024 goto shift_left; 3025 } 3026 shift_right: 3027 // C++11 [expr.shift]p1: Shift width must be less than the bit width of the 3028 // shifted type. 3029 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); 3030 if (SA != RHS) { 3031 Info.CCEDiag(E, diag::note_constexpr_large_shift) 3032 << RHS << E->getType() << LHS.getBitWidth(); 3033 if (!Info.noteUndefinedBehavior()) 3034 return false; 3035 } 3036 3037 Result = LHS >> SA; 3038 return true; 3039 } 3040 3041 case BO_LT: Result = LHS < RHS; return true; 3042 case BO_GT: Result = LHS > RHS; return true; 3043 case BO_LE: Result = LHS <= RHS; return true; 3044 case BO_GE: Result = LHS >= RHS; return true; 3045 case BO_EQ: Result = LHS == RHS; return true; 3046 case BO_NE: Result = LHS != RHS; return true; 3047 case BO_Cmp: 3048 llvm_unreachable("BO_Cmp should be handled elsewhere"); 3049 } 3050 } 3051 3052 /// Perform the given binary floating-point operation, in-place, on LHS. 3053 static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E, 3054 APFloat &LHS, BinaryOperatorKind Opcode, 3055 const APFloat &RHS) { 3056 llvm::RoundingMode RM = getActiveRoundingMode(Info, E); 3057 APFloat::opStatus St; 3058 switch (Opcode) { 3059 default: 3060 Info.FFDiag(E); 3061 return false; 3062 case BO_Mul: 3063 St = LHS.multiply(RHS, RM); 3064 break; 3065 case BO_Add: 3066 St = LHS.add(RHS, RM); 3067 break; 3068 case BO_Sub: 3069 St = LHS.subtract(RHS, RM); 3070 break; 3071 case BO_Div: 3072 // [expr.mul]p4: 3073 // If the second operand of / or % is zero the behavior is undefined. 3074 if (RHS.isZero()) 3075 Info.CCEDiag(E, diag::note_expr_divide_by_zero); 3076 St = LHS.divide(RHS, RM); 3077 break; 3078 } 3079 3080 // [expr.pre]p4: 3081 // If during the evaluation of an expression, the result is not 3082 // mathematically defined [...], the behavior is undefined. 3083 // FIXME: C++ rules require us to not conform to IEEE 754 here. 3084 if (LHS.isNaN()) { 3085 Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN(); 3086 return Info.noteUndefinedBehavior(); 3087 } 3088 3089 return checkFloatingPointResult(Info, E, St); 3090 } 3091 3092 static bool handleLogicalOpForVector(const APInt &LHSValue, 3093 BinaryOperatorKind Opcode, 3094 const APInt &RHSValue, APInt &Result) { 3095 bool LHS = (LHSValue != 0); 3096 bool RHS = (RHSValue != 0); 3097 3098 if (Opcode == BO_LAnd) 3099 Result = LHS && RHS; 3100 else 3101 Result = LHS || RHS; 3102 return true; 3103 } 3104 static bool handleLogicalOpForVector(const APFloat &LHSValue, 3105 BinaryOperatorKind Opcode, 3106 const APFloat &RHSValue, APInt &Result) { 3107 bool LHS = !LHSValue.isZero(); 3108 bool RHS = !RHSValue.isZero(); 3109 3110 if (Opcode == BO_LAnd) 3111 Result = LHS && RHS; 3112 else 3113 Result = LHS || RHS; 3114 return true; 3115 } 3116 3117 static bool handleLogicalOpForVector(const APValue &LHSValue, 3118 BinaryOperatorKind Opcode, 3119 const APValue &RHSValue, APInt &Result) { 3120 // The result is always an int type, however operands match the first. 3121 if (LHSValue.getKind() == APValue::Int) 3122 return handleLogicalOpForVector(LHSValue.getInt(), Opcode, 3123 RHSValue.getInt(), Result); 3124 assert(LHSValue.getKind() == APValue::Float && "Should be no other options"); 3125 return handleLogicalOpForVector(LHSValue.getFloat(), Opcode, 3126 RHSValue.getFloat(), Result); 3127 } 3128 3129 template <typename APTy> 3130 static bool 3131 handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode, 3132 const APTy &RHSValue, APInt &Result) { 3133 switch (Opcode) { 3134 default: 3135 llvm_unreachable("unsupported binary operator"); 3136 case BO_EQ: 3137 Result = (LHSValue == RHSValue); 3138 break; 3139 case BO_NE: 3140 Result = (LHSValue != RHSValue); 3141 break; 3142 case BO_LT: 3143 Result = (LHSValue < RHSValue); 3144 break; 3145 case BO_GT: 3146 Result = (LHSValue > RHSValue); 3147 break; 3148 case BO_LE: 3149 Result = (LHSValue <= RHSValue); 3150 break; 3151 case BO_GE: 3152 Result = (LHSValue >= RHSValue); 3153 break; 3154 } 3155 3156 // The boolean operations on these vector types use an instruction that 3157 // results in a mask of '-1' for the 'truth' value. Ensure that we negate 1 3158 // to -1 to make sure that we produce the correct value. 3159 Result.negate(); 3160 3161 return true; 3162 } 3163 3164 static bool handleCompareOpForVector(const APValue &LHSValue, 3165 BinaryOperatorKind Opcode, 3166 const APValue &RHSValue, APInt &Result) { 3167 // The result is always an int type, however operands match the first. 3168 if (LHSValue.getKind() == APValue::Int) 3169 return handleCompareOpForVectorHelper(LHSValue.getInt(), Opcode, 3170 RHSValue.getInt(), Result); 3171 assert(LHSValue.getKind() == APValue::Float && "Should be no other options"); 3172 return handleCompareOpForVectorHelper(LHSValue.getFloat(), Opcode, 3173 RHSValue.getFloat(), Result); 3174 } 3175 3176 // Perform binary operations for vector types, in place on the LHS. 3177 static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E, 3178 BinaryOperatorKind Opcode, 3179 APValue &LHSValue, 3180 const APValue &RHSValue) { 3181 assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI && 3182 "Operation not supported on vector types"); 3183 3184 const auto *VT = E->getType()->castAs<VectorType>(); 3185 unsigned NumElements = VT->getNumElements(); 3186 QualType EltTy = VT->getElementType(); 3187 3188 // In the cases (typically C as I've observed) where we aren't evaluating 3189 // constexpr but are checking for cases where the LHS isn't yet evaluatable, 3190 // just give up. 3191 if (!LHSValue.isVector()) { 3192 assert(LHSValue.isLValue() && 3193 "A vector result that isn't a vector OR uncalculated LValue"); 3194 Info.FFDiag(E); 3195 return false; 3196 } 3197 3198 assert(LHSValue.getVectorLength() == NumElements && 3199 RHSValue.getVectorLength() == NumElements && "Different vector sizes"); 3200 3201 SmallVector<APValue, 4> ResultElements; 3202 3203 for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) { 3204 APValue LHSElt = LHSValue.getVectorElt(EltNum); 3205 APValue RHSElt = RHSValue.getVectorElt(EltNum); 3206 3207 if (EltTy->isIntegerType()) { 3208 APSInt EltResult{Info.Ctx.getIntWidth(EltTy), 3209 EltTy->isUnsignedIntegerType()}; 3210 bool Success = true; 3211 3212 if (BinaryOperator::isLogicalOp(Opcode)) 3213 Success = handleLogicalOpForVector(LHSElt, Opcode, RHSElt, EltResult); 3214 else if (BinaryOperator::isComparisonOp(Opcode)) 3215 Success = handleCompareOpForVector(LHSElt, Opcode, RHSElt, EltResult); 3216 else 3217 Success = handleIntIntBinOp(Info, E, LHSElt.getInt(), Opcode, 3218 RHSElt.getInt(), EltResult); 3219 3220 if (!Success) { 3221 Info.FFDiag(E); 3222 return false; 3223 } 3224 ResultElements.emplace_back(EltResult); 3225 3226 } else if (EltTy->isFloatingType()) { 3227 assert(LHSElt.getKind() == APValue::Float && 3228 RHSElt.getKind() == APValue::Float && 3229 "Mismatched LHS/RHS/Result Type"); 3230 APFloat LHSFloat = LHSElt.getFloat(); 3231 3232 if (!handleFloatFloatBinOp(Info, E, LHSFloat, Opcode, 3233 RHSElt.getFloat())) { 3234 Info.FFDiag(E); 3235 return false; 3236 } 3237 3238 ResultElements.emplace_back(LHSFloat); 3239 } 3240 } 3241 3242 LHSValue = APValue(ResultElements.data(), ResultElements.size()); 3243 return true; 3244 } 3245 3246 /// Cast an lvalue referring to a base subobject to a derived class, by 3247 /// truncating the lvalue's path to the given length. 3248 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result, 3249 const RecordDecl *TruncatedType, 3250 unsigned TruncatedElements) { 3251 SubobjectDesignator &D = Result.Designator; 3252 3253 // Check we actually point to a derived class object. 3254 if (TruncatedElements == D.Entries.size()) 3255 return true; 3256 assert(TruncatedElements >= D.MostDerivedPathLength && 3257 "not casting to a derived class"); 3258 if (!Result.checkSubobject(Info, E, CSK_Derived)) 3259 return false; 3260 3261 // Truncate the path to the subobject, and remove any derived-to-base offsets. 3262 const RecordDecl *RD = TruncatedType; 3263 for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) { 3264 if (RD->isInvalidDecl()) return false; 3265 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 3266 const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]); 3267 if (isVirtualBaseClass(D.Entries[I])) 3268 Result.Offset -= Layout.getVBaseClassOffset(Base); 3269 else 3270 Result.Offset -= Layout.getBaseClassOffset(Base); 3271 RD = Base; 3272 } 3273 D.Entries.resize(TruncatedElements); 3274 return true; 3275 } 3276 3277 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj, 3278 const CXXRecordDecl *Derived, 3279 const CXXRecordDecl *Base, 3280 const ASTRecordLayout *RL = nullptr) { 3281 if (!RL) { 3282 if (Derived->isInvalidDecl()) return false; 3283 RL = &Info.Ctx.getASTRecordLayout(Derived); 3284 } 3285 3286 Obj.addDecl(Info, E, Base, /*Virtual*/ false); 3287 Obj.getLValueOffset() += RL->getBaseClassOffset(Base); 3288 return true; 3289 } 3290 3291 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj, 3292 const CXXRecordDecl *DerivedDecl, 3293 const CXXBaseSpecifier *Base) { 3294 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); 3295 3296 if (!Base->isVirtual()) 3297 return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl); 3298 3299 SubobjectDesignator &D = Obj.Designator; 3300 if (D.Invalid) 3301 return false; 3302 3303 // Extract most-derived object and corresponding type. 3304 DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl(); 3305 if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength)) 3306 return false; 3307 3308 // Find the virtual base class. 3309 if (DerivedDecl->isInvalidDecl()) return false; 3310 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl); 3311 Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true); 3312 Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl); 3313 return true; 3314 } 3315 3316 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E, 3317 QualType Type, LValue &Result) { 3318 for (CastExpr::path_const_iterator PathI = E->path_begin(), 3319 PathE = E->path_end(); 3320 PathI != PathE; ++PathI) { 3321 if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(), 3322 *PathI)) 3323 return false; 3324 Type = (*PathI)->getType(); 3325 } 3326 return true; 3327 } 3328 3329 /// Cast an lvalue referring to a derived class to a known base subobject. 3330 static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result, 3331 const CXXRecordDecl *DerivedRD, 3332 const CXXRecordDecl *BaseRD) { 3333 CXXBasePaths Paths(/*FindAmbiguities=*/false, 3334 /*RecordPaths=*/true, /*DetectVirtual=*/false); 3335 if (!DerivedRD->isDerivedFrom(BaseRD, Paths)) 3336 llvm_unreachable("Class must be derived from the passed in base class!"); 3337 3338 for (CXXBasePathElement &Elem : Paths.front()) 3339 if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base)) 3340 return false; 3341 return true; 3342 } 3343 3344 /// Update LVal to refer to the given field, which must be a member of the type 3345 /// currently described by LVal. 3346 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal, 3347 const FieldDecl *FD, 3348 const ASTRecordLayout *RL = nullptr) { 3349 if (!RL) { 3350 if (FD->getParent()->isInvalidDecl()) return false; 3351 RL = &Info.Ctx.getASTRecordLayout(FD->getParent()); 3352 } 3353 3354 unsigned I = FD->getFieldIndex(); 3355 LVal.addDecl(Info, E, FD); 3356 LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I))); 3357 return true; 3358 } 3359 3360 /// Update LVal to refer to the given indirect field. 3361 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E, 3362 LValue &LVal, 3363 const IndirectFieldDecl *IFD) { 3364 for (const auto *C : IFD->chain()) 3365 if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C))) 3366 return false; 3367 return true; 3368 } 3369 3370 enum class SizeOfType { 3371 SizeOf, 3372 DataSizeOf, 3373 }; 3374 3375 /// Get the size of the given type in char units. 3376 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc, QualType Type, 3377 CharUnits &Size, SizeOfType SOT = SizeOfType::SizeOf) { 3378 // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc 3379 // extension. 3380 if (Type->isVoidType() || Type->isFunctionType()) { 3381 Size = CharUnits::One(); 3382 return true; 3383 } 3384 3385 if (Type->isDependentType()) { 3386 Info.FFDiag(Loc); 3387 return false; 3388 } 3389 3390 if (!Type->isConstantSizeType()) { 3391 // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2. 3392 // FIXME: Better diagnostic. 3393 Info.FFDiag(Loc); 3394 return false; 3395 } 3396 3397 if (SOT == SizeOfType::SizeOf) 3398 Size = Info.Ctx.getTypeSizeInChars(Type); 3399 else 3400 Size = Info.Ctx.getTypeInfoDataSizeInChars(Type).Width; 3401 return true; 3402 } 3403 3404 /// Update a pointer value to model pointer arithmetic. 3405 /// \param Info - Information about the ongoing evaluation. 3406 /// \param E - The expression being evaluated, for diagnostic purposes. 3407 /// \param LVal - The pointer value to be updated. 3408 /// \param EltTy - The pointee type represented by LVal. 3409 /// \param Adjustment - The adjustment, in objects of type EltTy, to add. 3410 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, 3411 LValue &LVal, QualType EltTy, 3412 APSInt Adjustment) { 3413 CharUnits SizeOfPointee; 3414 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee)) 3415 return false; 3416 3417 LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee); 3418 return true; 3419 } 3420 3421 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, 3422 LValue &LVal, QualType EltTy, 3423 int64_t Adjustment) { 3424 return HandleLValueArrayAdjustment(Info, E, LVal, EltTy, 3425 APSInt::get(Adjustment)); 3426 } 3427 3428 /// Update an lvalue to refer to a component of a complex number. 3429 /// \param Info - Information about the ongoing evaluation. 3430 /// \param LVal - The lvalue to be updated. 3431 /// \param EltTy - The complex number's component type. 3432 /// \param Imag - False for the real component, true for the imaginary. 3433 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E, 3434 LValue &LVal, QualType EltTy, 3435 bool Imag) { 3436 if (Imag) { 3437 CharUnits SizeOfComponent; 3438 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent)) 3439 return false; 3440 LVal.Offset += SizeOfComponent; 3441 } 3442 LVal.addComplex(Info, E, EltTy, Imag); 3443 return true; 3444 } 3445 3446 static bool HandleLValueVectorElement(EvalInfo &Info, const Expr *E, 3447 LValue &LVal, QualType EltTy, 3448 uint64_t Size, uint64_t Idx) { 3449 if (Idx) { 3450 CharUnits SizeOfElement; 3451 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfElement)) 3452 return false; 3453 LVal.Offset += SizeOfElement * Idx; 3454 } 3455 LVal.addVectorElement(Info, E, EltTy, Size, Idx); 3456 return true; 3457 } 3458 3459 /// Try to evaluate the initializer for a variable declaration. 3460 /// 3461 /// \param Info Information about the ongoing evaluation. 3462 /// \param E An expression to be used when printing diagnostics. 3463 /// \param VD The variable whose initializer should be obtained. 3464 /// \param Version The version of the variable within the frame. 3465 /// \param Frame The frame in which the variable was created. Must be null 3466 /// if this variable is not local to the evaluation. 3467 /// \param Result Filled in with a pointer to the value of the variable. 3468 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E, 3469 const VarDecl *VD, CallStackFrame *Frame, 3470 unsigned Version, APValue *&Result) { 3471 // C++23 [expr.const]p8 If we have a reference type allow unknown references 3472 // and pointers. 3473 bool AllowConstexprUnknown = 3474 Info.getLangOpts().CPlusPlus23 && VD->getType()->isReferenceType(); 3475 3476 APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version); 3477 3478 // If this is a local variable, dig out its value. 3479 if (Frame) { 3480 Result = Frame->getTemporary(VD, Version); 3481 if (Result) 3482 return true; 3483 3484 if (!isa<ParmVarDecl>(VD)) { 3485 // Assume variables referenced within a lambda's call operator that were 3486 // not declared within the call operator are captures and during checking 3487 // of a potential constant expression, assume they are unknown constant 3488 // expressions. 3489 assert(isLambdaCallOperator(Frame->Callee) && 3490 (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) && 3491 "missing value for local variable"); 3492 if (Info.checkingPotentialConstantExpression()) 3493 return false; 3494 // FIXME: This diagnostic is bogus; we do support captures. Is this code 3495 // still reachable at all? 3496 Info.FFDiag(E->getBeginLoc(), 3497 diag::note_unimplemented_constexpr_lambda_feature_ast) 3498 << "captures not currently allowed"; 3499 return false; 3500 } 3501 } 3502 3503 // If we're currently evaluating the initializer of this declaration, use that 3504 // in-flight value. 3505 if (Info.EvaluatingDecl == Base) { 3506 Result = Info.EvaluatingDeclValue; 3507 return true; 3508 } 3509 3510 // P2280R4 struck the restriction that variable of reference type lifetime 3511 // should begin within the evaluation of E 3512 // Used to be C++20 [expr.const]p5.12.2: 3513 // ... its lifetime began within the evaluation of E; 3514 if (isa<ParmVarDecl>(VD) && !AllowConstexprUnknown) { 3515 // Assume parameters of a potential constant expression are usable in 3516 // constant expressions. 3517 if (!Info.checkingPotentialConstantExpression() || 3518 !Info.CurrentCall->Callee || 3519 !Info.CurrentCall->Callee->Equals(VD->getDeclContext())) { 3520 if (Info.getLangOpts().CPlusPlus11) { 3521 Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown) 3522 << VD; 3523 NoteLValueLocation(Info, Base); 3524 } else { 3525 Info.FFDiag(E); 3526 } 3527 } 3528 return false; 3529 } 3530 3531 if (E->isValueDependent()) 3532 return false; 3533 3534 // Dig out the initializer, and use the declaration which it's attached to. 3535 // FIXME: We should eventually check whether the variable has a reachable 3536 // initializing declaration. 3537 const Expr *Init = VD->getAnyInitializer(VD); 3538 // P2280R4 struck the restriction that variable of reference type should have 3539 // a preceding initialization. 3540 // Used to be C++20 [expr.const]p5.12: 3541 // ... reference has a preceding initialization and either ... 3542 if (!Init && !AllowConstexprUnknown) { 3543 // Don't diagnose during potential constant expression checking; an 3544 // initializer might be added later. 3545 if (!Info.checkingPotentialConstantExpression()) { 3546 Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1) 3547 << VD; 3548 NoteLValueLocation(Info, Base); 3549 } 3550 return false; 3551 } 3552 3553 // P2280R4 struck the initialization requirement for variables of reference 3554 // type so we can no longer assume we have an Init. 3555 // Used to be C++20 [expr.const]p5.12: 3556 // ... reference has a preceding initialization and either ... 3557 if (Init && Init->isValueDependent()) { 3558 // The DeclRefExpr is not value-dependent, but the variable it refers to 3559 // has a value-dependent initializer. This should only happen in 3560 // constant-folding cases, where the variable is not actually of a suitable 3561 // type for use in a constant expression (otherwise the DeclRefExpr would 3562 // have been value-dependent too), so diagnose that. 3563 assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx)); 3564 if (!Info.checkingPotentialConstantExpression()) { 3565 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11 3566 ? diag::note_constexpr_ltor_non_constexpr 3567 : diag::note_constexpr_ltor_non_integral, 1) 3568 << VD << VD->getType(); 3569 NoteLValueLocation(Info, Base); 3570 } 3571 return false; 3572 } 3573 3574 // Check that we can fold the initializer. In C++, we will have already done 3575 // this in the cases where it matters for conformance. 3576 // P2280R4 struck the initialization requirement for variables of reference 3577 // type so we can no longer assume we have an Init. 3578 // Used to be C++20 [expr.const]p5.12: 3579 // ... reference has a preceding initialization and either ... 3580 if (Init && !VD->evaluateValue()) { 3581 if (AllowConstexprUnknown) { 3582 Result = &Info.CurrentCall->createConstexprUnknownAPValues(VD, Base); 3583 return true; 3584 } 3585 Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD; 3586 NoteLValueLocation(Info, Base); 3587 return false; 3588 } 3589 3590 // Check that the variable is actually usable in constant expressions. For a 3591 // const integral variable or a reference, we might have a non-constant 3592 // initializer that we can nonetheless evaluate the initializer for. Such 3593 // variables are not usable in constant expressions. In C++98, the 3594 // initializer also syntactically needs to be an ICE. 3595 // 3596 // FIXME: We don't diagnose cases that aren't potentially usable in constant 3597 // expressions here; doing so would regress diagnostics for things like 3598 // reading from a volatile constexpr variable. 3599 if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() && 3600 VD->mightBeUsableInConstantExpressions(Info.Ctx)) || 3601 ((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) && 3602 !Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Info.Ctx))) { 3603 if (Init) { 3604 Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD; 3605 NoteLValueLocation(Info, Base); 3606 } else { 3607 Info.CCEDiag(E); 3608 } 3609 } 3610 3611 // Never use the initializer of a weak variable, not even for constant 3612 // folding. We can't be sure that this is the definition that will be used. 3613 if (VD->isWeak()) { 3614 Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD; 3615 NoteLValueLocation(Info, Base); 3616 return false; 3617 } 3618 3619 Result = VD->getEvaluatedValue(); 3620 3621 // C++23 [expr.const]p8 3622 // ... For such an object that is not usable in constant expressions, the 3623 // dynamic type of the object is constexpr-unknown. For such a reference that 3624 // is not usable in constant expressions, the reference is treated as binding 3625 // to an unspecified object of the referenced type whose lifetime and that of 3626 // all subobjects includes the entire constant evaluation and whose dynamic 3627 // type is constexpr-unknown. 3628 if (AllowConstexprUnknown) { 3629 if (!Result) 3630 Result = &Info.CurrentCall->createConstexprUnknownAPValues(VD, Base); 3631 else 3632 Result->setConstexprUnknown(); 3633 } 3634 return true; 3635 } 3636 3637 /// Get the base index of the given base class within an APValue representing 3638 /// the given derived class. 3639 static unsigned getBaseIndex(const CXXRecordDecl *Derived, 3640 const CXXRecordDecl *Base) { 3641 Base = Base->getCanonicalDecl(); 3642 unsigned Index = 0; 3643 for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(), 3644 E = Derived->bases_end(); I != E; ++I, ++Index) { 3645 if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base) 3646 return Index; 3647 } 3648 3649 llvm_unreachable("base class missing from derived class's bases list"); 3650 } 3651 3652 /// Extract the value of a character from a string literal. 3653 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit, 3654 uint64_t Index) { 3655 assert(!isa<SourceLocExpr>(Lit) && 3656 "SourceLocExpr should have already been converted to a StringLiteral"); 3657 3658 // FIXME: Support MakeStringConstant 3659 if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) { 3660 std::string Str; 3661 Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str); 3662 assert(Index <= Str.size() && "Index too large"); 3663 return APSInt::getUnsigned(Str.c_str()[Index]); 3664 } 3665 3666 if (auto PE = dyn_cast<PredefinedExpr>(Lit)) 3667 Lit = PE->getFunctionName(); 3668 const StringLiteral *S = cast<StringLiteral>(Lit); 3669 const ConstantArrayType *CAT = 3670 Info.Ctx.getAsConstantArrayType(S->getType()); 3671 assert(CAT && "string literal isn't an array"); 3672 QualType CharType = CAT->getElementType(); 3673 assert(CharType->isIntegerType() && "unexpected character type"); 3674 APSInt Value(Info.Ctx.getTypeSize(CharType), 3675 CharType->isUnsignedIntegerType()); 3676 if (Index < S->getLength()) 3677 Value = S->getCodeUnit(Index); 3678 return Value; 3679 } 3680 3681 // Expand a string literal into an array of characters. 3682 // 3683 // FIXME: This is inefficient; we should probably introduce something similar 3684 // to the LLVM ConstantDataArray to make this cheaper. 3685 static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S, 3686 APValue &Result, 3687 QualType AllocType = QualType()) { 3688 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( 3689 AllocType.isNull() ? S->getType() : AllocType); 3690 assert(CAT && "string literal isn't an array"); 3691 QualType CharType = CAT->getElementType(); 3692 assert(CharType->isIntegerType() && "unexpected character type"); 3693 3694 unsigned Elts = CAT->getZExtSize(); 3695 Result = APValue(APValue::UninitArray(), 3696 std::min(S->getLength(), Elts), Elts); 3697 APSInt Value(Info.Ctx.getTypeSize(CharType), 3698 CharType->isUnsignedIntegerType()); 3699 if (Result.hasArrayFiller()) 3700 Result.getArrayFiller() = APValue(Value); 3701 for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) { 3702 Value = S->getCodeUnit(I); 3703 Result.getArrayInitializedElt(I) = APValue(Value); 3704 } 3705 } 3706 3707 // Expand an array so that it has more than Index filled elements. 3708 static void expandArray(APValue &Array, unsigned Index) { 3709 unsigned Size = Array.getArraySize(); 3710 assert(Index < Size); 3711 3712 // Always at least double the number of elements for which we store a value. 3713 unsigned OldElts = Array.getArrayInitializedElts(); 3714 unsigned NewElts = std::max(Index+1, OldElts * 2); 3715 NewElts = std::min(Size, std::max(NewElts, 8u)); 3716 3717 // Copy the data across. 3718 APValue NewValue(APValue::UninitArray(), NewElts, Size); 3719 for (unsigned I = 0; I != OldElts; ++I) 3720 NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I)); 3721 for (unsigned I = OldElts; I != NewElts; ++I) 3722 NewValue.getArrayInitializedElt(I) = Array.getArrayFiller(); 3723 if (NewValue.hasArrayFiller()) 3724 NewValue.getArrayFiller() = Array.getArrayFiller(); 3725 Array.swap(NewValue); 3726 } 3727 3728 /// Determine whether a type would actually be read by an lvalue-to-rvalue 3729 /// conversion. If it's of class type, we may assume that the copy operation 3730 /// is trivial. Note that this is never true for a union type with fields 3731 /// (because the copy always "reads" the active member) and always true for 3732 /// a non-class type. 3733 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD); 3734 static bool isReadByLvalueToRvalueConversion(QualType T) { 3735 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3736 return !RD || isReadByLvalueToRvalueConversion(RD); 3737 } 3738 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) { 3739 // FIXME: A trivial copy of a union copies the object representation, even if 3740 // the union is empty. 3741 if (RD->isUnion()) 3742 return !RD->field_empty(); 3743 if (RD->isEmpty()) 3744 return false; 3745 3746 for (auto *Field : RD->fields()) 3747 if (!Field->isUnnamedBitField() && 3748 isReadByLvalueToRvalueConversion(Field->getType())) 3749 return true; 3750 3751 for (auto &BaseSpec : RD->bases()) 3752 if (isReadByLvalueToRvalueConversion(BaseSpec.getType())) 3753 return true; 3754 3755 return false; 3756 } 3757 3758 /// Diagnose an attempt to read from any unreadable field within the specified 3759 /// type, which might be a class type. 3760 static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK, 3761 QualType T) { 3762 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3763 if (!RD) 3764 return false; 3765 3766 if (!RD->hasMutableFields()) 3767 return false; 3768 3769 for (auto *Field : RD->fields()) { 3770 // If we're actually going to read this field in some way, then it can't 3771 // be mutable. If we're in a union, then assigning to a mutable field 3772 // (even an empty one) can change the active member, so that's not OK. 3773 // FIXME: Add core issue number for the union case. 3774 if (Field->isMutable() && 3775 (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) { 3776 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field; 3777 Info.Note(Field->getLocation(), diag::note_declared_at); 3778 return true; 3779 } 3780 3781 if (diagnoseMutableFields(Info, E, AK, Field->getType())) 3782 return true; 3783 } 3784 3785 for (auto &BaseSpec : RD->bases()) 3786 if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType())) 3787 return true; 3788 3789 // All mutable fields were empty, and thus not actually read. 3790 return false; 3791 } 3792 3793 static bool lifetimeStartedInEvaluation(EvalInfo &Info, 3794 APValue::LValueBase Base, 3795 bool MutableSubobject = false) { 3796 // A temporary or transient heap allocation we created. 3797 if (Base.getCallIndex() || Base.is<DynamicAllocLValue>()) 3798 return true; 3799 3800 switch (Info.IsEvaluatingDecl) { 3801 case EvalInfo::EvaluatingDeclKind::None: 3802 return false; 3803 3804 case EvalInfo::EvaluatingDeclKind::Ctor: 3805 // The variable whose initializer we're evaluating. 3806 if (Info.EvaluatingDecl == Base) 3807 return true; 3808 3809 // A temporary lifetime-extended by the variable whose initializer we're 3810 // evaluating. 3811 if (auto *BaseE = Base.dyn_cast<const Expr *>()) 3812 if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE)) 3813 return Info.EvaluatingDecl == BaseMTE->getExtendingDecl(); 3814 return false; 3815 3816 case EvalInfo::EvaluatingDeclKind::Dtor: 3817 // C++2a [expr.const]p6: 3818 // [during constant destruction] the lifetime of a and its non-mutable 3819 // subobjects (but not its mutable subobjects) [are] considered to start 3820 // within e. 3821 if (MutableSubobject || Base != Info.EvaluatingDecl) 3822 return false; 3823 // FIXME: We can meaningfully extend this to cover non-const objects, but 3824 // we will need special handling: we should be able to access only 3825 // subobjects of such objects that are themselves declared const. 3826 QualType T = getType(Base); 3827 return T.isConstQualified() || T->isReferenceType(); 3828 } 3829 3830 llvm_unreachable("unknown evaluating decl kind"); 3831 } 3832 3833 static bool CheckArraySize(EvalInfo &Info, const ConstantArrayType *CAT, 3834 SourceLocation CallLoc = {}) { 3835 return Info.CheckArraySize( 3836 CAT->getSizeExpr() ? CAT->getSizeExpr()->getBeginLoc() : CallLoc, 3837 CAT->getNumAddressingBits(Info.Ctx), CAT->getZExtSize(), 3838 /*Diag=*/true); 3839 } 3840 3841 namespace { 3842 /// A handle to a complete object (an object that is not a subobject of 3843 /// another object). 3844 struct CompleteObject { 3845 /// The identity of the object. 3846 APValue::LValueBase Base; 3847 /// The value of the complete object. 3848 APValue *Value; 3849 /// The type of the complete object. 3850 QualType Type; 3851 3852 CompleteObject() : Value(nullptr) {} 3853 CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type) 3854 : Base(Base), Value(Value), Type(Type) {} 3855 3856 bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const { 3857 // If this isn't a "real" access (eg, if it's just accessing the type 3858 // info), allow it. We assume the type doesn't change dynamically for 3859 // subobjects of constexpr objects (even though we'd hit UB here if it 3860 // did). FIXME: Is this right? 3861 if (!isAnyAccess(AK)) 3862 return true; 3863 3864 // In C++14 onwards, it is permitted to read a mutable member whose 3865 // lifetime began within the evaluation. 3866 // FIXME: Should we also allow this in C++11? 3867 if (!Info.getLangOpts().CPlusPlus14 && 3868 AK != AccessKinds::AK_IsWithinLifetime) 3869 return false; 3870 return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true); 3871 } 3872 3873 explicit operator bool() const { return !Type.isNull(); } 3874 }; 3875 } // end anonymous namespace 3876 3877 static QualType getSubobjectType(QualType ObjType, QualType SubobjType, 3878 bool IsMutable = false) { 3879 // C++ [basic.type.qualifier]p1: 3880 // - A const object is an object of type const T or a non-mutable subobject 3881 // of a const object. 3882 if (ObjType.isConstQualified() && !IsMutable) 3883 SubobjType.addConst(); 3884 // - A volatile object is an object of type const T or a subobject of a 3885 // volatile object. 3886 if (ObjType.isVolatileQualified()) 3887 SubobjType.addVolatile(); 3888 return SubobjType; 3889 } 3890 3891 /// Find the designated sub-object of an rvalue. 3892 template <typename SubobjectHandler> 3893 static typename SubobjectHandler::result_type 3894 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj, 3895 const SubobjectDesignator &Sub, SubobjectHandler &handler) { 3896 if (Sub.Invalid) 3897 // A diagnostic will have already been produced. 3898 return handler.failed(); 3899 if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) { 3900 if (Info.getLangOpts().CPlusPlus11) 3901 Info.FFDiag(E, Sub.isOnePastTheEnd() 3902 ? diag::note_constexpr_access_past_end 3903 : diag::note_constexpr_access_unsized_array) 3904 << handler.AccessKind; 3905 else 3906 Info.FFDiag(E); 3907 return handler.failed(); 3908 } 3909 3910 APValue *O = Obj.Value; 3911 QualType ObjType = Obj.Type; 3912 const FieldDecl *LastField = nullptr; 3913 const FieldDecl *VolatileField = nullptr; 3914 3915 // C++23 [expr.const]p8 If we have an unknown reference or pointers and it 3916 // does not have a value then bail out. 3917 if (O->allowConstexprUnknown() && !O->hasValue()) 3918 return false; 3919 3920 // Walk the designator's path to find the subobject. 3921 for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) { 3922 // Reading an indeterminate value is undefined, but assigning over one is OK. 3923 if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) || 3924 (O->isIndeterminate() && 3925 !isValidIndeterminateAccess(handler.AccessKind))) { 3926 // Object has ended lifetime. 3927 // If I is non-zero, some subobject (member or array element) of a 3928 // complete object has ended its lifetime, so this is valid for 3929 // IsWithinLifetime, resulting in false. 3930 if (I != 0 && handler.AccessKind == AK_IsWithinLifetime) 3931 return false; 3932 if (!Info.checkingPotentialConstantExpression()) 3933 Info.FFDiag(E, diag::note_constexpr_access_uninit) 3934 << handler.AccessKind << O->isIndeterminate() 3935 << E->getSourceRange(); 3936 return handler.failed(); 3937 } 3938 3939 // C++ [class.ctor]p5, C++ [class.dtor]p5: 3940 // const and volatile semantics are not applied on an object under 3941 // {con,de}struction. 3942 if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) && 3943 ObjType->isRecordType() && 3944 Info.isEvaluatingCtorDtor( 3945 Obj.Base, 3946 llvm::ArrayRef(Sub.Entries.begin(), Sub.Entries.begin() + I)) != 3947 ConstructionPhase::None) { 3948 ObjType = Info.Ctx.getCanonicalType(ObjType); 3949 ObjType.removeLocalConst(); 3950 ObjType.removeLocalVolatile(); 3951 } 3952 3953 // If this is our last pass, check that the final object type is OK. 3954 if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) { 3955 // Accesses to volatile objects are prohibited. 3956 if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) { 3957 if (Info.getLangOpts().CPlusPlus) { 3958 int DiagKind; 3959 SourceLocation Loc; 3960 const NamedDecl *Decl = nullptr; 3961 if (VolatileField) { 3962 DiagKind = 2; 3963 Loc = VolatileField->getLocation(); 3964 Decl = VolatileField; 3965 } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) { 3966 DiagKind = 1; 3967 Loc = VD->getLocation(); 3968 Decl = VD; 3969 } else { 3970 DiagKind = 0; 3971 if (auto *E = Obj.Base.dyn_cast<const Expr *>()) 3972 Loc = E->getExprLoc(); 3973 } 3974 Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1) 3975 << handler.AccessKind << DiagKind << Decl; 3976 Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind; 3977 } else { 3978 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 3979 } 3980 return handler.failed(); 3981 } 3982 3983 // If we are reading an object of class type, there may still be more 3984 // things we need to check: if there are any mutable subobjects, we 3985 // cannot perform this read. (This only happens when performing a trivial 3986 // copy or assignment.) 3987 if (ObjType->isRecordType() && 3988 !Obj.mayAccessMutableMembers(Info, handler.AccessKind) && 3989 diagnoseMutableFields(Info, E, handler.AccessKind, ObjType)) 3990 return handler.failed(); 3991 } 3992 3993 if (I == N) { 3994 if (!handler.found(*O, ObjType)) 3995 return false; 3996 3997 // If we modified a bit-field, truncate it to the right width. 3998 if (isModification(handler.AccessKind) && 3999 LastField && LastField->isBitField() && 4000 !truncateBitfieldValue(Info, E, *O, LastField)) 4001 return false; 4002 4003 return true; 4004 } 4005 4006 LastField = nullptr; 4007 if (ObjType->isArrayType()) { 4008 // Next subobject is an array element. 4009 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType); 4010 assert(CAT && "vla in literal type?"); 4011 uint64_t Index = Sub.Entries[I].getAsArrayIndex(); 4012 if (CAT->getSize().ule(Index)) { 4013 // Note, it should not be possible to form a pointer with a valid 4014 // designator which points more than one past the end of the array. 4015 if (Info.getLangOpts().CPlusPlus11) 4016 Info.FFDiag(E, diag::note_constexpr_access_past_end) 4017 << handler.AccessKind; 4018 else 4019 Info.FFDiag(E); 4020 return handler.failed(); 4021 } 4022 4023 ObjType = CAT->getElementType(); 4024 4025 if (O->getArrayInitializedElts() > Index) 4026 O = &O->getArrayInitializedElt(Index); 4027 else if (!isRead(handler.AccessKind)) { 4028 if (!CheckArraySize(Info, CAT, E->getExprLoc())) 4029 return handler.failed(); 4030 4031 expandArray(*O, Index); 4032 O = &O->getArrayInitializedElt(Index); 4033 } else 4034 O = &O->getArrayFiller(); 4035 } else if (ObjType->isAnyComplexType()) { 4036 // Next subobject is a complex number. 4037 uint64_t Index = Sub.Entries[I].getAsArrayIndex(); 4038 if (Index > 1) { 4039 if (Info.getLangOpts().CPlusPlus11) 4040 Info.FFDiag(E, diag::note_constexpr_access_past_end) 4041 << handler.AccessKind; 4042 else 4043 Info.FFDiag(E); 4044 return handler.failed(); 4045 } 4046 4047 ObjType = getSubobjectType( 4048 ObjType, ObjType->castAs<ComplexType>()->getElementType()); 4049 4050 assert(I == N - 1 && "extracting subobject of scalar?"); 4051 if (O->isComplexInt()) { 4052 return handler.found(Index ? O->getComplexIntImag() 4053 : O->getComplexIntReal(), ObjType); 4054 } else { 4055 assert(O->isComplexFloat()); 4056 return handler.found(Index ? O->getComplexFloatImag() 4057 : O->getComplexFloatReal(), ObjType); 4058 } 4059 } else if (const auto *VT = ObjType->getAs<VectorType>()) { 4060 uint64_t Index = Sub.Entries[I].getAsArrayIndex(); 4061 unsigned NumElements = VT->getNumElements(); 4062 if (Index == NumElements) { 4063 if (Info.getLangOpts().CPlusPlus11) 4064 Info.FFDiag(E, diag::note_constexpr_access_past_end) 4065 << handler.AccessKind; 4066 else 4067 Info.FFDiag(E); 4068 return handler.failed(); 4069 } 4070 4071 if (Index > NumElements) { 4072 Info.CCEDiag(E, diag::note_constexpr_array_index) 4073 << Index << /*array*/ 0 << NumElements; 4074 return handler.failed(); 4075 } 4076 4077 ObjType = VT->getElementType(); 4078 assert(I == N - 1 && "extracting subobject of scalar?"); 4079 return handler.found(O->getVectorElt(Index), ObjType); 4080 } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) { 4081 if (Field->isMutable() && 4082 !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) { 4083 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) 4084 << handler.AccessKind << Field; 4085 Info.Note(Field->getLocation(), diag::note_declared_at); 4086 return handler.failed(); 4087 } 4088 4089 // Next subobject is a class, struct or union field. 4090 RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl(); 4091 if (RD->isUnion()) { 4092 const FieldDecl *UnionField = O->getUnionField(); 4093 if (!UnionField || 4094 UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) { 4095 if (I == N - 1 && handler.AccessKind == AK_Construct) { 4096 // Placement new onto an inactive union member makes it active. 4097 O->setUnion(Field, APValue()); 4098 } else { 4099 // Pointer to/into inactive union member: Not within lifetime 4100 if (handler.AccessKind == AK_IsWithinLifetime) 4101 return false; 4102 // FIXME: If O->getUnionValue() is absent, report that there's no 4103 // active union member rather than reporting the prior active union 4104 // member. We'll need to fix nullptr_t to not use APValue() as its 4105 // representation first. 4106 Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member) 4107 << handler.AccessKind << Field << !UnionField << UnionField; 4108 return handler.failed(); 4109 } 4110 } 4111 O = &O->getUnionValue(); 4112 } else 4113 O = &O->getStructField(Field->getFieldIndex()); 4114 4115 ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable()); 4116 LastField = Field; 4117 if (Field->getType().isVolatileQualified()) 4118 VolatileField = Field; 4119 } else { 4120 // Next subobject is a base class. 4121 const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl(); 4122 const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]); 4123 O = &O->getStructBase(getBaseIndex(Derived, Base)); 4124 4125 ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base)); 4126 } 4127 } 4128 } 4129 4130 namespace { 4131 struct ExtractSubobjectHandler { 4132 EvalInfo &Info; 4133 const Expr *E; 4134 APValue &Result; 4135 const AccessKinds AccessKind; 4136 4137 typedef bool result_type; 4138 bool failed() { return false; } 4139 bool found(APValue &Subobj, QualType SubobjType) { 4140 Result = Subobj; 4141 if (AccessKind == AK_ReadObjectRepresentation) 4142 return true; 4143 return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result); 4144 } 4145 bool found(APSInt &Value, QualType SubobjType) { 4146 Result = APValue(Value); 4147 return true; 4148 } 4149 bool found(APFloat &Value, QualType SubobjType) { 4150 Result = APValue(Value); 4151 return true; 4152 } 4153 }; 4154 } // end anonymous namespace 4155 4156 /// Extract the designated sub-object of an rvalue. 4157 static bool extractSubobject(EvalInfo &Info, const Expr *E, 4158 const CompleteObject &Obj, 4159 const SubobjectDesignator &Sub, APValue &Result, 4160 AccessKinds AK = AK_Read) { 4161 assert(AK == AK_Read || AK == AK_ReadObjectRepresentation); 4162 ExtractSubobjectHandler Handler = {Info, E, Result, AK}; 4163 return findSubobject(Info, E, Obj, Sub, Handler); 4164 } 4165 4166 namespace { 4167 struct ModifySubobjectHandler { 4168 EvalInfo &Info; 4169 APValue &NewVal; 4170 const Expr *E; 4171 4172 typedef bool result_type; 4173 static const AccessKinds AccessKind = AK_Assign; 4174 4175 bool checkConst(QualType QT) { 4176 // Assigning to a const object has undefined behavior. 4177 if (QT.isConstQualified()) { 4178 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; 4179 return false; 4180 } 4181 return true; 4182 } 4183 4184 bool failed() { return false; } 4185 bool found(APValue &Subobj, QualType SubobjType) { 4186 if (!checkConst(SubobjType)) 4187 return false; 4188 // We've been given ownership of NewVal, so just swap it in. 4189 Subobj.swap(NewVal); 4190 return true; 4191 } 4192 bool found(APSInt &Value, QualType SubobjType) { 4193 if (!checkConst(SubobjType)) 4194 return false; 4195 if (!NewVal.isInt()) { 4196 // Maybe trying to write a cast pointer value into a complex? 4197 Info.FFDiag(E); 4198 return false; 4199 } 4200 Value = NewVal.getInt(); 4201 return true; 4202 } 4203 bool found(APFloat &Value, QualType SubobjType) { 4204 if (!checkConst(SubobjType)) 4205 return false; 4206 Value = NewVal.getFloat(); 4207 return true; 4208 } 4209 }; 4210 } // end anonymous namespace 4211 4212 const AccessKinds ModifySubobjectHandler::AccessKind; 4213 4214 /// Update the designated sub-object of an rvalue to the given value. 4215 static bool modifySubobject(EvalInfo &Info, const Expr *E, 4216 const CompleteObject &Obj, 4217 const SubobjectDesignator &Sub, 4218 APValue &NewVal) { 4219 ModifySubobjectHandler Handler = { Info, NewVal, E }; 4220 return findSubobject(Info, E, Obj, Sub, Handler); 4221 } 4222 4223 /// Find the position where two subobject designators diverge, or equivalently 4224 /// the length of the common initial subsequence. 4225 static unsigned FindDesignatorMismatch(QualType ObjType, 4226 const SubobjectDesignator &A, 4227 const SubobjectDesignator &B, 4228 bool &WasArrayIndex) { 4229 unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size()); 4230 for (/**/; I != N; ++I) { 4231 if (!ObjType.isNull() && 4232 (ObjType->isArrayType() || ObjType->isAnyComplexType())) { 4233 // Next subobject is an array element. 4234 if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) { 4235 WasArrayIndex = true; 4236 return I; 4237 } 4238 if (ObjType->isAnyComplexType()) 4239 ObjType = ObjType->castAs<ComplexType>()->getElementType(); 4240 else 4241 ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType(); 4242 } else { 4243 if (A.Entries[I].getAsBaseOrMember() != 4244 B.Entries[I].getAsBaseOrMember()) { 4245 WasArrayIndex = false; 4246 return I; 4247 } 4248 if (const FieldDecl *FD = getAsField(A.Entries[I])) 4249 // Next subobject is a field. 4250 ObjType = FD->getType(); 4251 else 4252 // Next subobject is a base class. 4253 ObjType = QualType(); 4254 } 4255 } 4256 WasArrayIndex = false; 4257 return I; 4258 } 4259 4260 /// Determine whether the given subobject designators refer to elements of the 4261 /// same array object. 4262 static bool AreElementsOfSameArray(QualType ObjType, 4263 const SubobjectDesignator &A, 4264 const SubobjectDesignator &B) { 4265 if (A.Entries.size() != B.Entries.size()) 4266 return false; 4267 4268 bool IsArray = A.MostDerivedIsArrayElement; 4269 if (IsArray && A.MostDerivedPathLength != A.Entries.size()) 4270 // A is a subobject of the array element. 4271 return false; 4272 4273 // If A (and B) designates an array element, the last entry will be the array 4274 // index. That doesn't have to match. Otherwise, we're in the 'implicit array 4275 // of length 1' case, and the entire path must match. 4276 bool WasArrayIndex; 4277 unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex); 4278 return CommonLength >= A.Entries.size() - IsArray; 4279 } 4280 4281 /// Find the complete object to which an LValue refers. 4282 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E, 4283 AccessKinds AK, const LValue &LVal, 4284 QualType LValType) { 4285 if (LVal.InvalidBase) { 4286 Info.FFDiag(E); 4287 return CompleteObject(); 4288 } 4289 4290 if (!LVal.Base) { 4291 Info.FFDiag(E, diag::note_constexpr_access_null) << AK; 4292 return CompleteObject(); 4293 } 4294 4295 CallStackFrame *Frame = nullptr; 4296 unsigned Depth = 0; 4297 if (LVal.getLValueCallIndex()) { 4298 std::tie(Frame, Depth) = 4299 Info.getCallFrameAndDepth(LVal.getLValueCallIndex()); 4300 if (!Frame) { 4301 Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1) 4302 << AK << LVal.Base.is<const ValueDecl*>(); 4303 NoteLValueLocation(Info, LVal.Base); 4304 return CompleteObject(); 4305 } 4306 } 4307 4308 bool IsAccess = isAnyAccess(AK); 4309 4310 // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type 4311 // is not a constant expression (even if the object is non-volatile). We also 4312 // apply this rule to C++98, in order to conform to the expected 'volatile' 4313 // semantics. 4314 if (isFormalAccess(AK) && LValType.isVolatileQualified()) { 4315 if (Info.getLangOpts().CPlusPlus) 4316 Info.FFDiag(E, diag::note_constexpr_access_volatile_type) 4317 << AK << LValType; 4318 else 4319 Info.FFDiag(E); 4320 return CompleteObject(); 4321 } 4322 4323 // Compute value storage location and type of base object. 4324 APValue *BaseVal = nullptr; 4325 QualType BaseType = getType(LVal.Base); 4326 4327 if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl && 4328 lifetimeStartedInEvaluation(Info, LVal.Base)) { 4329 // This is the object whose initializer we're evaluating, so its lifetime 4330 // started in the current evaluation. 4331 BaseVal = Info.EvaluatingDeclValue; 4332 } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) { 4333 // Allow reading from a GUID declaration. 4334 if (auto *GD = dyn_cast<MSGuidDecl>(D)) { 4335 if (isModification(AK)) { 4336 // All the remaining cases do not permit modification of the object. 4337 Info.FFDiag(E, diag::note_constexpr_modify_global); 4338 return CompleteObject(); 4339 } 4340 APValue &V = GD->getAsAPValue(); 4341 if (V.isAbsent()) { 4342 Info.FFDiag(E, diag::note_constexpr_unsupported_layout) 4343 << GD->getType(); 4344 return CompleteObject(); 4345 } 4346 return CompleteObject(LVal.Base, &V, GD->getType()); 4347 } 4348 4349 // Allow reading the APValue from an UnnamedGlobalConstantDecl. 4350 if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D)) { 4351 if (isModification(AK)) { 4352 Info.FFDiag(E, diag::note_constexpr_modify_global); 4353 return CompleteObject(); 4354 } 4355 return CompleteObject(LVal.Base, const_cast<APValue *>(&GCD->getValue()), 4356 GCD->getType()); 4357 } 4358 4359 // Allow reading from template parameter objects. 4360 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) { 4361 if (isModification(AK)) { 4362 Info.FFDiag(E, diag::note_constexpr_modify_global); 4363 return CompleteObject(); 4364 } 4365 return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()), 4366 TPO->getType()); 4367 } 4368 4369 // In C++98, const, non-volatile integers initialized with ICEs are ICEs. 4370 // In C++11, constexpr, non-volatile variables initialized with constant 4371 // expressions are constant expressions too. Inside constexpr functions, 4372 // parameters are constant expressions even if they're non-const. 4373 // In C++1y, objects local to a constant expression (those with a Frame) are 4374 // both readable and writable inside constant expressions. 4375 // In C, such things can also be folded, although they are not ICEs. 4376 const VarDecl *VD = dyn_cast<VarDecl>(D); 4377 if (VD) { 4378 if (const VarDecl *VDef = VD->getDefinition(Info.Ctx)) 4379 VD = VDef; 4380 } 4381 if (!VD || VD->isInvalidDecl()) { 4382 Info.FFDiag(E); 4383 return CompleteObject(); 4384 } 4385 4386 bool IsConstant = BaseType.isConstant(Info.Ctx); 4387 bool ConstexprVar = false; 4388 if (const auto *VD = dyn_cast_if_present<VarDecl>( 4389 Info.EvaluatingDecl.dyn_cast<const ValueDecl *>())) 4390 ConstexprVar = VD->isConstexpr(); 4391 4392 // Unless we're looking at a local variable or argument in a constexpr call, 4393 // the variable we're reading must be const. 4394 if (!Frame) { 4395 if (IsAccess && isa<ParmVarDecl>(VD)) { 4396 // Access of a parameter that's not associated with a frame isn't going 4397 // to work out, but we can leave it to evaluateVarDeclInit to provide a 4398 // suitable diagnostic. 4399 } else if (Info.getLangOpts().CPlusPlus14 && 4400 lifetimeStartedInEvaluation(Info, LVal.Base)) { 4401 // OK, we can read and modify an object if we're in the process of 4402 // evaluating its initializer, because its lifetime began in this 4403 // evaluation. 4404 } else if (isModification(AK)) { 4405 // All the remaining cases do not permit modification of the object. 4406 Info.FFDiag(E, diag::note_constexpr_modify_global); 4407 return CompleteObject(); 4408 } else if (VD->isConstexpr()) { 4409 // OK, we can read this variable. 4410 } else if (Info.getLangOpts().C23 && ConstexprVar) { 4411 Info.FFDiag(E); 4412 return CompleteObject(); 4413 } else if (BaseType->isIntegralOrEnumerationType()) { 4414 if (!IsConstant) { 4415 if (!IsAccess) 4416 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); 4417 if (Info.getLangOpts().CPlusPlus) { 4418 Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD; 4419 Info.Note(VD->getLocation(), diag::note_declared_at); 4420 } else { 4421 Info.FFDiag(E); 4422 } 4423 return CompleteObject(); 4424 } 4425 } else if (!IsAccess) { 4426 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); 4427 } else if (IsConstant && Info.checkingPotentialConstantExpression() && 4428 BaseType->isLiteralType(Info.Ctx) && !VD->hasDefinition()) { 4429 // This variable might end up being constexpr. Don't diagnose it yet. 4430 } else if (IsConstant) { 4431 // Keep evaluating to see what we can do. In particular, we support 4432 // folding of const floating-point types, in order to make static const 4433 // data members of such types (supported as an extension) more useful. 4434 if (Info.getLangOpts().CPlusPlus) { 4435 Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11 4436 ? diag::note_constexpr_ltor_non_constexpr 4437 : diag::note_constexpr_ltor_non_integral, 1) 4438 << VD << BaseType; 4439 Info.Note(VD->getLocation(), diag::note_declared_at); 4440 } else { 4441 Info.CCEDiag(E); 4442 } 4443 } else { 4444 // Never allow reading a non-const value. 4445 if (Info.getLangOpts().CPlusPlus) { 4446 Info.FFDiag(E, Info.getLangOpts().CPlusPlus11 4447 ? diag::note_constexpr_ltor_non_constexpr 4448 : diag::note_constexpr_ltor_non_integral, 1) 4449 << VD << BaseType; 4450 Info.Note(VD->getLocation(), diag::note_declared_at); 4451 } else { 4452 Info.FFDiag(E); 4453 } 4454 return CompleteObject(); 4455 } 4456 } 4457 4458 if (!evaluateVarDeclInit(Info, E, VD, Frame, LVal.getLValueVersion(), BaseVal)) 4459 return CompleteObject(); 4460 } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) { 4461 std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA); 4462 if (!Alloc) { 4463 Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK; 4464 return CompleteObject(); 4465 } 4466 return CompleteObject(LVal.Base, &(*Alloc)->Value, 4467 LVal.Base.getDynamicAllocType()); 4468 } else { 4469 const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); 4470 4471 if (!Frame) { 4472 if (const MaterializeTemporaryExpr *MTE = 4473 dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) { 4474 assert(MTE->getStorageDuration() == SD_Static && 4475 "should have a frame for a non-global materialized temporary"); 4476 4477 // C++20 [expr.const]p4: [DR2126] 4478 // An object or reference is usable in constant expressions if it is 4479 // - a temporary object of non-volatile const-qualified literal type 4480 // whose lifetime is extended to that of a variable that is usable 4481 // in constant expressions 4482 // 4483 // C++20 [expr.const]p5: 4484 // an lvalue-to-rvalue conversion [is not allowed unless it applies to] 4485 // - a non-volatile glvalue that refers to an object that is usable 4486 // in constant expressions, or 4487 // - a non-volatile glvalue of literal type that refers to a 4488 // non-volatile object whose lifetime began within the evaluation 4489 // of E; 4490 // 4491 // C++11 misses the 'began within the evaluation of e' check and 4492 // instead allows all temporaries, including things like: 4493 // int &&r = 1; 4494 // int x = ++r; 4495 // constexpr int k = r; 4496 // Therefore we use the C++14-onwards rules in C++11 too. 4497 // 4498 // Note that temporaries whose lifetimes began while evaluating a 4499 // variable's constructor are not usable while evaluating the 4500 // corresponding destructor, not even if they're of const-qualified 4501 // types. 4502 if (!MTE->isUsableInConstantExpressions(Info.Ctx) && 4503 !lifetimeStartedInEvaluation(Info, LVal.Base)) { 4504 if (!IsAccess) 4505 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); 4506 Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK; 4507 Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here); 4508 return CompleteObject(); 4509 } 4510 4511 BaseVal = MTE->getOrCreateValue(false); 4512 assert(BaseVal && "got reference to unevaluated temporary"); 4513 } else { 4514 if (!IsAccess) 4515 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); 4516 APValue Val; 4517 LVal.moveInto(Val); 4518 Info.FFDiag(E, diag::note_constexpr_access_unreadable_object) 4519 << AK 4520 << Val.getAsString(Info.Ctx, 4521 Info.Ctx.getLValueReferenceType(LValType)); 4522 NoteLValueLocation(Info, LVal.Base); 4523 return CompleteObject(); 4524 } 4525 } else { 4526 BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion()); 4527 assert(BaseVal && "missing value for temporary"); 4528 } 4529 } 4530 4531 // In C++14, we can't safely access any mutable state when we might be 4532 // evaluating after an unmodeled side effect. Parameters are modeled as state 4533 // in the caller, but aren't visible once the call returns, so they can be 4534 // modified in a speculatively-evaluated call. 4535 // 4536 // FIXME: Not all local state is mutable. Allow local constant subobjects 4537 // to be read here (but take care with 'mutable' fields). 4538 unsigned VisibleDepth = Depth; 4539 if (llvm::isa_and_nonnull<ParmVarDecl>( 4540 LVal.Base.dyn_cast<const ValueDecl *>())) 4541 ++VisibleDepth; 4542 if ((Frame && Info.getLangOpts().CPlusPlus14 && 4543 Info.EvalStatus.HasSideEffects) || 4544 (isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth)) 4545 return CompleteObject(); 4546 4547 return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType); 4548 } 4549 4550 /// Perform an lvalue-to-rvalue conversion on the given glvalue. This 4551 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the 4552 /// glvalue referred to by an entity of reference type. 4553 /// 4554 /// \param Info - Information about the ongoing evaluation. 4555 /// \param Conv - The expression for which we are performing the conversion. 4556 /// Used for diagnostics. 4557 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the 4558 /// case of a non-class type). 4559 /// \param LVal - The glvalue on which we are attempting to perform this action. 4560 /// \param RVal - The produced value will be placed here. 4561 /// \param WantObjectRepresentation - If true, we're looking for the object 4562 /// representation rather than the value, and in particular, 4563 /// there is no requirement that the result be fully initialized. 4564 static bool 4565 handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type, 4566 const LValue &LVal, APValue &RVal, 4567 bool WantObjectRepresentation = false) { 4568 if (LVal.Designator.Invalid) 4569 return false; 4570 4571 // Check for special cases where there is no existing APValue to look at. 4572 const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); 4573 4574 AccessKinds AK = 4575 WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read; 4576 4577 if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) { 4578 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) { 4579 // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the 4580 // initializer until now for such expressions. Such an expression can't be 4581 // an ICE in C, so this only matters for fold. 4582 if (Type.isVolatileQualified()) { 4583 Info.FFDiag(Conv); 4584 return false; 4585 } 4586 4587 APValue Lit; 4588 if (!Evaluate(Lit, Info, CLE->getInitializer())) 4589 return false; 4590 4591 // According to GCC info page: 4592 // 4593 // 6.28 Compound Literals 4594 // 4595 // As an optimization, G++ sometimes gives array compound literals longer 4596 // lifetimes: when the array either appears outside a function or has a 4597 // const-qualified type. If foo and its initializer had elements of type 4598 // char *const rather than char *, or if foo were a global variable, the 4599 // array would have static storage duration. But it is probably safest 4600 // just to avoid the use of array compound literals in C++ code. 4601 // 4602 // Obey that rule by checking constness for converted array types. 4603 4604 QualType CLETy = CLE->getType(); 4605 if (CLETy->isArrayType() && !Type->isArrayType()) { 4606 if (!CLETy.isConstant(Info.Ctx)) { 4607 Info.FFDiag(Conv); 4608 Info.Note(CLE->getExprLoc(), diag::note_declared_at); 4609 return false; 4610 } 4611 } 4612 4613 CompleteObject LitObj(LVal.Base, &Lit, Base->getType()); 4614 return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK); 4615 } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) { 4616 // Special-case character extraction so we don't have to construct an 4617 // APValue for the whole string. 4618 assert(LVal.Designator.Entries.size() <= 1 && 4619 "Can only read characters from string literals"); 4620 if (LVal.Designator.Entries.empty()) { 4621 // Fail for now for LValue to RValue conversion of an array. 4622 // (This shouldn't show up in C/C++, but it could be triggered by a 4623 // weird EvaluateAsRValue call from a tool.) 4624 Info.FFDiag(Conv); 4625 return false; 4626 } 4627 if (LVal.Designator.isOnePastTheEnd()) { 4628 if (Info.getLangOpts().CPlusPlus11) 4629 Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK; 4630 else 4631 Info.FFDiag(Conv); 4632 return false; 4633 } 4634 uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex(); 4635 RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex)); 4636 return true; 4637 } 4638 } 4639 4640 CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type); 4641 return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK); 4642 } 4643 4644 /// Perform an assignment of Val to LVal. Takes ownership of Val. 4645 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal, 4646 QualType LValType, APValue &Val) { 4647 if (LVal.Designator.Invalid) 4648 return false; 4649 4650 if (!Info.getLangOpts().CPlusPlus14) { 4651 Info.FFDiag(E); 4652 return false; 4653 } 4654 4655 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType); 4656 return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val); 4657 } 4658 4659 namespace { 4660 struct CompoundAssignSubobjectHandler { 4661 EvalInfo &Info; 4662 const CompoundAssignOperator *E; 4663 QualType PromotedLHSType; 4664 BinaryOperatorKind Opcode; 4665 const APValue &RHS; 4666 4667 static const AccessKinds AccessKind = AK_Assign; 4668 4669 typedef bool result_type; 4670 4671 bool checkConst(QualType QT) { 4672 // Assigning to a const object has undefined behavior. 4673 if (QT.isConstQualified()) { 4674 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; 4675 return false; 4676 } 4677 return true; 4678 } 4679 4680 bool failed() { return false; } 4681 bool found(APValue &Subobj, QualType SubobjType) { 4682 switch (Subobj.getKind()) { 4683 case APValue::Int: 4684 return found(Subobj.getInt(), SubobjType); 4685 case APValue::Float: 4686 return found(Subobj.getFloat(), SubobjType); 4687 case APValue::ComplexInt: 4688 case APValue::ComplexFloat: 4689 // FIXME: Implement complex compound assignment. 4690 Info.FFDiag(E); 4691 return false; 4692 case APValue::LValue: 4693 return foundPointer(Subobj, SubobjType); 4694 case APValue::Vector: 4695 return foundVector(Subobj, SubobjType); 4696 case APValue::Indeterminate: 4697 Info.FFDiag(E, diag::note_constexpr_access_uninit) 4698 << /*read of=*/0 << /*uninitialized object=*/1 4699 << E->getLHS()->getSourceRange(); 4700 return false; 4701 default: 4702 // FIXME: can this happen? 4703 Info.FFDiag(E); 4704 return false; 4705 } 4706 } 4707 4708 bool foundVector(APValue &Value, QualType SubobjType) { 4709 if (!checkConst(SubobjType)) 4710 return false; 4711 4712 if (!SubobjType->isVectorType()) { 4713 Info.FFDiag(E); 4714 return false; 4715 } 4716 return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS); 4717 } 4718 4719 bool found(APSInt &Value, QualType SubobjType) { 4720 if (!checkConst(SubobjType)) 4721 return false; 4722 4723 if (!SubobjType->isIntegerType()) { 4724 // We don't support compound assignment on integer-cast-to-pointer 4725 // values. 4726 Info.FFDiag(E); 4727 return false; 4728 } 4729 4730 if (RHS.isInt()) { 4731 APSInt LHS = 4732 HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value); 4733 if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS)) 4734 return false; 4735 Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS); 4736 return true; 4737 } else if (RHS.isFloat()) { 4738 const FPOptions FPO = E->getFPFeaturesInEffect( 4739 Info.Ctx.getLangOpts()); 4740 APFloat FValue(0.0); 4741 return HandleIntToFloatCast(Info, E, FPO, SubobjType, Value, 4742 PromotedLHSType, FValue) && 4743 handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) && 4744 HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType, 4745 Value); 4746 } 4747 4748 Info.FFDiag(E); 4749 return false; 4750 } 4751 bool found(APFloat &Value, QualType SubobjType) { 4752 return checkConst(SubobjType) && 4753 HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType, 4754 Value) && 4755 handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) && 4756 HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value); 4757 } 4758 bool foundPointer(APValue &Subobj, QualType SubobjType) { 4759 if (!checkConst(SubobjType)) 4760 return false; 4761 4762 QualType PointeeType; 4763 if (const PointerType *PT = SubobjType->getAs<PointerType>()) 4764 PointeeType = PT->getPointeeType(); 4765 4766 if (PointeeType.isNull() || !RHS.isInt() || 4767 (Opcode != BO_Add && Opcode != BO_Sub)) { 4768 Info.FFDiag(E); 4769 return false; 4770 } 4771 4772 APSInt Offset = RHS.getInt(); 4773 if (Opcode == BO_Sub) 4774 negateAsSigned(Offset); 4775 4776 LValue LVal; 4777 LVal.setFrom(Info.Ctx, Subobj); 4778 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset)) 4779 return false; 4780 LVal.moveInto(Subobj); 4781 return true; 4782 } 4783 }; 4784 } // end anonymous namespace 4785 4786 const AccessKinds CompoundAssignSubobjectHandler::AccessKind; 4787 4788 /// Perform a compound assignment of LVal <op>= RVal. 4789 static bool handleCompoundAssignment(EvalInfo &Info, 4790 const CompoundAssignOperator *E, 4791 const LValue &LVal, QualType LValType, 4792 QualType PromotedLValType, 4793 BinaryOperatorKind Opcode, 4794 const APValue &RVal) { 4795 if (LVal.Designator.Invalid) 4796 return false; 4797 4798 if (!Info.getLangOpts().CPlusPlus14) { 4799 Info.FFDiag(E); 4800 return false; 4801 } 4802 4803 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType); 4804 CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode, 4805 RVal }; 4806 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler); 4807 } 4808 4809 namespace { 4810 struct IncDecSubobjectHandler { 4811 EvalInfo &Info; 4812 const UnaryOperator *E; 4813 AccessKinds AccessKind; 4814 APValue *Old; 4815 4816 typedef bool result_type; 4817 4818 bool checkConst(QualType QT) { 4819 // Assigning to a const object has undefined behavior. 4820 if (QT.isConstQualified()) { 4821 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; 4822 return false; 4823 } 4824 return true; 4825 } 4826 4827 bool failed() { return false; } 4828 bool found(APValue &Subobj, QualType SubobjType) { 4829 // Stash the old value. Also clear Old, so we don't clobber it later 4830 // if we're post-incrementing a complex. 4831 if (Old) { 4832 *Old = Subobj; 4833 Old = nullptr; 4834 } 4835 4836 switch (Subobj.getKind()) { 4837 case APValue::Int: 4838 return found(Subobj.getInt(), SubobjType); 4839 case APValue::Float: 4840 return found(Subobj.getFloat(), SubobjType); 4841 case APValue::ComplexInt: 4842 return found(Subobj.getComplexIntReal(), 4843 SubobjType->castAs<ComplexType>()->getElementType() 4844 .withCVRQualifiers(SubobjType.getCVRQualifiers())); 4845 case APValue::ComplexFloat: 4846 return found(Subobj.getComplexFloatReal(), 4847 SubobjType->castAs<ComplexType>()->getElementType() 4848 .withCVRQualifiers(SubobjType.getCVRQualifiers())); 4849 case APValue::LValue: 4850 return foundPointer(Subobj, SubobjType); 4851 default: 4852 // FIXME: can this happen? 4853 Info.FFDiag(E); 4854 return false; 4855 } 4856 } 4857 bool found(APSInt &Value, QualType SubobjType) { 4858 if (!checkConst(SubobjType)) 4859 return false; 4860 4861 if (!SubobjType->isIntegerType()) { 4862 // We don't support increment / decrement on integer-cast-to-pointer 4863 // values. 4864 Info.FFDiag(E); 4865 return false; 4866 } 4867 4868 if (Old) *Old = APValue(Value); 4869 4870 // bool arithmetic promotes to int, and the conversion back to bool 4871 // doesn't reduce mod 2^n, so special-case it. 4872 if (SubobjType->isBooleanType()) { 4873 if (AccessKind == AK_Increment) 4874 Value = 1; 4875 else 4876 Value = !Value; 4877 return true; 4878 } 4879 4880 bool WasNegative = Value.isNegative(); 4881 if (AccessKind == AK_Increment) { 4882 ++Value; 4883 4884 if (!WasNegative && Value.isNegative() && E->canOverflow()) { 4885 APSInt ActualValue(Value, /*IsUnsigned*/true); 4886 return HandleOverflow(Info, E, ActualValue, SubobjType); 4887 } 4888 } else { 4889 --Value; 4890 4891 if (WasNegative && !Value.isNegative() && E->canOverflow()) { 4892 unsigned BitWidth = Value.getBitWidth(); 4893 APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false); 4894 ActualValue.setBit(BitWidth); 4895 return HandleOverflow(Info, E, ActualValue, SubobjType); 4896 } 4897 } 4898 return true; 4899 } 4900 bool found(APFloat &Value, QualType SubobjType) { 4901 if (!checkConst(SubobjType)) 4902 return false; 4903 4904 if (Old) *Old = APValue(Value); 4905 4906 APFloat One(Value.getSemantics(), 1); 4907 llvm::RoundingMode RM = getActiveRoundingMode(Info, E); 4908 APFloat::opStatus St; 4909 if (AccessKind == AK_Increment) 4910 St = Value.add(One, RM); 4911 else 4912 St = Value.subtract(One, RM); 4913 return checkFloatingPointResult(Info, E, St); 4914 } 4915 bool foundPointer(APValue &Subobj, QualType SubobjType) { 4916 if (!checkConst(SubobjType)) 4917 return false; 4918 4919 QualType PointeeType; 4920 if (const PointerType *PT = SubobjType->getAs<PointerType>()) 4921 PointeeType = PT->getPointeeType(); 4922 else { 4923 Info.FFDiag(E); 4924 return false; 4925 } 4926 4927 LValue LVal; 4928 LVal.setFrom(Info.Ctx, Subobj); 4929 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, 4930 AccessKind == AK_Increment ? 1 : -1)) 4931 return false; 4932 LVal.moveInto(Subobj); 4933 return true; 4934 } 4935 }; 4936 } // end anonymous namespace 4937 4938 /// Perform an increment or decrement on LVal. 4939 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal, 4940 QualType LValType, bool IsIncrement, APValue *Old) { 4941 if (LVal.Designator.Invalid) 4942 return false; 4943 4944 if (!Info.getLangOpts().CPlusPlus14) { 4945 Info.FFDiag(E); 4946 return false; 4947 } 4948 4949 AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement; 4950 CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType); 4951 IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old}; 4952 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler); 4953 } 4954 4955 /// Build an lvalue for the object argument of a member function call. 4956 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object, 4957 LValue &This) { 4958 if (Object->getType()->isPointerType() && Object->isPRValue()) 4959 return EvaluatePointer(Object, This, Info); 4960 4961 if (Object->isGLValue()) 4962 return EvaluateLValue(Object, This, Info); 4963 4964 if (Object->getType()->isLiteralType(Info.Ctx)) 4965 return EvaluateTemporary(Object, This, Info); 4966 4967 if (Object->getType()->isRecordType() && Object->isPRValue()) 4968 return EvaluateTemporary(Object, This, Info); 4969 4970 Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType(); 4971 return false; 4972 } 4973 4974 /// HandleMemberPointerAccess - Evaluate a member access operation and build an 4975 /// lvalue referring to the result. 4976 /// 4977 /// \param Info - Information about the ongoing evaluation. 4978 /// \param LV - An lvalue referring to the base of the member pointer. 4979 /// \param RHS - The member pointer expression. 4980 /// \param IncludeMember - Specifies whether the member itself is included in 4981 /// the resulting LValue subobject designator. This is not possible when 4982 /// creating a bound member function. 4983 /// \return The field or method declaration to which the member pointer refers, 4984 /// or 0 if evaluation fails. 4985 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, 4986 QualType LVType, 4987 LValue &LV, 4988 const Expr *RHS, 4989 bool IncludeMember = true) { 4990 MemberPtr MemPtr; 4991 if (!EvaluateMemberPointer(RHS, MemPtr, Info)) 4992 return nullptr; 4993 4994 // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to 4995 // member value, the behavior is undefined. 4996 if (!MemPtr.getDecl()) { 4997 // FIXME: Specific diagnostic. 4998 Info.FFDiag(RHS); 4999 return nullptr; 5000 } 5001 5002 if (MemPtr.isDerivedMember()) { 5003 // This is a member of some derived class. Truncate LV appropriately. 5004 // The end of the derived-to-base path for the base object must match the 5005 // derived-to-base path for the member pointer. 5006 if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() > 5007 LV.Designator.Entries.size()) { 5008 Info.FFDiag(RHS); 5009 return nullptr; 5010 } 5011 unsigned PathLengthToMember = 5012 LV.Designator.Entries.size() - MemPtr.Path.size(); 5013 for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) { 5014 const CXXRecordDecl *LVDecl = getAsBaseClass( 5015 LV.Designator.Entries[PathLengthToMember + I]); 5016 const CXXRecordDecl *MPDecl = MemPtr.Path[I]; 5017 if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) { 5018 Info.FFDiag(RHS); 5019 return nullptr; 5020 } 5021 } 5022 5023 // Truncate the lvalue to the appropriate derived class. 5024 if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(), 5025 PathLengthToMember)) 5026 return nullptr; 5027 } else if (!MemPtr.Path.empty()) { 5028 // Extend the LValue path with the member pointer's path. 5029 LV.Designator.Entries.reserve(LV.Designator.Entries.size() + 5030 MemPtr.Path.size() + IncludeMember); 5031 5032 // Walk down to the appropriate base class. 5033 if (const PointerType *PT = LVType->getAs<PointerType>()) 5034 LVType = PT->getPointeeType(); 5035 const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl(); 5036 assert(RD && "member pointer access on non-class-type expression"); 5037 // The first class in the path is that of the lvalue. 5038 for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) { 5039 const CXXRecordDecl *Base = MemPtr.Path[N - I - 1]; 5040 if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base)) 5041 return nullptr; 5042 RD = Base; 5043 } 5044 // Finally cast to the class containing the member. 5045 if (!HandleLValueDirectBase(Info, RHS, LV, RD, 5046 MemPtr.getContainingRecord())) 5047 return nullptr; 5048 } 5049 5050 // Add the member. Note that we cannot build bound member functions here. 5051 if (IncludeMember) { 5052 if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) { 5053 if (!HandleLValueMember(Info, RHS, LV, FD)) 5054 return nullptr; 5055 } else if (const IndirectFieldDecl *IFD = 5056 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) { 5057 if (!HandleLValueIndirectMember(Info, RHS, LV, IFD)) 5058 return nullptr; 5059 } else { 5060 llvm_unreachable("can't construct reference to bound member function"); 5061 } 5062 } 5063 5064 return MemPtr.getDecl(); 5065 } 5066 5067 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, 5068 const BinaryOperator *BO, 5069 LValue &LV, 5070 bool IncludeMember = true) { 5071 assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI); 5072 5073 if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) { 5074 if (Info.noteFailure()) { 5075 MemberPtr MemPtr; 5076 EvaluateMemberPointer(BO->getRHS(), MemPtr, Info); 5077 } 5078 return nullptr; 5079 } 5080 5081 return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV, 5082 BO->getRHS(), IncludeMember); 5083 } 5084 5085 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on 5086 /// the provided lvalue, which currently refers to the base object. 5087 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E, 5088 LValue &Result) { 5089 SubobjectDesignator &D = Result.Designator; 5090 if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived)) 5091 return false; 5092 5093 QualType TargetQT = E->getType(); 5094 if (const PointerType *PT = TargetQT->getAs<PointerType>()) 5095 TargetQT = PT->getPointeeType(); 5096 5097 // Check this cast lands within the final derived-to-base subobject path. 5098 if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) { 5099 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast) 5100 << D.MostDerivedType << TargetQT; 5101 return false; 5102 } 5103 5104 // Check the type of the final cast. We don't need to check the path, 5105 // since a cast can only be formed if the path is unique. 5106 unsigned NewEntriesSize = D.Entries.size() - E->path_size(); 5107 const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl(); 5108 const CXXRecordDecl *FinalType; 5109 if (NewEntriesSize == D.MostDerivedPathLength) 5110 FinalType = D.MostDerivedType->getAsCXXRecordDecl(); 5111 else 5112 FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]); 5113 if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) { 5114 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast) 5115 << D.MostDerivedType << TargetQT; 5116 return false; 5117 } 5118 5119 // Truncate the lvalue to the appropriate derived class. 5120 return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize); 5121 } 5122 5123 /// Get the value to use for a default-initialized object of type T. 5124 /// Return false if it encounters something invalid. 5125 static bool handleDefaultInitValue(QualType T, APValue &Result) { 5126 bool Success = true; 5127 5128 // If there is already a value present don't overwrite it. 5129 if (!Result.isAbsent()) 5130 return true; 5131 5132 if (auto *RD = T->getAsCXXRecordDecl()) { 5133 if (RD->isInvalidDecl()) { 5134 Result = APValue(); 5135 return false; 5136 } 5137 if (RD->isUnion()) { 5138 Result = APValue((const FieldDecl *)nullptr); 5139 return true; 5140 } 5141 Result = APValue(APValue::UninitStruct(), RD->getNumBases(), 5142 std::distance(RD->field_begin(), RD->field_end())); 5143 5144 unsigned Index = 0; 5145 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), 5146 End = RD->bases_end(); 5147 I != End; ++I, ++Index) 5148 Success &= 5149 handleDefaultInitValue(I->getType(), Result.getStructBase(Index)); 5150 5151 for (const auto *I : RD->fields()) { 5152 if (I->isUnnamedBitField()) 5153 continue; 5154 Success &= handleDefaultInitValue( 5155 I->getType(), Result.getStructField(I->getFieldIndex())); 5156 } 5157 return Success; 5158 } 5159 5160 if (auto *AT = 5161 dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) { 5162 Result = APValue(APValue::UninitArray(), 0, AT->getZExtSize()); 5163 if (Result.hasArrayFiller()) 5164 Success &= 5165 handleDefaultInitValue(AT->getElementType(), Result.getArrayFiller()); 5166 5167 return Success; 5168 } 5169 5170 Result = APValue::IndeterminateValue(); 5171 return true; 5172 } 5173 5174 namespace { 5175 enum EvalStmtResult { 5176 /// Evaluation failed. 5177 ESR_Failed, 5178 /// Hit a 'return' statement. 5179 ESR_Returned, 5180 /// Evaluation succeeded. 5181 ESR_Succeeded, 5182 /// Hit a 'continue' statement. 5183 ESR_Continue, 5184 /// Hit a 'break' statement. 5185 ESR_Break, 5186 /// Still scanning for 'case' or 'default' statement. 5187 ESR_CaseNotFound 5188 }; 5189 } 5190 5191 static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) { 5192 if (VD->isInvalidDecl()) 5193 return false; 5194 // We don't need to evaluate the initializer for a static local. 5195 if (!VD->hasLocalStorage()) 5196 return true; 5197 5198 LValue Result; 5199 APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(), 5200 ScopeKind::Block, Result); 5201 5202 const Expr *InitE = VD->getInit(); 5203 if (!InitE) { 5204 if (VD->getType()->isDependentType()) 5205 return Info.noteSideEffect(); 5206 return handleDefaultInitValue(VD->getType(), Val); 5207 } 5208 if (InitE->isValueDependent()) 5209 return false; 5210 5211 if (!EvaluateInPlace(Val, Info, Result, InitE)) { 5212 // Wipe out any partially-computed value, to allow tracking that this 5213 // evaluation failed. 5214 Val = APValue(); 5215 return false; 5216 } 5217 5218 return true; 5219 } 5220 5221 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) { 5222 bool OK = true; 5223 5224 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 5225 OK &= EvaluateVarDecl(Info, VD); 5226 5227 if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D)) 5228 for (auto *BD : DD->flat_bindings()) 5229 if (auto *VD = BD->getHoldingVar()) 5230 OK &= EvaluateDecl(Info, VD); 5231 5232 return OK; 5233 } 5234 5235 static bool EvaluateDependentExpr(const Expr *E, EvalInfo &Info) { 5236 assert(E->isValueDependent()); 5237 if (Info.noteSideEffect()) 5238 return true; 5239 assert(E->containsErrors() && "valid value-dependent expression should never " 5240 "reach invalid code path."); 5241 return false; 5242 } 5243 5244 /// Evaluate a condition (either a variable declaration or an expression). 5245 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl, 5246 const Expr *Cond, bool &Result) { 5247 if (Cond->isValueDependent()) 5248 return false; 5249 FullExpressionRAII Scope(Info); 5250 if (CondDecl && !EvaluateDecl(Info, CondDecl)) 5251 return false; 5252 if (!EvaluateAsBooleanCondition(Cond, Result, Info)) 5253 return false; 5254 return Scope.destroy(); 5255 } 5256 5257 namespace { 5258 /// A location where the result (returned value) of evaluating a 5259 /// statement should be stored. 5260 struct StmtResult { 5261 /// The APValue that should be filled in with the returned value. 5262 APValue &Value; 5263 /// The location containing the result, if any (used to support RVO). 5264 const LValue *Slot; 5265 }; 5266 5267 struct TempVersionRAII { 5268 CallStackFrame &Frame; 5269 5270 TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) { 5271 Frame.pushTempVersion(); 5272 } 5273 5274 ~TempVersionRAII() { 5275 Frame.popTempVersion(); 5276 } 5277 }; 5278 5279 } 5280 5281 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, 5282 const Stmt *S, 5283 const SwitchCase *SC = nullptr); 5284 5285 /// Evaluate the body of a loop, and translate the result as appropriate. 5286 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info, 5287 const Stmt *Body, 5288 const SwitchCase *Case = nullptr) { 5289 BlockScopeRAII Scope(Info); 5290 5291 EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case); 5292 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy()) 5293 ESR = ESR_Failed; 5294 5295 switch (ESR) { 5296 case ESR_Break: 5297 return ESR_Succeeded; 5298 case ESR_Succeeded: 5299 case ESR_Continue: 5300 return ESR_Continue; 5301 case ESR_Failed: 5302 case ESR_Returned: 5303 case ESR_CaseNotFound: 5304 return ESR; 5305 } 5306 llvm_unreachable("Invalid EvalStmtResult!"); 5307 } 5308 5309 /// Evaluate a switch statement. 5310 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info, 5311 const SwitchStmt *SS) { 5312 BlockScopeRAII Scope(Info); 5313 5314 // Evaluate the switch condition. 5315 APSInt Value; 5316 { 5317 if (const Stmt *Init = SS->getInit()) { 5318 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init); 5319 if (ESR != ESR_Succeeded) { 5320 if (ESR != ESR_Failed && !Scope.destroy()) 5321 ESR = ESR_Failed; 5322 return ESR; 5323 } 5324 } 5325 5326 FullExpressionRAII CondScope(Info); 5327 if (SS->getConditionVariable() && 5328 !EvaluateDecl(Info, SS->getConditionVariable())) 5329 return ESR_Failed; 5330 if (SS->getCond()->isValueDependent()) { 5331 // We don't know what the value is, and which branch should jump to. 5332 EvaluateDependentExpr(SS->getCond(), Info); 5333 return ESR_Failed; 5334 } 5335 if (!EvaluateInteger(SS->getCond(), Value, Info)) 5336 return ESR_Failed; 5337 5338 if (!CondScope.destroy()) 5339 return ESR_Failed; 5340 } 5341 5342 // Find the switch case corresponding to the value of the condition. 5343 // FIXME: Cache this lookup. 5344 const SwitchCase *Found = nullptr; 5345 for (const SwitchCase *SC = SS->getSwitchCaseList(); SC; 5346 SC = SC->getNextSwitchCase()) { 5347 if (isa<DefaultStmt>(SC)) { 5348 Found = SC; 5349 continue; 5350 } 5351 5352 const CaseStmt *CS = cast<CaseStmt>(SC); 5353 APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx); 5354 APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx) 5355 : LHS; 5356 if (LHS <= Value && Value <= RHS) { 5357 Found = SC; 5358 break; 5359 } 5360 } 5361 5362 if (!Found) 5363 return Scope.destroy() ? ESR_Succeeded : ESR_Failed; 5364 5365 // Search the switch body for the switch case and evaluate it from there. 5366 EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found); 5367 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy()) 5368 return ESR_Failed; 5369 5370 switch (ESR) { 5371 case ESR_Break: 5372 return ESR_Succeeded; 5373 case ESR_Succeeded: 5374 case ESR_Continue: 5375 case ESR_Failed: 5376 case ESR_Returned: 5377 return ESR; 5378 case ESR_CaseNotFound: 5379 // This can only happen if the switch case is nested within a statement 5380 // expression. We have no intention of supporting that. 5381 Info.FFDiag(Found->getBeginLoc(), 5382 diag::note_constexpr_stmt_expr_unsupported); 5383 return ESR_Failed; 5384 } 5385 llvm_unreachable("Invalid EvalStmtResult!"); 5386 } 5387 5388 static bool CheckLocalVariableDeclaration(EvalInfo &Info, const VarDecl *VD) { 5389 // An expression E is a core constant expression unless the evaluation of E 5390 // would evaluate one of the following: [C++23] - a control flow that passes 5391 // through a declaration of a variable with static or thread storage duration 5392 // unless that variable is usable in constant expressions. 5393 if (VD->isLocalVarDecl() && VD->isStaticLocal() && 5394 !VD->isUsableInConstantExpressions(Info.Ctx)) { 5395 Info.CCEDiag(VD->getLocation(), diag::note_constexpr_static_local) 5396 << (VD->getTSCSpec() == TSCS_unspecified ? 0 : 1) << VD; 5397 return false; 5398 } 5399 return true; 5400 } 5401 5402 // Evaluate a statement. 5403 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, 5404 const Stmt *S, const SwitchCase *Case) { 5405 if (!Info.nextStep(S)) 5406 return ESR_Failed; 5407 5408 // If we're hunting down a 'case' or 'default' label, recurse through 5409 // substatements until we hit the label. 5410 if (Case) { 5411 switch (S->getStmtClass()) { 5412 case Stmt::CompoundStmtClass: 5413 // FIXME: Precompute which substatement of a compound statement we 5414 // would jump to, and go straight there rather than performing a 5415 // linear scan each time. 5416 case Stmt::LabelStmtClass: 5417 case Stmt::AttributedStmtClass: 5418 case Stmt::DoStmtClass: 5419 break; 5420 5421 case Stmt::CaseStmtClass: 5422 case Stmt::DefaultStmtClass: 5423 if (Case == S) 5424 Case = nullptr; 5425 break; 5426 5427 case Stmt::IfStmtClass: { 5428 // FIXME: Precompute which side of an 'if' we would jump to, and go 5429 // straight there rather than scanning both sides. 5430 const IfStmt *IS = cast<IfStmt>(S); 5431 5432 // Wrap the evaluation in a block scope, in case it's a DeclStmt 5433 // preceded by our switch label. 5434 BlockScopeRAII Scope(Info); 5435 5436 // Step into the init statement in case it brings an (uninitialized) 5437 // variable into scope. 5438 if (const Stmt *Init = IS->getInit()) { 5439 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case); 5440 if (ESR != ESR_CaseNotFound) { 5441 assert(ESR != ESR_Succeeded); 5442 return ESR; 5443 } 5444 } 5445 5446 // Condition variable must be initialized if it exists. 5447 // FIXME: We can skip evaluating the body if there's a condition 5448 // variable, as there can't be any case labels within it. 5449 // (The same is true for 'for' statements.) 5450 5451 EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case); 5452 if (ESR == ESR_Failed) 5453 return ESR; 5454 if (ESR != ESR_CaseNotFound) 5455 return Scope.destroy() ? ESR : ESR_Failed; 5456 if (!IS->getElse()) 5457 return ESR_CaseNotFound; 5458 5459 ESR = EvaluateStmt(Result, Info, IS->getElse(), Case); 5460 if (ESR == ESR_Failed) 5461 return ESR; 5462 if (ESR != ESR_CaseNotFound) 5463 return Scope.destroy() ? ESR : ESR_Failed; 5464 return ESR_CaseNotFound; 5465 } 5466 5467 case Stmt::WhileStmtClass: { 5468 EvalStmtResult ESR = 5469 EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case); 5470 if (ESR != ESR_Continue) 5471 return ESR; 5472 break; 5473 } 5474 5475 case Stmt::ForStmtClass: { 5476 const ForStmt *FS = cast<ForStmt>(S); 5477 BlockScopeRAII Scope(Info); 5478 5479 // Step into the init statement in case it brings an (uninitialized) 5480 // variable into scope. 5481 if (const Stmt *Init = FS->getInit()) { 5482 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case); 5483 if (ESR != ESR_CaseNotFound) { 5484 assert(ESR != ESR_Succeeded); 5485 return ESR; 5486 } 5487 } 5488 5489 EvalStmtResult ESR = 5490 EvaluateLoopBody(Result, Info, FS->getBody(), Case); 5491 if (ESR != ESR_Continue) 5492 return ESR; 5493 if (const auto *Inc = FS->getInc()) { 5494 if (Inc->isValueDependent()) { 5495 if (!EvaluateDependentExpr(Inc, Info)) 5496 return ESR_Failed; 5497 } else { 5498 FullExpressionRAII IncScope(Info); 5499 if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy()) 5500 return ESR_Failed; 5501 } 5502 } 5503 break; 5504 } 5505 5506 case Stmt::DeclStmtClass: { 5507 // Start the lifetime of any uninitialized variables we encounter. They 5508 // might be used by the selected branch of the switch. 5509 const DeclStmt *DS = cast<DeclStmt>(S); 5510 for (const auto *D : DS->decls()) { 5511 if (const auto *VD = dyn_cast<VarDecl>(D)) { 5512 if (!CheckLocalVariableDeclaration(Info, VD)) 5513 return ESR_Failed; 5514 if (VD->hasLocalStorage() && !VD->getInit()) 5515 if (!EvaluateVarDecl(Info, VD)) 5516 return ESR_Failed; 5517 // FIXME: If the variable has initialization that can't be jumped 5518 // over, bail out of any immediately-surrounding compound-statement 5519 // too. There can't be any case labels here. 5520 } 5521 } 5522 return ESR_CaseNotFound; 5523 } 5524 5525 default: 5526 return ESR_CaseNotFound; 5527 } 5528 } 5529 5530 switch (S->getStmtClass()) { 5531 default: 5532 if (const Expr *E = dyn_cast<Expr>(S)) { 5533 if (E->isValueDependent()) { 5534 if (!EvaluateDependentExpr(E, Info)) 5535 return ESR_Failed; 5536 } else { 5537 // Don't bother evaluating beyond an expression-statement which couldn't 5538 // be evaluated. 5539 // FIXME: Do we need the FullExpressionRAII object here? 5540 // VisitExprWithCleanups should create one when necessary. 5541 FullExpressionRAII Scope(Info); 5542 if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy()) 5543 return ESR_Failed; 5544 } 5545 return ESR_Succeeded; 5546 } 5547 5548 Info.FFDiag(S->getBeginLoc()) << S->getSourceRange(); 5549 return ESR_Failed; 5550 5551 case Stmt::NullStmtClass: 5552 return ESR_Succeeded; 5553 5554 case Stmt::DeclStmtClass: { 5555 const DeclStmt *DS = cast<DeclStmt>(S); 5556 for (const auto *D : DS->decls()) { 5557 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 5558 if (VD && !CheckLocalVariableDeclaration(Info, VD)) 5559 return ESR_Failed; 5560 // Each declaration initialization is its own full-expression. 5561 FullExpressionRAII Scope(Info); 5562 if (!EvaluateDecl(Info, D) && !Info.noteFailure()) 5563 return ESR_Failed; 5564 if (!Scope.destroy()) 5565 return ESR_Failed; 5566 } 5567 return ESR_Succeeded; 5568 } 5569 5570 case Stmt::ReturnStmtClass: { 5571 const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue(); 5572 FullExpressionRAII Scope(Info); 5573 if (RetExpr && RetExpr->isValueDependent()) { 5574 EvaluateDependentExpr(RetExpr, Info); 5575 // We know we returned, but we don't know what the value is. 5576 return ESR_Failed; 5577 } 5578 if (RetExpr && 5579 !(Result.Slot 5580 ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr) 5581 : Evaluate(Result.Value, Info, RetExpr))) 5582 return ESR_Failed; 5583 return Scope.destroy() ? ESR_Returned : ESR_Failed; 5584 } 5585 5586 case Stmt::CompoundStmtClass: { 5587 BlockScopeRAII Scope(Info); 5588 5589 const CompoundStmt *CS = cast<CompoundStmt>(S); 5590 for (const auto *BI : CS->body()) { 5591 EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case); 5592 if (ESR == ESR_Succeeded) 5593 Case = nullptr; 5594 else if (ESR != ESR_CaseNotFound) { 5595 if (ESR != ESR_Failed && !Scope.destroy()) 5596 return ESR_Failed; 5597 return ESR; 5598 } 5599 } 5600 if (Case) 5601 return ESR_CaseNotFound; 5602 return Scope.destroy() ? ESR_Succeeded : ESR_Failed; 5603 } 5604 5605 case Stmt::IfStmtClass: { 5606 const IfStmt *IS = cast<IfStmt>(S); 5607 5608 // Evaluate the condition, as either a var decl or as an expression. 5609 BlockScopeRAII Scope(Info); 5610 if (const Stmt *Init = IS->getInit()) { 5611 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init); 5612 if (ESR != ESR_Succeeded) { 5613 if (ESR != ESR_Failed && !Scope.destroy()) 5614 return ESR_Failed; 5615 return ESR; 5616 } 5617 } 5618 bool Cond; 5619 if (IS->isConsteval()) { 5620 Cond = IS->isNonNegatedConsteval(); 5621 // If we are not in a constant context, if consteval should not evaluate 5622 // to true. 5623 if (!Info.InConstantContext) 5624 Cond = !Cond; 5625 } else if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), 5626 Cond)) 5627 return ESR_Failed; 5628 5629 if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) { 5630 EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt); 5631 if (ESR != ESR_Succeeded) { 5632 if (ESR != ESR_Failed && !Scope.destroy()) 5633 return ESR_Failed; 5634 return ESR; 5635 } 5636 } 5637 return Scope.destroy() ? ESR_Succeeded : ESR_Failed; 5638 } 5639 5640 case Stmt::WhileStmtClass: { 5641 const WhileStmt *WS = cast<WhileStmt>(S); 5642 while (true) { 5643 BlockScopeRAII Scope(Info); 5644 bool Continue; 5645 if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(), 5646 Continue)) 5647 return ESR_Failed; 5648 if (!Continue) 5649 break; 5650 5651 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody()); 5652 if (ESR != ESR_Continue) { 5653 if (ESR != ESR_Failed && !Scope.destroy()) 5654 return ESR_Failed; 5655 return ESR; 5656 } 5657 if (!Scope.destroy()) 5658 return ESR_Failed; 5659 } 5660 return ESR_Succeeded; 5661 } 5662 5663 case Stmt::DoStmtClass: { 5664 const DoStmt *DS = cast<DoStmt>(S); 5665 bool Continue; 5666 do { 5667 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case); 5668 if (ESR != ESR_Continue) 5669 return ESR; 5670 Case = nullptr; 5671 5672 if (DS->getCond()->isValueDependent()) { 5673 EvaluateDependentExpr(DS->getCond(), Info); 5674 // Bailout as we don't know whether to keep going or terminate the loop. 5675 return ESR_Failed; 5676 } 5677 FullExpressionRAII CondScope(Info); 5678 if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) || 5679 !CondScope.destroy()) 5680 return ESR_Failed; 5681 } while (Continue); 5682 return ESR_Succeeded; 5683 } 5684 5685 case Stmt::ForStmtClass: { 5686 const ForStmt *FS = cast<ForStmt>(S); 5687 BlockScopeRAII ForScope(Info); 5688 if (FS->getInit()) { 5689 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit()); 5690 if (ESR != ESR_Succeeded) { 5691 if (ESR != ESR_Failed && !ForScope.destroy()) 5692 return ESR_Failed; 5693 return ESR; 5694 } 5695 } 5696 while (true) { 5697 BlockScopeRAII IterScope(Info); 5698 bool Continue = true; 5699 if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(), 5700 FS->getCond(), Continue)) 5701 return ESR_Failed; 5702 if (!Continue) 5703 break; 5704 5705 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody()); 5706 if (ESR != ESR_Continue) { 5707 if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy())) 5708 return ESR_Failed; 5709 return ESR; 5710 } 5711 5712 if (const auto *Inc = FS->getInc()) { 5713 if (Inc->isValueDependent()) { 5714 if (!EvaluateDependentExpr(Inc, Info)) 5715 return ESR_Failed; 5716 } else { 5717 FullExpressionRAII IncScope(Info); 5718 if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy()) 5719 return ESR_Failed; 5720 } 5721 } 5722 5723 if (!IterScope.destroy()) 5724 return ESR_Failed; 5725 } 5726 return ForScope.destroy() ? ESR_Succeeded : ESR_Failed; 5727 } 5728 5729 case Stmt::CXXForRangeStmtClass: { 5730 const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S); 5731 BlockScopeRAII Scope(Info); 5732 5733 // Evaluate the init-statement if present. 5734 if (FS->getInit()) { 5735 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit()); 5736 if (ESR != ESR_Succeeded) { 5737 if (ESR != ESR_Failed && !Scope.destroy()) 5738 return ESR_Failed; 5739 return ESR; 5740 } 5741 } 5742 5743 // Initialize the __range variable. 5744 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt()); 5745 if (ESR != ESR_Succeeded) { 5746 if (ESR != ESR_Failed && !Scope.destroy()) 5747 return ESR_Failed; 5748 return ESR; 5749 } 5750 5751 // In error-recovery cases it's possible to get here even if we failed to 5752 // synthesize the __begin and __end variables. 5753 if (!FS->getBeginStmt() || !FS->getEndStmt() || !FS->getCond()) 5754 return ESR_Failed; 5755 5756 // Create the __begin and __end iterators. 5757 ESR = EvaluateStmt(Result, Info, FS->getBeginStmt()); 5758 if (ESR != ESR_Succeeded) { 5759 if (ESR != ESR_Failed && !Scope.destroy()) 5760 return ESR_Failed; 5761 return ESR; 5762 } 5763 ESR = EvaluateStmt(Result, Info, FS->getEndStmt()); 5764 if (ESR != ESR_Succeeded) { 5765 if (ESR != ESR_Failed && !Scope.destroy()) 5766 return ESR_Failed; 5767 return ESR; 5768 } 5769 5770 while (true) { 5771 // Condition: __begin != __end. 5772 { 5773 if (FS->getCond()->isValueDependent()) { 5774 EvaluateDependentExpr(FS->getCond(), Info); 5775 // We don't know whether to keep going or terminate the loop. 5776 return ESR_Failed; 5777 } 5778 bool Continue = true; 5779 FullExpressionRAII CondExpr(Info); 5780 if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info)) 5781 return ESR_Failed; 5782 if (!Continue) 5783 break; 5784 } 5785 5786 // User's variable declaration, initialized by *__begin. 5787 BlockScopeRAII InnerScope(Info); 5788 ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt()); 5789 if (ESR != ESR_Succeeded) { 5790 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy())) 5791 return ESR_Failed; 5792 return ESR; 5793 } 5794 5795 // Loop body. 5796 ESR = EvaluateLoopBody(Result, Info, FS->getBody()); 5797 if (ESR != ESR_Continue) { 5798 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy())) 5799 return ESR_Failed; 5800 return ESR; 5801 } 5802 if (FS->getInc()->isValueDependent()) { 5803 if (!EvaluateDependentExpr(FS->getInc(), Info)) 5804 return ESR_Failed; 5805 } else { 5806 // Increment: ++__begin 5807 if (!EvaluateIgnoredValue(Info, FS->getInc())) 5808 return ESR_Failed; 5809 } 5810 5811 if (!InnerScope.destroy()) 5812 return ESR_Failed; 5813 } 5814 5815 return Scope.destroy() ? ESR_Succeeded : ESR_Failed; 5816 } 5817 5818 case Stmt::SwitchStmtClass: 5819 return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S)); 5820 5821 case Stmt::ContinueStmtClass: 5822 return ESR_Continue; 5823 5824 case Stmt::BreakStmtClass: 5825 return ESR_Break; 5826 5827 case Stmt::LabelStmtClass: 5828 return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case); 5829 5830 case Stmt::AttributedStmtClass: { 5831 const auto *AS = cast<AttributedStmt>(S); 5832 const auto *SS = AS->getSubStmt(); 5833 MSConstexprContextRAII ConstexprContext( 5834 *Info.CurrentCall, hasSpecificAttr<MSConstexprAttr>(AS->getAttrs()) && 5835 isa<ReturnStmt>(SS)); 5836 5837 auto LO = Info.getASTContext().getLangOpts(); 5838 if (LO.CXXAssumptions && !LO.MSVCCompat) { 5839 for (auto *Attr : AS->getAttrs()) { 5840 auto *AA = dyn_cast<CXXAssumeAttr>(Attr); 5841 if (!AA) 5842 continue; 5843 5844 auto *Assumption = AA->getAssumption(); 5845 if (Assumption->isValueDependent()) 5846 return ESR_Failed; 5847 5848 if (Assumption->HasSideEffects(Info.getASTContext())) 5849 continue; 5850 5851 bool Value; 5852 if (!EvaluateAsBooleanCondition(Assumption, Value, Info)) 5853 return ESR_Failed; 5854 if (!Value) { 5855 Info.CCEDiag(Assumption->getExprLoc(), 5856 diag::note_constexpr_assumption_failed); 5857 return ESR_Failed; 5858 } 5859 } 5860 } 5861 5862 return EvaluateStmt(Result, Info, SS, Case); 5863 } 5864 5865 case Stmt::CaseStmtClass: 5866 case Stmt::DefaultStmtClass: 5867 return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case); 5868 case Stmt::CXXTryStmtClass: 5869 // Evaluate try blocks by evaluating all sub statements. 5870 return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case); 5871 } 5872 } 5873 5874 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial 5875 /// default constructor. If so, we'll fold it whether or not it's marked as 5876 /// constexpr. If it is marked as constexpr, we will never implicitly define it, 5877 /// so we need special handling. 5878 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc, 5879 const CXXConstructorDecl *CD, 5880 bool IsValueInitialization) { 5881 if (!CD->isTrivial() || !CD->isDefaultConstructor()) 5882 return false; 5883 5884 // Value-initialization does not call a trivial default constructor, so such a 5885 // call is a core constant expression whether or not the constructor is 5886 // constexpr. 5887 if (!CD->isConstexpr() && !IsValueInitialization) { 5888 if (Info.getLangOpts().CPlusPlus11) { 5889 // FIXME: If DiagDecl is an implicitly-declared special member function, 5890 // we should be much more explicit about why it's not constexpr. 5891 Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1) 5892 << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD; 5893 Info.Note(CD->getLocation(), diag::note_declared_at); 5894 } else { 5895 Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr); 5896 } 5897 } 5898 return true; 5899 } 5900 5901 /// CheckConstexprFunction - Check that a function can be called in a constant 5902 /// expression. 5903 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc, 5904 const FunctionDecl *Declaration, 5905 const FunctionDecl *Definition, 5906 const Stmt *Body) { 5907 // Potential constant expressions can contain calls to declared, but not yet 5908 // defined, constexpr functions. 5909 if (Info.checkingPotentialConstantExpression() && !Definition && 5910 Declaration->isConstexpr()) 5911 return false; 5912 5913 // Bail out if the function declaration itself is invalid. We will 5914 // have produced a relevant diagnostic while parsing it, so just 5915 // note the problematic sub-expression. 5916 if (Declaration->isInvalidDecl()) { 5917 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); 5918 return false; 5919 } 5920 5921 // DR1872: An instantiated virtual constexpr function can't be called in a 5922 // constant expression (prior to C++20). We can still constant-fold such a 5923 // call. 5924 if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) && 5925 cast<CXXMethodDecl>(Declaration)->isVirtual()) 5926 Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call); 5927 5928 if (Definition && Definition->isInvalidDecl()) { 5929 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); 5930 return false; 5931 } 5932 5933 // Can we evaluate this function call? 5934 if (Definition && Body && 5935 (Definition->isConstexpr() || (Info.CurrentCall->CanEvalMSConstexpr && 5936 Definition->hasAttr<MSConstexprAttr>()))) 5937 return true; 5938 5939 if (Info.getLangOpts().CPlusPlus11) { 5940 const FunctionDecl *DiagDecl = Definition ? Definition : Declaration; 5941 5942 // If this function is not constexpr because it is an inherited 5943 // non-constexpr constructor, diagnose that directly. 5944 auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl); 5945 if (CD && CD->isInheritingConstructor()) { 5946 auto *Inherited = CD->getInheritedConstructor().getConstructor(); 5947 if (!Inherited->isConstexpr()) 5948 DiagDecl = CD = Inherited; 5949 } 5950 5951 // FIXME: If DiagDecl is an implicitly-declared special member function 5952 // or an inheriting constructor, we should be much more explicit about why 5953 // it's not constexpr. 5954 if (CD && CD->isInheritingConstructor()) 5955 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1) 5956 << CD->getInheritedConstructor().getConstructor()->getParent(); 5957 else 5958 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1) 5959 << DiagDecl->isConstexpr() << (bool)CD << DiagDecl; 5960 Info.Note(DiagDecl->getLocation(), diag::note_declared_at); 5961 } else { 5962 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); 5963 } 5964 return false; 5965 } 5966 5967 namespace { 5968 struct CheckDynamicTypeHandler { 5969 AccessKinds AccessKind; 5970 typedef bool result_type; 5971 bool failed() { return false; } 5972 bool found(APValue &Subobj, QualType SubobjType) { return true; } 5973 bool found(APSInt &Value, QualType SubobjType) { return true; } 5974 bool found(APFloat &Value, QualType SubobjType) { return true; } 5975 }; 5976 } // end anonymous namespace 5977 5978 /// Check that we can access the notional vptr of an object / determine its 5979 /// dynamic type. 5980 static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This, 5981 AccessKinds AK, bool Polymorphic) { 5982 // We are not allowed to invoke a virtual function whose dynamic type 5983 // is constexpr-unknown, so stop early and let this fail later on if we 5984 // attempt to do so. 5985 // C++23 [expr.const]p5.6 5986 // an invocation of a virtual function ([class.virtual]) for an object whose 5987 // dynamic type is constexpr-unknown; 5988 if (This.allowConstexprUnknown()) 5989 return true; 5990 5991 if (This.Designator.Invalid) 5992 return false; 5993 5994 CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType()); 5995 5996 if (!Obj) 5997 return false; 5998 5999 if (!Obj.Value) { 6000 // The object is not usable in constant expressions, so we can't inspect 6001 // its value to see if it's in-lifetime or what the active union members 6002 // are. We can still check for a one-past-the-end lvalue. 6003 if (This.Designator.isOnePastTheEnd() || 6004 This.Designator.isMostDerivedAnUnsizedArray()) { 6005 Info.FFDiag(E, This.Designator.isOnePastTheEnd() 6006 ? diag::note_constexpr_access_past_end 6007 : diag::note_constexpr_access_unsized_array) 6008 << AK; 6009 return false; 6010 } else if (Polymorphic) { 6011 // Conservatively refuse to perform a polymorphic operation if we would 6012 // not be able to read a notional 'vptr' value. 6013 APValue Val; 6014 This.moveInto(Val); 6015 QualType StarThisType = 6016 Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx)); 6017 Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type) 6018 << AK << Val.getAsString(Info.Ctx, StarThisType); 6019 return false; 6020 } 6021 return true; 6022 } 6023 6024 CheckDynamicTypeHandler Handler{AK}; 6025 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler); 6026 } 6027 6028 /// Check that the pointee of the 'this' pointer in a member function call is 6029 /// either within its lifetime or in its period of construction or destruction. 6030 static bool 6031 checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E, 6032 const LValue &This, 6033 const CXXMethodDecl *NamedMember) { 6034 return checkDynamicType( 6035 Info, E, This, 6036 isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false); 6037 } 6038 6039 struct DynamicType { 6040 /// The dynamic class type of the object. 6041 const CXXRecordDecl *Type; 6042 /// The corresponding path length in the lvalue. 6043 unsigned PathLength; 6044 }; 6045 6046 static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator, 6047 unsigned PathLength) { 6048 assert(PathLength >= Designator.MostDerivedPathLength && PathLength <= 6049 Designator.Entries.size() && "invalid path length"); 6050 return (PathLength == Designator.MostDerivedPathLength) 6051 ? Designator.MostDerivedType->getAsCXXRecordDecl() 6052 : getAsBaseClass(Designator.Entries[PathLength - 1]); 6053 } 6054 6055 /// Determine the dynamic type of an object. 6056 static std::optional<DynamicType> ComputeDynamicType(EvalInfo &Info, 6057 const Expr *E, 6058 LValue &This, 6059 AccessKinds AK) { 6060 // If we don't have an lvalue denoting an object of class type, there is no 6061 // meaningful dynamic type. (We consider objects of non-class type to have no 6062 // dynamic type.) 6063 if (!checkDynamicType(Info, E, This, AK, 6064 (AK == AK_TypeId 6065 ? (E->getType()->isReferenceType() ? true : false) 6066 : true))) 6067 return std::nullopt; 6068 6069 if (This.Designator.Invalid) 6070 return std::nullopt; 6071 6072 // Refuse to compute a dynamic type in the presence of virtual bases. This 6073 // shouldn't happen other than in constant-folding situations, since literal 6074 // types can't have virtual bases. 6075 // 6076 // Note that consumers of DynamicType assume that the type has no virtual 6077 // bases, and will need modifications if this restriction is relaxed. 6078 const CXXRecordDecl *Class = 6079 This.Designator.MostDerivedType->getAsCXXRecordDecl(); 6080 if (!Class || Class->getNumVBases()) { 6081 Info.FFDiag(E); 6082 return std::nullopt; 6083 } 6084 6085 // FIXME: For very deep class hierarchies, it might be beneficial to use a 6086 // binary search here instead. But the overwhelmingly common case is that 6087 // we're not in the middle of a constructor, so it probably doesn't matter 6088 // in practice. 6089 ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries; 6090 for (unsigned PathLength = This.Designator.MostDerivedPathLength; 6091 PathLength <= Path.size(); ++PathLength) { 6092 switch (Info.isEvaluatingCtorDtor(This.getLValueBase(), 6093 Path.slice(0, PathLength))) { 6094 case ConstructionPhase::Bases: 6095 case ConstructionPhase::DestroyingBases: 6096 // We're constructing or destroying a base class. This is not the dynamic 6097 // type. 6098 break; 6099 6100 case ConstructionPhase::None: 6101 case ConstructionPhase::AfterBases: 6102 case ConstructionPhase::AfterFields: 6103 case ConstructionPhase::Destroying: 6104 // We've finished constructing the base classes and not yet started 6105 // destroying them again, so this is the dynamic type. 6106 return DynamicType{getBaseClassType(This.Designator, PathLength), 6107 PathLength}; 6108 } 6109 } 6110 6111 // CWG issue 1517: we're constructing a base class of the object described by 6112 // 'This', so that object has not yet begun its period of construction and 6113 // any polymorphic operation on it results in undefined behavior. 6114 Info.FFDiag(E); 6115 return std::nullopt; 6116 } 6117 6118 /// Perform virtual dispatch. 6119 static const CXXMethodDecl *HandleVirtualDispatch( 6120 EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found, 6121 llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) { 6122 std::optional<DynamicType> DynType = ComputeDynamicType( 6123 Info, E, This, 6124 isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall); 6125 if (!DynType) 6126 return nullptr; 6127 6128 // Find the final overrider. It must be declared in one of the classes on the 6129 // path from the dynamic type to the static type. 6130 // FIXME: If we ever allow literal types to have virtual base classes, that 6131 // won't be true. 6132 const CXXMethodDecl *Callee = Found; 6133 unsigned PathLength = DynType->PathLength; 6134 for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) { 6135 const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength); 6136 const CXXMethodDecl *Overrider = 6137 Found->getCorrespondingMethodDeclaredInClass(Class, false); 6138 if (Overrider) { 6139 Callee = Overrider; 6140 break; 6141 } 6142 } 6143 6144 // C++2a [class.abstract]p6: 6145 // the effect of making a virtual call to a pure virtual function [...] is 6146 // undefined 6147 if (Callee->isPureVirtual()) { 6148 Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee; 6149 Info.Note(Callee->getLocation(), diag::note_declared_at); 6150 return nullptr; 6151 } 6152 6153 // If necessary, walk the rest of the path to determine the sequence of 6154 // covariant adjustment steps to apply. 6155 if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(), 6156 Found->getReturnType())) { 6157 CovariantAdjustmentPath.push_back(Callee->getReturnType()); 6158 for (unsigned CovariantPathLength = PathLength + 1; 6159 CovariantPathLength != This.Designator.Entries.size(); 6160 ++CovariantPathLength) { 6161 const CXXRecordDecl *NextClass = 6162 getBaseClassType(This.Designator, CovariantPathLength); 6163 const CXXMethodDecl *Next = 6164 Found->getCorrespondingMethodDeclaredInClass(NextClass, false); 6165 if (Next && !Info.Ctx.hasSameUnqualifiedType( 6166 Next->getReturnType(), CovariantAdjustmentPath.back())) 6167 CovariantAdjustmentPath.push_back(Next->getReturnType()); 6168 } 6169 if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(), 6170 CovariantAdjustmentPath.back())) 6171 CovariantAdjustmentPath.push_back(Found->getReturnType()); 6172 } 6173 6174 // Perform 'this' adjustment. 6175 if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength)) 6176 return nullptr; 6177 6178 return Callee; 6179 } 6180 6181 /// Perform the adjustment from a value returned by a virtual function to 6182 /// a value of the statically expected type, which may be a pointer or 6183 /// reference to a base class of the returned type. 6184 static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E, 6185 APValue &Result, 6186 ArrayRef<QualType> Path) { 6187 assert(Result.isLValue() && 6188 "unexpected kind of APValue for covariant return"); 6189 if (Result.isNullPointer()) 6190 return true; 6191 6192 LValue LVal; 6193 LVal.setFrom(Info.Ctx, Result); 6194 6195 const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl(); 6196 for (unsigned I = 1; I != Path.size(); ++I) { 6197 const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl(); 6198 assert(OldClass && NewClass && "unexpected kind of covariant return"); 6199 if (OldClass != NewClass && 6200 !CastToBaseClass(Info, E, LVal, OldClass, NewClass)) 6201 return false; 6202 OldClass = NewClass; 6203 } 6204 6205 LVal.moveInto(Result); 6206 return true; 6207 } 6208 6209 /// Determine whether \p Base, which is known to be a direct base class of 6210 /// \p Derived, is a public base class. 6211 static bool isBaseClassPublic(const CXXRecordDecl *Derived, 6212 const CXXRecordDecl *Base) { 6213 for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) { 6214 auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl(); 6215 if (BaseClass && declaresSameEntity(BaseClass, Base)) 6216 return BaseSpec.getAccessSpecifier() == AS_public; 6217 } 6218 llvm_unreachable("Base is not a direct base of Derived"); 6219 } 6220 6221 /// Apply the given dynamic cast operation on the provided lvalue. 6222 /// 6223 /// This implements the hard case of dynamic_cast, requiring a "runtime check" 6224 /// to find a suitable target subobject. 6225 static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E, 6226 LValue &Ptr) { 6227 // We can't do anything with a non-symbolic pointer value. 6228 SubobjectDesignator &D = Ptr.Designator; 6229 if (D.Invalid) 6230 return false; 6231 6232 // C++ [expr.dynamic.cast]p6: 6233 // If v is a null pointer value, the result is a null pointer value. 6234 if (Ptr.isNullPointer() && !E->isGLValue()) 6235 return true; 6236 6237 // For all the other cases, we need the pointer to point to an object within 6238 // its lifetime / period of construction / destruction, and we need to know 6239 // its dynamic type. 6240 std::optional<DynamicType> DynType = 6241 ComputeDynamicType(Info, E, Ptr, AK_DynamicCast); 6242 if (!DynType) 6243 return false; 6244 6245 // C++ [expr.dynamic.cast]p7: 6246 // If T is "pointer to cv void", then the result is a pointer to the most 6247 // derived object 6248 if (E->getType()->isVoidPointerType()) 6249 return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength); 6250 6251 const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl(); 6252 assert(C && "dynamic_cast target is not void pointer nor class"); 6253 CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C)); 6254 6255 auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) { 6256 // C++ [expr.dynamic.cast]p9: 6257 if (!E->isGLValue()) { 6258 // The value of a failed cast to pointer type is the null pointer value 6259 // of the required result type. 6260 Ptr.setNull(Info.Ctx, E->getType()); 6261 return true; 6262 } 6263 6264 // A failed cast to reference type throws [...] std::bad_cast. 6265 unsigned DiagKind; 6266 if (!Paths && (declaresSameEntity(DynType->Type, C) || 6267 DynType->Type->isDerivedFrom(C))) 6268 DiagKind = 0; 6269 else if (!Paths || Paths->begin() == Paths->end()) 6270 DiagKind = 1; 6271 else if (Paths->isAmbiguous(CQT)) 6272 DiagKind = 2; 6273 else { 6274 assert(Paths->front().Access != AS_public && "why did the cast fail?"); 6275 DiagKind = 3; 6276 } 6277 Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed) 6278 << DiagKind << Ptr.Designator.getType(Info.Ctx) 6279 << Info.Ctx.getRecordType(DynType->Type) 6280 << E->getType().getUnqualifiedType(); 6281 return false; 6282 }; 6283 6284 // Runtime check, phase 1: 6285 // Walk from the base subobject towards the derived object looking for the 6286 // target type. 6287 for (int PathLength = Ptr.Designator.Entries.size(); 6288 PathLength >= (int)DynType->PathLength; --PathLength) { 6289 const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength); 6290 if (declaresSameEntity(Class, C)) 6291 return CastToDerivedClass(Info, E, Ptr, Class, PathLength); 6292 // We can only walk across public inheritance edges. 6293 if (PathLength > (int)DynType->PathLength && 6294 !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1), 6295 Class)) 6296 return RuntimeCheckFailed(nullptr); 6297 } 6298 6299 // Runtime check, phase 2: 6300 // Search the dynamic type for an unambiguous public base of type C. 6301 CXXBasePaths Paths(/*FindAmbiguities=*/true, 6302 /*RecordPaths=*/true, /*DetectVirtual=*/false); 6303 if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) && 6304 Paths.front().Access == AS_public) { 6305 // Downcast to the dynamic type... 6306 if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength)) 6307 return false; 6308 // ... then upcast to the chosen base class subobject. 6309 for (CXXBasePathElement &Elem : Paths.front()) 6310 if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base)) 6311 return false; 6312 return true; 6313 } 6314 6315 // Otherwise, the runtime check fails. 6316 return RuntimeCheckFailed(&Paths); 6317 } 6318 6319 namespace { 6320 struct StartLifetimeOfUnionMemberHandler { 6321 EvalInfo &Info; 6322 const Expr *LHSExpr; 6323 const FieldDecl *Field; 6324 bool DuringInit; 6325 bool Failed = false; 6326 static const AccessKinds AccessKind = AK_Assign; 6327 6328 typedef bool result_type; 6329 bool failed() { return Failed; } 6330 bool found(APValue &Subobj, QualType SubobjType) { 6331 // We are supposed to perform no initialization but begin the lifetime of 6332 // the object. We interpret that as meaning to do what default 6333 // initialization of the object would do if all constructors involved were 6334 // trivial: 6335 // * All base, non-variant member, and array element subobjects' lifetimes 6336 // begin 6337 // * No variant members' lifetimes begin 6338 // * All scalar subobjects whose lifetimes begin have indeterminate values 6339 assert(SubobjType->isUnionType()); 6340 if (declaresSameEntity(Subobj.getUnionField(), Field)) { 6341 // This union member is already active. If it's also in-lifetime, there's 6342 // nothing to do. 6343 if (Subobj.getUnionValue().hasValue()) 6344 return true; 6345 } else if (DuringInit) { 6346 // We're currently in the process of initializing a different union 6347 // member. If we carried on, that initialization would attempt to 6348 // store to an inactive union member, resulting in undefined behavior. 6349 Info.FFDiag(LHSExpr, 6350 diag::note_constexpr_union_member_change_during_init); 6351 return false; 6352 } 6353 APValue Result; 6354 Failed = !handleDefaultInitValue(Field->getType(), Result); 6355 Subobj.setUnion(Field, Result); 6356 return true; 6357 } 6358 bool found(APSInt &Value, QualType SubobjType) { 6359 llvm_unreachable("wrong value kind for union object"); 6360 } 6361 bool found(APFloat &Value, QualType SubobjType) { 6362 llvm_unreachable("wrong value kind for union object"); 6363 } 6364 }; 6365 } // end anonymous namespace 6366 6367 const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind; 6368 6369 /// Handle a builtin simple-assignment or a call to a trivial assignment 6370 /// operator whose left-hand side might involve a union member access. If it 6371 /// does, implicitly start the lifetime of any accessed union elements per 6372 /// C++20 [class.union]5. 6373 static bool MaybeHandleUnionActiveMemberChange(EvalInfo &Info, 6374 const Expr *LHSExpr, 6375 const LValue &LHS) { 6376 if (LHS.InvalidBase || LHS.Designator.Invalid) 6377 return false; 6378 6379 llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths; 6380 // C++ [class.union]p5: 6381 // define the set S(E) of subexpressions of E as follows: 6382 unsigned PathLength = LHS.Designator.Entries.size(); 6383 for (const Expr *E = LHSExpr; E != nullptr;) { 6384 // -- If E is of the form A.B, S(E) contains the elements of S(A)... 6385 if (auto *ME = dyn_cast<MemberExpr>(E)) { 6386 auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 6387 // Note that we can't implicitly start the lifetime of a reference, 6388 // so we don't need to proceed any further if we reach one. 6389 if (!FD || FD->getType()->isReferenceType()) 6390 break; 6391 6392 // ... and also contains A.B if B names a union member ... 6393 if (FD->getParent()->isUnion()) { 6394 // ... of a non-class, non-array type, or of a class type with a 6395 // trivial default constructor that is not deleted, or an array of 6396 // such types. 6397 auto *RD = 6398 FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 6399 if (!RD || RD->hasTrivialDefaultConstructor()) 6400 UnionPathLengths.push_back({PathLength - 1, FD}); 6401 } 6402 6403 E = ME->getBase(); 6404 --PathLength; 6405 assert(declaresSameEntity(FD, 6406 LHS.Designator.Entries[PathLength] 6407 .getAsBaseOrMember().getPointer())); 6408 6409 // -- If E is of the form A[B] and is interpreted as a built-in array 6410 // subscripting operator, S(E) is [S(the array operand, if any)]. 6411 } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) { 6412 // Step over an ArrayToPointerDecay implicit cast. 6413 auto *Base = ASE->getBase()->IgnoreImplicit(); 6414 if (!Base->getType()->isArrayType()) 6415 break; 6416 6417 E = Base; 6418 --PathLength; 6419 6420 } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) { 6421 // Step over a derived-to-base conversion. 6422 E = ICE->getSubExpr(); 6423 if (ICE->getCastKind() == CK_NoOp) 6424 continue; 6425 if (ICE->getCastKind() != CK_DerivedToBase && 6426 ICE->getCastKind() != CK_UncheckedDerivedToBase) 6427 break; 6428 // Walk path backwards as we walk up from the base to the derived class. 6429 for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) { 6430 if (Elt->isVirtual()) { 6431 // A class with virtual base classes never has a trivial default 6432 // constructor, so S(E) is empty in this case. 6433 E = nullptr; 6434 break; 6435 } 6436 6437 --PathLength; 6438 assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(), 6439 LHS.Designator.Entries[PathLength] 6440 .getAsBaseOrMember().getPointer())); 6441 } 6442 6443 // -- Otherwise, S(E) is empty. 6444 } else { 6445 break; 6446 } 6447 } 6448 6449 // Common case: no unions' lifetimes are started. 6450 if (UnionPathLengths.empty()) 6451 return true; 6452 6453 // if modification of X [would access an inactive union member], an object 6454 // of the type of X is implicitly created 6455 CompleteObject Obj = 6456 findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType()); 6457 if (!Obj) 6458 return false; 6459 for (std::pair<unsigned, const FieldDecl *> LengthAndField : 6460 llvm::reverse(UnionPathLengths)) { 6461 // Form a designator for the union object. 6462 SubobjectDesignator D = LHS.Designator; 6463 D.truncate(Info.Ctx, LHS.Base, LengthAndField.first); 6464 6465 bool DuringInit = Info.isEvaluatingCtorDtor(LHS.Base, D.Entries) == 6466 ConstructionPhase::AfterBases; 6467 StartLifetimeOfUnionMemberHandler StartLifetime{ 6468 Info, LHSExpr, LengthAndField.second, DuringInit}; 6469 if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime)) 6470 return false; 6471 } 6472 6473 return true; 6474 } 6475 6476 static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg, 6477 CallRef Call, EvalInfo &Info, 6478 bool NonNull = false) { 6479 LValue LV; 6480 // Create the parameter slot and register its destruction. For a vararg 6481 // argument, create a temporary. 6482 // FIXME: For calling conventions that destroy parameters in the callee, 6483 // should we consider performing destruction when the function returns 6484 // instead? 6485 APValue &V = PVD ? Info.CurrentCall->createParam(Call, PVD, LV) 6486 : Info.CurrentCall->createTemporary(Arg, Arg->getType(), 6487 ScopeKind::Call, LV); 6488 if (!EvaluateInPlace(V, Info, LV, Arg)) 6489 return false; 6490 6491 // Passing a null pointer to an __attribute__((nonnull)) parameter results in 6492 // undefined behavior, so is non-constant. 6493 if (NonNull && V.isLValue() && V.isNullPointer()) { 6494 Info.CCEDiag(Arg, diag::note_non_null_attribute_failed); 6495 return false; 6496 } 6497 6498 return true; 6499 } 6500 6501 /// Evaluate the arguments to a function call. 6502 static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call, 6503 EvalInfo &Info, const FunctionDecl *Callee, 6504 bool RightToLeft = false) { 6505 bool Success = true; 6506 llvm::SmallBitVector ForbiddenNullArgs; 6507 if (Callee->hasAttr<NonNullAttr>()) { 6508 ForbiddenNullArgs.resize(Args.size()); 6509 for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) { 6510 if (!Attr->args_size()) { 6511 ForbiddenNullArgs.set(); 6512 break; 6513 } else 6514 for (auto Idx : Attr->args()) { 6515 unsigned ASTIdx = Idx.getASTIndex(); 6516 if (ASTIdx >= Args.size()) 6517 continue; 6518 ForbiddenNullArgs[ASTIdx] = true; 6519 } 6520 } 6521 } 6522 for (unsigned I = 0; I < Args.size(); I++) { 6523 unsigned Idx = RightToLeft ? Args.size() - I - 1 : I; 6524 const ParmVarDecl *PVD = 6525 Idx < Callee->getNumParams() ? Callee->getParamDecl(Idx) : nullptr; 6526 bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx]; 6527 if (!EvaluateCallArg(PVD, Args[Idx], Call, Info, NonNull)) { 6528 // If we're checking for a potential constant expression, evaluate all 6529 // initializers even if some of them fail. 6530 if (!Info.noteFailure()) 6531 return false; 6532 Success = false; 6533 } 6534 } 6535 return Success; 6536 } 6537 6538 /// Perform a trivial copy from Param, which is the parameter of a copy or move 6539 /// constructor or assignment operator. 6540 static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param, 6541 const Expr *E, APValue &Result, 6542 bool CopyObjectRepresentation) { 6543 // Find the reference argument. 6544 CallStackFrame *Frame = Info.CurrentCall; 6545 APValue *RefValue = Info.getParamSlot(Frame->Arguments, Param); 6546 if (!RefValue) { 6547 Info.FFDiag(E); 6548 return false; 6549 } 6550 6551 // Copy out the contents of the RHS object. 6552 LValue RefLValue; 6553 RefLValue.setFrom(Info.Ctx, *RefValue); 6554 return handleLValueToRValueConversion( 6555 Info, E, Param->getType().getNonReferenceType(), RefLValue, Result, 6556 CopyObjectRepresentation); 6557 } 6558 6559 /// Evaluate a function call. 6560 static bool HandleFunctionCall(SourceLocation CallLoc, 6561 const FunctionDecl *Callee, const LValue *This, 6562 const Expr *E, ArrayRef<const Expr *> Args, 6563 CallRef Call, const Stmt *Body, EvalInfo &Info, 6564 APValue &Result, const LValue *ResultSlot) { 6565 if (!Info.CheckCallLimit(CallLoc)) 6566 return false; 6567 6568 CallStackFrame Frame(Info, E->getSourceRange(), Callee, This, E, Call); 6569 6570 // For a trivial copy or move assignment, perform an APValue copy. This is 6571 // essential for unions, where the operations performed by the assignment 6572 // operator cannot be represented as statements. 6573 // 6574 // Skip this for non-union classes with no fields; in that case, the defaulted 6575 // copy/move does not actually read the object. 6576 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee); 6577 if (MD && MD->isDefaulted() && 6578 (MD->getParent()->isUnion() || 6579 (MD->isTrivial() && 6580 isReadByLvalueToRvalueConversion(MD->getParent())))) { 6581 assert(This && 6582 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())); 6583 APValue RHSValue; 6584 if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue, 6585 MD->getParent()->isUnion())) 6586 return false; 6587 if (!handleAssignment(Info, Args[0], *This, MD->getThisType(), 6588 RHSValue)) 6589 return false; 6590 This->moveInto(Result); 6591 return true; 6592 } else if (MD && isLambdaCallOperator(MD)) { 6593 // We're in a lambda; determine the lambda capture field maps unless we're 6594 // just constexpr checking a lambda's call operator. constexpr checking is 6595 // done before the captures have been added to the closure object (unless 6596 // we're inferring constexpr-ness), so we don't have access to them in this 6597 // case. But since we don't need the captures to constexpr check, we can 6598 // just ignore them. 6599 if (!Info.checkingPotentialConstantExpression()) 6600 MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields, 6601 Frame.LambdaThisCaptureField); 6602 } 6603 6604 StmtResult Ret = {Result, ResultSlot}; 6605 EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body); 6606 if (ESR == ESR_Succeeded) { 6607 if (Callee->getReturnType()->isVoidType()) 6608 return true; 6609 Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return); 6610 } 6611 return ESR == ESR_Returned; 6612 } 6613 6614 /// Evaluate a constructor call. 6615 static bool HandleConstructorCall(const Expr *E, const LValue &This, 6616 CallRef Call, 6617 const CXXConstructorDecl *Definition, 6618 EvalInfo &Info, APValue &Result) { 6619 SourceLocation CallLoc = E->getExprLoc(); 6620 if (!Info.CheckCallLimit(CallLoc)) 6621 return false; 6622 6623 const CXXRecordDecl *RD = Definition->getParent(); 6624 if (RD->getNumVBases()) { 6625 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD; 6626 return false; 6627 } 6628 6629 EvalInfo::EvaluatingConstructorRAII EvalObj( 6630 Info, 6631 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}, 6632 RD->getNumBases()); 6633 CallStackFrame Frame(Info, E->getSourceRange(), Definition, &This, E, Call); 6634 6635 // FIXME: Creating an APValue just to hold a nonexistent return value is 6636 // wasteful. 6637 APValue RetVal; 6638 StmtResult Ret = {RetVal, nullptr}; 6639 6640 // If it's a delegating constructor, delegate. 6641 if (Definition->isDelegatingConstructor()) { 6642 CXXConstructorDecl::init_const_iterator I = Definition->init_begin(); 6643 if ((*I)->getInit()->isValueDependent()) { 6644 if (!EvaluateDependentExpr((*I)->getInit(), Info)) 6645 return false; 6646 } else { 6647 FullExpressionRAII InitScope(Info); 6648 if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) || 6649 !InitScope.destroy()) 6650 return false; 6651 } 6652 return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed; 6653 } 6654 6655 // For a trivial copy or move constructor, perform an APValue copy. This is 6656 // essential for unions (or classes with anonymous union members), where the 6657 // operations performed by the constructor cannot be represented by 6658 // ctor-initializers. 6659 // 6660 // Skip this for empty non-union classes; we should not perform an 6661 // lvalue-to-rvalue conversion on them because their copy constructor does not 6662 // actually read them. 6663 if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() && 6664 (Definition->getParent()->isUnion() || 6665 (Definition->isTrivial() && 6666 isReadByLvalueToRvalueConversion(Definition->getParent())))) { 6667 return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result, 6668 Definition->getParent()->isUnion()); 6669 } 6670 6671 // Reserve space for the struct members. 6672 if (!Result.hasValue()) { 6673 if (!RD->isUnion()) 6674 Result = APValue(APValue::UninitStruct(), RD->getNumBases(), 6675 std::distance(RD->field_begin(), RD->field_end())); 6676 else 6677 // A union starts with no active member. 6678 Result = APValue((const FieldDecl*)nullptr); 6679 } 6680 6681 if (RD->isInvalidDecl()) return false; 6682 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 6683 6684 // A scope for temporaries lifetime-extended by reference members. 6685 BlockScopeRAII LifetimeExtendedScope(Info); 6686 6687 bool Success = true; 6688 unsigned BasesSeen = 0; 6689 #ifndef NDEBUG 6690 CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin(); 6691 #endif 6692 CXXRecordDecl::field_iterator FieldIt = RD->field_begin(); 6693 auto SkipToField = [&](FieldDecl *FD, bool Indirect) { 6694 // We might be initializing the same field again if this is an indirect 6695 // field initialization. 6696 if (FieldIt == RD->field_end() || 6697 FieldIt->getFieldIndex() > FD->getFieldIndex()) { 6698 assert(Indirect && "fields out of order?"); 6699 return; 6700 } 6701 6702 // Default-initialize any fields with no explicit initializer. 6703 for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) { 6704 assert(FieldIt != RD->field_end() && "missing field?"); 6705 if (!FieldIt->isUnnamedBitField()) 6706 Success &= handleDefaultInitValue( 6707 FieldIt->getType(), 6708 Result.getStructField(FieldIt->getFieldIndex())); 6709 } 6710 ++FieldIt; 6711 }; 6712 for (const auto *I : Definition->inits()) { 6713 LValue Subobject = This; 6714 LValue SubobjectParent = This; 6715 APValue *Value = &Result; 6716 6717 // Determine the subobject to initialize. 6718 FieldDecl *FD = nullptr; 6719 if (I->isBaseInitializer()) { 6720 QualType BaseType(I->getBaseClass(), 0); 6721 #ifndef NDEBUG 6722 // Non-virtual base classes are initialized in the order in the class 6723 // definition. We have already checked for virtual base classes. 6724 assert(!BaseIt->isVirtual() && "virtual base for literal type"); 6725 assert(Info.Ctx.hasSameUnqualifiedType(BaseIt->getType(), BaseType) && 6726 "base class initializers not in expected order"); 6727 ++BaseIt; 6728 #endif 6729 if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD, 6730 BaseType->getAsCXXRecordDecl(), &Layout)) 6731 return false; 6732 Value = &Result.getStructBase(BasesSeen++); 6733 } else if ((FD = I->getMember())) { 6734 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout)) 6735 return false; 6736 if (RD->isUnion()) { 6737 Result = APValue(FD); 6738 Value = &Result.getUnionValue(); 6739 } else { 6740 SkipToField(FD, false); 6741 Value = &Result.getStructField(FD->getFieldIndex()); 6742 } 6743 } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) { 6744 // Walk the indirect field decl's chain to find the object to initialize, 6745 // and make sure we've initialized every step along it. 6746 auto IndirectFieldChain = IFD->chain(); 6747 for (auto *C : IndirectFieldChain) { 6748 FD = cast<FieldDecl>(C); 6749 CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent()); 6750 // Switch the union field if it differs. This happens if we had 6751 // preceding zero-initialization, and we're now initializing a union 6752 // subobject other than the first. 6753 // FIXME: In this case, the values of the other subobjects are 6754 // specified, since zero-initialization sets all padding bits to zero. 6755 if (!Value->hasValue() || 6756 (Value->isUnion() && Value->getUnionField() != FD)) { 6757 if (CD->isUnion()) 6758 *Value = APValue(FD); 6759 else 6760 // FIXME: This immediately starts the lifetime of all members of 6761 // an anonymous struct. It would be preferable to strictly start 6762 // member lifetime in initialization order. 6763 Success &= 6764 handleDefaultInitValue(Info.Ctx.getRecordType(CD), *Value); 6765 } 6766 // Store Subobject as its parent before updating it for the last element 6767 // in the chain. 6768 if (C == IndirectFieldChain.back()) 6769 SubobjectParent = Subobject; 6770 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD)) 6771 return false; 6772 if (CD->isUnion()) 6773 Value = &Value->getUnionValue(); 6774 else { 6775 if (C == IndirectFieldChain.front() && !RD->isUnion()) 6776 SkipToField(FD, true); 6777 Value = &Value->getStructField(FD->getFieldIndex()); 6778 } 6779 } 6780 } else { 6781 llvm_unreachable("unknown base initializer kind"); 6782 } 6783 6784 // Need to override This for implicit field initializers as in this case 6785 // This refers to innermost anonymous struct/union containing initializer, 6786 // not to currently constructed class. 6787 const Expr *Init = I->getInit(); 6788 if (Init->isValueDependent()) { 6789 if (!EvaluateDependentExpr(Init, Info)) 6790 return false; 6791 } else { 6792 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent, 6793 isa<CXXDefaultInitExpr>(Init)); 6794 FullExpressionRAII InitScope(Info); 6795 if (!EvaluateInPlace(*Value, Info, Subobject, Init) || 6796 (FD && FD->isBitField() && 6797 !truncateBitfieldValue(Info, Init, *Value, FD))) { 6798 // If we're checking for a potential constant expression, evaluate all 6799 // initializers even if some of them fail. 6800 if (!Info.noteFailure()) 6801 return false; 6802 Success = false; 6803 } 6804 } 6805 6806 // This is the point at which the dynamic type of the object becomes this 6807 // class type. 6808 if (I->isBaseInitializer() && BasesSeen == RD->getNumBases()) 6809 EvalObj.finishedConstructingBases(); 6810 } 6811 6812 // Default-initialize any remaining fields. 6813 if (!RD->isUnion()) { 6814 for (; FieldIt != RD->field_end(); ++FieldIt) { 6815 if (!FieldIt->isUnnamedBitField()) 6816 Success &= handleDefaultInitValue( 6817 FieldIt->getType(), 6818 Result.getStructField(FieldIt->getFieldIndex())); 6819 } 6820 } 6821 6822 EvalObj.finishedConstructingFields(); 6823 6824 return Success && 6825 EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed && 6826 LifetimeExtendedScope.destroy(); 6827 } 6828 6829 static bool HandleConstructorCall(const Expr *E, const LValue &This, 6830 ArrayRef<const Expr*> Args, 6831 const CXXConstructorDecl *Definition, 6832 EvalInfo &Info, APValue &Result) { 6833 CallScopeRAII CallScope(Info); 6834 CallRef Call = Info.CurrentCall->createCall(Definition); 6835 if (!EvaluateArgs(Args, Call, Info, Definition)) 6836 return false; 6837 6838 return HandleConstructorCall(E, This, Call, Definition, Info, Result) && 6839 CallScope.destroy(); 6840 } 6841 6842 static bool HandleDestructionImpl(EvalInfo &Info, SourceRange CallRange, 6843 const LValue &This, APValue &Value, 6844 QualType T) { 6845 // Objects can only be destroyed while they're within their lifetimes. 6846 // FIXME: We have no representation for whether an object of type nullptr_t 6847 // is in its lifetime; it usually doesn't matter. Perhaps we should model it 6848 // as indeterminate instead? 6849 if (Value.isAbsent() && !T->isNullPtrType()) { 6850 APValue Printable; 6851 This.moveInto(Printable); 6852 Info.FFDiag(CallRange.getBegin(), 6853 diag::note_constexpr_destroy_out_of_lifetime) 6854 << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T)); 6855 return false; 6856 } 6857 6858 // Invent an expression for location purposes. 6859 // FIXME: We shouldn't need to do this. 6860 OpaqueValueExpr LocE(CallRange.getBegin(), Info.Ctx.IntTy, VK_PRValue); 6861 6862 // For arrays, destroy elements right-to-left. 6863 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) { 6864 uint64_t Size = CAT->getZExtSize(); 6865 QualType ElemT = CAT->getElementType(); 6866 6867 if (!CheckArraySize(Info, CAT, CallRange.getBegin())) 6868 return false; 6869 6870 LValue ElemLV = This; 6871 ElemLV.addArray(Info, &LocE, CAT); 6872 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size)) 6873 return false; 6874 6875 // Ensure that we have actual array elements available to destroy; the 6876 // destructors might mutate the value, so we can't run them on the array 6877 // filler. 6878 if (Size && Size > Value.getArrayInitializedElts()) 6879 expandArray(Value, Value.getArraySize() - 1); 6880 6881 // The size of the array might have been reduced by 6882 // a placement new. 6883 for (Size = Value.getArraySize(); Size != 0; --Size) { 6884 APValue &Elem = Value.getArrayInitializedElt(Size - 1); 6885 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) || 6886 !HandleDestructionImpl(Info, CallRange, ElemLV, Elem, ElemT)) 6887 return false; 6888 } 6889 6890 // End the lifetime of this array now. 6891 Value = APValue(); 6892 return true; 6893 } 6894 6895 const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 6896 if (!RD) { 6897 if (T.isDestructedType()) { 6898 Info.FFDiag(CallRange.getBegin(), 6899 diag::note_constexpr_unsupported_destruction) 6900 << T; 6901 return false; 6902 } 6903 6904 Value = APValue(); 6905 return true; 6906 } 6907 6908 if (RD->getNumVBases()) { 6909 Info.FFDiag(CallRange.getBegin(), diag::note_constexpr_virtual_base) << RD; 6910 return false; 6911 } 6912 6913 const CXXDestructorDecl *DD = RD->getDestructor(); 6914 if (!DD && !RD->hasTrivialDestructor()) { 6915 Info.FFDiag(CallRange.getBegin()); 6916 return false; 6917 } 6918 6919 if (!DD || DD->isTrivial() || 6920 (RD->isAnonymousStructOrUnion() && RD->isUnion())) { 6921 // A trivial destructor just ends the lifetime of the object. Check for 6922 // this case before checking for a body, because we might not bother 6923 // building a body for a trivial destructor. Note that it doesn't matter 6924 // whether the destructor is constexpr in this case; all trivial 6925 // destructors are constexpr. 6926 // 6927 // If an anonymous union would be destroyed, some enclosing destructor must 6928 // have been explicitly defined, and the anonymous union destruction should 6929 // have no effect. 6930 Value = APValue(); 6931 return true; 6932 } 6933 6934 if (!Info.CheckCallLimit(CallRange.getBegin())) 6935 return false; 6936 6937 const FunctionDecl *Definition = nullptr; 6938 const Stmt *Body = DD->getBody(Definition); 6939 6940 if (!CheckConstexprFunction(Info, CallRange.getBegin(), DD, Definition, Body)) 6941 return false; 6942 6943 CallStackFrame Frame(Info, CallRange, Definition, &This, /*CallExpr=*/nullptr, 6944 CallRef()); 6945 6946 // We're now in the period of destruction of this object. 6947 unsigned BasesLeft = RD->getNumBases(); 6948 EvalInfo::EvaluatingDestructorRAII EvalObj( 6949 Info, 6950 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}); 6951 if (!EvalObj.DidInsert) { 6952 // C++2a [class.dtor]p19: 6953 // the behavior is undefined if the destructor is invoked for an object 6954 // whose lifetime has ended 6955 // (Note that formally the lifetime ends when the period of destruction 6956 // begins, even though certain uses of the object remain valid until the 6957 // period of destruction ends.) 6958 Info.FFDiag(CallRange.getBegin(), diag::note_constexpr_double_destroy); 6959 return false; 6960 } 6961 6962 // FIXME: Creating an APValue just to hold a nonexistent return value is 6963 // wasteful. 6964 APValue RetVal; 6965 StmtResult Ret = {RetVal, nullptr}; 6966 if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed) 6967 return false; 6968 6969 // A union destructor does not implicitly destroy its members. 6970 if (RD->isUnion()) 6971 return true; 6972 6973 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 6974 6975 // We don't have a good way to iterate fields in reverse, so collect all the 6976 // fields first and then walk them backwards. 6977 SmallVector<FieldDecl*, 16> Fields(RD->fields()); 6978 for (const FieldDecl *FD : llvm::reverse(Fields)) { 6979 if (FD->isUnnamedBitField()) 6980 continue; 6981 6982 LValue Subobject = This; 6983 if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout)) 6984 return false; 6985 6986 APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex()); 6987 if (!HandleDestructionImpl(Info, CallRange, Subobject, *SubobjectValue, 6988 FD->getType())) 6989 return false; 6990 } 6991 6992 if (BasesLeft != 0) 6993 EvalObj.startedDestroyingBases(); 6994 6995 // Destroy base classes in reverse order. 6996 for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) { 6997 --BasesLeft; 6998 6999 QualType BaseType = Base.getType(); 7000 LValue Subobject = This; 7001 if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD, 7002 BaseType->getAsCXXRecordDecl(), &Layout)) 7003 return false; 7004 7005 APValue *SubobjectValue = &Value.getStructBase(BasesLeft); 7006 if (!HandleDestructionImpl(Info, CallRange, Subobject, *SubobjectValue, 7007 BaseType)) 7008 return false; 7009 } 7010 assert(BasesLeft == 0 && "NumBases was wrong?"); 7011 7012 // The period of destruction ends now. The object is gone. 7013 Value = APValue(); 7014 return true; 7015 } 7016 7017 namespace { 7018 struct DestroyObjectHandler { 7019 EvalInfo &Info; 7020 const Expr *E; 7021 const LValue &This; 7022 const AccessKinds AccessKind; 7023 7024 typedef bool result_type; 7025 bool failed() { return false; } 7026 bool found(APValue &Subobj, QualType SubobjType) { 7027 return HandleDestructionImpl(Info, E->getSourceRange(), This, Subobj, 7028 SubobjType); 7029 } 7030 bool found(APSInt &Value, QualType SubobjType) { 7031 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem); 7032 return false; 7033 } 7034 bool found(APFloat &Value, QualType SubobjType) { 7035 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem); 7036 return false; 7037 } 7038 }; 7039 } 7040 7041 /// Perform a destructor or pseudo-destructor call on the given object, which 7042 /// might in general not be a complete object. 7043 static bool HandleDestruction(EvalInfo &Info, const Expr *E, 7044 const LValue &This, QualType ThisType) { 7045 CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType); 7046 DestroyObjectHandler Handler = {Info, E, This, AK_Destroy}; 7047 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler); 7048 } 7049 7050 /// Destroy and end the lifetime of the given complete object. 7051 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc, 7052 APValue::LValueBase LVBase, APValue &Value, 7053 QualType T) { 7054 // If we've had an unmodeled side-effect, we can't rely on mutable state 7055 // (such as the object we're about to destroy) being correct. 7056 if (Info.EvalStatus.HasSideEffects) 7057 return false; 7058 7059 LValue LV; 7060 LV.set({LVBase}); 7061 return HandleDestructionImpl(Info, Loc, LV, Value, T); 7062 } 7063 7064 /// Perform a call to 'operator new' or to `__builtin_operator_new'. 7065 static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E, 7066 LValue &Result) { 7067 if (Info.checkingPotentialConstantExpression() || 7068 Info.SpeculativeEvaluationDepth) 7069 return false; 7070 7071 // This is permitted only within a call to std::allocator<T>::allocate. 7072 auto Caller = Info.getStdAllocatorCaller("allocate"); 7073 if (!Caller) { 7074 Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20 7075 ? diag::note_constexpr_new_untyped 7076 : diag::note_constexpr_new); 7077 return false; 7078 } 7079 7080 QualType ElemType = Caller.ElemType; 7081 if (ElemType->isIncompleteType() || ElemType->isFunctionType()) { 7082 Info.FFDiag(E->getExprLoc(), 7083 diag::note_constexpr_new_not_complete_object_type) 7084 << (ElemType->isIncompleteType() ? 0 : 1) << ElemType; 7085 return false; 7086 } 7087 7088 APSInt ByteSize; 7089 if (!EvaluateInteger(E->getArg(0), ByteSize, Info)) 7090 return false; 7091 bool IsNothrow = false; 7092 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) { 7093 EvaluateIgnoredValue(Info, E->getArg(I)); 7094 IsNothrow |= E->getType()->isNothrowT(); 7095 } 7096 7097 CharUnits ElemSize; 7098 if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize)) 7099 return false; 7100 APInt Size, Remainder; 7101 APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity()); 7102 APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder); 7103 if (Remainder != 0) { 7104 // This likely indicates a bug in the implementation of 'std::allocator'. 7105 Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size) 7106 << ByteSize << APSInt(ElemSizeAP, true) << ElemType; 7107 return false; 7108 } 7109 7110 if (!Info.CheckArraySize(E->getBeginLoc(), ByteSize.getActiveBits(), 7111 Size.getZExtValue(), /*Diag=*/!IsNothrow)) { 7112 if (IsNothrow) { 7113 Result.setNull(Info.Ctx, E->getType()); 7114 return true; 7115 } 7116 return false; 7117 } 7118 7119 QualType AllocType = Info.Ctx.getConstantArrayType( 7120 ElemType, Size, nullptr, ArraySizeModifier::Normal, 0); 7121 APValue *Val = Info.createHeapAlloc(Caller.Call, AllocType, Result); 7122 *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue()); 7123 Result.addArray(Info, E, cast<ConstantArrayType>(AllocType)); 7124 return true; 7125 } 7126 7127 static bool hasVirtualDestructor(QualType T) { 7128 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 7129 if (CXXDestructorDecl *DD = RD->getDestructor()) 7130 return DD->isVirtual(); 7131 return false; 7132 } 7133 7134 static const FunctionDecl *getVirtualOperatorDelete(QualType T) { 7135 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 7136 if (CXXDestructorDecl *DD = RD->getDestructor()) 7137 return DD->isVirtual() ? DD->getOperatorDelete() : nullptr; 7138 return nullptr; 7139 } 7140 7141 /// Check that the given object is a suitable pointer to a heap allocation that 7142 /// still exists and is of the right kind for the purpose of a deletion. 7143 /// 7144 /// On success, returns the heap allocation to deallocate. On failure, produces 7145 /// a diagnostic and returns std::nullopt. 7146 static std::optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E, 7147 const LValue &Pointer, 7148 DynAlloc::Kind DeallocKind) { 7149 auto PointerAsString = [&] { 7150 return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy); 7151 }; 7152 7153 DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>(); 7154 if (!DA) { 7155 Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc) 7156 << PointerAsString(); 7157 if (Pointer.Base) 7158 NoteLValueLocation(Info, Pointer.Base); 7159 return std::nullopt; 7160 } 7161 7162 std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA); 7163 if (!Alloc) { 7164 Info.FFDiag(E, diag::note_constexpr_double_delete); 7165 return std::nullopt; 7166 } 7167 7168 if (DeallocKind != (*Alloc)->getKind()) { 7169 QualType AllocType = Pointer.Base.getDynamicAllocType(); 7170 Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch) 7171 << DeallocKind << (*Alloc)->getKind() << AllocType; 7172 NoteLValueLocation(Info, Pointer.Base); 7173 return std::nullopt; 7174 } 7175 7176 bool Subobject = false; 7177 if (DeallocKind == DynAlloc::New) { 7178 Subobject = Pointer.Designator.MostDerivedPathLength != 0 || 7179 Pointer.Designator.isOnePastTheEnd(); 7180 } else { 7181 Subobject = Pointer.Designator.Entries.size() != 1 || 7182 Pointer.Designator.Entries[0].getAsArrayIndex() != 0; 7183 } 7184 if (Subobject) { 7185 Info.FFDiag(E, diag::note_constexpr_delete_subobject) 7186 << PointerAsString() << Pointer.Designator.isOnePastTheEnd(); 7187 return std::nullopt; 7188 } 7189 7190 return Alloc; 7191 } 7192 7193 // Perform a call to 'operator delete' or '__builtin_operator_delete'. 7194 static bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) { 7195 if (Info.checkingPotentialConstantExpression() || 7196 Info.SpeculativeEvaluationDepth) 7197 return false; 7198 7199 // This is permitted only within a call to std::allocator<T>::deallocate. 7200 if (!Info.getStdAllocatorCaller("deallocate")) { 7201 Info.FFDiag(E->getExprLoc()); 7202 return true; 7203 } 7204 7205 LValue Pointer; 7206 if (!EvaluatePointer(E->getArg(0), Pointer, Info)) 7207 return false; 7208 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) 7209 EvaluateIgnoredValue(Info, E->getArg(I)); 7210 7211 if (Pointer.Designator.Invalid) 7212 return false; 7213 7214 // Deleting a null pointer would have no effect, but it's not permitted by 7215 // std::allocator<T>::deallocate's contract. 7216 if (Pointer.isNullPointer()) { 7217 Info.CCEDiag(E->getExprLoc(), diag::note_constexpr_deallocate_null); 7218 return true; 7219 } 7220 7221 if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator)) 7222 return false; 7223 7224 Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>()); 7225 return true; 7226 } 7227 7228 //===----------------------------------------------------------------------===// 7229 // Generic Evaluation 7230 //===----------------------------------------------------------------------===// 7231 namespace { 7232 7233 class BitCastBuffer { 7234 // FIXME: We're going to need bit-level granularity when we support 7235 // bit-fields. 7236 // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but 7237 // we don't support a host or target where that is the case. Still, we should 7238 // use a more generic type in case we ever do. 7239 SmallVector<std::optional<unsigned char>, 32> Bytes; 7240 7241 static_assert(std::numeric_limits<unsigned char>::digits >= 8, 7242 "Need at least 8 bit unsigned char"); 7243 7244 bool TargetIsLittleEndian; 7245 7246 public: 7247 BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian) 7248 : Bytes(Width.getQuantity()), 7249 TargetIsLittleEndian(TargetIsLittleEndian) {} 7250 7251 [[nodiscard]] bool readObject(CharUnits Offset, CharUnits Width, 7252 SmallVectorImpl<unsigned char> &Output) const { 7253 for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) { 7254 // If a byte of an integer is uninitialized, then the whole integer is 7255 // uninitialized. 7256 if (!Bytes[I.getQuantity()]) 7257 return false; 7258 Output.push_back(*Bytes[I.getQuantity()]); 7259 } 7260 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian) 7261 std::reverse(Output.begin(), Output.end()); 7262 return true; 7263 } 7264 7265 void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) { 7266 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian) 7267 std::reverse(Input.begin(), Input.end()); 7268 7269 size_t Index = 0; 7270 for (unsigned char Byte : Input) { 7271 assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?"); 7272 Bytes[Offset.getQuantity() + Index] = Byte; 7273 ++Index; 7274 } 7275 } 7276 7277 size_t size() { return Bytes.size(); } 7278 }; 7279 7280 /// Traverse an APValue to produce an BitCastBuffer, emulating how the current 7281 /// target would represent the value at runtime. 7282 class APValueToBufferConverter { 7283 EvalInfo &Info; 7284 BitCastBuffer Buffer; 7285 const CastExpr *BCE; 7286 7287 APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth, 7288 const CastExpr *BCE) 7289 : Info(Info), 7290 Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()), 7291 BCE(BCE) {} 7292 7293 bool visit(const APValue &Val, QualType Ty) { 7294 return visit(Val, Ty, CharUnits::fromQuantity(0)); 7295 } 7296 7297 // Write out Val with type Ty into Buffer starting at Offset. 7298 bool visit(const APValue &Val, QualType Ty, CharUnits Offset) { 7299 assert((size_t)Offset.getQuantity() <= Buffer.size()); 7300 7301 // As a special case, nullptr_t has an indeterminate value. 7302 if (Ty->isNullPtrType()) 7303 return true; 7304 7305 // Dig through Src to find the byte at SrcOffset. 7306 switch (Val.getKind()) { 7307 case APValue::Indeterminate: 7308 case APValue::None: 7309 return true; 7310 7311 case APValue::Int: 7312 return visitInt(Val.getInt(), Ty, Offset); 7313 case APValue::Float: 7314 return visitFloat(Val.getFloat(), Ty, Offset); 7315 case APValue::Array: 7316 return visitArray(Val, Ty, Offset); 7317 case APValue::Struct: 7318 return visitRecord(Val, Ty, Offset); 7319 case APValue::Vector: 7320 return visitVector(Val, Ty, Offset); 7321 7322 case APValue::ComplexInt: 7323 case APValue::ComplexFloat: 7324 return visitComplex(Val, Ty, Offset); 7325 case APValue::FixedPoint: 7326 // FIXME: We should support these. 7327 7328 case APValue::Union: 7329 case APValue::MemberPointer: 7330 case APValue::AddrLabelDiff: { 7331 Info.FFDiag(BCE->getBeginLoc(), 7332 diag::note_constexpr_bit_cast_unsupported_type) 7333 << Ty; 7334 return false; 7335 } 7336 7337 case APValue::LValue: 7338 llvm_unreachable("LValue subobject in bit_cast?"); 7339 } 7340 llvm_unreachable("Unhandled APValue::ValueKind"); 7341 } 7342 7343 bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) { 7344 const RecordDecl *RD = Ty->getAsRecordDecl(); 7345 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 7346 7347 // Visit the base classes. 7348 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 7349 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) { 7350 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I]; 7351 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 7352 7353 if (!visitRecord(Val.getStructBase(I), BS.getType(), 7354 Layout.getBaseClassOffset(BaseDecl) + Offset)) 7355 return false; 7356 } 7357 } 7358 7359 // Visit the fields. 7360 unsigned FieldIdx = 0; 7361 for (FieldDecl *FD : RD->fields()) { 7362 if (FD->isBitField()) { 7363 Info.FFDiag(BCE->getBeginLoc(), 7364 diag::note_constexpr_bit_cast_unsupported_bitfield); 7365 return false; 7366 } 7367 7368 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx); 7369 7370 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 && 7371 "only bit-fields can have sub-char alignment"); 7372 CharUnits FieldOffset = 7373 Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset; 7374 QualType FieldTy = FD->getType(); 7375 if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset)) 7376 return false; 7377 ++FieldIdx; 7378 } 7379 7380 return true; 7381 } 7382 7383 bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) { 7384 const auto *CAT = 7385 dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe()); 7386 if (!CAT) 7387 return false; 7388 7389 CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType()); 7390 unsigned NumInitializedElts = Val.getArrayInitializedElts(); 7391 unsigned ArraySize = Val.getArraySize(); 7392 // First, initialize the initialized elements. 7393 for (unsigned I = 0; I != NumInitializedElts; ++I) { 7394 const APValue &SubObj = Val.getArrayInitializedElt(I); 7395 if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth)) 7396 return false; 7397 } 7398 7399 // Next, initialize the rest of the array using the filler. 7400 if (Val.hasArrayFiller()) { 7401 const APValue &Filler = Val.getArrayFiller(); 7402 for (unsigned I = NumInitializedElts; I != ArraySize; ++I) { 7403 if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth)) 7404 return false; 7405 } 7406 } 7407 7408 return true; 7409 } 7410 7411 bool visitComplex(const APValue &Val, QualType Ty, CharUnits Offset) { 7412 const ComplexType *ComplexTy = Ty->castAs<ComplexType>(); 7413 QualType EltTy = ComplexTy->getElementType(); 7414 CharUnits EltSizeChars = Info.Ctx.getTypeSizeInChars(EltTy); 7415 bool IsInt = Val.isComplexInt(); 7416 7417 if (IsInt) { 7418 if (!visitInt(Val.getComplexIntReal(), EltTy, 7419 Offset + (0 * EltSizeChars))) 7420 return false; 7421 if (!visitInt(Val.getComplexIntImag(), EltTy, 7422 Offset + (1 * EltSizeChars))) 7423 return false; 7424 } else { 7425 if (!visitFloat(Val.getComplexFloatReal(), EltTy, 7426 Offset + (0 * EltSizeChars))) 7427 return false; 7428 if (!visitFloat(Val.getComplexFloatImag(), EltTy, 7429 Offset + (1 * EltSizeChars))) 7430 return false; 7431 } 7432 7433 return true; 7434 } 7435 7436 bool visitVector(const APValue &Val, QualType Ty, CharUnits Offset) { 7437 const VectorType *VTy = Ty->castAs<VectorType>(); 7438 QualType EltTy = VTy->getElementType(); 7439 unsigned NElts = VTy->getNumElements(); 7440 7441 if (VTy->isExtVectorBoolType()) { 7442 // Special handling for OpenCL bool vectors: 7443 // Since these vectors are stored as packed bits, but we can't write 7444 // individual bits to the BitCastBuffer, we'll buffer all of the elements 7445 // together into an appropriately sized APInt and write them all out at 7446 // once. Because we don't accept vectors where NElts * EltSize isn't a 7447 // multiple of the char size, there will be no padding space, so we don't 7448 // have to worry about writing data which should have been left 7449 // uninitialized. 7450 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); 7451 7452 llvm::APInt Res = llvm::APInt::getZero(NElts); 7453 for (unsigned I = 0; I < NElts; ++I) { 7454 const llvm::APSInt &EltAsInt = Val.getVectorElt(I).getInt(); 7455 assert(EltAsInt.isUnsigned() && EltAsInt.getBitWidth() == 1 && 7456 "bool vector element must be 1-bit unsigned integer!"); 7457 7458 Res.insertBits(EltAsInt, BigEndian ? (NElts - I - 1) : I); 7459 } 7460 7461 SmallVector<uint8_t, 8> Bytes(NElts / 8); 7462 llvm::StoreIntToMemory(Res, &*Bytes.begin(), NElts / 8); 7463 Buffer.writeObject(Offset, Bytes); 7464 } else { 7465 // Iterate over each of the elements and write them out to the buffer at 7466 // the appropriate offset. 7467 CharUnits EltSizeChars = Info.Ctx.getTypeSizeInChars(EltTy); 7468 for (unsigned I = 0; I < NElts; ++I) { 7469 if (!visit(Val.getVectorElt(I), EltTy, Offset + I * EltSizeChars)) 7470 return false; 7471 } 7472 } 7473 7474 return true; 7475 } 7476 7477 bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) { 7478 APSInt AdjustedVal = Val; 7479 unsigned Width = AdjustedVal.getBitWidth(); 7480 if (Ty->isBooleanType()) { 7481 Width = Info.Ctx.getTypeSize(Ty); 7482 AdjustedVal = AdjustedVal.extend(Width); 7483 } 7484 7485 SmallVector<uint8_t, 8> Bytes(Width / 8); 7486 llvm::StoreIntToMemory(AdjustedVal, &*Bytes.begin(), Width / 8); 7487 Buffer.writeObject(Offset, Bytes); 7488 return true; 7489 } 7490 7491 bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) { 7492 APSInt AsInt(Val.bitcastToAPInt()); 7493 return visitInt(AsInt, Ty, Offset); 7494 } 7495 7496 public: 7497 static std::optional<BitCastBuffer> 7498 convert(EvalInfo &Info, const APValue &Src, const CastExpr *BCE) { 7499 CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType()); 7500 APValueToBufferConverter Converter(Info, DstSize, BCE); 7501 if (!Converter.visit(Src, BCE->getSubExpr()->getType())) 7502 return std::nullopt; 7503 return Converter.Buffer; 7504 } 7505 }; 7506 7507 /// Write an BitCastBuffer into an APValue. 7508 class BufferToAPValueConverter { 7509 EvalInfo &Info; 7510 const BitCastBuffer &Buffer; 7511 const CastExpr *BCE; 7512 7513 BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer, 7514 const CastExpr *BCE) 7515 : Info(Info), Buffer(Buffer), BCE(BCE) {} 7516 7517 // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast 7518 // with an invalid type, so anything left is a deficiency on our part (FIXME). 7519 // Ideally this will be unreachable. 7520 std::nullopt_t unsupportedType(QualType Ty) { 7521 Info.FFDiag(BCE->getBeginLoc(), 7522 diag::note_constexpr_bit_cast_unsupported_type) 7523 << Ty; 7524 return std::nullopt; 7525 } 7526 7527 std::nullopt_t unrepresentableValue(QualType Ty, const APSInt &Val) { 7528 Info.FFDiag(BCE->getBeginLoc(), 7529 diag::note_constexpr_bit_cast_unrepresentable_value) 7530 << Ty << toString(Val, /*Radix=*/10); 7531 return std::nullopt; 7532 } 7533 7534 std::optional<APValue> visit(const BuiltinType *T, CharUnits Offset, 7535 const EnumType *EnumSugar = nullptr) { 7536 if (T->isNullPtrType()) { 7537 uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0)); 7538 return APValue((Expr *)nullptr, 7539 /*Offset=*/CharUnits::fromQuantity(NullValue), 7540 APValue::NoLValuePath{}, /*IsNullPtr=*/true); 7541 } 7542 7543 CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T); 7544 7545 // Work around floating point types that contain unused padding bytes. This 7546 // is really just `long double` on x86, which is the only fundamental type 7547 // with padding bytes. 7548 if (T->isRealFloatingType()) { 7549 const llvm::fltSemantics &Semantics = 7550 Info.Ctx.getFloatTypeSemantics(QualType(T, 0)); 7551 unsigned NumBits = llvm::APFloatBase::getSizeInBits(Semantics); 7552 assert(NumBits % 8 == 0); 7553 CharUnits NumBytes = CharUnits::fromQuantity(NumBits / 8); 7554 if (NumBytes != SizeOf) 7555 SizeOf = NumBytes; 7556 } 7557 7558 SmallVector<uint8_t, 8> Bytes; 7559 if (!Buffer.readObject(Offset, SizeOf, Bytes)) { 7560 // If this is std::byte or unsigned char, then its okay to store an 7561 // indeterminate value. 7562 bool IsStdByte = EnumSugar && EnumSugar->isStdByteType(); 7563 bool IsUChar = 7564 !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) || 7565 T->isSpecificBuiltinType(BuiltinType::Char_U)); 7566 if (!IsStdByte && !IsUChar) { 7567 QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0); 7568 Info.FFDiag(BCE->getExprLoc(), 7569 diag::note_constexpr_bit_cast_indet_dest) 7570 << DisplayType << Info.Ctx.getLangOpts().CharIsSigned; 7571 return std::nullopt; 7572 } 7573 7574 return APValue::IndeterminateValue(); 7575 } 7576 7577 APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true); 7578 llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size()); 7579 7580 if (T->isIntegralOrEnumerationType()) { 7581 Val.setIsSigned(T->isSignedIntegerOrEnumerationType()); 7582 7583 unsigned IntWidth = Info.Ctx.getIntWidth(QualType(T, 0)); 7584 if (IntWidth != Val.getBitWidth()) { 7585 APSInt Truncated = Val.trunc(IntWidth); 7586 if (Truncated.extend(Val.getBitWidth()) != Val) 7587 return unrepresentableValue(QualType(T, 0), Val); 7588 Val = Truncated; 7589 } 7590 7591 return APValue(Val); 7592 } 7593 7594 if (T->isRealFloatingType()) { 7595 const llvm::fltSemantics &Semantics = 7596 Info.Ctx.getFloatTypeSemantics(QualType(T, 0)); 7597 return APValue(APFloat(Semantics, Val)); 7598 } 7599 7600 return unsupportedType(QualType(T, 0)); 7601 } 7602 7603 std::optional<APValue> visit(const RecordType *RTy, CharUnits Offset) { 7604 const RecordDecl *RD = RTy->getAsRecordDecl(); 7605 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 7606 7607 unsigned NumBases = 0; 7608 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7609 NumBases = CXXRD->getNumBases(); 7610 7611 APValue ResultVal(APValue::UninitStruct(), NumBases, 7612 std::distance(RD->field_begin(), RD->field_end())); 7613 7614 // Visit the base classes. 7615 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 7616 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) { 7617 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I]; 7618 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 7619 7620 std::optional<APValue> SubObj = visitType( 7621 BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset); 7622 if (!SubObj) 7623 return std::nullopt; 7624 ResultVal.getStructBase(I) = *SubObj; 7625 } 7626 } 7627 7628 // Visit the fields. 7629 unsigned FieldIdx = 0; 7630 for (FieldDecl *FD : RD->fields()) { 7631 // FIXME: We don't currently support bit-fields. A lot of the logic for 7632 // this is in CodeGen, so we need to factor it around. 7633 if (FD->isBitField()) { 7634 Info.FFDiag(BCE->getBeginLoc(), 7635 diag::note_constexpr_bit_cast_unsupported_bitfield); 7636 return std::nullopt; 7637 } 7638 7639 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx); 7640 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0); 7641 7642 CharUnits FieldOffset = 7643 CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) + 7644 Offset; 7645 QualType FieldTy = FD->getType(); 7646 std::optional<APValue> SubObj = visitType(FieldTy, FieldOffset); 7647 if (!SubObj) 7648 return std::nullopt; 7649 ResultVal.getStructField(FieldIdx) = *SubObj; 7650 ++FieldIdx; 7651 } 7652 7653 return ResultVal; 7654 } 7655 7656 std::optional<APValue> visit(const EnumType *Ty, CharUnits Offset) { 7657 QualType RepresentationType = Ty->getDecl()->getIntegerType(); 7658 assert(!RepresentationType.isNull() && 7659 "enum forward decl should be caught by Sema"); 7660 const auto *AsBuiltin = 7661 RepresentationType.getCanonicalType()->castAs<BuiltinType>(); 7662 // Recurse into the underlying type. Treat std::byte transparently as 7663 // unsigned char. 7664 return visit(AsBuiltin, Offset, /*EnumTy=*/Ty); 7665 } 7666 7667 std::optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) { 7668 size_t Size = Ty->getLimitedSize(); 7669 CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType()); 7670 7671 APValue ArrayValue(APValue::UninitArray(), Size, Size); 7672 for (size_t I = 0; I != Size; ++I) { 7673 std::optional<APValue> ElementValue = 7674 visitType(Ty->getElementType(), Offset + I * ElementWidth); 7675 if (!ElementValue) 7676 return std::nullopt; 7677 ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue); 7678 } 7679 7680 return ArrayValue; 7681 } 7682 7683 std::optional<APValue> visit(const ComplexType *Ty, CharUnits Offset) { 7684 QualType ElementType = Ty->getElementType(); 7685 CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(ElementType); 7686 bool IsInt = ElementType->isIntegerType(); 7687 7688 std::optional<APValue> Values[2]; 7689 for (unsigned I = 0; I != 2; ++I) { 7690 Values[I] = visitType(Ty->getElementType(), Offset + I * ElementWidth); 7691 if (!Values[I]) 7692 return std::nullopt; 7693 } 7694 7695 if (IsInt) 7696 return APValue(Values[0]->getInt(), Values[1]->getInt()); 7697 return APValue(Values[0]->getFloat(), Values[1]->getFloat()); 7698 } 7699 7700 std::optional<APValue> visit(const VectorType *VTy, CharUnits Offset) { 7701 QualType EltTy = VTy->getElementType(); 7702 unsigned NElts = VTy->getNumElements(); 7703 unsigned EltSize = 7704 VTy->isExtVectorBoolType() ? 1 : Info.Ctx.getTypeSize(EltTy); 7705 7706 SmallVector<APValue, 4> Elts; 7707 Elts.reserve(NElts); 7708 if (VTy->isExtVectorBoolType()) { 7709 // Special handling for OpenCL bool vectors: 7710 // Since these vectors are stored as packed bits, but we can't read 7711 // individual bits from the BitCastBuffer, we'll buffer all of the 7712 // elements together into an appropriately sized APInt and write them all 7713 // out at once. Because we don't accept vectors where NElts * EltSize 7714 // isn't a multiple of the char size, there will be no padding space, so 7715 // we don't have to worry about reading any padding data which didn't 7716 // actually need to be accessed. 7717 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); 7718 7719 SmallVector<uint8_t, 8> Bytes; 7720 Bytes.reserve(NElts / 8); 7721 if (!Buffer.readObject(Offset, CharUnits::fromQuantity(NElts / 8), Bytes)) 7722 return std::nullopt; 7723 7724 APSInt SValInt(NElts, true); 7725 llvm::LoadIntFromMemory(SValInt, &*Bytes.begin(), Bytes.size()); 7726 7727 for (unsigned I = 0; I < NElts; ++I) { 7728 llvm::APInt Elt = 7729 SValInt.extractBits(1, (BigEndian ? NElts - I - 1 : I) * EltSize); 7730 Elts.emplace_back( 7731 APSInt(std::move(Elt), !EltTy->isSignedIntegerType())); 7732 } 7733 } else { 7734 // Iterate over each of the elements and read them from the buffer at 7735 // the appropriate offset. 7736 CharUnits EltSizeChars = Info.Ctx.getTypeSizeInChars(EltTy); 7737 for (unsigned I = 0; I < NElts; ++I) { 7738 std::optional<APValue> EltValue = 7739 visitType(EltTy, Offset + I * EltSizeChars); 7740 if (!EltValue) 7741 return std::nullopt; 7742 Elts.push_back(std::move(*EltValue)); 7743 } 7744 } 7745 7746 return APValue(Elts.data(), Elts.size()); 7747 } 7748 7749 std::optional<APValue> visit(const Type *Ty, CharUnits Offset) { 7750 return unsupportedType(QualType(Ty, 0)); 7751 } 7752 7753 std::optional<APValue> visitType(QualType Ty, CharUnits Offset) { 7754 QualType Can = Ty.getCanonicalType(); 7755 7756 switch (Can->getTypeClass()) { 7757 #define TYPE(Class, Base) \ 7758 case Type::Class: \ 7759 return visit(cast<Class##Type>(Can.getTypePtr()), Offset); 7760 #define ABSTRACT_TYPE(Class, Base) 7761 #define NON_CANONICAL_TYPE(Class, Base) \ 7762 case Type::Class: \ 7763 llvm_unreachable("non-canonical type should be impossible!"); 7764 #define DEPENDENT_TYPE(Class, Base) \ 7765 case Type::Class: \ 7766 llvm_unreachable( \ 7767 "dependent types aren't supported in the constant evaluator!"); 7768 #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base) \ 7769 case Type::Class: \ 7770 llvm_unreachable("either dependent or not canonical!"); 7771 #include "clang/AST/TypeNodes.inc" 7772 } 7773 llvm_unreachable("Unhandled Type::TypeClass"); 7774 } 7775 7776 public: 7777 // Pull out a full value of type DstType. 7778 static std::optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer, 7779 const CastExpr *BCE) { 7780 BufferToAPValueConverter Converter(Info, Buffer, BCE); 7781 return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0)); 7782 } 7783 }; 7784 7785 static bool checkBitCastConstexprEligibilityType(SourceLocation Loc, 7786 QualType Ty, EvalInfo *Info, 7787 const ASTContext &Ctx, 7788 bool CheckingDest) { 7789 Ty = Ty.getCanonicalType(); 7790 7791 auto diag = [&](int Reason) { 7792 if (Info) 7793 Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type) 7794 << CheckingDest << (Reason == 4) << Reason; 7795 return false; 7796 }; 7797 auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) { 7798 if (Info) 7799 Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype) 7800 << NoteTy << Construct << Ty; 7801 return false; 7802 }; 7803 7804 if (Ty->isUnionType()) 7805 return diag(0); 7806 if (Ty->isPointerType()) 7807 return diag(1); 7808 if (Ty->isMemberPointerType()) 7809 return diag(2); 7810 if (Ty.isVolatileQualified()) 7811 return diag(3); 7812 7813 if (RecordDecl *Record = Ty->getAsRecordDecl()) { 7814 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) { 7815 for (CXXBaseSpecifier &BS : CXXRD->bases()) 7816 if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx, 7817 CheckingDest)) 7818 return note(1, BS.getType(), BS.getBeginLoc()); 7819 } 7820 for (FieldDecl *FD : Record->fields()) { 7821 if (FD->getType()->isReferenceType()) 7822 return diag(4); 7823 if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx, 7824 CheckingDest)) 7825 return note(0, FD->getType(), FD->getBeginLoc()); 7826 } 7827 } 7828 7829 if (Ty->isArrayType() && 7830 !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty), 7831 Info, Ctx, CheckingDest)) 7832 return false; 7833 7834 if (const auto *VTy = Ty->getAs<VectorType>()) { 7835 QualType EltTy = VTy->getElementType(); 7836 unsigned NElts = VTy->getNumElements(); 7837 unsigned EltSize = VTy->isExtVectorBoolType() ? 1 : Ctx.getTypeSize(EltTy); 7838 7839 if ((NElts * EltSize) % Ctx.getCharWidth() != 0) { 7840 // The vector's size in bits is not a multiple of the target's byte size, 7841 // so its layout is unspecified. For now, we'll simply treat these cases 7842 // as unsupported (this should only be possible with OpenCL bool vectors 7843 // whose element count isn't a multiple of the byte size). 7844 Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_vector) 7845 << QualType(VTy, 0) << EltSize << NElts << Ctx.getCharWidth(); 7846 return false; 7847 } 7848 7849 if (EltTy->isRealFloatingType() && 7850 &Ctx.getFloatTypeSemantics(EltTy) == &APFloat::x87DoubleExtended()) { 7851 // The layout for x86_fp80 vectors seems to be handled very inconsistently 7852 // by both clang and LLVM, so for now we won't allow bit_casts involving 7853 // it in a constexpr context. 7854 Info->FFDiag(Loc, diag::note_constexpr_bit_cast_unsupported_type) 7855 << EltTy; 7856 return false; 7857 } 7858 } 7859 7860 return true; 7861 } 7862 7863 static bool checkBitCastConstexprEligibility(EvalInfo *Info, 7864 const ASTContext &Ctx, 7865 const CastExpr *BCE) { 7866 bool DestOK = checkBitCastConstexprEligibilityType( 7867 BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true); 7868 bool SourceOK = DestOK && checkBitCastConstexprEligibilityType( 7869 BCE->getBeginLoc(), 7870 BCE->getSubExpr()->getType(), Info, Ctx, false); 7871 return SourceOK; 7872 } 7873 7874 static bool handleRValueToRValueBitCast(EvalInfo &Info, APValue &DestValue, 7875 const APValue &SourceRValue, 7876 const CastExpr *BCE) { 7877 assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 && 7878 "no host or target supports non 8-bit chars"); 7879 7880 if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE)) 7881 return false; 7882 7883 // Read out SourceValue into a char buffer. 7884 std::optional<BitCastBuffer> Buffer = 7885 APValueToBufferConverter::convert(Info, SourceRValue, BCE); 7886 if (!Buffer) 7887 return false; 7888 7889 // Write out the buffer into a new APValue. 7890 std::optional<APValue> MaybeDestValue = 7891 BufferToAPValueConverter::convert(Info, *Buffer, BCE); 7892 if (!MaybeDestValue) 7893 return false; 7894 7895 DestValue = std::move(*MaybeDestValue); 7896 return true; 7897 } 7898 7899 static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue, 7900 APValue &SourceValue, 7901 const CastExpr *BCE) { 7902 assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 && 7903 "no host or target supports non 8-bit chars"); 7904 assert(SourceValue.isLValue() && 7905 "LValueToRValueBitcast requires an lvalue operand!"); 7906 7907 LValue SourceLValue; 7908 APValue SourceRValue; 7909 SourceLValue.setFrom(Info.Ctx, SourceValue); 7910 if (!handleLValueToRValueConversion( 7911 Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue, 7912 SourceRValue, /*WantObjectRepresentation=*/true)) 7913 return false; 7914 7915 return handleRValueToRValueBitCast(Info, DestValue, SourceRValue, BCE); 7916 } 7917 7918 template <class Derived> 7919 class ExprEvaluatorBase 7920 : public ConstStmtVisitor<Derived, bool> { 7921 private: 7922 Derived &getDerived() { return static_cast<Derived&>(*this); } 7923 bool DerivedSuccess(const APValue &V, const Expr *E) { 7924 return getDerived().Success(V, E); 7925 } 7926 bool DerivedZeroInitialization(const Expr *E) { 7927 return getDerived().ZeroInitialization(E); 7928 } 7929 7930 // Check whether a conditional operator with a non-constant condition is a 7931 // potential constant expression. If neither arm is a potential constant 7932 // expression, then the conditional operator is not either. 7933 template<typename ConditionalOperator> 7934 void CheckPotentialConstantConditional(const ConditionalOperator *E) { 7935 assert(Info.checkingPotentialConstantExpression()); 7936 7937 // Speculatively evaluate both arms. 7938 SmallVector<PartialDiagnosticAt, 8> Diag; 7939 { 7940 SpeculativeEvaluationRAII Speculate(Info, &Diag); 7941 StmtVisitorTy::Visit(E->getFalseExpr()); 7942 if (Diag.empty()) 7943 return; 7944 } 7945 7946 { 7947 SpeculativeEvaluationRAII Speculate(Info, &Diag); 7948 Diag.clear(); 7949 StmtVisitorTy::Visit(E->getTrueExpr()); 7950 if (Diag.empty()) 7951 return; 7952 } 7953 7954 Error(E, diag::note_constexpr_conditional_never_const); 7955 } 7956 7957 7958 template<typename ConditionalOperator> 7959 bool HandleConditionalOperator(const ConditionalOperator *E) { 7960 bool BoolResult; 7961 if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) { 7962 if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) { 7963 CheckPotentialConstantConditional(E); 7964 return false; 7965 } 7966 if (Info.noteFailure()) { 7967 StmtVisitorTy::Visit(E->getTrueExpr()); 7968 StmtVisitorTy::Visit(E->getFalseExpr()); 7969 } 7970 return false; 7971 } 7972 7973 Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr(); 7974 return StmtVisitorTy::Visit(EvalExpr); 7975 } 7976 7977 protected: 7978 EvalInfo &Info; 7979 typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy; 7980 typedef ExprEvaluatorBase ExprEvaluatorBaseTy; 7981 7982 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { 7983 return Info.CCEDiag(E, D); 7984 } 7985 7986 bool ZeroInitialization(const Expr *E) { return Error(E); } 7987 7988 bool IsConstantEvaluatedBuiltinCall(const CallExpr *E) { 7989 unsigned BuiltinOp = E->getBuiltinCallee(); 7990 return BuiltinOp != 0 && 7991 Info.Ctx.BuiltinInfo.isConstantEvaluated(BuiltinOp); 7992 } 7993 7994 public: 7995 ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {} 7996 7997 EvalInfo &getEvalInfo() { return Info; } 7998 7999 /// Report an evaluation error. This should only be called when an error is 8000 /// first discovered. When propagating an error, just return false. 8001 bool Error(const Expr *E, diag::kind D) { 8002 Info.FFDiag(E, D) << E->getSourceRange(); 8003 return false; 8004 } 8005 bool Error(const Expr *E) { 8006 return Error(E, diag::note_invalid_subexpr_in_const_expr); 8007 } 8008 8009 bool VisitStmt(const Stmt *) { 8010 llvm_unreachable("Expression evaluator should not be called on stmts"); 8011 } 8012 bool VisitExpr(const Expr *E) { 8013 return Error(E); 8014 } 8015 8016 bool VisitEmbedExpr(const EmbedExpr *E) { 8017 const auto It = E->begin(); 8018 return StmtVisitorTy::Visit(*It); 8019 } 8020 8021 bool VisitPredefinedExpr(const PredefinedExpr *E) { 8022 return StmtVisitorTy::Visit(E->getFunctionName()); 8023 } 8024 bool VisitConstantExpr(const ConstantExpr *E) { 8025 if (E->hasAPValueResult()) 8026 return DerivedSuccess(E->getAPValueResult(), E); 8027 8028 return StmtVisitorTy::Visit(E->getSubExpr()); 8029 } 8030 8031 bool VisitParenExpr(const ParenExpr *E) 8032 { return StmtVisitorTy::Visit(E->getSubExpr()); } 8033 bool VisitUnaryExtension(const UnaryOperator *E) 8034 { return StmtVisitorTy::Visit(E->getSubExpr()); } 8035 bool VisitUnaryPlus(const UnaryOperator *E) 8036 { return StmtVisitorTy::Visit(E->getSubExpr()); } 8037 bool VisitChooseExpr(const ChooseExpr *E) 8038 { return StmtVisitorTy::Visit(E->getChosenSubExpr()); } 8039 bool VisitGenericSelectionExpr(const GenericSelectionExpr *E) 8040 { return StmtVisitorTy::Visit(E->getResultExpr()); } 8041 bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E) 8042 { return StmtVisitorTy::Visit(E->getReplacement()); } 8043 bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { 8044 TempVersionRAII RAII(*Info.CurrentCall); 8045 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope); 8046 return StmtVisitorTy::Visit(E->getExpr()); 8047 } 8048 bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { 8049 TempVersionRAII RAII(*Info.CurrentCall); 8050 // The initializer may not have been parsed yet, or might be erroneous. 8051 if (!E->getExpr()) 8052 return Error(E); 8053 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope); 8054 return StmtVisitorTy::Visit(E->getExpr()); 8055 } 8056 8057 bool VisitExprWithCleanups(const ExprWithCleanups *E) { 8058 FullExpressionRAII Scope(Info); 8059 return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy(); 8060 } 8061 8062 // Temporaries are registered when created, so we don't care about 8063 // CXXBindTemporaryExpr. 8064 bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { 8065 return StmtVisitorTy::Visit(E->getSubExpr()); 8066 } 8067 8068 bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) { 8069 CCEDiag(E, diag::note_constexpr_invalid_cast) << 0; 8070 return static_cast<Derived*>(this)->VisitCastExpr(E); 8071 } 8072 bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) { 8073 if (!Info.Ctx.getLangOpts().CPlusPlus20) 8074 CCEDiag(E, diag::note_constexpr_invalid_cast) << 1; 8075 return static_cast<Derived*>(this)->VisitCastExpr(E); 8076 } 8077 bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) { 8078 return static_cast<Derived*>(this)->VisitCastExpr(E); 8079 } 8080 8081 bool VisitBinaryOperator(const BinaryOperator *E) { 8082 switch (E->getOpcode()) { 8083 default: 8084 return Error(E); 8085 8086 case BO_Comma: 8087 VisitIgnoredValue(E->getLHS()); 8088 return StmtVisitorTy::Visit(E->getRHS()); 8089 8090 case BO_PtrMemD: 8091 case BO_PtrMemI: { 8092 LValue Obj; 8093 if (!HandleMemberPointerAccess(Info, E, Obj)) 8094 return false; 8095 APValue Result; 8096 if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result)) 8097 return false; 8098 return DerivedSuccess(Result, E); 8099 } 8100 } 8101 } 8102 8103 bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) { 8104 return StmtVisitorTy::Visit(E->getSemanticForm()); 8105 } 8106 8107 bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) { 8108 // Evaluate and cache the common expression. We treat it as a temporary, 8109 // even though it's not quite the same thing. 8110 LValue CommonLV; 8111 if (!Evaluate(Info.CurrentCall->createTemporary( 8112 E->getOpaqueValue(), 8113 getStorageType(Info.Ctx, E->getOpaqueValue()), 8114 ScopeKind::FullExpression, CommonLV), 8115 Info, E->getCommon())) 8116 return false; 8117 8118 return HandleConditionalOperator(E); 8119 } 8120 8121 bool VisitConditionalOperator(const ConditionalOperator *E) { 8122 bool IsBcpCall = false; 8123 // If the condition (ignoring parens) is a __builtin_constant_p call, 8124 // the result is a constant expression if it can be folded without 8125 // side-effects. This is an important GNU extension. See GCC PR38377 8126 // for discussion. 8127 if (const CallExpr *CallCE = 8128 dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts())) 8129 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) 8130 IsBcpCall = true; 8131 8132 // Always assume __builtin_constant_p(...) ? ... : ... is a potential 8133 // constant expression; we can't check whether it's potentially foldable. 8134 // FIXME: We should instead treat __builtin_constant_p as non-constant if 8135 // it would return 'false' in this mode. 8136 if (Info.checkingPotentialConstantExpression() && IsBcpCall) 8137 return false; 8138 8139 FoldConstant Fold(Info, IsBcpCall); 8140 if (!HandleConditionalOperator(E)) { 8141 Fold.keepDiagnostics(); 8142 return false; 8143 } 8144 8145 return true; 8146 } 8147 8148 bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) { 8149 if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E); 8150 Value && !Value->isAbsent()) 8151 return DerivedSuccess(*Value, E); 8152 8153 const Expr *Source = E->getSourceExpr(); 8154 if (!Source) 8155 return Error(E); 8156 if (Source == E) { 8157 assert(0 && "OpaqueValueExpr recursively refers to itself"); 8158 return Error(E); 8159 } 8160 return StmtVisitorTy::Visit(Source); 8161 } 8162 8163 bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) { 8164 for (const Expr *SemE : E->semantics()) { 8165 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) { 8166 // FIXME: We can't handle the case where an OpaqueValueExpr is also the 8167 // result expression: there could be two different LValues that would 8168 // refer to the same object in that case, and we can't model that. 8169 if (SemE == E->getResultExpr()) 8170 return Error(E); 8171 8172 // Unique OVEs get evaluated if and when we encounter them when 8173 // emitting the rest of the semantic form, rather than eagerly. 8174 if (OVE->isUnique()) 8175 continue; 8176 8177 LValue LV; 8178 if (!Evaluate(Info.CurrentCall->createTemporary( 8179 OVE, getStorageType(Info.Ctx, OVE), 8180 ScopeKind::FullExpression, LV), 8181 Info, OVE->getSourceExpr())) 8182 return false; 8183 } else if (SemE == E->getResultExpr()) { 8184 if (!StmtVisitorTy::Visit(SemE)) 8185 return false; 8186 } else { 8187 if (!EvaluateIgnoredValue(Info, SemE)) 8188 return false; 8189 } 8190 } 8191 return true; 8192 } 8193 8194 bool VisitCallExpr(const CallExpr *E) { 8195 APValue Result; 8196 if (!handleCallExpr(E, Result, nullptr)) 8197 return false; 8198 return DerivedSuccess(Result, E); 8199 } 8200 8201 bool handleCallExpr(const CallExpr *E, APValue &Result, 8202 const LValue *ResultSlot) { 8203 CallScopeRAII CallScope(Info); 8204 8205 const Expr *Callee = E->getCallee()->IgnoreParens(); 8206 QualType CalleeType = Callee->getType(); 8207 8208 const FunctionDecl *FD = nullptr; 8209 LValue *This = nullptr, ThisVal; 8210 auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs()); 8211 bool HasQualifier = false; 8212 8213 CallRef Call; 8214 8215 // Extract function decl and 'this' pointer from the callee. 8216 if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) { 8217 const CXXMethodDecl *Member = nullptr; 8218 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) { 8219 // Explicit bound member calls, such as x.f() or p->g(); 8220 if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal)) 8221 return false; 8222 Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl()); 8223 if (!Member) 8224 return Error(Callee); 8225 This = &ThisVal; 8226 HasQualifier = ME->hasQualifier(); 8227 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) { 8228 // Indirect bound member calls ('.*' or '->*'). 8229 const ValueDecl *D = 8230 HandleMemberPointerAccess(Info, BE, ThisVal, false); 8231 if (!D) 8232 return false; 8233 Member = dyn_cast<CXXMethodDecl>(D); 8234 if (!Member) 8235 return Error(Callee); 8236 This = &ThisVal; 8237 } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) { 8238 if (!Info.getLangOpts().CPlusPlus20) 8239 Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor); 8240 return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) && 8241 HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType()); 8242 } else 8243 return Error(Callee); 8244 FD = Member; 8245 } else if (CalleeType->isFunctionPointerType()) { 8246 LValue CalleeLV; 8247 if (!EvaluatePointer(Callee, CalleeLV, Info)) 8248 return false; 8249 8250 if (!CalleeLV.getLValueOffset().isZero()) 8251 return Error(Callee); 8252 if (CalleeLV.isNullPointer()) { 8253 Info.FFDiag(Callee, diag::note_constexpr_null_callee) 8254 << const_cast<Expr *>(Callee); 8255 return false; 8256 } 8257 FD = dyn_cast_or_null<FunctionDecl>( 8258 CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>()); 8259 if (!FD) 8260 return Error(Callee); 8261 // Don't call function pointers which have been cast to some other type. 8262 // Per DR (no number yet), the caller and callee can differ in noexcept. 8263 if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec( 8264 CalleeType->getPointeeType(), FD->getType())) { 8265 return Error(E); 8266 } 8267 8268 // For an (overloaded) assignment expression, evaluate the RHS before the 8269 // LHS. 8270 auto *OCE = dyn_cast<CXXOperatorCallExpr>(E); 8271 if (OCE && OCE->isAssignmentOp()) { 8272 assert(Args.size() == 2 && "wrong number of arguments in assignment"); 8273 Call = Info.CurrentCall->createCall(FD); 8274 bool HasThis = false; 8275 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 8276 HasThis = MD->isImplicitObjectMemberFunction(); 8277 if (!EvaluateArgs(HasThis ? Args.slice(1) : Args, Call, Info, FD, 8278 /*RightToLeft=*/true)) 8279 return false; 8280 } 8281 8282 // Overloaded operator calls to member functions are represented as normal 8283 // calls with '*this' as the first argument. 8284 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 8285 if (MD && 8286 (MD->isImplicitObjectMemberFunction() || (OCE && MD->isStatic()))) { 8287 // FIXME: When selecting an implicit conversion for an overloaded 8288 // operator delete, we sometimes try to evaluate calls to conversion 8289 // operators without a 'this' parameter! 8290 if (Args.empty()) 8291 return Error(E); 8292 8293 if (!EvaluateObjectArgument(Info, Args[0], ThisVal)) 8294 return false; 8295 8296 // If we are calling a static operator, the 'this' argument needs to be 8297 // ignored after being evaluated. 8298 if (MD->isInstance()) 8299 This = &ThisVal; 8300 8301 // If this is syntactically a simple assignment using a trivial 8302 // assignment operator, start the lifetimes of union members as needed, 8303 // per C++20 [class.union]5. 8304 if (Info.getLangOpts().CPlusPlus20 && OCE && 8305 OCE->getOperator() == OO_Equal && MD->isTrivial() && 8306 !MaybeHandleUnionActiveMemberChange(Info, Args[0], ThisVal)) 8307 return false; 8308 8309 Args = Args.slice(1); 8310 } else if (MD && MD->isLambdaStaticInvoker()) { 8311 // Map the static invoker for the lambda back to the call operator. 8312 // Conveniently, we don't have to slice out the 'this' argument (as is 8313 // being done for the non-static case), since a static member function 8314 // doesn't have an implicit argument passed in. 8315 const CXXRecordDecl *ClosureClass = MD->getParent(); 8316 assert( 8317 ClosureClass->captures_begin() == ClosureClass->captures_end() && 8318 "Number of captures must be zero for conversion to function-ptr"); 8319 8320 const CXXMethodDecl *LambdaCallOp = 8321 ClosureClass->getLambdaCallOperator(); 8322 8323 // Set 'FD', the function that will be called below, to the call 8324 // operator. If the closure object represents a generic lambda, find 8325 // the corresponding specialization of the call operator. 8326 8327 if (ClosureClass->isGenericLambda()) { 8328 assert(MD->isFunctionTemplateSpecialization() && 8329 "A generic lambda's static-invoker function must be a " 8330 "template specialization"); 8331 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 8332 FunctionTemplateDecl *CallOpTemplate = 8333 LambdaCallOp->getDescribedFunctionTemplate(); 8334 void *InsertPos = nullptr; 8335 FunctionDecl *CorrespondingCallOpSpecialization = 8336 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 8337 assert(CorrespondingCallOpSpecialization && 8338 "We must always have a function call operator specialization " 8339 "that corresponds to our static invoker specialization"); 8340 assert(isa<CXXMethodDecl>(CorrespondingCallOpSpecialization)); 8341 FD = CorrespondingCallOpSpecialization; 8342 } else 8343 FD = LambdaCallOp; 8344 } else if (FD->isReplaceableGlobalAllocationFunction()) { 8345 if (FD->getDeclName().getCXXOverloadedOperator() == OO_New || 8346 FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) { 8347 LValue Ptr; 8348 if (!HandleOperatorNewCall(Info, E, Ptr)) 8349 return false; 8350 Ptr.moveInto(Result); 8351 return CallScope.destroy(); 8352 } else { 8353 return HandleOperatorDeleteCall(Info, E) && CallScope.destroy(); 8354 } 8355 } 8356 } else 8357 return Error(E); 8358 8359 // Evaluate the arguments now if we've not already done so. 8360 if (!Call) { 8361 Call = Info.CurrentCall->createCall(FD); 8362 if (!EvaluateArgs(Args, Call, Info, FD)) 8363 return false; 8364 } 8365 8366 SmallVector<QualType, 4> CovariantAdjustmentPath; 8367 if (This) { 8368 auto *NamedMember = dyn_cast<CXXMethodDecl>(FD); 8369 if (NamedMember && NamedMember->isVirtual() && !HasQualifier) { 8370 // Perform virtual dispatch, if necessary. 8371 FD = HandleVirtualDispatch(Info, E, *This, NamedMember, 8372 CovariantAdjustmentPath); 8373 if (!FD) 8374 return false; 8375 } else if (NamedMember && NamedMember->isImplicitObjectMemberFunction()) { 8376 // Check that the 'this' pointer points to an object of the right type. 8377 // FIXME: If this is an assignment operator call, we may need to change 8378 // the active union member before we check this. 8379 if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember)) 8380 return false; 8381 } 8382 } 8383 8384 // Destructor calls are different enough that they have their own codepath. 8385 if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) { 8386 assert(This && "no 'this' pointer for destructor call"); 8387 return HandleDestruction(Info, E, *This, 8388 Info.Ctx.getRecordType(DD->getParent())) && 8389 CallScope.destroy(); 8390 } 8391 8392 const FunctionDecl *Definition = nullptr; 8393 Stmt *Body = FD->getBody(Definition); 8394 8395 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) || 8396 !HandleFunctionCall(E->getExprLoc(), Definition, This, E, Args, Call, 8397 Body, Info, Result, ResultSlot)) 8398 return false; 8399 8400 if (!CovariantAdjustmentPath.empty() && 8401 !HandleCovariantReturnAdjustment(Info, E, Result, 8402 CovariantAdjustmentPath)) 8403 return false; 8404 8405 return CallScope.destroy(); 8406 } 8407 8408 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 8409 return StmtVisitorTy::Visit(E->getInitializer()); 8410 } 8411 bool VisitInitListExpr(const InitListExpr *E) { 8412 if (E->getNumInits() == 0) 8413 return DerivedZeroInitialization(E); 8414 if (E->getNumInits() == 1) 8415 return StmtVisitorTy::Visit(E->getInit(0)); 8416 return Error(E); 8417 } 8418 bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 8419 return DerivedZeroInitialization(E); 8420 } 8421 bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 8422 return DerivedZeroInitialization(E); 8423 } 8424 bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 8425 return DerivedZeroInitialization(E); 8426 } 8427 8428 /// A member expression where the object is a prvalue is itself a prvalue. 8429 bool VisitMemberExpr(const MemberExpr *E) { 8430 assert(!Info.Ctx.getLangOpts().CPlusPlus11 && 8431 "missing temporary materialization conversion"); 8432 assert(!E->isArrow() && "missing call to bound member function?"); 8433 8434 APValue Val; 8435 if (!Evaluate(Val, Info, E->getBase())) 8436 return false; 8437 8438 QualType BaseTy = E->getBase()->getType(); 8439 8440 const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl()); 8441 if (!FD) return Error(E); 8442 assert(!FD->getType()->isReferenceType() && "prvalue reference?"); 8443 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == 8444 FD->getParent()->getCanonicalDecl() && "record / field mismatch"); 8445 8446 // Note: there is no lvalue base here. But this case should only ever 8447 // happen in C or in C++98, where we cannot be evaluating a constexpr 8448 // constructor, which is the only case the base matters. 8449 CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy); 8450 SubobjectDesignator Designator(BaseTy); 8451 Designator.addDeclUnchecked(FD); 8452 8453 APValue Result; 8454 return extractSubobject(Info, E, Obj, Designator, Result) && 8455 DerivedSuccess(Result, E); 8456 } 8457 8458 bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) { 8459 APValue Val; 8460 if (!Evaluate(Val, Info, E->getBase())) 8461 return false; 8462 8463 if (Val.isVector()) { 8464 SmallVector<uint32_t, 4> Indices; 8465 E->getEncodedElementAccess(Indices); 8466 if (Indices.size() == 1) { 8467 // Return scalar. 8468 return DerivedSuccess(Val.getVectorElt(Indices[0]), E); 8469 } else { 8470 // Construct new APValue vector. 8471 SmallVector<APValue, 4> Elts; 8472 for (unsigned I = 0; I < Indices.size(); ++I) { 8473 Elts.push_back(Val.getVectorElt(Indices[I])); 8474 } 8475 APValue VecResult(Elts.data(), Indices.size()); 8476 return DerivedSuccess(VecResult, E); 8477 } 8478 } 8479 8480 return false; 8481 } 8482 8483 bool VisitCastExpr(const CastExpr *E) { 8484 switch (E->getCastKind()) { 8485 default: 8486 break; 8487 8488 case CK_AtomicToNonAtomic: { 8489 APValue AtomicVal; 8490 // This does not need to be done in place even for class/array types: 8491 // atomic-to-non-atomic conversion implies copying the object 8492 // representation. 8493 if (!Evaluate(AtomicVal, Info, E->getSubExpr())) 8494 return false; 8495 return DerivedSuccess(AtomicVal, E); 8496 } 8497 8498 case CK_NoOp: 8499 case CK_UserDefinedConversion: 8500 return StmtVisitorTy::Visit(E->getSubExpr()); 8501 8502 case CK_LValueToRValue: { 8503 LValue LVal; 8504 if (!EvaluateLValue(E->getSubExpr(), LVal, Info)) 8505 return false; 8506 APValue RVal; 8507 // Note, we use the subexpression's type in order to retain cv-qualifiers. 8508 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(), 8509 LVal, RVal)) 8510 return false; 8511 return DerivedSuccess(RVal, E); 8512 } 8513 case CK_LValueToRValueBitCast: { 8514 APValue DestValue, SourceValue; 8515 if (!Evaluate(SourceValue, Info, E->getSubExpr())) 8516 return false; 8517 if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E)) 8518 return false; 8519 return DerivedSuccess(DestValue, E); 8520 } 8521 8522 case CK_AddressSpaceConversion: { 8523 APValue Value; 8524 if (!Evaluate(Value, Info, E->getSubExpr())) 8525 return false; 8526 return DerivedSuccess(Value, E); 8527 } 8528 } 8529 8530 return Error(E); 8531 } 8532 8533 bool VisitUnaryPostInc(const UnaryOperator *UO) { 8534 return VisitUnaryPostIncDec(UO); 8535 } 8536 bool VisitUnaryPostDec(const UnaryOperator *UO) { 8537 return VisitUnaryPostIncDec(UO); 8538 } 8539 bool VisitUnaryPostIncDec(const UnaryOperator *UO) { 8540 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 8541 return Error(UO); 8542 8543 LValue LVal; 8544 if (!EvaluateLValue(UO->getSubExpr(), LVal, Info)) 8545 return false; 8546 APValue RVal; 8547 if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(), 8548 UO->isIncrementOp(), &RVal)) 8549 return false; 8550 return DerivedSuccess(RVal, UO); 8551 } 8552 8553 bool VisitStmtExpr(const StmtExpr *E) { 8554 // We will have checked the full-expressions inside the statement expression 8555 // when they were completed, and don't need to check them again now. 8556 llvm::SaveAndRestore NotCheckingForUB(Info.CheckingForUndefinedBehavior, 8557 false); 8558 8559 const CompoundStmt *CS = E->getSubStmt(); 8560 if (CS->body_empty()) 8561 return true; 8562 8563 BlockScopeRAII Scope(Info); 8564 for (CompoundStmt::const_body_iterator BI = CS->body_begin(), 8565 BE = CS->body_end(); 8566 /**/; ++BI) { 8567 if (BI + 1 == BE) { 8568 const Expr *FinalExpr = dyn_cast<Expr>(*BI); 8569 if (!FinalExpr) { 8570 Info.FFDiag((*BI)->getBeginLoc(), 8571 diag::note_constexpr_stmt_expr_unsupported); 8572 return false; 8573 } 8574 return this->Visit(FinalExpr) && Scope.destroy(); 8575 } 8576 8577 APValue ReturnValue; 8578 StmtResult Result = { ReturnValue, nullptr }; 8579 EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI); 8580 if (ESR != ESR_Succeeded) { 8581 // FIXME: If the statement-expression terminated due to 'return', 8582 // 'break', or 'continue', it would be nice to propagate that to 8583 // the outer statement evaluation rather than bailing out. 8584 if (ESR != ESR_Failed) 8585 Info.FFDiag((*BI)->getBeginLoc(), 8586 diag::note_constexpr_stmt_expr_unsupported); 8587 return false; 8588 } 8589 } 8590 8591 llvm_unreachable("Return from function from the loop above."); 8592 } 8593 8594 bool VisitPackIndexingExpr(const PackIndexingExpr *E) { 8595 return StmtVisitorTy::Visit(E->getSelectedExpr()); 8596 } 8597 8598 /// Visit a value which is evaluated, but whose value is ignored. 8599 void VisitIgnoredValue(const Expr *E) { 8600 EvaluateIgnoredValue(Info, E); 8601 } 8602 8603 /// Potentially visit a MemberExpr's base expression. 8604 void VisitIgnoredBaseExpression(const Expr *E) { 8605 // While MSVC doesn't evaluate the base expression, it does diagnose the 8606 // presence of side-effecting behavior. 8607 if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx)) 8608 return; 8609 VisitIgnoredValue(E); 8610 } 8611 }; 8612 8613 } // namespace 8614 8615 //===----------------------------------------------------------------------===// 8616 // Common base class for lvalue and temporary evaluation. 8617 //===----------------------------------------------------------------------===// 8618 namespace { 8619 template<class Derived> 8620 class LValueExprEvaluatorBase 8621 : public ExprEvaluatorBase<Derived> { 8622 protected: 8623 LValue &Result; 8624 bool InvalidBaseOK; 8625 typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy; 8626 typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy; 8627 8628 bool Success(APValue::LValueBase B) { 8629 Result.set(B); 8630 return true; 8631 } 8632 8633 bool evaluatePointer(const Expr *E, LValue &Result) { 8634 return EvaluatePointer(E, Result, this->Info, InvalidBaseOK); 8635 } 8636 8637 public: 8638 LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) 8639 : ExprEvaluatorBaseTy(Info), Result(Result), 8640 InvalidBaseOK(InvalidBaseOK) {} 8641 8642 bool Success(const APValue &V, const Expr *E) { 8643 Result.setFrom(this->Info.Ctx, V); 8644 return true; 8645 } 8646 8647 bool VisitMemberExpr(const MemberExpr *E) { 8648 // Handle non-static data members. 8649 QualType BaseTy; 8650 bool EvalOK; 8651 if (E->isArrow()) { 8652 EvalOK = evaluatePointer(E->getBase(), Result); 8653 BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType(); 8654 } else if (E->getBase()->isPRValue()) { 8655 assert(E->getBase()->getType()->isRecordType()); 8656 EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info); 8657 BaseTy = E->getBase()->getType(); 8658 } else { 8659 EvalOK = this->Visit(E->getBase()); 8660 BaseTy = E->getBase()->getType(); 8661 } 8662 if (!EvalOK) { 8663 if (!InvalidBaseOK) 8664 return false; 8665 Result.setInvalid(E); 8666 return true; 8667 } 8668 8669 const ValueDecl *MD = E->getMemberDecl(); 8670 if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) { 8671 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == 8672 FD->getParent()->getCanonicalDecl() && "record / field mismatch"); 8673 (void)BaseTy; 8674 if (!HandleLValueMember(this->Info, E, Result, FD)) 8675 return false; 8676 } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) { 8677 if (!HandleLValueIndirectMember(this->Info, E, Result, IFD)) 8678 return false; 8679 } else 8680 return this->Error(E); 8681 8682 if (MD->getType()->isReferenceType()) { 8683 APValue RefValue; 8684 if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result, 8685 RefValue)) 8686 return false; 8687 return Success(RefValue, E); 8688 } 8689 return true; 8690 } 8691 8692 bool VisitBinaryOperator(const BinaryOperator *E) { 8693 switch (E->getOpcode()) { 8694 default: 8695 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 8696 8697 case BO_PtrMemD: 8698 case BO_PtrMemI: 8699 return HandleMemberPointerAccess(this->Info, E, Result); 8700 } 8701 } 8702 8703 bool VisitCastExpr(const CastExpr *E) { 8704 switch (E->getCastKind()) { 8705 default: 8706 return ExprEvaluatorBaseTy::VisitCastExpr(E); 8707 8708 case CK_DerivedToBase: 8709 case CK_UncheckedDerivedToBase: 8710 if (!this->Visit(E->getSubExpr())) 8711 return false; 8712 8713 // Now figure out the necessary offset to add to the base LV to get from 8714 // the derived class to the base class. 8715 return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(), 8716 Result); 8717 } 8718 } 8719 }; 8720 } 8721 8722 //===----------------------------------------------------------------------===// 8723 // LValue Evaluation 8724 // 8725 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11), 8726 // function designators (in C), decl references to void objects (in C), and 8727 // temporaries (if building with -Wno-address-of-temporary). 8728 // 8729 // LValue evaluation produces values comprising a base expression of one of the 8730 // following types: 8731 // - Declarations 8732 // * VarDecl 8733 // * FunctionDecl 8734 // - Literals 8735 // * CompoundLiteralExpr in C (and in global scope in C++) 8736 // * StringLiteral 8737 // * PredefinedExpr 8738 // * ObjCStringLiteralExpr 8739 // * ObjCEncodeExpr 8740 // * AddrLabelExpr 8741 // * BlockExpr 8742 // * CallExpr for a MakeStringConstant builtin 8743 // - typeid(T) expressions, as TypeInfoLValues 8744 // - Locals and temporaries 8745 // * MaterializeTemporaryExpr 8746 // * Any Expr, with a CallIndex indicating the function in which the temporary 8747 // was evaluated, for cases where the MaterializeTemporaryExpr is missing 8748 // from the AST (FIXME). 8749 // * A MaterializeTemporaryExpr that has static storage duration, with no 8750 // CallIndex, for a lifetime-extended temporary. 8751 // * The ConstantExpr that is currently being evaluated during evaluation of an 8752 // immediate invocation. 8753 // plus an offset in bytes. 8754 //===----------------------------------------------------------------------===// 8755 namespace { 8756 class LValueExprEvaluator 8757 : public LValueExprEvaluatorBase<LValueExprEvaluator> { 8758 public: 8759 LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) : 8760 LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {} 8761 8762 bool VisitVarDecl(const Expr *E, const VarDecl *VD); 8763 bool VisitUnaryPreIncDec(const UnaryOperator *UO); 8764 8765 bool VisitCallExpr(const CallExpr *E); 8766 bool VisitDeclRefExpr(const DeclRefExpr *E); 8767 bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); } 8768 bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 8769 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); 8770 bool VisitMemberExpr(const MemberExpr *E); 8771 bool VisitStringLiteral(const StringLiteral *E) { 8772 return Success(APValue::LValueBase( 8773 E, 0, Info.getASTContext().getNextStringLiteralVersion())); 8774 } 8775 bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); } 8776 bool VisitCXXTypeidExpr(const CXXTypeidExpr *E); 8777 bool VisitCXXUuidofExpr(const CXXUuidofExpr *E); 8778 bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E); 8779 bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E); 8780 bool VisitUnaryDeref(const UnaryOperator *E); 8781 bool VisitUnaryReal(const UnaryOperator *E); 8782 bool VisitUnaryImag(const UnaryOperator *E); 8783 bool VisitUnaryPreInc(const UnaryOperator *UO) { 8784 return VisitUnaryPreIncDec(UO); 8785 } 8786 bool VisitUnaryPreDec(const UnaryOperator *UO) { 8787 return VisitUnaryPreIncDec(UO); 8788 } 8789 bool VisitBinAssign(const BinaryOperator *BO); 8790 bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO); 8791 8792 bool VisitCastExpr(const CastExpr *E) { 8793 switch (E->getCastKind()) { 8794 default: 8795 return LValueExprEvaluatorBaseTy::VisitCastExpr(E); 8796 8797 case CK_LValueBitCast: 8798 this->CCEDiag(E, diag::note_constexpr_invalid_cast) 8799 << 2 << Info.Ctx.getLangOpts().CPlusPlus; 8800 if (!Visit(E->getSubExpr())) 8801 return false; 8802 Result.Designator.setInvalid(); 8803 return true; 8804 8805 case CK_BaseToDerived: 8806 if (!Visit(E->getSubExpr())) 8807 return false; 8808 return HandleBaseToDerivedCast(Info, E, Result); 8809 8810 case CK_Dynamic: 8811 if (!Visit(E->getSubExpr())) 8812 return false; 8813 return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result); 8814 } 8815 } 8816 }; 8817 } // end anonymous namespace 8818 8819 /// Get an lvalue to a field of a lambda's closure type. 8820 static bool HandleLambdaCapture(EvalInfo &Info, const Expr *E, LValue &Result, 8821 const CXXMethodDecl *MD, const FieldDecl *FD, 8822 bool LValueToRValueConversion) { 8823 // Static lambda function call operators can't have captures. We already 8824 // diagnosed this, so bail out here. 8825 if (MD->isStatic()) { 8826 assert(Info.CurrentCall->This == nullptr && 8827 "This should not be set for a static call operator"); 8828 return false; 8829 } 8830 8831 // Start with 'Result' referring to the complete closure object... 8832 if (MD->isExplicitObjectMemberFunction()) { 8833 // Self may be passed by reference or by value. 8834 const ParmVarDecl *Self = MD->getParamDecl(0); 8835 if (Self->getType()->isReferenceType()) { 8836 APValue *RefValue = Info.getParamSlot(Info.CurrentCall->Arguments, Self); 8837 if (!RefValue->allowConstexprUnknown() || RefValue->hasValue()) 8838 Result.setFrom(Info.Ctx, *RefValue); 8839 } else { 8840 const ParmVarDecl *VD = Info.CurrentCall->Arguments.getOrigParam(Self); 8841 CallStackFrame *Frame = 8842 Info.getCallFrameAndDepth(Info.CurrentCall->Arguments.CallIndex) 8843 .first; 8844 unsigned Version = Info.CurrentCall->Arguments.Version; 8845 Result.set({VD, Frame->Index, Version}); 8846 } 8847 } else 8848 Result = *Info.CurrentCall->This; 8849 8850 // ... then update it to refer to the field of the closure object 8851 // that represents the capture. 8852 if (!HandleLValueMember(Info, E, Result, FD)) 8853 return false; 8854 8855 // And if the field is of reference type (or if we captured '*this' by 8856 // reference), update 'Result' to refer to what 8857 // the field refers to. 8858 if (LValueToRValueConversion) { 8859 APValue RVal; 8860 if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result, RVal)) 8861 return false; 8862 Result.setFrom(Info.Ctx, RVal); 8863 } 8864 return true; 8865 } 8866 8867 /// Evaluate an expression as an lvalue. This can be legitimately called on 8868 /// expressions which are not glvalues, in three cases: 8869 /// * function designators in C, and 8870 /// * "extern void" objects 8871 /// * @selector() expressions in Objective-C 8872 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info, 8873 bool InvalidBaseOK) { 8874 assert(!E->isValueDependent()); 8875 assert(E->isGLValue() || E->getType()->isFunctionType() || 8876 E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E->IgnoreParens())); 8877 return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E); 8878 } 8879 8880 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) { 8881 const NamedDecl *D = E->getDecl(); 8882 if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl, 8883 UnnamedGlobalConstantDecl>(D)) 8884 return Success(cast<ValueDecl>(D)); 8885 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 8886 return VisitVarDecl(E, VD); 8887 if (const BindingDecl *BD = dyn_cast<BindingDecl>(D)) 8888 return Visit(BD->getBinding()); 8889 return Error(E); 8890 } 8891 8892 8893 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) { 8894 // C++23 [expr.const]p8 If we have a reference type allow unknown references 8895 // and pointers. 8896 bool AllowConstexprUnknown = 8897 Info.getLangOpts().CPlusPlus23 && VD->getType()->isReferenceType(); 8898 // If we are within a lambda's call operator, check whether the 'VD' referred 8899 // to within 'E' actually represents a lambda-capture that maps to a 8900 // data-member/field within the closure object, and if so, evaluate to the 8901 // field or what the field refers to. 8902 if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) && 8903 isa<DeclRefExpr>(E) && 8904 cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) { 8905 // We don't always have a complete capture-map when checking or inferring if 8906 // the function call operator meets the requirements of a constexpr function 8907 // - but we don't need to evaluate the captures to determine constexprness 8908 // (dcl.constexpr C++17). 8909 if (Info.checkingPotentialConstantExpression()) 8910 return false; 8911 8912 if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) { 8913 const auto *MD = cast<CXXMethodDecl>(Info.CurrentCall->Callee); 8914 return HandleLambdaCapture(Info, E, Result, MD, FD, 8915 FD->getType()->isReferenceType()); 8916 } 8917 } 8918 8919 CallStackFrame *Frame = nullptr; 8920 unsigned Version = 0; 8921 if (VD->hasLocalStorage()) { 8922 // Only if a local variable was declared in the function currently being 8923 // evaluated, do we expect to be able to find its value in the current 8924 // frame. (Otherwise it was likely declared in an enclosing context and 8925 // could either have a valid evaluatable value (for e.g. a constexpr 8926 // variable) or be ill-formed (and trigger an appropriate evaluation 8927 // diagnostic)). 8928 CallStackFrame *CurrFrame = Info.CurrentCall; 8929 if (CurrFrame->Callee && CurrFrame->Callee->Equals(VD->getDeclContext())) { 8930 // Function parameters are stored in some caller's frame. (Usually the 8931 // immediate caller, but for an inherited constructor they may be more 8932 // distant.) 8933 if (auto *PVD = dyn_cast<ParmVarDecl>(VD)) { 8934 if (CurrFrame->Arguments) { 8935 VD = CurrFrame->Arguments.getOrigParam(PVD); 8936 Frame = 8937 Info.getCallFrameAndDepth(CurrFrame->Arguments.CallIndex).first; 8938 Version = CurrFrame->Arguments.Version; 8939 } 8940 } else { 8941 Frame = CurrFrame; 8942 Version = CurrFrame->getCurrentTemporaryVersion(VD); 8943 } 8944 } 8945 } 8946 8947 if (!VD->getType()->isReferenceType()) { 8948 if (Frame) { 8949 Result.set({VD, Frame->Index, Version}); 8950 return true; 8951 } 8952 return Success(VD); 8953 } 8954 8955 if (!Info.getLangOpts().CPlusPlus11) { 8956 Info.CCEDiag(E, diag::note_constexpr_ltor_non_integral, 1) 8957 << VD << VD->getType(); 8958 Info.Note(VD->getLocation(), diag::note_declared_at); 8959 } 8960 8961 APValue *V; 8962 if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, V)) 8963 return false; 8964 if (!V->hasValue()) { 8965 // FIXME: Is it possible for V to be indeterminate here? If so, we should 8966 // adjust the diagnostic to say that. 8967 // C++23 [expr.const]p8 If we have a variable that is unknown reference 8968 // or pointer it may not have a value but still be usable later on so do not 8969 // diagnose. 8970 if (!Info.checkingPotentialConstantExpression() && !AllowConstexprUnknown) 8971 Info.FFDiag(E, diag::note_constexpr_use_uninit_reference); 8972 8973 // C++23 [expr.const]p8 If we have a variable that is unknown reference or 8974 // pointer try to recover it from the frame and set the result accordingly. 8975 if (VD->getType()->isReferenceType() && AllowConstexprUnknown) { 8976 if (Frame) { 8977 Result.set({VD, Frame->Index, Version}); 8978 return true; 8979 } 8980 return Success(VD); 8981 } 8982 return false; 8983 } 8984 8985 return Success(*V, E); 8986 } 8987 8988 bool LValueExprEvaluator::VisitCallExpr(const CallExpr *E) { 8989 if (!IsConstantEvaluatedBuiltinCall(E)) 8990 return ExprEvaluatorBaseTy::VisitCallExpr(E); 8991 8992 switch (E->getBuiltinCallee()) { 8993 default: 8994 return false; 8995 case Builtin::BIas_const: 8996 case Builtin::BIforward: 8997 case Builtin::BIforward_like: 8998 case Builtin::BImove: 8999 case Builtin::BImove_if_noexcept: 9000 if (cast<FunctionDecl>(E->getCalleeDecl())->isConstexpr()) 9001 return Visit(E->getArg(0)); 9002 break; 9003 } 9004 9005 return ExprEvaluatorBaseTy::VisitCallExpr(E); 9006 } 9007 9008 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr( 9009 const MaterializeTemporaryExpr *E) { 9010 // Walk through the expression to find the materialized temporary itself. 9011 SmallVector<const Expr *, 2> CommaLHSs; 9012 SmallVector<SubobjectAdjustment, 2> Adjustments; 9013 const Expr *Inner = 9014 E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 9015 9016 // If we passed any comma operators, evaluate their LHSs. 9017 for (const Expr *E : CommaLHSs) 9018 if (!EvaluateIgnoredValue(Info, E)) 9019 return false; 9020 9021 // A materialized temporary with static storage duration can appear within the 9022 // result of a constant expression evaluation, so we need to preserve its 9023 // value for use outside this evaluation. 9024 APValue *Value; 9025 if (E->getStorageDuration() == SD_Static) { 9026 if (Info.EvalMode == EvalInfo::EM_ConstantFold) 9027 return false; 9028 // FIXME: What about SD_Thread? 9029 Value = E->getOrCreateValue(true); 9030 *Value = APValue(); 9031 Result.set(E); 9032 } else { 9033 Value = &Info.CurrentCall->createTemporary( 9034 E, Inner->getType(), 9035 E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression 9036 : ScopeKind::Block, 9037 Result); 9038 } 9039 9040 QualType Type = Inner->getType(); 9041 9042 // Materialize the temporary itself. 9043 if (!EvaluateInPlace(*Value, Info, Result, Inner)) { 9044 *Value = APValue(); 9045 return false; 9046 } 9047 9048 // Adjust our lvalue to refer to the desired subobject. 9049 for (unsigned I = Adjustments.size(); I != 0; /**/) { 9050 --I; 9051 switch (Adjustments[I].Kind) { 9052 case SubobjectAdjustment::DerivedToBaseAdjustment: 9053 if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath, 9054 Type, Result)) 9055 return false; 9056 Type = Adjustments[I].DerivedToBase.BasePath->getType(); 9057 break; 9058 9059 case SubobjectAdjustment::FieldAdjustment: 9060 if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field)) 9061 return false; 9062 Type = Adjustments[I].Field->getType(); 9063 break; 9064 9065 case SubobjectAdjustment::MemberPointerAdjustment: 9066 if (!HandleMemberPointerAccess(this->Info, Type, Result, 9067 Adjustments[I].Ptr.RHS)) 9068 return false; 9069 Type = Adjustments[I].Ptr.MPT->getPointeeType(); 9070 break; 9071 } 9072 } 9073 9074 return true; 9075 } 9076 9077 bool 9078 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 9079 assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) && 9080 "lvalue compound literal in c++?"); 9081 // Defer visiting the literal until the lvalue-to-rvalue conversion. We can 9082 // only see this when folding in C, so there's no standard to follow here. 9083 return Success(E); 9084 } 9085 9086 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { 9087 TypeInfoLValue TypeInfo; 9088 9089 if (!E->isPotentiallyEvaluated()) { 9090 if (E->isTypeOperand()) 9091 TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr()); 9092 else 9093 TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr()); 9094 } else { 9095 if (!Info.Ctx.getLangOpts().CPlusPlus20) { 9096 Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic) 9097 << E->getExprOperand()->getType() 9098 << E->getExprOperand()->getSourceRange(); 9099 } 9100 9101 if (!Visit(E->getExprOperand())) 9102 return false; 9103 9104 std::optional<DynamicType> DynType = 9105 ComputeDynamicType(Info, E, Result, AK_TypeId); 9106 if (!DynType) 9107 return false; 9108 9109 TypeInfo = 9110 TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr()); 9111 } 9112 9113 return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType())); 9114 } 9115 9116 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 9117 return Success(E->getGuidDecl()); 9118 } 9119 9120 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) { 9121 // Handle static data members. 9122 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) { 9123 VisitIgnoredBaseExpression(E->getBase()); 9124 return VisitVarDecl(E, VD); 9125 } 9126 9127 // Handle static member functions. 9128 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) { 9129 if (MD->isStatic()) { 9130 VisitIgnoredBaseExpression(E->getBase()); 9131 return Success(MD); 9132 } 9133 } 9134 9135 // Handle non-static data members. 9136 return LValueExprEvaluatorBaseTy::VisitMemberExpr(E); 9137 } 9138 9139 bool LValueExprEvaluator::VisitExtVectorElementExpr( 9140 const ExtVectorElementExpr *E) { 9141 bool Success = true; 9142 9143 APValue Val; 9144 if (!Evaluate(Val, Info, E->getBase())) { 9145 if (!Info.noteFailure()) 9146 return false; 9147 Success = false; 9148 } 9149 9150 SmallVector<uint32_t, 4> Indices; 9151 E->getEncodedElementAccess(Indices); 9152 // FIXME: support accessing more than one element 9153 if (Indices.size() > 1) 9154 return false; 9155 9156 if (Success) { 9157 Result.setFrom(Info.Ctx, Val); 9158 const auto *VT = E->getBase()->getType()->castAs<VectorType>(); 9159 HandleLValueVectorElement(Info, E, Result, VT->getElementType(), 9160 VT->getNumElements(), Indices[0]); 9161 } 9162 9163 return Success; 9164 } 9165 9166 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { 9167 if (E->getBase()->getType()->isSveVLSBuiltinType()) 9168 return Error(E); 9169 9170 APSInt Index; 9171 bool Success = true; 9172 9173 if (const auto *VT = E->getBase()->getType()->getAs<VectorType>()) { 9174 APValue Val; 9175 if (!Evaluate(Val, Info, E->getBase())) { 9176 if (!Info.noteFailure()) 9177 return false; 9178 Success = false; 9179 } 9180 9181 if (!EvaluateInteger(E->getIdx(), Index, Info)) { 9182 if (!Info.noteFailure()) 9183 return false; 9184 Success = false; 9185 } 9186 9187 if (Success) { 9188 Result.setFrom(Info.Ctx, Val); 9189 HandleLValueVectorElement(Info, E, Result, VT->getElementType(), 9190 VT->getNumElements(), Index.getExtValue()); 9191 } 9192 9193 return Success; 9194 } 9195 9196 // C++17's rules require us to evaluate the LHS first, regardless of which 9197 // side is the base. 9198 for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) { 9199 if (SubExpr == E->getBase() ? !evaluatePointer(SubExpr, Result) 9200 : !EvaluateInteger(SubExpr, Index, Info)) { 9201 if (!Info.noteFailure()) 9202 return false; 9203 Success = false; 9204 } 9205 } 9206 9207 return Success && 9208 HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index); 9209 } 9210 9211 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) { 9212 return evaluatePointer(E->getSubExpr(), Result); 9213 } 9214 9215 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { 9216 if (!Visit(E->getSubExpr())) 9217 return false; 9218 // __real is a no-op on scalar lvalues. 9219 if (E->getSubExpr()->getType()->isAnyComplexType()) 9220 HandleLValueComplexElement(Info, E, Result, E->getType(), false); 9221 return true; 9222 } 9223 9224 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 9225 assert(E->getSubExpr()->getType()->isAnyComplexType() && 9226 "lvalue __imag__ on scalar?"); 9227 if (!Visit(E->getSubExpr())) 9228 return false; 9229 HandleLValueComplexElement(Info, E, Result, E->getType(), true); 9230 return true; 9231 } 9232 9233 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) { 9234 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 9235 return Error(UO); 9236 9237 if (!this->Visit(UO->getSubExpr())) 9238 return false; 9239 9240 return handleIncDec( 9241 this->Info, UO, Result, UO->getSubExpr()->getType(), 9242 UO->isIncrementOp(), nullptr); 9243 } 9244 9245 bool LValueExprEvaluator::VisitCompoundAssignOperator( 9246 const CompoundAssignOperator *CAO) { 9247 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 9248 return Error(CAO); 9249 9250 bool Success = true; 9251 9252 // C++17 onwards require that we evaluate the RHS first. 9253 APValue RHS; 9254 if (!Evaluate(RHS, this->Info, CAO->getRHS())) { 9255 if (!Info.noteFailure()) 9256 return false; 9257 Success = false; 9258 } 9259 9260 // The overall lvalue result is the result of evaluating the LHS. 9261 if (!this->Visit(CAO->getLHS()) || !Success) 9262 return false; 9263 9264 return handleCompoundAssignment( 9265 this->Info, CAO, 9266 Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(), 9267 CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS); 9268 } 9269 9270 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) { 9271 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 9272 return Error(E); 9273 9274 bool Success = true; 9275 9276 // C++17 onwards require that we evaluate the RHS first. 9277 APValue NewVal; 9278 if (!Evaluate(NewVal, this->Info, E->getRHS())) { 9279 if (!Info.noteFailure()) 9280 return false; 9281 Success = false; 9282 } 9283 9284 if (!this->Visit(E->getLHS()) || !Success) 9285 return false; 9286 9287 if (Info.getLangOpts().CPlusPlus20 && 9288 !MaybeHandleUnionActiveMemberChange(Info, E->getLHS(), Result)) 9289 return false; 9290 9291 return handleAssignment(this->Info, E, Result, E->getLHS()->getType(), 9292 NewVal); 9293 } 9294 9295 //===----------------------------------------------------------------------===// 9296 // Pointer Evaluation 9297 //===----------------------------------------------------------------------===// 9298 9299 /// Attempts to compute the number of bytes available at the pointer 9300 /// returned by a function with the alloc_size attribute. Returns true if we 9301 /// were successful. Places an unsigned number into `Result`. 9302 /// 9303 /// This expects the given CallExpr to be a call to a function with an 9304 /// alloc_size attribute. 9305 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx, 9306 const CallExpr *Call, 9307 llvm::APInt &Result) { 9308 const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call); 9309 9310 assert(AllocSize && AllocSize->getElemSizeParam().isValid()); 9311 unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex(); 9312 unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType()); 9313 if (Call->getNumArgs() <= SizeArgNo) 9314 return false; 9315 9316 auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) { 9317 Expr::EvalResult ExprResult; 9318 if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects)) 9319 return false; 9320 Into = ExprResult.Val.getInt(); 9321 if (Into.isNegative() || !Into.isIntN(BitsInSizeT)) 9322 return false; 9323 Into = Into.zext(BitsInSizeT); 9324 return true; 9325 }; 9326 9327 APSInt SizeOfElem; 9328 if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem)) 9329 return false; 9330 9331 if (!AllocSize->getNumElemsParam().isValid()) { 9332 Result = std::move(SizeOfElem); 9333 return true; 9334 } 9335 9336 APSInt NumberOfElems; 9337 unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex(); 9338 if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems)) 9339 return false; 9340 9341 bool Overflow; 9342 llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow); 9343 if (Overflow) 9344 return false; 9345 9346 Result = std::move(BytesAvailable); 9347 return true; 9348 } 9349 9350 /// Convenience function. LVal's base must be a call to an alloc_size 9351 /// function. 9352 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx, 9353 const LValue &LVal, 9354 llvm::APInt &Result) { 9355 assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) && 9356 "Can't get the size of a non alloc_size function"); 9357 const auto *Base = LVal.getLValueBase().get<const Expr *>(); 9358 const CallExpr *CE = tryUnwrapAllocSizeCall(Base); 9359 return getBytesReturnedByAllocSizeCall(Ctx, CE, Result); 9360 } 9361 9362 /// Attempts to evaluate the given LValueBase as the result of a call to 9363 /// a function with the alloc_size attribute. If it was possible to do so, this 9364 /// function will return true, make Result's Base point to said function call, 9365 /// and mark Result's Base as invalid. 9366 static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base, 9367 LValue &Result) { 9368 if (Base.isNull()) 9369 return false; 9370 9371 // Because we do no form of static analysis, we only support const variables. 9372 // 9373 // Additionally, we can't support parameters, nor can we support static 9374 // variables (in the latter case, use-before-assign isn't UB; in the former, 9375 // we have no clue what they'll be assigned to). 9376 const auto *VD = 9377 dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>()); 9378 if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified()) 9379 return false; 9380 9381 const Expr *Init = VD->getAnyInitializer(); 9382 if (!Init || Init->getType().isNull()) 9383 return false; 9384 9385 const Expr *E = Init->IgnoreParens(); 9386 if (!tryUnwrapAllocSizeCall(E)) 9387 return false; 9388 9389 // Store E instead of E unwrapped so that the type of the LValue's base is 9390 // what the user wanted. 9391 Result.setInvalid(E); 9392 9393 QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType(); 9394 Result.addUnsizedArray(Info, E, Pointee); 9395 return true; 9396 } 9397 9398 namespace { 9399 class PointerExprEvaluator 9400 : public ExprEvaluatorBase<PointerExprEvaluator> { 9401 LValue &Result; 9402 bool InvalidBaseOK; 9403 9404 bool Success(const Expr *E) { 9405 Result.set(E); 9406 return true; 9407 } 9408 9409 bool evaluateLValue(const Expr *E, LValue &Result) { 9410 return EvaluateLValue(E, Result, Info, InvalidBaseOK); 9411 } 9412 9413 bool evaluatePointer(const Expr *E, LValue &Result) { 9414 return EvaluatePointer(E, Result, Info, InvalidBaseOK); 9415 } 9416 9417 bool visitNonBuiltinCallExpr(const CallExpr *E); 9418 public: 9419 9420 PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK) 9421 : ExprEvaluatorBaseTy(info), Result(Result), 9422 InvalidBaseOK(InvalidBaseOK) {} 9423 9424 bool Success(const APValue &V, const Expr *E) { 9425 Result.setFrom(Info.Ctx, V); 9426 return true; 9427 } 9428 bool ZeroInitialization(const Expr *E) { 9429 Result.setNull(Info.Ctx, E->getType()); 9430 return true; 9431 } 9432 9433 bool VisitBinaryOperator(const BinaryOperator *E); 9434 bool VisitCastExpr(const CastExpr* E); 9435 bool VisitUnaryAddrOf(const UnaryOperator *E); 9436 bool VisitObjCStringLiteral(const ObjCStringLiteral *E) 9437 { return Success(E); } 9438 bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 9439 if (E->isExpressibleAsConstantInitializer()) 9440 return Success(E); 9441 if (Info.noteFailure()) 9442 EvaluateIgnoredValue(Info, E->getSubExpr()); 9443 return Error(E); 9444 } 9445 bool VisitAddrLabelExpr(const AddrLabelExpr *E) 9446 { return Success(E); } 9447 bool VisitCallExpr(const CallExpr *E); 9448 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp); 9449 bool VisitBlockExpr(const BlockExpr *E) { 9450 if (!E->getBlockDecl()->hasCaptures()) 9451 return Success(E); 9452 return Error(E); 9453 } 9454 bool VisitCXXThisExpr(const CXXThisExpr *E) { 9455 auto DiagnoseInvalidUseOfThis = [&] { 9456 if (Info.getLangOpts().CPlusPlus11) 9457 Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit(); 9458 else 9459 Info.FFDiag(E); 9460 }; 9461 9462 // Can't look at 'this' when checking a potential constant expression. 9463 if (Info.checkingPotentialConstantExpression()) 9464 return false; 9465 9466 bool IsExplicitLambda = 9467 isLambdaCallWithExplicitObjectParameter(Info.CurrentCall->Callee); 9468 if (!IsExplicitLambda) { 9469 if (!Info.CurrentCall->This) { 9470 DiagnoseInvalidUseOfThis(); 9471 return false; 9472 } 9473 9474 Result = *Info.CurrentCall->This; 9475 } 9476 9477 if (isLambdaCallOperator(Info.CurrentCall->Callee)) { 9478 // Ensure we actually have captured 'this'. If something was wrong with 9479 // 'this' capture, the error would have been previously reported. 9480 // Otherwise we can be inside of a default initialization of an object 9481 // declared by lambda's body, so no need to return false. 9482 if (!Info.CurrentCall->LambdaThisCaptureField) { 9483 if (IsExplicitLambda && !Info.CurrentCall->This) { 9484 DiagnoseInvalidUseOfThis(); 9485 return false; 9486 } 9487 9488 return true; 9489 } 9490 9491 const auto *MD = cast<CXXMethodDecl>(Info.CurrentCall->Callee); 9492 return HandleLambdaCapture( 9493 Info, E, Result, MD, Info.CurrentCall->LambdaThisCaptureField, 9494 Info.CurrentCall->LambdaThisCaptureField->getType()->isPointerType()); 9495 } 9496 return true; 9497 } 9498 9499 bool VisitCXXNewExpr(const CXXNewExpr *E); 9500 9501 bool VisitSourceLocExpr(const SourceLocExpr *E) { 9502 assert(!E->isIntType() && "SourceLocExpr isn't a pointer type?"); 9503 APValue LValResult = E->EvaluateInContext( 9504 Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr()); 9505 Result.setFrom(Info.Ctx, LValResult); 9506 return true; 9507 } 9508 9509 bool VisitEmbedExpr(const EmbedExpr *E) { 9510 llvm::report_fatal_error("Not yet implemented for ExprConstant.cpp"); 9511 return true; 9512 } 9513 9514 bool VisitSYCLUniqueStableNameExpr(const SYCLUniqueStableNameExpr *E) { 9515 std::string ResultStr = E->ComputeName(Info.Ctx); 9516 9517 QualType CharTy = Info.Ctx.CharTy.withConst(); 9518 APInt Size(Info.Ctx.getTypeSize(Info.Ctx.getSizeType()), 9519 ResultStr.size() + 1); 9520 QualType ArrayTy = Info.Ctx.getConstantArrayType( 9521 CharTy, Size, nullptr, ArraySizeModifier::Normal, 0); 9522 9523 StringLiteral *SL = 9524 StringLiteral::Create(Info.Ctx, ResultStr, StringLiteralKind::Ordinary, 9525 /*Pascal*/ false, ArrayTy, E->getLocation()); 9526 9527 evaluateLValue(SL, Result); 9528 Result.addArray(Info, E, cast<ConstantArrayType>(ArrayTy)); 9529 return true; 9530 } 9531 9532 // FIXME: Missing: @protocol, @selector 9533 }; 9534 } // end anonymous namespace 9535 9536 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info, 9537 bool InvalidBaseOK) { 9538 assert(!E->isValueDependent()); 9539 assert(E->isPRValue() && E->getType()->hasPointerRepresentation()); 9540 return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E); 9541 } 9542 9543 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 9544 if (E->getOpcode() != BO_Add && 9545 E->getOpcode() != BO_Sub) 9546 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 9547 9548 const Expr *PExp = E->getLHS(); 9549 const Expr *IExp = E->getRHS(); 9550 if (IExp->getType()->isPointerType()) 9551 std::swap(PExp, IExp); 9552 9553 bool EvalPtrOK = evaluatePointer(PExp, Result); 9554 if (!EvalPtrOK && !Info.noteFailure()) 9555 return false; 9556 9557 llvm::APSInt Offset; 9558 if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK) 9559 return false; 9560 9561 if (E->getOpcode() == BO_Sub) 9562 negateAsSigned(Offset); 9563 9564 QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType(); 9565 return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset); 9566 } 9567 9568 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { 9569 return evaluateLValue(E->getSubExpr(), Result); 9570 } 9571 9572 // Is the provided decl 'std::source_location::current'? 9573 static bool IsDeclSourceLocationCurrent(const FunctionDecl *FD) { 9574 if (!FD) 9575 return false; 9576 const IdentifierInfo *FnII = FD->getIdentifier(); 9577 if (!FnII || !FnII->isStr("current")) 9578 return false; 9579 9580 const auto *RD = dyn_cast<RecordDecl>(FD->getParent()); 9581 if (!RD) 9582 return false; 9583 9584 const IdentifierInfo *ClassII = RD->getIdentifier(); 9585 return RD->isInStdNamespace() && ClassII && ClassII->isStr("source_location"); 9586 } 9587 9588 bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) { 9589 const Expr *SubExpr = E->getSubExpr(); 9590 9591 switch (E->getCastKind()) { 9592 default: 9593 break; 9594 case CK_BitCast: 9595 case CK_CPointerToObjCPointerCast: 9596 case CK_BlockPointerToObjCPointerCast: 9597 case CK_AnyPointerToBlockPointerCast: 9598 case CK_AddressSpaceConversion: 9599 if (!Visit(SubExpr)) 9600 return false; 9601 // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are 9602 // permitted in constant expressions in C++11. Bitcasts from cv void* are 9603 // also static_casts, but we disallow them as a resolution to DR1312. 9604 if (!E->getType()->isVoidPointerType()) { 9605 // In some circumstances, we permit casting from void* to cv1 T*, when the 9606 // actual pointee object is actually a cv2 T. 9607 bool HasValidResult = !Result.InvalidBase && !Result.Designator.Invalid && 9608 !Result.IsNullPtr; 9609 bool VoidPtrCastMaybeOK = 9610 Result.IsNullPtr || 9611 (HasValidResult && 9612 Info.Ctx.hasSimilarType(Result.Designator.getType(Info.Ctx), 9613 E->getType()->getPointeeType())); 9614 // 1. We'll allow it in std::allocator::allocate, and anything which that 9615 // calls. 9616 // 2. HACK 2022-03-28: Work around an issue with libstdc++'s 9617 // <source_location> header. Fixed in GCC 12 and later (2022-04-??). 9618 // We'll allow it in the body of std::source_location::current. GCC's 9619 // implementation had a parameter of type `void*`, and casts from 9620 // that back to `const __impl*` in its body. 9621 if (VoidPtrCastMaybeOK && 9622 (Info.getStdAllocatorCaller("allocate") || 9623 IsDeclSourceLocationCurrent(Info.CurrentCall->Callee) || 9624 Info.getLangOpts().CPlusPlus26)) { 9625 // Permitted. 9626 } else { 9627 if (SubExpr->getType()->isVoidPointerType() && 9628 Info.getLangOpts().CPlusPlus) { 9629 if (HasValidResult) 9630 CCEDiag(E, diag::note_constexpr_invalid_void_star_cast) 9631 << SubExpr->getType() << Info.getLangOpts().CPlusPlus26 9632 << Result.Designator.getType(Info.Ctx).getCanonicalType() 9633 << E->getType()->getPointeeType(); 9634 else 9635 CCEDiag(E, diag::note_constexpr_invalid_cast) 9636 << 3 << SubExpr->getType(); 9637 } else 9638 CCEDiag(E, diag::note_constexpr_invalid_cast) 9639 << 2 << Info.Ctx.getLangOpts().CPlusPlus; 9640 Result.Designator.setInvalid(); 9641 } 9642 } 9643 if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr) 9644 ZeroInitialization(E); 9645 return true; 9646 9647 case CK_DerivedToBase: 9648 case CK_UncheckedDerivedToBase: 9649 if (!evaluatePointer(E->getSubExpr(), Result)) 9650 return false; 9651 if (!Result.Base && Result.Offset.isZero()) 9652 return true; 9653 9654 // Now figure out the necessary offset to add to the base LV to get from 9655 // the derived class to the base class. 9656 return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()-> 9657 castAs<PointerType>()->getPointeeType(), 9658 Result); 9659 9660 case CK_BaseToDerived: 9661 if (!Visit(E->getSubExpr())) 9662 return false; 9663 if (!Result.Base && Result.Offset.isZero()) 9664 return true; 9665 return HandleBaseToDerivedCast(Info, E, Result); 9666 9667 case CK_Dynamic: 9668 if (!Visit(E->getSubExpr())) 9669 return false; 9670 return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result); 9671 9672 case CK_NullToPointer: 9673 VisitIgnoredValue(E->getSubExpr()); 9674 return ZeroInitialization(E); 9675 9676 case CK_IntegralToPointer: { 9677 CCEDiag(E, diag::note_constexpr_invalid_cast) 9678 << 2 << Info.Ctx.getLangOpts().CPlusPlus; 9679 9680 APValue Value; 9681 if (!EvaluateIntegerOrLValue(SubExpr, Value, Info)) 9682 break; 9683 9684 if (Value.isInt()) { 9685 unsigned Size = Info.Ctx.getTypeSize(E->getType()); 9686 uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue(); 9687 Result.Base = (Expr*)nullptr; 9688 Result.InvalidBase = false; 9689 Result.Offset = CharUnits::fromQuantity(N); 9690 Result.Designator.setInvalid(); 9691 Result.IsNullPtr = false; 9692 return true; 9693 } else { 9694 // In rare instances, the value isn't an lvalue. 9695 // For example, when the value is the difference between the addresses of 9696 // two labels. We reject that as a constant expression because we can't 9697 // compute a valid offset to convert into a pointer. 9698 if (!Value.isLValue()) 9699 return false; 9700 9701 // Cast is of an lvalue, no need to change value. 9702 Result.setFrom(Info.Ctx, Value); 9703 return true; 9704 } 9705 } 9706 9707 case CK_ArrayToPointerDecay: { 9708 if (SubExpr->isGLValue()) { 9709 if (!evaluateLValue(SubExpr, Result)) 9710 return false; 9711 } else { 9712 APValue &Value = Info.CurrentCall->createTemporary( 9713 SubExpr, SubExpr->getType(), ScopeKind::FullExpression, Result); 9714 if (!EvaluateInPlace(Value, Info, Result, SubExpr)) 9715 return false; 9716 } 9717 // The result is a pointer to the first element of the array. 9718 auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType()); 9719 if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) 9720 Result.addArray(Info, E, CAT); 9721 else 9722 Result.addUnsizedArray(Info, E, AT->getElementType()); 9723 return true; 9724 } 9725 9726 case CK_FunctionToPointerDecay: 9727 return evaluateLValue(SubExpr, Result); 9728 9729 case CK_LValueToRValue: { 9730 LValue LVal; 9731 if (!evaluateLValue(E->getSubExpr(), LVal)) 9732 return false; 9733 9734 APValue RVal; 9735 // Note, we use the subexpression's type in order to retain cv-qualifiers. 9736 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(), 9737 LVal, RVal)) 9738 return InvalidBaseOK && 9739 evaluateLValueAsAllocSize(Info, LVal.Base, Result); 9740 return Success(RVal, E); 9741 } 9742 } 9743 9744 return ExprEvaluatorBaseTy::VisitCastExpr(E); 9745 } 9746 9747 static CharUnits GetAlignOfType(const ASTContext &Ctx, QualType T, 9748 UnaryExprOrTypeTrait ExprKind) { 9749 // C++ [expr.alignof]p3: 9750 // When alignof is applied to a reference type, the result is the 9751 // alignment of the referenced type. 9752 T = T.getNonReferenceType(); 9753 9754 if (T.getQualifiers().hasUnaligned()) 9755 return CharUnits::One(); 9756 9757 const bool AlignOfReturnsPreferred = 9758 Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; 9759 9760 // __alignof is defined to return the preferred alignment. 9761 // Before 8, clang returned the preferred alignment for alignof and _Alignof 9762 // as well. 9763 if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) 9764 return Ctx.toCharUnitsFromBits(Ctx.getPreferredTypeAlign(T.getTypePtr())); 9765 // alignof and _Alignof are defined to return the ABI alignment. 9766 else if (ExprKind == UETT_AlignOf) 9767 return Ctx.getTypeAlignInChars(T.getTypePtr()); 9768 else 9769 llvm_unreachable("GetAlignOfType on a non-alignment ExprKind"); 9770 } 9771 9772 CharUnits GetAlignOfExpr(const ASTContext &Ctx, const Expr *E, 9773 UnaryExprOrTypeTrait ExprKind) { 9774 E = E->IgnoreParens(); 9775 9776 // The kinds of expressions that we have special-case logic here for 9777 // should be kept up to date with the special checks for those 9778 // expressions in Sema. 9779 9780 // alignof decl is always accepted, even if it doesn't make sense: we default 9781 // to 1 in those cases. 9782 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 9783 return Ctx.getDeclAlign(DRE->getDecl(), 9784 /*RefAsPointee*/ true); 9785 9786 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) 9787 return Ctx.getDeclAlign(ME->getMemberDecl(), 9788 /*RefAsPointee*/ true); 9789 9790 return GetAlignOfType(Ctx, E->getType(), ExprKind); 9791 } 9792 9793 static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) { 9794 if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>()) 9795 return Info.Ctx.getDeclAlign(VD); 9796 if (const auto *E = Value.Base.dyn_cast<const Expr *>()) 9797 return GetAlignOfExpr(Info.Ctx, E, UETT_AlignOf); 9798 return GetAlignOfType(Info.Ctx, Value.Base.getTypeInfoType(), UETT_AlignOf); 9799 } 9800 9801 /// Evaluate the value of the alignment argument to __builtin_align_{up,down}, 9802 /// __builtin_is_aligned and __builtin_assume_aligned. 9803 static bool getAlignmentArgument(const Expr *E, QualType ForType, 9804 EvalInfo &Info, APSInt &Alignment) { 9805 if (!EvaluateInteger(E, Alignment, Info)) 9806 return false; 9807 if (Alignment < 0 || !Alignment.isPowerOf2()) { 9808 Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment; 9809 return false; 9810 } 9811 unsigned SrcWidth = Info.Ctx.getIntWidth(ForType); 9812 APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1)); 9813 if (APSInt::compareValues(Alignment, MaxValue) > 0) { 9814 Info.FFDiag(E, diag::note_constexpr_alignment_too_big) 9815 << MaxValue << ForType << Alignment; 9816 return false; 9817 } 9818 // Ensure both alignment and source value have the same bit width so that we 9819 // don't assert when computing the resulting value. 9820 APSInt ExtAlignment = 9821 APSInt(Alignment.zextOrTrunc(SrcWidth), /*isUnsigned=*/true); 9822 assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 && 9823 "Alignment should not be changed by ext/trunc"); 9824 Alignment = ExtAlignment; 9825 assert(Alignment.getBitWidth() == SrcWidth); 9826 return true; 9827 } 9828 9829 // To be clear: this happily visits unsupported builtins. Better name welcomed. 9830 bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) { 9831 if (ExprEvaluatorBaseTy::VisitCallExpr(E)) 9832 return true; 9833 9834 if (!(InvalidBaseOK && getAllocSizeAttr(E))) 9835 return false; 9836 9837 Result.setInvalid(E); 9838 QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType(); 9839 Result.addUnsizedArray(Info, E, PointeeTy); 9840 return true; 9841 } 9842 9843 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) { 9844 if (!IsConstantEvaluatedBuiltinCall(E)) 9845 return visitNonBuiltinCallExpr(E); 9846 return VisitBuiltinCallExpr(E, E->getBuiltinCallee()); 9847 } 9848 9849 // Determine if T is a character type for which we guarantee that 9850 // sizeof(T) == 1. 9851 static bool isOneByteCharacterType(QualType T) { 9852 return T->isCharType() || T->isChar8Type(); 9853 } 9854 9855 bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E, 9856 unsigned BuiltinOp) { 9857 if (IsOpaqueConstantCall(E)) 9858 return Success(E); 9859 9860 switch (BuiltinOp) { 9861 case Builtin::BIaddressof: 9862 case Builtin::BI__addressof: 9863 case Builtin::BI__builtin_addressof: 9864 return evaluateLValue(E->getArg(0), Result); 9865 case Builtin::BI__builtin_assume_aligned: { 9866 // We need to be very careful here because: if the pointer does not have the 9867 // asserted alignment, then the behavior is undefined, and undefined 9868 // behavior is non-constant. 9869 if (!evaluatePointer(E->getArg(0), Result)) 9870 return false; 9871 9872 LValue OffsetResult(Result); 9873 APSInt Alignment; 9874 if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info, 9875 Alignment)) 9876 return false; 9877 CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue()); 9878 9879 if (E->getNumArgs() > 2) { 9880 APSInt Offset; 9881 if (!EvaluateInteger(E->getArg(2), Offset, Info)) 9882 return false; 9883 9884 int64_t AdditionalOffset = -Offset.getZExtValue(); 9885 OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset); 9886 } 9887 9888 // If there is a base object, then it must have the correct alignment. 9889 if (OffsetResult.Base) { 9890 CharUnits BaseAlignment = getBaseAlignment(Info, OffsetResult); 9891 9892 if (BaseAlignment < Align) { 9893 Result.Designator.setInvalid(); 9894 CCEDiag(E->getArg(0), diag::note_constexpr_baa_insufficient_alignment) 9895 << 0 << BaseAlignment.getQuantity() << Align.getQuantity(); 9896 return false; 9897 } 9898 } 9899 9900 // The offset must also have the correct alignment. 9901 if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) { 9902 Result.Designator.setInvalid(); 9903 9904 (OffsetResult.Base 9905 ? CCEDiag(E->getArg(0), 9906 diag::note_constexpr_baa_insufficient_alignment) 9907 << 1 9908 : CCEDiag(E->getArg(0), 9909 diag::note_constexpr_baa_value_insufficient_alignment)) 9910 << OffsetResult.Offset.getQuantity() << Align.getQuantity(); 9911 return false; 9912 } 9913 9914 return true; 9915 } 9916 case Builtin::BI__builtin_align_up: 9917 case Builtin::BI__builtin_align_down: { 9918 if (!evaluatePointer(E->getArg(0), Result)) 9919 return false; 9920 APSInt Alignment; 9921 if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info, 9922 Alignment)) 9923 return false; 9924 CharUnits BaseAlignment = getBaseAlignment(Info, Result); 9925 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Result.Offset); 9926 // For align_up/align_down, we can return the same value if the alignment 9927 // is known to be greater or equal to the requested value. 9928 if (PtrAlign.getQuantity() >= Alignment) 9929 return true; 9930 9931 // The alignment could be greater than the minimum at run-time, so we cannot 9932 // infer much about the resulting pointer value. One case is possible: 9933 // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we 9934 // can infer the correct index if the requested alignment is smaller than 9935 // the base alignment so we can perform the computation on the offset. 9936 if (BaseAlignment.getQuantity() >= Alignment) { 9937 assert(Alignment.getBitWidth() <= 64 && 9938 "Cannot handle > 64-bit address-space"); 9939 uint64_t Alignment64 = Alignment.getZExtValue(); 9940 CharUnits NewOffset = CharUnits::fromQuantity( 9941 BuiltinOp == Builtin::BI__builtin_align_down 9942 ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64) 9943 : llvm::alignTo(Result.Offset.getQuantity(), Alignment64)); 9944 Result.adjustOffset(NewOffset - Result.Offset); 9945 // TODO: diagnose out-of-bounds values/only allow for arrays? 9946 return true; 9947 } 9948 // Otherwise, we cannot constant-evaluate the result. 9949 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust) 9950 << Alignment; 9951 return false; 9952 } 9953 case Builtin::BI__builtin_operator_new: 9954 return HandleOperatorNewCall(Info, E, Result); 9955 case Builtin::BI__builtin_launder: 9956 return evaluatePointer(E->getArg(0), Result); 9957 case Builtin::BIstrchr: 9958 case Builtin::BIwcschr: 9959 case Builtin::BImemchr: 9960 case Builtin::BIwmemchr: 9961 if (Info.getLangOpts().CPlusPlus11) 9962 Info.CCEDiag(E, diag::note_constexpr_invalid_function) 9963 << /*isConstexpr*/ 0 << /*isConstructor*/ 0 9964 << Info.Ctx.BuiltinInfo.getQuotedName(BuiltinOp); 9965 else 9966 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); 9967 [[fallthrough]]; 9968 case Builtin::BI__builtin_strchr: 9969 case Builtin::BI__builtin_wcschr: 9970 case Builtin::BI__builtin_memchr: 9971 case Builtin::BI__builtin_char_memchr: 9972 case Builtin::BI__builtin_wmemchr: { 9973 if (!Visit(E->getArg(0))) 9974 return false; 9975 APSInt Desired; 9976 if (!EvaluateInteger(E->getArg(1), Desired, Info)) 9977 return false; 9978 uint64_t MaxLength = uint64_t(-1); 9979 if (BuiltinOp != Builtin::BIstrchr && 9980 BuiltinOp != Builtin::BIwcschr && 9981 BuiltinOp != Builtin::BI__builtin_strchr && 9982 BuiltinOp != Builtin::BI__builtin_wcschr) { 9983 APSInt N; 9984 if (!EvaluateInteger(E->getArg(2), N, Info)) 9985 return false; 9986 MaxLength = N.getZExtValue(); 9987 } 9988 // We cannot find the value if there are no candidates to match against. 9989 if (MaxLength == 0u) 9990 return ZeroInitialization(E); 9991 if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) || 9992 Result.Designator.Invalid) 9993 return false; 9994 QualType CharTy = Result.Designator.getType(Info.Ctx); 9995 bool IsRawByte = BuiltinOp == Builtin::BImemchr || 9996 BuiltinOp == Builtin::BI__builtin_memchr; 9997 assert(IsRawByte || 9998 Info.Ctx.hasSameUnqualifiedType( 9999 CharTy, E->getArg(0)->getType()->getPointeeType())); 10000 // Pointers to const void may point to objects of incomplete type. 10001 if (IsRawByte && CharTy->isIncompleteType()) { 10002 Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy; 10003 return false; 10004 } 10005 // Give up on byte-oriented matching against multibyte elements. 10006 // FIXME: We can compare the bytes in the correct order. 10007 if (IsRawByte && !isOneByteCharacterType(CharTy)) { 10008 Info.FFDiag(E, diag::note_constexpr_memchr_unsupported) 10009 << Info.Ctx.BuiltinInfo.getQuotedName(BuiltinOp) << CharTy; 10010 return false; 10011 } 10012 // Figure out what value we're actually looking for (after converting to 10013 // the corresponding unsigned type if necessary). 10014 uint64_t DesiredVal; 10015 bool StopAtNull = false; 10016 switch (BuiltinOp) { 10017 case Builtin::BIstrchr: 10018 case Builtin::BI__builtin_strchr: 10019 // strchr compares directly to the passed integer, and therefore 10020 // always fails if given an int that is not a char. 10021 if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy, 10022 E->getArg(1)->getType(), 10023 Desired), 10024 Desired)) 10025 return ZeroInitialization(E); 10026 StopAtNull = true; 10027 [[fallthrough]]; 10028 case Builtin::BImemchr: 10029 case Builtin::BI__builtin_memchr: 10030 case Builtin::BI__builtin_char_memchr: 10031 // memchr compares by converting both sides to unsigned char. That's also 10032 // correct for strchr if we get this far (to cope with plain char being 10033 // unsigned in the strchr case). 10034 DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue(); 10035 break; 10036 10037 case Builtin::BIwcschr: 10038 case Builtin::BI__builtin_wcschr: 10039 StopAtNull = true; 10040 [[fallthrough]]; 10041 case Builtin::BIwmemchr: 10042 case Builtin::BI__builtin_wmemchr: 10043 // wcschr and wmemchr are given a wchar_t to look for. Just use it. 10044 DesiredVal = Desired.getZExtValue(); 10045 break; 10046 } 10047 10048 for (; MaxLength; --MaxLength) { 10049 APValue Char; 10050 if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) || 10051 !Char.isInt()) 10052 return false; 10053 if (Char.getInt().getZExtValue() == DesiredVal) 10054 return true; 10055 if (StopAtNull && !Char.getInt()) 10056 break; 10057 if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1)) 10058 return false; 10059 } 10060 // Not found: return nullptr. 10061 return ZeroInitialization(E); 10062 } 10063 10064 case Builtin::BImemcpy: 10065 case Builtin::BImemmove: 10066 case Builtin::BIwmemcpy: 10067 case Builtin::BIwmemmove: 10068 if (Info.getLangOpts().CPlusPlus11) 10069 Info.CCEDiag(E, diag::note_constexpr_invalid_function) 10070 << /*isConstexpr*/ 0 << /*isConstructor*/ 0 10071 << Info.Ctx.BuiltinInfo.getQuotedName(BuiltinOp); 10072 else 10073 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); 10074 [[fallthrough]]; 10075 case Builtin::BI__builtin_memcpy: 10076 case Builtin::BI__builtin_memmove: 10077 case Builtin::BI__builtin_wmemcpy: 10078 case Builtin::BI__builtin_wmemmove: { 10079 bool WChar = BuiltinOp == Builtin::BIwmemcpy || 10080 BuiltinOp == Builtin::BIwmemmove || 10081 BuiltinOp == Builtin::BI__builtin_wmemcpy || 10082 BuiltinOp == Builtin::BI__builtin_wmemmove; 10083 bool Move = BuiltinOp == Builtin::BImemmove || 10084 BuiltinOp == Builtin::BIwmemmove || 10085 BuiltinOp == Builtin::BI__builtin_memmove || 10086 BuiltinOp == Builtin::BI__builtin_wmemmove; 10087 10088 // The result of mem* is the first argument. 10089 if (!Visit(E->getArg(0))) 10090 return false; 10091 LValue Dest = Result; 10092 10093 LValue Src; 10094 if (!EvaluatePointer(E->getArg(1), Src, Info)) 10095 return false; 10096 10097 APSInt N; 10098 if (!EvaluateInteger(E->getArg(2), N, Info)) 10099 return false; 10100 assert(!N.isSigned() && "memcpy and friends take an unsigned size"); 10101 10102 // If the size is zero, we treat this as always being a valid no-op. 10103 // (Even if one of the src and dest pointers is null.) 10104 if (!N) 10105 return true; 10106 10107 // Otherwise, if either of the operands is null, we can't proceed. Don't 10108 // try to determine the type of the copied objects, because there aren't 10109 // any. 10110 if (!Src.Base || !Dest.Base) { 10111 APValue Val; 10112 (!Src.Base ? Src : Dest).moveInto(Val); 10113 Info.FFDiag(E, diag::note_constexpr_memcpy_null) 10114 << Move << WChar << !!Src.Base 10115 << Val.getAsString(Info.Ctx, E->getArg(0)->getType()); 10116 return false; 10117 } 10118 if (Src.Designator.Invalid || Dest.Designator.Invalid) 10119 return false; 10120 10121 // We require that Src and Dest are both pointers to arrays of 10122 // trivially-copyable type. (For the wide version, the designator will be 10123 // invalid if the designated object is not a wchar_t.) 10124 QualType T = Dest.Designator.getType(Info.Ctx); 10125 QualType SrcT = Src.Designator.getType(Info.Ctx); 10126 if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) { 10127 // FIXME: Consider using our bit_cast implementation to support this. 10128 Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T; 10129 return false; 10130 } 10131 if (T->isIncompleteType()) { 10132 Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T; 10133 return false; 10134 } 10135 if (!T.isTriviallyCopyableType(Info.Ctx)) { 10136 Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T; 10137 return false; 10138 } 10139 10140 // Figure out how many T's we're copying. 10141 uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity(); 10142 if (TSize == 0) 10143 return false; 10144 if (!WChar) { 10145 uint64_t Remainder; 10146 llvm::APInt OrigN = N; 10147 llvm::APInt::udivrem(OrigN, TSize, N, Remainder); 10148 if (Remainder) { 10149 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported) 10150 << Move << WChar << 0 << T << toString(OrigN, 10, /*Signed*/false) 10151 << (unsigned)TSize; 10152 return false; 10153 } 10154 } 10155 10156 // Check that the copying will remain within the arrays, just so that we 10157 // can give a more meaningful diagnostic. This implicitly also checks that 10158 // N fits into 64 bits. 10159 uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second; 10160 uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second; 10161 if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) { 10162 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported) 10163 << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T 10164 << toString(N, 10, /*Signed*/false); 10165 return false; 10166 } 10167 uint64_t NElems = N.getZExtValue(); 10168 uint64_t NBytes = NElems * TSize; 10169 10170 // Check for overlap. 10171 int Direction = 1; 10172 if (HasSameBase(Src, Dest)) { 10173 uint64_t SrcOffset = Src.getLValueOffset().getQuantity(); 10174 uint64_t DestOffset = Dest.getLValueOffset().getQuantity(); 10175 if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) { 10176 // Dest is inside the source region. 10177 if (!Move) { 10178 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar; 10179 return false; 10180 } 10181 // For memmove and friends, copy backwards. 10182 if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) || 10183 !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1)) 10184 return false; 10185 Direction = -1; 10186 } else if (!Move && SrcOffset >= DestOffset && 10187 SrcOffset - DestOffset < NBytes) { 10188 // Src is inside the destination region for memcpy: invalid. 10189 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar; 10190 return false; 10191 } 10192 } 10193 10194 while (true) { 10195 APValue Val; 10196 // FIXME: Set WantObjectRepresentation to true if we're copying a 10197 // char-like type? 10198 if (!handleLValueToRValueConversion(Info, E, T, Src, Val) || 10199 !handleAssignment(Info, E, Dest, T, Val)) 10200 return false; 10201 // Do not iterate past the last element; if we're copying backwards, that 10202 // might take us off the start of the array. 10203 if (--NElems == 0) 10204 return true; 10205 if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) || 10206 !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction)) 10207 return false; 10208 } 10209 } 10210 10211 default: 10212 return false; 10213 } 10214 } 10215 10216 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This, 10217 APValue &Result, const InitListExpr *ILE, 10218 QualType AllocType); 10219 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This, 10220 APValue &Result, 10221 const CXXConstructExpr *CCE, 10222 QualType AllocType); 10223 10224 bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) { 10225 if (!Info.getLangOpts().CPlusPlus20) 10226 Info.CCEDiag(E, diag::note_constexpr_new); 10227 10228 // We cannot speculatively evaluate a delete expression. 10229 if (Info.SpeculativeEvaluationDepth) 10230 return false; 10231 10232 FunctionDecl *OperatorNew = E->getOperatorNew(); 10233 QualType AllocType = E->getAllocatedType(); 10234 QualType TargetType = AllocType; 10235 10236 bool IsNothrow = false; 10237 bool IsPlacement = false; 10238 10239 if (E->getNumPlacementArgs() == 1 && 10240 E->getPlacementArg(0)->getType()->isNothrowT()) { 10241 // The only new-placement list we support is of the form (std::nothrow). 10242 // 10243 // FIXME: There is no restriction on this, but it's not clear that any 10244 // other form makes any sense. We get here for cases such as: 10245 // 10246 // new (std::align_val_t{N}) X(int) 10247 // 10248 // (which should presumably be valid only if N is a multiple of 10249 // alignof(int), and in any case can't be deallocated unless N is 10250 // alignof(X) and X has new-extended alignment). 10251 LValue Nothrow; 10252 if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info)) 10253 return false; 10254 IsNothrow = true; 10255 } else if (OperatorNew->isReservedGlobalPlacementOperator()) { 10256 if (Info.CurrentCall->isStdFunction() || Info.getLangOpts().CPlusPlus26 || 10257 (Info.CurrentCall->CanEvalMSConstexpr && 10258 OperatorNew->hasAttr<MSConstexprAttr>())) { 10259 if (!EvaluatePointer(E->getPlacementArg(0), Result, Info)) 10260 return false; 10261 if (Result.Designator.Invalid) 10262 return false; 10263 TargetType = E->getPlacementArg(0)->getType(); 10264 IsPlacement = true; 10265 } else { 10266 Info.FFDiag(E, diag::note_constexpr_new_placement) 10267 << /*C++26 feature*/ 1 << E->getSourceRange(); 10268 return false; 10269 } 10270 } else if (E->getNumPlacementArgs()) { 10271 Info.FFDiag(E, diag::note_constexpr_new_placement) 10272 << /*Unsupported*/ 0 << E->getSourceRange(); 10273 return false; 10274 } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) { 10275 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) 10276 << isa<CXXMethodDecl>(OperatorNew) << OperatorNew; 10277 return false; 10278 } 10279 10280 const Expr *Init = E->getInitializer(); 10281 const InitListExpr *ResizedArrayILE = nullptr; 10282 const CXXConstructExpr *ResizedArrayCCE = nullptr; 10283 bool ValueInit = false; 10284 10285 if (std::optional<const Expr *> ArraySize = E->getArraySize()) { 10286 const Expr *Stripped = *ArraySize; 10287 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped); 10288 Stripped = ICE->getSubExpr()) 10289 if (ICE->getCastKind() != CK_NoOp && 10290 ICE->getCastKind() != CK_IntegralCast) 10291 break; 10292 10293 llvm::APSInt ArrayBound; 10294 if (!EvaluateInteger(Stripped, ArrayBound, Info)) 10295 return false; 10296 10297 // C++ [expr.new]p9: 10298 // The expression is erroneous if: 10299 // -- [...] its value before converting to size_t [or] applying the 10300 // second standard conversion sequence is less than zero 10301 if (ArrayBound.isSigned() && ArrayBound.isNegative()) { 10302 if (IsNothrow) 10303 return ZeroInitialization(E); 10304 10305 Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative) 10306 << ArrayBound << (*ArraySize)->getSourceRange(); 10307 return false; 10308 } 10309 10310 // -- its value is such that the size of the allocated object would 10311 // exceed the implementation-defined limit 10312 if (!Info.CheckArraySize(ArraySize.value()->getExprLoc(), 10313 ConstantArrayType::getNumAddressingBits( 10314 Info.Ctx, AllocType, ArrayBound), 10315 ArrayBound.getZExtValue(), /*Diag=*/!IsNothrow)) { 10316 if (IsNothrow) 10317 return ZeroInitialization(E); 10318 return false; 10319 } 10320 10321 // -- the new-initializer is a braced-init-list and the number of 10322 // array elements for which initializers are provided [...] 10323 // exceeds the number of elements to initialize 10324 if (!Init) { 10325 // No initialization is performed. 10326 } else if (isa<CXXScalarValueInitExpr>(Init) || 10327 isa<ImplicitValueInitExpr>(Init)) { 10328 ValueInit = true; 10329 } else if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) { 10330 ResizedArrayCCE = CCE; 10331 } else { 10332 auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType()); 10333 assert(CAT && "unexpected type for array initializer"); 10334 10335 unsigned Bits = 10336 std::max(CAT->getSizeBitWidth(), ArrayBound.getBitWidth()); 10337 llvm::APInt InitBound = CAT->getSize().zext(Bits); 10338 llvm::APInt AllocBound = ArrayBound.zext(Bits); 10339 if (InitBound.ugt(AllocBound)) { 10340 if (IsNothrow) 10341 return ZeroInitialization(E); 10342 10343 Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small) 10344 << toString(AllocBound, 10, /*Signed=*/false) 10345 << toString(InitBound, 10, /*Signed=*/false) 10346 << (*ArraySize)->getSourceRange(); 10347 return false; 10348 } 10349 10350 // If the sizes differ, we must have an initializer list, and we need 10351 // special handling for this case when we initialize. 10352 if (InitBound != AllocBound) 10353 ResizedArrayILE = cast<InitListExpr>(Init); 10354 } 10355 10356 AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr, 10357 ArraySizeModifier::Normal, 0); 10358 } else { 10359 assert(!AllocType->isArrayType() && 10360 "array allocation with non-array new"); 10361 } 10362 10363 APValue *Val; 10364 if (IsPlacement) { 10365 AccessKinds AK = AK_Construct; 10366 struct FindObjectHandler { 10367 EvalInfo &Info; 10368 const Expr *E; 10369 QualType AllocType; 10370 const AccessKinds AccessKind; 10371 APValue *Value; 10372 10373 typedef bool result_type; 10374 bool failed() { return false; } 10375 bool found(APValue &Subobj, QualType SubobjType) { 10376 // FIXME: Reject the cases where [basic.life]p8 would not permit the 10377 // old name of the object to be used to name the new object. 10378 unsigned SubobjectSize = 1; 10379 unsigned AllocSize = 1; 10380 if (auto *CAT = dyn_cast<ConstantArrayType>(AllocType)) 10381 AllocSize = CAT->getZExtSize(); 10382 if (auto *CAT = dyn_cast<ConstantArrayType>(SubobjType)) 10383 SubobjectSize = CAT->getZExtSize(); 10384 if (SubobjectSize < AllocSize || 10385 !Info.Ctx.hasSimilarType(Info.Ctx.getBaseElementType(SubobjType), 10386 Info.Ctx.getBaseElementType(AllocType))) { 10387 Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) 10388 << SubobjType << AllocType; 10389 return false; 10390 } 10391 Value = &Subobj; 10392 return true; 10393 } 10394 bool found(APSInt &Value, QualType SubobjType) { 10395 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem); 10396 return false; 10397 } 10398 bool found(APFloat &Value, QualType SubobjType) { 10399 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem); 10400 return false; 10401 } 10402 } Handler = {Info, E, AllocType, AK, nullptr}; 10403 10404 CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType); 10405 if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler)) 10406 return false; 10407 10408 Val = Handler.Value; 10409 10410 // [basic.life]p1: 10411 // The lifetime of an object o of type T ends when [...] the storage 10412 // which the object occupies is [...] reused by an object that is not 10413 // nested within o (6.6.2). 10414 *Val = APValue(); 10415 } else { 10416 // Perform the allocation and obtain a pointer to the resulting object. 10417 Val = Info.createHeapAlloc(E, AllocType, Result); 10418 if (!Val) 10419 return false; 10420 } 10421 10422 if (ValueInit) { 10423 ImplicitValueInitExpr VIE(AllocType); 10424 if (!EvaluateInPlace(*Val, Info, Result, &VIE)) 10425 return false; 10426 } else if (ResizedArrayILE) { 10427 if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE, 10428 AllocType)) 10429 return false; 10430 } else if (ResizedArrayCCE) { 10431 if (!EvaluateArrayNewConstructExpr(Info, Result, *Val, ResizedArrayCCE, 10432 AllocType)) 10433 return false; 10434 } else if (Init) { 10435 if (!EvaluateInPlace(*Val, Info, Result, Init)) 10436 return false; 10437 } else if (!handleDefaultInitValue(AllocType, *Val)) { 10438 return false; 10439 } 10440 10441 // Array new returns a pointer to the first element, not a pointer to the 10442 // array. 10443 if (auto *AT = AllocType->getAsArrayTypeUnsafe()) 10444 Result.addArray(Info, E, cast<ConstantArrayType>(AT)); 10445 10446 return true; 10447 } 10448 //===----------------------------------------------------------------------===// 10449 // Member Pointer Evaluation 10450 //===----------------------------------------------------------------------===// 10451 10452 namespace { 10453 class MemberPointerExprEvaluator 10454 : public ExprEvaluatorBase<MemberPointerExprEvaluator> { 10455 MemberPtr &Result; 10456 10457 bool Success(const ValueDecl *D) { 10458 Result = MemberPtr(D); 10459 return true; 10460 } 10461 public: 10462 10463 MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result) 10464 : ExprEvaluatorBaseTy(Info), Result(Result) {} 10465 10466 bool Success(const APValue &V, const Expr *E) { 10467 Result.setFrom(V); 10468 return true; 10469 } 10470 bool ZeroInitialization(const Expr *E) { 10471 return Success((const ValueDecl*)nullptr); 10472 } 10473 10474 bool VisitCastExpr(const CastExpr *E); 10475 bool VisitUnaryAddrOf(const UnaryOperator *E); 10476 }; 10477 } // end anonymous namespace 10478 10479 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, 10480 EvalInfo &Info) { 10481 assert(!E->isValueDependent()); 10482 assert(E->isPRValue() && E->getType()->isMemberPointerType()); 10483 return MemberPointerExprEvaluator(Info, Result).Visit(E); 10484 } 10485 10486 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) { 10487 switch (E->getCastKind()) { 10488 default: 10489 return ExprEvaluatorBaseTy::VisitCastExpr(E); 10490 10491 case CK_NullToMemberPointer: 10492 VisitIgnoredValue(E->getSubExpr()); 10493 return ZeroInitialization(E); 10494 10495 case CK_BaseToDerivedMemberPointer: { 10496 if (!Visit(E->getSubExpr())) 10497 return false; 10498 if (E->path_empty()) 10499 return true; 10500 // Base-to-derived member pointer casts store the path in derived-to-base 10501 // order, so iterate backwards. The CXXBaseSpecifier also provides us with 10502 // the wrong end of the derived->base arc, so stagger the path by one class. 10503 typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter; 10504 for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin()); 10505 PathI != PathE; ++PathI) { 10506 assert(!(*PathI)->isVirtual() && "memptr cast through vbase"); 10507 const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl(); 10508 if (!Result.castToDerived(Derived)) 10509 return Error(E); 10510 } 10511 const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass(); 10512 if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl())) 10513 return Error(E); 10514 return true; 10515 } 10516 10517 case CK_DerivedToBaseMemberPointer: 10518 if (!Visit(E->getSubExpr())) 10519 return false; 10520 for (CastExpr::path_const_iterator PathI = E->path_begin(), 10521 PathE = E->path_end(); PathI != PathE; ++PathI) { 10522 assert(!(*PathI)->isVirtual() && "memptr cast through vbase"); 10523 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); 10524 if (!Result.castToBase(Base)) 10525 return Error(E); 10526 } 10527 return true; 10528 } 10529 } 10530 10531 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { 10532 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a 10533 // member can be formed. 10534 return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl()); 10535 } 10536 10537 //===----------------------------------------------------------------------===// 10538 // Record Evaluation 10539 //===----------------------------------------------------------------------===// 10540 10541 namespace { 10542 class RecordExprEvaluator 10543 : public ExprEvaluatorBase<RecordExprEvaluator> { 10544 const LValue &This; 10545 APValue &Result; 10546 public: 10547 10548 RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result) 10549 : ExprEvaluatorBaseTy(info), This(This), Result(Result) {} 10550 10551 bool Success(const APValue &V, const Expr *E) { 10552 Result = V; 10553 return true; 10554 } 10555 bool ZeroInitialization(const Expr *E) { 10556 return ZeroInitialization(E, E->getType()); 10557 } 10558 bool ZeroInitialization(const Expr *E, QualType T); 10559 10560 bool VisitCallExpr(const CallExpr *E) { 10561 return handleCallExpr(E, Result, &This); 10562 } 10563 bool VisitCastExpr(const CastExpr *E); 10564 bool VisitInitListExpr(const InitListExpr *E); 10565 bool VisitCXXConstructExpr(const CXXConstructExpr *E) { 10566 return VisitCXXConstructExpr(E, E->getType()); 10567 } 10568 bool VisitLambdaExpr(const LambdaExpr *E); 10569 bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 10570 bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T); 10571 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E); 10572 bool VisitBinCmp(const BinaryOperator *E); 10573 bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E); 10574 bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit, 10575 ArrayRef<Expr *> Args); 10576 }; 10577 } 10578 10579 /// Perform zero-initialization on an object of non-union class type. 10580 /// C++11 [dcl.init]p5: 10581 /// To zero-initialize an object or reference of type T means: 10582 /// [...] 10583 /// -- if T is a (possibly cv-qualified) non-union class type, 10584 /// each non-static data member and each base-class subobject is 10585 /// zero-initialized 10586 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E, 10587 const RecordDecl *RD, 10588 const LValue &This, APValue &Result) { 10589 assert(!RD->isUnion() && "Expected non-union class type"); 10590 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 10591 Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0, 10592 std::distance(RD->field_begin(), RD->field_end())); 10593 10594 if (RD->isInvalidDecl()) return false; 10595 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 10596 10597 if (CD) { 10598 unsigned Index = 0; 10599 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(), 10600 End = CD->bases_end(); I != End; ++I, ++Index) { 10601 const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl(); 10602 LValue Subobject = This; 10603 if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout)) 10604 return false; 10605 if (!HandleClassZeroInitialization(Info, E, Base, Subobject, 10606 Result.getStructBase(Index))) 10607 return false; 10608 } 10609 } 10610 10611 for (const auto *I : RD->fields()) { 10612 // -- if T is a reference type, no initialization is performed. 10613 if (I->isUnnamedBitField() || I->getType()->isReferenceType()) 10614 continue; 10615 10616 LValue Subobject = This; 10617 if (!HandleLValueMember(Info, E, Subobject, I, &Layout)) 10618 return false; 10619 10620 ImplicitValueInitExpr VIE(I->getType()); 10621 if (!EvaluateInPlace( 10622 Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE)) 10623 return false; 10624 } 10625 10626 return true; 10627 } 10628 10629 bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) { 10630 const RecordDecl *RD = T->castAs<RecordType>()->getDecl(); 10631 if (RD->isInvalidDecl()) return false; 10632 if (RD->isUnion()) { 10633 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the 10634 // object's first non-static named data member is zero-initialized 10635 RecordDecl::field_iterator I = RD->field_begin(); 10636 while (I != RD->field_end() && (*I)->isUnnamedBitField()) 10637 ++I; 10638 if (I == RD->field_end()) { 10639 Result = APValue((const FieldDecl*)nullptr); 10640 return true; 10641 } 10642 10643 LValue Subobject = This; 10644 if (!HandleLValueMember(Info, E, Subobject, *I)) 10645 return false; 10646 Result = APValue(*I); 10647 ImplicitValueInitExpr VIE(I->getType()); 10648 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE); 10649 } 10650 10651 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) { 10652 Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD; 10653 return false; 10654 } 10655 10656 return HandleClassZeroInitialization(Info, E, RD, This, Result); 10657 } 10658 10659 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) { 10660 switch (E->getCastKind()) { 10661 default: 10662 return ExprEvaluatorBaseTy::VisitCastExpr(E); 10663 10664 case CK_ConstructorConversion: 10665 return Visit(E->getSubExpr()); 10666 10667 case CK_DerivedToBase: 10668 case CK_UncheckedDerivedToBase: { 10669 APValue DerivedObject; 10670 if (!Evaluate(DerivedObject, Info, E->getSubExpr())) 10671 return false; 10672 if (!DerivedObject.isStruct()) 10673 return Error(E->getSubExpr()); 10674 10675 // Derived-to-base rvalue conversion: just slice off the derived part. 10676 APValue *Value = &DerivedObject; 10677 const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl(); 10678 for (CastExpr::path_const_iterator PathI = E->path_begin(), 10679 PathE = E->path_end(); PathI != PathE; ++PathI) { 10680 assert(!(*PathI)->isVirtual() && "record rvalue with virtual base"); 10681 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); 10682 Value = &Value->getStructBase(getBaseIndex(RD, Base)); 10683 RD = Base; 10684 } 10685 Result = *Value; 10686 return true; 10687 } 10688 } 10689 } 10690 10691 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) { 10692 if (E->isTransparent()) 10693 return Visit(E->getInit(0)); 10694 return VisitCXXParenListOrInitListExpr(E, E->inits()); 10695 } 10696 10697 bool RecordExprEvaluator::VisitCXXParenListOrInitListExpr( 10698 const Expr *ExprToVisit, ArrayRef<Expr *> Args) { 10699 const RecordDecl *RD = 10700 ExprToVisit->getType()->castAs<RecordType>()->getDecl(); 10701 if (RD->isInvalidDecl()) return false; 10702 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 10703 auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 10704 10705 EvalInfo::EvaluatingConstructorRAII EvalObj( 10706 Info, 10707 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}, 10708 CXXRD && CXXRD->getNumBases()); 10709 10710 if (RD->isUnion()) { 10711 const FieldDecl *Field; 10712 if (auto *ILE = dyn_cast<InitListExpr>(ExprToVisit)) { 10713 Field = ILE->getInitializedFieldInUnion(); 10714 } else if (auto *PLIE = dyn_cast<CXXParenListInitExpr>(ExprToVisit)) { 10715 Field = PLIE->getInitializedFieldInUnion(); 10716 } else { 10717 llvm_unreachable( 10718 "Expression is neither an init list nor a C++ paren list"); 10719 } 10720 10721 Result = APValue(Field); 10722 if (!Field) 10723 return true; 10724 10725 // If the initializer list for a union does not contain any elements, the 10726 // first element of the union is value-initialized. 10727 // FIXME: The element should be initialized from an initializer list. 10728 // Is this difference ever observable for initializer lists which 10729 // we don't build? 10730 ImplicitValueInitExpr VIE(Field->getType()); 10731 const Expr *InitExpr = Args.empty() ? &VIE : Args[0]; 10732 10733 LValue Subobject = This; 10734 if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout)) 10735 return false; 10736 10737 // Temporarily override This, in case there's a CXXDefaultInitExpr in here. 10738 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, 10739 isa<CXXDefaultInitExpr>(InitExpr)); 10740 10741 if (EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr)) { 10742 if (Field->isBitField()) 10743 return truncateBitfieldValue(Info, InitExpr, Result.getUnionValue(), 10744 Field); 10745 return true; 10746 } 10747 10748 return false; 10749 } 10750 10751 if (!Result.hasValue()) 10752 Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0, 10753 std::distance(RD->field_begin(), RD->field_end())); 10754 unsigned ElementNo = 0; 10755 bool Success = true; 10756 10757 // Initialize base classes. 10758 if (CXXRD && CXXRD->getNumBases()) { 10759 for (const auto &Base : CXXRD->bases()) { 10760 assert(ElementNo < Args.size() && "missing init for base class"); 10761 const Expr *Init = Args[ElementNo]; 10762 10763 LValue Subobject = This; 10764 if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base)) 10765 return false; 10766 10767 APValue &FieldVal = Result.getStructBase(ElementNo); 10768 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) { 10769 if (!Info.noteFailure()) 10770 return false; 10771 Success = false; 10772 } 10773 ++ElementNo; 10774 } 10775 10776 EvalObj.finishedConstructingBases(); 10777 } 10778 10779 // Initialize members. 10780 for (const auto *Field : RD->fields()) { 10781 // Anonymous bit-fields are not considered members of the class for 10782 // purposes of aggregate initialization. 10783 if (Field->isUnnamedBitField()) 10784 continue; 10785 10786 LValue Subobject = This; 10787 10788 bool HaveInit = ElementNo < Args.size(); 10789 10790 // FIXME: Diagnostics here should point to the end of the initializer 10791 // list, not the start. 10792 if (!HandleLValueMember(Info, HaveInit ? Args[ElementNo] : ExprToVisit, 10793 Subobject, Field, &Layout)) 10794 return false; 10795 10796 // Perform an implicit value-initialization for members beyond the end of 10797 // the initializer list. 10798 ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType()); 10799 const Expr *Init = HaveInit ? Args[ElementNo++] : &VIE; 10800 10801 if (Field->getType()->isIncompleteArrayType()) { 10802 if (auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType())) { 10803 if (!CAT->isZeroSize()) { 10804 // Bail out for now. This might sort of "work", but the rest of the 10805 // code isn't really prepared to handle it. 10806 Info.FFDiag(Init, diag::note_constexpr_unsupported_flexible_array); 10807 return false; 10808 } 10809 } 10810 } 10811 10812 // Temporarily override This, in case there's a CXXDefaultInitExpr in here. 10813 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, 10814 isa<CXXDefaultInitExpr>(Init)); 10815 10816 APValue &FieldVal = Result.getStructField(Field->getFieldIndex()); 10817 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) || 10818 (Field->isBitField() && !truncateBitfieldValue(Info, Init, 10819 FieldVal, Field))) { 10820 if (!Info.noteFailure()) 10821 return false; 10822 Success = false; 10823 } 10824 } 10825 10826 EvalObj.finishedConstructingFields(); 10827 10828 return Success; 10829 } 10830 10831 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E, 10832 QualType T) { 10833 // Note that E's type is not necessarily the type of our class here; we might 10834 // be initializing an array element instead. 10835 const CXXConstructorDecl *FD = E->getConstructor(); 10836 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false; 10837 10838 bool ZeroInit = E->requiresZeroInitialization(); 10839 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) { 10840 // If we've already performed zero-initialization, we're already done. 10841 if (Result.hasValue()) 10842 return true; 10843 10844 if (ZeroInit) 10845 return ZeroInitialization(E, T); 10846 10847 return handleDefaultInitValue(T, Result); 10848 } 10849 10850 const FunctionDecl *Definition = nullptr; 10851 auto Body = FD->getBody(Definition); 10852 10853 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body)) 10854 return false; 10855 10856 // Avoid materializing a temporary for an elidable copy/move constructor. 10857 if (E->isElidable() && !ZeroInit) { 10858 // FIXME: This only handles the simplest case, where the source object 10859 // is passed directly as the first argument to the constructor. 10860 // This should also handle stepping though implicit casts and 10861 // and conversion sequences which involve two steps, with a 10862 // conversion operator followed by a converting constructor. 10863 const Expr *SrcObj = E->getArg(0); 10864 assert(SrcObj->isTemporaryObject(Info.Ctx, FD->getParent())); 10865 assert(Info.Ctx.hasSameUnqualifiedType(E->getType(), SrcObj->getType())); 10866 if (const MaterializeTemporaryExpr *ME = 10867 dyn_cast<MaterializeTemporaryExpr>(SrcObj)) 10868 return Visit(ME->getSubExpr()); 10869 } 10870 10871 if (ZeroInit && !ZeroInitialization(E, T)) 10872 return false; 10873 10874 auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs()); 10875 return HandleConstructorCall(E, This, Args, 10876 cast<CXXConstructorDecl>(Definition), Info, 10877 Result); 10878 } 10879 10880 bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr( 10881 const CXXInheritedCtorInitExpr *E) { 10882 if (!Info.CurrentCall) { 10883 assert(Info.checkingPotentialConstantExpression()); 10884 return false; 10885 } 10886 10887 const CXXConstructorDecl *FD = E->getConstructor(); 10888 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) 10889 return false; 10890 10891 const FunctionDecl *Definition = nullptr; 10892 auto Body = FD->getBody(Definition); 10893 10894 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body)) 10895 return false; 10896 10897 return HandleConstructorCall(E, This, Info.CurrentCall->Arguments, 10898 cast<CXXConstructorDecl>(Definition), Info, 10899 Result); 10900 } 10901 10902 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr( 10903 const CXXStdInitializerListExpr *E) { 10904 const ConstantArrayType *ArrayType = 10905 Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 10906 10907 LValue Array; 10908 if (!EvaluateLValue(E->getSubExpr(), Array, Info)) 10909 return false; 10910 10911 assert(ArrayType && "unexpected type for array initializer"); 10912 10913 // Get a pointer to the first element of the array. 10914 Array.addArray(Info, E, ArrayType); 10915 10916 // FIXME: What if the initializer_list type has base classes, etc? 10917 Result = APValue(APValue::UninitStruct(), 0, 2); 10918 Array.moveInto(Result.getStructField(0)); 10919 10920 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 10921 RecordDecl::field_iterator Field = Record->field_begin(); 10922 assert(Field != Record->field_end() && 10923 Info.Ctx.hasSameType(Field->getType()->getPointeeType(), 10924 ArrayType->getElementType()) && 10925 "Expected std::initializer_list first field to be const E *"); 10926 ++Field; 10927 assert(Field != Record->field_end() && 10928 "Expected std::initializer_list to have two fields"); 10929 10930 if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType())) { 10931 // Length. 10932 Result.getStructField(1) = APValue(APSInt(ArrayType->getSize())); 10933 } else { 10934 // End pointer. 10935 assert(Info.Ctx.hasSameType(Field->getType()->getPointeeType(), 10936 ArrayType->getElementType()) && 10937 "Expected std::initializer_list second field to be const E *"); 10938 if (!HandleLValueArrayAdjustment(Info, E, Array, 10939 ArrayType->getElementType(), 10940 ArrayType->getZExtSize())) 10941 return false; 10942 Array.moveInto(Result.getStructField(1)); 10943 } 10944 10945 assert(++Field == Record->field_end() && 10946 "Expected std::initializer_list to only have two fields"); 10947 10948 return true; 10949 } 10950 10951 bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) { 10952 const CXXRecordDecl *ClosureClass = E->getLambdaClass(); 10953 if (ClosureClass->isInvalidDecl()) 10954 return false; 10955 10956 const size_t NumFields = 10957 std::distance(ClosureClass->field_begin(), ClosureClass->field_end()); 10958 10959 assert(NumFields == (size_t)std::distance(E->capture_init_begin(), 10960 E->capture_init_end()) && 10961 "The number of lambda capture initializers should equal the number of " 10962 "fields within the closure type"); 10963 10964 Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields); 10965 // Iterate through all the lambda's closure object's fields and initialize 10966 // them. 10967 auto *CaptureInitIt = E->capture_init_begin(); 10968 bool Success = true; 10969 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(ClosureClass); 10970 for (const auto *Field : ClosureClass->fields()) { 10971 assert(CaptureInitIt != E->capture_init_end()); 10972 // Get the initializer for this field 10973 Expr *const CurFieldInit = *CaptureInitIt++; 10974 10975 // If there is no initializer, either this is a VLA or an error has 10976 // occurred. 10977 if (!CurFieldInit) 10978 return Error(E); 10979 10980 LValue Subobject = This; 10981 10982 if (!HandleLValueMember(Info, E, Subobject, Field, &Layout)) 10983 return false; 10984 10985 APValue &FieldVal = Result.getStructField(Field->getFieldIndex()); 10986 if (!EvaluateInPlace(FieldVal, Info, Subobject, CurFieldInit)) { 10987 if (!Info.keepEvaluatingAfterFailure()) 10988 return false; 10989 Success = false; 10990 } 10991 } 10992 return Success; 10993 } 10994 10995 static bool EvaluateRecord(const Expr *E, const LValue &This, 10996 APValue &Result, EvalInfo &Info) { 10997 assert(!E->isValueDependent()); 10998 assert(E->isPRValue() && E->getType()->isRecordType() && 10999 "can't evaluate expression as a record rvalue"); 11000 return RecordExprEvaluator(Info, This, Result).Visit(E); 11001 } 11002 11003 //===----------------------------------------------------------------------===// 11004 // Temporary Evaluation 11005 // 11006 // Temporaries are represented in the AST as rvalues, but generally behave like 11007 // lvalues. The full-object of which the temporary is a subobject is implicitly 11008 // materialized so that a reference can bind to it. 11009 //===----------------------------------------------------------------------===// 11010 namespace { 11011 class TemporaryExprEvaluator 11012 : public LValueExprEvaluatorBase<TemporaryExprEvaluator> { 11013 public: 11014 TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) : 11015 LValueExprEvaluatorBaseTy(Info, Result, false) {} 11016 11017 /// Visit an expression which constructs the value of this temporary. 11018 bool VisitConstructExpr(const Expr *E) { 11019 APValue &Value = Info.CurrentCall->createTemporary( 11020 E, E->getType(), ScopeKind::FullExpression, Result); 11021 return EvaluateInPlace(Value, Info, Result, E); 11022 } 11023 11024 bool VisitCastExpr(const CastExpr *E) { 11025 switch (E->getCastKind()) { 11026 default: 11027 return LValueExprEvaluatorBaseTy::VisitCastExpr(E); 11028 11029 case CK_ConstructorConversion: 11030 return VisitConstructExpr(E->getSubExpr()); 11031 } 11032 } 11033 bool VisitInitListExpr(const InitListExpr *E) { 11034 return VisitConstructExpr(E); 11035 } 11036 bool VisitCXXConstructExpr(const CXXConstructExpr *E) { 11037 return VisitConstructExpr(E); 11038 } 11039 bool VisitCallExpr(const CallExpr *E) { 11040 return VisitConstructExpr(E); 11041 } 11042 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) { 11043 return VisitConstructExpr(E); 11044 } 11045 bool VisitLambdaExpr(const LambdaExpr *E) { 11046 return VisitConstructExpr(E); 11047 } 11048 }; 11049 } // end anonymous namespace 11050 11051 /// Evaluate an expression of record type as a temporary. 11052 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) { 11053 assert(!E->isValueDependent()); 11054 assert(E->isPRValue() && E->getType()->isRecordType()); 11055 return TemporaryExprEvaluator(Info, Result).Visit(E); 11056 } 11057 11058 //===----------------------------------------------------------------------===// 11059 // Vector Evaluation 11060 //===----------------------------------------------------------------------===// 11061 11062 namespace { 11063 class VectorExprEvaluator 11064 : public ExprEvaluatorBase<VectorExprEvaluator> { 11065 APValue &Result; 11066 public: 11067 11068 VectorExprEvaluator(EvalInfo &info, APValue &Result) 11069 : ExprEvaluatorBaseTy(info), Result(Result) {} 11070 11071 bool Success(ArrayRef<APValue> V, const Expr *E) { 11072 assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements()); 11073 // FIXME: remove this APValue copy. 11074 Result = APValue(V.data(), V.size()); 11075 return true; 11076 } 11077 bool Success(const APValue &V, const Expr *E) { 11078 assert(V.isVector()); 11079 Result = V; 11080 return true; 11081 } 11082 bool ZeroInitialization(const Expr *E); 11083 11084 bool VisitUnaryReal(const UnaryOperator *E) 11085 { return Visit(E->getSubExpr()); } 11086 bool VisitCastExpr(const CastExpr* E); 11087 bool VisitInitListExpr(const InitListExpr *E); 11088 bool VisitUnaryImag(const UnaryOperator *E); 11089 bool VisitBinaryOperator(const BinaryOperator *E); 11090 bool VisitUnaryOperator(const UnaryOperator *E); 11091 bool VisitCallExpr(const CallExpr *E); 11092 bool VisitConvertVectorExpr(const ConvertVectorExpr *E); 11093 bool VisitShuffleVectorExpr(const ShuffleVectorExpr *E); 11094 11095 // FIXME: Missing: conditional operator (for GNU 11096 // conditional select), ExtVectorElementExpr 11097 }; 11098 } // end anonymous namespace 11099 11100 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) { 11101 assert(E->isPRValue() && E->getType()->isVectorType() && 11102 "not a vector prvalue"); 11103 return VectorExprEvaluator(Info, Result).Visit(E); 11104 } 11105 11106 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) { 11107 const VectorType *VTy = E->getType()->castAs<VectorType>(); 11108 unsigned NElts = VTy->getNumElements(); 11109 11110 const Expr *SE = E->getSubExpr(); 11111 QualType SETy = SE->getType(); 11112 11113 switch (E->getCastKind()) { 11114 case CK_VectorSplat: { 11115 APValue Val = APValue(); 11116 if (SETy->isIntegerType()) { 11117 APSInt IntResult; 11118 if (!EvaluateInteger(SE, IntResult, Info)) 11119 return false; 11120 Val = APValue(std::move(IntResult)); 11121 } else if (SETy->isRealFloatingType()) { 11122 APFloat FloatResult(0.0); 11123 if (!EvaluateFloat(SE, FloatResult, Info)) 11124 return false; 11125 Val = APValue(std::move(FloatResult)); 11126 } else { 11127 return Error(E); 11128 } 11129 11130 // Splat and create vector APValue. 11131 SmallVector<APValue, 4> Elts(NElts, Val); 11132 return Success(Elts, E); 11133 } 11134 case CK_BitCast: { 11135 APValue SVal; 11136 if (!Evaluate(SVal, Info, SE)) 11137 return false; 11138 11139 if (!SVal.isInt() && !SVal.isFloat() && !SVal.isVector()) { 11140 // Give up if the input isn't an int, float, or vector. For example, we 11141 // reject "(v4i16)(intptr_t)&a". 11142 Info.FFDiag(E, diag::note_constexpr_invalid_cast) 11143 << 2 << Info.Ctx.getLangOpts().CPlusPlus; 11144 return false; 11145 } 11146 11147 if (!handleRValueToRValueBitCast(Info, Result, SVal, E)) 11148 return false; 11149 11150 return true; 11151 } 11152 case CK_HLSLVectorTruncation: { 11153 APValue Val; 11154 SmallVector<APValue, 4> Elements; 11155 if (!EvaluateVector(SE, Val, Info)) 11156 return Error(E); 11157 for (unsigned I = 0; I < NElts; I++) 11158 Elements.push_back(Val.getVectorElt(I)); 11159 return Success(Elements, E); 11160 } 11161 default: 11162 return ExprEvaluatorBaseTy::VisitCastExpr(E); 11163 } 11164 } 11165 11166 bool 11167 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) { 11168 const VectorType *VT = E->getType()->castAs<VectorType>(); 11169 unsigned NumInits = E->getNumInits(); 11170 unsigned NumElements = VT->getNumElements(); 11171 11172 QualType EltTy = VT->getElementType(); 11173 SmallVector<APValue, 4> Elements; 11174 11175 // The number of initializers can be less than the number of 11176 // vector elements. For OpenCL, this can be due to nested vector 11177 // initialization. For GCC compatibility, missing trailing elements 11178 // should be initialized with zeroes. 11179 unsigned CountInits = 0, CountElts = 0; 11180 while (CountElts < NumElements) { 11181 // Handle nested vector initialization. 11182 if (CountInits < NumInits 11183 && E->getInit(CountInits)->getType()->isVectorType()) { 11184 APValue v; 11185 if (!EvaluateVector(E->getInit(CountInits), v, Info)) 11186 return Error(E); 11187 unsigned vlen = v.getVectorLength(); 11188 for (unsigned j = 0; j < vlen; j++) 11189 Elements.push_back(v.getVectorElt(j)); 11190 CountElts += vlen; 11191 } else if (EltTy->isIntegerType()) { 11192 llvm::APSInt sInt(32); 11193 if (CountInits < NumInits) { 11194 if (!EvaluateInteger(E->getInit(CountInits), sInt, Info)) 11195 return false; 11196 } else // trailing integer zero. 11197 sInt = Info.Ctx.MakeIntValue(0, EltTy); 11198 Elements.push_back(APValue(sInt)); 11199 CountElts++; 11200 } else { 11201 llvm::APFloat f(0.0); 11202 if (CountInits < NumInits) { 11203 if (!EvaluateFloat(E->getInit(CountInits), f, Info)) 11204 return false; 11205 } else // trailing float zero. 11206 f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)); 11207 Elements.push_back(APValue(f)); 11208 CountElts++; 11209 } 11210 CountInits++; 11211 } 11212 return Success(Elements, E); 11213 } 11214 11215 bool 11216 VectorExprEvaluator::ZeroInitialization(const Expr *E) { 11217 const auto *VT = E->getType()->castAs<VectorType>(); 11218 QualType EltTy = VT->getElementType(); 11219 APValue ZeroElement; 11220 if (EltTy->isIntegerType()) 11221 ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy)); 11222 else 11223 ZeroElement = 11224 APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy))); 11225 11226 SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement); 11227 return Success(Elements, E); 11228 } 11229 11230 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 11231 VisitIgnoredValue(E->getSubExpr()); 11232 return ZeroInitialization(E); 11233 } 11234 11235 bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 11236 BinaryOperatorKind Op = E->getOpcode(); 11237 assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp && 11238 "Operation not supported on vector types"); 11239 11240 if (Op == BO_Comma) 11241 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 11242 11243 Expr *LHS = E->getLHS(); 11244 Expr *RHS = E->getRHS(); 11245 11246 assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() && 11247 "Must both be vector types"); 11248 // Checking JUST the types are the same would be fine, except shifts don't 11249 // need to have their types be the same (since you always shift by an int). 11250 assert(LHS->getType()->castAs<VectorType>()->getNumElements() == 11251 E->getType()->castAs<VectorType>()->getNumElements() && 11252 RHS->getType()->castAs<VectorType>()->getNumElements() == 11253 E->getType()->castAs<VectorType>()->getNumElements() && 11254 "All operands must be the same size."); 11255 11256 APValue LHSValue; 11257 APValue RHSValue; 11258 bool LHSOK = Evaluate(LHSValue, Info, LHS); 11259 if (!LHSOK && !Info.noteFailure()) 11260 return false; 11261 if (!Evaluate(RHSValue, Info, RHS) || !LHSOK) 11262 return false; 11263 11264 if (!handleVectorVectorBinOp(Info, E, Op, LHSValue, RHSValue)) 11265 return false; 11266 11267 return Success(LHSValue, E); 11268 } 11269 11270 static std::optional<APValue> handleVectorUnaryOperator(ASTContext &Ctx, 11271 QualType ResultTy, 11272 UnaryOperatorKind Op, 11273 APValue Elt) { 11274 switch (Op) { 11275 case UO_Plus: 11276 // Nothing to do here. 11277 return Elt; 11278 case UO_Minus: 11279 if (Elt.getKind() == APValue::Int) { 11280 Elt.getInt().negate(); 11281 } else { 11282 assert(Elt.getKind() == APValue::Float && 11283 "Vector can only be int or float type"); 11284 Elt.getFloat().changeSign(); 11285 } 11286 return Elt; 11287 case UO_Not: 11288 // This is only valid for integral types anyway, so we don't have to handle 11289 // float here. 11290 assert(Elt.getKind() == APValue::Int && 11291 "Vector operator ~ can only be int"); 11292 Elt.getInt().flipAllBits(); 11293 return Elt; 11294 case UO_LNot: { 11295 if (Elt.getKind() == APValue::Int) { 11296 Elt.getInt() = !Elt.getInt(); 11297 // operator ! on vectors returns -1 for 'truth', so negate it. 11298 Elt.getInt().negate(); 11299 return Elt; 11300 } 11301 assert(Elt.getKind() == APValue::Float && 11302 "Vector can only be int or float type"); 11303 // Float types result in an int of the same size, but -1 for true, or 0 for 11304 // false. 11305 APSInt EltResult{Ctx.getIntWidth(ResultTy), 11306 ResultTy->isUnsignedIntegerType()}; 11307 if (Elt.getFloat().isZero()) 11308 EltResult.setAllBits(); 11309 else 11310 EltResult.clearAllBits(); 11311 11312 return APValue{EltResult}; 11313 } 11314 default: 11315 // FIXME: Implement the rest of the unary operators. 11316 return std::nullopt; 11317 } 11318 } 11319 11320 bool VectorExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 11321 Expr *SubExpr = E->getSubExpr(); 11322 const auto *VD = SubExpr->getType()->castAs<VectorType>(); 11323 // This result element type differs in the case of negating a floating point 11324 // vector, since the result type is the a vector of the equivilant sized 11325 // integer. 11326 const QualType ResultEltTy = VD->getElementType(); 11327 UnaryOperatorKind Op = E->getOpcode(); 11328 11329 APValue SubExprValue; 11330 if (!Evaluate(SubExprValue, Info, SubExpr)) 11331 return false; 11332 11333 // FIXME: This vector evaluator someday needs to be changed to be LValue 11334 // aware/keep LValue information around, rather than dealing with just vector 11335 // types directly. Until then, we cannot handle cases where the operand to 11336 // these unary operators is an LValue. The only case I've been able to see 11337 // cause this is operator++ assigning to a member expression (only valid in 11338 // altivec compilations) in C mode, so this shouldn't limit us too much. 11339 if (SubExprValue.isLValue()) 11340 return false; 11341 11342 assert(SubExprValue.getVectorLength() == VD->getNumElements() && 11343 "Vector length doesn't match type?"); 11344 11345 SmallVector<APValue, 4> ResultElements; 11346 for (unsigned EltNum = 0; EltNum < VD->getNumElements(); ++EltNum) { 11347 std::optional<APValue> Elt = handleVectorUnaryOperator( 11348 Info.Ctx, ResultEltTy, Op, SubExprValue.getVectorElt(EltNum)); 11349 if (!Elt) 11350 return false; 11351 ResultElements.push_back(*Elt); 11352 } 11353 return Success(APValue(ResultElements.data(), ResultElements.size()), E); 11354 } 11355 11356 static bool handleVectorElementCast(EvalInfo &Info, const FPOptions FPO, 11357 const Expr *E, QualType SourceTy, 11358 QualType DestTy, APValue const &Original, 11359 APValue &Result) { 11360 if (SourceTy->isIntegerType()) { 11361 if (DestTy->isRealFloatingType()) { 11362 Result = APValue(APFloat(0.0)); 11363 return HandleIntToFloatCast(Info, E, FPO, SourceTy, Original.getInt(), 11364 DestTy, Result.getFloat()); 11365 } 11366 if (DestTy->isIntegerType()) { 11367 Result = APValue( 11368 HandleIntToIntCast(Info, E, DestTy, SourceTy, Original.getInt())); 11369 return true; 11370 } 11371 } else if (SourceTy->isRealFloatingType()) { 11372 if (DestTy->isRealFloatingType()) { 11373 Result = Original; 11374 return HandleFloatToFloatCast(Info, E, SourceTy, DestTy, 11375 Result.getFloat()); 11376 } 11377 if (DestTy->isIntegerType()) { 11378 Result = APValue(APSInt()); 11379 return HandleFloatToIntCast(Info, E, SourceTy, Original.getFloat(), 11380 DestTy, Result.getInt()); 11381 } 11382 } 11383 11384 Info.FFDiag(E, diag::err_convertvector_constexpr_unsupported_vector_cast) 11385 << SourceTy << DestTy; 11386 return false; 11387 } 11388 11389 bool VectorExprEvaluator::VisitCallExpr(const CallExpr *E) { 11390 if (!IsConstantEvaluatedBuiltinCall(E)) 11391 return ExprEvaluatorBaseTy::VisitCallExpr(E); 11392 11393 switch (E->getBuiltinCallee()) { 11394 default: 11395 return false; 11396 case Builtin::BI__builtin_elementwise_popcount: 11397 case Builtin::BI__builtin_elementwise_bitreverse: { 11398 APValue Source; 11399 if (!EvaluateAsRValue(Info, E->getArg(0), Source)) 11400 return false; 11401 11402 QualType DestEltTy = E->getType()->castAs<VectorType>()->getElementType(); 11403 unsigned SourceLen = Source.getVectorLength(); 11404 SmallVector<APValue, 4> ResultElements; 11405 ResultElements.reserve(SourceLen); 11406 11407 for (unsigned EltNum = 0; EltNum < SourceLen; ++EltNum) { 11408 APSInt Elt = Source.getVectorElt(EltNum).getInt(); 11409 switch (E->getBuiltinCallee()) { 11410 case Builtin::BI__builtin_elementwise_popcount: 11411 ResultElements.push_back(APValue( 11412 APSInt(APInt(Info.Ctx.getIntWidth(DestEltTy), Elt.popcount()), 11413 DestEltTy->isUnsignedIntegerOrEnumerationType()))); 11414 break; 11415 case Builtin::BI__builtin_elementwise_bitreverse: 11416 ResultElements.push_back( 11417 APValue(APSInt(Elt.reverseBits(), 11418 DestEltTy->isUnsignedIntegerOrEnumerationType()))); 11419 break; 11420 } 11421 } 11422 11423 return Success(APValue(ResultElements.data(), ResultElements.size()), E); 11424 } 11425 case Builtin::BI__builtin_elementwise_add_sat: 11426 case Builtin::BI__builtin_elementwise_sub_sat: { 11427 APValue SourceLHS, SourceRHS; 11428 if (!EvaluateAsRValue(Info, E->getArg(0), SourceLHS) || 11429 !EvaluateAsRValue(Info, E->getArg(1), SourceRHS)) 11430 return false; 11431 11432 QualType DestEltTy = E->getType()->castAs<VectorType>()->getElementType(); 11433 unsigned SourceLen = SourceLHS.getVectorLength(); 11434 SmallVector<APValue, 4> ResultElements; 11435 ResultElements.reserve(SourceLen); 11436 11437 for (unsigned EltNum = 0; EltNum < SourceLen; ++EltNum) { 11438 APSInt LHS = SourceLHS.getVectorElt(EltNum).getInt(); 11439 APSInt RHS = SourceRHS.getVectorElt(EltNum).getInt(); 11440 switch (E->getBuiltinCallee()) { 11441 case Builtin::BI__builtin_elementwise_add_sat: 11442 ResultElements.push_back(APValue( 11443 APSInt(LHS.isSigned() ? LHS.sadd_sat(RHS) : RHS.uadd_sat(RHS), 11444 DestEltTy->isUnsignedIntegerOrEnumerationType()))); 11445 break; 11446 case Builtin::BI__builtin_elementwise_sub_sat: 11447 ResultElements.push_back(APValue( 11448 APSInt(LHS.isSigned() ? LHS.ssub_sat(RHS) : RHS.usub_sat(RHS), 11449 DestEltTy->isUnsignedIntegerOrEnumerationType()))); 11450 break; 11451 } 11452 } 11453 11454 return Success(APValue(ResultElements.data(), ResultElements.size()), E); 11455 } 11456 } 11457 } 11458 11459 bool VectorExprEvaluator::VisitConvertVectorExpr(const ConvertVectorExpr *E) { 11460 APValue Source; 11461 QualType SourceVecType = E->getSrcExpr()->getType(); 11462 if (!EvaluateAsRValue(Info, E->getSrcExpr(), Source)) 11463 return false; 11464 11465 QualType DestTy = E->getType()->castAs<VectorType>()->getElementType(); 11466 QualType SourceTy = SourceVecType->castAs<VectorType>()->getElementType(); 11467 11468 const FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()); 11469 11470 auto SourceLen = Source.getVectorLength(); 11471 SmallVector<APValue, 4> ResultElements; 11472 ResultElements.reserve(SourceLen); 11473 for (unsigned EltNum = 0; EltNum < SourceLen; ++EltNum) { 11474 APValue Elt; 11475 if (!handleVectorElementCast(Info, FPO, E, SourceTy, DestTy, 11476 Source.getVectorElt(EltNum), Elt)) 11477 return false; 11478 ResultElements.push_back(std::move(Elt)); 11479 } 11480 11481 return Success(APValue(ResultElements.data(), ResultElements.size()), E); 11482 } 11483 11484 static bool handleVectorShuffle(EvalInfo &Info, const ShuffleVectorExpr *E, 11485 QualType ElemType, APValue const &VecVal1, 11486 APValue const &VecVal2, unsigned EltNum, 11487 APValue &Result) { 11488 unsigned const TotalElementsInInputVector1 = VecVal1.getVectorLength(); 11489 unsigned const TotalElementsInInputVector2 = VecVal2.getVectorLength(); 11490 11491 APSInt IndexVal = E->getShuffleMaskIdx(Info.Ctx, EltNum); 11492 int64_t index = IndexVal.getExtValue(); 11493 // The spec says that -1 should be treated as undef for optimizations, 11494 // but in constexpr we'd have to produce an APValue::Indeterminate, 11495 // which is prohibited from being a top-level constant value. Emit a 11496 // diagnostic instead. 11497 if (index == -1) { 11498 Info.FFDiag( 11499 E, diag::err_shufflevector_minus_one_is_undefined_behavior_constexpr) 11500 << EltNum; 11501 return false; 11502 } 11503 11504 if (index < 0 || 11505 index >= TotalElementsInInputVector1 + TotalElementsInInputVector2) 11506 llvm_unreachable("Out of bounds shuffle index"); 11507 11508 if (index >= TotalElementsInInputVector1) 11509 Result = VecVal2.getVectorElt(index - TotalElementsInInputVector1); 11510 else 11511 Result = VecVal1.getVectorElt(index); 11512 return true; 11513 } 11514 11515 bool VectorExprEvaluator::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) { 11516 APValue VecVal1; 11517 const Expr *Vec1 = E->getExpr(0); 11518 if (!EvaluateAsRValue(Info, Vec1, VecVal1)) 11519 return false; 11520 APValue VecVal2; 11521 const Expr *Vec2 = E->getExpr(1); 11522 if (!EvaluateAsRValue(Info, Vec2, VecVal2)) 11523 return false; 11524 11525 VectorType const *DestVecTy = E->getType()->castAs<VectorType>(); 11526 QualType DestElTy = DestVecTy->getElementType(); 11527 11528 auto TotalElementsInOutputVector = DestVecTy->getNumElements(); 11529 11530 SmallVector<APValue, 4> ResultElements; 11531 ResultElements.reserve(TotalElementsInOutputVector); 11532 for (unsigned EltNum = 0; EltNum < TotalElementsInOutputVector; ++EltNum) { 11533 APValue Elt; 11534 if (!handleVectorShuffle(Info, E, DestElTy, VecVal1, VecVal2, EltNum, Elt)) 11535 return false; 11536 ResultElements.push_back(std::move(Elt)); 11537 } 11538 11539 return Success(APValue(ResultElements.data(), ResultElements.size()), E); 11540 } 11541 11542 //===----------------------------------------------------------------------===// 11543 // Array Evaluation 11544 //===----------------------------------------------------------------------===// 11545 11546 namespace { 11547 class ArrayExprEvaluator 11548 : public ExprEvaluatorBase<ArrayExprEvaluator> { 11549 const LValue &This; 11550 APValue &Result; 11551 public: 11552 11553 ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result) 11554 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {} 11555 11556 bool Success(const APValue &V, const Expr *E) { 11557 assert(V.isArray() && "expected array"); 11558 Result = V; 11559 return true; 11560 } 11561 11562 bool ZeroInitialization(const Expr *E) { 11563 const ConstantArrayType *CAT = 11564 Info.Ctx.getAsConstantArrayType(E->getType()); 11565 if (!CAT) { 11566 if (E->getType()->isIncompleteArrayType()) { 11567 // We can be asked to zero-initialize a flexible array member; this 11568 // is represented as an ImplicitValueInitExpr of incomplete array 11569 // type. In this case, the array has zero elements. 11570 Result = APValue(APValue::UninitArray(), 0, 0); 11571 return true; 11572 } 11573 // FIXME: We could handle VLAs here. 11574 return Error(E); 11575 } 11576 11577 Result = APValue(APValue::UninitArray(), 0, CAT->getZExtSize()); 11578 if (!Result.hasArrayFiller()) 11579 return true; 11580 11581 // Zero-initialize all elements. 11582 LValue Subobject = This; 11583 Subobject.addArray(Info, E, CAT); 11584 ImplicitValueInitExpr VIE(CAT->getElementType()); 11585 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE); 11586 } 11587 11588 bool VisitCallExpr(const CallExpr *E) { 11589 return handleCallExpr(E, Result, &This); 11590 } 11591 bool VisitInitListExpr(const InitListExpr *E, 11592 QualType AllocType = QualType()); 11593 bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E); 11594 bool VisitCXXConstructExpr(const CXXConstructExpr *E); 11595 bool VisitCXXConstructExpr(const CXXConstructExpr *E, 11596 const LValue &Subobject, 11597 APValue *Value, QualType Type); 11598 bool VisitStringLiteral(const StringLiteral *E, 11599 QualType AllocType = QualType()) { 11600 expandStringLiteral(Info, E, Result, AllocType); 11601 return true; 11602 } 11603 bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E); 11604 bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit, 11605 ArrayRef<Expr *> Args, 11606 const Expr *ArrayFiller, 11607 QualType AllocType = QualType()); 11608 }; 11609 } // end anonymous namespace 11610 11611 static bool EvaluateArray(const Expr *E, const LValue &This, 11612 APValue &Result, EvalInfo &Info) { 11613 assert(!E->isValueDependent()); 11614 assert(E->isPRValue() && E->getType()->isArrayType() && 11615 "not an array prvalue"); 11616 return ArrayExprEvaluator(Info, This, Result).Visit(E); 11617 } 11618 11619 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This, 11620 APValue &Result, const InitListExpr *ILE, 11621 QualType AllocType) { 11622 assert(!ILE->isValueDependent()); 11623 assert(ILE->isPRValue() && ILE->getType()->isArrayType() && 11624 "not an array prvalue"); 11625 return ArrayExprEvaluator(Info, This, Result) 11626 .VisitInitListExpr(ILE, AllocType); 11627 } 11628 11629 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This, 11630 APValue &Result, 11631 const CXXConstructExpr *CCE, 11632 QualType AllocType) { 11633 assert(!CCE->isValueDependent()); 11634 assert(CCE->isPRValue() && CCE->getType()->isArrayType() && 11635 "not an array prvalue"); 11636 return ArrayExprEvaluator(Info, This, Result) 11637 .VisitCXXConstructExpr(CCE, This, &Result, AllocType); 11638 } 11639 11640 // Return true iff the given array filler may depend on the element index. 11641 static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) { 11642 // For now, just allow non-class value-initialization and initialization 11643 // lists comprised of them. 11644 if (isa<ImplicitValueInitExpr>(FillerExpr)) 11645 return false; 11646 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) { 11647 for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) { 11648 if (MaybeElementDependentArrayFiller(ILE->getInit(I))) 11649 return true; 11650 } 11651 11652 if (ILE->hasArrayFiller() && 11653 MaybeElementDependentArrayFiller(ILE->getArrayFiller())) 11654 return true; 11655 11656 return false; 11657 } 11658 return true; 11659 } 11660 11661 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E, 11662 QualType AllocType) { 11663 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( 11664 AllocType.isNull() ? E->getType() : AllocType); 11665 if (!CAT) 11666 return Error(E); 11667 11668 // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...] 11669 // an appropriately-typed string literal enclosed in braces. 11670 if (E->isStringLiteralInit()) { 11671 auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParenImpCasts()); 11672 // FIXME: Support ObjCEncodeExpr here once we support it in 11673 // ArrayExprEvaluator generally. 11674 if (!SL) 11675 return Error(E); 11676 return VisitStringLiteral(SL, AllocType); 11677 } 11678 // Any other transparent list init will need proper handling of the 11679 // AllocType; we can't just recurse to the inner initializer. 11680 assert(!E->isTransparent() && 11681 "transparent array list initialization is not string literal init?"); 11682 11683 return VisitCXXParenListOrInitListExpr(E, E->inits(), E->getArrayFiller(), 11684 AllocType); 11685 } 11686 11687 bool ArrayExprEvaluator::VisitCXXParenListOrInitListExpr( 11688 const Expr *ExprToVisit, ArrayRef<Expr *> Args, const Expr *ArrayFiller, 11689 QualType AllocType) { 11690 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( 11691 AllocType.isNull() ? ExprToVisit->getType() : AllocType); 11692 11693 bool Success = true; 11694 11695 assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) && 11696 "zero-initialized array shouldn't have any initialized elts"); 11697 APValue Filler; 11698 if (Result.isArray() && Result.hasArrayFiller()) 11699 Filler = Result.getArrayFiller(); 11700 11701 unsigned NumEltsToInit = Args.size(); 11702 unsigned NumElts = CAT->getZExtSize(); 11703 11704 // If the initializer might depend on the array index, run it for each 11705 // array element. 11706 if (NumEltsToInit != NumElts && 11707 MaybeElementDependentArrayFiller(ArrayFiller)) { 11708 NumEltsToInit = NumElts; 11709 } else { 11710 for (auto *Init : Args) { 11711 if (auto *EmbedS = dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) 11712 NumEltsToInit += EmbedS->getDataElementCount() - 1; 11713 } 11714 if (NumEltsToInit > NumElts) 11715 NumEltsToInit = NumElts; 11716 } 11717 11718 LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: " 11719 << NumEltsToInit << ".\n"); 11720 11721 Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts); 11722 11723 // If the array was previously zero-initialized, preserve the 11724 // zero-initialized values. 11725 if (Filler.hasValue()) { 11726 for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I) 11727 Result.getArrayInitializedElt(I) = Filler; 11728 if (Result.hasArrayFiller()) 11729 Result.getArrayFiller() = Filler; 11730 } 11731 11732 LValue Subobject = This; 11733 Subobject.addArray(Info, ExprToVisit, CAT); 11734 auto Eval = [&](const Expr *Init, unsigned ArrayIndex) { 11735 if (Init->isValueDependent()) 11736 return EvaluateDependentExpr(Init, Info); 11737 11738 if (!EvaluateInPlace(Result.getArrayInitializedElt(ArrayIndex), Info, 11739 Subobject, Init) || 11740 !HandleLValueArrayAdjustment(Info, Init, Subobject, 11741 CAT->getElementType(), 1)) { 11742 if (!Info.noteFailure()) 11743 return false; 11744 Success = false; 11745 } 11746 return true; 11747 }; 11748 unsigned ArrayIndex = 0; 11749 QualType DestTy = CAT->getElementType(); 11750 APSInt Value(Info.Ctx.getTypeSize(DestTy), DestTy->isUnsignedIntegerType()); 11751 for (unsigned Index = 0; Index != NumEltsToInit; ++Index) { 11752 const Expr *Init = Index < Args.size() ? Args[Index] : ArrayFiller; 11753 if (ArrayIndex >= NumEltsToInit) 11754 break; 11755 if (auto *EmbedS = dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) { 11756 StringLiteral *SL = EmbedS->getDataStringLiteral(); 11757 for (unsigned I = EmbedS->getStartingElementPos(), 11758 N = EmbedS->getDataElementCount(); 11759 I != EmbedS->getStartingElementPos() + N; ++I) { 11760 Value = SL->getCodeUnit(I); 11761 if (DestTy->isIntegerType()) { 11762 Result.getArrayInitializedElt(ArrayIndex) = APValue(Value); 11763 } else { 11764 assert(DestTy->isFloatingType() && "unexpected type"); 11765 const FPOptions FPO = 11766 Init->getFPFeaturesInEffect(Info.Ctx.getLangOpts()); 11767 APFloat FValue(0.0); 11768 if (!HandleIntToFloatCast(Info, Init, FPO, EmbedS->getType(), Value, 11769 DestTy, FValue)) 11770 return false; 11771 Result.getArrayInitializedElt(ArrayIndex) = APValue(FValue); 11772 } 11773 ArrayIndex++; 11774 } 11775 } else { 11776 if (!Eval(Init, ArrayIndex)) 11777 return false; 11778 ++ArrayIndex; 11779 } 11780 } 11781 11782 if (!Result.hasArrayFiller()) 11783 return Success; 11784 11785 // If we get here, we have a trivial filler, which we can just evaluate 11786 // once and splat over the rest of the array elements. 11787 assert(ArrayFiller && "no array filler for incomplete init list"); 11788 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, 11789 ArrayFiller) && 11790 Success; 11791 } 11792 11793 bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { 11794 LValue CommonLV; 11795 if (E->getCommonExpr() && 11796 !Evaluate(Info.CurrentCall->createTemporary( 11797 E->getCommonExpr(), 11798 getStorageType(Info.Ctx, E->getCommonExpr()), 11799 ScopeKind::FullExpression, CommonLV), 11800 Info, E->getCommonExpr()->getSourceExpr())) 11801 return false; 11802 11803 auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe()); 11804 11805 uint64_t Elements = CAT->getZExtSize(); 11806 Result = APValue(APValue::UninitArray(), Elements, Elements); 11807 11808 LValue Subobject = This; 11809 Subobject.addArray(Info, E, CAT); 11810 11811 bool Success = true; 11812 for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) { 11813 // C++ [class.temporary]/5 11814 // There are four contexts in which temporaries are destroyed at a different 11815 // point than the end of the full-expression. [...] The second context is 11816 // when a copy constructor is called to copy an element of an array while 11817 // the entire array is copied [...]. In either case, if the constructor has 11818 // one or more default arguments, the destruction of every temporary created 11819 // in a default argument is sequenced before the construction of the next 11820 // array element, if any. 11821 FullExpressionRAII Scope(Info); 11822 11823 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index), 11824 Info, Subobject, E->getSubExpr()) || 11825 !HandleLValueArrayAdjustment(Info, E, Subobject, 11826 CAT->getElementType(), 1)) { 11827 if (!Info.noteFailure()) 11828 return false; 11829 Success = false; 11830 } 11831 11832 // Make sure we run the destructors too. 11833 Scope.destroy(); 11834 } 11835 11836 return Success; 11837 } 11838 11839 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) { 11840 return VisitCXXConstructExpr(E, This, &Result, E->getType()); 11841 } 11842 11843 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E, 11844 const LValue &Subobject, 11845 APValue *Value, 11846 QualType Type) { 11847 bool HadZeroInit = Value->hasValue(); 11848 11849 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) { 11850 unsigned FinalSize = CAT->getZExtSize(); 11851 11852 // Preserve the array filler if we had prior zero-initialization. 11853 APValue Filler = 11854 HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller() 11855 : APValue(); 11856 11857 *Value = APValue(APValue::UninitArray(), 0, FinalSize); 11858 if (FinalSize == 0) 11859 return true; 11860 11861 bool HasTrivialConstructor = CheckTrivialDefaultConstructor( 11862 Info, E->getExprLoc(), E->getConstructor(), 11863 E->requiresZeroInitialization()); 11864 LValue ArrayElt = Subobject; 11865 ArrayElt.addArray(Info, E, CAT); 11866 // We do the whole initialization in two passes, first for just one element, 11867 // then for the whole array. It's possible we may find out we can't do const 11868 // init in the first pass, in which case we avoid allocating a potentially 11869 // large array. We don't do more passes because expanding array requires 11870 // copying the data, which is wasteful. 11871 for (const unsigned N : {1u, FinalSize}) { 11872 unsigned OldElts = Value->getArrayInitializedElts(); 11873 if (OldElts == N) 11874 break; 11875 11876 // Expand the array to appropriate size. 11877 APValue NewValue(APValue::UninitArray(), N, FinalSize); 11878 for (unsigned I = 0; I < OldElts; ++I) 11879 NewValue.getArrayInitializedElt(I).swap( 11880 Value->getArrayInitializedElt(I)); 11881 Value->swap(NewValue); 11882 11883 if (HadZeroInit) 11884 for (unsigned I = OldElts; I < N; ++I) 11885 Value->getArrayInitializedElt(I) = Filler; 11886 11887 if (HasTrivialConstructor && N == FinalSize && FinalSize != 1) { 11888 // If we have a trivial constructor, only evaluate it once and copy 11889 // the result into all the array elements. 11890 APValue &FirstResult = Value->getArrayInitializedElt(0); 11891 for (unsigned I = OldElts; I < FinalSize; ++I) 11892 Value->getArrayInitializedElt(I) = FirstResult; 11893 } else { 11894 for (unsigned I = OldElts; I < N; ++I) { 11895 if (!VisitCXXConstructExpr(E, ArrayElt, 11896 &Value->getArrayInitializedElt(I), 11897 CAT->getElementType()) || 11898 !HandleLValueArrayAdjustment(Info, E, ArrayElt, 11899 CAT->getElementType(), 1)) 11900 return false; 11901 // When checking for const initilization any diagnostic is considered 11902 // an error. 11903 if (Info.EvalStatus.Diag && !Info.EvalStatus.Diag->empty() && 11904 !Info.keepEvaluatingAfterFailure()) 11905 return false; 11906 } 11907 } 11908 } 11909 11910 return true; 11911 } 11912 11913 if (!Type->isRecordType()) 11914 return Error(E); 11915 11916 return RecordExprEvaluator(Info, Subobject, *Value) 11917 .VisitCXXConstructExpr(E, Type); 11918 } 11919 11920 bool ArrayExprEvaluator::VisitCXXParenListInitExpr( 11921 const CXXParenListInitExpr *E) { 11922 assert(E->getType()->isConstantArrayType() && 11923 "Expression result is not a constant array type"); 11924 11925 return VisitCXXParenListOrInitListExpr(E, E->getInitExprs(), 11926 E->getArrayFiller()); 11927 } 11928 11929 //===----------------------------------------------------------------------===// 11930 // Integer Evaluation 11931 // 11932 // As a GNU extension, we support casting pointers to sufficiently-wide integer 11933 // types and back in constant folding. Integer values are thus represented 11934 // either as an integer-valued APValue, or as an lvalue-valued APValue. 11935 //===----------------------------------------------------------------------===// 11936 11937 namespace { 11938 class IntExprEvaluator 11939 : public ExprEvaluatorBase<IntExprEvaluator> { 11940 APValue &Result; 11941 public: 11942 IntExprEvaluator(EvalInfo &info, APValue &result) 11943 : ExprEvaluatorBaseTy(info), Result(result) {} 11944 11945 bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) { 11946 assert(E->getType()->isIntegralOrEnumerationType() && 11947 "Invalid evaluation result."); 11948 assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() && 11949 "Invalid evaluation result."); 11950 assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && 11951 "Invalid evaluation result."); 11952 Result = APValue(SI); 11953 return true; 11954 } 11955 bool Success(const llvm::APSInt &SI, const Expr *E) { 11956 return Success(SI, E, Result); 11957 } 11958 11959 bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) { 11960 assert(E->getType()->isIntegralOrEnumerationType() && 11961 "Invalid evaluation result."); 11962 assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && 11963 "Invalid evaluation result."); 11964 Result = APValue(APSInt(I)); 11965 Result.getInt().setIsUnsigned( 11966 E->getType()->isUnsignedIntegerOrEnumerationType()); 11967 return true; 11968 } 11969 bool Success(const llvm::APInt &I, const Expr *E) { 11970 return Success(I, E, Result); 11971 } 11972 11973 bool Success(uint64_t Value, const Expr *E, APValue &Result) { 11974 assert(E->getType()->isIntegralOrEnumerationType() && 11975 "Invalid evaluation result."); 11976 Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType())); 11977 return true; 11978 } 11979 bool Success(uint64_t Value, const Expr *E) { 11980 return Success(Value, E, Result); 11981 } 11982 11983 bool Success(CharUnits Size, const Expr *E) { 11984 return Success(Size.getQuantity(), E); 11985 } 11986 11987 bool Success(const APValue &V, const Expr *E) { 11988 // C++23 [expr.const]p8 If we have a variable that is unknown reference or 11989 // pointer allow further evaluation of the value. 11990 if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate() || 11991 V.allowConstexprUnknown()) { 11992 Result = V; 11993 return true; 11994 } 11995 return Success(V.getInt(), E); 11996 } 11997 11998 bool ZeroInitialization(const Expr *E) { return Success(0, E); } 11999 12000 friend std::optional<bool> EvaluateBuiltinIsWithinLifetime(IntExprEvaluator &, 12001 const CallExpr *); 12002 12003 //===--------------------------------------------------------------------===// 12004 // Visitor Methods 12005 //===--------------------------------------------------------------------===// 12006 12007 bool VisitIntegerLiteral(const IntegerLiteral *E) { 12008 return Success(E->getValue(), E); 12009 } 12010 bool VisitCharacterLiteral(const CharacterLiteral *E) { 12011 return Success(E->getValue(), E); 12012 } 12013 12014 bool CheckReferencedDecl(const Expr *E, const Decl *D); 12015 bool VisitDeclRefExpr(const DeclRefExpr *E) { 12016 if (CheckReferencedDecl(E, E->getDecl())) 12017 return true; 12018 12019 return ExprEvaluatorBaseTy::VisitDeclRefExpr(E); 12020 } 12021 bool VisitMemberExpr(const MemberExpr *E) { 12022 if (CheckReferencedDecl(E, E->getMemberDecl())) { 12023 VisitIgnoredBaseExpression(E->getBase()); 12024 return true; 12025 } 12026 12027 return ExprEvaluatorBaseTy::VisitMemberExpr(E); 12028 } 12029 12030 bool VisitCallExpr(const CallExpr *E); 12031 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp); 12032 bool VisitBinaryOperator(const BinaryOperator *E); 12033 bool VisitOffsetOfExpr(const OffsetOfExpr *E); 12034 bool VisitUnaryOperator(const UnaryOperator *E); 12035 12036 bool VisitCastExpr(const CastExpr* E); 12037 bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 12038 12039 bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 12040 return Success(E->getValue(), E); 12041 } 12042 12043 bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 12044 return Success(E->getValue(), E); 12045 } 12046 12047 bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { 12048 if (Info.ArrayInitIndex == uint64_t(-1)) { 12049 // We were asked to evaluate this subexpression independent of the 12050 // enclosing ArrayInitLoopExpr. We can't do that. 12051 Info.FFDiag(E); 12052 return false; 12053 } 12054 return Success(Info.ArrayInitIndex, E); 12055 } 12056 12057 // Note, GNU defines __null as an integer, not a pointer. 12058 bool VisitGNUNullExpr(const GNUNullExpr *E) { 12059 return ZeroInitialization(E); 12060 } 12061 12062 bool VisitTypeTraitExpr(const TypeTraitExpr *E) { 12063 return Success(E->getValue(), E); 12064 } 12065 12066 bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 12067 return Success(E->getValue(), E); 12068 } 12069 12070 bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 12071 return Success(E->getValue(), E); 12072 } 12073 12074 bool VisitOpenACCAsteriskSizeExpr(const OpenACCAsteriskSizeExpr *E) { 12075 // This should not be evaluated during constant expr evaluation, as it 12076 // should always be in an unevaluated context (the args list of a 'gang' or 12077 // 'tile' clause). 12078 return Error(E); 12079 } 12080 12081 bool VisitUnaryReal(const UnaryOperator *E); 12082 bool VisitUnaryImag(const UnaryOperator *E); 12083 12084 bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E); 12085 bool VisitSizeOfPackExpr(const SizeOfPackExpr *E); 12086 bool VisitSourceLocExpr(const SourceLocExpr *E); 12087 bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E); 12088 bool VisitRequiresExpr(const RequiresExpr *E); 12089 // FIXME: Missing: array subscript of vector, member of vector 12090 }; 12091 12092 class FixedPointExprEvaluator 12093 : public ExprEvaluatorBase<FixedPointExprEvaluator> { 12094 APValue &Result; 12095 12096 public: 12097 FixedPointExprEvaluator(EvalInfo &info, APValue &result) 12098 : ExprEvaluatorBaseTy(info), Result(result) {} 12099 12100 bool Success(const llvm::APInt &I, const Expr *E) { 12101 return Success( 12102 APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E); 12103 } 12104 12105 bool Success(uint64_t Value, const Expr *E) { 12106 return Success( 12107 APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E); 12108 } 12109 12110 bool Success(const APValue &V, const Expr *E) { 12111 return Success(V.getFixedPoint(), E); 12112 } 12113 12114 bool Success(const APFixedPoint &V, const Expr *E) { 12115 assert(E->getType()->isFixedPointType() && "Invalid evaluation result."); 12116 assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) && 12117 "Invalid evaluation result."); 12118 Result = APValue(V); 12119 return true; 12120 } 12121 12122 bool ZeroInitialization(const Expr *E) { 12123 return Success(0, E); 12124 } 12125 12126 //===--------------------------------------------------------------------===// 12127 // Visitor Methods 12128 //===--------------------------------------------------------------------===// 12129 12130 bool VisitFixedPointLiteral(const FixedPointLiteral *E) { 12131 return Success(E->getValue(), E); 12132 } 12133 12134 bool VisitCastExpr(const CastExpr *E); 12135 bool VisitUnaryOperator(const UnaryOperator *E); 12136 bool VisitBinaryOperator(const BinaryOperator *E); 12137 }; 12138 } // end anonymous namespace 12139 12140 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and 12141 /// produce either the integer value or a pointer. 12142 /// 12143 /// GCC has a heinous extension which folds casts between pointer types and 12144 /// pointer-sized integral types. We support this by allowing the evaluation of 12145 /// an integer rvalue to produce a pointer (represented as an lvalue) instead. 12146 /// Some simple arithmetic on such values is supported (they are treated much 12147 /// like char*). 12148 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, 12149 EvalInfo &Info) { 12150 assert(!E->isValueDependent()); 12151 assert(E->isPRValue() && E->getType()->isIntegralOrEnumerationType()); 12152 return IntExprEvaluator(Info, Result).Visit(E); 12153 } 12154 12155 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) { 12156 assert(!E->isValueDependent()); 12157 APValue Val; 12158 if (!EvaluateIntegerOrLValue(E, Val, Info)) 12159 return false; 12160 if (!Val.isInt()) { 12161 // FIXME: It would be better to produce the diagnostic for casting 12162 // a pointer to an integer. 12163 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 12164 return false; 12165 } 12166 Result = Val.getInt(); 12167 return true; 12168 } 12169 12170 bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) { 12171 APValue Evaluated = E->EvaluateInContext( 12172 Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr()); 12173 return Success(Evaluated, E); 12174 } 12175 12176 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result, 12177 EvalInfo &Info) { 12178 assert(!E->isValueDependent()); 12179 if (E->getType()->isFixedPointType()) { 12180 APValue Val; 12181 if (!FixedPointExprEvaluator(Info, Val).Visit(E)) 12182 return false; 12183 if (!Val.isFixedPoint()) 12184 return false; 12185 12186 Result = Val.getFixedPoint(); 12187 return true; 12188 } 12189 return false; 12190 } 12191 12192 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result, 12193 EvalInfo &Info) { 12194 assert(!E->isValueDependent()); 12195 if (E->getType()->isIntegerType()) { 12196 auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType()); 12197 APSInt Val; 12198 if (!EvaluateInteger(E, Val, Info)) 12199 return false; 12200 Result = APFixedPoint(Val, FXSema); 12201 return true; 12202 } else if (E->getType()->isFixedPointType()) { 12203 return EvaluateFixedPoint(E, Result, Info); 12204 } 12205 return false; 12206 } 12207 12208 /// Check whether the given declaration can be directly converted to an integral 12209 /// rvalue. If not, no diagnostic is produced; there are other things we can 12210 /// try. 12211 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) { 12212 // Enums are integer constant exprs. 12213 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) { 12214 // Check for signedness/width mismatches between E type and ECD value. 12215 bool SameSign = (ECD->getInitVal().isSigned() 12216 == E->getType()->isSignedIntegerOrEnumerationType()); 12217 bool SameWidth = (ECD->getInitVal().getBitWidth() 12218 == Info.Ctx.getIntWidth(E->getType())); 12219 if (SameSign && SameWidth) 12220 return Success(ECD->getInitVal(), E); 12221 else { 12222 // Get rid of mismatch (otherwise Success assertions will fail) 12223 // by computing a new value matching the type of E. 12224 llvm::APSInt Val = ECD->getInitVal(); 12225 if (!SameSign) 12226 Val.setIsSigned(!ECD->getInitVal().isSigned()); 12227 if (!SameWidth) 12228 Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType())); 12229 return Success(Val, E); 12230 } 12231 } 12232 return false; 12233 } 12234 12235 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way 12236 /// as GCC. 12237 GCCTypeClass EvaluateBuiltinClassifyType(QualType T, 12238 const LangOptions &LangOpts) { 12239 assert(!T->isDependentType() && "unexpected dependent type"); 12240 12241 QualType CanTy = T.getCanonicalType(); 12242 12243 switch (CanTy->getTypeClass()) { 12244 #define TYPE(ID, BASE) 12245 #define DEPENDENT_TYPE(ID, BASE) case Type::ID: 12246 #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID: 12247 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID: 12248 #include "clang/AST/TypeNodes.inc" 12249 case Type::Auto: 12250 case Type::DeducedTemplateSpecialization: 12251 llvm_unreachable("unexpected non-canonical or dependent type"); 12252 12253 case Type::Builtin: 12254 switch (cast<BuiltinType>(CanTy)->getKind()) { 12255 #define BUILTIN_TYPE(ID, SINGLETON_ID) 12256 #define SIGNED_TYPE(ID, SINGLETON_ID) \ 12257 case BuiltinType::ID: return GCCTypeClass::Integer; 12258 #define FLOATING_TYPE(ID, SINGLETON_ID) \ 12259 case BuiltinType::ID: return GCCTypeClass::RealFloat; 12260 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \ 12261 case BuiltinType::ID: break; 12262 #include "clang/AST/BuiltinTypes.def" 12263 case BuiltinType::Void: 12264 return GCCTypeClass::Void; 12265 12266 case BuiltinType::Bool: 12267 return GCCTypeClass::Bool; 12268 12269 case BuiltinType::Char_U: 12270 case BuiltinType::UChar: 12271 case BuiltinType::WChar_U: 12272 case BuiltinType::Char8: 12273 case BuiltinType::Char16: 12274 case BuiltinType::Char32: 12275 case BuiltinType::UShort: 12276 case BuiltinType::UInt: 12277 case BuiltinType::ULong: 12278 case BuiltinType::ULongLong: 12279 case BuiltinType::UInt128: 12280 return GCCTypeClass::Integer; 12281 12282 case BuiltinType::UShortAccum: 12283 case BuiltinType::UAccum: 12284 case BuiltinType::ULongAccum: 12285 case BuiltinType::UShortFract: 12286 case BuiltinType::UFract: 12287 case BuiltinType::ULongFract: 12288 case BuiltinType::SatUShortAccum: 12289 case BuiltinType::SatUAccum: 12290 case BuiltinType::SatULongAccum: 12291 case BuiltinType::SatUShortFract: 12292 case BuiltinType::SatUFract: 12293 case BuiltinType::SatULongFract: 12294 return GCCTypeClass::None; 12295 12296 case BuiltinType::NullPtr: 12297 12298 case BuiltinType::ObjCId: 12299 case BuiltinType::ObjCClass: 12300 case BuiltinType::ObjCSel: 12301 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 12302 case BuiltinType::Id: 12303 #include "clang/Basic/OpenCLImageTypes.def" 12304 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 12305 case BuiltinType::Id: 12306 #include "clang/Basic/OpenCLExtensionTypes.def" 12307 case BuiltinType::OCLSampler: 12308 case BuiltinType::OCLEvent: 12309 case BuiltinType::OCLClkEvent: 12310 case BuiltinType::OCLQueue: 12311 case BuiltinType::OCLReserveID: 12312 #define SVE_TYPE(Name, Id, SingletonId) \ 12313 case BuiltinType::Id: 12314 #include "clang/Basic/AArch64SVEACLETypes.def" 12315 #define PPC_VECTOR_TYPE(Name, Id, Size) \ 12316 case BuiltinType::Id: 12317 #include "clang/Basic/PPCTypes.def" 12318 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 12319 #include "clang/Basic/RISCVVTypes.def" 12320 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 12321 #include "clang/Basic/WebAssemblyReferenceTypes.def" 12322 #define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) case BuiltinType::Id: 12323 #include "clang/Basic/AMDGPUTypes.def" 12324 #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case BuiltinType::Id: 12325 #include "clang/Basic/HLSLIntangibleTypes.def" 12326 return GCCTypeClass::None; 12327 12328 case BuiltinType::Dependent: 12329 llvm_unreachable("unexpected dependent type"); 12330 }; 12331 llvm_unreachable("unexpected placeholder type"); 12332 12333 case Type::Enum: 12334 return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer; 12335 12336 case Type::Pointer: 12337 case Type::ConstantArray: 12338 case Type::VariableArray: 12339 case Type::IncompleteArray: 12340 case Type::FunctionNoProto: 12341 case Type::FunctionProto: 12342 case Type::ArrayParameter: 12343 return GCCTypeClass::Pointer; 12344 12345 case Type::MemberPointer: 12346 return CanTy->isMemberDataPointerType() 12347 ? GCCTypeClass::PointerToDataMember 12348 : GCCTypeClass::PointerToMemberFunction; 12349 12350 case Type::Complex: 12351 return GCCTypeClass::Complex; 12352 12353 case Type::Record: 12354 return CanTy->isUnionType() ? GCCTypeClass::Union 12355 : GCCTypeClass::ClassOrStruct; 12356 12357 case Type::Atomic: 12358 // GCC classifies _Atomic T the same as T. 12359 return EvaluateBuiltinClassifyType( 12360 CanTy->castAs<AtomicType>()->getValueType(), LangOpts); 12361 12362 case Type::Vector: 12363 case Type::ExtVector: 12364 return GCCTypeClass::Vector; 12365 12366 case Type::BlockPointer: 12367 case Type::ConstantMatrix: 12368 case Type::ObjCObject: 12369 case Type::ObjCInterface: 12370 case Type::ObjCObjectPointer: 12371 case Type::Pipe: 12372 case Type::HLSLAttributedResource: 12373 // Classify all other types that don't fit into the regular 12374 // classification the same way. 12375 return GCCTypeClass::None; 12376 12377 case Type::BitInt: 12378 return GCCTypeClass::BitInt; 12379 12380 case Type::LValueReference: 12381 case Type::RValueReference: 12382 llvm_unreachable("invalid type for expression"); 12383 } 12384 12385 llvm_unreachable("unexpected type class"); 12386 } 12387 12388 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way 12389 /// as GCC. 12390 static GCCTypeClass 12391 EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) { 12392 // If no argument was supplied, default to None. This isn't 12393 // ideal, however it is what gcc does. 12394 if (E->getNumArgs() == 0) 12395 return GCCTypeClass::None; 12396 12397 // FIXME: Bizarrely, GCC treats a call with more than one argument as not 12398 // being an ICE, but still folds it to a constant using the type of the first 12399 // argument. 12400 return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts); 12401 } 12402 12403 /// EvaluateBuiltinConstantPForLValue - Determine the result of 12404 /// __builtin_constant_p when applied to the given pointer. 12405 /// 12406 /// A pointer is only "constant" if it is null (or a pointer cast to integer) 12407 /// or it points to the first character of a string literal. 12408 static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) { 12409 APValue::LValueBase Base = LV.getLValueBase(); 12410 if (Base.isNull()) { 12411 // A null base is acceptable. 12412 return true; 12413 } else if (const Expr *E = Base.dyn_cast<const Expr *>()) { 12414 if (!isa<StringLiteral>(E)) 12415 return false; 12416 return LV.getLValueOffset().isZero(); 12417 } else if (Base.is<TypeInfoLValue>()) { 12418 // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to 12419 // evaluate to true. 12420 return true; 12421 } else { 12422 // Any other base is not constant enough for GCC. 12423 return false; 12424 } 12425 } 12426 12427 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to 12428 /// GCC as we can manage. 12429 static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) { 12430 // This evaluation is not permitted to have side-effects, so evaluate it in 12431 // a speculative evaluation context. 12432 SpeculativeEvaluationRAII SpeculativeEval(Info); 12433 12434 // Constant-folding is always enabled for the operand of __builtin_constant_p 12435 // (even when the enclosing evaluation context otherwise requires a strict 12436 // language-specific constant expression). 12437 FoldConstant Fold(Info, true); 12438 12439 QualType ArgType = Arg->getType(); 12440 12441 // __builtin_constant_p always has one operand. The rules which gcc follows 12442 // are not precisely documented, but are as follows: 12443 // 12444 // - If the operand is of integral, floating, complex or enumeration type, 12445 // and can be folded to a known value of that type, it returns 1. 12446 // - If the operand can be folded to a pointer to the first character 12447 // of a string literal (or such a pointer cast to an integral type) 12448 // or to a null pointer or an integer cast to a pointer, it returns 1. 12449 // 12450 // Otherwise, it returns 0. 12451 // 12452 // FIXME: GCC also intends to return 1 for literals of aggregate types, but 12453 // its support for this did not work prior to GCC 9 and is not yet well 12454 // understood. 12455 if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() || 12456 ArgType->isAnyComplexType() || ArgType->isPointerType() || 12457 ArgType->isNullPtrType()) { 12458 APValue V; 12459 if (!::EvaluateAsRValue(Info, Arg, V) || Info.EvalStatus.HasSideEffects) { 12460 Fold.keepDiagnostics(); 12461 return false; 12462 } 12463 12464 // For a pointer (possibly cast to integer), there are special rules. 12465 if (V.getKind() == APValue::LValue) 12466 return EvaluateBuiltinConstantPForLValue(V); 12467 12468 // Otherwise, any constant value is good enough. 12469 return V.hasValue(); 12470 } 12471 12472 // Anything else isn't considered to be sufficiently constant. 12473 return false; 12474 } 12475 12476 /// Retrieves the "underlying object type" of the given expression, 12477 /// as used by __builtin_object_size. 12478 static QualType getObjectType(APValue::LValueBase B) { 12479 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { 12480 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 12481 return VD->getType(); 12482 } else if (const Expr *E = B.dyn_cast<const Expr*>()) { 12483 if (isa<CompoundLiteralExpr>(E)) 12484 return E->getType(); 12485 } else if (B.is<TypeInfoLValue>()) { 12486 return B.getTypeInfoType(); 12487 } else if (B.is<DynamicAllocLValue>()) { 12488 return B.getDynamicAllocType(); 12489 } 12490 12491 return QualType(); 12492 } 12493 12494 /// A more selective version of E->IgnoreParenCasts for 12495 /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only 12496 /// to change the type of E. 12497 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo` 12498 /// 12499 /// Always returns an RValue with a pointer representation. 12500 static const Expr *ignorePointerCastsAndParens(const Expr *E) { 12501 assert(E->isPRValue() && E->getType()->hasPointerRepresentation()); 12502 12503 const Expr *NoParens = E->IgnoreParens(); 12504 const auto *Cast = dyn_cast<CastExpr>(NoParens); 12505 if (Cast == nullptr) 12506 return NoParens; 12507 12508 // We only conservatively allow a few kinds of casts, because this code is 12509 // inherently a simple solution that seeks to support the common case. 12510 auto CastKind = Cast->getCastKind(); 12511 if (CastKind != CK_NoOp && CastKind != CK_BitCast && 12512 CastKind != CK_AddressSpaceConversion) 12513 return NoParens; 12514 12515 const auto *SubExpr = Cast->getSubExpr(); 12516 if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isPRValue()) 12517 return NoParens; 12518 return ignorePointerCastsAndParens(SubExpr); 12519 } 12520 12521 /// Checks to see if the given LValue's Designator is at the end of the LValue's 12522 /// record layout. e.g. 12523 /// struct { struct { int a, b; } fst, snd; } obj; 12524 /// obj.fst // no 12525 /// obj.snd // yes 12526 /// obj.fst.a // no 12527 /// obj.fst.b // no 12528 /// obj.snd.a // no 12529 /// obj.snd.b // yes 12530 /// 12531 /// Please note: this function is specialized for how __builtin_object_size 12532 /// views "objects". 12533 /// 12534 /// If this encounters an invalid RecordDecl or otherwise cannot determine the 12535 /// correct result, it will always return true. 12536 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) { 12537 assert(!LVal.Designator.Invalid); 12538 12539 auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) { 12540 const RecordDecl *Parent = FD->getParent(); 12541 Invalid = Parent->isInvalidDecl(); 12542 if (Invalid || Parent->isUnion()) 12543 return true; 12544 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent); 12545 return FD->getFieldIndex() + 1 == Layout.getFieldCount(); 12546 }; 12547 12548 auto &Base = LVal.getLValueBase(); 12549 if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) { 12550 if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 12551 bool Invalid; 12552 if (!IsLastOrInvalidFieldDecl(FD, Invalid)) 12553 return Invalid; 12554 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) { 12555 for (auto *FD : IFD->chain()) { 12556 bool Invalid; 12557 if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid)) 12558 return Invalid; 12559 } 12560 } 12561 } 12562 12563 unsigned I = 0; 12564 QualType BaseType = getType(Base); 12565 if (LVal.Designator.FirstEntryIsAnUnsizedArray) { 12566 // If we don't know the array bound, conservatively assume we're looking at 12567 // the final array element. 12568 ++I; 12569 if (BaseType->isIncompleteArrayType()) 12570 BaseType = Ctx.getAsArrayType(BaseType)->getElementType(); 12571 else 12572 BaseType = BaseType->castAs<PointerType>()->getPointeeType(); 12573 } 12574 12575 for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) { 12576 const auto &Entry = LVal.Designator.Entries[I]; 12577 if (BaseType->isArrayType()) { 12578 // Because __builtin_object_size treats arrays as objects, we can ignore 12579 // the index iff this is the last array in the Designator. 12580 if (I + 1 == E) 12581 return true; 12582 const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType)); 12583 uint64_t Index = Entry.getAsArrayIndex(); 12584 if (Index + 1 != CAT->getZExtSize()) 12585 return false; 12586 BaseType = CAT->getElementType(); 12587 } else if (BaseType->isAnyComplexType()) { 12588 const auto *CT = BaseType->castAs<ComplexType>(); 12589 uint64_t Index = Entry.getAsArrayIndex(); 12590 if (Index != 1) 12591 return false; 12592 BaseType = CT->getElementType(); 12593 } else if (auto *FD = getAsField(Entry)) { 12594 bool Invalid; 12595 if (!IsLastOrInvalidFieldDecl(FD, Invalid)) 12596 return Invalid; 12597 BaseType = FD->getType(); 12598 } else { 12599 assert(getAsBaseClass(Entry) && "Expecting cast to a base class"); 12600 return false; 12601 } 12602 } 12603 return true; 12604 } 12605 12606 /// Tests to see if the LValue has a user-specified designator (that isn't 12607 /// necessarily valid). Note that this always returns 'true' if the LValue has 12608 /// an unsized array as its first designator entry, because there's currently no 12609 /// way to tell if the user typed *foo or foo[0]. 12610 static bool refersToCompleteObject(const LValue &LVal) { 12611 if (LVal.Designator.Invalid) 12612 return false; 12613 12614 if (!LVal.Designator.Entries.empty()) 12615 return LVal.Designator.isMostDerivedAnUnsizedArray(); 12616 12617 if (!LVal.InvalidBase) 12618 return true; 12619 12620 // If `E` is a MemberExpr, then the first part of the designator is hiding in 12621 // the LValueBase. 12622 const auto *E = LVal.Base.dyn_cast<const Expr *>(); 12623 return !E || !isa<MemberExpr>(E); 12624 } 12625 12626 /// Attempts to detect a user writing into a piece of memory that's impossible 12627 /// to figure out the size of by just using types. 12628 static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) { 12629 const SubobjectDesignator &Designator = LVal.Designator; 12630 // Notes: 12631 // - Users can only write off of the end when we have an invalid base. Invalid 12632 // bases imply we don't know where the memory came from. 12633 // - We used to be a bit more aggressive here; we'd only be conservative if 12634 // the array at the end was flexible, or if it had 0 or 1 elements. This 12635 // broke some common standard library extensions (PR30346), but was 12636 // otherwise seemingly fine. It may be useful to reintroduce this behavior 12637 // with some sort of list. OTOH, it seems that GCC is always 12638 // conservative with the last element in structs (if it's an array), so our 12639 // current behavior is more compatible than an explicit list approach would 12640 // be. 12641 auto isFlexibleArrayMember = [&] { 12642 using FAMKind = LangOptions::StrictFlexArraysLevelKind; 12643 FAMKind StrictFlexArraysLevel = 12644 Ctx.getLangOpts().getStrictFlexArraysLevel(); 12645 12646 if (Designator.isMostDerivedAnUnsizedArray()) 12647 return true; 12648 12649 if (StrictFlexArraysLevel == FAMKind::Default) 12650 return true; 12651 12652 if (Designator.getMostDerivedArraySize() == 0 && 12653 StrictFlexArraysLevel != FAMKind::IncompleteOnly) 12654 return true; 12655 12656 if (Designator.getMostDerivedArraySize() == 1 && 12657 StrictFlexArraysLevel == FAMKind::OneZeroOrIncomplete) 12658 return true; 12659 12660 return false; 12661 }; 12662 12663 return LVal.InvalidBase && 12664 Designator.Entries.size() == Designator.MostDerivedPathLength && 12665 Designator.MostDerivedIsArrayElement && isFlexibleArrayMember() && 12666 isDesignatorAtObjectEnd(Ctx, LVal); 12667 } 12668 12669 /// Converts the given APInt to CharUnits, assuming the APInt is unsigned. 12670 /// Fails if the conversion would cause loss of precision. 12671 static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int, 12672 CharUnits &Result) { 12673 auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max(); 12674 if (Int.ugt(CharUnitsMax)) 12675 return false; 12676 Result = CharUnits::fromQuantity(Int.getZExtValue()); 12677 return true; 12678 } 12679 12680 /// If we're evaluating the object size of an instance of a struct that 12681 /// contains a flexible array member, add the size of the initializer. 12682 static void addFlexibleArrayMemberInitSize(EvalInfo &Info, const QualType &T, 12683 const LValue &LV, CharUnits &Size) { 12684 if (!T.isNull() && T->isStructureType() && 12685 T->getAsStructureType()->getDecl()->hasFlexibleArrayMember()) 12686 if (const auto *V = LV.getLValueBase().dyn_cast<const ValueDecl *>()) 12687 if (const auto *VD = dyn_cast<VarDecl>(V)) 12688 if (VD->hasInit()) 12689 Size += VD->getFlexibleArrayInitChars(Info.Ctx); 12690 } 12691 12692 /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will 12693 /// determine how many bytes exist from the beginning of the object to either 12694 /// the end of the current subobject, or the end of the object itself, depending 12695 /// on what the LValue looks like + the value of Type. 12696 /// 12697 /// If this returns false, the value of Result is undefined. 12698 static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc, 12699 unsigned Type, const LValue &LVal, 12700 CharUnits &EndOffset) { 12701 bool DetermineForCompleteObject = refersToCompleteObject(LVal); 12702 12703 auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) { 12704 if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType()) 12705 return false; 12706 12707 if (Ty->isReferenceType()) 12708 Ty = Ty.getNonReferenceType(); 12709 12710 return HandleSizeof(Info, ExprLoc, Ty, Result); 12711 }; 12712 12713 // We want to evaluate the size of the entire object. This is a valid fallback 12714 // for when Type=1 and the designator is invalid, because we're asked for an 12715 // upper-bound. 12716 if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) { 12717 // Type=3 wants a lower bound, so we can't fall back to this. 12718 if (Type == 3 && !DetermineForCompleteObject) 12719 return false; 12720 12721 llvm::APInt APEndOffset; 12722 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) && 12723 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset)) 12724 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset); 12725 12726 if (LVal.InvalidBase) 12727 return false; 12728 12729 QualType BaseTy = getObjectType(LVal.getLValueBase()); 12730 const bool Ret = CheckedHandleSizeof(BaseTy, EndOffset); 12731 addFlexibleArrayMemberInitSize(Info, BaseTy, LVal, EndOffset); 12732 return Ret; 12733 } 12734 12735 // We want to evaluate the size of a subobject. 12736 const SubobjectDesignator &Designator = LVal.Designator; 12737 12738 // The following is a moderately common idiom in C: 12739 // 12740 // struct Foo { int a; char c[1]; }; 12741 // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar)); 12742 // strcpy(&F->c[0], Bar); 12743 // 12744 // In order to not break too much legacy code, we need to support it. 12745 if (isUserWritingOffTheEnd(Info.Ctx, LVal)) { 12746 // If we can resolve this to an alloc_size call, we can hand that back, 12747 // because we know for certain how many bytes there are to write to. 12748 llvm::APInt APEndOffset; 12749 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) && 12750 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset)) 12751 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset); 12752 12753 // If we cannot determine the size of the initial allocation, then we can't 12754 // given an accurate upper-bound. However, we are still able to give 12755 // conservative lower-bounds for Type=3. 12756 if (Type == 1) 12757 return false; 12758 } 12759 12760 CharUnits BytesPerElem; 12761 if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem)) 12762 return false; 12763 12764 // According to the GCC documentation, we want the size of the subobject 12765 // denoted by the pointer. But that's not quite right -- what we actually 12766 // want is the size of the immediately-enclosing array, if there is one. 12767 int64_t ElemsRemaining; 12768 if (Designator.MostDerivedIsArrayElement && 12769 Designator.Entries.size() == Designator.MostDerivedPathLength) { 12770 uint64_t ArraySize = Designator.getMostDerivedArraySize(); 12771 uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex(); 12772 ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex; 12773 } else { 12774 ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1; 12775 } 12776 12777 EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining; 12778 return true; 12779 } 12780 12781 /// Tries to evaluate the __builtin_object_size for @p E. If successful, 12782 /// returns true and stores the result in @p Size. 12783 /// 12784 /// If @p WasError is non-null, this will report whether the failure to evaluate 12785 /// is to be treated as an Error in IntExprEvaluator. 12786 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type, 12787 EvalInfo &Info, uint64_t &Size) { 12788 // Determine the denoted object. 12789 LValue LVal; 12790 { 12791 // The operand of __builtin_object_size is never evaluated for side-effects. 12792 // If there are any, but we can determine the pointed-to object anyway, then 12793 // ignore the side-effects. 12794 SpeculativeEvaluationRAII SpeculativeEval(Info); 12795 IgnoreSideEffectsRAII Fold(Info); 12796 12797 if (E->isGLValue()) { 12798 // It's possible for us to be given GLValues if we're called via 12799 // Expr::tryEvaluateObjectSize. 12800 APValue RVal; 12801 if (!EvaluateAsRValue(Info, E, RVal)) 12802 return false; 12803 LVal.setFrom(Info.Ctx, RVal); 12804 } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info, 12805 /*InvalidBaseOK=*/true)) 12806 return false; 12807 } 12808 12809 // If we point to before the start of the object, there are no accessible 12810 // bytes. 12811 if (LVal.getLValueOffset().isNegative()) { 12812 Size = 0; 12813 return true; 12814 } 12815 12816 CharUnits EndOffset; 12817 if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset)) 12818 return false; 12819 12820 // If we've fallen outside of the end offset, just pretend there's nothing to 12821 // write to/read from. 12822 if (EndOffset <= LVal.getLValueOffset()) 12823 Size = 0; 12824 else 12825 Size = (EndOffset - LVal.getLValueOffset()).getQuantity(); 12826 return true; 12827 } 12828 12829 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) { 12830 if (!IsConstantEvaluatedBuiltinCall(E)) 12831 return ExprEvaluatorBaseTy::VisitCallExpr(E); 12832 return VisitBuiltinCallExpr(E, E->getBuiltinCallee()); 12833 } 12834 12835 static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info, 12836 APValue &Val, APSInt &Alignment) { 12837 QualType SrcTy = E->getArg(0)->getType(); 12838 if (!getAlignmentArgument(E->getArg(1), SrcTy, Info, Alignment)) 12839 return false; 12840 // Even though we are evaluating integer expressions we could get a pointer 12841 // argument for the __builtin_is_aligned() case. 12842 if (SrcTy->isPointerType()) { 12843 LValue Ptr; 12844 if (!EvaluatePointer(E->getArg(0), Ptr, Info)) 12845 return false; 12846 Ptr.moveInto(Val); 12847 } else if (!SrcTy->isIntegralOrEnumerationType()) { 12848 Info.FFDiag(E->getArg(0)); 12849 return false; 12850 } else { 12851 APSInt SrcInt; 12852 if (!EvaluateInteger(E->getArg(0), SrcInt, Info)) 12853 return false; 12854 assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() && 12855 "Bit widths must be the same"); 12856 Val = APValue(SrcInt); 12857 } 12858 assert(Val.hasValue()); 12859 return true; 12860 } 12861 12862 bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E, 12863 unsigned BuiltinOp) { 12864 switch (BuiltinOp) { 12865 default: 12866 return false; 12867 12868 case Builtin::BI__builtin_dynamic_object_size: 12869 case Builtin::BI__builtin_object_size: { 12870 // The type was checked when we built the expression. 12871 unsigned Type = 12872 E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue(); 12873 assert(Type <= 3 && "unexpected type"); 12874 12875 uint64_t Size; 12876 if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size)) 12877 return Success(Size, E); 12878 12879 if (E->getArg(0)->HasSideEffects(Info.Ctx)) 12880 return Success((Type & 2) ? 0 : -1, E); 12881 12882 // Expression had no side effects, but we couldn't statically determine the 12883 // size of the referenced object. 12884 switch (Info.EvalMode) { 12885 case EvalInfo::EM_ConstantExpression: 12886 case EvalInfo::EM_ConstantFold: 12887 case EvalInfo::EM_IgnoreSideEffects: 12888 // Leave it to IR generation. 12889 return Error(E); 12890 case EvalInfo::EM_ConstantExpressionUnevaluated: 12891 // Reduce it to a constant now. 12892 return Success((Type & 2) ? 0 : -1, E); 12893 } 12894 12895 llvm_unreachable("unexpected EvalMode"); 12896 } 12897 12898 case Builtin::BI__builtin_os_log_format_buffer_size: { 12899 analyze_os_log::OSLogBufferLayout Layout; 12900 analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout); 12901 return Success(Layout.size().getQuantity(), E); 12902 } 12903 12904 case Builtin::BI__builtin_is_aligned: { 12905 APValue Src; 12906 APSInt Alignment; 12907 if (!getBuiltinAlignArguments(E, Info, Src, Alignment)) 12908 return false; 12909 if (Src.isLValue()) { 12910 // If we evaluated a pointer, check the minimum known alignment. 12911 LValue Ptr; 12912 Ptr.setFrom(Info.Ctx, Src); 12913 CharUnits BaseAlignment = getBaseAlignment(Info, Ptr); 12914 CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Ptr.Offset); 12915 // We can return true if the known alignment at the computed offset is 12916 // greater than the requested alignment. 12917 assert(PtrAlign.isPowerOfTwo()); 12918 assert(Alignment.isPowerOf2()); 12919 if (PtrAlign.getQuantity() >= Alignment) 12920 return Success(1, E); 12921 // If the alignment is not known to be sufficient, some cases could still 12922 // be aligned at run time. However, if the requested alignment is less or 12923 // equal to the base alignment and the offset is not aligned, we know that 12924 // the run-time value can never be aligned. 12925 if (BaseAlignment.getQuantity() >= Alignment && 12926 PtrAlign.getQuantity() < Alignment) 12927 return Success(0, E); 12928 // Otherwise we can't infer whether the value is sufficiently aligned. 12929 // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N) 12930 // in cases where we can't fully evaluate the pointer. 12931 Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute) 12932 << Alignment; 12933 return false; 12934 } 12935 assert(Src.isInt()); 12936 return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E); 12937 } 12938 case Builtin::BI__builtin_align_up: { 12939 APValue Src; 12940 APSInt Alignment; 12941 if (!getBuiltinAlignArguments(E, Info, Src, Alignment)) 12942 return false; 12943 if (!Src.isInt()) 12944 return Error(E); 12945 APSInt AlignedVal = 12946 APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1), 12947 Src.getInt().isUnsigned()); 12948 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth()); 12949 return Success(AlignedVal, E); 12950 } 12951 case Builtin::BI__builtin_align_down: { 12952 APValue Src; 12953 APSInt Alignment; 12954 if (!getBuiltinAlignArguments(E, Info, Src, Alignment)) 12955 return false; 12956 if (!Src.isInt()) 12957 return Error(E); 12958 APSInt AlignedVal = 12959 APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned()); 12960 assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth()); 12961 return Success(AlignedVal, E); 12962 } 12963 12964 case Builtin::BI__builtin_bitreverse8: 12965 case Builtin::BI__builtin_bitreverse16: 12966 case Builtin::BI__builtin_bitreverse32: 12967 case Builtin::BI__builtin_bitreverse64: 12968 case Builtin::BI__builtin_elementwise_bitreverse: { 12969 APSInt Val; 12970 if (!EvaluateInteger(E->getArg(0), Val, Info)) 12971 return false; 12972 12973 return Success(Val.reverseBits(), E); 12974 } 12975 12976 case Builtin::BI__builtin_bswap16: 12977 case Builtin::BI__builtin_bswap32: 12978 case Builtin::BI__builtin_bswap64: { 12979 APSInt Val; 12980 if (!EvaluateInteger(E->getArg(0), Val, Info)) 12981 return false; 12982 12983 return Success(Val.byteSwap(), E); 12984 } 12985 12986 case Builtin::BI__builtin_classify_type: 12987 return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E); 12988 12989 case Builtin::BI__builtin_clrsb: 12990 case Builtin::BI__builtin_clrsbl: 12991 case Builtin::BI__builtin_clrsbll: { 12992 APSInt Val; 12993 if (!EvaluateInteger(E->getArg(0), Val, Info)) 12994 return false; 12995 12996 return Success(Val.getBitWidth() - Val.getSignificantBits(), E); 12997 } 12998 12999 case Builtin::BI__builtin_clz: 13000 case Builtin::BI__builtin_clzl: 13001 case Builtin::BI__builtin_clzll: 13002 case Builtin::BI__builtin_clzs: 13003 case Builtin::BI__builtin_clzg: 13004 case Builtin::BI__lzcnt16: // Microsoft variants of count leading-zeroes 13005 case Builtin::BI__lzcnt: 13006 case Builtin::BI__lzcnt64: { 13007 APSInt Val; 13008 if (!EvaluateInteger(E->getArg(0), Val, Info)) 13009 return false; 13010 13011 std::optional<APSInt> Fallback; 13012 if (BuiltinOp == Builtin::BI__builtin_clzg && E->getNumArgs() > 1) { 13013 APSInt FallbackTemp; 13014 if (!EvaluateInteger(E->getArg(1), FallbackTemp, Info)) 13015 return false; 13016 Fallback = FallbackTemp; 13017 } 13018 13019 if (!Val) { 13020 if (Fallback) 13021 return Success(*Fallback, E); 13022 13023 // When the argument is 0, the result of GCC builtins is undefined, 13024 // whereas for Microsoft intrinsics, the result is the bit-width of the 13025 // argument. 13026 bool ZeroIsUndefined = BuiltinOp != Builtin::BI__lzcnt16 && 13027 BuiltinOp != Builtin::BI__lzcnt && 13028 BuiltinOp != Builtin::BI__lzcnt64; 13029 13030 if (ZeroIsUndefined) 13031 return Error(E); 13032 } 13033 13034 return Success(Val.countl_zero(), E); 13035 } 13036 13037 case Builtin::BI__builtin_constant_p: { 13038 const Expr *Arg = E->getArg(0); 13039 if (EvaluateBuiltinConstantP(Info, Arg)) 13040 return Success(true, E); 13041 if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) { 13042 // Outside a constant context, eagerly evaluate to false in the presence 13043 // of side-effects in order to avoid -Wunsequenced false-positives in 13044 // a branch on __builtin_constant_p(expr). 13045 return Success(false, E); 13046 } 13047 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 13048 return false; 13049 } 13050 13051 case Builtin::BI__noop: 13052 // __noop always evaluates successfully and returns 0. 13053 return Success(0, E); 13054 13055 case Builtin::BI__builtin_is_constant_evaluated: { 13056 const auto *Callee = Info.CurrentCall->getCallee(); 13057 if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression && 13058 (Info.CallStackDepth == 1 || 13059 (Info.CallStackDepth == 2 && Callee->isInStdNamespace() && 13060 Callee->getIdentifier() && 13061 Callee->getIdentifier()->isStr("is_constant_evaluated")))) { 13062 // FIXME: Find a better way to avoid duplicated diagnostics. 13063 if (Info.EvalStatus.Diag) 13064 Info.report((Info.CallStackDepth == 1) 13065 ? E->getExprLoc() 13066 : Info.CurrentCall->getCallRange().getBegin(), 13067 diag::warn_is_constant_evaluated_always_true_constexpr) 13068 << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated" 13069 : "std::is_constant_evaluated"); 13070 } 13071 13072 return Success(Info.InConstantContext, E); 13073 } 13074 13075 case Builtin::BI__builtin_is_within_lifetime: 13076 if (auto result = EvaluateBuiltinIsWithinLifetime(*this, E)) 13077 return Success(*result, E); 13078 return false; 13079 13080 case Builtin::BI__builtin_ctz: 13081 case Builtin::BI__builtin_ctzl: 13082 case Builtin::BI__builtin_ctzll: 13083 case Builtin::BI__builtin_ctzs: 13084 case Builtin::BI__builtin_ctzg: { 13085 APSInt Val; 13086 if (!EvaluateInteger(E->getArg(0), Val, Info)) 13087 return false; 13088 13089 std::optional<APSInt> Fallback; 13090 if (BuiltinOp == Builtin::BI__builtin_ctzg && E->getNumArgs() > 1) { 13091 APSInt FallbackTemp; 13092 if (!EvaluateInteger(E->getArg(1), FallbackTemp, Info)) 13093 return false; 13094 Fallback = FallbackTemp; 13095 } 13096 13097 if (!Val) { 13098 if (Fallback) 13099 return Success(*Fallback, E); 13100 13101 return Error(E); 13102 } 13103 13104 return Success(Val.countr_zero(), E); 13105 } 13106 13107 case Builtin::BI__builtin_eh_return_data_regno: { 13108 int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue(); 13109 Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand); 13110 return Success(Operand, E); 13111 } 13112 13113 case Builtin::BI__builtin_expect: 13114 case Builtin::BI__builtin_expect_with_probability: 13115 return Visit(E->getArg(0)); 13116 13117 case Builtin::BI__builtin_ptrauth_string_discriminator: { 13118 const auto *Literal = 13119 cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts()); 13120 uint64_t Result = getPointerAuthStableSipHash(Literal->getString()); 13121 return Success(Result, E); 13122 } 13123 13124 case Builtin::BI__builtin_ffs: 13125 case Builtin::BI__builtin_ffsl: 13126 case Builtin::BI__builtin_ffsll: { 13127 APSInt Val; 13128 if (!EvaluateInteger(E->getArg(0), Val, Info)) 13129 return false; 13130 13131 unsigned N = Val.countr_zero(); 13132 return Success(N == Val.getBitWidth() ? 0 : N + 1, E); 13133 } 13134 13135 case Builtin::BI__builtin_fpclassify: { 13136 APFloat Val(0.0); 13137 if (!EvaluateFloat(E->getArg(5), Val, Info)) 13138 return false; 13139 unsigned Arg; 13140 switch (Val.getCategory()) { 13141 case APFloat::fcNaN: Arg = 0; break; 13142 case APFloat::fcInfinity: Arg = 1; break; 13143 case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break; 13144 case APFloat::fcZero: Arg = 4; break; 13145 } 13146 return Visit(E->getArg(Arg)); 13147 } 13148 13149 case Builtin::BI__builtin_isinf_sign: { 13150 APFloat Val(0.0); 13151 return EvaluateFloat(E->getArg(0), Val, Info) && 13152 Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E); 13153 } 13154 13155 case Builtin::BI__builtin_isinf: { 13156 APFloat Val(0.0); 13157 return EvaluateFloat(E->getArg(0), Val, Info) && 13158 Success(Val.isInfinity() ? 1 : 0, E); 13159 } 13160 13161 case Builtin::BI__builtin_isfinite: { 13162 APFloat Val(0.0); 13163 return EvaluateFloat(E->getArg(0), Val, Info) && 13164 Success(Val.isFinite() ? 1 : 0, E); 13165 } 13166 13167 case Builtin::BI__builtin_isnan: { 13168 APFloat Val(0.0); 13169 return EvaluateFloat(E->getArg(0), Val, Info) && 13170 Success(Val.isNaN() ? 1 : 0, E); 13171 } 13172 13173 case Builtin::BI__builtin_isnormal: { 13174 APFloat Val(0.0); 13175 return EvaluateFloat(E->getArg(0), Val, Info) && 13176 Success(Val.isNormal() ? 1 : 0, E); 13177 } 13178 13179 case Builtin::BI__builtin_issubnormal: { 13180 APFloat Val(0.0); 13181 return EvaluateFloat(E->getArg(0), Val, Info) && 13182 Success(Val.isDenormal() ? 1 : 0, E); 13183 } 13184 13185 case Builtin::BI__builtin_iszero: { 13186 APFloat Val(0.0); 13187 return EvaluateFloat(E->getArg(0), Val, Info) && 13188 Success(Val.isZero() ? 1 : 0, E); 13189 } 13190 13191 case Builtin::BI__builtin_signbit: 13192 case Builtin::BI__builtin_signbitf: 13193 case Builtin::BI__builtin_signbitl: { 13194 APFloat Val(0.0); 13195 return EvaluateFloat(E->getArg(0), Val, Info) && 13196 Success(Val.isNegative() ? 1 : 0, E); 13197 } 13198 13199 case Builtin::BI__builtin_isgreater: 13200 case Builtin::BI__builtin_isgreaterequal: 13201 case Builtin::BI__builtin_isless: 13202 case Builtin::BI__builtin_islessequal: 13203 case Builtin::BI__builtin_islessgreater: 13204 case Builtin::BI__builtin_isunordered: { 13205 APFloat LHS(0.0); 13206 APFloat RHS(0.0); 13207 if (!EvaluateFloat(E->getArg(0), LHS, Info) || 13208 !EvaluateFloat(E->getArg(1), RHS, Info)) 13209 return false; 13210 13211 return Success( 13212 [&] { 13213 switch (BuiltinOp) { 13214 case Builtin::BI__builtin_isgreater: 13215 return LHS > RHS; 13216 case Builtin::BI__builtin_isgreaterequal: 13217 return LHS >= RHS; 13218 case Builtin::BI__builtin_isless: 13219 return LHS < RHS; 13220 case Builtin::BI__builtin_islessequal: 13221 return LHS <= RHS; 13222 case Builtin::BI__builtin_islessgreater: { 13223 APFloat::cmpResult cmp = LHS.compare(RHS); 13224 return cmp == APFloat::cmpResult::cmpLessThan || 13225 cmp == APFloat::cmpResult::cmpGreaterThan; 13226 } 13227 case Builtin::BI__builtin_isunordered: 13228 return LHS.compare(RHS) == APFloat::cmpResult::cmpUnordered; 13229 default: 13230 llvm_unreachable("Unexpected builtin ID: Should be a floating " 13231 "point comparison function"); 13232 } 13233 }() 13234 ? 1 13235 : 0, 13236 E); 13237 } 13238 13239 case Builtin::BI__builtin_issignaling: { 13240 APFloat Val(0.0); 13241 return EvaluateFloat(E->getArg(0), Val, Info) && 13242 Success(Val.isSignaling() ? 1 : 0, E); 13243 } 13244 13245 case Builtin::BI__builtin_isfpclass: { 13246 APSInt MaskVal; 13247 if (!EvaluateInteger(E->getArg(1), MaskVal, Info)) 13248 return false; 13249 unsigned Test = static_cast<llvm::FPClassTest>(MaskVal.getZExtValue()); 13250 APFloat Val(0.0); 13251 return EvaluateFloat(E->getArg(0), Val, Info) && 13252 Success((Val.classify() & Test) ? 1 : 0, E); 13253 } 13254 13255 case Builtin::BI__builtin_parity: 13256 case Builtin::BI__builtin_parityl: 13257 case Builtin::BI__builtin_parityll: { 13258 APSInt Val; 13259 if (!EvaluateInteger(E->getArg(0), Val, Info)) 13260 return false; 13261 13262 return Success(Val.popcount() % 2, E); 13263 } 13264 13265 case Builtin::BI__builtin_abs: 13266 case Builtin::BI__builtin_labs: 13267 case Builtin::BI__builtin_llabs: { 13268 APSInt Val; 13269 if (!EvaluateInteger(E->getArg(0), Val, Info)) 13270 return false; 13271 if (Val == APSInt(APInt::getSignedMinValue(Val.getBitWidth()), 13272 /*IsUnsigned=*/false)) 13273 return false; 13274 if (Val.isNegative()) 13275 Val.negate(); 13276 return Success(Val, E); 13277 } 13278 13279 case Builtin::BI__builtin_popcount: 13280 case Builtin::BI__builtin_popcountl: 13281 case Builtin::BI__builtin_popcountll: 13282 case Builtin::BI__builtin_popcountg: 13283 case Builtin::BI__builtin_elementwise_popcount: 13284 case Builtin::BI__popcnt16: // Microsoft variants of popcount 13285 case Builtin::BI__popcnt: 13286 case Builtin::BI__popcnt64: { 13287 APSInt Val; 13288 if (!EvaluateInteger(E->getArg(0), Val, Info)) 13289 return false; 13290 13291 return Success(Val.popcount(), E); 13292 } 13293 13294 case Builtin::BI__builtin_rotateleft8: 13295 case Builtin::BI__builtin_rotateleft16: 13296 case Builtin::BI__builtin_rotateleft32: 13297 case Builtin::BI__builtin_rotateleft64: 13298 case Builtin::BI_rotl8: // Microsoft variants of rotate right 13299 case Builtin::BI_rotl16: 13300 case Builtin::BI_rotl: 13301 case Builtin::BI_lrotl: 13302 case Builtin::BI_rotl64: { 13303 APSInt Val, Amt; 13304 if (!EvaluateInteger(E->getArg(0), Val, Info) || 13305 !EvaluateInteger(E->getArg(1), Amt, Info)) 13306 return false; 13307 13308 return Success(Val.rotl(Amt.urem(Val.getBitWidth())), E); 13309 } 13310 13311 case Builtin::BI__builtin_rotateright8: 13312 case Builtin::BI__builtin_rotateright16: 13313 case Builtin::BI__builtin_rotateright32: 13314 case Builtin::BI__builtin_rotateright64: 13315 case Builtin::BI_rotr8: // Microsoft variants of rotate right 13316 case Builtin::BI_rotr16: 13317 case Builtin::BI_rotr: 13318 case Builtin::BI_lrotr: 13319 case Builtin::BI_rotr64: { 13320 APSInt Val, Amt; 13321 if (!EvaluateInteger(E->getArg(0), Val, Info) || 13322 !EvaluateInteger(E->getArg(1), Amt, Info)) 13323 return false; 13324 13325 return Success(Val.rotr(Amt.urem(Val.getBitWidth())), E); 13326 } 13327 13328 case Builtin::BI__builtin_elementwise_add_sat: { 13329 APSInt LHS, RHS; 13330 if (!EvaluateInteger(E->getArg(0), LHS, Info) || 13331 !EvaluateInteger(E->getArg(1), RHS, Info)) 13332 return false; 13333 13334 APInt Result = LHS.isSigned() ? LHS.sadd_sat(RHS) : LHS.uadd_sat(RHS); 13335 return Success(APSInt(Result, !LHS.isSigned()), E); 13336 } 13337 case Builtin::BI__builtin_elementwise_sub_sat: { 13338 APSInt LHS, RHS; 13339 if (!EvaluateInteger(E->getArg(0), LHS, Info) || 13340 !EvaluateInteger(E->getArg(1), RHS, Info)) 13341 return false; 13342 13343 APInt Result = LHS.isSigned() ? LHS.ssub_sat(RHS) : LHS.usub_sat(RHS); 13344 return Success(APSInt(Result, !LHS.isSigned()), E); 13345 } 13346 13347 case Builtin::BIstrlen: 13348 case Builtin::BIwcslen: 13349 // A call to strlen is not a constant expression. 13350 if (Info.getLangOpts().CPlusPlus11) 13351 Info.CCEDiag(E, diag::note_constexpr_invalid_function) 13352 << /*isConstexpr*/ 0 << /*isConstructor*/ 0 13353 << Info.Ctx.BuiltinInfo.getQuotedName(BuiltinOp); 13354 else 13355 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); 13356 [[fallthrough]]; 13357 case Builtin::BI__builtin_strlen: 13358 case Builtin::BI__builtin_wcslen: { 13359 // As an extension, we support __builtin_strlen() as a constant expression, 13360 // and support folding strlen() to a constant. 13361 uint64_t StrLen; 13362 if (EvaluateBuiltinStrLen(E->getArg(0), StrLen, Info)) 13363 return Success(StrLen, E); 13364 return false; 13365 } 13366 13367 case Builtin::BIstrcmp: 13368 case Builtin::BIwcscmp: 13369 case Builtin::BIstrncmp: 13370 case Builtin::BIwcsncmp: 13371 case Builtin::BImemcmp: 13372 case Builtin::BIbcmp: 13373 case Builtin::BIwmemcmp: 13374 // A call to strlen is not a constant expression. 13375 if (Info.getLangOpts().CPlusPlus11) 13376 Info.CCEDiag(E, diag::note_constexpr_invalid_function) 13377 << /*isConstexpr*/ 0 << /*isConstructor*/ 0 13378 << Info.Ctx.BuiltinInfo.getQuotedName(BuiltinOp); 13379 else 13380 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); 13381 [[fallthrough]]; 13382 case Builtin::BI__builtin_strcmp: 13383 case Builtin::BI__builtin_wcscmp: 13384 case Builtin::BI__builtin_strncmp: 13385 case Builtin::BI__builtin_wcsncmp: 13386 case Builtin::BI__builtin_memcmp: 13387 case Builtin::BI__builtin_bcmp: 13388 case Builtin::BI__builtin_wmemcmp: { 13389 LValue String1, String2; 13390 if (!EvaluatePointer(E->getArg(0), String1, Info) || 13391 !EvaluatePointer(E->getArg(1), String2, Info)) 13392 return false; 13393 13394 uint64_t MaxLength = uint64_t(-1); 13395 if (BuiltinOp != Builtin::BIstrcmp && 13396 BuiltinOp != Builtin::BIwcscmp && 13397 BuiltinOp != Builtin::BI__builtin_strcmp && 13398 BuiltinOp != Builtin::BI__builtin_wcscmp) { 13399 APSInt N; 13400 if (!EvaluateInteger(E->getArg(2), N, Info)) 13401 return false; 13402 MaxLength = N.getZExtValue(); 13403 } 13404 13405 // Empty substrings compare equal by definition. 13406 if (MaxLength == 0u) 13407 return Success(0, E); 13408 13409 if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) || 13410 !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) || 13411 String1.Designator.Invalid || String2.Designator.Invalid) 13412 return false; 13413 13414 QualType CharTy1 = String1.Designator.getType(Info.Ctx); 13415 QualType CharTy2 = String2.Designator.getType(Info.Ctx); 13416 13417 bool IsRawByte = BuiltinOp == Builtin::BImemcmp || 13418 BuiltinOp == Builtin::BIbcmp || 13419 BuiltinOp == Builtin::BI__builtin_memcmp || 13420 BuiltinOp == Builtin::BI__builtin_bcmp; 13421 13422 assert(IsRawByte || 13423 (Info.Ctx.hasSameUnqualifiedType( 13424 CharTy1, E->getArg(0)->getType()->getPointeeType()) && 13425 Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2))); 13426 13427 // For memcmp, allow comparing any arrays of '[[un]signed] char' or 13428 // 'char8_t', but no other types. 13429 if (IsRawByte && 13430 !(isOneByteCharacterType(CharTy1) && isOneByteCharacterType(CharTy2))) { 13431 // FIXME: Consider using our bit_cast implementation to support this. 13432 Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported) 13433 << Info.Ctx.BuiltinInfo.getQuotedName(BuiltinOp) << CharTy1 13434 << CharTy2; 13435 return false; 13436 } 13437 13438 const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) { 13439 return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) && 13440 handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) && 13441 Char1.isInt() && Char2.isInt(); 13442 }; 13443 const auto &AdvanceElems = [&] { 13444 return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) && 13445 HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1); 13446 }; 13447 13448 bool StopAtNull = 13449 (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp && 13450 BuiltinOp != Builtin::BIwmemcmp && 13451 BuiltinOp != Builtin::BI__builtin_memcmp && 13452 BuiltinOp != Builtin::BI__builtin_bcmp && 13453 BuiltinOp != Builtin::BI__builtin_wmemcmp); 13454 bool IsWide = BuiltinOp == Builtin::BIwcscmp || 13455 BuiltinOp == Builtin::BIwcsncmp || 13456 BuiltinOp == Builtin::BIwmemcmp || 13457 BuiltinOp == Builtin::BI__builtin_wcscmp || 13458 BuiltinOp == Builtin::BI__builtin_wcsncmp || 13459 BuiltinOp == Builtin::BI__builtin_wmemcmp; 13460 13461 for (; MaxLength; --MaxLength) { 13462 APValue Char1, Char2; 13463 if (!ReadCurElems(Char1, Char2)) 13464 return false; 13465 if (Char1.getInt().ne(Char2.getInt())) { 13466 if (IsWide) // wmemcmp compares with wchar_t signedness. 13467 return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E); 13468 // memcmp always compares unsigned chars. 13469 return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E); 13470 } 13471 if (StopAtNull && !Char1.getInt()) 13472 return Success(0, E); 13473 assert(!(StopAtNull && !Char2.getInt())); 13474 if (!AdvanceElems()) 13475 return false; 13476 } 13477 // We hit the strncmp / memcmp limit. 13478 return Success(0, E); 13479 } 13480 13481 case Builtin::BI__atomic_always_lock_free: 13482 case Builtin::BI__atomic_is_lock_free: 13483 case Builtin::BI__c11_atomic_is_lock_free: { 13484 APSInt SizeVal; 13485 if (!EvaluateInteger(E->getArg(0), SizeVal, Info)) 13486 return false; 13487 13488 // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power 13489 // of two less than or equal to the maximum inline atomic width, we know it 13490 // is lock-free. If the size isn't a power of two, or greater than the 13491 // maximum alignment where we promote atomics, we know it is not lock-free 13492 // (at least not in the sense of atomic_is_lock_free). Otherwise, 13493 // the answer can only be determined at runtime; for example, 16-byte 13494 // atomics have lock-free implementations on some, but not all, 13495 // x86-64 processors. 13496 13497 // Check power-of-two. 13498 CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue()); 13499 if (Size.isPowerOfTwo()) { 13500 // Check against inlining width. 13501 unsigned InlineWidthBits = 13502 Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth(); 13503 if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) { 13504 if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free || 13505 Size == CharUnits::One()) 13506 return Success(1, E); 13507 13508 // If the pointer argument can be evaluated to a compile-time constant 13509 // integer (or nullptr), check if that value is appropriately aligned. 13510 const Expr *PtrArg = E->getArg(1); 13511 Expr::EvalResult ExprResult; 13512 APSInt IntResult; 13513 if (PtrArg->EvaluateAsRValue(ExprResult, Info.Ctx) && 13514 ExprResult.Val.toIntegralConstant(IntResult, PtrArg->getType(), 13515 Info.Ctx) && 13516 IntResult.isAligned(Size.getAsAlign())) 13517 return Success(1, E); 13518 13519 // Otherwise, check if the type's alignment against Size. 13520 if (auto *ICE = dyn_cast<ImplicitCastExpr>(PtrArg)) { 13521 // Drop the potential implicit-cast to 'const volatile void*', getting 13522 // the underlying type. 13523 if (ICE->getCastKind() == CK_BitCast) 13524 PtrArg = ICE->getSubExpr(); 13525 } 13526 13527 if (auto PtrTy = PtrArg->getType()->getAs<PointerType>()) { 13528 QualType PointeeType = PtrTy->getPointeeType(); 13529 if (!PointeeType->isIncompleteType() && 13530 Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) { 13531 // OK, we will inline operations on this object. 13532 return Success(1, E); 13533 } 13534 } 13535 } 13536 } 13537 13538 return BuiltinOp == Builtin::BI__atomic_always_lock_free ? 13539 Success(0, E) : Error(E); 13540 } 13541 case Builtin::BI__builtin_addcb: 13542 case Builtin::BI__builtin_addcs: 13543 case Builtin::BI__builtin_addc: 13544 case Builtin::BI__builtin_addcl: 13545 case Builtin::BI__builtin_addcll: 13546 case Builtin::BI__builtin_subcb: 13547 case Builtin::BI__builtin_subcs: 13548 case Builtin::BI__builtin_subc: 13549 case Builtin::BI__builtin_subcl: 13550 case Builtin::BI__builtin_subcll: { 13551 LValue CarryOutLValue; 13552 APSInt LHS, RHS, CarryIn, CarryOut, Result; 13553 QualType ResultType = E->getArg(0)->getType(); 13554 if (!EvaluateInteger(E->getArg(0), LHS, Info) || 13555 !EvaluateInteger(E->getArg(1), RHS, Info) || 13556 !EvaluateInteger(E->getArg(2), CarryIn, Info) || 13557 !EvaluatePointer(E->getArg(3), CarryOutLValue, Info)) 13558 return false; 13559 // Copy the number of bits and sign. 13560 Result = LHS; 13561 CarryOut = LHS; 13562 13563 bool FirstOverflowed = false; 13564 bool SecondOverflowed = false; 13565 switch (BuiltinOp) { 13566 default: 13567 llvm_unreachable("Invalid value for BuiltinOp"); 13568 case Builtin::BI__builtin_addcb: 13569 case Builtin::BI__builtin_addcs: 13570 case Builtin::BI__builtin_addc: 13571 case Builtin::BI__builtin_addcl: 13572 case Builtin::BI__builtin_addcll: 13573 Result = 13574 LHS.uadd_ov(RHS, FirstOverflowed).uadd_ov(CarryIn, SecondOverflowed); 13575 break; 13576 case Builtin::BI__builtin_subcb: 13577 case Builtin::BI__builtin_subcs: 13578 case Builtin::BI__builtin_subc: 13579 case Builtin::BI__builtin_subcl: 13580 case Builtin::BI__builtin_subcll: 13581 Result = 13582 LHS.usub_ov(RHS, FirstOverflowed).usub_ov(CarryIn, SecondOverflowed); 13583 break; 13584 } 13585 13586 // It is possible for both overflows to happen but CGBuiltin uses an OR so 13587 // this is consistent. 13588 CarryOut = (uint64_t)(FirstOverflowed | SecondOverflowed); 13589 APValue APV{CarryOut}; 13590 if (!handleAssignment(Info, E, CarryOutLValue, ResultType, APV)) 13591 return false; 13592 return Success(Result, E); 13593 } 13594 case Builtin::BI__builtin_add_overflow: 13595 case Builtin::BI__builtin_sub_overflow: 13596 case Builtin::BI__builtin_mul_overflow: 13597 case Builtin::BI__builtin_sadd_overflow: 13598 case Builtin::BI__builtin_uadd_overflow: 13599 case Builtin::BI__builtin_uaddl_overflow: 13600 case Builtin::BI__builtin_uaddll_overflow: 13601 case Builtin::BI__builtin_usub_overflow: 13602 case Builtin::BI__builtin_usubl_overflow: 13603 case Builtin::BI__builtin_usubll_overflow: 13604 case Builtin::BI__builtin_umul_overflow: 13605 case Builtin::BI__builtin_umull_overflow: 13606 case Builtin::BI__builtin_umulll_overflow: 13607 case Builtin::BI__builtin_saddl_overflow: 13608 case Builtin::BI__builtin_saddll_overflow: 13609 case Builtin::BI__builtin_ssub_overflow: 13610 case Builtin::BI__builtin_ssubl_overflow: 13611 case Builtin::BI__builtin_ssubll_overflow: 13612 case Builtin::BI__builtin_smul_overflow: 13613 case Builtin::BI__builtin_smull_overflow: 13614 case Builtin::BI__builtin_smulll_overflow: { 13615 LValue ResultLValue; 13616 APSInt LHS, RHS; 13617 13618 QualType ResultType = E->getArg(2)->getType()->getPointeeType(); 13619 if (!EvaluateInteger(E->getArg(0), LHS, Info) || 13620 !EvaluateInteger(E->getArg(1), RHS, Info) || 13621 !EvaluatePointer(E->getArg(2), ResultLValue, Info)) 13622 return false; 13623 13624 APSInt Result; 13625 bool DidOverflow = false; 13626 13627 // If the types don't have to match, enlarge all 3 to the largest of them. 13628 if (BuiltinOp == Builtin::BI__builtin_add_overflow || 13629 BuiltinOp == Builtin::BI__builtin_sub_overflow || 13630 BuiltinOp == Builtin::BI__builtin_mul_overflow) { 13631 bool IsSigned = LHS.isSigned() || RHS.isSigned() || 13632 ResultType->isSignedIntegerOrEnumerationType(); 13633 bool AllSigned = LHS.isSigned() && RHS.isSigned() && 13634 ResultType->isSignedIntegerOrEnumerationType(); 13635 uint64_t LHSSize = LHS.getBitWidth(); 13636 uint64_t RHSSize = RHS.getBitWidth(); 13637 uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType); 13638 uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize); 13639 13640 // Add an additional bit if the signedness isn't uniformly agreed to. We 13641 // could do this ONLY if there is a signed and an unsigned that both have 13642 // MaxBits, but the code to check that is pretty nasty. The issue will be 13643 // caught in the shrink-to-result later anyway. 13644 if (IsSigned && !AllSigned) 13645 ++MaxBits; 13646 13647 LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned); 13648 RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned); 13649 Result = APSInt(MaxBits, !IsSigned); 13650 } 13651 13652 // Find largest int. 13653 switch (BuiltinOp) { 13654 default: 13655 llvm_unreachable("Invalid value for BuiltinOp"); 13656 case Builtin::BI__builtin_add_overflow: 13657 case Builtin::BI__builtin_sadd_overflow: 13658 case Builtin::BI__builtin_saddl_overflow: 13659 case Builtin::BI__builtin_saddll_overflow: 13660 case Builtin::BI__builtin_uadd_overflow: 13661 case Builtin::BI__builtin_uaddl_overflow: 13662 case Builtin::BI__builtin_uaddll_overflow: 13663 Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow) 13664 : LHS.uadd_ov(RHS, DidOverflow); 13665 break; 13666 case Builtin::BI__builtin_sub_overflow: 13667 case Builtin::BI__builtin_ssub_overflow: 13668 case Builtin::BI__builtin_ssubl_overflow: 13669 case Builtin::BI__builtin_ssubll_overflow: 13670 case Builtin::BI__builtin_usub_overflow: 13671 case Builtin::BI__builtin_usubl_overflow: 13672 case Builtin::BI__builtin_usubll_overflow: 13673 Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow) 13674 : LHS.usub_ov(RHS, DidOverflow); 13675 break; 13676 case Builtin::BI__builtin_mul_overflow: 13677 case Builtin::BI__builtin_smul_overflow: 13678 case Builtin::BI__builtin_smull_overflow: 13679 case Builtin::BI__builtin_smulll_overflow: 13680 case Builtin::BI__builtin_umul_overflow: 13681 case Builtin::BI__builtin_umull_overflow: 13682 case Builtin::BI__builtin_umulll_overflow: 13683 Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow) 13684 : LHS.umul_ov(RHS, DidOverflow); 13685 break; 13686 } 13687 13688 // In the case where multiple sizes are allowed, truncate and see if 13689 // the values are the same. 13690 if (BuiltinOp == Builtin::BI__builtin_add_overflow || 13691 BuiltinOp == Builtin::BI__builtin_sub_overflow || 13692 BuiltinOp == Builtin::BI__builtin_mul_overflow) { 13693 // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead, 13694 // since it will give us the behavior of a TruncOrSelf in the case where 13695 // its parameter <= its size. We previously set Result to be at least the 13696 // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth 13697 // will work exactly like TruncOrSelf. 13698 APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType)); 13699 Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType()); 13700 13701 if (!APSInt::isSameValue(Temp, Result)) 13702 DidOverflow = true; 13703 Result = Temp; 13704 } 13705 13706 APValue APV{Result}; 13707 if (!handleAssignment(Info, E, ResultLValue, ResultType, APV)) 13708 return false; 13709 return Success(DidOverflow, E); 13710 } 13711 13712 case Builtin::BI__builtin_reduce_add: 13713 case Builtin::BI__builtin_reduce_mul: 13714 case Builtin::BI__builtin_reduce_and: 13715 case Builtin::BI__builtin_reduce_or: 13716 case Builtin::BI__builtin_reduce_xor: 13717 case Builtin::BI__builtin_reduce_min: 13718 case Builtin::BI__builtin_reduce_max: { 13719 APValue Source; 13720 if (!EvaluateAsRValue(Info, E->getArg(0), Source)) 13721 return false; 13722 13723 unsigned SourceLen = Source.getVectorLength(); 13724 APSInt Reduced = Source.getVectorElt(0).getInt(); 13725 for (unsigned EltNum = 1; EltNum < SourceLen; ++EltNum) { 13726 switch (BuiltinOp) { 13727 default: 13728 return false; 13729 case Builtin::BI__builtin_reduce_add: { 13730 if (!CheckedIntArithmetic( 13731 Info, E, Reduced, Source.getVectorElt(EltNum).getInt(), 13732 Reduced.getBitWidth() + 1, std::plus<APSInt>(), Reduced)) 13733 return false; 13734 break; 13735 } 13736 case Builtin::BI__builtin_reduce_mul: { 13737 if (!CheckedIntArithmetic( 13738 Info, E, Reduced, Source.getVectorElt(EltNum).getInt(), 13739 Reduced.getBitWidth() * 2, std::multiplies<APSInt>(), Reduced)) 13740 return false; 13741 break; 13742 } 13743 case Builtin::BI__builtin_reduce_and: { 13744 Reduced &= Source.getVectorElt(EltNum).getInt(); 13745 break; 13746 } 13747 case Builtin::BI__builtin_reduce_or: { 13748 Reduced |= Source.getVectorElt(EltNum).getInt(); 13749 break; 13750 } 13751 case Builtin::BI__builtin_reduce_xor: { 13752 Reduced ^= Source.getVectorElt(EltNum).getInt(); 13753 break; 13754 } 13755 case Builtin::BI__builtin_reduce_min: { 13756 Reduced = std::min(Reduced, Source.getVectorElt(EltNum).getInt()); 13757 break; 13758 } 13759 case Builtin::BI__builtin_reduce_max: { 13760 Reduced = std::max(Reduced, Source.getVectorElt(EltNum).getInt()); 13761 break; 13762 } 13763 } 13764 } 13765 13766 return Success(Reduced, E); 13767 } 13768 13769 case clang::X86::BI__builtin_ia32_addcarryx_u32: 13770 case clang::X86::BI__builtin_ia32_addcarryx_u64: 13771 case clang::X86::BI__builtin_ia32_subborrow_u32: 13772 case clang::X86::BI__builtin_ia32_subborrow_u64: { 13773 LValue ResultLValue; 13774 APSInt CarryIn, LHS, RHS; 13775 QualType ResultType = E->getArg(3)->getType()->getPointeeType(); 13776 if (!EvaluateInteger(E->getArg(0), CarryIn, Info) || 13777 !EvaluateInteger(E->getArg(1), LHS, Info) || 13778 !EvaluateInteger(E->getArg(2), RHS, Info) || 13779 !EvaluatePointer(E->getArg(3), ResultLValue, Info)) 13780 return false; 13781 13782 bool IsAdd = BuiltinOp == clang::X86::BI__builtin_ia32_addcarryx_u32 || 13783 BuiltinOp == clang::X86::BI__builtin_ia32_addcarryx_u64; 13784 13785 unsigned BitWidth = LHS.getBitWidth(); 13786 unsigned CarryInBit = CarryIn.ugt(0) ? 1 : 0; 13787 APInt ExResult = 13788 IsAdd 13789 ? (LHS.zext(BitWidth + 1) + (RHS.zext(BitWidth + 1) + CarryInBit)) 13790 : (LHS.zext(BitWidth + 1) - (RHS.zext(BitWidth + 1) + CarryInBit)); 13791 13792 APInt Result = ExResult.extractBits(BitWidth, 0); 13793 uint64_t CarryOut = ExResult.extractBitsAsZExtValue(1, BitWidth); 13794 13795 APValue APV{APSInt(Result, /*isUnsigned=*/true)}; 13796 if (!handleAssignment(Info, E, ResultLValue, ResultType, APV)) 13797 return false; 13798 return Success(CarryOut, E); 13799 } 13800 13801 case clang::X86::BI__builtin_ia32_bextr_u32: 13802 case clang::X86::BI__builtin_ia32_bextr_u64: 13803 case clang::X86::BI__builtin_ia32_bextri_u32: 13804 case clang::X86::BI__builtin_ia32_bextri_u64: { 13805 APSInt Val, Idx; 13806 if (!EvaluateInteger(E->getArg(0), Val, Info) || 13807 !EvaluateInteger(E->getArg(1), Idx, Info)) 13808 return false; 13809 13810 unsigned BitWidth = Val.getBitWidth(); 13811 uint64_t Shift = Idx.extractBitsAsZExtValue(8, 0); 13812 uint64_t Length = Idx.extractBitsAsZExtValue(8, 8); 13813 Length = Length > BitWidth ? BitWidth : Length; 13814 13815 // Handle out of bounds cases. 13816 if (Length == 0 || Shift >= BitWidth) 13817 return Success(0, E); 13818 13819 uint64_t Result = Val.getZExtValue() >> Shift; 13820 Result &= llvm::maskTrailingOnes<uint64_t>(Length); 13821 return Success(Result, E); 13822 } 13823 13824 case clang::X86::BI__builtin_ia32_bzhi_si: 13825 case clang::X86::BI__builtin_ia32_bzhi_di: { 13826 APSInt Val, Idx; 13827 if (!EvaluateInteger(E->getArg(0), Val, Info) || 13828 !EvaluateInteger(E->getArg(1), Idx, Info)) 13829 return false; 13830 13831 unsigned BitWidth = Val.getBitWidth(); 13832 unsigned Index = Idx.extractBitsAsZExtValue(8, 0); 13833 if (Index < BitWidth) 13834 Val.clearHighBits(BitWidth - Index); 13835 return Success(Val, E); 13836 } 13837 13838 case clang::X86::BI__builtin_ia32_lzcnt_u16: 13839 case clang::X86::BI__builtin_ia32_lzcnt_u32: 13840 case clang::X86::BI__builtin_ia32_lzcnt_u64: { 13841 APSInt Val; 13842 if (!EvaluateInteger(E->getArg(0), Val, Info)) 13843 return false; 13844 return Success(Val.countLeadingZeros(), E); 13845 } 13846 13847 case clang::X86::BI__builtin_ia32_tzcnt_u16: 13848 case clang::X86::BI__builtin_ia32_tzcnt_u32: 13849 case clang::X86::BI__builtin_ia32_tzcnt_u64: { 13850 APSInt Val; 13851 if (!EvaluateInteger(E->getArg(0), Val, Info)) 13852 return false; 13853 return Success(Val.countTrailingZeros(), E); 13854 } 13855 13856 case clang::X86::BI__builtin_ia32_pdep_si: 13857 case clang::X86::BI__builtin_ia32_pdep_di: { 13858 APSInt Val, Msk; 13859 if (!EvaluateInteger(E->getArg(0), Val, Info) || 13860 !EvaluateInteger(E->getArg(1), Msk, Info)) 13861 return false; 13862 13863 unsigned BitWidth = Val.getBitWidth(); 13864 APInt Result = APInt::getZero(BitWidth); 13865 for (unsigned I = 0, P = 0; I != BitWidth; ++I) 13866 if (Msk[I]) 13867 Result.setBitVal(I, Val[P++]); 13868 return Success(Result, E); 13869 } 13870 13871 case clang::X86::BI__builtin_ia32_pext_si: 13872 case clang::X86::BI__builtin_ia32_pext_di: { 13873 APSInt Val, Msk; 13874 if (!EvaluateInteger(E->getArg(0), Val, Info) || 13875 !EvaluateInteger(E->getArg(1), Msk, Info)) 13876 return false; 13877 13878 unsigned BitWidth = Val.getBitWidth(); 13879 APInt Result = APInt::getZero(BitWidth); 13880 for (unsigned I = 0, P = 0; I != BitWidth; ++I) 13881 if (Msk[I]) 13882 Result.setBitVal(P++, Val[I]); 13883 return Success(Result, E); 13884 } 13885 } 13886 } 13887 13888 /// Determine whether this is a pointer past the end of the complete 13889 /// object referred to by the lvalue. 13890 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx, 13891 const LValue &LV) { 13892 // A null pointer can be viewed as being "past the end" but we don't 13893 // choose to look at it that way here. 13894 if (!LV.getLValueBase()) 13895 return false; 13896 13897 // If the designator is valid and refers to a subobject, we're not pointing 13898 // past the end. 13899 if (!LV.getLValueDesignator().Invalid && 13900 !LV.getLValueDesignator().isOnePastTheEnd()) 13901 return false; 13902 13903 // A pointer to an incomplete type might be past-the-end if the type's size is 13904 // zero. We cannot tell because the type is incomplete. 13905 QualType Ty = getType(LV.getLValueBase()); 13906 if (Ty->isIncompleteType()) 13907 return true; 13908 13909 // Can't be past the end of an invalid object. 13910 if (LV.getLValueDesignator().Invalid) 13911 return false; 13912 13913 // We're a past-the-end pointer if we point to the byte after the object, 13914 // no matter what our type or path is. 13915 auto Size = Ctx.getTypeSizeInChars(Ty); 13916 return LV.getLValueOffset() == Size; 13917 } 13918 13919 namespace { 13920 13921 /// Data recursive integer evaluator of certain binary operators. 13922 /// 13923 /// We use a data recursive algorithm for binary operators so that we are able 13924 /// to handle extreme cases of chained binary operators without causing stack 13925 /// overflow. 13926 class DataRecursiveIntBinOpEvaluator { 13927 struct EvalResult { 13928 APValue Val; 13929 bool Failed = false; 13930 13931 EvalResult() = default; 13932 13933 void swap(EvalResult &RHS) { 13934 Val.swap(RHS.Val); 13935 Failed = RHS.Failed; 13936 RHS.Failed = false; 13937 } 13938 }; 13939 13940 struct Job { 13941 const Expr *E; 13942 EvalResult LHSResult; // meaningful only for binary operator expression. 13943 enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind; 13944 13945 Job() = default; 13946 Job(Job &&) = default; 13947 13948 void startSpeculativeEval(EvalInfo &Info) { 13949 SpecEvalRAII = SpeculativeEvaluationRAII(Info); 13950 } 13951 13952 private: 13953 SpeculativeEvaluationRAII SpecEvalRAII; 13954 }; 13955 13956 SmallVector<Job, 16> Queue; 13957 13958 IntExprEvaluator &IntEval; 13959 EvalInfo &Info; 13960 APValue &FinalResult; 13961 13962 public: 13963 DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result) 13964 : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { } 13965 13966 /// True if \param E is a binary operator that we are going to handle 13967 /// data recursively. 13968 /// We handle binary operators that are comma, logical, or that have operands 13969 /// with integral or enumeration type. 13970 static bool shouldEnqueue(const BinaryOperator *E) { 13971 return E->getOpcode() == BO_Comma || E->isLogicalOp() || 13972 (E->isPRValue() && E->getType()->isIntegralOrEnumerationType() && 13973 E->getLHS()->getType()->isIntegralOrEnumerationType() && 13974 E->getRHS()->getType()->isIntegralOrEnumerationType()); 13975 } 13976 13977 bool Traverse(const BinaryOperator *E) { 13978 enqueue(E); 13979 EvalResult PrevResult; 13980 while (!Queue.empty()) 13981 process(PrevResult); 13982 13983 if (PrevResult.Failed) return false; 13984 13985 FinalResult.swap(PrevResult.Val); 13986 return true; 13987 } 13988 13989 private: 13990 bool Success(uint64_t Value, const Expr *E, APValue &Result) { 13991 return IntEval.Success(Value, E, Result); 13992 } 13993 bool Success(const APSInt &Value, const Expr *E, APValue &Result) { 13994 return IntEval.Success(Value, E, Result); 13995 } 13996 bool Error(const Expr *E) { 13997 return IntEval.Error(E); 13998 } 13999 bool Error(const Expr *E, diag::kind D) { 14000 return IntEval.Error(E, D); 14001 } 14002 14003 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { 14004 return Info.CCEDiag(E, D); 14005 } 14006 14007 // Returns true if visiting the RHS is necessary, false otherwise. 14008 bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, 14009 bool &SuppressRHSDiags); 14010 14011 bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, 14012 const BinaryOperator *E, APValue &Result); 14013 14014 void EvaluateExpr(const Expr *E, EvalResult &Result) { 14015 Result.Failed = !Evaluate(Result.Val, Info, E); 14016 if (Result.Failed) 14017 Result.Val = APValue(); 14018 } 14019 14020 void process(EvalResult &Result); 14021 14022 void enqueue(const Expr *E) { 14023 E = E->IgnoreParens(); 14024 Queue.resize(Queue.size()+1); 14025 Queue.back().E = E; 14026 Queue.back().Kind = Job::AnyExprKind; 14027 } 14028 }; 14029 14030 } 14031 14032 bool DataRecursiveIntBinOpEvaluator:: 14033 VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, 14034 bool &SuppressRHSDiags) { 14035 if (E->getOpcode() == BO_Comma) { 14036 // Ignore LHS but note if we could not evaluate it. 14037 if (LHSResult.Failed) 14038 return Info.noteSideEffect(); 14039 return true; 14040 } 14041 14042 if (E->isLogicalOp()) { 14043 bool LHSAsBool; 14044 if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) { 14045 // We were able to evaluate the LHS, see if we can get away with not 14046 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1 14047 if (LHSAsBool == (E->getOpcode() == BO_LOr)) { 14048 Success(LHSAsBool, E, LHSResult.Val); 14049 return false; // Ignore RHS 14050 } 14051 } else { 14052 LHSResult.Failed = true; 14053 14054 // Since we weren't able to evaluate the left hand side, it 14055 // might have had side effects. 14056 if (!Info.noteSideEffect()) 14057 return false; 14058 14059 // We can't evaluate the LHS; however, sometimes the result 14060 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. 14061 // Don't ignore RHS and suppress diagnostics from this arm. 14062 SuppressRHSDiags = true; 14063 } 14064 14065 return true; 14066 } 14067 14068 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && 14069 E->getRHS()->getType()->isIntegralOrEnumerationType()); 14070 14071 if (LHSResult.Failed && !Info.noteFailure()) 14072 return false; // Ignore RHS; 14073 14074 return true; 14075 } 14076 14077 static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index, 14078 bool IsSub) { 14079 // Compute the new offset in the appropriate width, wrapping at 64 bits. 14080 // FIXME: When compiling for a 32-bit target, we should use 32-bit 14081 // offsets. 14082 assert(!LVal.hasLValuePath() && "have designator for integer lvalue"); 14083 CharUnits &Offset = LVal.getLValueOffset(); 14084 uint64_t Offset64 = Offset.getQuantity(); 14085 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue(); 14086 Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64 14087 : Offset64 + Index64); 14088 } 14089 14090 bool DataRecursiveIntBinOpEvaluator:: 14091 VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, 14092 const BinaryOperator *E, APValue &Result) { 14093 if (E->getOpcode() == BO_Comma) { 14094 if (RHSResult.Failed) 14095 return false; 14096 Result = RHSResult.Val; 14097 return true; 14098 } 14099 14100 if (E->isLogicalOp()) { 14101 bool lhsResult, rhsResult; 14102 bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult); 14103 bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult); 14104 14105 if (LHSIsOK) { 14106 if (RHSIsOK) { 14107 if (E->getOpcode() == BO_LOr) 14108 return Success(lhsResult || rhsResult, E, Result); 14109 else 14110 return Success(lhsResult && rhsResult, E, Result); 14111 } 14112 } else { 14113 if (RHSIsOK) { 14114 // We can't evaluate the LHS; however, sometimes the result 14115 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. 14116 if (rhsResult == (E->getOpcode() == BO_LOr)) 14117 return Success(rhsResult, E, Result); 14118 } 14119 } 14120 14121 return false; 14122 } 14123 14124 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && 14125 E->getRHS()->getType()->isIntegralOrEnumerationType()); 14126 14127 if (LHSResult.Failed || RHSResult.Failed) 14128 return false; 14129 14130 const APValue &LHSVal = LHSResult.Val; 14131 const APValue &RHSVal = RHSResult.Val; 14132 14133 // Handle cases like (unsigned long)&a + 4. 14134 if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) { 14135 Result = LHSVal; 14136 addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub); 14137 return true; 14138 } 14139 14140 // Handle cases like 4 + (unsigned long)&a 14141 if (E->getOpcode() == BO_Add && 14142 RHSVal.isLValue() && LHSVal.isInt()) { 14143 Result = RHSVal; 14144 addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false); 14145 return true; 14146 } 14147 14148 if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) { 14149 // Handle (intptr_t)&&A - (intptr_t)&&B. 14150 if (!LHSVal.getLValueOffset().isZero() || 14151 !RHSVal.getLValueOffset().isZero()) 14152 return false; 14153 const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>(); 14154 const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>(); 14155 if (!LHSExpr || !RHSExpr) 14156 return false; 14157 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr); 14158 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr); 14159 if (!LHSAddrExpr || !RHSAddrExpr) 14160 return false; 14161 // Make sure both labels come from the same function. 14162 if (LHSAddrExpr->getLabel()->getDeclContext() != 14163 RHSAddrExpr->getLabel()->getDeclContext()) 14164 return false; 14165 Result = APValue(LHSAddrExpr, RHSAddrExpr); 14166 return true; 14167 } 14168 14169 // All the remaining cases expect both operands to be an integer 14170 if (!LHSVal.isInt() || !RHSVal.isInt()) 14171 return Error(E); 14172 14173 // Set up the width and signedness manually, in case it can't be deduced 14174 // from the operation we're performing. 14175 // FIXME: Don't do this in the cases where we can deduce it. 14176 APSInt Value(Info.Ctx.getIntWidth(E->getType()), 14177 E->getType()->isUnsignedIntegerOrEnumerationType()); 14178 if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(), 14179 RHSVal.getInt(), Value)) 14180 return false; 14181 return Success(Value, E, Result); 14182 } 14183 14184 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) { 14185 Job &job = Queue.back(); 14186 14187 switch (job.Kind) { 14188 case Job::AnyExprKind: { 14189 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) { 14190 if (shouldEnqueue(Bop)) { 14191 job.Kind = Job::BinOpKind; 14192 enqueue(Bop->getLHS()); 14193 return; 14194 } 14195 } 14196 14197 EvaluateExpr(job.E, Result); 14198 Queue.pop_back(); 14199 return; 14200 } 14201 14202 case Job::BinOpKind: { 14203 const BinaryOperator *Bop = cast<BinaryOperator>(job.E); 14204 bool SuppressRHSDiags = false; 14205 if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) { 14206 Queue.pop_back(); 14207 return; 14208 } 14209 if (SuppressRHSDiags) 14210 job.startSpeculativeEval(Info); 14211 job.LHSResult.swap(Result); 14212 job.Kind = Job::BinOpVisitedLHSKind; 14213 enqueue(Bop->getRHS()); 14214 return; 14215 } 14216 14217 case Job::BinOpVisitedLHSKind: { 14218 const BinaryOperator *Bop = cast<BinaryOperator>(job.E); 14219 EvalResult RHS; 14220 RHS.swap(Result); 14221 Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val); 14222 Queue.pop_back(); 14223 return; 14224 } 14225 } 14226 14227 llvm_unreachable("Invalid Job::Kind!"); 14228 } 14229 14230 namespace { 14231 enum class CmpResult { 14232 Unequal, 14233 Less, 14234 Equal, 14235 Greater, 14236 Unordered, 14237 }; 14238 } 14239 14240 template <class SuccessCB, class AfterCB> 14241 static bool 14242 EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E, 14243 SuccessCB &&Success, AfterCB &&DoAfter) { 14244 assert(!E->isValueDependent()); 14245 assert(E->isComparisonOp() && "expected comparison operator"); 14246 assert((E->getOpcode() == BO_Cmp || 14247 E->getType()->isIntegralOrEnumerationType()) && 14248 "unsupported binary expression evaluation"); 14249 auto Error = [&](const Expr *E) { 14250 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 14251 return false; 14252 }; 14253 14254 bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp; 14255 bool IsEquality = E->isEqualityOp(); 14256 14257 QualType LHSTy = E->getLHS()->getType(); 14258 QualType RHSTy = E->getRHS()->getType(); 14259 14260 if (LHSTy->isIntegralOrEnumerationType() && 14261 RHSTy->isIntegralOrEnumerationType()) { 14262 APSInt LHS, RHS; 14263 bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info); 14264 if (!LHSOK && !Info.noteFailure()) 14265 return false; 14266 if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK) 14267 return false; 14268 if (LHS < RHS) 14269 return Success(CmpResult::Less, E); 14270 if (LHS > RHS) 14271 return Success(CmpResult::Greater, E); 14272 return Success(CmpResult::Equal, E); 14273 } 14274 14275 if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) { 14276 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy)); 14277 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy)); 14278 14279 bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info); 14280 if (!LHSOK && !Info.noteFailure()) 14281 return false; 14282 if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK) 14283 return false; 14284 if (LHSFX < RHSFX) 14285 return Success(CmpResult::Less, E); 14286 if (LHSFX > RHSFX) 14287 return Success(CmpResult::Greater, E); 14288 return Success(CmpResult::Equal, E); 14289 } 14290 14291 if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) { 14292 ComplexValue LHS, RHS; 14293 bool LHSOK; 14294 if (E->isAssignmentOp()) { 14295 LValue LV; 14296 EvaluateLValue(E->getLHS(), LV, Info); 14297 LHSOK = false; 14298 } else if (LHSTy->isRealFloatingType()) { 14299 LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info); 14300 if (LHSOK) { 14301 LHS.makeComplexFloat(); 14302 LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics()); 14303 } 14304 } else { 14305 LHSOK = EvaluateComplex(E->getLHS(), LHS, Info); 14306 } 14307 if (!LHSOK && !Info.noteFailure()) 14308 return false; 14309 14310 if (E->getRHS()->getType()->isRealFloatingType()) { 14311 if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK) 14312 return false; 14313 RHS.makeComplexFloat(); 14314 RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics()); 14315 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK) 14316 return false; 14317 14318 if (LHS.isComplexFloat()) { 14319 APFloat::cmpResult CR_r = 14320 LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal()); 14321 APFloat::cmpResult CR_i = 14322 LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag()); 14323 bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual; 14324 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E); 14325 } else { 14326 assert(IsEquality && "invalid complex comparison"); 14327 bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() && 14328 LHS.getComplexIntImag() == RHS.getComplexIntImag(); 14329 return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E); 14330 } 14331 } 14332 14333 if (LHSTy->isRealFloatingType() && 14334 RHSTy->isRealFloatingType()) { 14335 APFloat RHS(0.0), LHS(0.0); 14336 14337 bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info); 14338 if (!LHSOK && !Info.noteFailure()) 14339 return false; 14340 14341 if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK) 14342 return false; 14343 14344 assert(E->isComparisonOp() && "Invalid binary operator!"); 14345 llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS); 14346 if (!Info.InConstantContext && 14347 APFloatCmpResult == APFloat::cmpUnordered && 14348 E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).isFPConstrained()) { 14349 // Note: Compares may raise invalid in some cases involving NaN or sNaN. 14350 Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict); 14351 return false; 14352 } 14353 auto GetCmpRes = [&]() { 14354 switch (APFloatCmpResult) { 14355 case APFloat::cmpEqual: 14356 return CmpResult::Equal; 14357 case APFloat::cmpLessThan: 14358 return CmpResult::Less; 14359 case APFloat::cmpGreaterThan: 14360 return CmpResult::Greater; 14361 case APFloat::cmpUnordered: 14362 return CmpResult::Unordered; 14363 } 14364 llvm_unreachable("Unrecognised APFloat::cmpResult enum"); 14365 }; 14366 return Success(GetCmpRes(), E); 14367 } 14368 14369 if (LHSTy->isPointerType() && RHSTy->isPointerType()) { 14370 LValue LHSValue, RHSValue; 14371 14372 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info); 14373 if (!LHSOK && !Info.noteFailure()) 14374 return false; 14375 14376 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK) 14377 return false; 14378 14379 // If we have Unknown pointers we should fail if they are not global values. 14380 if (!(IsGlobalLValue(LHSValue.getLValueBase()) && 14381 IsGlobalLValue(RHSValue.getLValueBase())) && 14382 (LHSValue.AllowConstexprUnknown || RHSValue.AllowConstexprUnknown)) 14383 return false; 14384 14385 // Reject differing bases from the normal codepath; we special-case 14386 // comparisons to null. 14387 if (!HasSameBase(LHSValue, RHSValue)) { 14388 auto DiagComparison = [&] (unsigned DiagID, bool Reversed = false) { 14389 std::string LHS = LHSValue.toString(Info.Ctx, E->getLHS()->getType()); 14390 std::string RHS = RHSValue.toString(Info.Ctx, E->getRHS()->getType()); 14391 Info.FFDiag(E, DiagID) 14392 << (Reversed ? RHS : LHS) << (Reversed ? LHS : RHS); 14393 return false; 14394 }; 14395 // Inequalities and subtractions between unrelated pointers have 14396 // unspecified or undefined behavior. 14397 if (!IsEquality) 14398 return DiagComparison( 14399 diag::note_constexpr_pointer_comparison_unspecified); 14400 // A constant address may compare equal to the address of a symbol. 14401 // The one exception is that address of an object cannot compare equal 14402 // to a null pointer constant. 14403 // TODO: Should we restrict this to actual null pointers, and exclude the 14404 // case of zero cast to pointer type? 14405 if ((!LHSValue.Base && !LHSValue.Offset.isZero()) || 14406 (!RHSValue.Base && !RHSValue.Offset.isZero())) 14407 return DiagComparison(diag::note_constexpr_pointer_constant_comparison, 14408 !RHSValue.Base); 14409 // C++2c [intro.object]/10: 14410 // Two objects [...] may have the same address if [...] they are both 14411 // potentially non-unique objects. 14412 // C++2c [intro.object]/9: 14413 // An object is potentially non-unique if it is a string literal object, 14414 // the backing array of an initializer list, or a subobject thereof. 14415 // 14416 // This makes the comparison result unspecified, so it's not a constant 14417 // expression. 14418 // 14419 // TODO: Do we need to handle the initializer list case here? 14420 if (ArePotentiallyOverlappingStringLiterals(Info, LHSValue, RHSValue)) 14421 return DiagComparison(diag::note_constexpr_literal_comparison); 14422 if (IsOpaqueConstantCall(LHSValue) || IsOpaqueConstantCall(RHSValue)) 14423 return DiagComparison(diag::note_constexpr_opaque_call_comparison, 14424 !IsOpaqueConstantCall(LHSValue)); 14425 // We can't tell whether weak symbols will end up pointing to the same 14426 // object. 14427 if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue)) 14428 return DiagComparison(diag::note_constexpr_pointer_weak_comparison, 14429 !IsWeakLValue(LHSValue)); 14430 // We can't compare the address of the start of one object with the 14431 // past-the-end address of another object, per C++ DR1652. 14432 if (LHSValue.Base && LHSValue.Offset.isZero() && 14433 isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) 14434 return DiagComparison(diag::note_constexpr_pointer_comparison_past_end, 14435 true); 14436 if (RHSValue.Base && RHSValue.Offset.isZero() && 14437 isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)) 14438 return DiagComparison(diag::note_constexpr_pointer_comparison_past_end, 14439 false); 14440 // We can't tell whether an object is at the same address as another 14441 // zero sized object. 14442 if ((RHSValue.Base && isZeroSized(LHSValue)) || 14443 (LHSValue.Base && isZeroSized(RHSValue))) 14444 return DiagComparison( 14445 diag::note_constexpr_pointer_comparison_zero_sized); 14446 return Success(CmpResult::Unequal, E); 14447 } 14448 14449 const CharUnits &LHSOffset = LHSValue.getLValueOffset(); 14450 const CharUnits &RHSOffset = RHSValue.getLValueOffset(); 14451 14452 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator(); 14453 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator(); 14454 14455 // C++11 [expr.rel]p2: 14456 // - If two pointers point to non-static data members of the same object, 14457 // or to subobjects or array elements fo such members, recursively, the 14458 // pointer to the later declared member compares greater provided the 14459 // two members have the same access control and provided their class is 14460 // not a union. 14461 // [...] 14462 // - Otherwise pointer comparisons are unspecified. 14463 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) { 14464 bool WasArrayIndex; 14465 unsigned Mismatch = FindDesignatorMismatch( 14466 getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex); 14467 // At the point where the designators diverge, the comparison has a 14468 // specified value if: 14469 // - we are comparing array indices 14470 // - we are comparing fields of a union, or fields with the same access 14471 // Otherwise, the result is unspecified and thus the comparison is not a 14472 // constant expression. 14473 if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() && 14474 Mismatch < RHSDesignator.Entries.size()) { 14475 const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]); 14476 const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]); 14477 if (!LF && !RF) 14478 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes); 14479 else if (!LF) 14480 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field) 14481 << getAsBaseClass(LHSDesignator.Entries[Mismatch]) 14482 << RF->getParent() << RF; 14483 else if (!RF) 14484 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field) 14485 << getAsBaseClass(RHSDesignator.Entries[Mismatch]) 14486 << LF->getParent() << LF; 14487 else if (!LF->getParent()->isUnion() && 14488 LF->getAccess() != RF->getAccess()) 14489 Info.CCEDiag(E, 14490 diag::note_constexpr_pointer_comparison_differing_access) 14491 << LF << LF->getAccess() << RF << RF->getAccess() 14492 << LF->getParent(); 14493 } 14494 } 14495 14496 // The comparison here must be unsigned, and performed with the same 14497 // width as the pointer. 14498 unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy); 14499 uint64_t CompareLHS = LHSOffset.getQuantity(); 14500 uint64_t CompareRHS = RHSOffset.getQuantity(); 14501 assert(PtrSize <= 64 && "Unexpected pointer width"); 14502 uint64_t Mask = ~0ULL >> (64 - PtrSize); 14503 CompareLHS &= Mask; 14504 CompareRHS &= Mask; 14505 14506 // If there is a base and this is a relational operator, we can only 14507 // compare pointers within the object in question; otherwise, the result 14508 // depends on where the object is located in memory. 14509 if (!LHSValue.Base.isNull() && IsRelational) { 14510 QualType BaseTy = getType(LHSValue.Base); 14511 if (BaseTy->isIncompleteType()) 14512 return Error(E); 14513 CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy); 14514 uint64_t OffsetLimit = Size.getQuantity(); 14515 if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit) 14516 return Error(E); 14517 } 14518 14519 if (CompareLHS < CompareRHS) 14520 return Success(CmpResult::Less, E); 14521 if (CompareLHS > CompareRHS) 14522 return Success(CmpResult::Greater, E); 14523 return Success(CmpResult::Equal, E); 14524 } 14525 14526 if (LHSTy->isMemberPointerType()) { 14527 assert(IsEquality && "unexpected member pointer operation"); 14528 assert(RHSTy->isMemberPointerType() && "invalid comparison"); 14529 14530 MemberPtr LHSValue, RHSValue; 14531 14532 bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info); 14533 if (!LHSOK && !Info.noteFailure()) 14534 return false; 14535 14536 if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK) 14537 return false; 14538 14539 // If either operand is a pointer to a weak function, the comparison is not 14540 // constant. 14541 if (LHSValue.getDecl() && LHSValue.getDecl()->isWeak()) { 14542 Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison) 14543 << LHSValue.getDecl(); 14544 return false; 14545 } 14546 if (RHSValue.getDecl() && RHSValue.getDecl()->isWeak()) { 14547 Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison) 14548 << RHSValue.getDecl(); 14549 return false; 14550 } 14551 14552 // C++11 [expr.eq]p2: 14553 // If both operands are null, they compare equal. Otherwise if only one is 14554 // null, they compare unequal. 14555 if (!LHSValue.getDecl() || !RHSValue.getDecl()) { 14556 bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl(); 14557 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E); 14558 } 14559 14560 // Otherwise if either is a pointer to a virtual member function, the 14561 // result is unspecified. 14562 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl())) 14563 if (MD->isVirtual()) 14564 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD; 14565 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl())) 14566 if (MD->isVirtual()) 14567 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD; 14568 14569 // Otherwise they compare equal if and only if they would refer to the 14570 // same member of the same most derived object or the same subobject if 14571 // they were dereferenced with a hypothetical object of the associated 14572 // class type. 14573 bool Equal = LHSValue == RHSValue; 14574 return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E); 14575 } 14576 14577 if (LHSTy->isNullPtrType()) { 14578 assert(E->isComparisonOp() && "unexpected nullptr operation"); 14579 assert(RHSTy->isNullPtrType() && "missing pointer conversion"); 14580 // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t 14581 // are compared, the result is true of the operator is <=, >= or ==, and 14582 // false otherwise. 14583 LValue Res; 14584 if (!EvaluatePointer(E->getLHS(), Res, Info) || 14585 !EvaluatePointer(E->getRHS(), Res, Info)) 14586 return false; 14587 return Success(CmpResult::Equal, E); 14588 } 14589 14590 return DoAfter(); 14591 } 14592 14593 bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) { 14594 if (!CheckLiteralType(Info, E)) 14595 return false; 14596 14597 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) { 14598 ComparisonCategoryResult CCR; 14599 switch (CR) { 14600 case CmpResult::Unequal: 14601 llvm_unreachable("should never produce Unequal for three-way comparison"); 14602 case CmpResult::Less: 14603 CCR = ComparisonCategoryResult::Less; 14604 break; 14605 case CmpResult::Equal: 14606 CCR = ComparisonCategoryResult::Equal; 14607 break; 14608 case CmpResult::Greater: 14609 CCR = ComparisonCategoryResult::Greater; 14610 break; 14611 case CmpResult::Unordered: 14612 CCR = ComparisonCategoryResult::Unordered; 14613 break; 14614 } 14615 // Evaluation succeeded. Lookup the information for the comparison category 14616 // type and fetch the VarDecl for the result. 14617 const ComparisonCategoryInfo &CmpInfo = 14618 Info.Ctx.CompCategories.getInfoForType(E->getType()); 14619 const VarDecl *VD = CmpInfo.getValueInfo(CmpInfo.makeWeakResult(CCR))->VD; 14620 // Check and evaluate the result as a constant expression. 14621 LValue LV; 14622 LV.set(VD); 14623 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result)) 14624 return false; 14625 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result, 14626 ConstantExprKind::Normal); 14627 }; 14628 return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() { 14629 return ExprEvaluatorBaseTy::VisitBinCmp(E); 14630 }); 14631 } 14632 14633 bool RecordExprEvaluator::VisitCXXParenListInitExpr( 14634 const CXXParenListInitExpr *E) { 14635 return VisitCXXParenListOrInitListExpr(E, E->getInitExprs()); 14636 } 14637 14638 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 14639 // We don't support assignment in C. C++ assignments don't get here because 14640 // assignment is an lvalue in C++. 14641 if (E->isAssignmentOp()) { 14642 Error(E); 14643 if (!Info.noteFailure()) 14644 return false; 14645 } 14646 14647 if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E)) 14648 return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E); 14649 14650 assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() || 14651 !E->getRHS()->getType()->isIntegralOrEnumerationType()) && 14652 "DataRecursiveIntBinOpEvaluator should have handled integral types"); 14653 14654 if (E->isComparisonOp()) { 14655 // Evaluate builtin binary comparisons by evaluating them as three-way 14656 // comparisons and then translating the result. 14657 auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) { 14658 assert((CR != CmpResult::Unequal || E->isEqualityOp()) && 14659 "should only produce Unequal for equality comparisons"); 14660 bool IsEqual = CR == CmpResult::Equal, 14661 IsLess = CR == CmpResult::Less, 14662 IsGreater = CR == CmpResult::Greater; 14663 auto Op = E->getOpcode(); 14664 switch (Op) { 14665 default: 14666 llvm_unreachable("unsupported binary operator"); 14667 case BO_EQ: 14668 case BO_NE: 14669 return Success(IsEqual == (Op == BO_EQ), E); 14670 case BO_LT: 14671 return Success(IsLess, E); 14672 case BO_GT: 14673 return Success(IsGreater, E); 14674 case BO_LE: 14675 return Success(IsEqual || IsLess, E); 14676 case BO_GE: 14677 return Success(IsEqual || IsGreater, E); 14678 } 14679 }; 14680 return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() { 14681 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 14682 }); 14683 } 14684 14685 QualType LHSTy = E->getLHS()->getType(); 14686 QualType RHSTy = E->getRHS()->getType(); 14687 14688 if (LHSTy->isPointerType() && RHSTy->isPointerType() && 14689 E->getOpcode() == BO_Sub) { 14690 LValue LHSValue, RHSValue; 14691 14692 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info); 14693 if (!LHSOK && !Info.noteFailure()) 14694 return false; 14695 14696 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK) 14697 return false; 14698 14699 // Reject differing bases from the normal codepath; we special-case 14700 // comparisons to null. 14701 if (!HasSameBase(LHSValue, RHSValue)) { 14702 // Handle &&A - &&B. 14703 if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero()) 14704 return Error(E); 14705 const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>(); 14706 const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>(); 14707 14708 auto DiagArith = [&](unsigned DiagID) { 14709 std::string LHS = LHSValue.toString(Info.Ctx, E->getLHS()->getType()); 14710 std::string RHS = RHSValue.toString(Info.Ctx, E->getRHS()->getType()); 14711 Info.FFDiag(E, DiagID) << LHS << RHS; 14712 if (LHSExpr && LHSExpr == RHSExpr) 14713 Info.Note(LHSExpr->getExprLoc(), 14714 diag::note_constexpr_repeated_literal_eval) 14715 << LHSExpr->getSourceRange(); 14716 return false; 14717 }; 14718 14719 if (!LHSExpr || !RHSExpr) 14720 return DiagArith(diag::note_constexpr_pointer_arith_unspecified); 14721 14722 if (ArePotentiallyOverlappingStringLiterals(Info, LHSValue, RHSValue)) 14723 return DiagArith(diag::note_constexpr_literal_arith); 14724 14725 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr); 14726 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr); 14727 if (!LHSAddrExpr || !RHSAddrExpr) 14728 return Error(E); 14729 // Make sure both labels come from the same function. 14730 if (LHSAddrExpr->getLabel()->getDeclContext() != 14731 RHSAddrExpr->getLabel()->getDeclContext()) 14732 return Error(E); 14733 return Success(APValue(LHSAddrExpr, RHSAddrExpr), E); 14734 } 14735 const CharUnits &LHSOffset = LHSValue.getLValueOffset(); 14736 const CharUnits &RHSOffset = RHSValue.getLValueOffset(); 14737 14738 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator(); 14739 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator(); 14740 14741 // C++11 [expr.add]p6: 14742 // Unless both pointers point to elements of the same array object, or 14743 // one past the last element of the array object, the behavior is 14744 // undefined. 14745 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && 14746 !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator, 14747 RHSDesignator)) 14748 Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array); 14749 14750 QualType Type = E->getLHS()->getType(); 14751 QualType ElementType = Type->castAs<PointerType>()->getPointeeType(); 14752 14753 CharUnits ElementSize; 14754 if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize)) 14755 return false; 14756 14757 // As an extension, a type may have zero size (empty struct or union in 14758 // C, array of zero length). Pointer subtraction in such cases has 14759 // undefined behavior, so is not constant. 14760 if (ElementSize.isZero()) { 14761 Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size) 14762 << ElementType; 14763 return false; 14764 } 14765 14766 // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime, 14767 // and produce incorrect results when it overflows. Such behavior 14768 // appears to be non-conforming, but is common, so perhaps we should 14769 // assume the standard intended for such cases to be undefined behavior 14770 // and check for them. 14771 14772 // Compute (LHSOffset - RHSOffset) / Size carefully, checking for 14773 // overflow in the final conversion to ptrdiff_t. 14774 APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false); 14775 APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false); 14776 APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), 14777 false); 14778 APSInt TrueResult = (LHS - RHS) / ElemSize; 14779 APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType())); 14780 14781 if (Result.extend(65) != TrueResult && 14782 !HandleOverflow(Info, E, TrueResult, E->getType())) 14783 return false; 14784 return Success(Result, E); 14785 } 14786 14787 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 14788 } 14789 14790 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with 14791 /// a result as the expression's type. 14792 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr( 14793 const UnaryExprOrTypeTraitExpr *E) { 14794 switch(E->getKind()) { 14795 case UETT_PreferredAlignOf: 14796 case UETT_AlignOf: { 14797 if (E->isArgumentType()) 14798 return Success( 14799 GetAlignOfType(Info.Ctx, E->getArgumentType(), E->getKind()), E); 14800 else 14801 return Success( 14802 GetAlignOfExpr(Info.Ctx, E->getArgumentExpr(), E->getKind()), E); 14803 } 14804 14805 case UETT_PtrAuthTypeDiscriminator: { 14806 if (E->getArgumentType()->isDependentType()) 14807 return false; 14808 return Success( 14809 Info.Ctx.getPointerAuthTypeDiscriminator(E->getArgumentType()), E); 14810 } 14811 case UETT_VecStep: { 14812 QualType Ty = E->getTypeOfArgument(); 14813 14814 if (Ty->isVectorType()) { 14815 unsigned n = Ty->castAs<VectorType>()->getNumElements(); 14816 14817 // The vec_step built-in functions that take a 3-component 14818 // vector return 4. (OpenCL 1.1 spec 6.11.12) 14819 if (n == 3) 14820 n = 4; 14821 14822 return Success(n, E); 14823 } else 14824 return Success(1, E); 14825 } 14826 14827 case UETT_DataSizeOf: 14828 case UETT_SizeOf: { 14829 QualType SrcTy = E->getTypeOfArgument(); 14830 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, 14831 // the result is the size of the referenced type." 14832 if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>()) 14833 SrcTy = Ref->getPointeeType(); 14834 14835 CharUnits Sizeof; 14836 if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof, 14837 E->getKind() == UETT_DataSizeOf ? SizeOfType::DataSizeOf 14838 : SizeOfType::SizeOf)) { 14839 return false; 14840 } 14841 return Success(Sizeof, E); 14842 } 14843 case UETT_OpenMPRequiredSimdAlign: 14844 assert(E->isArgumentType()); 14845 return Success( 14846 Info.Ctx.toCharUnitsFromBits( 14847 Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType())) 14848 .getQuantity(), 14849 E); 14850 case UETT_VectorElements: { 14851 QualType Ty = E->getTypeOfArgument(); 14852 // If the vector has a fixed size, we can determine the number of elements 14853 // at compile time. 14854 if (const auto *VT = Ty->getAs<VectorType>()) 14855 return Success(VT->getNumElements(), E); 14856 14857 assert(Ty->isSizelessVectorType()); 14858 if (Info.InConstantContext) 14859 Info.CCEDiag(E, diag::note_constexpr_non_const_vectorelements) 14860 << E->getSourceRange(); 14861 14862 return false; 14863 } 14864 } 14865 14866 llvm_unreachable("unknown expr/type trait"); 14867 } 14868 14869 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) { 14870 CharUnits Result; 14871 unsigned n = OOE->getNumComponents(); 14872 if (n == 0) 14873 return Error(OOE); 14874 QualType CurrentType = OOE->getTypeSourceInfo()->getType(); 14875 for (unsigned i = 0; i != n; ++i) { 14876 OffsetOfNode ON = OOE->getComponent(i); 14877 switch (ON.getKind()) { 14878 case OffsetOfNode::Array: { 14879 const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex()); 14880 APSInt IdxResult; 14881 if (!EvaluateInteger(Idx, IdxResult, Info)) 14882 return false; 14883 const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType); 14884 if (!AT) 14885 return Error(OOE); 14886 CurrentType = AT->getElementType(); 14887 CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType); 14888 Result += IdxResult.getSExtValue() * ElementSize; 14889 break; 14890 } 14891 14892 case OffsetOfNode::Field: { 14893 FieldDecl *MemberDecl = ON.getField(); 14894 const RecordType *RT = CurrentType->getAs<RecordType>(); 14895 if (!RT) 14896 return Error(OOE); 14897 RecordDecl *RD = RT->getDecl(); 14898 if (RD->isInvalidDecl()) return false; 14899 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); 14900 unsigned i = MemberDecl->getFieldIndex(); 14901 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 14902 Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i)); 14903 CurrentType = MemberDecl->getType().getNonReferenceType(); 14904 break; 14905 } 14906 14907 case OffsetOfNode::Identifier: 14908 llvm_unreachable("dependent __builtin_offsetof"); 14909 14910 case OffsetOfNode::Base: { 14911 CXXBaseSpecifier *BaseSpec = ON.getBase(); 14912 if (BaseSpec->isVirtual()) 14913 return Error(OOE); 14914 14915 // Find the layout of the class whose base we are looking into. 14916 const RecordType *RT = CurrentType->getAs<RecordType>(); 14917 if (!RT) 14918 return Error(OOE); 14919 RecordDecl *RD = RT->getDecl(); 14920 if (RD->isInvalidDecl()) return false; 14921 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); 14922 14923 // Find the base class itself. 14924 CurrentType = BaseSpec->getType(); 14925 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 14926 if (!BaseRT) 14927 return Error(OOE); 14928 14929 // Add the offset to the base. 14930 Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl())); 14931 break; 14932 } 14933 } 14934 } 14935 return Success(Result, OOE); 14936 } 14937 14938 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 14939 switch (E->getOpcode()) { 14940 default: 14941 // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. 14942 // See C99 6.6p3. 14943 return Error(E); 14944 case UO_Extension: 14945 // FIXME: Should extension allow i-c-e extension expressions in its scope? 14946 // If so, we could clear the diagnostic ID. 14947 return Visit(E->getSubExpr()); 14948 case UO_Plus: 14949 // The result is just the value. 14950 return Visit(E->getSubExpr()); 14951 case UO_Minus: { 14952 if (!Visit(E->getSubExpr())) 14953 return false; 14954 if (!Result.isInt()) return Error(E); 14955 const APSInt &Value = Result.getInt(); 14956 if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow()) { 14957 if (Info.checkingForUndefinedBehavior()) 14958 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 14959 diag::warn_integer_constant_overflow) 14960 << toString(Value, 10, Value.isSigned(), /*formatAsCLiteral=*/false, 14961 /*UpperCase=*/true, /*InsertSeparators=*/true) 14962 << E->getType() << E->getSourceRange(); 14963 14964 if (!HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1), 14965 E->getType())) 14966 return false; 14967 } 14968 return Success(-Value, E); 14969 } 14970 case UO_Not: { 14971 if (!Visit(E->getSubExpr())) 14972 return false; 14973 if (!Result.isInt()) return Error(E); 14974 return Success(~Result.getInt(), E); 14975 } 14976 case UO_LNot: { 14977 bool bres; 14978 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info)) 14979 return false; 14980 return Success(!bres, E); 14981 } 14982 } 14983 } 14984 14985 /// HandleCast - This is used to evaluate implicit or explicit casts where the 14986 /// result type is integer. 14987 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) { 14988 const Expr *SubExpr = E->getSubExpr(); 14989 QualType DestType = E->getType(); 14990 QualType SrcType = SubExpr->getType(); 14991 14992 switch (E->getCastKind()) { 14993 case CK_BaseToDerived: 14994 case CK_DerivedToBase: 14995 case CK_UncheckedDerivedToBase: 14996 case CK_Dynamic: 14997 case CK_ToUnion: 14998 case CK_ArrayToPointerDecay: 14999 case CK_FunctionToPointerDecay: 15000 case CK_NullToPointer: 15001 case CK_NullToMemberPointer: 15002 case CK_BaseToDerivedMemberPointer: 15003 case CK_DerivedToBaseMemberPointer: 15004 case CK_ReinterpretMemberPointer: 15005 case CK_ConstructorConversion: 15006 case CK_IntegralToPointer: 15007 case CK_ToVoid: 15008 case CK_VectorSplat: 15009 case CK_IntegralToFloating: 15010 case CK_FloatingCast: 15011 case CK_CPointerToObjCPointerCast: 15012 case CK_BlockPointerToObjCPointerCast: 15013 case CK_AnyPointerToBlockPointerCast: 15014 case CK_ObjCObjectLValueCast: 15015 case CK_FloatingRealToComplex: 15016 case CK_FloatingComplexToReal: 15017 case CK_FloatingComplexCast: 15018 case CK_FloatingComplexToIntegralComplex: 15019 case CK_IntegralRealToComplex: 15020 case CK_IntegralComplexCast: 15021 case CK_IntegralComplexToFloatingComplex: 15022 case CK_BuiltinFnToFnPtr: 15023 case CK_ZeroToOCLOpaqueType: 15024 case CK_NonAtomicToAtomic: 15025 case CK_AddressSpaceConversion: 15026 case CK_IntToOCLSampler: 15027 case CK_FloatingToFixedPoint: 15028 case CK_FixedPointToFloating: 15029 case CK_FixedPointCast: 15030 case CK_IntegralToFixedPoint: 15031 case CK_MatrixCast: 15032 llvm_unreachable("invalid cast kind for integral value"); 15033 15034 case CK_BitCast: 15035 case CK_Dependent: 15036 case CK_LValueBitCast: 15037 case CK_ARCProduceObject: 15038 case CK_ARCConsumeObject: 15039 case CK_ARCReclaimReturnedObject: 15040 case CK_ARCExtendBlockObject: 15041 case CK_CopyAndAutoreleaseBlockObject: 15042 return Error(E); 15043 15044 case CK_UserDefinedConversion: 15045 case CK_LValueToRValue: 15046 case CK_AtomicToNonAtomic: 15047 case CK_NoOp: 15048 case CK_LValueToRValueBitCast: 15049 case CK_HLSLArrayRValue: 15050 return ExprEvaluatorBaseTy::VisitCastExpr(E); 15051 15052 case CK_MemberPointerToBoolean: 15053 case CK_PointerToBoolean: 15054 case CK_IntegralToBoolean: 15055 case CK_FloatingToBoolean: 15056 case CK_BooleanToSignedIntegral: 15057 case CK_FloatingComplexToBoolean: 15058 case CK_IntegralComplexToBoolean: { 15059 bool BoolResult; 15060 if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info)) 15061 return false; 15062 uint64_t IntResult = BoolResult; 15063 if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral) 15064 IntResult = (uint64_t)-1; 15065 return Success(IntResult, E); 15066 } 15067 15068 case CK_FixedPointToIntegral: { 15069 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType)); 15070 if (!EvaluateFixedPoint(SubExpr, Src, Info)) 15071 return false; 15072 bool Overflowed; 15073 llvm::APSInt Result = Src.convertToInt( 15074 Info.Ctx.getIntWidth(DestType), 15075 DestType->isSignedIntegerOrEnumerationType(), &Overflowed); 15076 if (Overflowed && !HandleOverflow(Info, E, Result, DestType)) 15077 return false; 15078 return Success(Result, E); 15079 } 15080 15081 case CK_FixedPointToBoolean: { 15082 // Unsigned padding does not affect this. 15083 APValue Val; 15084 if (!Evaluate(Val, Info, SubExpr)) 15085 return false; 15086 return Success(Val.getFixedPoint().getBoolValue(), E); 15087 } 15088 15089 case CK_IntegralCast: { 15090 if (!Visit(SubExpr)) 15091 return false; 15092 15093 if (!Result.isInt()) { 15094 // Allow casts of address-of-label differences if they are no-ops 15095 // or narrowing. (The narrowing case isn't actually guaranteed to 15096 // be constant-evaluatable except in some narrow cases which are hard 15097 // to detect here. We let it through on the assumption the user knows 15098 // what they are doing.) 15099 if (Result.isAddrLabelDiff()) 15100 return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType); 15101 // Only allow casts of lvalues if they are lossless. 15102 return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType); 15103 } 15104 15105 if (Info.Ctx.getLangOpts().CPlusPlus && Info.InConstantContext && 15106 Info.EvalMode == EvalInfo::EM_ConstantExpression && 15107 DestType->isEnumeralType()) { 15108 15109 bool ConstexprVar = true; 15110 15111 // We know if we are here that we are in a context that we might require 15112 // a constant expression or a context that requires a constant 15113 // value. But if we are initializing a value we don't know if it is a 15114 // constexpr variable or not. We can check the EvaluatingDecl to determine 15115 // if it constexpr or not. If not then we don't want to emit a diagnostic. 15116 if (const auto *VD = dyn_cast_or_null<VarDecl>( 15117 Info.EvaluatingDecl.dyn_cast<const ValueDecl *>())) 15118 ConstexprVar = VD->isConstexpr(); 15119 15120 const EnumType *ET = dyn_cast<EnumType>(DestType.getCanonicalType()); 15121 const EnumDecl *ED = ET->getDecl(); 15122 // Check that the value is within the range of the enumeration values. 15123 // 15124 // This corressponds to [expr.static.cast]p10 which says: 15125 // A value of integral or enumeration type can be explicitly converted 15126 // to a complete enumeration type ... If the enumeration type does not 15127 // have a fixed underlying type, the value is unchanged if the original 15128 // value is within the range of the enumeration values ([dcl.enum]), and 15129 // otherwise, the behavior is undefined. 15130 // 15131 // This was resolved as part of DR2338 which has CD5 status. 15132 if (!ED->isFixed()) { 15133 llvm::APInt Min; 15134 llvm::APInt Max; 15135 15136 ED->getValueRange(Max, Min); 15137 --Max; 15138 15139 if (ED->getNumNegativeBits() && ConstexprVar && 15140 (Max.slt(Result.getInt().getSExtValue()) || 15141 Min.sgt(Result.getInt().getSExtValue()))) 15142 Info.CCEDiag(E, diag::note_constexpr_unscoped_enum_out_of_range) 15143 << llvm::toString(Result.getInt(), 10) << Min.getSExtValue() 15144 << Max.getSExtValue() << ED; 15145 else if (!ED->getNumNegativeBits() && ConstexprVar && 15146 Max.ult(Result.getInt().getZExtValue())) 15147 Info.CCEDiag(E, diag::note_constexpr_unscoped_enum_out_of_range) 15148 << llvm::toString(Result.getInt(), 10) << Min.getZExtValue() 15149 << Max.getZExtValue() << ED; 15150 } 15151 } 15152 15153 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, 15154 Result.getInt()), E); 15155 } 15156 15157 case CK_PointerToIntegral: { 15158 CCEDiag(E, diag::note_constexpr_invalid_cast) 15159 << 2 << Info.Ctx.getLangOpts().CPlusPlus << E->getSourceRange(); 15160 15161 LValue LV; 15162 if (!EvaluatePointer(SubExpr, LV, Info)) 15163 return false; 15164 15165 if (LV.getLValueBase()) { 15166 // Only allow based lvalue casts if they are lossless. 15167 // FIXME: Allow a larger integer size than the pointer size, and allow 15168 // narrowing back down to pointer width in subsequent integral casts. 15169 // FIXME: Check integer type's active bits, not its type size. 15170 if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType)) 15171 return Error(E); 15172 15173 LV.Designator.setInvalid(); 15174 LV.moveInto(Result); 15175 return true; 15176 } 15177 15178 APSInt AsInt; 15179 APValue V; 15180 LV.moveInto(V); 15181 if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx)) 15182 llvm_unreachable("Can't cast this!"); 15183 15184 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E); 15185 } 15186 15187 case CK_IntegralComplexToReal: { 15188 ComplexValue C; 15189 if (!EvaluateComplex(SubExpr, C, Info)) 15190 return false; 15191 return Success(C.getComplexIntReal(), E); 15192 } 15193 15194 case CK_FloatingToIntegral: { 15195 APFloat F(0.0); 15196 if (!EvaluateFloat(SubExpr, F, Info)) 15197 return false; 15198 15199 APSInt Value; 15200 if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value)) 15201 return false; 15202 return Success(Value, E); 15203 } 15204 case CK_HLSLVectorTruncation: { 15205 APValue Val; 15206 if (!EvaluateVector(SubExpr, Val, Info)) 15207 return Error(E); 15208 return Success(Val.getVectorElt(0), E); 15209 } 15210 } 15211 15212 llvm_unreachable("unknown cast resulting in integral value"); 15213 } 15214 15215 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { 15216 if (E->getSubExpr()->getType()->isAnyComplexType()) { 15217 ComplexValue LV; 15218 if (!EvaluateComplex(E->getSubExpr(), LV, Info)) 15219 return false; 15220 if (!LV.isComplexInt()) 15221 return Error(E); 15222 return Success(LV.getComplexIntReal(), E); 15223 } 15224 15225 return Visit(E->getSubExpr()); 15226 } 15227 15228 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 15229 if (E->getSubExpr()->getType()->isComplexIntegerType()) { 15230 ComplexValue LV; 15231 if (!EvaluateComplex(E->getSubExpr(), LV, Info)) 15232 return false; 15233 if (!LV.isComplexInt()) 15234 return Error(E); 15235 return Success(LV.getComplexIntImag(), E); 15236 } 15237 15238 VisitIgnoredValue(E->getSubExpr()); 15239 return Success(0, E); 15240 } 15241 15242 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { 15243 return Success(E->getPackLength(), E); 15244 } 15245 15246 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 15247 return Success(E->getValue(), E); 15248 } 15249 15250 bool IntExprEvaluator::VisitConceptSpecializationExpr( 15251 const ConceptSpecializationExpr *E) { 15252 return Success(E->isSatisfied(), E); 15253 } 15254 15255 bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) { 15256 return Success(E->isSatisfied(), E); 15257 } 15258 15259 bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 15260 switch (E->getOpcode()) { 15261 default: 15262 // Invalid unary operators 15263 return Error(E); 15264 case UO_Plus: 15265 // The result is just the value. 15266 return Visit(E->getSubExpr()); 15267 case UO_Minus: { 15268 if (!Visit(E->getSubExpr())) return false; 15269 if (!Result.isFixedPoint()) 15270 return Error(E); 15271 bool Overflowed; 15272 APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed); 15273 if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType())) 15274 return false; 15275 return Success(Negated, E); 15276 } 15277 case UO_LNot: { 15278 bool bres; 15279 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info)) 15280 return false; 15281 return Success(!bres, E); 15282 } 15283 } 15284 } 15285 15286 bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) { 15287 const Expr *SubExpr = E->getSubExpr(); 15288 QualType DestType = E->getType(); 15289 assert(DestType->isFixedPointType() && 15290 "Expected destination type to be a fixed point type"); 15291 auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType); 15292 15293 switch (E->getCastKind()) { 15294 case CK_FixedPointCast: { 15295 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType())); 15296 if (!EvaluateFixedPoint(SubExpr, Src, Info)) 15297 return false; 15298 bool Overflowed; 15299 APFixedPoint Result = Src.convert(DestFXSema, &Overflowed); 15300 if (Overflowed) { 15301 if (Info.checkingForUndefinedBehavior()) 15302 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 15303 diag::warn_fixedpoint_constant_overflow) 15304 << Result.toString() << E->getType(); 15305 if (!HandleOverflow(Info, E, Result, E->getType())) 15306 return false; 15307 } 15308 return Success(Result, E); 15309 } 15310 case CK_IntegralToFixedPoint: { 15311 APSInt Src; 15312 if (!EvaluateInteger(SubExpr, Src, Info)) 15313 return false; 15314 15315 bool Overflowed; 15316 APFixedPoint IntResult = APFixedPoint::getFromIntValue( 15317 Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed); 15318 15319 if (Overflowed) { 15320 if (Info.checkingForUndefinedBehavior()) 15321 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 15322 diag::warn_fixedpoint_constant_overflow) 15323 << IntResult.toString() << E->getType(); 15324 if (!HandleOverflow(Info, E, IntResult, E->getType())) 15325 return false; 15326 } 15327 15328 return Success(IntResult, E); 15329 } 15330 case CK_FloatingToFixedPoint: { 15331 APFloat Src(0.0); 15332 if (!EvaluateFloat(SubExpr, Src, Info)) 15333 return false; 15334 15335 bool Overflowed; 15336 APFixedPoint Result = APFixedPoint::getFromFloatValue( 15337 Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed); 15338 15339 if (Overflowed) { 15340 if (Info.checkingForUndefinedBehavior()) 15341 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 15342 diag::warn_fixedpoint_constant_overflow) 15343 << Result.toString() << E->getType(); 15344 if (!HandleOverflow(Info, E, Result, E->getType())) 15345 return false; 15346 } 15347 15348 return Success(Result, E); 15349 } 15350 case CK_NoOp: 15351 case CK_LValueToRValue: 15352 return ExprEvaluatorBaseTy::VisitCastExpr(E); 15353 default: 15354 return Error(E); 15355 } 15356 } 15357 15358 bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 15359 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) 15360 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 15361 15362 const Expr *LHS = E->getLHS(); 15363 const Expr *RHS = E->getRHS(); 15364 FixedPointSemantics ResultFXSema = 15365 Info.Ctx.getFixedPointSemantics(E->getType()); 15366 15367 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType())); 15368 if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info)) 15369 return false; 15370 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType())); 15371 if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info)) 15372 return false; 15373 15374 bool OpOverflow = false, ConversionOverflow = false; 15375 APFixedPoint Result(LHSFX.getSemantics()); 15376 switch (E->getOpcode()) { 15377 case BO_Add: { 15378 Result = LHSFX.add(RHSFX, &OpOverflow) 15379 .convert(ResultFXSema, &ConversionOverflow); 15380 break; 15381 } 15382 case BO_Sub: { 15383 Result = LHSFX.sub(RHSFX, &OpOverflow) 15384 .convert(ResultFXSema, &ConversionOverflow); 15385 break; 15386 } 15387 case BO_Mul: { 15388 Result = LHSFX.mul(RHSFX, &OpOverflow) 15389 .convert(ResultFXSema, &ConversionOverflow); 15390 break; 15391 } 15392 case BO_Div: { 15393 if (RHSFX.getValue() == 0) { 15394 Info.FFDiag(E, diag::note_expr_divide_by_zero); 15395 return false; 15396 } 15397 Result = LHSFX.div(RHSFX, &OpOverflow) 15398 .convert(ResultFXSema, &ConversionOverflow); 15399 break; 15400 } 15401 case BO_Shl: 15402 case BO_Shr: { 15403 FixedPointSemantics LHSSema = LHSFX.getSemantics(); 15404 llvm::APSInt RHSVal = RHSFX.getValue(); 15405 15406 unsigned ShiftBW = 15407 LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding(); 15408 unsigned Amt = RHSVal.getLimitedValue(ShiftBW - 1); 15409 // Embedded-C 4.1.6.2.2: 15410 // The right operand must be nonnegative and less than the total number 15411 // of (nonpadding) bits of the fixed-point operand ... 15412 if (RHSVal.isNegative()) 15413 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHSVal; 15414 else if (Amt != RHSVal) 15415 Info.CCEDiag(E, diag::note_constexpr_large_shift) 15416 << RHSVal << E->getType() << ShiftBW; 15417 15418 if (E->getOpcode() == BO_Shl) 15419 Result = LHSFX.shl(Amt, &OpOverflow); 15420 else 15421 Result = LHSFX.shr(Amt, &OpOverflow); 15422 break; 15423 } 15424 default: 15425 return false; 15426 } 15427 if (OpOverflow || ConversionOverflow) { 15428 if (Info.checkingForUndefinedBehavior()) 15429 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 15430 diag::warn_fixedpoint_constant_overflow) 15431 << Result.toString() << E->getType(); 15432 if (!HandleOverflow(Info, E, Result, E->getType())) 15433 return false; 15434 } 15435 return Success(Result, E); 15436 } 15437 15438 //===----------------------------------------------------------------------===// 15439 // Float Evaluation 15440 //===----------------------------------------------------------------------===// 15441 15442 namespace { 15443 class FloatExprEvaluator 15444 : public ExprEvaluatorBase<FloatExprEvaluator> { 15445 APFloat &Result; 15446 public: 15447 FloatExprEvaluator(EvalInfo &info, APFloat &result) 15448 : ExprEvaluatorBaseTy(info), Result(result) {} 15449 15450 bool Success(const APValue &V, const Expr *e) { 15451 Result = V.getFloat(); 15452 return true; 15453 } 15454 15455 bool ZeroInitialization(const Expr *E) { 15456 Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType())); 15457 return true; 15458 } 15459 15460 bool VisitCallExpr(const CallExpr *E); 15461 15462 bool VisitUnaryOperator(const UnaryOperator *E); 15463 bool VisitBinaryOperator(const BinaryOperator *E); 15464 bool VisitFloatingLiteral(const FloatingLiteral *E); 15465 bool VisitCastExpr(const CastExpr *E); 15466 15467 bool VisitUnaryReal(const UnaryOperator *E); 15468 bool VisitUnaryImag(const UnaryOperator *E); 15469 15470 // FIXME: Missing: array subscript of vector, member of vector 15471 }; 15472 } // end anonymous namespace 15473 15474 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) { 15475 assert(!E->isValueDependent()); 15476 assert(E->isPRValue() && E->getType()->isRealFloatingType()); 15477 return FloatExprEvaluator(Info, Result).Visit(E); 15478 } 15479 15480 static bool TryEvaluateBuiltinNaN(const ASTContext &Context, 15481 QualType ResultTy, 15482 const Expr *Arg, 15483 bool SNaN, 15484 llvm::APFloat &Result) { 15485 const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); 15486 if (!S) return false; 15487 15488 const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy); 15489 15490 llvm::APInt fill; 15491 15492 // Treat empty strings as if they were zero. 15493 if (S->getString().empty()) 15494 fill = llvm::APInt(32, 0); 15495 else if (S->getString().getAsInteger(0, fill)) 15496 return false; 15497 15498 if (Context.getTargetInfo().isNan2008()) { 15499 if (SNaN) 15500 Result = llvm::APFloat::getSNaN(Sem, false, &fill); 15501 else 15502 Result = llvm::APFloat::getQNaN(Sem, false, &fill); 15503 } else { 15504 // Prior to IEEE 754-2008, architectures were allowed to choose whether 15505 // the first bit of their significand was set for qNaN or sNaN. MIPS chose 15506 // a different encoding to what became a standard in 2008, and for pre- 15507 // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as 15508 // sNaN. This is now known as "legacy NaN" encoding. 15509 if (SNaN) 15510 Result = llvm::APFloat::getQNaN(Sem, false, &fill); 15511 else 15512 Result = llvm::APFloat::getSNaN(Sem, false, &fill); 15513 } 15514 15515 return true; 15516 } 15517 15518 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) { 15519 if (!IsConstantEvaluatedBuiltinCall(E)) 15520 return ExprEvaluatorBaseTy::VisitCallExpr(E); 15521 15522 switch (E->getBuiltinCallee()) { 15523 default: 15524 return false; 15525 15526 case Builtin::BI__builtin_huge_val: 15527 case Builtin::BI__builtin_huge_valf: 15528 case Builtin::BI__builtin_huge_vall: 15529 case Builtin::BI__builtin_huge_valf16: 15530 case Builtin::BI__builtin_huge_valf128: 15531 case Builtin::BI__builtin_inf: 15532 case Builtin::BI__builtin_inff: 15533 case Builtin::BI__builtin_infl: 15534 case Builtin::BI__builtin_inff16: 15535 case Builtin::BI__builtin_inff128: { 15536 const llvm::fltSemantics &Sem = 15537 Info.Ctx.getFloatTypeSemantics(E->getType()); 15538 Result = llvm::APFloat::getInf(Sem); 15539 return true; 15540 } 15541 15542 case Builtin::BI__builtin_nans: 15543 case Builtin::BI__builtin_nansf: 15544 case Builtin::BI__builtin_nansl: 15545 case Builtin::BI__builtin_nansf16: 15546 case Builtin::BI__builtin_nansf128: 15547 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), 15548 true, Result)) 15549 return Error(E); 15550 return true; 15551 15552 case Builtin::BI__builtin_nan: 15553 case Builtin::BI__builtin_nanf: 15554 case Builtin::BI__builtin_nanl: 15555 case Builtin::BI__builtin_nanf16: 15556 case Builtin::BI__builtin_nanf128: 15557 // If this is __builtin_nan() turn this into a nan, otherwise we 15558 // can't constant fold it. 15559 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), 15560 false, Result)) 15561 return Error(E); 15562 return true; 15563 15564 case Builtin::BI__builtin_fabs: 15565 case Builtin::BI__builtin_fabsf: 15566 case Builtin::BI__builtin_fabsl: 15567 case Builtin::BI__builtin_fabsf128: 15568 // The C standard says "fabs raises no floating-point exceptions, 15569 // even if x is a signaling NaN. The returned value is independent of 15570 // the current rounding direction mode." Therefore constant folding can 15571 // proceed without regard to the floating point settings. 15572 // Reference, WG14 N2478 F.10.4.3 15573 if (!EvaluateFloat(E->getArg(0), Result, Info)) 15574 return false; 15575 15576 if (Result.isNegative()) 15577 Result.changeSign(); 15578 return true; 15579 15580 case Builtin::BI__arithmetic_fence: 15581 return EvaluateFloat(E->getArg(0), Result, Info); 15582 15583 // FIXME: Builtin::BI__builtin_powi 15584 // FIXME: Builtin::BI__builtin_powif 15585 // FIXME: Builtin::BI__builtin_powil 15586 15587 case Builtin::BI__builtin_copysign: 15588 case Builtin::BI__builtin_copysignf: 15589 case Builtin::BI__builtin_copysignl: 15590 case Builtin::BI__builtin_copysignf128: { 15591 APFloat RHS(0.); 15592 if (!EvaluateFloat(E->getArg(0), Result, Info) || 15593 !EvaluateFloat(E->getArg(1), RHS, Info)) 15594 return false; 15595 Result.copySign(RHS); 15596 return true; 15597 } 15598 15599 case Builtin::BI__builtin_fmax: 15600 case Builtin::BI__builtin_fmaxf: 15601 case Builtin::BI__builtin_fmaxl: 15602 case Builtin::BI__builtin_fmaxf16: 15603 case Builtin::BI__builtin_fmaxf128: { 15604 // TODO: Handle sNaN. 15605 APFloat RHS(0.); 15606 if (!EvaluateFloat(E->getArg(0), Result, Info) || 15607 !EvaluateFloat(E->getArg(1), RHS, Info)) 15608 return false; 15609 // When comparing zeroes, return +0.0 if one of the zeroes is positive. 15610 if (Result.isZero() && RHS.isZero() && Result.isNegative()) 15611 Result = RHS; 15612 else if (Result.isNaN() || RHS > Result) 15613 Result = RHS; 15614 return true; 15615 } 15616 15617 case Builtin::BI__builtin_fmin: 15618 case Builtin::BI__builtin_fminf: 15619 case Builtin::BI__builtin_fminl: 15620 case Builtin::BI__builtin_fminf16: 15621 case Builtin::BI__builtin_fminf128: { 15622 // TODO: Handle sNaN. 15623 APFloat RHS(0.); 15624 if (!EvaluateFloat(E->getArg(0), Result, Info) || 15625 !EvaluateFloat(E->getArg(1), RHS, Info)) 15626 return false; 15627 // When comparing zeroes, return -0.0 if one of the zeroes is negative. 15628 if (Result.isZero() && RHS.isZero() && RHS.isNegative()) 15629 Result = RHS; 15630 else if (Result.isNaN() || RHS < Result) 15631 Result = RHS; 15632 return true; 15633 } 15634 15635 case Builtin::BI__builtin_fmaximum_num: 15636 case Builtin::BI__builtin_fmaximum_numf: 15637 case Builtin::BI__builtin_fmaximum_numl: 15638 case Builtin::BI__builtin_fmaximum_numf16: 15639 case Builtin::BI__builtin_fmaximum_numf128: { 15640 APFloat RHS(0.); 15641 if (!EvaluateFloat(E->getArg(0), Result, Info) || 15642 !EvaluateFloat(E->getArg(1), RHS, Info)) 15643 return false; 15644 Result = maximumnum(Result, RHS); 15645 return true; 15646 } 15647 15648 case Builtin::BI__builtin_fminimum_num: 15649 case Builtin::BI__builtin_fminimum_numf: 15650 case Builtin::BI__builtin_fminimum_numl: 15651 case Builtin::BI__builtin_fminimum_numf16: 15652 case Builtin::BI__builtin_fminimum_numf128: { 15653 APFloat RHS(0.); 15654 if (!EvaluateFloat(E->getArg(0), Result, Info) || 15655 !EvaluateFloat(E->getArg(1), RHS, Info)) 15656 return false; 15657 Result = minimumnum(Result, RHS); 15658 return true; 15659 } 15660 } 15661 } 15662 15663 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { 15664 if (E->getSubExpr()->getType()->isAnyComplexType()) { 15665 ComplexValue CV; 15666 if (!EvaluateComplex(E->getSubExpr(), CV, Info)) 15667 return false; 15668 Result = CV.FloatReal; 15669 return true; 15670 } 15671 15672 return Visit(E->getSubExpr()); 15673 } 15674 15675 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 15676 if (E->getSubExpr()->getType()->isAnyComplexType()) { 15677 ComplexValue CV; 15678 if (!EvaluateComplex(E->getSubExpr(), CV, Info)) 15679 return false; 15680 Result = CV.FloatImag; 15681 return true; 15682 } 15683 15684 VisitIgnoredValue(E->getSubExpr()); 15685 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType()); 15686 Result = llvm::APFloat::getZero(Sem); 15687 return true; 15688 } 15689 15690 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 15691 switch (E->getOpcode()) { 15692 default: return Error(E); 15693 case UO_Plus: 15694 return EvaluateFloat(E->getSubExpr(), Result, Info); 15695 case UO_Minus: 15696 // In C standard, WG14 N2478 F.3 p4 15697 // "the unary - raises no floating point exceptions, 15698 // even if the operand is signalling." 15699 if (!EvaluateFloat(E->getSubExpr(), Result, Info)) 15700 return false; 15701 Result.changeSign(); 15702 return true; 15703 } 15704 } 15705 15706 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 15707 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) 15708 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 15709 15710 APFloat RHS(0.0); 15711 bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info); 15712 if (!LHSOK && !Info.noteFailure()) 15713 return false; 15714 return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK && 15715 handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS); 15716 } 15717 15718 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) { 15719 Result = E->getValue(); 15720 return true; 15721 } 15722 15723 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) { 15724 const Expr* SubExpr = E->getSubExpr(); 15725 15726 switch (E->getCastKind()) { 15727 default: 15728 return ExprEvaluatorBaseTy::VisitCastExpr(E); 15729 15730 case CK_IntegralToFloating: { 15731 APSInt IntResult; 15732 const FPOptions FPO = E->getFPFeaturesInEffect( 15733 Info.Ctx.getLangOpts()); 15734 return EvaluateInteger(SubExpr, IntResult, Info) && 15735 HandleIntToFloatCast(Info, E, FPO, SubExpr->getType(), 15736 IntResult, E->getType(), Result); 15737 } 15738 15739 case CK_FixedPointToFloating: { 15740 APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(SubExpr->getType())); 15741 if (!EvaluateFixedPoint(SubExpr, FixResult, Info)) 15742 return false; 15743 Result = 15744 FixResult.convertToFloat(Info.Ctx.getFloatTypeSemantics(E->getType())); 15745 return true; 15746 } 15747 15748 case CK_FloatingCast: { 15749 if (!Visit(SubExpr)) 15750 return false; 15751 return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(), 15752 Result); 15753 } 15754 15755 case CK_FloatingComplexToReal: { 15756 ComplexValue V; 15757 if (!EvaluateComplex(SubExpr, V, Info)) 15758 return false; 15759 Result = V.getComplexFloatReal(); 15760 return true; 15761 } 15762 case CK_HLSLVectorTruncation: { 15763 APValue Val; 15764 if (!EvaluateVector(SubExpr, Val, Info)) 15765 return Error(E); 15766 return Success(Val.getVectorElt(0), E); 15767 } 15768 } 15769 } 15770 15771 //===----------------------------------------------------------------------===// 15772 // Complex Evaluation (for float and integer) 15773 //===----------------------------------------------------------------------===// 15774 15775 namespace { 15776 class ComplexExprEvaluator 15777 : public ExprEvaluatorBase<ComplexExprEvaluator> { 15778 ComplexValue &Result; 15779 15780 public: 15781 ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result) 15782 : ExprEvaluatorBaseTy(info), Result(Result) {} 15783 15784 bool Success(const APValue &V, const Expr *e) { 15785 Result.setFrom(V); 15786 return true; 15787 } 15788 15789 bool ZeroInitialization(const Expr *E); 15790 15791 //===--------------------------------------------------------------------===// 15792 // Visitor Methods 15793 //===--------------------------------------------------------------------===// 15794 15795 bool VisitImaginaryLiteral(const ImaginaryLiteral *E); 15796 bool VisitCastExpr(const CastExpr *E); 15797 bool VisitBinaryOperator(const BinaryOperator *E); 15798 bool VisitUnaryOperator(const UnaryOperator *E); 15799 bool VisitInitListExpr(const InitListExpr *E); 15800 bool VisitCallExpr(const CallExpr *E); 15801 }; 15802 } // end anonymous namespace 15803 15804 static bool EvaluateComplex(const Expr *E, ComplexValue &Result, 15805 EvalInfo &Info) { 15806 assert(!E->isValueDependent()); 15807 assert(E->isPRValue() && E->getType()->isAnyComplexType()); 15808 return ComplexExprEvaluator(Info, Result).Visit(E); 15809 } 15810 15811 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) { 15812 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 15813 if (ElemTy->isRealFloatingType()) { 15814 Result.makeComplexFloat(); 15815 APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy)); 15816 Result.FloatReal = Zero; 15817 Result.FloatImag = Zero; 15818 } else { 15819 Result.makeComplexInt(); 15820 APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy); 15821 Result.IntReal = Zero; 15822 Result.IntImag = Zero; 15823 } 15824 return true; 15825 } 15826 15827 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) { 15828 const Expr* SubExpr = E->getSubExpr(); 15829 15830 if (SubExpr->getType()->isRealFloatingType()) { 15831 Result.makeComplexFloat(); 15832 APFloat &Imag = Result.FloatImag; 15833 if (!EvaluateFloat(SubExpr, Imag, Info)) 15834 return false; 15835 15836 Result.FloatReal = APFloat(Imag.getSemantics()); 15837 return true; 15838 } else { 15839 assert(SubExpr->getType()->isIntegerType() && 15840 "Unexpected imaginary literal."); 15841 15842 Result.makeComplexInt(); 15843 APSInt &Imag = Result.IntImag; 15844 if (!EvaluateInteger(SubExpr, Imag, Info)) 15845 return false; 15846 15847 Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned()); 15848 return true; 15849 } 15850 } 15851 15852 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) { 15853 15854 switch (E->getCastKind()) { 15855 case CK_BitCast: 15856 case CK_BaseToDerived: 15857 case CK_DerivedToBase: 15858 case CK_UncheckedDerivedToBase: 15859 case CK_Dynamic: 15860 case CK_ToUnion: 15861 case CK_ArrayToPointerDecay: 15862 case CK_FunctionToPointerDecay: 15863 case CK_NullToPointer: 15864 case CK_NullToMemberPointer: 15865 case CK_BaseToDerivedMemberPointer: 15866 case CK_DerivedToBaseMemberPointer: 15867 case CK_MemberPointerToBoolean: 15868 case CK_ReinterpretMemberPointer: 15869 case CK_ConstructorConversion: 15870 case CK_IntegralToPointer: 15871 case CK_PointerToIntegral: 15872 case CK_PointerToBoolean: 15873 case CK_ToVoid: 15874 case CK_VectorSplat: 15875 case CK_IntegralCast: 15876 case CK_BooleanToSignedIntegral: 15877 case CK_IntegralToBoolean: 15878 case CK_IntegralToFloating: 15879 case CK_FloatingToIntegral: 15880 case CK_FloatingToBoolean: 15881 case CK_FloatingCast: 15882 case CK_CPointerToObjCPointerCast: 15883 case CK_BlockPointerToObjCPointerCast: 15884 case CK_AnyPointerToBlockPointerCast: 15885 case CK_ObjCObjectLValueCast: 15886 case CK_FloatingComplexToReal: 15887 case CK_FloatingComplexToBoolean: 15888 case CK_IntegralComplexToReal: 15889 case CK_IntegralComplexToBoolean: 15890 case CK_ARCProduceObject: 15891 case CK_ARCConsumeObject: 15892 case CK_ARCReclaimReturnedObject: 15893 case CK_ARCExtendBlockObject: 15894 case CK_CopyAndAutoreleaseBlockObject: 15895 case CK_BuiltinFnToFnPtr: 15896 case CK_ZeroToOCLOpaqueType: 15897 case CK_NonAtomicToAtomic: 15898 case CK_AddressSpaceConversion: 15899 case CK_IntToOCLSampler: 15900 case CK_FloatingToFixedPoint: 15901 case CK_FixedPointToFloating: 15902 case CK_FixedPointCast: 15903 case CK_FixedPointToBoolean: 15904 case CK_FixedPointToIntegral: 15905 case CK_IntegralToFixedPoint: 15906 case CK_MatrixCast: 15907 case CK_HLSLVectorTruncation: 15908 llvm_unreachable("invalid cast kind for complex value"); 15909 15910 case CK_LValueToRValue: 15911 case CK_AtomicToNonAtomic: 15912 case CK_NoOp: 15913 case CK_LValueToRValueBitCast: 15914 case CK_HLSLArrayRValue: 15915 return ExprEvaluatorBaseTy::VisitCastExpr(E); 15916 15917 case CK_Dependent: 15918 case CK_LValueBitCast: 15919 case CK_UserDefinedConversion: 15920 return Error(E); 15921 15922 case CK_FloatingRealToComplex: { 15923 APFloat &Real = Result.FloatReal; 15924 if (!EvaluateFloat(E->getSubExpr(), Real, Info)) 15925 return false; 15926 15927 Result.makeComplexFloat(); 15928 Result.FloatImag = APFloat(Real.getSemantics()); 15929 return true; 15930 } 15931 15932 case CK_FloatingComplexCast: { 15933 if (!Visit(E->getSubExpr())) 15934 return false; 15935 15936 QualType To = E->getType()->castAs<ComplexType>()->getElementType(); 15937 QualType From 15938 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); 15939 15940 return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) && 15941 HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag); 15942 } 15943 15944 case CK_FloatingComplexToIntegralComplex: { 15945 if (!Visit(E->getSubExpr())) 15946 return false; 15947 15948 QualType To = E->getType()->castAs<ComplexType>()->getElementType(); 15949 QualType From 15950 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); 15951 Result.makeComplexInt(); 15952 return HandleFloatToIntCast(Info, E, From, Result.FloatReal, 15953 To, Result.IntReal) && 15954 HandleFloatToIntCast(Info, E, From, Result.FloatImag, 15955 To, Result.IntImag); 15956 } 15957 15958 case CK_IntegralRealToComplex: { 15959 APSInt &Real = Result.IntReal; 15960 if (!EvaluateInteger(E->getSubExpr(), Real, Info)) 15961 return false; 15962 15963 Result.makeComplexInt(); 15964 Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned()); 15965 return true; 15966 } 15967 15968 case CK_IntegralComplexCast: { 15969 if (!Visit(E->getSubExpr())) 15970 return false; 15971 15972 QualType To = E->getType()->castAs<ComplexType>()->getElementType(); 15973 QualType From 15974 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); 15975 15976 Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal); 15977 Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag); 15978 return true; 15979 } 15980 15981 case CK_IntegralComplexToFloatingComplex: { 15982 if (!Visit(E->getSubExpr())) 15983 return false; 15984 15985 const FPOptions FPO = E->getFPFeaturesInEffect( 15986 Info.Ctx.getLangOpts()); 15987 QualType To = E->getType()->castAs<ComplexType>()->getElementType(); 15988 QualType From 15989 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); 15990 Result.makeComplexFloat(); 15991 return HandleIntToFloatCast(Info, E, FPO, From, Result.IntReal, 15992 To, Result.FloatReal) && 15993 HandleIntToFloatCast(Info, E, FPO, From, Result.IntImag, 15994 To, Result.FloatImag); 15995 } 15996 } 15997 15998 llvm_unreachable("unknown cast resulting in complex value"); 15999 } 16000 16001 void HandleComplexComplexMul(APFloat A, APFloat B, APFloat C, APFloat D, 16002 APFloat &ResR, APFloat &ResI) { 16003 // This is an implementation of complex multiplication according to the 16004 // constraints laid out in C11 Annex G. The implementation uses the 16005 // following naming scheme: 16006 // (a + ib) * (c + id) 16007 16008 APFloat AC = A * C; 16009 APFloat BD = B * D; 16010 APFloat AD = A * D; 16011 APFloat BC = B * C; 16012 ResR = AC - BD; 16013 ResI = AD + BC; 16014 if (ResR.isNaN() && ResI.isNaN()) { 16015 bool Recalc = false; 16016 if (A.isInfinity() || B.isInfinity()) { 16017 A = APFloat::copySign(APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), 16018 A); 16019 B = APFloat::copySign(APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), 16020 B); 16021 if (C.isNaN()) 16022 C = APFloat::copySign(APFloat(C.getSemantics()), C); 16023 if (D.isNaN()) 16024 D = APFloat::copySign(APFloat(D.getSemantics()), D); 16025 Recalc = true; 16026 } 16027 if (C.isInfinity() || D.isInfinity()) { 16028 C = APFloat::copySign(APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), 16029 C); 16030 D = APFloat::copySign(APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), 16031 D); 16032 if (A.isNaN()) 16033 A = APFloat::copySign(APFloat(A.getSemantics()), A); 16034 if (B.isNaN()) 16035 B = APFloat::copySign(APFloat(B.getSemantics()), B); 16036 Recalc = true; 16037 } 16038 if (!Recalc && (AC.isInfinity() || BD.isInfinity() || AD.isInfinity() || 16039 BC.isInfinity())) { 16040 if (A.isNaN()) 16041 A = APFloat::copySign(APFloat(A.getSemantics()), A); 16042 if (B.isNaN()) 16043 B = APFloat::copySign(APFloat(B.getSemantics()), B); 16044 if (C.isNaN()) 16045 C = APFloat::copySign(APFloat(C.getSemantics()), C); 16046 if (D.isNaN()) 16047 D = APFloat::copySign(APFloat(D.getSemantics()), D); 16048 Recalc = true; 16049 } 16050 if (Recalc) { 16051 ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D); 16052 ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C); 16053 } 16054 } 16055 } 16056 16057 void HandleComplexComplexDiv(APFloat A, APFloat B, APFloat C, APFloat D, 16058 APFloat &ResR, APFloat &ResI) { 16059 // This is an implementation of complex division according to the 16060 // constraints laid out in C11 Annex G. The implementation uses the 16061 // following naming scheme: 16062 // (a + ib) / (c + id) 16063 16064 int DenomLogB = 0; 16065 APFloat MaxCD = maxnum(abs(C), abs(D)); 16066 if (MaxCD.isFinite()) { 16067 DenomLogB = ilogb(MaxCD); 16068 C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven); 16069 D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven); 16070 } 16071 APFloat Denom = C * C + D * D; 16072 ResR = 16073 scalbn((A * C + B * D) / Denom, -DenomLogB, APFloat::rmNearestTiesToEven); 16074 ResI = 16075 scalbn((B * C - A * D) / Denom, -DenomLogB, APFloat::rmNearestTiesToEven); 16076 if (ResR.isNaN() && ResI.isNaN()) { 16077 if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) { 16078 ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A; 16079 ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B; 16080 } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() && 16081 D.isFinite()) { 16082 A = APFloat::copySign(APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), 16083 A); 16084 B = APFloat::copySign(APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), 16085 B); 16086 ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D); 16087 ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D); 16088 } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) { 16089 C = APFloat::copySign(APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), 16090 C); 16091 D = APFloat::copySign(APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), 16092 D); 16093 ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D); 16094 ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D); 16095 } 16096 } 16097 } 16098 16099 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 16100 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) 16101 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 16102 16103 // Track whether the LHS or RHS is real at the type system level. When this is 16104 // the case we can simplify our evaluation strategy. 16105 bool LHSReal = false, RHSReal = false; 16106 16107 bool LHSOK; 16108 if (E->getLHS()->getType()->isRealFloatingType()) { 16109 LHSReal = true; 16110 APFloat &Real = Result.FloatReal; 16111 LHSOK = EvaluateFloat(E->getLHS(), Real, Info); 16112 if (LHSOK) { 16113 Result.makeComplexFloat(); 16114 Result.FloatImag = APFloat(Real.getSemantics()); 16115 } 16116 } else { 16117 LHSOK = Visit(E->getLHS()); 16118 } 16119 if (!LHSOK && !Info.noteFailure()) 16120 return false; 16121 16122 ComplexValue RHS; 16123 if (E->getRHS()->getType()->isRealFloatingType()) { 16124 RHSReal = true; 16125 APFloat &Real = RHS.FloatReal; 16126 if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK) 16127 return false; 16128 RHS.makeComplexFloat(); 16129 RHS.FloatImag = APFloat(Real.getSemantics()); 16130 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK) 16131 return false; 16132 16133 assert(!(LHSReal && RHSReal) && 16134 "Cannot have both operands of a complex operation be real."); 16135 switch (E->getOpcode()) { 16136 default: return Error(E); 16137 case BO_Add: 16138 if (Result.isComplexFloat()) { 16139 Result.getComplexFloatReal().add(RHS.getComplexFloatReal(), 16140 APFloat::rmNearestTiesToEven); 16141 if (LHSReal) 16142 Result.getComplexFloatImag() = RHS.getComplexFloatImag(); 16143 else if (!RHSReal) 16144 Result.getComplexFloatImag().add(RHS.getComplexFloatImag(), 16145 APFloat::rmNearestTiesToEven); 16146 } else { 16147 Result.getComplexIntReal() += RHS.getComplexIntReal(); 16148 Result.getComplexIntImag() += RHS.getComplexIntImag(); 16149 } 16150 break; 16151 case BO_Sub: 16152 if (Result.isComplexFloat()) { 16153 Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(), 16154 APFloat::rmNearestTiesToEven); 16155 if (LHSReal) { 16156 Result.getComplexFloatImag() = RHS.getComplexFloatImag(); 16157 Result.getComplexFloatImag().changeSign(); 16158 } else if (!RHSReal) { 16159 Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(), 16160 APFloat::rmNearestTiesToEven); 16161 } 16162 } else { 16163 Result.getComplexIntReal() -= RHS.getComplexIntReal(); 16164 Result.getComplexIntImag() -= RHS.getComplexIntImag(); 16165 } 16166 break; 16167 case BO_Mul: 16168 if (Result.isComplexFloat()) { 16169 // This is an implementation of complex multiplication according to the 16170 // constraints laid out in C11 Annex G. The implementation uses the 16171 // following naming scheme: 16172 // (a + ib) * (c + id) 16173 ComplexValue LHS = Result; 16174 APFloat &A = LHS.getComplexFloatReal(); 16175 APFloat &B = LHS.getComplexFloatImag(); 16176 APFloat &C = RHS.getComplexFloatReal(); 16177 APFloat &D = RHS.getComplexFloatImag(); 16178 APFloat &ResR = Result.getComplexFloatReal(); 16179 APFloat &ResI = Result.getComplexFloatImag(); 16180 if (LHSReal) { 16181 assert(!RHSReal && "Cannot have two real operands for a complex op!"); 16182 ResR = A; 16183 ResI = A; 16184 // ResR = A * C; 16185 // ResI = A * D; 16186 if (!handleFloatFloatBinOp(Info, E, ResR, BO_Mul, C) || 16187 !handleFloatFloatBinOp(Info, E, ResI, BO_Mul, D)) 16188 return false; 16189 } else if (RHSReal) { 16190 // ResR = C * A; 16191 // ResI = C * B; 16192 ResR = C; 16193 ResI = C; 16194 if (!handleFloatFloatBinOp(Info, E, ResR, BO_Mul, A) || 16195 !handleFloatFloatBinOp(Info, E, ResI, BO_Mul, B)) 16196 return false; 16197 } else { 16198 HandleComplexComplexMul(A, B, C, D, ResR, ResI); 16199 } 16200 } else { 16201 ComplexValue LHS = Result; 16202 Result.getComplexIntReal() = 16203 (LHS.getComplexIntReal() * RHS.getComplexIntReal() - 16204 LHS.getComplexIntImag() * RHS.getComplexIntImag()); 16205 Result.getComplexIntImag() = 16206 (LHS.getComplexIntReal() * RHS.getComplexIntImag() + 16207 LHS.getComplexIntImag() * RHS.getComplexIntReal()); 16208 } 16209 break; 16210 case BO_Div: 16211 if (Result.isComplexFloat()) { 16212 // This is an implementation of complex division according to the 16213 // constraints laid out in C11 Annex G. The implementation uses the 16214 // following naming scheme: 16215 // (a + ib) / (c + id) 16216 ComplexValue LHS = Result; 16217 APFloat &A = LHS.getComplexFloatReal(); 16218 APFloat &B = LHS.getComplexFloatImag(); 16219 APFloat &C = RHS.getComplexFloatReal(); 16220 APFloat &D = RHS.getComplexFloatImag(); 16221 APFloat &ResR = Result.getComplexFloatReal(); 16222 APFloat &ResI = Result.getComplexFloatImag(); 16223 if (RHSReal) { 16224 ResR = A; 16225 ResI = B; 16226 // ResR = A / C; 16227 // ResI = B / C; 16228 if (!handleFloatFloatBinOp(Info, E, ResR, BO_Div, C) || 16229 !handleFloatFloatBinOp(Info, E, ResI, BO_Div, C)) 16230 return false; 16231 } else { 16232 if (LHSReal) { 16233 // No real optimizations we can do here, stub out with zero. 16234 B = APFloat::getZero(A.getSemantics()); 16235 } 16236 HandleComplexComplexDiv(A, B, C, D, ResR, ResI); 16237 } 16238 } else { 16239 ComplexValue LHS = Result; 16240 APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() + 16241 RHS.getComplexIntImag() * RHS.getComplexIntImag(); 16242 if (Den.isZero()) 16243 return Error(E, diag::note_expr_divide_by_zero); 16244 16245 Result.getComplexIntReal() = 16246 (LHS.getComplexIntReal() * RHS.getComplexIntReal() + 16247 LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den; 16248 Result.getComplexIntImag() = 16249 (LHS.getComplexIntImag() * RHS.getComplexIntReal() - 16250 LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den; 16251 } 16252 break; 16253 } 16254 16255 return true; 16256 } 16257 16258 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 16259 // Get the operand value into 'Result'. 16260 if (!Visit(E->getSubExpr())) 16261 return false; 16262 16263 switch (E->getOpcode()) { 16264 default: 16265 return Error(E); 16266 case UO_Extension: 16267 return true; 16268 case UO_Plus: 16269 // The result is always just the subexpr. 16270 return true; 16271 case UO_Minus: 16272 if (Result.isComplexFloat()) { 16273 Result.getComplexFloatReal().changeSign(); 16274 Result.getComplexFloatImag().changeSign(); 16275 } 16276 else { 16277 Result.getComplexIntReal() = -Result.getComplexIntReal(); 16278 Result.getComplexIntImag() = -Result.getComplexIntImag(); 16279 } 16280 return true; 16281 case UO_Not: 16282 if (Result.isComplexFloat()) 16283 Result.getComplexFloatImag().changeSign(); 16284 else 16285 Result.getComplexIntImag() = -Result.getComplexIntImag(); 16286 return true; 16287 } 16288 } 16289 16290 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) { 16291 if (E->getNumInits() == 2) { 16292 if (E->getType()->isComplexType()) { 16293 Result.makeComplexFloat(); 16294 if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info)) 16295 return false; 16296 if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info)) 16297 return false; 16298 } else { 16299 Result.makeComplexInt(); 16300 if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info)) 16301 return false; 16302 if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info)) 16303 return false; 16304 } 16305 return true; 16306 } 16307 return ExprEvaluatorBaseTy::VisitInitListExpr(E); 16308 } 16309 16310 bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) { 16311 if (!IsConstantEvaluatedBuiltinCall(E)) 16312 return ExprEvaluatorBaseTy::VisitCallExpr(E); 16313 16314 switch (E->getBuiltinCallee()) { 16315 case Builtin::BI__builtin_complex: 16316 Result.makeComplexFloat(); 16317 if (!EvaluateFloat(E->getArg(0), Result.FloatReal, Info)) 16318 return false; 16319 if (!EvaluateFloat(E->getArg(1), Result.FloatImag, Info)) 16320 return false; 16321 return true; 16322 16323 default: 16324 return false; 16325 } 16326 } 16327 16328 //===----------------------------------------------------------------------===// 16329 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic 16330 // implicit conversion. 16331 //===----------------------------------------------------------------------===// 16332 16333 namespace { 16334 class AtomicExprEvaluator : 16335 public ExprEvaluatorBase<AtomicExprEvaluator> { 16336 const LValue *This; 16337 APValue &Result; 16338 public: 16339 AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result) 16340 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {} 16341 16342 bool Success(const APValue &V, const Expr *E) { 16343 Result = V; 16344 return true; 16345 } 16346 16347 bool ZeroInitialization(const Expr *E) { 16348 ImplicitValueInitExpr VIE( 16349 E->getType()->castAs<AtomicType>()->getValueType()); 16350 // For atomic-qualified class (and array) types in C++, initialize the 16351 // _Atomic-wrapped subobject directly, in-place. 16352 return This ? EvaluateInPlace(Result, Info, *This, &VIE) 16353 : Evaluate(Result, Info, &VIE); 16354 } 16355 16356 bool VisitCastExpr(const CastExpr *E) { 16357 switch (E->getCastKind()) { 16358 default: 16359 return ExprEvaluatorBaseTy::VisitCastExpr(E); 16360 case CK_NullToPointer: 16361 VisitIgnoredValue(E->getSubExpr()); 16362 return ZeroInitialization(E); 16363 case CK_NonAtomicToAtomic: 16364 return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr()) 16365 : Evaluate(Result, Info, E->getSubExpr()); 16366 } 16367 } 16368 }; 16369 } // end anonymous namespace 16370 16371 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result, 16372 EvalInfo &Info) { 16373 assert(!E->isValueDependent()); 16374 assert(E->isPRValue() && E->getType()->isAtomicType()); 16375 return AtomicExprEvaluator(Info, This, Result).Visit(E); 16376 } 16377 16378 //===----------------------------------------------------------------------===// 16379 // Void expression evaluation, primarily for a cast to void on the LHS of a 16380 // comma operator 16381 //===----------------------------------------------------------------------===// 16382 16383 namespace { 16384 class VoidExprEvaluator 16385 : public ExprEvaluatorBase<VoidExprEvaluator> { 16386 public: 16387 VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {} 16388 16389 bool Success(const APValue &V, const Expr *e) { return true; } 16390 16391 bool ZeroInitialization(const Expr *E) { return true; } 16392 16393 bool VisitCastExpr(const CastExpr *E) { 16394 switch (E->getCastKind()) { 16395 default: 16396 return ExprEvaluatorBaseTy::VisitCastExpr(E); 16397 case CK_ToVoid: 16398 VisitIgnoredValue(E->getSubExpr()); 16399 return true; 16400 } 16401 } 16402 16403 bool VisitCallExpr(const CallExpr *E) { 16404 if (!IsConstantEvaluatedBuiltinCall(E)) 16405 return ExprEvaluatorBaseTy::VisitCallExpr(E); 16406 16407 switch (E->getBuiltinCallee()) { 16408 case Builtin::BI__assume: 16409 case Builtin::BI__builtin_assume: 16410 // The argument is not evaluated! 16411 return true; 16412 16413 case Builtin::BI__builtin_operator_delete: 16414 return HandleOperatorDeleteCall(Info, E); 16415 16416 default: 16417 return false; 16418 } 16419 } 16420 16421 bool VisitCXXDeleteExpr(const CXXDeleteExpr *E); 16422 }; 16423 } // end anonymous namespace 16424 16425 bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 16426 // We cannot speculatively evaluate a delete expression. 16427 if (Info.SpeculativeEvaluationDepth) 16428 return false; 16429 16430 FunctionDecl *OperatorDelete = E->getOperatorDelete(); 16431 if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) { 16432 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) 16433 << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete; 16434 return false; 16435 } 16436 16437 const Expr *Arg = E->getArgument(); 16438 16439 LValue Pointer; 16440 if (!EvaluatePointer(Arg, Pointer, Info)) 16441 return false; 16442 if (Pointer.Designator.Invalid) 16443 return false; 16444 16445 // Deleting a null pointer has no effect. 16446 if (Pointer.isNullPointer()) { 16447 // This is the only case where we need to produce an extension warning: 16448 // the only other way we can succeed is if we find a dynamic allocation, 16449 // and we will have warned when we allocated it in that case. 16450 if (!Info.getLangOpts().CPlusPlus20) 16451 Info.CCEDiag(E, diag::note_constexpr_new); 16452 return true; 16453 } 16454 16455 std::optional<DynAlloc *> Alloc = CheckDeleteKind( 16456 Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New); 16457 if (!Alloc) 16458 return false; 16459 QualType AllocType = Pointer.Base.getDynamicAllocType(); 16460 16461 // For the non-array case, the designator must be empty if the static type 16462 // does not have a virtual destructor. 16463 if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 && 16464 !hasVirtualDestructor(Arg->getType()->getPointeeType())) { 16465 Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor) 16466 << Arg->getType()->getPointeeType() << AllocType; 16467 return false; 16468 } 16469 16470 // For a class type with a virtual destructor, the selected operator delete 16471 // is the one looked up when building the destructor. 16472 if (!E->isArrayForm() && !E->isGlobalDelete()) { 16473 const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType); 16474 if (VirtualDelete && 16475 !VirtualDelete->isReplaceableGlobalAllocationFunction()) { 16476 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) 16477 << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete; 16478 return false; 16479 } 16480 } 16481 16482 if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(), 16483 (*Alloc)->Value, AllocType)) 16484 return false; 16485 16486 if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) { 16487 // The element was already erased. This means the destructor call also 16488 // deleted the object. 16489 // FIXME: This probably results in undefined behavior before we get this 16490 // far, and should be diagnosed elsewhere first. 16491 Info.FFDiag(E, diag::note_constexpr_double_delete); 16492 return false; 16493 } 16494 16495 return true; 16496 } 16497 16498 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) { 16499 assert(!E->isValueDependent()); 16500 assert(E->isPRValue() && E->getType()->isVoidType()); 16501 return VoidExprEvaluator(Info).Visit(E); 16502 } 16503 16504 //===----------------------------------------------------------------------===// 16505 // Top level Expr::EvaluateAsRValue method. 16506 //===----------------------------------------------------------------------===// 16507 16508 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) { 16509 assert(!E->isValueDependent()); 16510 // In C, function designators are not lvalues, but we evaluate them as if they 16511 // are. 16512 QualType T = E->getType(); 16513 if (E->isGLValue() || T->isFunctionType()) { 16514 LValue LV; 16515 if (!EvaluateLValue(E, LV, Info)) 16516 return false; 16517 LV.moveInto(Result); 16518 } else if (T->isVectorType()) { 16519 if (!EvaluateVector(E, Result, Info)) 16520 return false; 16521 } else if (T->isIntegralOrEnumerationType()) { 16522 if (!IntExprEvaluator(Info, Result).Visit(E)) 16523 return false; 16524 } else if (T->hasPointerRepresentation()) { 16525 LValue LV; 16526 if (!EvaluatePointer(E, LV, Info)) 16527 return false; 16528 LV.moveInto(Result); 16529 } else if (T->isRealFloatingType()) { 16530 llvm::APFloat F(0.0); 16531 if (!EvaluateFloat(E, F, Info)) 16532 return false; 16533 Result = APValue(F); 16534 } else if (T->isAnyComplexType()) { 16535 ComplexValue C; 16536 if (!EvaluateComplex(E, C, Info)) 16537 return false; 16538 C.moveInto(Result); 16539 } else if (T->isFixedPointType()) { 16540 if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false; 16541 } else if (T->isMemberPointerType()) { 16542 MemberPtr P; 16543 if (!EvaluateMemberPointer(E, P, Info)) 16544 return false; 16545 P.moveInto(Result); 16546 return true; 16547 } else if (T->isArrayType()) { 16548 LValue LV; 16549 APValue &Value = 16550 Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV); 16551 if (!EvaluateArray(E, LV, Value, Info)) 16552 return false; 16553 Result = Value; 16554 } else if (T->isRecordType()) { 16555 LValue LV; 16556 APValue &Value = 16557 Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV); 16558 if (!EvaluateRecord(E, LV, Value, Info)) 16559 return false; 16560 Result = Value; 16561 } else if (T->isVoidType()) { 16562 if (!Info.getLangOpts().CPlusPlus11) 16563 Info.CCEDiag(E, diag::note_constexpr_nonliteral) 16564 << E->getType(); 16565 if (!EvaluateVoid(E, Info)) 16566 return false; 16567 } else if (T->isAtomicType()) { 16568 QualType Unqual = T.getAtomicUnqualifiedType(); 16569 if (Unqual->isArrayType() || Unqual->isRecordType()) { 16570 LValue LV; 16571 APValue &Value = Info.CurrentCall->createTemporary( 16572 E, Unqual, ScopeKind::FullExpression, LV); 16573 if (!EvaluateAtomic(E, &LV, Value, Info)) 16574 return false; 16575 Result = Value; 16576 } else { 16577 if (!EvaluateAtomic(E, nullptr, Result, Info)) 16578 return false; 16579 } 16580 } else if (Info.getLangOpts().CPlusPlus11) { 16581 Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType(); 16582 return false; 16583 } else { 16584 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); 16585 return false; 16586 } 16587 16588 return true; 16589 } 16590 16591 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some 16592 /// cases, the in-place evaluation is essential, since later initializers for 16593 /// an object can indirectly refer to subobjects which were initialized earlier. 16594 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This, 16595 const Expr *E, bool AllowNonLiteralTypes) { 16596 assert(!E->isValueDependent()); 16597 16598 if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This)) 16599 return false; 16600 16601 if (E->isPRValue()) { 16602 // Evaluate arrays and record types in-place, so that later initializers can 16603 // refer to earlier-initialized members of the object. 16604 QualType T = E->getType(); 16605 if (T->isArrayType()) 16606 return EvaluateArray(E, This, Result, Info); 16607 else if (T->isRecordType()) 16608 return EvaluateRecord(E, This, Result, Info); 16609 else if (T->isAtomicType()) { 16610 QualType Unqual = T.getAtomicUnqualifiedType(); 16611 if (Unqual->isArrayType() || Unqual->isRecordType()) 16612 return EvaluateAtomic(E, &This, Result, Info); 16613 } 16614 } 16615 16616 // For any other type, in-place evaluation is unimportant. 16617 return Evaluate(Result, Info, E); 16618 } 16619 16620 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit 16621 /// lvalue-to-rvalue cast if it is an lvalue. 16622 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) { 16623 assert(!E->isValueDependent()); 16624 16625 if (E->getType().isNull()) 16626 return false; 16627 16628 if (!CheckLiteralType(Info, E)) 16629 return false; 16630 16631 if (Info.EnableNewConstInterp) { 16632 if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, E, Result)) 16633 return false; 16634 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result, 16635 ConstantExprKind::Normal); 16636 } 16637 16638 if (!::Evaluate(Result, Info, E)) 16639 return false; 16640 16641 // Implicit lvalue-to-rvalue cast. 16642 if (E->isGLValue()) { 16643 LValue LV; 16644 LV.setFrom(Info.Ctx, Result); 16645 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result)) 16646 return false; 16647 } 16648 16649 // Check this core constant expression is a constant expression. 16650 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result, 16651 ConstantExprKind::Normal) && 16652 CheckMemoryLeaks(Info); 16653 } 16654 16655 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result, 16656 const ASTContext &Ctx, bool &IsConst) { 16657 // Fast-path evaluations of integer literals, since we sometimes see files 16658 // containing vast quantities of these. 16659 if (const auto *L = dyn_cast<IntegerLiteral>(Exp)) { 16660 Result.Val = APValue(APSInt(L->getValue(), 16661 L->getType()->isUnsignedIntegerType())); 16662 IsConst = true; 16663 return true; 16664 } 16665 16666 if (const auto *L = dyn_cast<CXXBoolLiteralExpr>(Exp)) { 16667 Result.Val = APValue(APSInt(APInt(1, L->getValue()))); 16668 IsConst = true; 16669 return true; 16670 } 16671 16672 if (const auto *FL = dyn_cast<FloatingLiteral>(Exp)) { 16673 Result.Val = APValue(FL->getValue()); 16674 IsConst = true; 16675 return true; 16676 } 16677 16678 if (const auto *L = dyn_cast<CharacterLiteral>(Exp)) { 16679 Result.Val = APValue(Ctx.MakeIntValue(L->getValue(), L->getType())); 16680 IsConst = true; 16681 return true; 16682 } 16683 16684 if (const auto *CE = dyn_cast<ConstantExpr>(Exp)) { 16685 if (CE->hasAPValueResult()) { 16686 APValue APV = CE->getAPValueResult(); 16687 if (!APV.isLValue()) { 16688 Result.Val = std::move(APV); 16689 IsConst = true; 16690 return true; 16691 } 16692 } 16693 16694 // The SubExpr is usually just an IntegerLiteral. 16695 return FastEvaluateAsRValue(CE->getSubExpr(), Result, Ctx, IsConst); 16696 } 16697 16698 // This case should be rare, but we need to check it before we check on 16699 // the type below. 16700 if (Exp->getType().isNull()) { 16701 IsConst = false; 16702 return true; 16703 } 16704 16705 return false; 16706 } 16707 16708 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result, 16709 Expr::SideEffectsKind SEK) { 16710 return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) || 16711 (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior); 16712 } 16713 16714 static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result, 16715 const ASTContext &Ctx, EvalInfo &Info) { 16716 assert(!E->isValueDependent()); 16717 bool IsConst; 16718 if (FastEvaluateAsRValue(E, Result, Ctx, IsConst)) 16719 return IsConst; 16720 16721 return EvaluateAsRValue(Info, E, Result.Val); 16722 } 16723 16724 static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult, 16725 const ASTContext &Ctx, 16726 Expr::SideEffectsKind AllowSideEffects, 16727 EvalInfo &Info) { 16728 assert(!E->isValueDependent()); 16729 if (!E->getType()->isIntegralOrEnumerationType()) 16730 return false; 16731 16732 if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) || 16733 !ExprResult.Val.isInt() || 16734 hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) 16735 return false; 16736 16737 return true; 16738 } 16739 16740 static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult, 16741 const ASTContext &Ctx, 16742 Expr::SideEffectsKind AllowSideEffects, 16743 EvalInfo &Info) { 16744 assert(!E->isValueDependent()); 16745 if (!E->getType()->isFixedPointType()) 16746 return false; 16747 16748 if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info)) 16749 return false; 16750 16751 if (!ExprResult.Val.isFixedPoint() || 16752 hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) 16753 return false; 16754 16755 return true; 16756 } 16757 16758 /// EvaluateAsRValue - Return true if this is a constant which we can fold using 16759 /// any crazy technique (that has nothing to do with language standards) that 16760 /// we want to. If this function returns true, it returns the folded constant 16761 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion 16762 /// will be applied to the result. 16763 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx, 16764 bool InConstantContext) const { 16765 assert(!isValueDependent() && 16766 "Expression evaluator can't be called on a dependent expression."); 16767 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsRValue"); 16768 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); 16769 Info.InConstantContext = InConstantContext; 16770 return ::EvaluateAsRValue(this, Result, Ctx, Info); 16771 } 16772 16773 bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx, 16774 bool InConstantContext) const { 16775 assert(!isValueDependent() && 16776 "Expression evaluator can't be called on a dependent expression."); 16777 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsBooleanCondition"); 16778 EvalResult Scratch; 16779 return EvaluateAsRValue(Scratch, Ctx, InConstantContext) && 16780 HandleConversionToBool(Scratch.Val, Result); 16781 } 16782 16783 bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx, 16784 SideEffectsKind AllowSideEffects, 16785 bool InConstantContext) const { 16786 assert(!isValueDependent() && 16787 "Expression evaluator can't be called on a dependent expression."); 16788 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsInt"); 16789 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); 16790 Info.InConstantContext = InConstantContext; 16791 return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info); 16792 } 16793 16794 bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx, 16795 SideEffectsKind AllowSideEffects, 16796 bool InConstantContext) const { 16797 assert(!isValueDependent() && 16798 "Expression evaluator can't be called on a dependent expression."); 16799 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFixedPoint"); 16800 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); 16801 Info.InConstantContext = InConstantContext; 16802 return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info); 16803 } 16804 16805 bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx, 16806 SideEffectsKind AllowSideEffects, 16807 bool InConstantContext) const { 16808 assert(!isValueDependent() && 16809 "Expression evaluator can't be called on a dependent expression."); 16810 16811 if (!getType()->isRealFloatingType()) 16812 return false; 16813 16814 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFloat"); 16815 EvalResult ExprResult; 16816 if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) || 16817 !ExprResult.Val.isFloat() || 16818 hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) 16819 return false; 16820 16821 Result = ExprResult.Val.getFloat(); 16822 return true; 16823 } 16824 16825 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx, 16826 bool InConstantContext) const { 16827 assert(!isValueDependent() && 16828 "Expression evaluator can't be called on a dependent expression."); 16829 16830 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsLValue"); 16831 EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold); 16832 Info.InConstantContext = InConstantContext; 16833 LValue LV; 16834 CheckedTemporaries CheckedTemps; 16835 if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() || 16836 Result.HasSideEffects || 16837 !CheckLValueConstantExpression(Info, getExprLoc(), 16838 Ctx.getLValueReferenceType(getType()), LV, 16839 ConstantExprKind::Normal, CheckedTemps)) 16840 return false; 16841 16842 LV.moveInto(Result.Val); 16843 return true; 16844 } 16845 16846 static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base, 16847 APValue DestroyedValue, QualType Type, 16848 SourceLocation Loc, Expr::EvalStatus &EStatus, 16849 bool IsConstantDestruction) { 16850 EvalInfo Info(Ctx, EStatus, 16851 IsConstantDestruction ? EvalInfo::EM_ConstantExpression 16852 : EvalInfo::EM_ConstantFold); 16853 Info.setEvaluatingDecl(Base, DestroyedValue, 16854 EvalInfo::EvaluatingDeclKind::Dtor); 16855 Info.InConstantContext = IsConstantDestruction; 16856 16857 LValue LVal; 16858 LVal.set(Base); 16859 16860 if (!HandleDestruction(Info, Loc, Base, DestroyedValue, Type) || 16861 EStatus.HasSideEffects) 16862 return false; 16863 16864 if (!Info.discardCleanups()) 16865 llvm_unreachable("Unhandled cleanup; missing full expression marker?"); 16866 16867 return true; 16868 } 16869 16870 bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx, 16871 ConstantExprKind Kind) const { 16872 assert(!isValueDependent() && 16873 "Expression evaluator can't be called on a dependent expression."); 16874 bool IsConst; 16875 if (FastEvaluateAsRValue(this, Result, Ctx, IsConst) && Result.Val.hasValue()) 16876 return true; 16877 16878 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsConstantExpr"); 16879 EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression; 16880 EvalInfo Info(Ctx, Result, EM); 16881 Info.InConstantContext = true; 16882 16883 if (Info.EnableNewConstInterp) { 16884 if (!Info.Ctx.getInterpContext().evaluate(Info, this, Result.Val, Kind)) 16885 return false; 16886 return CheckConstantExpression(Info, getExprLoc(), 16887 getStorageType(Ctx, this), Result.Val, Kind); 16888 } 16889 16890 // The type of the object we're initializing is 'const T' for a class NTTP. 16891 QualType T = getType(); 16892 if (Kind == ConstantExprKind::ClassTemplateArgument) 16893 T.addConst(); 16894 16895 // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to 16896 // represent the result of the evaluation. CheckConstantExpression ensures 16897 // this doesn't escape. 16898 MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true); 16899 APValue::LValueBase Base(&BaseMTE); 16900 Info.setEvaluatingDecl(Base, Result.Val); 16901 16902 if (Info.EnableNewConstInterp) { 16903 if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, this, Result.Val)) 16904 return false; 16905 } else { 16906 LValue LVal; 16907 LVal.set(Base); 16908 // C++23 [intro.execution]/p5 16909 // A full-expression is [...] a constant-expression 16910 // So we need to make sure temporary objects are destroyed after having 16911 // evaluating the expression (per C++23 [class.temporary]/p4). 16912 FullExpressionRAII Scope(Info); 16913 if (!::EvaluateInPlace(Result.Val, Info, LVal, this) || 16914 Result.HasSideEffects || !Scope.destroy()) 16915 return false; 16916 16917 if (!Info.discardCleanups()) 16918 llvm_unreachable("Unhandled cleanup; missing full expression marker?"); 16919 } 16920 16921 if (!CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this), 16922 Result.Val, Kind)) 16923 return false; 16924 if (!CheckMemoryLeaks(Info)) 16925 return false; 16926 16927 // If this is a class template argument, it's required to have constant 16928 // destruction too. 16929 if (Kind == ConstantExprKind::ClassTemplateArgument && 16930 (!EvaluateDestruction(Ctx, Base, Result.Val, T, getBeginLoc(), Result, 16931 true) || 16932 Result.HasSideEffects)) { 16933 // FIXME: Prefix a note to indicate that the problem is lack of constant 16934 // destruction. 16935 return false; 16936 } 16937 16938 return true; 16939 } 16940 16941 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx, 16942 const VarDecl *VD, 16943 SmallVectorImpl<PartialDiagnosticAt> &Notes, 16944 bool IsConstantInitialization) const { 16945 assert(!isValueDependent() && 16946 "Expression evaluator can't be called on a dependent expression."); 16947 16948 llvm::TimeTraceScope TimeScope("EvaluateAsInitializer", [&] { 16949 std::string Name; 16950 llvm::raw_string_ostream OS(Name); 16951 VD->printQualifiedName(OS); 16952 return Name; 16953 }); 16954 16955 Expr::EvalStatus EStatus; 16956 EStatus.Diag = &Notes; 16957 16958 EvalInfo Info(Ctx, EStatus, 16959 (IsConstantInitialization && 16960 (Ctx.getLangOpts().CPlusPlus || Ctx.getLangOpts().C23)) 16961 ? EvalInfo::EM_ConstantExpression 16962 : EvalInfo::EM_ConstantFold); 16963 Info.setEvaluatingDecl(VD, Value); 16964 Info.InConstantContext = IsConstantInitialization; 16965 16966 SourceLocation DeclLoc = VD->getLocation(); 16967 QualType DeclTy = VD->getType(); 16968 16969 if (Info.EnableNewConstInterp) { 16970 auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext(); 16971 if (!InterpCtx.evaluateAsInitializer(Info, VD, Value)) 16972 return false; 16973 16974 return CheckConstantExpression(Info, DeclLoc, DeclTy, Value, 16975 ConstantExprKind::Normal); 16976 } else { 16977 LValue LVal; 16978 LVal.set(VD); 16979 16980 { 16981 // C++23 [intro.execution]/p5 16982 // A full-expression is ... an init-declarator ([dcl.decl]) or a 16983 // mem-initializer. 16984 // So we need to make sure temporary objects are destroyed after having 16985 // evaluated the expression (per C++23 [class.temporary]/p4). 16986 // 16987 // FIXME: Otherwise this may break test/Modules/pr68702.cpp because the 16988 // serialization code calls ParmVarDecl::getDefaultArg() which strips the 16989 // outermost FullExpr, such as ExprWithCleanups. 16990 FullExpressionRAII Scope(Info); 16991 if (!EvaluateInPlace(Value, Info, LVal, this, 16992 /*AllowNonLiteralTypes=*/true) || 16993 EStatus.HasSideEffects) 16994 return false; 16995 } 16996 16997 // At this point, any lifetime-extended temporaries are completely 16998 // initialized. 16999 Info.performLifetimeExtension(); 17000 17001 if (!Info.discardCleanups()) 17002 llvm_unreachable("Unhandled cleanup; missing full expression marker?"); 17003 } 17004 17005 return CheckConstantExpression(Info, DeclLoc, DeclTy, Value, 17006 ConstantExprKind::Normal) && 17007 CheckMemoryLeaks(Info); 17008 } 17009 17010 bool VarDecl::evaluateDestruction( 17011 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 17012 Expr::EvalStatus EStatus; 17013 EStatus.Diag = &Notes; 17014 17015 // Only treat the destruction as constant destruction if we formally have 17016 // constant initialization (or are usable in a constant expression). 17017 bool IsConstantDestruction = hasConstantInitialization(); 17018 17019 // Make a copy of the value for the destructor to mutate, if we know it. 17020 // Otherwise, treat the value as default-initialized; if the destructor works 17021 // anyway, then the destruction is constant (and must be essentially empty). 17022 APValue DestroyedValue; 17023 if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent()) 17024 DestroyedValue = *getEvaluatedValue(); 17025 else if (!handleDefaultInitValue(getType(), DestroyedValue)) 17026 return false; 17027 17028 if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue), 17029 getType(), getLocation(), EStatus, 17030 IsConstantDestruction) || 17031 EStatus.HasSideEffects) 17032 return false; 17033 17034 ensureEvaluatedStmt()->HasConstantDestruction = true; 17035 return true; 17036 } 17037 17038 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be 17039 /// constant folded, but discard the result. 17040 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const { 17041 assert(!isValueDependent() && 17042 "Expression evaluator can't be called on a dependent expression."); 17043 17044 EvalResult Result; 17045 return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) && 17046 !hasUnacceptableSideEffect(Result, SEK); 17047 } 17048 17049 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx, 17050 SmallVectorImpl<PartialDiagnosticAt> *Diag) const { 17051 assert(!isValueDependent() && 17052 "Expression evaluator can't be called on a dependent expression."); 17053 17054 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstInt"); 17055 EvalResult EVResult; 17056 EVResult.Diag = Diag; 17057 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); 17058 Info.InConstantContext = true; 17059 17060 bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info); 17061 (void)Result; 17062 assert(Result && "Could not evaluate expression"); 17063 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer"); 17064 17065 return EVResult.Val.getInt(); 17066 } 17067 17068 APSInt Expr::EvaluateKnownConstIntCheckOverflow( 17069 const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const { 17070 assert(!isValueDependent() && 17071 "Expression evaluator can't be called on a dependent expression."); 17072 17073 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstIntCheckOverflow"); 17074 EvalResult EVResult; 17075 EVResult.Diag = Diag; 17076 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); 17077 Info.InConstantContext = true; 17078 Info.CheckingForUndefinedBehavior = true; 17079 17080 bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val); 17081 (void)Result; 17082 assert(Result && "Could not evaluate expression"); 17083 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer"); 17084 17085 return EVResult.Val.getInt(); 17086 } 17087 17088 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const { 17089 assert(!isValueDependent() && 17090 "Expression evaluator can't be called on a dependent expression."); 17091 17092 ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateForOverflow"); 17093 bool IsConst; 17094 EvalResult EVResult; 17095 if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) { 17096 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); 17097 Info.CheckingForUndefinedBehavior = true; 17098 (void)::EvaluateAsRValue(Info, this, EVResult.Val); 17099 } 17100 } 17101 17102 bool Expr::EvalResult::isGlobalLValue() const { 17103 assert(Val.isLValue()); 17104 return IsGlobalLValue(Val.getLValueBase()); 17105 } 17106 17107 /// isIntegerConstantExpr - this recursive routine will test if an expression is 17108 /// an integer constant expression. 17109 17110 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, 17111 /// comma, etc 17112 17113 // CheckICE - This function does the fundamental ICE checking: the returned 17114 // ICEDiag contains an ICEKind indicating whether the expression is an ICE, 17115 // and a (possibly null) SourceLocation indicating the location of the problem. 17116 // 17117 // Note that to reduce code duplication, this helper does no evaluation 17118 // itself; the caller checks whether the expression is evaluatable, and 17119 // in the rare cases where CheckICE actually cares about the evaluated 17120 // value, it calls into Evaluate. 17121 17122 namespace { 17123 17124 enum ICEKind { 17125 /// This expression is an ICE. 17126 IK_ICE, 17127 /// This expression is not an ICE, but if it isn't evaluated, it's 17128 /// a legal subexpression for an ICE. This return value is used to handle 17129 /// the comma operator in C99 mode, and non-constant subexpressions. 17130 IK_ICEIfUnevaluated, 17131 /// This expression is not an ICE, and is not a legal subexpression for one. 17132 IK_NotICE 17133 }; 17134 17135 struct ICEDiag { 17136 ICEKind Kind; 17137 SourceLocation Loc; 17138 17139 ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {} 17140 }; 17141 17142 } 17143 17144 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); } 17145 17146 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; } 17147 17148 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) { 17149 Expr::EvalResult EVResult; 17150 Expr::EvalStatus Status; 17151 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); 17152 17153 Info.InConstantContext = true; 17154 if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects || 17155 !EVResult.Val.isInt()) 17156 return ICEDiag(IK_NotICE, E->getBeginLoc()); 17157 17158 return NoDiag(); 17159 } 17160 17161 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) { 17162 assert(!E->isValueDependent() && "Should not see value dependent exprs!"); 17163 if (!E->getType()->isIntegralOrEnumerationType()) 17164 return ICEDiag(IK_NotICE, E->getBeginLoc()); 17165 17166 switch (E->getStmtClass()) { 17167 #define ABSTRACT_STMT(Node) 17168 #define STMT(Node, Base) case Expr::Node##Class: 17169 #define EXPR(Node, Base) 17170 #include "clang/AST/StmtNodes.inc" 17171 case Expr::PredefinedExprClass: 17172 case Expr::FloatingLiteralClass: 17173 case Expr::ImaginaryLiteralClass: 17174 case Expr::StringLiteralClass: 17175 case Expr::ArraySubscriptExprClass: 17176 case Expr::MatrixSubscriptExprClass: 17177 case Expr::ArraySectionExprClass: 17178 case Expr::OMPArrayShapingExprClass: 17179 case Expr::OMPIteratorExprClass: 17180 case Expr::MemberExprClass: 17181 case Expr::CompoundAssignOperatorClass: 17182 case Expr::CompoundLiteralExprClass: 17183 case Expr::ExtVectorElementExprClass: 17184 case Expr::DesignatedInitExprClass: 17185 case Expr::ArrayInitLoopExprClass: 17186 case Expr::ArrayInitIndexExprClass: 17187 case Expr::NoInitExprClass: 17188 case Expr::DesignatedInitUpdateExprClass: 17189 case Expr::ImplicitValueInitExprClass: 17190 case Expr::ParenListExprClass: 17191 case Expr::VAArgExprClass: 17192 case Expr::AddrLabelExprClass: 17193 case Expr::StmtExprClass: 17194 case Expr::CXXMemberCallExprClass: 17195 case Expr::CUDAKernelCallExprClass: 17196 case Expr::CXXAddrspaceCastExprClass: 17197 case Expr::CXXDynamicCastExprClass: 17198 case Expr::CXXTypeidExprClass: 17199 case Expr::CXXUuidofExprClass: 17200 case Expr::MSPropertyRefExprClass: 17201 case Expr::MSPropertySubscriptExprClass: 17202 case Expr::CXXNullPtrLiteralExprClass: 17203 case Expr::UserDefinedLiteralClass: 17204 case Expr::CXXThisExprClass: 17205 case Expr::CXXThrowExprClass: 17206 case Expr::CXXNewExprClass: 17207 case Expr::CXXDeleteExprClass: 17208 case Expr::CXXPseudoDestructorExprClass: 17209 case Expr::UnresolvedLookupExprClass: 17210 case Expr::TypoExprClass: 17211 case Expr::RecoveryExprClass: 17212 case Expr::DependentScopeDeclRefExprClass: 17213 case Expr::CXXConstructExprClass: 17214 case Expr::CXXInheritedCtorInitExprClass: 17215 case Expr::CXXStdInitializerListExprClass: 17216 case Expr::CXXBindTemporaryExprClass: 17217 case Expr::ExprWithCleanupsClass: 17218 case Expr::CXXTemporaryObjectExprClass: 17219 case Expr::CXXUnresolvedConstructExprClass: 17220 case Expr::CXXDependentScopeMemberExprClass: 17221 case Expr::UnresolvedMemberExprClass: 17222 case Expr::ObjCStringLiteralClass: 17223 case Expr::ObjCBoxedExprClass: 17224 case Expr::ObjCArrayLiteralClass: 17225 case Expr::ObjCDictionaryLiteralClass: 17226 case Expr::ObjCEncodeExprClass: 17227 case Expr::ObjCMessageExprClass: 17228 case Expr::ObjCSelectorExprClass: 17229 case Expr::ObjCProtocolExprClass: 17230 case Expr::ObjCIvarRefExprClass: 17231 case Expr::ObjCPropertyRefExprClass: 17232 case Expr::ObjCSubscriptRefExprClass: 17233 case Expr::ObjCIsaExprClass: 17234 case Expr::ObjCAvailabilityCheckExprClass: 17235 case Expr::ShuffleVectorExprClass: 17236 case Expr::ConvertVectorExprClass: 17237 case Expr::BlockExprClass: 17238 case Expr::NoStmtClass: 17239 case Expr::OpaqueValueExprClass: 17240 case Expr::PackExpansionExprClass: 17241 case Expr::SubstNonTypeTemplateParmPackExprClass: 17242 case Expr::FunctionParmPackExprClass: 17243 case Expr::AsTypeExprClass: 17244 case Expr::ObjCIndirectCopyRestoreExprClass: 17245 case Expr::MaterializeTemporaryExprClass: 17246 case Expr::PseudoObjectExprClass: 17247 case Expr::AtomicExprClass: 17248 case Expr::LambdaExprClass: 17249 case Expr::CXXFoldExprClass: 17250 case Expr::CoawaitExprClass: 17251 case Expr::DependentCoawaitExprClass: 17252 case Expr::CoyieldExprClass: 17253 case Expr::SYCLUniqueStableNameExprClass: 17254 case Expr::CXXParenListInitExprClass: 17255 case Expr::HLSLOutArgExprClass: 17256 case Expr::ResolvedUnexpandedPackExprClass: 17257 return ICEDiag(IK_NotICE, E->getBeginLoc()); 17258 17259 case Expr::InitListExprClass: { 17260 // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the 17261 // form "T x = { a };" is equivalent to "T x = a;". 17262 // Unless we're initializing a reference, T is a scalar as it is known to be 17263 // of integral or enumeration type. 17264 if (E->isPRValue()) 17265 if (cast<InitListExpr>(E)->getNumInits() == 1) 17266 return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx); 17267 return ICEDiag(IK_NotICE, E->getBeginLoc()); 17268 } 17269 17270 case Expr::SizeOfPackExprClass: 17271 case Expr::GNUNullExprClass: 17272 case Expr::SourceLocExprClass: 17273 case Expr::EmbedExprClass: 17274 case Expr::OpenACCAsteriskSizeExprClass: 17275 return NoDiag(); 17276 17277 case Expr::PackIndexingExprClass: 17278 return CheckICE(cast<PackIndexingExpr>(E)->getSelectedExpr(), Ctx); 17279 17280 case Expr::SubstNonTypeTemplateParmExprClass: 17281 return 17282 CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx); 17283 17284 case Expr::ConstantExprClass: 17285 return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx); 17286 17287 case Expr::ParenExprClass: 17288 return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx); 17289 case Expr::GenericSelectionExprClass: 17290 return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx); 17291 case Expr::IntegerLiteralClass: 17292 case Expr::FixedPointLiteralClass: 17293 case Expr::CharacterLiteralClass: 17294 case Expr::ObjCBoolLiteralExprClass: 17295 case Expr::CXXBoolLiteralExprClass: 17296 case Expr::CXXScalarValueInitExprClass: 17297 case Expr::TypeTraitExprClass: 17298 case Expr::ConceptSpecializationExprClass: 17299 case Expr::RequiresExprClass: 17300 case Expr::ArrayTypeTraitExprClass: 17301 case Expr::ExpressionTraitExprClass: 17302 case Expr::CXXNoexceptExprClass: 17303 return NoDiag(); 17304 case Expr::CallExprClass: 17305 case Expr::CXXOperatorCallExprClass: { 17306 // C99 6.6/3 allows function calls within unevaluated subexpressions of 17307 // constant expressions, but they can never be ICEs because an ICE cannot 17308 // contain an operand of (pointer to) function type. 17309 const CallExpr *CE = cast<CallExpr>(E); 17310 if (CE->getBuiltinCallee()) 17311 return CheckEvalInICE(E, Ctx); 17312 return ICEDiag(IK_NotICE, E->getBeginLoc()); 17313 } 17314 case Expr::CXXRewrittenBinaryOperatorClass: 17315 return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(), 17316 Ctx); 17317 case Expr::DeclRefExprClass: { 17318 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl(); 17319 if (isa<EnumConstantDecl>(D)) 17320 return NoDiag(); 17321 17322 // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified 17323 // integer variables in constant expressions: 17324 // 17325 // C++ 7.1.5.1p2 17326 // A variable of non-volatile const-qualified integral or enumeration 17327 // type initialized by an ICE can be used in ICEs. 17328 // 17329 // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In 17330 // that mode, use of reference variables should not be allowed. 17331 const VarDecl *VD = dyn_cast<VarDecl>(D); 17332 if (VD && VD->isUsableInConstantExpressions(Ctx) && 17333 !VD->getType()->isReferenceType()) 17334 return NoDiag(); 17335 17336 return ICEDiag(IK_NotICE, E->getBeginLoc()); 17337 } 17338 case Expr::UnaryOperatorClass: { 17339 const UnaryOperator *Exp = cast<UnaryOperator>(E); 17340 switch (Exp->getOpcode()) { 17341 case UO_PostInc: 17342 case UO_PostDec: 17343 case UO_PreInc: 17344 case UO_PreDec: 17345 case UO_AddrOf: 17346 case UO_Deref: 17347 case UO_Coawait: 17348 // C99 6.6/3 allows increment and decrement within unevaluated 17349 // subexpressions of constant expressions, but they can never be ICEs 17350 // because an ICE cannot contain an lvalue operand. 17351 return ICEDiag(IK_NotICE, E->getBeginLoc()); 17352 case UO_Extension: 17353 case UO_LNot: 17354 case UO_Plus: 17355 case UO_Minus: 17356 case UO_Not: 17357 case UO_Real: 17358 case UO_Imag: 17359 return CheckICE(Exp->getSubExpr(), Ctx); 17360 } 17361 llvm_unreachable("invalid unary operator class"); 17362 } 17363 case Expr::OffsetOfExprClass: { 17364 // Note that per C99, offsetof must be an ICE. And AFAIK, using 17365 // EvaluateAsRValue matches the proposed gcc behavior for cases like 17366 // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect 17367 // compliance: we should warn earlier for offsetof expressions with 17368 // array subscripts that aren't ICEs, and if the array subscripts 17369 // are ICEs, the value of the offsetof must be an integer constant. 17370 return CheckEvalInICE(E, Ctx); 17371 } 17372 case Expr::UnaryExprOrTypeTraitExprClass: { 17373 const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E); 17374 if ((Exp->getKind() == UETT_SizeOf) && 17375 Exp->getTypeOfArgument()->isVariableArrayType()) 17376 return ICEDiag(IK_NotICE, E->getBeginLoc()); 17377 return NoDiag(); 17378 } 17379 case Expr::BinaryOperatorClass: { 17380 const BinaryOperator *Exp = cast<BinaryOperator>(E); 17381 switch (Exp->getOpcode()) { 17382 case BO_PtrMemD: 17383 case BO_PtrMemI: 17384 case BO_Assign: 17385 case BO_MulAssign: 17386 case BO_DivAssign: 17387 case BO_RemAssign: 17388 case BO_AddAssign: 17389 case BO_SubAssign: 17390 case BO_ShlAssign: 17391 case BO_ShrAssign: 17392 case BO_AndAssign: 17393 case BO_XorAssign: 17394 case BO_OrAssign: 17395 // C99 6.6/3 allows assignments within unevaluated subexpressions of 17396 // constant expressions, but they can never be ICEs because an ICE cannot 17397 // contain an lvalue operand. 17398 return ICEDiag(IK_NotICE, E->getBeginLoc()); 17399 17400 case BO_Mul: 17401 case BO_Div: 17402 case BO_Rem: 17403 case BO_Add: 17404 case BO_Sub: 17405 case BO_Shl: 17406 case BO_Shr: 17407 case BO_LT: 17408 case BO_GT: 17409 case BO_LE: 17410 case BO_GE: 17411 case BO_EQ: 17412 case BO_NE: 17413 case BO_And: 17414 case BO_Xor: 17415 case BO_Or: 17416 case BO_Comma: 17417 case BO_Cmp: { 17418 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); 17419 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); 17420 if (Exp->getOpcode() == BO_Div || 17421 Exp->getOpcode() == BO_Rem) { 17422 // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure 17423 // we don't evaluate one. 17424 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) { 17425 llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx); 17426 if (REval == 0) 17427 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); 17428 if (REval.isSigned() && REval.isAllOnes()) { 17429 llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx); 17430 if (LEval.isMinSignedValue()) 17431 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); 17432 } 17433 } 17434 } 17435 if (Exp->getOpcode() == BO_Comma) { 17436 if (Ctx.getLangOpts().C99) { 17437 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE 17438 // if it isn't evaluated. 17439 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) 17440 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); 17441 } else { 17442 // In both C89 and C++, commas in ICEs are illegal. 17443 return ICEDiag(IK_NotICE, E->getBeginLoc()); 17444 } 17445 } 17446 return Worst(LHSResult, RHSResult); 17447 } 17448 case BO_LAnd: 17449 case BO_LOr: { 17450 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); 17451 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); 17452 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) { 17453 // Rare case where the RHS has a comma "side-effect"; we need 17454 // to actually check the condition to see whether the side 17455 // with the comma is evaluated. 17456 if ((Exp->getOpcode() == BO_LAnd) != 17457 (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0)) 17458 return RHSResult; 17459 return NoDiag(); 17460 } 17461 17462 return Worst(LHSResult, RHSResult); 17463 } 17464 } 17465 llvm_unreachable("invalid binary operator kind"); 17466 } 17467 case Expr::ImplicitCastExprClass: 17468 case Expr::CStyleCastExprClass: 17469 case Expr::CXXFunctionalCastExprClass: 17470 case Expr::CXXStaticCastExprClass: 17471 case Expr::CXXReinterpretCastExprClass: 17472 case Expr::CXXConstCastExprClass: 17473 case Expr::ObjCBridgedCastExprClass: { 17474 const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr(); 17475 if (isa<ExplicitCastExpr>(E)) { 17476 if (const FloatingLiteral *FL 17477 = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) { 17478 unsigned DestWidth = Ctx.getIntWidth(E->getType()); 17479 bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType(); 17480 APSInt IgnoredVal(DestWidth, !DestSigned); 17481 bool Ignored; 17482 // If the value does not fit in the destination type, the behavior is 17483 // undefined, so we are not required to treat it as a constant 17484 // expression. 17485 if (FL->getValue().convertToInteger(IgnoredVal, 17486 llvm::APFloat::rmTowardZero, 17487 &Ignored) & APFloat::opInvalidOp) 17488 return ICEDiag(IK_NotICE, E->getBeginLoc()); 17489 return NoDiag(); 17490 } 17491 } 17492 switch (cast<CastExpr>(E)->getCastKind()) { 17493 case CK_LValueToRValue: 17494 case CK_AtomicToNonAtomic: 17495 case CK_NonAtomicToAtomic: 17496 case CK_NoOp: 17497 case CK_IntegralToBoolean: 17498 case CK_IntegralCast: 17499 return CheckICE(SubExpr, Ctx); 17500 default: 17501 return ICEDiag(IK_NotICE, E->getBeginLoc()); 17502 } 17503 } 17504 case Expr::BinaryConditionalOperatorClass: { 17505 const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E); 17506 ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx); 17507 if (CommonResult.Kind == IK_NotICE) return CommonResult; 17508 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); 17509 if (FalseResult.Kind == IK_NotICE) return FalseResult; 17510 if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult; 17511 if (FalseResult.Kind == IK_ICEIfUnevaluated && 17512 Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag(); 17513 return FalseResult; 17514 } 17515 case Expr::ConditionalOperatorClass: { 17516 const ConditionalOperator *Exp = cast<ConditionalOperator>(E); 17517 // If the condition (ignoring parens) is a __builtin_constant_p call, 17518 // then only the true side is actually considered in an integer constant 17519 // expression, and it is fully evaluated. This is an important GNU 17520 // extension. See GCC PR38377 for discussion. 17521 if (const CallExpr *CallCE 17522 = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts())) 17523 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) 17524 return CheckEvalInICE(E, Ctx); 17525 ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx); 17526 if (CondResult.Kind == IK_NotICE) 17527 return CondResult; 17528 17529 ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx); 17530 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); 17531 17532 if (TrueResult.Kind == IK_NotICE) 17533 return TrueResult; 17534 if (FalseResult.Kind == IK_NotICE) 17535 return FalseResult; 17536 if (CondResult.Kind == IK_ICEIfUnevaluated) 17537 return CondResult; 17538 if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE) 17539 return NoDiag(); 17540 // Rare case where the diagnostics depend on which side is evaluated 17541 // Note that if we get here, CondResult is 0, and at least one of 17542 // TrueResult and FalseResult is non-zero. 17543 if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0) 17544 return FalseResult; 17545 return TrueResult; 17546 } 17547 case Expr::CXXDefaultArgExprClass: 17548 return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx); 17549 case Expr::CXXDefaultInitExprClass: 17550 return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx); 17551 case Expr::ChooseExprClass: { 17552 return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx); 17553 } 17554 case Expr::BuiltinBitCastExprClass: { 17555 if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E))) 17556 return ICEDiag(IK_NotICE, E->getBeginLoc()); 17557 return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx); 17558 } 17559 } 17560 17561 llvm_unreachable("Invalid StmtClass!"); 17562 } 17563 17564 /// Evaluate an expression as a C++11 integral constant expression. 17565 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx, 17566 const Expr *E, 17567 llvm::APSInt *Value, 17568 SourceLocation *Loc) { 17569 if (!E->getType()->isIntegralOrUnscopedEnumerationType()) { 17570 if (Loc) *Loc = E->getExprLoc(); 17571 return false; 17572 } 17573 17574 APValue Result; 17575 if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc)) 17576 return false; 17577 17578 if (!Result.isInt()) { 17579 if (Loc) *Loc = E->getExprLoc(); 17580 return false; 17581 } 17582 17583 if (Value) *Value = Result.getInt(); 17584 return true; 17585 } 17586 17587 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx, 17588 SourceLocation *Loc) const { 17589 assert(!isValueDependent() && 17590 "Expression evaluator can't be called on a dependent expression."); 17591 17592 ExprTimeTraceScope TimeScope(this, Ctx, "isIntegerConstantExpr"); 17593 17594 if (Ctx.getLangOpts().CPlusPlus11) 17595 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc); 17596 17597 ICEDiag D = CheckICE(this, Ctx); 17598 if (D.Kind != IK_ICE) { 17599 if (Loc) *Loc = D.Loc; 17600 return false; 17601 } 17602 return true; 17603 } 17604 17605 std::optional<llvm::APSInt> 17606 Expr::getIntegerConstantExpr(const ASTContext &Ctx, SourceLocation *Loc) const { 17607 if (isValueDependent()) { 17608 // Expression evaluator can't succeed on a dependent expression. 17609 return std::nullopt; 17610 } 17611 17612 APSInt Value; 17613 17614 if (Ctx.getLangOpts().CPlusPlus11) { 17615 if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc)) 17616 return Value; 17617 return std::nullopt; 17618 } 17619 17620 if (!isIntegerConstantExpr(Ctx, Loc)) 17621 return std::nullopt; 17622 17623 // The only possible side-effects here are due to UB discovered in the 17624 // evaluation (for instance, INT_MAX + 1). In such a case, we are still 17625 // required to treat the expression as an ICE, so we produce the folded 17626 // value. 17627 EvalResult ExprResult; 17628 Expr::EvalStatus Status; 17629 EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects); 17630 Info.InConstantContext = true; 17631 17632 if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info)) 17633 llvm_unreachable("ICE cannot be evaluated!"); 17634 17635 return ExprResult.Val.getInt(); 17636 } 17637 17638 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const { 17639 assert(!isValueDependent() && 17640 "Expression evaluator can't be called on a dependent expression."); 17641 17642 return CheckICE(this, Ctx).Kind == IK_ICE; 17643 } 17644 17645 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result, 17646 SourceLocation *Loc) const { 17647 assert(!isValueDependent() && 17648 "Expression evaluator can't be called on a dependent expression."); 17649 17650 // We support this checking in C++98 mode in order to diagnose compatibility 17651 // issues. 17652 assert(Ctx.getLangOpts().CPlusPlus); 17653 17654 // Build evaluation settings. 17655 Expr::EvalStatus Status; 17656 SmallVector<PartialDiagnosticAt, 8> Diags; 17657 Status.Diag = &Diags; 17658 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); 17659 17660 APValue Scratch; 17661 bool IsConstExpr = 17662 ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) && 17663 // FIXME: We don't produce a diagnostic for this, but the callers that 17664 // call us on arbitrary full-expressions should generally not care. 17665 Info.discardCleanups() && !Status.HasSideEffects; 17666 17667 if (!Diags.empty()) { 17668 IsConstExpr = false; 17669 if (Loc) *Loc = Diags[0].first; 17670 } else if (!IsConstExpr) { 17671 // FIXME: This shouldn't happen. 17672 if (Loc) *Loc = getExprLoc(); 17673 } 17674 17675 return IsConstExpr; 17676 } 17677 17678 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx, 17679 const FunctionDecl *Callee, 17680 ArrayRef<const Expr*> Args, 17681 const Expr *This) const { 17682 assert(!isValueDependent() && 17683 "Expression evaluator can't be called on a dependent expression."); 17684 17685 llvm::TimeTraceScope TimeScope("EvaluateWithSubstitution", [&] { 17686 std::string Name; 17687 llvm::raw_string_ostream OS(Name); 17688 Callee->getNameForDiagnostic(OS, Ctx.getPrintingPolicy(), 17689 /*Qualified=*/true); 17690 return Name; 17691 }); 17692 17693 Expr::EvalStatus Status; 17694 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated); 17695 Info.InConstantContext = true; 17696 17697 LValue ThisVal; 17698 const LValue *ThisPtr = nullptr; 17699 if (This) { 17700 #ifndef NDEBUG 17701 auto *MD = dyn_cast<CXXMethodDecl>(Callee); 17702 assert(MD && "Don't provide `this` for non-methods."); 17703 assert(MD->isImplicitObjectMemberFunction() && 17704 "Don't provide `this` for methods without an implicit object."); 17705 #endif 17706 if (!This->isValueDependent() && 17707 EvaluateObjectArgument(Info, This, ThisVal) && 17708 !Info.EvalStatus.HasSideEffects) 17709 ThisPtr = &ThisVal; 17710 17711 // Ignore any side-effects from a failed evaluation. This is safe because 17712 // they can't interfere with any other argument evaluation. 17713 Info.EvalStatus.HasSideEffects = false; 17714 } 17715 17716 CallRef Call = Info.CurrentCall->createCall(Callee); 17717 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end(); 17718 I != E; ++I) { 17719 unsigned Idx = I - Args.begin(); 17720 if (Idx >= Callee->getNumParams()) 17721 break; 17722 const ParmVarDecl *PVD = Callee->getParamDecl(Idx); 17723 if ((*I)->isValueDependent() || 17724 !EvaluateCallArg(PVD, *I, Call, Info) || 17725 Info.EvalStatus.HasSideEffects) { 17726 // If evaluation fails, throw away the argument entirely. 17727 if (APValue *Slot = Info.getParamSlot(Call, PVD)) 17728 *Slot = APValue(); 17729 } 17730 17731 // Ignore any side-effects from a failed evaluation. This is safe because 17732 // they can't interfere with any other argument evaluation. 17733 Info.EvalStatus.HasSideEffects = false; 17734 } 17735 17736 // Parameter cleanups happen in the caller and are not part of this 17737 // evaluation. 17738 Info.discardCleanups(); 17739 Info.EvalStatus.HasSideEffects = false; 17740 17741 // Build fake call to Callee. 17742 CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, This, 17743 Call); 17744 // FIXME: Missing ExprWithCleanups in enable_if conditions? 17745 FullExpressionRAII Scope(Info); 17746 return Evaluate(Value, Info, this) && Scope.destroy() && 17747 !Info.EvalStatus.HasSideEffects; 17748 } 17749 17750 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD, 17751 SmallVectorImpl< 17752 PartialDiagnosticAt> &Diags) { 17753 // FIXME: It would be useful to check constexpr function templates, but at the 17754 // moment the constant expression evaluator cannot cope with the non-rigorous 17755 // ASTs which we build for dependent expressions. 17756 if (FD->isDependentContext()) 17757 return true; 17758 17759 llvm::TimeTraceScope TimeScope("isPotentialConstantExpr", [&] { 17760 std::string Name; 17761 llvm::raw_string_ostream OS(Name); 17762 FD->getNameForDiagnostic(OS, FD->getASTContext().getPrintingPolicy(), 17763 /*Qualified=*/true); 17764 return Name; 17765 }); 17766 17767 Expr::EvalStatus Status; 17768 Status.Diag = &Diags; 17769 17770 EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression); 17771 Info.InConstantContext = true; 17772 Info.CheckingPotentialConstantExpression = true; 17773 17774 // The constexpr VM attempts to compile all methods to bytecode here. 17775 if (Info.EnableNewConstInterp) { 17776 Info.Ctx.getInterpContext().isPotentialConstantExpr(Info, FD); 17777 return Diags.empty(); 17778 } 17779 17780 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 17781 const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr; 17782 17783 // Fabricate an arbitrary expression on the stack and pretend that it 17784 // is a temporary being used as the 'this' pointer. 17785 LValue This; 17786 ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy); 17787 This.set({&VIE, Info.CurrentCall->Index}); 17788 17789 ArrayRef<const Expr*> Args; 17790 17791 APValue Scratch; 17792 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 17793 // Evaluate the call as a constant initializer, to allow the construction 17794 // of objects of non-literal types. 17795 Info.setEvaluatingDecl(This.getLValueBase(), Scratch); 17796 HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch); 17797 } else { 17798 SourceLocation Loc = FD->getLocation(); 17799 HandleFunctionCall( 17800 Loc, FD, (MD && MD->isImplicitObjectMemberFunction()) ? &This : nullptr, 17801 &VIE, Args, CallRef(), FD->getBody(), Info, Scratch, 17802 /*ResultSlot=*/nullptr); 17803 } 17804 17805 return Diags.empty(); 17806 } 17807 17808 bool Expr::isPotentialConstantExprUnevaluated(Expr *E, 17809 const FunctionDecl *FD, 17810 SmallVectorImpl< 17811 PartialDiagnosticAt> &Diags) { 17812 assert(!E->isValueDependent() && 17813 "Expression evaluator can't be called on a dependent expression."); 17814 17815 Expr::EvalStatus Status; 17816 Status.Diag = &Diags; 17817 17818 EvalInfo Info(FD->getASTContext(), Status, 17819 EvalInfo::EM_ConstantExpressionUnevaluated); 17820 Info.InConstantContext = true; 17821 Info.CheckingPotentialConstantExpression = true; 17822 17823 // Fabricate a call stack frame to give the arguments a plausible cover story. 17824 CallStackFrame Frame(Info, SourceLocation(), FD, /*This=*/nullptr, 17825 /*CallExpr=*/nullptr, CallRef()); 17826 17827 APValue ResultScratch; 17828 Evaluate(ResultScratch, Info, E); 17829 return Diags.empty(); 17830 } 17831 17832 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx, 17833 unsigned Type) const { 17834 if (!getType()->isPointerType()) 17835 return false; 17836 17837 Expr::EvalStatus Status; 17838 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); 17839 return tryEvaluateBuiltinObjectSize(this, Type, Info, Result); 17840 } 17841 17842 static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result, 17843 EvalInfo &Info, std::string *StringResult) { 17844 if (!E->getType()->hasPointerRepresentation() || !E->isPRValue()) 17845 return false; 17846 17847 LValue String; 17848 17849 if (!EvaluatePointer(E, String, Info)) 17850 return false; 17851 17852 QualType CharTy = E->getType()->getPointeeType(); 17853 17854 // Fast path: if it's a string literal, search the string value. 17855 if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>( 17856 String.getLValueBase().dyn_cast<const Expr *>())) { 17857 StringRef Str = S->getBytes(); 17858 int64_t Off = String.Offset.getQuantity(); 17859 if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() && 17860 S->getCharByteWidth() == 1 && 17861 // FIXME: Add fast-path for wchar_t too. 17862 Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) { 17863 Str = Str.substr(Off); 17864 17865 StringRef::size_type Pos = Str.find(0); 17866 if (Pos != StringRef::npos) 17867 Str = Str.substr(0, Pos); 17868 17869 Result = Str.size(); 17870 if (StringResult) 17871 *StringResult = Str; 17872 return true; 17873 } 17874 17875 // Fall through to slow path. 17876 } 17877 17878 // Slow path: scan the bytes of the string looking for the terminating 0. 17879 for (uint64_t Strlen = 0; /**/; ++Strlen) { 17880 APValue Char; 17881 if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) || 17882 !Char.isInt()) 17883 return false; 17884 if (!Char.getInt()) { 17885 Result = Strlen; 17886 return true; 17887 } else if (StringResult) 17888 StringResult->push_back(Char.getInt().getExtValue()); 17889 if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1)) 17890 return false; 17891 } 17892 } 17893 17894 std::optional<std::string> Expr::tryEvaluateString(ASTContext &Ctx) const { 17895 Expr::EvalStatus Status; 17896 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); 17897 uint64_t Result; 17898 std::string StringResult; 17899 17900 if (EvaluateBuiltinStrLen(this, Result, Info, &StringResult)) 17901 return StringResult; 17902 return {}; 17903 } 17904 17905 bool Expr::EvaluateCharRangeAsString(std::string &Result, 17906 const Expr *SizeExpression, 17907 const Expr *PtrExpression, ASTContext &Ctx, 17908 EvalResult &Status) const { 17909 LValue String; 17910 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); 17911 Info.InConstantContext = true; 17912 17913 FullExpressionRAII Scope(Info); 17914 APSInt SizeValue; 17915 if (!::EvaluateInteger(SizeExpression, SizeValue, Info)) 17916 return false; 17917 17918 uint64_t Size = SizeValue.getZExtValue(); 17919 17920 if (!::EvaluatePointer(PtrExpression, String, Info)) 17921 return false; 17922 17923 QualType CharTy = PtrExpression->getType()->getPointeeType(); 17924 for (uint64_t I = 0; I < Size; ++I) { 17925 APValue Char; 17926 if (!handleLValueToRValueConversion(Info, PtrExpression, CharTy, String, 17927 Char)) 17928 return false; 17929 17930 APSInt C = Char.getInt(); 17931 Result.push_back(static_cast<char>(C.getExtValue())); 17932 if (!HandleLValueArrayAdjustment(Info, PtrExpression, String, CharTy, 1)) 17933 return false; 17934 } 17935 if (!Scope.destroy()) 17936 return false; 17937 17938 if (!CheckMemoryLeaks(Info)) 17939 return false; 17940 17941 return true; 17942 } 17943 17944 bool Expr::tryEvaluateStrLen(uint64_t &Result, ASTContext &Ctx) const { 17945 Expr::EvalStatus Status; 17946 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); 17947 return EvaluateBuiltinStrLen(this, Result, Info); 17948 } 17949 17950 namespace { 17951 struct IsWithinLifetimeHandler { 17952 EvalInfo &Info; 17953 static constexpr AccessKinds AccessKind = AccessKinds::AK_IsWithinLifetime; 17954 using result_type = std::optional<bool>; 17955 std::optional<bool> failed() { return std::nullopt; } 17956 template <typename T> 17957 std::optional<bool> found(T &Subobj, QualType SubobjType) { 17958 return true; 17959 } 17960 }; 17961 17962 std::optional<bool> EvaluateBuiltinIsWithinLifetime(IntExprEvaluator &IEE, 17963 const CallExpr *E) { 17964 EvalInfo &Info = IEE.Info; 17965 // Sometimes this is called during some sorts of constant folding / early 17966 // evaluation. These are meant for non-constant expressions and are not 17967 // necessary since this consteval builtin will never be evaluated at runtime. 17968 // Just fail to evaluate when not in a constant context. 17969 if (!Info.InConstantContext) 17970 return std::nullopt; 17971 assert(E->getBuiltinCallee() == Builtin::BI__builtin_is_within_lifetime); 17972 const Expr *Arg = E->getArg(0); 17973 if (Arg->isValueDependent()) 17974 return std::nullopt; 17975 LValue Val; 17976 if (!EvaluatePointer(Arg, Val, Info)) 17977 return std::nullopt; 17978 17979 if (Val.allowConstexprUnknown()) 17980 return true; 17981 17982 auto Error = [&](int Diag) { 17983 bool CalledFromStd = false; 17984 const auto *Callee = Info.CurrentCall->getCallee(); 17985 if (Callee && Callee->isInStdNamespace()) { 17986 const IdentifierInfo *Identifier = Callee->getIdentifier(); 17987 CalledFromStd = Identifier && Identifier->isStr("is_within_lifetime"); 17988 } 17989 Info.CCEDiag(CalledFromStd ? Info.CurrentCall->getCallRange().getBegin() 17990 : E->getExprLoc(), 17991 diag::err_invalid_is_within_lifetime) 17992 << (CalledFromStd ? "std::is_within_lifetime" 17993 : "__builtin_is_within_lifetime") 17994 << Diag; 17995 return std::nullopt; 17996 }; 17997 // C++2c [meta.const.eval]p4: 17998 // During the evaluation of an expression E as a core constant expression, a 17999 // call to this function is ill-formed unless p points to an object that is 18000 // usable in constant expressions or whose complete object's lifetime began 18001 // within E. 18002 18003 // Make sure it points to an object 18004 // nullptr does not point to an object 18005 if (Val.isNullPointer() || Val.getLValueBase().isNull()) 18006 return Error(0); 18007 QualType T = Val.getLValueBase().getType(); 18008 assert(!T->isFunctionType() && 18009 "Pointers to functions should have been typed as function pointers " 18010 "which would have been rejected earlier"); 18011 assert(T->isObjectType()); 18012 // Hypothetical array element is not an object 18013 if (Val.getLValueDesignator().isOnePastTheEnd()) 18014 return Error(1); 18015 assert(Val.getLValueDesignator().isValidSubobject() && 18016 "Unchecked case for valid subobject"); 18017 // All other ill-formed values should have failed EvaluatePointer, so the 18018 // object should be a pointer to an object that is usable in a constant 18019 // expression or whose complete lifetime began within the expression 18020 CompleteObject CO = 18021 findCompleteObject(Info, E, AccessKinds::AK_IsWithinLifetime, Val, T); 18022 // The lifetime hasn't begun yet if we are still evaluating the 18023 // initializer ([basic.life]p(1.2)) 18024 if (Info.EvaluatingDeclValue && CO.Value == Info.EvaluatingDeclValue) 18025 return Error(2); 18026 18027 if (!CO) 18028 return false; 18029 IsWithinLifetimeHandler handler{Info}; 18030 return findSubobject(Info, E, CO, Val.getLValueDesignator(), handler); 18031 } 18032 } // namespace 18033