1 //===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interface for the loop memory dependence framework that 10 // was originally developed for the Loop Vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H 15 #define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H 16 17 #include "llvm/ADT/EquivalenceClasses.h" 18 #include "llvm/Analysis/ScalarEvolution.h" 19 #include "llvm/IR/DiagnosticInfo.h" 20 #include <optional> 21 #include <variant> 22 23 namespace llvm { 24 25 class AAResults; 26 class DataLayout; 27 class Loop; 28 class raw_ostream; 29 class TargetTransformInfo; 30 31 /// Collection of parameters shared beetween the Loop Vectorizer and the 32 /// Loop Access Analysis. 33 struct VectorizerParams { 34 /// Maximum SIMD width. 35 static const unsigned MaxVectorWidth; 36 37 /// VF as overridden by the user. 38 static unsigned VectorizationFactor; 39 /// Interleave factor as overridden by the user. 40 static unsigned VectorizationInterleave; 41 /// True if force-vector-interleave was specified by the user. 42 static bool isInterleaveForced(); 43 44 /// \When performing memory disambiguation checks at runtime do not 45 /// make more than this number of comparisons. 46 static unsigned RuntimeMemoryCheckThreshold; 47 48 // When creating runtime checks for nested loops, where possible try to 49 // write the checks in a form that allows them to be easily hoisted out of 50 // the outermost loop. For example, we can do this by expanding the range of 51 // addresses considered to include the entire nested loop so that they are 52 // loop invariant. 53 static bool HoistRuntimeChecks; 54 }; 55 56 /// Checks memory dependences among accesses to the same underlying 57 /// object to determine whether there vectorization is legal or not (and at 58 /// which vectorization factor). 59 /// 60 /// Note: This class will compute a conservative dependence for access to 61 /// different underlying pointers. Clients, such as the loop vectorizer, will 62 /// sometimes deal these potential dependencies by emitting runtime checks. 63 /// 64 /// We use the ScalarEvolution framework to symbolically evalutate access 65 /// functions pairs. Since we currently don't restructure the loop we can rely 66 /// on the program order of memory accesses to determine their safety. 67 /// At the moment we will only deem accesses as safe for: 68 /// * A negative constant distance assuming program order. 69 /// 70 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; 71 /// a[i] = tmp; y = a[i]; 72 /// 73 /// The latter case is safe because later checks guarantuee that there can't 74 /// be a cycle through a phi node (that is, we check that "x" and "y" is not 75 /// the same variable: a header phi can only be an induction or a reduction, a 76 /// reduction can't have a memory sink, an induction can't have a memory 77 /// source). This is important and must not be violated (or we have to 78 /// resort to checking for cycles through memory). 79 /// 80 /// * A positive constant distance assuming program order that is bigger 81 /// than the biggest memory access. 82 /// 83 /// tmp = a[i] OR b[i] = x 84 /// a[i+2] = tmp y = b[i+2]; 85 /// 86 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. 87 /// 88 /// * Zero distances and all accesses have the same size. 89 /// 90 class MemoryDepChecker { 91 public: 92 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 93 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 94 /// Set of potential dependent memory accesses. 95 typedef EquivalenceClasses<MemAccessInfo> DepCandidates; 96 97 /// Type to keep track of the status of the dependence check. The order of 98 /// the elements is important and has to be from most permissive to least 99 /// permissive. 100 enum class VectorizationSafetyStatus { 101 // Can vectorize safely without RT checks. All dependences are known to be 102 // safe. 103 Safe, 104 // Can possibly vectorize with RT checks to overcome unknown dependencies. 105 PossiblySafeWithRtChecks, 106 // Cannot vectorize due to known unsafe dependencies. 107 Unsafe, 108 }; 109 110 /// Dependece between memory access instructions. 111 struct Dependence { 112 /// The type of the dependence. 113 enum DepType { 114 // No dependence. 115 NoDep, 116 // We couldn't determine the direction or the distance. 117 Unknown, 118 // At least one of the memory access instructions may access a loop 119 // varying object, e.g. the address of underlying object is loaded inside 120 // the loop, like A[B[i]]. We cannot determine direction or distance in 121 // those cases, and also are unable to generate any runtime checks. 122 IndirectUnsafe, 123 124 // Lexically forward. 125 // 126 // FIXME: If we only have loop-independent forward dependences (e.g. a 127 // read and write of A[i]), LAA will locally deem the dependence "safe" 128 // without querying the MemoryDepChecker. Therefore we can miss 129 // enumerating loop-independent forward dependences in 130 // getDependences. Note that as soon as there are different 131 // indices used to access the same array, the MemoryDepChecker *is* 132 // queried and the dependence list is complete. 133 Forward, 134 // Forward, but if vectorized, is likely to prevent store-to-load 135 // forwarding. 136 ForwardButPreventsForwarding, 137 // Lexically backward. 138 Backward, 139 // Backward, but the distance allows a vectorization factor of dependent 140 // on MinDepDistBytes. 141 BackwardVectorizable, 142 // Same, but may prevent store-to-load forwarding. 143 BackwardVectorizableButPreventsForwarding 144 }; 145 146 /// String version of the types. 147 static const char *DepName[]; 148 149 /// Index of the source of the dependence in the InstMap vector. 150 unsigned Source; 151 /// Index of the destination of the dependence in the InstMap vector. 152 unsigned Destination; 153 /// The type of the dependence. 154 DepType Type; 155 156 Dependence(unsigned Source, unsigned Destination, DepType Type) 157 : Source(Source), Destination(Destination), Type(Type) {} 158 159 /// Return the source instruction of the dependence. 160 Instruction *getSource(const MemoryDepChecker &DepChecker) const; 161 /// Return the destination instruction of the dependence. 162 Instruction *getDestination(const MemoryDepChecker &DepChecker) const; 163 164 /// Dependence types that don't prevent vectorization. 165 static VectorizationSafetyStatus isSafeForVectorization(DepType Type); 166 167 /// Lexically forward dependence. 168 bool isForward() const; 169 /// Lexically backward dependence. 170 bool isBackward() const; 171 172 /// May be a lexically backward dependence type (includes Unknown). 173 bool isPossiblyBackward() const; 174 175 /// Print the dependence. \p Instr is used to map the instruction 176 /// indices to instructions. 177 void print(raw_ostream &OS, unsigned Depth, 178 const SmallVectorImpl<Instruction *> &Instrs) const; 179 }; 180 181 MemoryDepChecker(PredicatedScalarEvolution &PSE, const Loop *L, 182 const DenseMap<Value *, const SCEV *> &SymbolicStrides, 183 unsigned MaxTargetVectorWidthInBits) 184 : PSE(PSE), InnermostLoop(L), SymbolicStrides(SymbolicStrides), 185 MaxTargetVectorWidthInBits(MaxTargetVectorWidthInBits) {} 186 187 /// Register the location (instructions are given increasing numbers) 188 /// of a write access. 189 void addAccess(StoreInst *SI); 190 191 /// Register the location (instructions are given increasing numbers) 192 /// of a write access. 193 void addAccess(LoadInst *LI); 194 195 /// Check whether the dependencies between the accesses are safe. 196 /// 197 /// Only checks sets with elements in \p CheckDeps. 198 bool areDepsSafe(const DepCandidates &AccessSets, 199 const MemAccessInfoList &CheckDeps); 200 201 /// No memory dependence was encountered that would inhibit 202 /// vectorization. 203 bool isSafeForVectorization() const { 204 return Status == VectorizationSafetyStatus::Safe; 205 } 206 207 /// Return true if the number of elements that are safe to operate on 208 /// simultaneously is not bounded. 209 bool isSafeForAnyVectorWidth() const { 210 return MaxSafeVectorWidthInBits == UINT_MAX; 211 } 212 213 /// Return the number of elements that are safe to operate on 214 /// simultaneously, multiplied by the size of the element in bits. 215 uint64_t getMaxSafeVectorWidthInBits() const { 216 return MaxSafeVectorWidthInBits; 217 } 218 219 /// In same cases when the dependency check fails we can still 220 /// vectorize the loop with a dynamic array access check. 221 bool shouldRetryWithRuntimeCheck() const { 222 return FoundNonConstantDistanceDependence && 223 Status == VectorizationSafetyStatus::PossiblySafeWithRtChecks; 224 } 225 226 /// Returns the memory dependences. If null is returned we exceeded 227 /// the MaxDependences threshold and this information is not 228 /// available. 229 const SmallVectorImpl<Dependence> *getDependences() const { 230 return RecordDependences ? &Dependences : nullptr; 231 } 232 233 void clearDependences() { Dependences.clear(); } 234 235 /// The vector of memory access instructions. The indices are used as 236 /// instruction identifiers in the Dependence class. 237 const SmallVectorImpl<Instruction *> &getMemoryInstructions() const { 238 return InstMap; 239 } 240 241 /// Generate a mapping between the memory instructions and their 242 /// indices according to program order. 243 DenseMap<Instruction *, unsigned> generateInstructionOrderMap() const { 244 DenseMap<Instruction *, unsigned> OrderMap; 245 246 for (unsigned I = 0; I < InstMap.size(); ++I) 247 OrderMap[InstMap[I]] = I; 248 249 return OrderMap; 250 } 251 252 /// Find the set of instructions that read or write via \p Ptr. 253 SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr, 254 bool isWrite) const; 255 256 /// Return the program order indices for the access location (Ptr, IsWrite). 257 /// Returns an empty ArrayRef if there are no accesses for the location. 258 ArrayRef<unsigned> getOrderForAccess(Value *Ptr, bool IsWrite) const { 259 auto I = Accesses.find({Ptr, IsWrite}); 260 if (I != Accesses.end()) 261 return I->second; 262 return {}; 263 } 264 265 const Loop *getInnermostLoop() const { return InnermostLoop; } 266 267 DenseMap<std::pair<const SCEV *, Type *>, 268 std::pair<const SCEV *, const SCEV *>> & 269 getPointerBounds() { 270 return PointerBounds; 271 } 272 273 private: 274 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks, and 275 /// applies dynamic knowledge to simplify SCEV expressions and convert them 276 /// to a more usable form. We need this in case assumptions about SCEV 277 /// expressions need to be made in order to avoid unknown dependences. For 278 /// example we might assume a unit stride for a pointer in order to prove 279 /// that a memory access is strided and doesn't wrap. 280 PredicatedScalarEvolution &PSE; 281 const Loop *InnermostLoop; 282 283 /// Reference to map of pointer values to 284 /// their stride symbols, if they have a symbolic stride. 285 const DenseMap<Value *, const SCEV *> &SymbolicStrides; 286 287 /// Maps access locations (ptr, read/write) to program order. 288 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; 289 290 /// Memory access instructions in program order. 291 SmallVector<Instruction *, 16> InstMap; 292 293 /// The program order index to be used for the next instruction. 294 unsigned AccessIdx = 0; 295 296 /// The smallest dependence distance in bytes in the loop. This may not be 297 /// the same as the maximum number of bytes that are safe to operate on 298 /// simultaneously. 299 uint64_t MinDepDistBytes = 0; 300 301 /// Number of elements (from consecutive iterations) that are safe to 302 /// operate on simultaneously, multiplied by the size of the element in bits. 303 /// The size of the element is taken from the memory access that is most 304 /// restrictive. 305 uint64_t MaxSafeVectorWidthInBits = -1U; 306 307 /// If we see a non-constant dependence distance we can still try to 308 /// vectorize this loop with runtime checks. 309 bool FoundNonConstantDistanceDependence = false; 310 311 /// Result of the dependence checks, indicating whether the checked 312 /// dependences are safe for vectorization, require RT checks or are known to 313 /// be unsafe. 314 VectorizationSafetyStatus Status = VectorizationSafetyStatus::Safe; 315 316 //// True if Dependences reflects the dependences in the 317 //// loop. If false we exceeded MaxDependences and 318 //// Dependences is invalid. 319 bool RecordDependences = true; 320 321 /// Memory dependences collected during the analysis. Only valid if 322 /// RecordDependences is true. 323 SmallVector<Dependence, 8> Dependences; 324 325 /// The maximum width of a target's vector registers multiplied by 2 to also 326 /// roughly account for additional interleaving. Is used to decide if a 327 /// backwards dependence with non-constant stride should be classified as 328 /// backwards-vectorizable or unknown (triggering a runtime check). 329 unsigned MaxTargetVectorWidthInBits = 0; 330 331 /// Mapping of SCEV expressions to their expanded pointer bounds (pair of 332 /// start and end pointer expressions). 333 DenseMap<std::pair<const SCEV *, Type *>, 334 std::pair<const SCEV *, const SCEV *>> 335 PointerBounds; 336 337 /// Cache for the loop guards of InnermostLoop. 338 std::optional<ScalarEvolution::LoopGuards> LoopGuards; 339 340 /// Check whether there is a plausible dependence between the two 341 /// accesses. 342 /// 343 /// Access \p A must happen before \p B in program order. The two indices 344 /// identify the index into the program order map. 345 /// 346 /// This function checks whether there is a plausible dependence (or the 347 /// absence of such can't be proved) between the two accesses. If there is a 348 /// plausible dependence but the dependence distance is bigger than one 349 /// element access it records this distance in \p MinDepDistBytes (if this 350 /// distance is smaller than any other distance encountered so far). 351 /// Otherwise, this function returns true signaling a possible dependence. 352 Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx, 353 const MemAccessInfo &B, unsigned BIdx); 354 355 /// Check whether the data dependence could prevent store-load 356 /// forwarding. 357 /// 358 /// \return false if we shouldn't vectorize at all or avoid larger 359 /// vectorization factors by limiting MinDepDistBytes. 360 bool couldPreventStoreLoadForward(uint64_t Distance, uint64_t TypeByteSize); 361 362 /// Updates the current safety status with \p S. We can go from Safe to 363 /// either PossiblySafeWithRtChecks or Unsafe and from 364 /// PossiblySafeWithRtChecks to Unsafe. 365 void mergeInStatus(VectorizationSafetyStatus S); 366 367 struct DepDistanceStrideAndSizeInfo { 368 const SCEV *Dist; 369 370 /// Strides could either be scaled (in bytes, taking the size of the 371 /// underlying type into account), or unscaled (in indexing units; unscaled 372 /// stride = scaled stride / size of underlying type). Here, strides are 373 /// unscaled. 374 uint64_t MaxStride; 375 std::optional<uint64_t> CommonStride; 376 377 bool ShouldRetryWithRuntimeCheck; 378 uint64_t TypeByteSize; 379 bool AIsWrite; 380 bool BIsWrite; 381 382 DepDistanceStrideAndSizeInfo(const SCEV *Dist, uint64_t MaxStride, 383 std::optional<uint64_t> CommonStride, 384 bool ShouldRetryWithRuntimeCheck, 385 uint64_t TypeByteSize, bool AIsWrite, 386 bool BIsWrite) 387 : Dist(Dist), MaxStride(MaxStride), CommonStride(CommonStride), 388 ShouldRetryWithRuntimeCheck(ShouldRetryWithRuntimeCheck), 389 TypeByteSize(TypeByteSize), AIsWrite(AIsWrite), BIsWrite(BIsWrite) {} 390 }; 391 392 /// Get the dependence distance, strides, type size and whether it is a write 393 /// for the dependence between A and B. Returns a DepType, if we can prove 394 /// there's no dependence or the analysis fails. Outlined to lambda to limit 395 /// he scope of various temporary variables, like A/BPtr, StrideA/BPtr and 396 /// others. Returns either the dependence result, if it could already be 397 /// determined, or a struct containing (Distance, Stride, TypeSize, AIsWrite, 398 /// BIsWrite). 399 std::variant<Dependence::DepType, DepDistanceStrideAndSizeInfo> 400 getDependenceDistanceStrideAndSize(const MemAccessInfo &A, Instruction *AInst, 401 const MemAccessInfo &B, 402 Instruction *BInst); 403 }; 404 405 class RuntimePointerChecking; 406 /// A grouping of pointers. A single memcheck is required between 407 /// two groups. 408 struct RuntimeCheckingPtrGroup { 409 /// Create a new pointer checking group containing a single 410 /// pointer, with index \p Index in RtCheck. 411 RuntimeCheckingPtrGroup(unsigned Index, 412 const RuntimePointerChecking &RtCheck); 413 414 /// Tries to add the pointer recorded in RtCheck at index 415 /// \p Index to this pointer checking group. We can only add a pointer 416 /// to a checking group if we will still be able to get 417 /// the upper and lower bounds of the check. Returns true in case 418 /// of success, false otherwise. 419 bool addPointer(unsigned Index, const RuntimePointerChecking &RtCheck); 420 bool addPointer(unsigned Index, const SCEV *Start, const SCEV *End, 421 unsigned AS, bool NeedsFreeze, ScalarEvolution &SE); 422 423 /// The SCEV expression which represents the upper bound of all the 424 /// pointers in this group. 425 const SCEV *High; 426 /// The SCEV expression which represents the lower bound of all the 427 /// pointers in this group. 428 const SCEV *Low; 429 /// Indices of all the pointers that constitute this grouping. 430 SmallVector<unsigned, 2> Members; 431 /// Address space of the involved pointers. 432 unsigned AddressSpace; 433 /// Whether the pointer needs to be frozen after expansion, e.g. because it 434 /// may be poison outside the loop. 435 bool NeedsFreeze = false; 436 }; 437 438 /// A memcheck which made up of a pair of grouped pointers. 439 typedef std::pair<const RuntimeCheckingPtrGroup *, 440 const RuntimeCheckingPtrGroup *> 441 RuntimePointerCheck; 442 443 struct PointerDiffInfo { 444 const SCEV *SrcStart; 445 const SCEV *SinkStart; 446 unsigned AccessSize; 447 bool NeedsFreeze; 448 449 PointerDiffInfo(const SCEV *SrcStart, const SCEV *SinkStart, 450 unsigned AccessSize, bool NeedsFreeze) 451 : SrcStart(SrcStart), SinkStart(SinkStart), AccessSize(AccessSize), 452 NeedsFreeze(NeedsFreeze) {} 453 }; 454 455 /// Holds information about the memory runtime legality checks to verify 456 /// that a group of pointers do not overlap. 457 class RuntimePointerChecking { 458 friend struct RuntimeCheckingPtrGroup; 459 460 public: 461 struct PointerInfo { 462 /// Holds the pointer value that we need to check. 463 TrackingVH<Value> PointerValue; 464 /// Holds the smallest byte address accessed by the pointer throughout all 465 /// iterations of the loop. 466 const SCEV *Start; 467 /// Holds the largest byte address accessed by the pointer throughout all 468 /// iterations of the loop, plus 1. 469 const SCEV *End; 470 /// Holds the information if this pointer is used for writing to memory. 471 bool IsWritePtr; 472 /// Holds the id of the set of pointers that could be dependent because of a 473 /// shared underlying object. 474 unsigned DependencySetId; 475 /// Holds the id of the disjoint alias set to which this pointer belongs. 476 unsigned AliasSetId; 477 /// SCEV for the access. 478 const SCEV *Expr; 479 /// True if the pointer expressions needs to be frozen after expansion. 480 bool NeedsFreeze; 481 482 PointerInfo(Value *PointerValue, const SCEV *Start, const SCEV *End, 483 bool IsWritePtr, unsigned DependencySetId, unsigned AliasSetId, 484 const SCEV *Expr, bool NeedsFreeze) 485 : PointerValue(PointerValue), Start(Start), End(End), 486 IsWritePtr(IsWritePtr), DependencySetId(DependencySetId), 487 AliasSetId(AliasSetId), Expr(Expr), NeedsFreeze(NeedsFreeze) {} 488 }; 489 490 RuntimePointerChecking(MemoryDepChecker &DC, ScalarEvolution *SE) 491 : DC(DC), SE(SE) {} 492 493 /// Reset the state of the pointer runtime information. 494 void reset() { 495 Need = false; 496 CanUseDiffCheck = true; 497 Pointers.clear(); 498 Checks.clear(); 499 DiffChecks.clear(); 500 } 501 502 /// Insert a pointer and calculate the start and end SCEVs. 503 /// We need \p PSE in order to compute the SCEV expression of the pointer 504 /// according to the assumptions that we've made during the analysis. 505 /// The method might also version the pointer stride according to \p Strides, 506 /// and add new predicates to \p PSE. 507 void insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, Type *AccessTy, 508 bool WritePtr, unsigned DepSetId, unsigned ASId, 509 PredicatedScalarEvolution &PSE, bool NeedsFreeze); 510 511 /// No run-time memory checking is necessary. 512 bool empty() const { return Pointers.empty(); } 513 514 /// Generate the checks and store it. This also performs the grouping 515 /// of pointers to reduce the number of memchecks necessary. 516 void generateChecks(MemoryDepChecker::DepCandidates &DepCands, 517 bool UseDependencies); 518 519 /// Returns the checks that generateChecks created. They can be used to ensure 520 /// no read/write accesses overlap across all loop iterations. 521 const SmallVectorImpl<RuntimePointerCheck> &getChecks() const { 522 return Checks; 523 } 524 525 // Returns an optional list of (pointer-difference expressions, access size) 526 // pairs that can be used to prove that there are no vectorization-preventing 527 // dependencies at runtime. There are is a vectorization-preventing dependency 528 // if any pointer-difference is <u VF * InterleaveCount * access size. Returns 529 // std::nullopt if pointer-difference checks cannot be used. 530 std::optional<ArrayRef<PointerDiffInfo>> getDiffChecks() const { 531 if (!CanUseDiffCheck) 532 return std::nullopt; 533 return {DiffChecks}; 534 } 535 536 /// Decide if we need to add a check between two groups of pointers, 537 /// according to needsChecking. 538 bool needsChecking(const RuntimeCheckingPtrGroup &M, 539 const RuntimeCheckingPtrGroup &N) const; 540 541 /// Returns the number of run-time checks required according to 542 /// needsChecking. 543 unsigned getNumberOfChecks() const { return Checks.size(); } 544 545 /// Print the list run-time memory checks necessary. 546 void print(raw_ostream &OS, unsigned Depth = 0) const; 547 548 /// Print \p Checks. 549 void printChecks(raw_ostream &OS, 550 const SmallVectorImpl<RuntimePointerCheck> &Checks, 551 unsigned Depth = 0) const; 552 553 /// This flag indicates if we need to add the runtime check. 554 bool Need = false; 555 556 /// Information about the pointers that may require checking. 557 SmallVector<PointerInfo, 2> Pointers; 558 559 /// Holds a partitioning of pointers into "check groups". 560 SmallVector<RuntimeCheckingPtrGroup, 2> CheckingGroups; 561 562 /// Check if pointers are in the same partition 563 /// 564 /// \p PtrToPartition contains the partition number for pointers (-1 if the 565 /// pointer belongs to multiple partitions). 566 static bool 567 arePointersInSamePartition(const SmallVectorImpl<int> &PtrToPartition, 568 unsigned PtrIdx1, unsigned PtrIdx2); 569 570 /// Decide whether we need to issue a run-time check for pointer at 571 /// index \p I and \p J to prove their independence. 572 bool needsChecking(unsigned I, unsigned J) const; 573 574 /// Return PointerInfo for pointer at index \p PtrIdx. 575 const PointerInfo &getPointerInfo(unsigned PtrIdx) const { 576 return Pointers[PtrIdx]; 577 } 578 579 ScalarEvolution *getSE() const { return SE; } 580 581 private: 582 /// Groups pointers such that a single memcheck is required 583 /// between two different groups. This will clear the CheckingGroups vector 584 /// and re-compute it. We will only group dependecies if \p UseDependencies 585 /// is true, otherwise we will create a separate group for each pointer. 586 void groupChecks(MemoryDepChecker::DepCandidates &DepCands, 587 bool UseDependencies); 588 589 /// Generate the checks and return them. 590 SmallVector<RuntimePointerCheck, 4> generateChecks(); 591 592 /// Try to create add a new (pointer-difference, access size) pair to 593 /// DiffCheck for checking groups \p CGI and \p CGJ. If pointer-difference 594 /// checks cannot be used for the groups, set CanUseDiffCheck to false. 595 bool tryToCreateDiffCheck(const RuntimeCheckingPtrGroup &CGI, 596 const RuntimeCheckingPtrGroup &CGJ); 597 598 MemoryDepChecker &DC; 599 600 /// Holds a pointer to the ScalarEvolution analysis. 601 ScalarEvolution *SE; 602 603 /// Set of run-time checks required to establish independence of 604 /// otherwise may-aliasing pointers in the loop. 605 SmallVector<RuntimePointerCheck, 4> Checks; 606 607 /// Flag indicating if pointer-difference checks can be used 608 bool CanUseDiffCheck = true; 609 610 /// A list of (pointer-difference, access size) pairs that can be used to 611 /// prove that there are no vectorization-preventing dependencies. 612 SmallVector<PointerDiffInfo> DiffChecks; 613 }; 614 615 /// Drive the analysis of memory accesses in the loop 616 /// 617 /// This class is responsible for analyzing the memory accesses of a loop. It 618 /// collects the accesses and then its main helper the AccessAnalysis class 619 /// finds and categorizes the dependences in buildDependenceSets. 620 /// 621 /// For memory dependences that can be analyzed at compile time, it determines 622 /// whether the dependence is part of cycle inhibiting vectorization. This work 623 /// is delegated to the MemoryDepChecker class. 624 /// 625 /// For memory dependences that cannot be determined at compile time, it 626 /// generates run-time checks to prove independence. This is done by 627 /// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the 628 /// RuntimePointerCheck class. 629 /// 630 /// If pointers can wrap or can't be expressed as affine AddRec expressions by 631 /// ScalarEvolution, we will generate run-time checks by emitting a 632 /// SCEVUnionPredicate. 633 /// 634 /// Checks for both memory dependences and the SCEV predicates contained in the 635 /// PSE must be emitted in order for the results of this analysis to be valid. 636 class LoopAccessInfo { 637 public: 638 LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetTransformInfo *TTI, 639 const TargetLibraryInfo *TLI, AAResults *AA, DominatorTree *DT, 640 LoopInfo *LI); 641 642 /// Return true we can analyze the memory accesses in the loop and there are 643 /// no memory dependence cycles. Note that for dependences between loads & 644 /// stores with uniform addresses, 645 /// hasStoreStoreDependenceInvolvingLoopInvariantAddress and 646 /// hasLoadStoreDependenceInvolvingLoopInvariantAddress also need to be 647 /// checked. 648 bool canVectorizeMemory() const { return CanVecMem; } 649 650 /// Return true if there is a convergent operation in the loop. There may 651 /// still be reported runtime pointer checks that would be required, but it is 652 /// not legal to insert them. 653 bool hasConvergentOp() const { return HasConvergentOp; } 654 655 const RuntimePointerChecking *getRuntimePointerChecking() const { 656 return PtrRtChecking.get(); 657 } 658 659 /// Number of memchecks required to prove independence of otherwise 660 /// may-alias pointers. 661 unsigned getNumRuntimePointerChecks() const { 662 return PtrRtChecking->getNumberOfChecks(); 663 } 664 665 /// Return true if the block BB needs to be predicated in order for the loop 666 /// to be vectorized. 667 static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 668 DominatorTree *DT); 669 670 /// Returns true if value \p V is loop invariant. 671 bool isInvariant(Value *V) const; 672 673 unsigned getNumStores() const { return NumStores; } 674 unsigned getNumLoads() const { return NumLoads;} 675 676 /// The diagnostics report generated for the analysis. E.g. why we 677 /// couldn't analyze the loop. 678 const OptimizationRemarkAnalysis *getReport() const { return Report.get(); } 679 680 /// the Memory Dependence Checker which can determine the 681 /// loop-independent and loop-carried dependences between memory accesses. 682 const MemoryDepChecker &getDepChecker() const { return *DepChecker; } 683 684 /// Return the list of instructions that use \p Ptr to read or write 685 /// memory. 686 SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr, 687 bool isWrite) const { 688 return DepChecker->getInstructionsForAccess(Ptr, isWrite); 689 } 690 691 /// If an access has a symbolic strides, this maps the pointer value to 692 /// the stride symbol. 693 const DenseMap<Value *, const SCEV *> &getSymbolicStrides() const { 694 return SymbolicStrides; 695 } 696 697 /// Print the information about the memory accesses in the loop. 698 void print(raw_ostream &OS, unsigned Depth = 0) const; 699 700 /// Return true if the loop has memory dependence involving two stores to an 701 /// invariant address, else return false. 702 bool hasStoreStoreDependenceInvolvingLoopInvariantAddress() const { 703 return HasStoreStoreDependenceInvolvingLoopInvariantAddress; 704 } 705 706 /// Return true if the loop has memory dependence involving a load and a store 707 /// to an invariant address, else return false. 708 bool hasLoadStoreDependenceInvolvingLoopInvariantAddress() const { 709 return HasLoadStoreDependenceInvolvingLoopInvariantAddress; 710 } 711 712 /// Return the list of stores to invariant addresses. 713 ArrayRef<StoreInst *> getStoresToInvariantAddresses() const { 714 return StoresToInvariantAddresses; 715 } 716 717 /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts 718 /// them to a more usable form. All SCEV expressions during the analysis 719 /// should be re-written (and therefore simplified) according to PSE. 720 /// A user of LoopAccessAnalysis will need to emit the runtime checks 721 /// associated with this predicate. 722 const PredicatedScalarEvolution &getPSE() const { return *PSE; } 723 724 private: 725 /// Analyze the loop. Returns true if all memory access in the loop can be 726 /// vectorized. 727 bool analyzeLoop(AAResults *AA, const LoopInfo *LI, 728 const TargetLibraryInfo *TLI, DominatorTree *DT); 729 730 /// Check if the structure of the loop allows it to be analyzed by this 731 /// pass. 732 bool canAnalyzeLoop(); 733 734 /// Save the analysis remark. 735 /// 736 /// LAA does not directly emits the remarks. Instead it stores it which the 737 /// client can retrieve and presents as its own analysis 738 /// (e.g. -Rpass-analysis=loop-vectorize). 739 OptimizationRemarkAnalysis & 740 recordAnalysis(StringRef RemarkName, const Instruction *Instr = nullptr); 741 742 /// Collect memory access with loop invariant strides. 743 /// 744 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 745 /// invariant. 746 void collectStridedAccess(Value *LoadOrStoreInst); 747 748 // Emits the first unsafe memory dependence in a loop. 749 // Emits nothing if there are no unsafe dependences 750 // or if the dependences were not recorded. 751 void emitUnsafeDependenceRemark(); 752 753 std::unique_ptr<PredicatedScalarEvolution> PSE; 754 755 /// We need to check that all of the pointers in this list are disjoint 756 /// at runtime. Using std::unique_ptr to make using move ctor simpler. 757 std::unique_ptr<RuntimePointerChecking> PtrRtChecking; 758 759 /// the Memory Dependence Checker which can determine the 760 /// loop-independent and loop-carried dependences between memory accesses. 761 std::unique_ptr<MemoryDepChecker> DepChecker; 762 763 Loop *TheLoop; 764 765 unsigned NumLoads = 0; 766 unsigned NumStores = 0; 767 768 /// Cache the result of analyzeLoop. 769 bool CanVecMem = false; 770 bool HasConvergentOp = false; 771 772 /// Indicator that there are two non vectorizable stores to the same uniform 773 /// address. 774 bool HasStoreStoreDependenceInvolvingLoopInvariantAddress = false; 775 /// Indicator that there is non vectorizable load and store to the same 776 /// uniform address. 777 bool HasLoadStoreDependenceInvolvingLoopInvariantAddress = false; 778 779 /// List of stores to invariant addresses. 780 SmallVector<StoreInst *> StoresToInvariantAddresses; 781 782 /// The diagnostics report generated for the analysis. E.g. why we 783 /// couldn't analyze the loop. 784 std::unique_ptr<OptimizationRemarkAnalysis> Report; 785 786 /// If an access has a symbolic strides, this maps the pointer value to 787 /// the stride symbol. 788 DenseMap<Value *, const SCEV *> SymbolicStrides; 789 }; 790 791 /// Return the SCEV corresponding to a pointer with the symbolic stride 792 /// replaced with constant one, assuming the SCEV predicate associated with 793 /// \p PSE is true. 794 /// 795 /// If necessary this method will version the stride of the pointer according 796 /// to \p PtrToStride and therefore add further predicates to \p PSE. 797 /// 798 /// \p PtrToStride provides the mapping between the pointer value and its 799 /// stride as collected by LoopVectorizationLegality::collectStridedAccess. 800 const SCEV * 801 replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 802 const DenseMap<Value *, const SCEV *> &PtrToStride, 803 Value *Ptr); 804 805 /// If the pointer has a constant stride return it in units of the access type 806 /// size. If the pointer is loop-invariant, return 0. Otherwise return 807 /// std::nullopt. 808 /// 809 /// Ensure that it does not wrap in the address space, assuming the predicate 810 /// associated with \p PSE is true. 811 /// 812 /// If necessary this method will version the stride of the pointer according 813 /// to \p PtrToStride and therefore add further predicates to \p PSE. 814 /// The \p Assume parameter indicates if we are allowed to make additional 815 /// run-time assumptions. 816 /// 817 /// Note that the analysis results are defined if-and-only-if the original 818 /// memory access was defined. If that access was dead, or UB, then the 819 /// result of this function is undefined. 820 std::optional<int64_t> 821 getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr, 822 const Loop *Lp, 823 const DenseMap<Value *, const SCEV *> &StridesMap = DenseMap<Value *, const SCEV *>(), 824 bool Assume = false, bool ShouldCheckWrap = true); 825 826 /// Returns the distance between the pointers \p PtrA and \p PtrB iff they are 827 /// compatible and it is possible to calculate the distance between them. This 828 /// is a simple API that does not depend on the analysis pass. 829 /// \param StrictCheck Ensure that the calculated distance matches the 830 /// type-based one after all the bitcasts removal in the provided pointers. 831 std::optional<int> getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB, 832 Value *PtrB, const DataLayout &DL, 833 ScalarEvolution &SE, 834 bool StrictCheck = false, 835 bool CheckType = true); 836 837 /// Attempt to sort the pointers in \p VL and return the sorted indices 838 /// in \p SortedIndices, if reordering is required. 839 /// 840 /// Returns 'true' if sorting is legal, otherwise returns 'false'. 841 /// 842 /// For example, for a given \p VL of memory accesses in program order, a[i+4], 843 /// a[i+0], a[i+1] and a[i+7], this function will sort the \p VL and save the 844 /// sorted indices in \p SortedIndices as a[i+0], a[i+1], a[i+4], a[i+7] and 845 /// saves the mask for actual memory accesses in program order in 846 /// \p SortedIndices as <1,2,0,3> 847 bool sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, const DataLayout &DL, 848 ScalarEvolution &SE, 849 SmallVectorImpl<unsigned> &SortedIndices); 850 851 /// Returns true if the memory operations \p A and \p B are consecutive. 852 /// This is a simple API that does not depend on the analysis pass. 853 bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 854 ScalarEvolution &SE, bool CheckType = true); 855 856 /// Calculate Start and End points of memory access. 857 /// Let's assume A is the first access and B is a memory access on N-th loop 858 /// iteration. Then B is calculated as: 859 /// B = A + Step*N . 860 /// Step value may be positive or negative. 861 /// N is a calculated back-edge taken count: 862 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 863 /// Start and End points are calculated in the following way: 864 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 865 /// where SizeOfElt is the size of single memory access in bytes. 866 /// 867 /// There is no conflict when the intervals are disjoint: 868 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 869 std::pair<const SCEV *, const SCEV *> getStartAndEndForAccess( 870 const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy, const SCEV *MaxBECount, 871 ScalarEvolution *SE, 872 DenseMap<std::pair<const SCEV *, Type *>, 873 std::pair<const SCEV *, const SCEV *>> *PointerBounds); 874 875 class LoopAccessInfoManager { 876 /// The cache. 877 DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap; 878 879 // The used analysis passes. 880 ScalarEvolution &SE; 881 AAResults &AA; 882 DominatorTree &DT; 883 LoopInfo &LI; 884 TargetTransformInfo *TTI; 885 const TargetLibraryInfo *TLI = nullptr; 886 887 public: 888 LoopAccessInfoManager(ScalarEvolution &SE, AAResults &AA, DominatorTree &DT, 889 LoopInfo &LI, TargetTransformInfo *TTI, 890 const TargetLibraryInfo *TLI) 891 : SE(SE), AA(AA), DT(DT), LI(LI), TTI(TTI), TLI(TLI) {} 892 893 const LoopAccessInfo &getInfo(Loop &L); 894 895 void clear(); 896 897 bool invalidate(Function &F, const PreservedAnalyses &PA, 898 FunctionAnalysisManager::Invalidator &Inv); 899 }; 900 901 /// This analysis provides dependence information for the memory 902 /// accesses of a loop. 903 /// 904 /// It runs the analysis for a loop on demand. This can be initiated by 905 /// querying the loop access info via AM.getResult<LoopAccessAnalysis>. 906 /// getResult return a LoopAccessInfo object. See this class for the 907 /// specifics of what information is provided. 908 class LoopAccessAnalysis 909 : public AnalysisInfoMixin<LoopAccessAnalysis> { 910 friend AnalysisInfoMixin<LoopAccessAnalysis>; 911 static AnalysisKey Key; 912 913 public: 914 typedef LoopAccessInfoManager Result; 915 916 Result run(Function &F, FunctionAnalysisManager &AM); 917 }; 918 919 inline Instruction *MemoryDepChecker::Dependence::getSource( 920 const MemoryDepChecker &DepChecker) const { 921 return DepChecker.getMemoryInstructions()[Source]; 922 } 923 924 inline Instruction *MemoryDepChecker::Dependence::getDestination( 925 const MemoryDepChecker &DepChecker) const { 926 return DepChecker.getMemoryInstructions()[Destination]; 927 } 928 929 } // End llvm namespace 930 931 #endif 932