xref: /netbsd-src/external/apache2/llvm/dist/clang/lib/CodeGen/CGExprScalar.cpp (revision e038c9c4676b0f19b1b7dd08a940c6ed64a6d5ae)
1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCleanup.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenMPRuntime.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/APFixedPoint.h"
31 #include "llvm/ADT/Optional.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/FixedPointBuilder.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/IntrinsicsPowerPC.h"
41 #include "llvm/IR/MatrixBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include <cstdarg>
44 
45 using namespace clang;
46 using namespace CodeGen;
47 using llvm::Value;
48 
49 //===----------------------------------------------------------------------===//
50 //                         Scalar Expression Emitter
51 //===----------------------------------------------------------------------===//
52 
53 namespace {
54 
55 /// Determine whether the given binary operation may overflow.
56 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
57 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
58 /// the returned overflow check is precise. The returned value is 'true' for
59 /// all other opcodes, to be conservative.
mayHaveIntegerOverflow(llvm::ConstantInt * LHS,llvm::ConstantInt * RHS,BinaryOperator::Opcode Opcode,bool Signed,llvm::APInt & Result)60 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
61                              BinaryOperator::Opcode Opcode, bool Signed,
62                              llvm::APInt &Result) {
63   // Assume overflow is possible, unless we can prove otherwise.
64   bool Overflow = true;
65   const auto &LHSAP = LHS->getValue();
66   const auto &RHSAP = RHS->getValue();
67   if (Opcode == BO_Add) {
68     if (Signed)
69       Result = LHSAP.sadd_ov(RHSAP, Overflow);
70     else
71       Result = LHSAP.uadd_ov(RHSAP, Overflow);
72   } else if (Opcode == BO_Sub) {
73     if (Signed)
74       Result = LHSAP.ssub_ov(RHSAP, Overflow);
75     else
76       Result = LHSAP.usub_ov(RHSAP, Overflow);
77   } else if (Opcode == BO_Mul) {
78     if (Signed)
79       Result = LHSAP.smul_ov(RHSAP, Overflow);
80     else
81       Result = LHSAP.umul_ov(RHSAP, Overflow);
82   } else if (Opcode == BO_Div || Opcode == BO_Rem) {
83     if (Signed && !RHS->isZero())
84       Result = LHSAP.sdiv_ov(RHSAP, Overflow);
85     else
86       return false;
87   }
88   return Overflow;
89 }
90 
91 struct BinOpInfo {
92   Value *LHS;
93   Value *RHS;
94   QualType Ty;  // Computation Type.
95   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
96   FPOptions FPFeatures;
97   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
98 
99   /// Check if the binop can result in integer overflow.
mayHaveIntegerOverflow__anonacb3eee80111::BinOpInfo100   bool mayHaveIntegerOverflow() const {
101     // Without constant input, we can't rule out overflow.
102     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
103     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
104     if (!LHSCI || !RHSCI)
105       return true;
106 
107     llvm::APInt Result;
108     return ::mayHaveIntegerOverflow(
109         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
110   }
111 
112   /// Check if the binop computes a division or a remainder.
isDivremOp__anonacb3eee80111::BinOpInfo113   bool isDivremOp() const {
114     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
115            Opcode == BO_RemAssign;
116   }
117 
118   /// Check if the binop can result in an integer division by zero.
mayHaveIntegerDivisionByZero__anonacb3eee80111::BinOpInfo119   bool mayHaveIntegerDivisionByZero() const {
120     if (isDivremOp())
121       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
122         return CI->isZero();
123     return true;
124   }
125 
126   /// Check if the binop can result in a float division by zero.
mayHaveFloatDivisionByZero__anonacb3eee80111::BinOpInfo127   bool mayHaveFloatDivisionByZero() const {
128     if (isDivremOp())
129       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
130         return CFP->isZero();
131     return true;
132   }
133 
134   /// Check if at least one operand is a fixed point type. In such cases, this
135   /// operation did not follow usual arithmetic conversion and both operands
136   /// might not be of the same type.
isFixedPointOp__anonacb3eee80111::BinOpInfo137   bool isFixedPointOp() const {
138     // We cannot simply check the result type since comparison operations return
139     // an int.
140     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
141       QualType LHSType = BinOp->getLHS()->getType();
142       QualType RHSType = BinOp->getRHS()->getType();
143       return LHSType->isFixedPointType() || RHSType->isFixedPointType();
144     }
145     if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
146       return UnOp->getSubExpr()->getType()->isFixedPointType();
147     return false;
148   }
149 };
150 
MustVisitNullValue(const Expr * E)151 static bool MustVisitNullValue(const Expr *E) {
152   // If a null pointer expression's type is the C++0x nullptr_t, then
153   // it's not necessarily a simple constant and it must be evaluated
154   // for its potential side effects.
155   return E->getType()->isNullPtrType();
156 }
157 
158 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
getUnwidenedIntegerType(const ASTContext & Ctx,const Expr * E)159 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
160                                                         const Expr *E) {
161   const Expr *Base = E->IgnoreImpCasts();
162   if (E == Base)
163     return llvm::None;
164 
165   QualType BaseTy = Base->getType();
166   if (!BaseTy->isPromotableIntegerType() ||
167       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
168     return llvm::None;
169 
170   return BaseTy;
171 }
172 
173 /// Check if \p E is a widened promoted integer.
IsWidenedIntegerOp(const ASTContext & Ctx,const Expr * E)174 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
175   return getUnwidenedIntegerType(Ctx, E).hasValue();
176 }
177 
178 /// Check if we can skip the overflow check for \p Op.
CanElideOverflowCheck(const ASTContext & Ctx,const BinOpInfo & Op)179 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
180   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
181          "Expected a unary or binary operator");
182 
183   // If the binop has constant inputs and we can prove there is no overflow,
184   // we can elide the overflow check.
185   if (!Op.mayHaveIntegerOverflow())
186     return true;
187 
188   // If a unary op has a widened operand, the op cannot overflow.
189   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
190     return !UO->canOverflow();
191 
192   // We usually don't need overflow checks for binops with widened operands.
193   // Multiplication with promoted unsigned operands is a special case.
194   const auto *BO = cast<BinaryOperator>(Op.E);
195   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
196   if (!OptionalLHSTy)
197     return false;
198 
199   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
200   if (!OptionalRHSTy)
201     return false;
202 
203   QualType LHSTy = *OptionalLHSTy;
204   QualType RHSTy = *OptionalRHSTy;
205 
206   // This is the simple case: binops without unsigned multiplication, and with
207   // widened operands. No overflow check is needed here.
208   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
209       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
210     return true;
211 
212   // For unsigned multiplication the overflow check can be elided if either one
213   // of the unpromoted types are less than half the size of the promoted type.
214   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
215   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
216          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
217 }
218 
219 class ScalarExprEmitter
220   : public StmtVisitor<ScalarExprEmitter, Value*> {
221   CodeGenFunction &CGF;
222   CGBuilderTy &Builder;
223   bool IgnoreResultAssign;
224   llvm::LLVMContext &VMContext;
225 public:
226 
ScalarExprEmitter(CodeGenFunction & cgf,bool ira=false)227   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
228     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
229       VMContext(cgf.getLLVMContext()) {
230   }
231 
232   //===--------------------------------------------------------------------===//
233   //                               Utilities
234   //===--------------------------------------------------------------------===//
235 
TestAndClearIgnoreResultAssign()236   bool TestAndClearIgnoreResultAssign() {
237     bool I = IgnoreResultAssign;
238     IgnoreResultAssign = false;
239     return I;
240   }
241 
ConvertType(QualType T)242   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
EmitLValue(const Expr * E)243   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
EmitCheckedLValue(const Expr * E,CodeGenFunction::TypeCheckKind TCK)244   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
245     return CGF.EmitCheckedLValue(E, TCK);
246   }
247 
248   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
249                       const BinOpInfo &Info);
250 
EmitLoadOfLValue(LValue LV,SourceLocation Loc)251   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
252     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
253   }
254 
EmitLValueAlignmentAssumption(const Expr * E,Value * V)255   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
256     const AlignValueAttr *AVAttr = nullptr;
257     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
258       const ValueDecl *VD = DRE->getDecl();
259 
260       if (VD->getType()->isReferenceType()) {
261         if (const auto *TTy =
262             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
263           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
264       } else {
265         // Assumptions for function parameters are emitted at the start of the
266         // function, so there is no need to repeat that here,
267         // unless the alignment-assumption sanitizer is enabled,
268         // then we prefer the assumption over alignment attribute
269         // on IR function param.
270         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
271           return;
272 
273         AVAttr = VD->getAttr<AlignValueAttr>();
274       }
275     }
276 
277     if (!AVAttr)
278       if (const auto *TTy =
279           dyn_cast<TypedefType>(E->getType()))
280         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
281 
282     if (!AVAttr)
283       return;
284 
285     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
286     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
287     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
288   }
289 
290   /// EmitLoadOfLValue - Given an expression with complex type that represents a
291   /// value l-value, this method emits the address of the l-value, then loads
292   /// and returns the result.
EmitLoadOfLValue(const Expr * E)293   Value *EmitLoadOfLValue(const Expr *E) {
294     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
295                                 E->getExprLoc());
296 
297     EmitLValueAlignmentAssumption(E, V);
298     return V;
299   }
300 
301   /// EmitConversionToBool - Convert the specified expression value to a
302   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
303   Value *EmitConversionToBool(Value *Src, QualType DstTy);
304 
305   /// Emit a check that a conversion from a floating-point type does not
306   /// overflow.
307   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
308                                 Value *Src, QualType SrcType, QualType DstType,
309                                 llvm::Type *DstTy, SourceLocation Loc);
310 
311   /// Known implicit conversion check kinds.
312   /// Keep in sync with the enum of the same name in ubsan_handlers.h
313   enum ImplicitConversionCheckKind : unsigned char {
314     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
315     ICCK_UnsignedIntegerTruncation = 1,
316     ICCK_SignedIntegerTruncation = 2,
317     ICCK_IntegerSignChange = 3,
318     ICCK_SignedIntegerTruncationOrSignChange = 4,
319   };
320 
321   /// Emit a check that an [implicit] truncation of an integer  does not
322   /// discard any bits. It is not UB, so we use the value after truncation.
323   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
324                                   QualType DstType, SourceLocation Loc);
325 
326   /// Emit a check that an [implicit] conversion of an integer does not change
327   /// the sign of the value. It is not UB, so we use the value after conversion.
328   /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
329   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
330                                   QualType DstType, SourceLocation Loc);
331 
332   /// Emit a conversion from the specified type to the specified destination
333   /// type, both of which are LLVM scalar types.
334   struct ScalarConversionOpts {
335     bool TreatBooleanAsSigned;
336     bool EmitImplicitIntegerTruncationChecks;
337     bool EmitImplicitIntegerSignChangeChecks;
338 
ScalarConversionOpts__anonacb3eee80111::ScalarExprEmitter::ScalarConversionOpts339     ScalarConversionOpts()
340         : TreatBooleanAsSigned(false),
341           EmitImplicitIntegerTruncationChecks(false),
342           EmitImplicitIntegerSignChangeChecks(false) {}
343 
ScalarConversionOpts__anonacb3eee80111::ScalarExprEmitter::ScalarConversionOpts344     ScalarConversionOpts(clang::SanitizerSet SanOpts)
345         : TreatBooleanAsSigned(false),
346           EmitImplicitIntegerTruncationChecks(
347               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
348           EmitImplicitIntegerSignChangeChecks(
349               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
350   };
351   Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType,
352                         llvm::Type *SrcTy, llvm::Type *DstTy,
353                         ScalarConversionOpts Opts);
354   Value *
355   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
356                        SourceLocation Loc,
357                        ScalarConversionOpts Opts = ScalarConversionOpts());
358 
359   /// Convert between either a fixed point and other fixed point or fixed point
360   /// and an integer.
361   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
362                                   SourceLocation Loc);
363 
364   /// Emit a conversion from the specified complex type to the specified
365   /// destination type, where the destination type is an LLVM scalar type.
366   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
367                                        QualType SrcTy, QualType DstTy,
368                                        SourceLocation Loc);
369 
370   /// EmitNullValue - Emit a value that corresponds to null for the given type.
371   Value *EmitNullValue(QualType Ty);
372 
373   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
EmitFloatToBoolConversion(Value * V)374   Value *EmitFloatToBoolConversion(Value *V) {
375     // Compare against 0.0 for fp scalars.
376     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
377     return Builder.CreateFCmpUNE(V, Zero, "tobool");
378   }
379 
380   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
EmitPointerToBoolConversion(Value * V,QualType QT)381   Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
382     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
383 
384     return Builder.CreateICmpNE(V, Zero, "tobool");
385   }
386 
EmitIntToBoolConversion(Value * V)387   Value *EmitIntToBoolConversion(Value *V) {
388     // Because of the type rules of C, we often end up computing a
389     // logical value, then zero extending it to int, then wanting it
390     // as a logical value again.  Optimize this common case.
391     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
392       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
393         Value *Result = ZI->getOperand(0);
394         // If there aren't any more uses, zap the instruction to save space.
395         // Note that there can be more uses, for example if this
396         // is the result of an assignment.
397         if (ZI->use_empty())
398           ZI->eraseFromParent();
399         return Result;
400       }
401     }
402 
403     return Builder.CreateIsNotNull(V, "tobool");
404   }
405 
406   //===--------------------------------------------------------------------===//
407   //                            Visitor Methods
408   //===--------------------------------------------------------------------===//
409 
Visit(Expr * E)410   Value *Visit(Expr *E) {
411     ApplyDebugLocation DL(CGF, E);
412     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
413   }
414 
VisitStmt(Stmt * S)415   Value *VisitStmt(Stmt *S) {
416     S->dump(llvm::errs(), CGF.getContext());
417     llvm_unreachable("Stmt can't have complex result type!");
418   }
419   Value *VisitExpr(Expr *S);
420 
VisitConstantExpr(ConstantExpr * E)421   Value *VisitConstantExpr(ConstantExpr *E) {
422     if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
423       if (E->isGLValue())
424         return CGF.Builder.CreateLoad(Address(
425             Result, CGF.getContext().getTypeAlignInChars(E->getType())));
426       return Result;
427     }
428     return Visit(E->getSubExpr());
429   }
VisitParenExpr(ParenExpr * PE)430   Value *VisitParenExpr(ParenExpr *PE) {
431     return Visit(PE->getSubExpr());
432   }
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)433   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
434     return Visit(E->getReplacement());
435   }
VisitGenericSelectionExpr(GenericSelectionExpr * GE)436   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
437     return Visit(GE->getResultExpr());
438   }
VisitCoawaitExpr(CoawaitExpr * S)439   Value *VisitCoawaitExpr(CoawaitExpr *S) {
440     return CGF.EmitCoawaitExpr(*S).getScalarVal();
441   }
VisitCoyieldExpr(CoyieldExpr * S)442   Value *VisitCoyieldExpr(CoyieldExpr *S) {
443     return CGF.EmitCoyieldExpr(*S).getScalarVal();
444   }
VisitUnaryCoawait(const UnaryOperator * E)445   Value *VisitUnaryCoawait(const UnaryOperator *E) {
446     return Visit(E->getSubExpr());
447   }
448 
449   // Leaves.
VisitIntegerLiteral(const IntegerLiteral * E)450   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
451     return Builder.getInt(E->getValue());
452   }
VisitFixedPointLiteral(const FixedPointLiteral * E)453   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
454     return Builder.getInt(E->getValue());
455   }
VisitFloatingLiteral(const FloatingLiteral * E)456   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
457     return llvm::ConstantFP::get(VMContext, E->getValue());
458   }
VisitCharacterLiteral(const CharacterLiteral * E)459   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
460     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
461   }
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)462   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
463     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
464   }
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)465   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
466     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
467   }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)468   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
469     return EmitNullValue(E->getType());
470   }
VisitGNUNullExpr(const GNUNullExpr * E)471   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
472     return EmitNullValue(E->getType());
473   }
474   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
475   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
VisitAddrLabelExpr(const AddrLabelExpr * E)476   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
477     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
478     return Builder.CreateBitCast(V, ConvertType(E->getType()));
479   }
480 
VisitSizeOfPackExpr(SizeOfPackExpr * E)481   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
482     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
483   }
484 
VisitPseudoObjectExpr(PseudoObjectExpr * E)485   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
486     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
487   }
488 
VisitOpaqueValueExpr(OpaqueValueExpr * E)489   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
490     if (E->isGLValue())
491       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
492                               E->getExprLoc());
493 
494     // Otherwise, assume the mapping is the scalar directly.
495     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
496   }
497 
498   // l-values.
VisitDeclRefExpr(DeclRefExpr * E)499   Value *VisitDeclRefExpr(DeclRefExpr *E) {
500     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
501       return CGF.emitScalarConstant(Constant, E);
502     return EmitLoadOfLValue(E);
503   }
504 
VisitObjCSelectorExpr(ObjCSelectorExpr * E)505   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
506     return CGF.EmitObjCSelectorExpr(E);
507   }
VisitObjCProtocolExpr(ObjCProtocolExpr * E)508   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
509     return CGF.EmitObjCProtocolExpr(E);
510   }
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)511   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
512     return EmitLoadOfLValue(E);
513   }
VisitObjCMessageExpr(ObjCMessageExpr * E)514   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
515     if (E->getMethodDecl() &&
516         E->getMethodDecl()->getReturnType()->isReferenceType())
517       return EmitLoadOfLValue(E);
518     return CGF.EmitObjCMessageExpr(E).getScalarVal();
519   }
520 
VisitObjCIsaExpr(ObjCIsaExpr * E)521   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
522     LValue LV = CGF.EmitObjCIsaExpr(E);
523     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
524     return V;
525   }
526 
VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr * E)527   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
528     VersionTuple Version = E->getVersion();
529 
530     // If we're checking for a platform older than our minimum deployment
531     // target, we can fold the check away.
532     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
533       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
534 
535     return CGF.EmitBuiltinAvailable(Version);
536   }
537 
538   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
539   Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
540   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
541   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
542   Value *VisitMemberExpr(MemberExpr *E);
VisitExtVectorElementExpr(Expr * E)543   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)544   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
545     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
546     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
547     // literals aren't l-values in C++. We do so simply because that's the
548     // cleanest way to handle compound literals in C++.
549     // See the discussion here: https://reviews.llvm.org/D64464
550     return EmitLoadOfLValue(E);
551   }
552 
553   Value *VisitInitListExpr(InitListExpr *E);
554 
VisitArrayInitIndexExpr(ArrayInitIndexExpr * E)555   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
556     assert(CGF.getArrayInitIndex() &&
557            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
558     return CGF.getArrayInitIndex();
559   }
560 
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)561   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
562     return EmitNullValue(E->getType());
563   }
VisitExplicitCastExpr(ExplicitCastExpr * E)564   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
565     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
566     return VisitCastExpr(E);
567   }
568   Value *VisitCastExpr(CastExpr *E);
569 
VisitCallExpr(const CallExpr * E)570   Value *VisitCallExpr(const CallExpr *E) {
571     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
572       return EmitLoadOfLValue(E);
573 
574     Value *V = CGF.EmitCallExpr(E).getScalarVal();
575 
576     EmitLValueAlignmentAssumption(E, V);
577     return V;
578   }
579 
580   Value *VisitStmtExpr(const StmtExpr *E);
581 
582   // Unary Operators.
VisitUnaryPostDec(const UnaryOperator * E)583   Value *VisitUnaryPostDec(const UnaryOperator *E) {
584     LValue LV = EmitLValue(E->getSubExpr());
585     return EmitScalarPrePostIncDec(E, LV, false, false);
586   }
VisitUnaryPostInc(const UnaryOperator * E)587   Value *VisitUnaryPostInc(const UnaryOperator *E) {
588     LValue LV = EmitLValue(E->getSubExpr());
589     return EmitScalarPrePostIncDec(E, LV, true, false);
590   }
VisitUnaryPreDec(const UnaryOperator * E)591   Value *VisitUnaryPreDec(const UnaryOperator *E) {
592     LValue LV = EmitLValue(E->getSubExpr());
593     return EmitScalarPrePostIncDec(E, LV, false, true);
594   }
VisitUnaryPreInc(const UnaryOperator * E)595   Value *VisitUnaryPreInc(const UnaryOperator *E) {
596     LValue LV = EmitLValue(E->getSubExpr());
597     return EmitScalarPrePostIncDec(E, LV, true, true);
598   }
599 
600   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
601                                                   llvm::Value *InVal,
602                                                   bool IsInc);
603 
604   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
605                                        bool isInc, bool isPre);
606 
607 
VisitUnaryAddrOf(const UnaryOperator * E)608   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
609     if (isa<MemberPointerType>(E->getType())) // never sugared
610       return CGF.CGM.getMemberPointerConstant(E);
611 
612     return EmitLValue(E->getSubExpr()).getPointer(CGF);
613   }
VisitUnaryDeref(const UnaryOperator * E)614   Value *VisitUnaryDeref(const UnaryOperator *E) {
615     if (E->getType()->isVoidType())
616       return Visit(E->getSubExpr()); // the actual value should be unused
617     return EmitLoadOfLValue(E);
618   }
VisitUnaryPlus(const UnaryOperator * E)619   Value *VisitUnaryPlus(const UnaryOperator *E) {
620     // This differs from gcc, though, most likely due to a bug in gcc.
621     TestAndClearIgnoreResultAssign();
622     return Visit(E->getSubExpr());
623   }
624   Value *VisitUnaryMinus    (const UnaryOperator *E);
625   Value *VisitUnaryNot      (const UnaryOperator *E);
626   Value *VisitUnaryLNot     (const UnaryOperator *E);
627   Value *VisitUnaryReal     (const UnaryOperator *E);
628   Value *VisitUnaryImag     (const UnaryOperator *E);
VisitUnaryExtension(const UnaryOperator * E)629   Value *VisitUnaryExtension(const UnaryOperator *E) {
630     return Visit(E->getSubExpr());
631   }
632 
633   // C++
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)634   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
635     return EmitLoadOfLValue(E);
636   }
VisitSourceLocExpr(SourceLocExpr * SLE)637   Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
638     auto &Ctx = CGF.getContext();
639     APValue Evaluated =
640         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
641     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
642                                              SLE->getType());
643   }
644 
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)645   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
646     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
647     return Visit(DAE->getExpr());
648   }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)649   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
650     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
651     return Visit(DIE->getExpr());
652   }
VisitCXXThisExpr(CXXThisExpr * TE)653   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
654     return CGF.LoadCXXThis();
655   }
656 
657   Value *VisitExprWithCleanups(ExprWithCleanups *E);
VisitCXXNewExpr(const CXXNewExpr * E)658   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
659     return CGF.EmitCXXNewExpr(E);
660   }
VisitCXXDeleteExpr(const CXXDeleteExpr * E)661   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
662     CGF.EmitCXXDeleteExpr(E);
663     return nullptr;
664   }
665 
VisitTypeTraitExpr(const TypeTraitExpr * E)666   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
667     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
668   }
669 
VisitConceptSpecializationExpr(const ConceptSpecializationExpr * E)670   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
671     return Builder.getInt1(E->isSatisfied());
672   }
673 
VisitRequiresExpr(const RequiresExpr * E)674   Value *VisitRequiresExpr(const RequiresExpr *E) {
675     return Builder.getInt1(E->isSatisfied());
676   }
677 
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)678   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
679     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
680   }
681 
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)682   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
683     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
684   }
685 
VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr * E)686   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
687     // C++ [expr.pseudo]p1:
688     //   The result shall only be used as the operand for the function call
689     //   operator (), and the result of such a call has type void. The only
690     //   effect is the evaluation of the postfix-expression before the dot or
691     //   arrow.
692     CGF.EmitScalarExpr(E->getBase());
693     return nullptr;
694   }
695 
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)696   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
697     return EmitNullValue(E->getType());
698   }
699 
VisitCXXThrowExpr(const CXXThrowExpr * E)700   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
701     CGF.EmitCXXThrowExpr(E);
702     return nullptr;
703   }
704 
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)705   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
706     return Builder.getInt1(E->getValue());
707   }
708 
709   // Binary Operators.
EmitMul(const BinOpInfo & Ops)710   Value *EmitMul(const BinOpInfo &Ops) {
711     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
712       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
713       case LangOptions::SOB_Defined:
714         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
715       case LangOptions::SOB_Undefined:
716         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
717           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
718         LLVM_FALLTHROUGH;
719       case LangOptions::SOB_Trapping:
720         if (CanElideOverflowCheck(CGF.getContext(), Ops))
721           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
722         return EmitOverflowCheckedBinOp(Ops);
723       }
724     }
725 
726     if (Ops.Ty->isConstantMatrixType()) {
727       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
728       // We need to check the types of the operands of the operator to get the
729       // correct matrix dimensions.
730       auto *BO = cast<BinaryOperator>(Ops.E);
731       auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
732           BO->getLHS()->getType().getCanonicalType());
733       auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
734           BO->getRHS()->getType().getCanonicalType());
735       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
736       if (LHSMatTy && RHSMatTy)
737         return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
738                                        LHSMatTy->getNumColumns(),
739                                        RHSMatTy->getNumColumns());
740       return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
741     }
742 
743     if (Ops.Ty->isUnsignedIntegerType() &&
744         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
745         !CanElideOverflowCheck(CGF.getContext(), Ops))
746       return EmitOverflowCheckedBinOp(Ops);
747 
748     if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
749       //  Preserve the old values
750       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
751       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
752     }
753     if (Ops.isFixedPointOp())
754       return EmitFixedPointBinOp(Ops);
755     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
756   }
757   /// Create a binary op that checks for overflow.
758   /// Currently only supports +, - and *.
759   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
760 
761   // Check for undefined division and modulus behaviors.
762   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
763                                                   llvm::Value *Zero,bool isDiv);
764   // Common helper for getting how wide LHS of shift is.
765   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
766 
767   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
768   // non powers of two.
769   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
770 
771   Value *EmitDiv(const BinOpInfo &Ops);
772   Value *EmitRem(const BinOpInfo &Ops);
773   Value *EmitAdd(const BinOpInfo &Ops);
774   Value *EmitSub(const BinOpInfo &Ops);
775   Value *EmitShl(const BinOpInfo &Ops);
776   Value *EmitShr(const BinOpInfo &Ops);
EmitAnd(const BinOpInfo & Ops)777   Value *EmitAnd(const BinOpInfo &Ops) {
778     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
779   }
EmitXor(const BinOpInfo & Ops)780   Value *EmitXor(const BinOpInfo &Ops) {
781     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
782   }
EmitOr(const BinOpInfo & Ops)783   Value *EmitOr (const BinOpInfo &Ops) {
784     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
785   }
786 
787   // Helper functions for fixed point binary operations.
788   Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
789 
790   BinOpInfo EmitBinOps(const BinaryOperator *E);
791   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
792                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
793                                   Value *&Result);
794 
795   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
796                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
797 
798   // Binary operators and binary compound assignment operators.
799 #define HANDLEBINOP(OP) \
800   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
801     return Emit ## OP(EmitBinOps(E));                                      \
802   }                                                                        \
803   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
804     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
805   }
806   HANDLEBINOP(Mul)
807   HANDLEBINOP(Div)
808   HANDLEBINOP(Rem)
809   HANDLEBINOP(Add)
810   HANDLEBINOP(Sub)
811   HANDLEBINOP(Shl)
812   HANDLEBINOP(Shr)
813   HANDLEBINOP(And)
814   HANDLEBINOP(Xor)
815   HANDLEBINOP(Or)
816 #undef HANDLEBINOP
817 
818   // Comparisons.
819   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
820                      llvm::CmpInst::Predicate SICmpOpc,
821                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
822 #define VISITCOMP(CODE, UI, SI, FP, SIG) \
823     Value *VisitBin##CODE(const BinaryOperator *E) { \
824       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
825                          llvm::FCmpInst::FP, SIG); }
826   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
827   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
828   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
829   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
830   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
831   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
832 #undef VISITCOMP
833 
834   Value *VisitBinAssign     (const BinaryOperator *E);
835 
836   Value *VisitBinLAnd       (const BinaryOperator *E);
837   Value *VisitBinLOr        (const BinaryOperator *E);
838   Value *VisitBinComma      (const BinaryOperator *E);
839 
VisitBinPtrMemD(const Expr * E)840   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
VisitBinPtrMemI(const Expr * E)841   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
842 
VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator * E)843   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
844     return Visit(E->getSemanticForm());
845   }
846 
847   // Other Operators.
848   Value *VisitBlockExpr(const BlockExpr *BE);
849   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
850   Value *VisitChooseExpr(ChooseExpr *CE);
851   Value *VisitVAArgExpr(VAArgExpr *VE);
VisitObjCStringLiteral(const ObjCStringLiteral * E)852   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
853     return CGF.EmitObjCStringLiteral(E);
854   }
VisitObjCBoxedExpr(ObjCBoxedExpr * E)855   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
856     return CGF.EmitObjCBoxedExpr(E);
857   }
VisitObjCArrayLiteral(ObjCArrayLiteral * E)858   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
859     return CGF.EmitObjCArrayLiteral(E);
860   }
VisitObjCDictionaryLiteral(ObjCDictionaryLiteral * E)861   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
862     return CGF.EmitObjCDictionaryLiteral(E);
863   }
864   Value *VisitAsTypeExpr(AsTypeExpr *CE);
865   Value *VisitAtomicExpr(AtomicExpr *AE);
866 };
867 }  // end anonymous namespace.
868 
869 //===----------------------------------------------------------------------===//
870 //                                Utilities
871 //===----------------------------------------------------------------------===//
872 
873 /// EmitConversionToBool - Convert the specified expression value to a
874 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
EmitConversionToBool(Value * Src,QualType SrcType)875 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
876   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
877 
878   if (SrcType->isRealFloatingType())
879     return EmitFloatToBoolConversion(Src);
880 
881   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
882     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
883 
884   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
885          "Unknown scalar type to convert");
886 
887   if (isa<llvm::IntegerType>(Src->getType()))
888     return EmitIntToBoolConversion(Src);
889 
890   assert(isa<llvm::PointerType>(Src->getType()));
891   return EmitPointerToBoolConversion(Src, SrcType);
892 }
893 
EmitFloatConversionCheck(Value * OrigSrc,QualType OrigSrcType,Value * Src,QualType SrcType,QualType DstType,llvm::Type * DstTy,SourceLocation Loc)894 void ScalarExprEmitter::EmitFloatConversionCheck(
895     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
896     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
897   assert(SrcType->isFloatingType() && "not a conversion from floating point");
898   if (!isa<llvm::IntegerType>(DstTy))
899     return;
900 
901   CodeGenFunction::SanitizerScope SanScope(&CGF);
902   using llvm::APFloat;
903   using llvm::APSInt;
904 
905   llvm::Value *Check = nullptr;
906   const llvm::fltSemantics &SrcSema =
907     CGF.getContext().getFloatTypeSemantics(OrigSrcType);
908 
909   // Floating-point to integer. This has undefined behavior if the source is
910   // +-Inf, NaN, or doesn't fit into the destination type (after truncation
911   // to an integer).
912   unsigned Width = CGF.getContext().getIntWidth(DstType);
913   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
914 
915   APSInt Min = APSInt::getMinValue(Width, Unsigned);
916   APFloat MinSrc(SrcSema, APFloat::uninitialized);
917   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
918       APFloat::opOverflow)
919     // Don't need an overflow check for lower bound. Just check for
920     // -Inf/NaN.
921     MinSrc = APFloat::getInf(SrcSema, true);
922   else
923     // Find the largest value which is too small to represent (before
924     // truncation toward zero).
925     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
926 
927   APSInt Max = APSInt::getMaxValue(Width, Unsigned);
928   APFloat MaxSrc(SrcSema, APFloat::uninitialized);
929   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
930       APFloat::opOverflow)
931     // Don't need an overflow check for upper bound. Just check for
932     // +Inf/NaN.
933     MaxSrc = APFloat::getInf(SrcSema, false);
934   else
935     // Find the smallest value which is too large to represent (before
936     // truncation toward zero).
937     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
938 
939   // If we're converting from __half, convert the range to float to match
940   // the type of src.
941   if (OrigSrcType->isHalfType()) {
942     const llvm::fltSemantics &Sema =
943       CGF.getContext().getFloatTypeSemantics(SrcType);
944     bool IsInexact;
945     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
946     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
947   }
948 
949   llvm::Value *GE =
950     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
951   llvm::Value *LE =
952     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
953   Check = Builder.CreateAnd(GE, LE);
954 
955   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
956                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
957                                   CGF.EmitCheckTypeDescriptor(DstType)};
958   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
959                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
960 }
961 
962 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
963 // Returns 'i1 false' when the truncation Src -> Dst was lossy.
964 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
965                  std::pair<llvm::Value *, SanitizerMask>>
EmitIntegerTruncationCheckHelper(Value * Src,QualType SrcType,Value * Dst,QualType DstType,CGBuilderTy & Builder)966 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
967                                  QualType DstType, CGBuilderTy &Builder) {
968   llvm::Type *SrcTy = Src->getType();
969   llvm::Type *DstTy = Dst->getType();
970   (void)DstTy; // Only used in assert()
971 
972   // This should be truncation of integral types.
973   assert(Src != Dst);
974   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
975   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
976          "non-integer llvm type");
977 
978   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
979   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
980 
981   // If both (src and dst) types are unsigned, then it's an unsigned truncation.
982   // Else, it is a signed truncation.
983   ScalarExprEmitter::ImplicitConversionCheckKind Kind;
984   SanitizerMask Mask;
985   if (!SrcSigned && !DstSigned) {
986     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
987     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
988   } else {
989     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
990     Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
991   }
992 
993   llvm::Value *Check = nullptr;
994   // 1. Extend the truncated value back to the same width as the Src.
995   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
996   // 2. Equality-compare with the original source value
997   Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
998   // If the comparison result is 'i1 false', then the truncation was lossy.
999   return std::make_pair(Kind, std::make_pair(Check, Mask));
1000 }
1001 
PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(QualType SrcType,QualType DstType)1002 static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
1003     QualType SrcType, QualType DstType) {
1004   return SrcType->isIntegerType() && DstType->isIntegerType();
1005 }
1006 
EmitIntegerTruncationCheck(Value * Src,QualType SrcType,Value * Dst,QualType DstType,SourceLocation Loc)1007 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1008                                                    Value *Dst, QualType DstType,
1009                                                    SourceLocation Loc) {
1010   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1011     return;
1012 
1013   // We only care about int->int conversions here.
1014   // We ignore conversions to/from pointer and/or bool.
1015   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1016                                                                        DstType))
1017     return;
1018 
1019   unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1020   unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1021   // This must be truncation. Else we do not care.
1022   if (SrcBits <= DstBits)
1023     return;
1024 
1025   assert(!DstType->isBooleanType() && "we should not get here with booleans.");
1026 
1027   // If the integer sign change sanitizer is enabled,
1028   // and we are truncating from larger unsigned type to smaller signed type,
1029   // let that next sanitizer deal with it.
1030   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1031   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1032   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1033       (!SrcSigned && DstSigned))
1034     return;
1035 
1036   CodeGenFunction::SanitizerScope SanScope(&CGF);
1037 
1038   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1039             std::pair<llvm::Value *, SanitizerMask>>
1040       Check =
1041           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1042   // If the comparison result is 'i1 false', then the truncation was lossy.
1043 
1044   // Do we care about this type of truncation?
1045   if (!CGF.SanOpts.has(Check.second.second))
1046     return;
1047 
1048   llvm::Constant *StaticArgs[] = {
1049       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1050       CGF.EmitCheckTypeDescriptor(DstType),
1051       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1052   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1053                 {Src, Dst});
1054 }
1055 
1056 // Should be called within CodeGenFunction::SanitizerScope RAII scope.
1057 // Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1058 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1059                  std::pair<llvm::Value *, SanitizerMask>>
EmitIntegerSignChangeCheckHelper(Value * Src,QualType SrcType,Value * Dst,QualType DstType,CGBuilderTy & Builder)1060 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1061                                  QualType DstType, CGBuilderTy &Builder) {
1062   llvm::Type *SrcTy = Src->getType();
1063   llvm::Type *DstTy = Dst->getType();
1064 
1065   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
1066          "non-integer llvm type");
1067 
1068   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1069   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1070   (void)SrcSigned; // Only used in assert()
1071   (void)DstSigned; // Only used in assert()
1072   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1073   unsigned DstBits = DstTy->getScalarSizeInBits();
1074   (void)SrcBits; // Only used in assert()
1075   (void)DstBits; // Only used in assert()
1076 
1077   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
1078          "either the widths should be different, or the signednesses.");
1079 
1080   // NOTE: zero value is considered to be non-negative.
1081   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1082                                        const char *Name) -> Value * {
1083     // Is this value a signed type?
1084     bool VSigned = VType->isSignedIntegerOrEnumerationType();
1085     llvm::Type *VTy = V->getType();
1086     if (!VSigned) {
1087       // If the value is unsigned, then it is never negative.
1088       // FIXME: can we encounter non-scalar VTy here?
1089       return llvm::ConstantInt::getFalse(VTy->getContext());
1090     }
1091     // Get the zero of the same type with which we will be comparing.
1092     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1093     // %V.isnegative = icmp slt %V, 0
1094     // I.e is %V *strictly* less than zero, does it have negative value?
1095     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1096                               llvm::Twine(Name) + "." + V->getName() +
1097                                   ".negativitycheck");
1098   };
1099 
1100   // 1. Was the old Value negative?
1101   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1102   // 2. Is the new Value negative?
1103   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1104   // 3. Now, was the 'negativity status' preserved during the conversion?
1105   //    NOTE: conversion from negative to zero is considered to change the sign.
1106   //    (We want to get 'false' when the conversion changed the sign)
1107   //    So we should just equality-compare the negativity statuses.
1108   llvm::Value *Check = nullptr;
1109   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1110   // If the comparison result is 'false', then the conversion changed the sign.
1111   return std::make_pair(
1112       ScalarExprEmitter::ICCK_IntegerSignChange,
1113       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1114 }
1115 
EmitIntegerSignChangeCheck(Value * Src,QualType SrcType,Value * Dst,QualType DstType,SourceLocation Loc)1116 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1117                                                    Value *Dst, QualType DstType,
1118                                                    SourceLocation Loc) {
1119   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1120     return;
1121 
1122   llvm::Type *SrcTy = Src->getType();
1123   llvm::Type *DstTy = Dst->getType();
1124 
1125   // We only care about int->int conversions here.
1126   // We ignore conversions to/from pointer and/or bool.
1127   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
1128                                                                        DstType))
1129     return;
1130 
1131   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1132   bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1133   unsigned SrcBits = SrcTy->getScalarSizeInBits();
1134   unsigned DstBits = DstTy->getScalarSizeInBits();
1135 
1136   // Now, we do not need to emit the check in *all* of the cases.
1137   // We can avoid emitting it in some obvious cases where it would have been
1138   // dropped by the opt passes (instcombine) always anyways.
1139   // If it's a cast between effectively the same type, no check.
1140   // NOTE: this is *not* equivalent to checking the canonical types.
1141   if (SrcSigned == DstSigned && SrcBits == DstBits)
1142     return;
1143   // At least one of the values needs to have signed type.
1144   // If both are unsigned, then obviously, neither of them can be negative.
1145   if (!SrcSigned && !DstSigned)
1146     return;
1147   // If the conversion is to *larger* *signed* type, then no check is needed.
1148   // Because either sign-extension happens (so the sign will remain),
1149   // or zero-extension will happen (the sign bit will be zero.)
1150   if ((DstBits > SrcBits) && DstSigned)
1151     return;
1152   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1153       (SrcBits > DstBits) && SrcSigned) {
1154     // If the signed integer truncation sanitizer is enabled,
1155     // and this is a truncation from signed type, then no check is needed.
1156     // Because here sign change check is interchangeable with truncation check.
1157     return;
1158   }
1159   // That's it. We can't rule out any more cases with the data we have.
1160 
1161   CodeGenFunction::SanitizerScope SanScope(&CGF);
1162 
1163   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1164             std::pair<llvm::Value *, SanitizerMask>>
1165       Check;
1166 
1167   // Each of these checks needs to return 'false' when an issue was detected.
1168   ImplicitConversionCheckKind CheckKind;
1169   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1170   // So we can 'and' all the checks together, and still get 'false',
1171   // if at least one of the checks detected an issue.
1172 
1173   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1174   CheckKind = Check.first;
1175   Checks.emplace_back(Check.second);
1176 
1177   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1178       (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1179     // If the signed integer truncation sanitizer was enabled,
1180     // and we are truncating from larger unsigned type to smaller signed type,
1181     // let's handle the case we skipped in that check.
1182     Check =
1183         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1184     CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1185     Checks.emplace_back(Check.second);
1186     // If the comparison result is 'i1 false', then the truncation was lossy.
1187   }
1188 
1189   llvm::Constant *StaticArgs[] = {
1190       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1191       CGF.EmitCheckTypeDescriptor(DstType),
1192       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1193   // EmitCheck() will 'and' all the checks together.
1194   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1195                 {Src, Dst});
1196 }
1197 
EmitScalarCast(Value * Src,QualType SrcType,QualType DstType,llvm::Type * SrcTy,llvm::Type * DstTy,ScalarConversionOpts Opts)1198 Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType,
1199                                          QualType DstType, llvm::Type *SrcTy,
1200                                          llvm::Type *DstTy,
1201                                          ScalarConversionOpts Opts) {
1202   // The Element types determine the type of cast to perform.
1203   llvm::Type *SrcElementTy;
1204   llvm::Type *DstElementTy;
1205   QualType SrcElementType;
1206   QualType DstElementType;
1207   if (SrcType->isMatrixType() && DstType->isMatrixType()) {
1208     SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1209     DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1210     SrcElementType = SrcType->castAs<MatrixType>()->getElementType();
1211     DstElementType = DstType->castAs<MatrixType>()->getElementType();
1212   } else {
1213     assert(!SrcType->isMatrixType() && !DstType->isMatrixType() &&
1214            "cannot cast between matrix and non-matrix types");
1215     SrcElementTy = SrcTy;
1216     DstElementTy = DstTy;
1217     SrcElementType = SrcType;
1218     DstElementType = DstType;
1219   }
1220 
1221   if (isa<llvm::IntegerType>(SrcElementTy)) {
1222     bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType();
1223     if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1224       InputSigned = true;
1225     }
1226 
1227     if (isa<llvm::IntegerType>(DstElementTy))
1228       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1229     if (InputSigned)
1230       return Builder.CreateSIToFP(Src, DstTy, "conv");
1231     return Builder.CreateUIToFP(Src, DstTy, "conv");
1232   }
1233 
1234   if (isa<llvm::IntegerType>(DstElementTy)) {
1235     assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion");
1236     if (DstElementType->isSignedIntegerOrEnumerationType())
1237       return Builder.CreateFPToSI(Src, DstTy, "conv");
1238     return Builder.CreateFPToUI(Src, DstTy, "conv");
1239   }
1240 
1241   if (DstElementTy->getTypeID() < SrcElementTy->getTypeID())
1242     return Builder.CreateFPTrunc(Src, DstTy, "conv");
1243   return Builder.CreateFPExt(Src, DstTy, "conv");
1244 }
1245 
1246 /// Emit a conversion from the specified type to the specified destination type,
1247 /// both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcType,QualType DstType,SourceLocation Loc,ScalarConversionOpts Opts)1248 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1249                                                QualType DstType,
1250                                                SourceLocation Loc,
1251                                                ScalarConversionOpts Opts) {
1252   // All conversions involving fixed point types should be handled by the
1253   // EmitFixedPoint family functions. This is done to prevent bloating up this
1254   // function more, and although fixed point numbers are represented by
1255   // integers, we do not want to follow any logic that assumes they should be
1256   // treated as integers.
1257   // TODO(leonardchan): When necessary, add another if statement checking for
1258   // conversions to fixed point types from other types.
1259   if (SrcType->isFixedPointType()) {
1260     if (DstType->isBooleanType())
1261       // It is important that we check this before checking if the dest type is
1262       // an integer because booleans are technically integer types.
1263       // We do not need to check the padding bit on unsigned types if unsigned
1264       // padding is enabled because overflow into this bit is undefined
1265       // behavior.
1266       return Builder.CreateIsNotNull(Src, "tobool");
1267     if (DstType->isFixedPointType() || DstType->isIntegerType() ||
1268         DstType->isRealFloatingType())
1269       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1270 
1271     llvm_unreachable(
1272         "Unhandled scalar conversion from a fixed point type to another type.");
1273   } else if (DstType->isFixedPointType()) {
1274     if (SrcType->isIntegerType() || SrcType->isRealFloatingType())
1275       // This also includes converting booleans and enums to fixed point types.
1276       return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1277 
1278     llvm_unreachable(
1279         "Unhandled scalar conversion to a fixed point type from another type.");
1280   }
1281 
1282   QualType NoncanonicalSrcType = SrcType;
1283   QualType NoncanonicalDstType = DstType;
1284 
1285   SrcType = CGF.getContext().getCanonicalType(SrcType);
1286   DstType = CGF.getContext().getCanonicalType(DstType);
1287   if (SrcType == DstType) return Src;
1288 
1289   if (DstType->isVoidType()) return nullptr;
1290 
1291   llvm::Value *OrigSrc = Src;
1292   QualType OrigSrcType = SrcType;
1293   llvm::Type *SrcTy = Src->getType();
1294 
1295   // Handle conversions to bool first, they are special: comparisons against 0.
1296   if (DstType->isBooleanType())
1297     return EmitConversionToBool(Src, SrcType);
1298 
1299   llvm::Type *DstTy = ConvertType(DstType);
1300 
1301   // Cast from half through float if half isn't a native type.
1302   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1303     // Cast to FP using the intrinsic if the half type itself isn't supported.
1304     if (DstTy->isFloatingPointTy()) {
1305       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1306         return Builder.CreateCall(
1307             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1308             Src);
1309     } else {
1310       // Cast to other types through float, using either the intrinsic or FPExt,
1311       // depending on whether the half type itself is supported
1312       // (as opposed to operations on half, available with NativeHalfType).
1313       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1314         Src = Builder.CreateCall(
1315             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1316                                  CGF.CGM.FloatTy),
1317             Src);
1318       } else {
1319         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1320       }
1321       SrcType = CGF.getContext().FloatTy;
1322       SrcTy = CGF.FloatTy;
1323     }
1324   }
1325 
1326   // Ignore conversions like int -> uint.
1327   if (SrcTy == DstTy) {
1328     if (Opts.EmitImplicitIntegerSignChangeChecks)
1329       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1330                                  NoncanonicalDstType, Loc);
1331 
1332     return Src;
1333   }
1334 
1335   // Handle pointer conversions next: pointers can only be converted to/from
1336   // other pointers and integers. Check for pointer types in terms of LLVM, as
1337   // some native types (like Obj-C id) may map to a pointer type.
1338   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1339     // The source value may be an integer, or a pointer.
1340     if (isa<llvm::PointerType>(SrcTy))
1341       return Builder.CreateBitCast(Src, DstTy, "conv");
1342 
1343     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
1344     // First, convert to the correct width so that we control the kind of
1345     // extension.
1346     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1347     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1348     llvm::Value* IntResult =
1349         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1350     // Then, cast to pointer.
1351     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1352   }
1353 
1354   if (isa<llvm::PointerType>(SrcTy)) {
1355     // Must be an ptr to int cast.
1356     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1357     return Builder.CreatePtrToInt(Src, DstTy, "conv");
1358   }
1359 
1360   // A scalar can be splatted to an extended vector of the same element type
1361   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1362     // Sema should add casts to make sure that the source expression's type is
1363     // the same as the vector's element type (sans qualifiers)
1364     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1365                SrcType.getTypePtr() &&
1366            "Splatted expr doesn't match with vector element type?");
1367 
1368     // Splat the element across to all elements
1369     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
1370     return Builder.CreateVectorSplat(NumElements, Src, "splat");
1371   }
1372 
1373   if (SrcType->isMatrixType() && DstType->isMatrixType())
1374     return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1375 
1376   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1377     // Allow bitcast from vector to integer/fp of the same size.
1378     unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1379     unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1380     if (SrcSize == DstSize)
1381       return Builder.CreateBitCast(Src, DstTy, "conv");
1382 
1383     // Conversions between vectors of different sizes are not allowed except
1384     // when vectors of half are involved. Operations on storage-only half
1385     // vectors require promoting half vector operands to float vectors and
1386     // truncating the result, which is either an int or float vector, to a
1387     // short or half vector.
1388 
1389     // Source and destination are both expected to be vectors.
1390     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
1391     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
1392     (void)DstElementTy;
1393 
1394     assert(((SrcElementTy->isIntegerTy() &&
1395              DstElementTy->isIntegerTy()) ||
1396             (SrcElementTy->isFloatingPointTy() &&
1397              DstElementTy->isFloatingPointTy())) &&
1398            "unexpected conversion between a floating-point vector and an "
1399            "integer vector");
1400 
1401     // Truncate an i32 vector to an i16 vector.
1402     if (SrcElementTy->isIntegerTy())
1403       return Builder.CreateIntCast(Src, DstTy, false, "conv");
1404 
1405     // Truncate a float vector to a half vector.
1406     if (SrcSize > DstSize)
1407       return Builder.CreateFPTrunc(Src, DstTy, "conv");
1408 
1409     // Promote a half vector to a float vector.
1410     return Builder.CreateFPExt(Src, DstTy, "conv");
1411   }
1412 
1413   // Finally, we have the arithmetic types: real int/float.
1414   Value *Res = nullptr;
1415   llvm::Type *ResTy = DstTy;
1416 
1417   // An overflowing conversion has undefined behavior if either the source type
1418   // or the destination type is a floating-point type. However, we consider the
1419   // range of representable values for all floating-point types to be
1420   // [-inf,+inf], so no overflow can ever happen when the destination type is a
1421   // floating-point type.
1422   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1423       OrigSrcType->isFloatingType())
1424     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1425                              Loc);
1426 
1427   // Cast to half through float if half isn't a native type.
1428   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1429     // Make sure we cast in a single step if from another FP type.
1430     if (SrcTy->isFloatingPointTy()) {
1431       // Use the intrinsic if the half type itself isn't supported
1432       // (as opposed to operations on half, available with NativeHalfType).
1433       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1434         return Builder.CreateCall(
1435             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1436       // If the half type is supported, just use an fptrunc.
1437       return Builder.CreateFPTrunc(Src, DstTy);
1438     }
1439     DstTy = CGF.FloatTy;
1440   }
1441 
1442   Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts);
1443 
1444   if (DstTy != ResTy) {
1445     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1446       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1447       Res = Builder.CreateCall(
1448         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1449         Res);
1450     } else {
1451       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1452     }
1453   }
1454 
1455   if (Opts.EmitImplicitIntegerTruncationChecks)
1456     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1457                                NoncanonicalDstType, Loc);
1458 
1459   if (Opts.EmitImplicitIntegerSignChangeChecks)
1460     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1461                                NoncanonicalDstType, Loc);
1462 
1463   return Res;
1464 }
1465 
EmitFixedPointConversion(Value * Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)1466 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1467                                                    QualType DstTy,
1468                                                    SourceLocation Loc) {
1469   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
1470   llvm::Value *Result;
1471   if (SrcTy->isRealFloatingType())
1472     Result = FPBuilder.CreateFloatingToFixed(Src,
1473         CGF.getContext().getFixedPointSemantics(DstTy));
1474   else if (DstTy->isRealFloatingType())
1475     Result = FPBuilder.CreateFixedToFloating(Src,
1476         CGF.getContext().getFixedPointSemantics(SrcTy),
1477         ConvertType(DstTy));
1478   else {
1479     auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
1480     auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
1481 
1482     if (DstTy->isIntegerType())
1483       Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
1484                                               DstFPSema.getWidth(),
1485                                               DstFPSema.isSigned());
1486     else if (SrcTy->isIntegerType())
1487       Result =  FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
1488                                                DstFPSema);
1489     else
1490       Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
1491   }
1492   return Result;
1493 }
1494 
1495 /// Emit a conversion from the specified complex type to the specified
1496 /// destination type, where the destination type is an LLVM scalar type.
EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)1497 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1498     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1499     SourceLocation Loc) {
1500   // Get the source element type.
1501   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1502 
1503   // Handle conversions to bool first, they are special: comparisons against 0.
1504   if (DstTy->isBooleanType()) {
1505     //  Complex != 0  -> (Real != 0) | (Imag != 0)
1506     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1507     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1508     return Builder.CreateOr(Src.first, Src.second, "tobool");
1509   }
1510 
1511   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1512   // the imaginary part of the complex value is discarded and the value of the
1513   // real part is converted according to the conversion rules for the
1514   // corresponding real type.
1515   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1516 }
1517 
EmitNullValue(QualType Ty)1518 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1519   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1520 }
1521 
1522 /// Emit a sanitization check for the given "binary" operation (which
1523 /// might actually be a unary increment which has been lowered to a binary
1524 /// operation). The check passes if all values in \p Checks (which are \c i1),
1525 /// are \c true.
EmitBinOpCheck(ArrayRef<std::pair<Value *,SanitizerMask>> Checks,const BinOpInfo & Info)1526 void ScalarExprEmitter::EmitBinOpCheck(
1527     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1528   assert(CGF.IsSanitizerScope);
1529   SanitizerHandler Check;
1530   SmallVector<llvm::Constant *, 4> StaticData;
1531   SmallVector<llvm::Value *, 2> DynamicData;
1532 
1533   BinaryOperatorKind Opcode = Info.Opcode;
1534   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1535     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1536 
1537   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1538   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1539   if (UO && UO->getOpcode() == UO_Minus) {
1540     Check = SanitizerHandler::NegateOverflow;
1541     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1542     DynamicData.push_back(Info.RHS);
1543   } else {
1544     if (BinaryOperator::isShiftOp(Opcode)) {
1545       // Shift LHS negative or too large, or RHS out of bounds.
1546       Check = SanitizerHandler::ShiftOutOfBounds;
1547       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1548       StaticData.push_back(
1549         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1550       StaticData.push_back(
1551         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1552     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1553       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1554       Check = SanitizerHandler::DivremOverflow;
1555       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1556     } else {
1557       // Arithmetic overflow (+, -, *).
1558       switch (Opcode) {
1559       case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1560       case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1561       case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1562       default: llvm_unreachable("unexpected opcode for bin op check");
1563       }
1564       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1565     }
1566     DynamicData.push_back(Info.LHS);
1567     DynamicData.push_back(Info.RHS);
1568   }
1569 
1570   CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1571 }
1572 
1573 //===----------------------------------------------------------------------===//
1574 //                            Visitor Methods
1575 //===----------------------------------------------------------------------===//
1576 
VisitExpr(Expr * E)1577 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1578   CGF.ErrorUnsupported(E, "scalar expression");
1579   if (E->getType()->isVoidType())
1580     return nullptr;
1581   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1582 }
1583 
VisitShuffleVectorExpr(ShuffleVectorExpr * E)1584 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1585   // Vector Mask Case
1586   if (E->getNumSubExprs() == 2) {
1587     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1588     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1589     Value *Mask;
1590 
1591     auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
1592     unsigned LHSElts = LTy->getNumElements();
1593 
1594     Mask = RHS;
1595 
1596     auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());
1597 
1598     // Mask off the high bits of each shuffle index.
1599     Value *MaskBits =
1600         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1601     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1602 
1603     // newv = undef
1604     // mask = mask & maskbits
1605     // for each elt
1606     //   n = extract mask i
1607     //   x = extract val n
1608     //   newv = insert newv, x, i
1609     auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
1610                                            MTy->getNumElements());
1611     Value* NewV = llvm::UndefValue::get(RTy);
1612     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1613       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1614       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1615 
1616       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1617       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1618     }
1619     return NewV;
1620   }
1621 
1622   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1623   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1624 
1625   SmallVector<int, 32> Indices;
1626   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1627     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1628     // Check for -1 and output it as undef in the IR.
1629     if (Idx.isSigned() && Idx.isAllOnesValue())
1630       Indices.push_back(-1);
1631     else
1632       Indices.push_back(Idx.getZExtValue());
1633   }
1634 
1635   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
1636 }
1637 
VisitConvertVectorExpr(ConvertVectorExpr * E)1638 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1639   QualType SrcType = E->getSrcExpr()->getType(),
1640            DstType = E->getType();
1641 
1642   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1643 
1644   SrcType = CGF.getContext().getCanonicalType(SrcType);
1645   DstType = CGF.getContext().getCanonicalType(DstType);
1646   if (SrcType == DstType) return Src;
1647 
1648   assert(SrcType->isVectorType() &&
1649          "ConvertVector source type must be a vector");
1650   assert(DstType->isVectorType() &&
1651          "ConvertVector destination type must be a vector");
1652 
1653   llvm::Type *SrcTy = Src->getType();
1654   llvm::Type *DstTy = ConvertType(DstType);
1655 
1656   // Ignore conversions like int -> uint.
1657   if (SrcTy == DstTy)
1658     return Src;
1659 
1660   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1661            DstEltType = DstType->castAs<VectorType>()->getElementType();
1662 
1663   assert(SrcTy->isVectorTy() &&
1664          "ConvertVector source IR type must be a vector");
1665   assert(DstTy->isVectorTy() &&
1666          "ConvertVector destination IR type must be a vector");
1667 
1668   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
1669              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
1670 
1671   if (DstEltType->isBooleanType()) {
1672     assert((SrcEltTy->isFloatingPointTy() ||
1673             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1674 
1675     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1676     if (SrcEltTy->isFloatingPointTy()) {
1677       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1678     } else {
1679       return Builder.CreateICmpNE(Src, Zero, "tobool");
1680     }
1681   }
1682 
1683   // We have the arithmetic types: real int/float.
1684   Value *Res = nullptr;
1685 
1686   if (isa<llvm::IntegerType>(SrcEltTy)) {
1687     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1688     if (isa<llvm::IntegerType>(DstEltTy))
1689       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1690     else if (InputSigned)
1691       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1692     else
1693       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1694   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1695     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1696     if (DstEltType->isSignedIntegerOrEnumerationType())
1697       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1698     else
1699       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1700   } else {
1701     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1702            "Unknown real conversion");
1703     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1704       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1705     else
1706       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1707   }
1708 
1709   return Res;
1710 }
1711 
VisitMemberExpr(MemberExpr * E)1712 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1713   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1714     CGF.EmitIgnoredExpr(E->getBase());
1715     return CGF.emitScalarConstant(Constant, E);
1716   } else {
1717     Expr::EvalResult Result;
1718     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1719       llvm::APSInt Value = Result.Val.getInt();
1720       CGF.EmitIgnoredExpr(E->getBase());
1721       return Builder.getInt(Value);
1722     }
1723   }
1724 
1725   return EmitLoadOfLValue(E);
1726 }
1727 
VisitArraySubscriptExpr(ArraySubscriptExpr * E)1728 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1729   TestAndClearIgnoreResultAssign();
1730 
1731   // Emit subscript expressions in rvalue context's.  For most cases, this just
1732   // loads the lvalue formed by the subscript expr.  However, we have to be
1733   // careful, because the base of a vector subscript is occasionally an rvalue,
1734   // so we can't get it as an lvalue.
1735   if (!E->getBase()->getType()->isVectorType())
1736     return EmitLoadOfLValue(E);
1737 
1738   // Handle the vector case.  The base must be a vector, the index must be an
1739   // integer value.
1740   Value *Base = Visit(E->getBase());
1741   Value *Idx  = Visit(E->getIdx());
1742   QualType IdxTy = E->getIdx()->getType();
1743 
1744   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1745     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1746 
1747   return Builder.CreateExtractElement(Base, Idx, "vecext");
1748 }
1749 
VisitMatrixSubscriptExpr(MatrixSubscriptExpr * E)1750 Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
1751   TestAndClearIgnoreResultAssign();
1752 
1753   // Handle the vector case.  The base must be a vector, the index must be an
1754   // integer value.
1755   Value *RowIdx = Visit(E->getRowIdx());
1756   Value *ColumnIdx = Visit(E->getColumnIdx());
1757   Value *Matrix = Visit(E->getBase());
1758 
1759   // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
1760   llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
1761   return MB.CreateExtractElement(
1762       Matrix, RowIdx, ColumnIdx,
1763       E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
1764 }
1765 
getMaskElt(llvm::ShuffleVectorInst * SVI,unsigned Idx,unsigned Off)1766 static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1767                       unsigned Off) {
1768   int MV = SVI->getMaskValue(Idx);
1769   if (MV == -1)
1770     return -1;
1771   return Off + MV;
1772 }
1773 
getAsInt32(llvm::ConstantInt * C,llvm::Type * I32Ty)1774 static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1775   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
1776          "Index operand too large for shufflevector mask!");
1777   return C->getZExtValue();
1778 }
1779 
VisitInitListExpr(InitListExpr * E)1780 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1781   bool Ignore = TestAndClearIgnoreResultAssign();
1782   (void)Ignore;
1783   assert (Ignore == false && "init list ignored");
1784   unsigned NumInitElements = E->getNumInits();
1785 
1786   if (E->hadArrayRangeDesignator())
1787     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1788 
1789   llvm::VectorType *VType =
1790     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1791 
1792   if (!VType) {
1793     if (NumInitElements == 0) {
1794       // C++11 value-initialization for the scalar.
1795       return EmitNullValue(E->getType());
1796     }
1797     // We have a scalar in braces. Just use the first element.
1798     return Visit(E->getInit(0));
1799   }
1800 
1801   unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();
1802 
1803   // Loop over initializers collecting the Value for each, and remembering
1804   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1805   // us to fold the shuffle for the swizzle into the shuffle for the vector
1806   // initializer, since LLVM optimizers generally do not want to touch
1807   // shuffles.
1808   unsigned CurIdx = 0;
1809   bool VIsUndefShuffle = false;
1810   llvm::Value *V = llvm::UndefValue::get(VType);
1811   for (unsigned i = 0; i != NumInitElements; ++i) {
1812     Expr *IE = E->getInit(i);
1813     Value *Init = Visit(IE);
1814     SmallVector<int, 16> Args;
1815 
1816     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1817 
1818     // Handle scalar elements.  If the scalar initializer is actually one
1819     // element of a different vector of the same width, use shuffle instead of
1820     // extract+insert.
1821     if (!VVT) {
1822       if (isa<ExtVectorElementExpr>(IE)) {
1823         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1824 
1825         if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
1826                 ->getNumElements() == ResElts) {
1827           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1828           Value *LHS = nullptr, *RHS = nullptr;
1829           if (CurIdx == 0) {
1830             // insert into undef -> shuffle (src, undef)
1831             // shufflemask must use an i32
1832             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1833             Args.resize(ResElts, -1);
1834 
1835             LHS = EI->getVectorOperand();
1836             RHS = V;
1837             VIsUndefShuffle = true;
1838           } else if (VIsUndefShuffle) {
1839             // insert into undefshuffle && size match -> shuffle (v, src)
1840             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1841             for (unsigned j = 0; j != CurIdx; ++j)
1842               Args.push_back(getMaskElt(SVV, j, 0));
1843             Args.push_back(ResElts + C->getZExtValue());
1844             Args.resize(ResElts, -1);
1845 
1846             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1847             RHS = EI->getVectorOperand();
1848             VIsUndefShuffle = false;
1849           }
1850           if (!Args.empty()) {
1851             V = Builder.CreateShuffleVector(LHS, RHS, Args);
1852             ++CurIdx;
1853             continue;
1854           }
1855         }
1856       }
1857       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1858                                       "vecinit");
1859       VIsUndefShuffle = false;
1860       ++CurIdx;
1861       continue;
1862     }
1863 
1864     unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();
1865 
1866     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1867     // input is the same width as the vector being constructed, generate an
1868     // optimized shuffle of the swizzle input into the result.
1869     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1870     if (isa<ExtVectorElementExpr>(IE)) {
1871       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1872       Value *SVOp = SVI->getOperand(0);
1873       auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());
1874 
1875       if (OpTy->getNumElements() == ResElts) {
1876         for (unsigned j = 0; j != CurIdx; ++j) {
1877           // If the current vector initializer is a shuffle with undef, merge
1878           // this shuffle directly into it.
1879           if (VIsUndefShuffle) {
1880             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
1881           } else {
1882             Args.push_back(j);
1883           }
1884         }
1885         for (unsigned j = 0, je = InitElts; j != je; ++j)
1886           Args.push_back(getMaskElt(SVI, j, Offset));
1887         Args.resize(ResElts, -1);
1888 
1889         if (VIsUndefShuffle)
1890           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1891 
1892         Init = SVOp;
1893       }
1894     }
1895 
1896     // Extend init to result vector length, and then shuffle its contribution
1897     // to the vector initializer into V.
1898     if (Args.empty()) {
1899       for (unsigned j = 0; j != InitElts; ++j)
1900         Args.push_back(j);
1901       Args.resize(ResElts, -1);
1902       Init = Builder.CreateShuffleVector(Init, Args, "vext");
1903 
1904       Args.clear();
1905       for (unsigned j = 0; j != CurIdx; ++j)
1906         Args.push_back(j);
1907       for (unsigned j = 0; j != InitElts; ++j)
1908         Args.push_back(j + Offset);
1909       Args.resize(ResElts, -1);
1910     }
1911 
1912     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1913     // merging subsequent shuffles into this one.
1914     if (CurIdx == 0)
1915       std::swap(V, Init);
1916     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
1917     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1918     CurIdx += InitElts;
1919   }
1920 
1921   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1922   // Emit remaining default initializers.
1923   llvm::Type *EltTy = VType->getElementType();
1924 
1925   // Emit remaining default initializers
1926   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1927     Value *Idx = Builder.getInt32(CurIdx);
1928     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1929     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1930   }
1931   return V;
1932 }
1933 
ShouldNullCheckClassCastValue(const CastExpr * CE)1934 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1935   const Expr *E = CE->getSubExpr();
1936 
1937   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1938     return false;
1939 
1940   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1941     // We always assume that 'this' is never null.
1942     return false;
1943   }
1944 
1945   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1946     // And that glvalue casts are never null.
1947     if (ICE->getValueKind() != VK_RValue)
1948       return false;
1949   }
1950 
1951   return true;
1952 }
1953 
1954 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1955 // have to handle a more broad range of conversions than explicit casts, as they
1956 // handle things like function to ptr-to-function decay etc.
VisitCastExpr(CastExpr * CE)1957 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1958   Expr *E = CE->getSubExpr();
1959   QualType DestTy = CE->getType();
1960   CastKind Kind = CE->getCastKind();
1961 
1962   // These cases are generally not written to ignore the result of
1963   // evaluating their sub-expressions, so we clear this now.
1964   bool Ignored = TestAndClearIgnoreResultAssign();
1965 
1966   // Since almost all cast kinds apply to scalars, this switch doesn't have
1967   // a default case, so the compiler will warn on a missing case.  The cases
1968   // are in the same order as in the CastKind enum.
1969   switch (Kind) {
1970   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1971   case CK_BuiltinFnToFnPtr:
1972     llvm_unreachable("builtin functions are handled elsewhere");
1973 
1974   case CK_LValueBitCast:
1975   case CK_ObjCObjectLValueCast: {
1976     Address Addr = EmitLValue(E).getAddress(CGF);
1977     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1978     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1979     return EmitLoadOfLValue(LV, CE->getExprLoc());
1980   }
1981 
1982   case CK_LValueToRValueBitCast: {
1983     LValue SourceLVal = CGF.EmitLValue(E);
1984     Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
1985                                                 CGF.ConvertTypeForMem(DestTy));
1986     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
1987     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
1988     return EmitLoadOfLValue(DestLV, CE->getExprLoc());
1989   }
1990 
1991   case CK_CPointerToObjCPointerCast:
1992   case CK_BlockPointerToObjCPointerCast:
1993   case CK_AnyPointerToBlockPointerCast:
1994   case CK_BitCast: {
1995     Value *Src = Visit(const_cast<Expr*>(E));
1996     llvm::Type *SrcTy = Src->getType();
1997     llvm::Type *DstTy = ConvertType(DestTy);
1998     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1999         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2000       llvm_unreachable("wrong cast for pointers in different address spaces"
2001                        "(must be an address space cast)!");
2002     }
2003 
2004     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2005       if (auto PT = DestTy->getAs<PointerType>())
2006         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
2007                                       /*MayBeNull=*/true,
2008                                       CodeGenFunction::CFITCK_UnrelatedCast,
2009                                       CE->getBeginLoc());
2010     }
2011 
2012     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2013       const QualType SrcType = E->getType();
2014 
2015       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2016         // Casting to pointer that could carry dynamic information (provided by
2017         // invariant.group) requires launder.
2018         Src = Builder.CreateLaunderInvariantGroup(Src);
2019       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2020         // Casting to pointer that does not carry dynamic information (provided
2021         // by invariant.group) requires stripping it.  Note that we don't do it
2022         // if the source could not be dynamic type and destination could be
2023         // dynamic because dynamic information is already laundered.  It is
2024         // because launder(strip(src)) == launder(src), so there is no need to
2025         // add extra strip before launder.
2026         Src = Builder.CreateStripInvariantGroup(Src);
2027       }
2028     }
2029 
2030     // Update heapallocsite metadata when there is an explicit pointer cast.
2031     if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
2032       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
2033         QualType PointeeType = DestTy->getPointeeType();
2034         if (!PointeeType.isNull())
2035           CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
2036                                                        CE->getExprLoc());
2037       }
2038     }
2039 
2040     // If Src is a fixed vector and Dst is a scalable vector, and both have the
2041     // same element type, use the llvm.experimental.vector.insert intrinsic to
2042     // perform the bitcast.
2043     if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
2044       if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) {
2045         if (FixedSrc->getElementType() == ScalableDst->getElementType()) {
2046           llvm::Value *UndefVec = llvm::UndefValue::get(DstTy);
2047           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2048           return Builder.CreateInsertVector(DstTy, UndefVec, Src, Zero,
2049                                             "castScalableSve");
2050         }
2051       }
2052     }
2053 
2054     // If Src is a scalable vector and Dst is a fixed vector, and both have the
2055     // same element type, use the llvm.experimental.vector.extract intrinsic to
2056     // perform the bitcast.
2057     if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) {
2058       if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) {
2059         if (ScalableSrc->getElementType() == FixedDst->getElementType()) {
2060           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
2061           return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve");
2062         }
2063       }
2064     }
2065 
2066     // Perform VLAT <-> VLST bitcast through memory.
2067     // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics
2068     //       require the element types of the vectors to be the same, we
2069     //       need to keep this around for casting between predicates, or more
2070     //       generally for bitcasts between VLAT <-> VLST where the element
2071     //       types of the vectors are not the same, until we figure out a better
2072     //       way of doing these casts.
2073     if ((isa<llvm::FixedVectorType>(SrcTy) &&
2074          isa<llvm::ScalableVectorType>(DstTy)) ||
2075         (isa<llvm::ScalableVectorType>(SrcTy) &&
2076          isa<llvm::FixedVectorType>(DstTy))) {
2077       if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
2078         // Call expressions can't have a scalar return unless the return type
2079         // is a reference type so an lvalue can't be emitted. Create a temp
2080         // alloca to store the call, bitcast the address then load.
2081         QualType RetTy = CE->getCallReturnType(CGF.getContext());
2082         Address Addr =
2083             CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-call-rvalue");
2084         LValue LV = CGF.MakeAddrLValue(Addr, RetTy);
2085         CGF.EmitStoreOfScalar(Src, LV);
2086         Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
2087                                             "castFixedSve");
2088         LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2089         DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2090         return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2091       }
2092 
2093       Address Addr = EmitLValue(E).getAddress(CGF);
2094       Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2095       LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
2096       DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
2097       return EmitLoadOfLValue(DestLV, CE->getExprLoc());
2098     }
2099 
2100     return Builder.CreateBitCast(Src, DstTy);
2101   }
2102   case CK_AddressSpaceConversion: {
2103     Expr::EvalResult Result;
2104     if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2105         Result.Val.isNullPointer()) {
2106       // If E has side effect, it is emitted even if its final result is a
2107       // null pointer. In that case, a DCE pass should be able to
2108       // eliminate the useless instructions emitted during translating E.
2109       if (Result.HasSideEffects)
2110         Visit(E);
2111       return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2112           ConvertType(DestTy)), DestTy);
2113     }
2114     // Since target may map different address spaces in AST to the same address
2115     // space, an address space conversion may end up as a bitcast.
2116     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2117         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2118         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2119   }
2120   case CK_AtomicToNonAtomic:
2121   case CK_NonAtomicToAtomic:
2122   case CK_NoOp:
2123   case CK_UserDefinedConversion:
2124     return Visit(const_cast<Expr*>(E));
2125 
2126   case CK_BaseToDerived: {
2127     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2128     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
2129 
2130     Address Base = CGF.EmitPointerWithAlignment(E);
2131     Address Derived =
2132       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2133                                    CE->path_begin(), CE->path_end(),
2134                                    CGF.ShouldNullCheckClassCastValue(CE));
2135 
2136     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2137     // performed and the object is not of the derived type.
2138     if (CGF.sanitizePerformTypeCheck())
2139       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2140                         Derived.getPointer(), DestTy->getPointeeType());
2141 
2142     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2143       CGF.EmitVTablePtrCheckForCast(
2144           DestTy->getPointeeType(), Derived.getPointer(),
2145           /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2146           CE->getBeginLoc());
2147 
2148     return Derived.getPointer();
2149   }
2150   case CK_UncheckedDerivedToBase:
2151   case CK_DerivedToBase: {
2152     // The EmitPointerWithAlignment path does this fine; just discard
2153     // the alignment.
2154     return CGF.EmitPointerWithAlignment(CE).getPointer();
2155   }
2156 
2157   case CK_Dynamic: {
2158     Address V = CGF.EmitPointerWithAlignment(E);
2159     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2160     return CGF.EmitDynamicCast(V, DCE);
2161   }
2162 
2163   case CK_ArrayToPointerDecay:
2164     return CGF.EmitArrayToPointerDecay(E).getPointer();
2165   case CK_FunctionToPointerDecay:
2166     return EmitLValue(E).getPointer(CGF);
2167 
2168   case CK_NullToPointer:
2169     if (MustVisitNullValue(E))
2170       CGF.EmitIgnoredExpr(E);
2171 
2172     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2173                               DestTy);
2174 
2175   case CK_NullToMemberPointer: {
2176     if (MustVisitNullValue(E))
2177       CGF.EmitIgnoredExpr(E);
2178 
2179     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2180     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2181   }
2182 
2183   case CK_ReinterpretMemberPointer:
2184   case CK_BaseToDerivedMemberPointer:
2185   case CK_DerivedToBaseMemberPointer: {
2186     Value *Src = Visit(E);
2187 
2188     // Note that the AST doesn't distinguish between checked and
2189     // unchecked member pointer conversions, so we always have to
2190     // implement checked conversions here.  This is inefficient when
2191     // actual control flow may be required in order to perform the
2192     // check, which it is for data member pointers (but not member
2193     // function pointers on Itanium and ARM).
2194     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2195   }
2196 
2197   case CK_ARCProduceObject:
2198     return CGF.EmitARCRetainScalarExpr(E);
2199   case CK_ARCConsumeObject:
2200     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2201   case CK_ARCReclaimReturnedObject:
2202     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2203   case CK_ARCExtendBlockObject:
2204     return CGF.EmitARCExtendBlockObject(E);
2205 
2206   case CK_CopyAndAutoreleaseBlockObject:
2207     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2208 
2209   case CK_FloatingRealToComplex:
2210   case CK_FloatingComplexCast:
2211   case CK_IntegralRealToComplex:
2212   case CK_IntegralComplexCast:
2213   case CK_IntegralComplexToFloatingComplex:
2214   case CK_FloatingComplexToIntegralComplex:
2215   case CK_ConstructorConversion:
2216   case CK_ToUnion:
2217     llvm_unreachable("scalar cast to non-scalar value");
2218 
2219   case CK_LValueToRValue:
2220     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
2221     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
2222     return Visit(const_cast<Expr*>(E));
2223 
2224   case CK_IntegralToPointer: {
2225     Value *Src = Visit(const_cast<Expr*>(E));
2226 
2227     // First, convert to the correct width so that we control the kind of
2228     // extension.
2229     auto DestLLVMTy = ConvertType(DestTy);
2230     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2231     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2232     llvm::Value* IntResult =
2233       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2234 
2235     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2236 
2237     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2238       // Going from integer to pointer that could be dynamic requires reloading
2239       // dynamic information from invariant.group.
2240       if (DestTy.mayBeDynamicClass())
2241         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2242     }
2243     return IntToPtr;
2244   }
2245   case CK_PointerToIntegral: {
2246     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
2247     auto *PtrExpr = Visit(E);
2248 
2249     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2250       const QualType SrcType = E->getType();
2251 
2252       // Casting to integer requires stripping dynamic information as it does
2253       // not carries it.
2254       if (SrcType.mayBeDynamicClass())
2255         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2256     }
2257 
2258     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2259   }
2260   case CK_ToVoid: {
2261     CGF.EmitIgnoredExpr(E);
2262     return nullptr;
2263   }
2264   case CK_MatrixCast: {
2265     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2266                                 CE->getExprLoc());
2267   }
2268   case CK_VectorSplat: {
2269     llvm::Type *DstTy = ConvertType(DestTy);
2270     Value *Elt = Visit(const_cast<Expr*>(E));
2271     // Splat the element across to all elements
2272     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
2273     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2274   }
2275 
2276   case CK_FixedPointCast:
2277     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2278                                 CE->getExprLoc());
2279 
2280   case CK_FixedPointToBoolean:
2281     assert(E->getType()->isFixedPointType() &&
2282            "Expected src type to be fixed point type");
2283     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
2284     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2285                                 CE->getExprLoc());
2286 
2287   case CK_FixedPointToIntegral:
2288     assert(E->getType()->isFixedPointType() &&
2289            "Expected src type to be fixed point type");
2290     assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
2291     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2292                                 CE->getExprLoc());
2293 
2294   case CK_IntegralToFixedPoint:
2295     assert(E->getType()->isIntegerType() &&
2296            "Expected src type to be an integer");
2297     assert(DestTy->isFixedPointType() &&
2298            "Expected dest type to be fixed point type");
2299     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2300                                 CE->getExprLoc());
2301 
2302   case CK_IntegralCast: {
2303     ScalarConversionOpts Opts;
2304     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2305       if (!ICE->isPartOfExplicitCast())
2306         Opts = ScalarConversionOpts(CGF.SanOpts);
2307     }
2308     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2309                                 CE->getExprLoc(), Opts);
2310   }
2311   case CK_IntegralToFloating:
2312   case CK_FloatingToIntegral:
2313   case CK_FloatingCast:
2314   case CK_FixedPointToFloating:
2315   case CK_FloatingToFixedPoint: {
2316     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2317     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2318                                 CE->getExprLoc());
2319   }
2320   case CK_BooleanToSignedIntegral: {
2321     ScalarConversionOpts Opts;
2322     Opts.TreatBooleanAsSigned = true;
2323     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2324                                 CE->getExprLoc(), Opts);
2325   }
2326   case CK_IntegralToBoolean:
2327     return EmitIntToBoolConversion(Visit(E));
2328   case CK_PointerToBoolean:
2329     return EmitPointerToBoolConversion(Visit(E), E->getType());
2330   case CK_FloatingToBoolean: {
2331     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE);
2332     return EmitFloatToBoolConversion(Visit(E));
2333   }
2334   case CK_MemberPointerToBoolean: {
2335     llvm::Value *MemPtr = Visit(E);
2336     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2337     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2338   }
2339 
2340   case CK_FloatingComplexToReal:
2341   case CK_IntegralComplexToReal:
2342     return CGF.EmitComplexExpr(E, false, true).first;
2343 
2344   case CK_FloatingComplexToBoolean:
2345   case CK_IntegralComplexToBoolean: {
2346     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2347 
2348     // TODO: kill this function off, inline appropriate case here
2349     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2350                                          CE->getExprLoc());
2351   }
2352 
2353   case CK_ZeroToOCLOpaqueType: {
2354     assert((DestTy->isEventT() || DestTy->isQueueT() ||
2355             DestTy->isOCLIntelSubgroupAVCType()) &&
2356            "CK_ZeroToOCLEvent cast on non-event type");
2357     return llvm::Constant::getNullValue(ConvertType(DestTy));
2358   }
2359 
2360   case CK_IntToOCLSampler:
2361     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2362 
2363   } // end of switch
2364 
2365   llvm_unreachable("unknown scalar cast");
2366 }
2367 
VisitStmtExpr(const StmtExpr * E)2368 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2369   CodeGenFunction::StmtExprEvaluation eval(CGF);
2370   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2371                                            !E->getType()->isVoidType());
2372   if (!RetAlloca.isValid())
2373     return nullptr;
2374   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2375                               E->getExprLoc());
2376 }
2377 
VisitExprWithCleanups(ExprWithCleanups * E)2378 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2379   CodeGenFunction::RunCleanupsScope Scope(CGF);
2380   Value *V = Visit(E->getSubExpr());
2381   // Defend against dominance problems caused by jumps out of expression
2382   // evaluation through the shared cleanup block.
2383   Scope.ForceCleanup({&V});
2384   return V;
2385 }
2386 
2387 //===----------------------------------------------------------------------===//
2388 //                             Unary Operators
2389 //===----------------------------------------------------------------------===//
2390 
createBinOpInfoFromIncDec(const UnaryOperator * E,llvm::Value * InVal,bool IsInc,FPOptions FPFeatures)2391 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2392                                            llvm::Value *InVal, bool IsInc,
2393                                            FPOptions FPFeatures) {
2394   BinOpInfo BinOp;
2395   BinOp.LHS = InVal;
2396   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2397   BinOp.Ty = E->getType();
2398   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2399   BinOp.FPFeatures = FPFeatures;
2400   BinOp.E = E;
2401   return BinOp;
2402 }
2403 
EmitIncDecConsiderOverflowBehavior(const UnaryOperator * E,llvm::Value * InVal,bool IsInc)2404 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2405     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2406   llvm::Value *Amount =
2407       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2408   StringRef Name = IsInc ? "inc" : "dec";
2409   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2410   case LangOptions::SOB_Defined:
2411     return Builder.CreateAdd(InVal, Amount, Name);
2412   case LangOptions::SOB_Undefined:
2413     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2414       return Builder.CreateNSWAdd(InVal, Amount, Name);
2415     LLVM_FALLTHROUGH;
2416   case LangOptions::SOB_Trapping:
2417     if (!E->canOverflow())
2418       return Builder.CreateNSWAdd(InVal, Amount, Name);
2419     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2420         E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2421   }
2422   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
2423 }
2424 
2425 namespace {
2426 /// Handles check and update for lastprivate conditional variables.
2427 class OMPLastprivateConditionalUpdateRAII {
2428 private:
2429   CodeGenFunction &CGF;
2430   const UnaryOperator *E;
2431 
2432 public:
OMPLastprivateConditionalUpdateRAII(CodeGenFunction & CGF,const UnaryOperator * E)2433   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
2434                                       const UnaryOperator *E)
2435       : CGF(CGF), E(E) {}
~OMPLastprivateConditionalUpdateRAII()2436   ~OMPLastprivateConditionalUpdateRAII() {
2437     if (CGF.getLangOpts().OpenMP)
2438       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
2439           CGF, E->getSubExpr());
2440   }
2441 };
2442 } // namespace
2443 
2444 llvm::Value *
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)2445 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2446                                            bool isInc, bool isPre) {
2447   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
2448   QualType type = E->getSubExpr()->getType();
2449   llvm::PHINode *atomicPHI = nullptr;
2450   llvm::Value *value;
2451   llvm::Value *input;
2452 
2453   int amount = (isInc ? 1 : -1);
2454   bool isSubtraction = !isInc;
2455 
2456   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2457     type = atomicTy->getValueType();
2458     if (isInc && type->isBooleanType()) {
2459       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2460       if (isPre) {
2461         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
2462             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2463         return Builder.getTrue();
2464       }
2465       // For atomic bool increment, we just store true and return it for
2466       // preincrement, do an atomic swap with true for postincrement
2467       return Builder.CreateAtomicRMW(
2468           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
2469           llvm::AtomicOrdering::SequentiallyConsistent);
2470     }
2471     // Special case for atomic increment / decrement on integers, emit
2472     // atomicrmw instructions.  We skip this if we want to be doing overflow
2473     // checking, and fall into the slow path with the atomic cmpxchg loop.
2474     if (!type->isBooleanType() && type->isIntegerType() &&
2475         !(type->isUnsignedIntegerType() &&
2476           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2477         CGF.getLangOpts().getSignedOverflowBehavior() !=
2478             LangOptions::SOB_Trapping) {
2479       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2480         llvm::AtomicRMWInst::Sub;
2481       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2482         llvm::Instruction::Sub;
2483       llvm::Value *amt = CGF.EmitToMemory(
2484           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2485       llvm::Value *old =
2486           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
2487                                   llvm::AtomicOrdering::SequentiallyConsistent);
2488       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2489     }
2490     value = EmitLoadOfLValue(LV, E->getExprLoc());
2491     input = value;
2492     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2493     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2494     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2495     value = CGF.EmitToMemory(value, type);
2496     Builder.CreateBr(opBB);
2497     Builder.SetInsertPoint(opBB);
2498     atomicPHI = Builder.CreatePHI(value->getType(), 2);
2499     atomicPHI->addIncoming(value, startBB);
2500     value = atomicPHI;
2501   } else {
2502     value = EmitLoadOfLValue(LV, E->getExprLoc());
2503     input = value;
2504   }
2505 
2506   // Special case of integer increment that we have to check first: bool++.
2507   // Due to promotion rules, we get:
2508   //   bool++ -> bool = bool + 1
2509   //          -> bool = (int)bool + 1
2510   //          -> bool = ((int)bool + 1 != 0)
2511   // An interesting aspect of this is that increment is always true.
2512   // Decrement does not have this property.
2513   if (isInc && type->isBooleanType()) {
2514     value = Builder.getTrue();
2515 
2516   // Most common case by far: integer increment.
2517   } else if (type->isIntegerType()) {
2518     QualType promotedType;
2519     bool canPerformLossyDemotionCheck = false;
2520     if (type->isPromotableIntegerType()) {
2521       promotedType = CGF.getContext().getPromotedIntegerType(type);
2522       assert(promotedType != type && "Shouldn't promote to the same type.");
2523       canPerformLossyDemotionCheck = true;
2524       canPerformLossyDemotionCheck &=
2525           CGF.getContext().getCanonicalType(type) !=
2526           CGF.getContext().getCanonicalType(promotedType);
2527       canPerformLossyDemotionCheck &=
2528           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
2529               type, promotedType);
2530       assert((!canPerformLossyDemotionCheck ||
2531               type->isSignedIntegerOrEnumerationType() ||
2532               promotedType->isSignedIntegerOrEnumerationType() ||
2533               ConvertType(type)->getScalarSizeInBits() ==
2534                   ConvertType(promotedType)->getScalarSizeInBits()) &&
2535              "The following check expects that if we do promotion to different "
2536              "underlying canonical type, at least one of the types (either "
2537              "base or promoted) will be signed, or the bitwidths will match.");
2538     }
2539     if (CGF.SanOpts.hasOneOf(
2540             SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
2541         canPerformLossyDemotionCheck) {
2542       // While `x += 1` (for `x` with width less than int) is modeled as
2543       // promotion+arithmetics+demotion, and we can catch lossy demotion with
2544       // ease; inc/dec with width less than int can't overflow because of
2545       // promotion rules, so we omit promotion+demotion, which means that we can
2546       // not catch lossy "demotion". Because we still want to catch these cases
2547       // when the sanitizer is enabled, we perform the promotion, then perform
2548       // the increment/decrement in the wider type, and finally
2549       // perform the demotion. This will catch lossy demotions.
2550 
2551       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
2552       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2553       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2554       // Do pass non-default ScalarConversionOpts so that sanitizer check is
2555       // emitted.
2556       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
2557                                    ScalarConversionOpts(CGF.SanOpts));
2558 
2559       // Note that signed integer inc/dec with width less than int can't
2560       // overflow because of promotion rules; we're just eliding a few steps
2561       // here.
2562     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2563       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2564     } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2565                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2566       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
2567           E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
2568     } else {
2569       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2570       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2571     }
2572 
2573   // Next most common: pointer increment.
2574   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2575     QualType type = ptr->getPointeeType();
2576 
2577     // VLA types don't have constant size.
2578     if (const VariableArrayType *vla
2579           = CGF.getContext().getAsVariableArrayType(type)) {
2580       llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2581       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2582       if (CGF.getLangOpts().isSignedOverflowDefined())
2583         value = Builder.CreateGEP(value, numElts, "vla.inc");
2584       else
2585         value = CGF.EmitCheckedInBoundsGEP(
2586             value, numElts, /*SignedIndices=*/false, isSubtraction,
2587             E->getExprLoc(), "vla.inc");
2588 
2589     // Arithmetic on function pointers (!) is just +-1.
2590     } else if (type->isFunctionType()) {
2591       llvm::Value *amt = Builder.getInt32(amount);
2592 
2593       value = CGF.EmitCastToVoidPtr(value);
2594       if (CGF.getLangOpts().isSignedOverflowDefined())
2595         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2596       else
2597         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2598                                            isSubtraction, E->getExprLoc(),
2599                                            "incdec.funcptr");
2600       value = Builder.CreateBitCast(value, input->getType());
2601 
2602     // For everything else, we can just do a simple increment.
2603     } else {
2604       llvm::Value *amt = Builder.getInt32(amount);
2605       if (CGF.getLangOpts().isSignedOverflowDefined())
2606         value = Builder.CreateGEP(value, amt, "incdec.ptr");
2607       else
2608         value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2609                                            isSubtraction, E->getExprLoc(),
2610                                            "incdec.ptr");
2611     }
2612 
2613   // Vector increment/decrement.
2614   } else if (type->isVectorType()) {
2615     if (type->hasIntegerRepresentation()) {
2616       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2617 
2618       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2619     } else {
2620       value = Builder.CreateFAdd(
2621                   value,
2622                   llvm::ConstantFP::get(value->getType(), amount),
2623                   isInc ? "inc" : "dec");
2624     }
2625 
2626   // Floating point.
2627   } else if (type->isRealFloatingType()) {
2628     // Add the inc/dec to the real part.
2629     llvm::Value *amt;
2630     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
2631 
2632     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2633       // Another special case: half FP increment should be done via float
2634       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2635         value = Builder.CreateCall(
2636             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2637                                  CGF.CGM.FloatTy),
2638             input, "incdec.conv");
2639       } else {
2640         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2641       }
2642     }
2643 
2644     if (value->getType()->isFloatTy())
2645       amt = llvm::ConstantFP::get(VMContext,
2646                                   llvm::APFloat(static_cast<float>(amount)));
2647     else if (value->getType()->isDoubleTy())
2648       amt = llvm::ConstantFP::get(VMContext,
2649                                   llvm::APFloat(static_cast<double>(amount)));
2650     else {
2651       // Remaining types are Half, LongDouble or __float128. Convert from float.
2652       llvm::APFloat F(static_cast<float>(amount));
2653       bool ignored;
2654       const llvm::fltSemantics *FS;
2655       // Don't use getFloatTypeSemantics because Half isn't
2656       // necessarily represented using the "half" LLVM type.
2657       if (value->getType()->isFP128Ty())
2658         FS = &CGF.getTarget().getFloat128Format();
2659       else if (value->getType()->isHalfTy())
2660         FS = &CGF.getTarget().getHalfFormat();
2661       else
2662         FS = &CGF.getTarget().getLongDoubleFormat();
2663       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2664       amt = llvm::ConstantFP::get(VMContext, F);
2665     }
2666     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2667 
2668     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2669       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2670         value = Builder.CreateCall(
2671             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2672                                  CGF.CGM.FloatTy),
2673             value, "incdec.conv");
2674       } else {
2675         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2676       }
2677     }
2678 
2679   // Fixed-point types.
2680   } else if (type->isFixedPointType()) {
2681     // Fixed-point types are tricky. In some cases, it isn't possible to
2682     // represent a 1 or a -1 in the type at all. Piggyback off of
2683     // EmitFixedPointBinOp to avoid having to reimplement saturation.
2684     BinOpInfo Info;
2685     Info.E = E;
2686     Info.Ty = E->getType();
2687     Info.Opcode = isInc ? BO_Add : BO_Sub;
2688     Info.LHS = value;
2689     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
2690     // If the type is signed, it's better to represent this as +(-1) or -(-1),
2691     // since -1 is guaranteed to be representable.
2692     if (type->isSignedFixedPointType()) {
2693       Info.Opcode = isInc ? BO_Sub : BO_Add;
2694       Info.RHS = Builder.CreateNeg(Info.RHS);
2695     }
2696     // Now, convert from our invented integer literal to the type of the unary
2697     // op. This will upscale and saturate if necessary. This value can become
2698     // undef in some cases.
2699     llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
2700     auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
2701     Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
2702     value = EmitFixedPointBinOp(Info);
2703 
2704   // Objective-C pointer types.
2705   } else {
2706     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2707     value = CGF.EmitCastToVoidPtr(value);
2708 
2709     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2710     if (!isInc) size = -size;
2711     llvm::Value *sizeValue =
2712       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2713 
2714     if (CGF.getLangOpts().isSignedOverflowDefined())
2715       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2716     else
2717       value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2718                                          /*SignedIndices=*/false, isSubtraction,
2719                                          E->getExprLoc(), "incdec.objptr");
2720     value = Builder.CreateBitCast(value, input->getType());
2721   }
2722 
2723   if (atomicPHI) {
2724     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2725     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2726     auto Pair = CGF.EmitAtomicCompareExchange(
2727         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2728     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2729     llvm::Value *success = Pair.second;
2730     atomicPHI->addIncoming(old, curBlock);
2731     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2732     Builder.SetInsertPoint(contBB);
2733     return isPre ? value : input;
2734   }
2735 
2736   // Store the updated result through the lvalue.
2737   if (LV.isBitField())
2738     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2739   else
2740     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2741 
2742   // If this is a postinc, return the value read from memory, otherwise use the
2743   // updated value.
2744   return isPre ? value : input;
2745 }
2746 
2747 
2748 
VisitUnaryMinus(const UnaryOperator * E)2749 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2750   TestAndClearIgnoreResultAssign();
2751   Value *Op = Visit(E->getSubExpr());
2752 
2753   // Generate a unary FNeg for FP ops.
2754   if (Op->getType()->isFPOrFPVectorTy())
2755     return Builder.CreateFNeg(Op, "fneg");
2756 
2757   // Emit unary minus with EmitSub so we handle overflow cases etc.
2758   BinOpInfo BinOp;
2759   BinOp.RHS = Op;
2760   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2761   BinOp.Ty = E->getType();
2762   BinOp.Opcode = BO_Sub;
2763   BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2764   BinOp.E = E;
2765   return EmitSub(BinOp);
2766 }
2767 
VisitUnaryNot(const UnaryOperator * E)2768 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2769   TestAndClearIgnoreResultAssign();
2770   Value *Op = Visit(E->getSubExpr());
2771   return Builder.CreateNot(Op, "neg");
2772 }
2773 
VisitUnaryLNot(const UnaryOperator * E)2774 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2775   // Perform vector logical not on comparison with zero vector.
2776   if (E->getType()->isVectorType() &&
2777       E->getType()->castAs<VectorType>()->getVectorKind() ==
2778           VectorType::GenericVector) {
2779     Value *Oper = Visit(E->getSubExpr());
2780     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2781     Value *Result;
2782     if (Oper->getType()->isFPOrFPVectorTy()) {
2783       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
2784           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
2785       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2786     } else
2787       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2788     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2789   }
2790 
2791   // Compare operand to zero.
2792   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2793 
2794   // Invert value.
2795   // TODO: Could dynamically modify easy computations here.  For example, if
2796   // the operand is an icmp ne, turn into icmp eq.
2797   BoolVal = Builder.CreateNot(BoolVal, "lnot");
2798 
2799   // ZExt result to the expr type.
2800   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2801 }
2802 
VisitOffsetOfExpr(OffsetOfExpr * E)2803 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2804   // Try folding the offsetof to a constant.
2805   Expr::EvalResult EVResult;
2806   if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2807     llvm::APSInt Value = EVResult.Val.getInt();
2808     return Builder.getInt(Value);
2809   }
2810 
2811   // Loop over the components of the offsetof to compute the value.
2812   unsigned n = E->getNumComponents();
2813   llvm::Type* ResultType = ConvertType(E->getType());
2814   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2815   QualType CurrentType = E->getTypeSourceInfo()->getType();
2816   for (unsigned i = 0; i != n; ++i) {
2817     OffsetOfNode ON = E->getComponent(i);
2818     llvm::Value *Offset = nullptr;
2819     switch (ON.getKind()) {
2820     case OffsetOfNode::Array: {
2821       // Compute the index
2822       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2823       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2824       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2825       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2826 
2827       // Save the element type
2828       CurrentType =
2829           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2830 
2831       // Compute the element size
2832       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2833           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2834 
2835       // Multiply out to compute the result
2836       Offset = Builder.CreateMul(Idx, ElemSize);
2837       break;
2838     }
2839 
2840     case OffsetOfNode::Field: {
2841       FieldDecl *MemberDecl = ON.getField();
2842       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2843       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2844 
2845       // Compute the index of the field in its parent.
2846       unsigned i = 0;
2847       // FIXME: It would be nice if we didn't have to loop here!
2848       for (RecordDecl::field_iterator Field = RD->field_begin(),
2849                                       FieldEnd = RD->field_end();
2850            Field != FieldEnd; ++Field, ++i) {
2851         if (*Field == MemberDecl)
2852           break;
2853       }
2854       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2855 
2856       // Compute the offset to the field
2857       int64_t OffsetInt = RL.getFieldOffset(i) /
2858                           CGF.getContext().getCharWidth();
2859       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2860 
2861       // Save the element type.
2862       CurrentType = MemberDecl->getType();
2863       break;
2864     }
2865 
2866     case OffsetOfNode::Identifier:
2867       llvm_unreachable("dependent __builtin_offsetof");
2868 
2869     case OffsetOfNode::Base: {
2870       if (ON.getBase()->isVirtual()) {
2871         CGF.ErrorUnsupported(E, "virtual base in offsetof");
2872         continue;
2873       }
2874 
2875       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2876       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2877 
2878       // Save the element type.
2879       CurrentType = ON.getBase()->getType();
2880 
2881       // Compute the offset to the base.
2882       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2883       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2884       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2885       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2886       break;
2887     }
2888     }
2889     Result = Builder.CreateAdd(Result, Offset);
2890   }
2891   return Result;
2892 }
2893 
2894 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2895 /// argument of the sizeof expression as an integer.
2896 Value *
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)2897 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2898                               const UnaryExprOrTypeTraitExpr *E) {
2899   QualType TypeToSize = E->getTypeOfArgument();
2900   if (E->getKind() == UETT_SizeOf) {
2901     if (const VariableArrayType *VAT =
2902           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2903       if (E->isArgumentType()) {
2904         // sizeof(type) - make sure to emit the VLA size.
2905         CGF.EmitVariablyModifiedType(TypeToSize);
2906       } else {
2907         // C99 6.5.3.4p2: If the argument is an expression of type
2908         // VLA, it is evaluated.
2909         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2910       }
2911 
2912       auto VlaSize = CGF.getVLASize(VAT);
2913       llvm::Value *size = VlaSize.NumElts;
2914 
2915       // Scale the number of non-VLA elements by the non-VLA element size.
2916       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2917       if (!eltSize.isOne())
2918         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2919 
2920       return size;
2921     }
2922   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2923     auto Alignment =
2924         CGF.getContext()
2925             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2926                 E->getTypeOfArgument()->getPointeeType()))
2927             .getQuantity();
2928     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2929   }
2930 
2931   // If this isn't sizeof(vla), the result must be constant; use the constant
2932   // folding logic so we don't have to duplicate it here.
2933   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2934 }
2935 
VisitUnaryReal(const UnaryOperator * E)2936 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2937   Expr *Op = E->getSubExpr();
2938   if (Op->getType()->isAnyComplexType()) {
2939     // If it's an l-value, load through the appropriate subobject l-value.
2940     // Note that we have to ask E because Op might be an l-value that
2941     // this won't work for, e.g. an Obj-C property.
2942     if (E->isGLValue())
2943       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2944                                   E->getExprLoc()).getScalarVal();
2945 
2946     // Otherwise, calculate and project.
2947     return CGF.EmitComplexExpr(Op, false, true).first;
2948   }
2949 
2950   return Visit(Op);
2951 }
2952 
VisitUnaryImag(const UnaryOperator * E)2953 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2954   Expr *Op = E->getSubExpr();
2955   if (Op->getType()->isAnyComplexType()) {
2956     // If it's an l-value, load through the appropriate subobject l-value.
2957     // Note that we have to ask E because Op might be an l-value that
2958     // this won't work for, e.g. an Obj-C property.
2959     if (Op->isGLValue())
2960       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2961                                   E->getExprLoc()).getScalarVal();
2962 
2963     // Otherwise, calculate and project.
2964     return CGF.EmitComplexExpr(Op, true, false).second;
2965   }
2966 
2967   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2968   // effects are evaluated, but not the actual value.
2969   if (Op->isGLValue())
2970     CGF.EmitLValue(Op);
2971   else
2972     CGF.EmitScalarExpr(Op, true);
2973   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2974 }
2975 
2976 //===----------------------------------------------------------------------===//
2977 //                           Binary Operators
2978 //===----------------------------------------------------------------------===//
2979 
EmitBinOps(const BinaryOperator * E)2980 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2981   TestAndClearIgnoreResultAssign();
2982   BinOpInfo Result;
2983   Result.LHS = Visit(E->getLHS());
2984   Result.RHS = Visit(E->getRHS());
2985   Result.Ty  = E->getType();
2986   Result.Opcode = E->getOpcode();
2987   Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
2988   Result.E = E;
2989   return Result;
2990 }
2991 
EmitCompoundAssignLValue(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &),Value * & Result)2992 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2993                                               const CompoundAssignOperator *E,
2994                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2995                                                    Value *&Result) {
2996   QualType LHSTy = E->getLHS()->getType();
2997   BinOpInfo OpInfo;
2998 
2999   if (E->getComputationResultType()->isAnyComplexType())
3000     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
3001 
3002   // Emit the RHS first.  __block variables need to have the rhs evaluated
3003   // first, plus this should improve codegen a little.
3004   OpInfo.RHS = Visit(E->getRHS());
3005   OpInfo.Ty = E->getComputationResultType();
3006   OpInfo.Opcode = E->getOpcode();
3007   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
3008   OpInfo.E = E;
3009   // Load/convert the LHS.
3010   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3011 
3012   llvm::PHINode *atomicPHI = nullptr;
3013   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
3014     QualType type = atomicTy->getValueType();
3015     if (!type->isBooleanType() && type->isIntegerType() &&
3016         !(type->isUnsignedIntegerType() &&
3017           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
3018         CGF.getLangOpts().getSignedOverflowBehavior() !=
3019             LangOptions::SOB_Trapping) {
3020       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
3021       llvm::Instruction::BinaryOps Op;
3022       switch (OpInfo.Opcode) {
3023         // We don't have atomicrmw operands for *, %, /, <<, >>
3024         case BO_MulAssign: case BO_DivAssign:
3025         case BO_RemAssign:
3026         case BO_ShlAssign:
3027         case BO_ShrAssign:
3028           break;
3029         case BO_AddAssign:
3030           AtomicOp = llvm::AtomicRMWInst::Add;
3031           Op = llvm::Instruction::Add;
3032           break;
3033         case BO_SubAssign:
3034           AtomicOp = llvm::AtomicRMWInst::Sub;
3035           Op = llvm::Instruction::Sub;
3036           break;
3037         case BO_AndAssign:
3038           AtomicOp = llvm::AtomicRMWInst::And;
3039           Op = llvm::Instruction::And;
3040           break;
3041         case BO_XorAssign:
3042           AtomicOp = llvm::AtomicRMWInst::Xor;
3043           Op = llvm::Instruction::Xor;
3044           break;
3045         case BO_OrAssign:
3046           AtomicOp = llvm::AtomicRMWInst::Or;
3047           Op = llvm::Instruction::Or;
3048           break;
3049         default:
3050           llvm_unreachable("Invalid compound assignment type");
3051       }
3052       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
3053         llvm::Value *Amt = CGF.EmitToMemory(
3054             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
3055                                  E->getExprLoc()),
3056             LHSTy);
3057         Value *OldVal = Builder.CreateAtomicRMW(
3058             AtomicOp, LHSLV.getPointer(CGF), Amt,
3059             llvm::AtomicOrdering::SequentiallyConsistent);
3060 
3061         // Since operation is atomic, the result type is guaranteed to be the
3062         // same as the input in LLVM terms.
3063         Result = Builder.CreateBinOp(Op, OldVal, Amt);
3064         return LHSLV;
3065       }
3066     }
3067     // FIXME: For floating point types, we should be saving and restoring the
3068     // floating point environment in the loop.
3069     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
3070     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
3071     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3072     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
3073     Builder.CreateBr(opBB);
3074     Builder.SetInsertPoint(opBB);
3075     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
3076     atomicPHI->addIncoming(OpInfo.LHS, startBB);
3077     OpInfo.LHS = atomicPHI;
3078   }
3079   else
3080     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
3081 
3082   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures);
3083   SourceLocation Loc = E->getExprLoc();
3084   OpInfo.LHS =
3085       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
3086 
3087   // Expand the binary operator.
3088   Result = (this->*Func)(OpInfo);
3089 
3090   // Convert the result back to the LHS type,
3091   // potentially with Implicit Conversion sanitizer check.
3092   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
3093                                 Loc, ScalarConversionOpts(CGF.SanOpts));
3094 
3095   if (atomicPHI) {
3096     llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
3097     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
3098     auto Pair = CGF.EmitAtomicCompareExchange(
3099         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
3100     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
3101     llvm::Value *success = Pair.second;
3102     atomicPHI->addIncoming(old, curBlock);
3103     Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
3104     Builder.SetInsertPoint(contBB);
3105     return LHSLV;
3106   }
3107 
3108   // Store the result value into the LHS lvalue. Bit-fields are handled
3109   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
3110   // 'An assignment expression has the value of the left operand after the
3111   // assignment...'.
3112   if (LHSLV.isBitField())
3113     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
3114   else
3115     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
3116 
3117   if (CGF.getLangOpts().OpenMP)
3118     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
3119                                                                   E->getLHS());
3120   return LHSLV;
3121 }
3122 
EmitCompoundAssign(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &))3123 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
3124                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
3125   bool Ignore = TestAndClearIgnoreResultAssign();
3126   Value *RHS = nullptr;
3127   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3128 
3129   // If the result is clearly ignored, return now.
3130   if (Ignore)
3131     return nullptr;
3132 
3133   // The result of an assignment in C is the assigned r-value.
3134   if (!CGF.getLangOpts().CPlusPlus)
3135     return RHS;
3136 
3137   // If the lvalue is non-volatile, return the computed value of the assignment.
3138   if (!LHS.isVolatileQualified())
3139     return RHS;
3140 
3141   // Otherwise, reload the value.
3142   return EmitLoadOfLValue(LHS, E->getExprLoc());
3143 }
3144 
EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo & Ops,llvm::Value * Zero,bool isDiv)3145 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
3146     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
3147   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3148 
3149   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3150     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3151                                     SanitizerKind::IntegerDivideByZero));
3152   }
3153 
3154   const auto *BO = cast<BinaryOperator>(Ops.E);
3155   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3156       Ops.Ty->hasSignedIntegerRepresentation() &&
3157       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3158       Ops.mayHaveIntegerOverflow()) {
3159     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3160 
3161     llvm::Value *IntMin =
3162       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3163     llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty);
3164 
3165     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3166     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3167     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3168     Checks.push_back(
3169         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3170   }
3171 
3172   if (Checks.size() > 0)
3173     EmitBinOpCheck(Checks, Ops);
3174 }
3175 
EmitDiv(const BinOpInfo & Ops)3176 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3177   {
3178     CodeGenFunction::SanitizerScope SanScope(&CGF);
3179     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3180          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3181         Ops.Ty->isIntegerType() &&
3182         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3183       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3184       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3185     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3186                Ops.Ty->isRealFloatingType() &&
3187                Ops.mayHaveFloatDivisionByZero()) {
3188       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3189       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3190       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3191                      Ops);
3192     }
3193   }
3194 
3195   if (Ops.Ty->isConstantMatrixType()) {
3196     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3197     // We need to check the types of the operands of the operator to get the
3198     // correct matrix dimensions.
3199     auto *BO = cast<BinaryOperator>(Ops.E);
3200     (void)BO;
3201     assert(
3202         isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) &&
3203         "first operand must be a matrix");
3204     assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() &&
3205            "second operand must be an arithmetic type");
3206     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3207     return MB.CreateScalarDiv(Ops.LHS, Ops.RHS,
3208                               Ops.Ty->hasUnsignedIntegerRepresentation());
3209   }
3210 
3211   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3212     llvm::Value *Val;
3213     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
3214     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3215     if ((CGF.getLangOpts().OpenCL &&
3216          !CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
3217         (CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice &&
3218          !CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
3219       // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3220       // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3221       // build option allows an application to specify that single precision
3222       // floating-point divide (x/y and 1/x) and sqrt used in the program
3223       // source are correctly rounded.
3224       llvm::Type *ValTy = Val->getType();
3225       if (ValTy->isFloatTy() ||
3226           (isa<llvm::VectorType>(ValTy) &&
3227            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3228         CGF.SetFPAccuracy(Val, 2.5);
3229     }
3230     return Val;
3231   }
3232   else if (Ops.isFixedPointOp())
3233     return EmitFixedPointBinOp(Ops);
3234   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3235     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3236   else
3237     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3238 }
3239 
EmitRem(const BinOpInfo & Ops)3240 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3241   // Rem in C can't be a floating point type: C99 6.5.5p2.
3242   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3243        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3244       Ops.Ty->isIntegerType() &&
3245       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3246     CodeGenFunction::SanitizerScope SanScope(&CGF);
3247     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3248     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3249   }
3250 
3251   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3252     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3253   else
3254     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3255 }
3256 
EmitOverflowCheckedBinOp(const BinOpInfo & Ops)3257 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3258   unsigned IID;
3259   unsigned OpID = 0;
3260   SanitizerHandler OverflowKind;
3261 
3262   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3263   switch (Ops.Opcode) {
3264   case BO_Add:
3265   case BO_AddAssign:
3266     OpID = 1;
3267     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3268                      llvm::Intrinsic::uadd_with_overflow;
3269     OverflowKind = SanitizerHandler::AddOverflow;
3270     break;
3271   case BO_Sub:
3272   case BO_SubAssign:
3273     OpID = 2;
3274     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3275                      llvm::Intrinsic::usub_with_overflow;
3276     OverflowKind = SanitizerHandler::SubOverflow;
3277     break;
3278   case BO_Mul:
3279   case BO_MulAssign:
3280     OpID = 3;
3281     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3282                      llvm::Intrinsic::umul_with_overflow;
3283     OverflowKind = SanitizerHandler::MulOverflow;
3284     break;
3285   default:
3286     llvm_unreachable("Unsupported operation for overflow detection");
3287   }
3288   OpID <<= 1;
3289   if (isSigned)
3290     OpID |= 1;
3291 
3292   CodeGenFunction::SanitizerScope SanScope(&CGF);
3293   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3294 
3295   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3296 
3297   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3298   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3299   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3300 
3301   // Handle overflow with llvm.trap if no custom handler has been specified.
3302   const std::string *handlerName =
3303     &CGF.getLangOpts().OverflowHandler;
3304   if (handlerName->empty()) {
3305     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3306     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3307     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3308       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3309       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3310                               : SanitizerKind::UnsignedIntegerOverflow;
3311       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3312     } else
3313       CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind);
3314     return result;
3315   }
3316 
3317   // Branch in case of overflow.
3318   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3319   llvm::BasicBlock *continueBB =
3320       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3321   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3322 
3323   Builder.CreateCondBr(overflow, overflowBB, continueBB);
3324 
3325   // If an overflow handler is set, then we want to call it and then use its
3326   // result, if it returns.
3327   Builder.SetInsertPoint(overflowBB);
3328 
3329   // Get the overflow handler.
3330   llvm::Type *Int8Ty = CGF.Int8Ty;
3331   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3332   llvm::FunctionType *handlerTy =
3333       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3334   llvm::FunctionCallee handler =
3335       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3336 
3337   // Sign extend the args to 64-bit, so that we can use the same handler for
3338   // all types of overflow.
3339   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3340   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3341 
3342   // Call the handler with the two arguments, the operation, and the size of
3343   // the result.
3344   llvm::Value *handlerArgs[] = {
3345     lhs,
3346     rhs,
3347     Builder.getInt8(OpID),
3348     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3349   };
3350   llvm::Value *handlerResult =
3351     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3352 
3353   // Truncate the result back to the desired size.
3354   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3355   Builder.CreateBr(continueBB);
3356 
3357   Builder.SetInsertPoint(continueBB);
3358   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3359   phi->addIncoming(result, initialBB);
3360   phi->addIncoming(handlerResult, overflowBB);
3361 
3362   return phi;
3363 }
3364 
3365 /// Emit pointer + index arithmetic.
emitPointerArithmetic(CodeGenFunction & CGF,const BinOpInfo & op,bool isSubtraction)3366 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3367                                     const BinOpInfo &op,
3368                                     bool isSubtraction) {
3369   // Must have binary (not unary) expr here.  Unary pointer
3370   // increment/decrement doesn't use this path.
3371   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3372 
3373   Value *pointer = op.LHS;
3374   Expr *pointerOperand = expr->getLHS();
3375   Value *index = op.RHS;
3376   Expr *indexOperand = expr->getRHS();
3377 
3378   // In a subtraction, the LHS is always the pointer.
3379   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3380     std::swap(pointer, index);
3381     std::swap(pointerOperand, indexOperand);
3382   }
3383 
3384   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3385 
3386   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3387   auto &DL = CGF.CGM.getDataLayout();
3388   auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3389 
3390   // Some versions of glibc and gcc use idioms (particularly in their malloc
3391   // routines) that add a pointer-sized integer (known to be a pointer value)
3392   // to a null pointer in order to cast the value back to an integer or as
3393   // part of a pointer alignment algorithm.  This is undefined behavior, but
3394   // we'd like to be able to compile programs that use it.
3395   //
3396   // Normally, we'd generate a GEP with a null-pointer base here in response
3397   // to that code, but it's also UB to dereference a pointer created that
3398   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
3399   // generate a direct cast of the integer value to a pointer.
3400   //
3401   // The idiom (p = nullptr + N) is not met if any of the following are true:
3402   //
3403   //   The operation is subtraction.
3404   //   The index is not pointer-sized.
3405   //   The pointer type is not byte-sized.
3406   //
3407   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3408                                                        op.Opcode,
3409                                                        expr->getLHS(),
3410                                                        expr->getRHS()))
3411     return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3412 
3413   if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
3414     // Zero-extend or sign-extend the pointer value according to
3415     // whether the index is signed or not.
3416     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
3417                                       "idx.ext");
3418   }
3419 
3420   // If this is subtraction, negate the index.
3421   if (isSubtraction)
3422     index = CGF.Builder.CreateNeg(index, "idx.neg");
3423 
3424   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3425     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3426                         /*Accessed*/ false);
3427 
3428   const PointerType *pointerType
3429     = pointerOperand->getType()->getAs<PointerType>();
3430   if (!pointerType) {
3431     QualType objectType = pointerOperand->getType()
3432                                         ->castAs<ObjCObjectPointerType>()
3433                                         ->getPointeeType();
3434     llvm::Value *objectSize
3435       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3436 
3437     index = CGF.Builder.CreateMul(index, objectSize);
3438 
3439     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3440     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3441     return CGF.Builder.CreateBitCast(result, pointer->getType());
3442   }
3443 
3444   QualType elementType = pointerType->getPointeeType();
3445   if (const VariableArrayType *vla
3446         = CGF.getContext().getAsVariableArrayType(elementType)) {
3447     // The element count here is the total number of non-VLA elements.
3448     llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3449 
3450     // Effectively, the multiply by the VLA size is part of the GEP.
3451     // GEP indexes are signed, and scaling an index isn't permitted to
3452     // signed-overflow, so we use the same semantics for our explicit
3453     // multiply.  We suppress this if overflow is not undefined behavior.
3454     if (CGF.getLangOpts().isSignedOverflowDefined()) {
3455       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3456       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3457     } else {
3458       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3459       pointer =
3460           CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3461                                      op.E->getExprLoc(), "add.ptr");
3462     }
3463     return pointer;
3464   }
3465 
3466   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3467   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3468   // future proof.
3469   if (elementType->isVoidType() || elementType->isFunctionType()) {
3470     Value *result = CGF.EmitCastToVoidPtr(pointer);
3471     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3472     return CGF.Builder.CreateBitCast(result, pointer->getType());
3473   }
3474 
3475   if (CGF.getLangOpts().isSignedOverflowDefined())
3476     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3477 
3478   return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3479                                     op.E->getExprLoc(), "add.ptr");
3480 }
3481 
3482 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3483 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
3484 // the add operand respectively. This allows fmuladd to represent a*b-c, or
3485 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3486 // efficient operations.
buildFMulAdd(llvm::Instruction * MulOp,Value * Addend,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool negMul,bool negAdd)3487 static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
3488                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
3489                            bool negMul, bool negAdd) {
3490   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
3491 
3492   Value *MulOp0 = MulOp->getOperand(0);
3493   Value *MulOp1 = MulOp->getOperand(1);
3494   if (negMul)
3495     MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
3496   if (negAdd)
3497     Addend = Builder.CreateFNeg(Addend, "neg");
3498 
3499   Value *FMulAdd = nullptr;
3500   if (Builder.getIsFPConstrained()) {
3501     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
3502            "Only constrained operation should be created when Builder is in FP "
3503            "constrained mode");
3504     FMulAdd = Builder.CreateConstrainedFPCall(
3505         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
3506                              Addend->getType()),
3507         {MulOp0, MulOp1, Addend});
3508   } else {
3509     FMulAdd = Builder.CreateCall(
3510         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3511         {MulOp0, MulOp1, Addend});
3512   }
3513   MulOp->eraseFromParent();
3514 
3515   return FMulAdd;
3516 }
3517 
3518 // Check whether it would be legal to emit an fmuladd intrinsic call to
3519 // represent op and if so, build the fmuladd.
3520 //
3521 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3522 // Does NOT check the type of the operation - it's assumed that this function
3523 // will be called from contexts where it's known that the type is contractable.
tryEmitFMulAdd(const BinOpInfo & op,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool isSub=false)3524 static Value* tryEmitFMulAdd(const BinOpInfo &op,
3525                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
3526                          bool isSub=false) {
3527 
3528   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
3529           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
3530          "Only fadd/fsub can be the root of an fmuladd.");
3531 
3532   // Check whether this op is marked as fusable.
3533   if (!op.FPFeatures.allowFPContractWithinStatement())
3534     return nullptr;
3535 
3536   // We have a potentially fusable op. Look for a mul on one of the operands.
3537   // Also, make sure that the mul result isn't used directly. In that case,
3538   // there's no point creating a muladd operation.
3539   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3540     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3541         LHSBinOp->use_empty())
3542       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3543   }
3544   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3545     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3546         RHSBinOp->use_empty())
3547       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3548   }
3549 
3550   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
3551     if (LHSBinOp->getIntrinsicID() ==
3552             llvm::Intrinsic::experimental_constrained_fmul &&
3553         LHSBinOp->use_empty())
3554       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3555   }
3556   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
3557     if (RHSBinOp->getIntrinsicID() ==
3558             llvm::Intrinsic::experimental_constrained_fmul &&
3559         RHSBinOp->use_empty())
3560       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3561   }
3562 
3563   return nullptr;
3564 }
3565 
EmitAdd(const BinOpInfo & op)3566 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3567   if (op.LHS->getType()->isPointerTy() ||
3568       op.RHS->getType()->isPointerTy())
3569     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3570 
3571   if (op.Ty->isSignedIntegerOrEnumerationType()) {
3572     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3573     case LangOptions::SOB_Defined:
3574       return Builder.CreateAdd(op.LHS, op.RHS, "add");
3575     case LangOptions::SOB_Undefined:
3576       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3577         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3578       LLVM_FALLTHROUGH;
3579     case LangOptions::SOB_Trapping:
3580       if (CanElideOverflowCheck(CGF.getContext(), op))
3581         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3582       return EmitOverflowCheckedBinOp(op);
3583     }
3584   }
3585 
3586   if (op.Ty->isConstantMatrixType()) {
3587     llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3588     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3589     return MB.CreateAdd(op.LHS, op.RHS);
3590   }
3591 
3592   if (op.Ty->isUnsignedIntegerType() &&
3593       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3594       !CanElideOverflowCheck(CGF.getContext(), op))
3595     return EmitOverflowCheckedBinOp(op);
3596 
3597   if (op.LHS->getType()->isFPOrFPVectorTy()) {
3598     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3599     // Try to form an fmuladd.
3600     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3601       return FMulAdd;
3602 
3603     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
3604   }
3605 
3606   if (op.isFixedPointOp())
3607     return EmitFixedPointBinOp(op);
3608 
3609   return Builder.CreateAdd(op.LHS, op.RHS, "add");
3610 }
3611 
3612 /// The resulting value must be calculated with exact precision, so the operands
3613 /// may not be the same type.
EmitFixedPointBinOp(const BinOpInfo & op)3614 Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3615   using llvm::APSInt;
3616   using llvm::ConstantInt;
3617 
3618   // This is either a binary operation where at least one of the operands is
3619   // a fixed-point type, or a unary operation where the operand is a fixed-point
3620   // type. The result type of a binary operation is determined by
3621   // Sema::handleFixedPointConversions().
3622   QualType ResultTy = op.Ty;
3623   QualType LHSTy, RHSTy;
3624   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
3625     RHSTy = BinOp->getRHS()->getType();
3626     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
3627       // For compound assignment, the effective type of the LHS at this point
3628       // is the computation LHS type, not the actual LHS type, and the final
3629       // result type is not the type of the expression but rather the
3630       // computation result type.
3631       LHSTy = CAO->getComputationLHSType();
3632       ResultTy = CAO->getComputationResultType();
3633     } else
3634       LHSTy = BinOp->getLHS()->getType();
3635   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
3636     LHSTy = UnOp->getSubExpr()->getType();
3637     RHSTy = UnOp->getSubExpr()->getType();
3638   }
3639   ASTContext &Ctx = CGF.getContext();
3640   Value *LHS = op.LHS;
3641   Value *RHS = op.RHS;
3642 
3643   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3644   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3645   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3646   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3647 
3648   // Perform the actual operation.
3649   Value *Result;
3650   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
3651   switch (op.Opcode) {
3652   case BO_AddAssign:
3653   case BO_Add:
3654     Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
3655     break;
3656   case BO_SubAssign:
3657   case BO_Sub:
3658     Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
3659     break;
3660   case BO_MulAssign:
3661   case BO_Mul:
3662     Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
3663     break;
3664   case BO_DivAssign:
3665   case BO_Div:
3666     Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
3667     break;
3668   case BO_ShlAssign:
3669   case BO_Shl:
3670     Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
3671     break;
3672   case BO_ShrAssign:
3673   case BO_Shr:
3674     Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
3675     break;
3676   case BO_LT:
3677     return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3678   case BO_GT:
3679     return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
3680   case BO_LE:
3681     return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3682   case BO_GE:
3683     return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3684   case BO_EQ:
3685     // For equality operations, we assume any padding bits on unsigned types are
3686     // zero'd out. They could be overwritten through non-saturating operations
3687     // that cause overflow, but this leads to undefined behavior.
3688     return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
3689   case BO_NE:
3690     return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
3691   case BO_Cmp:
3692   case BO_LAnd:
3693   case BO_LOr:
3694     llvm_unreachable("Found unimplemented fixed point binary operation");
3695   case BO_PtrMemD:
3696   case BO_PtrMemI:
3697   case BO_Rem:
3698   case BO_Xor:
3699   case BO_And:
3700   case BO_Or:
3701   case BO_Assign:
3702   case BO_RemAssign:
3703   case BO_AndAssign:
3704   case BO_XorAssign:
3705   case BO_OrAssign:
3706   case BO_Comma:
3707     llvm_unreachable("Found unsupported binary operation for fixed point types.");
3708   }
3709 
3710   bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
3711                  BinaryOperator::isShiftAssignOp(op.Opcode);
3712   // Convert to the result type.
3713   return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
3714                                                       : CommonFixedSema,
3715                                       ResultFixedSema);
3716 }
3717 
EmitSub(const BinOpInfo & op)3718 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3719   // The LHS is always a pointer if either side is.
3720   if (!op.LHS->getType()->isPointerTy()) {
3721     if (op.Ty->isSignedIntegerOrEnumerationType()) {
3722       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3723       case LangOptions::SOB_Defined:
3724         return Builder.CreateSub(op.LHS, op.RHS, "sub");
3725       case LangOptions::SOB_Undefined:
3726         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3727           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3728         LLVM_FALLTHROUGH;
3729       case LangOptions::SOB_Trapping:
3730         if (CanElideOverflowCheck(CGF.getContext(), op))
3731           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3732         return EmitOverflowCheckedBinOp(op);
3733       }
3734     }
3735 
3736     if (op.Ty->isConstantMatrixType()) {
3737       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
3738       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3739       return MB.CreateSub(op.LHS, op.RHS);
3740     }
3741 
3742     if (op.Ty->isUnsignedIntegerType() &&
3743         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3744         !CanElideOverflowCheck(CGF.getContext(), op))
3745       return EmitOverflowCheckedBinOp(op);
3746 
3747     if (op.LHS->getType()->isFPOrFPVectorTy()) {
3748       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
3749       // Try to form an fmuladd.
3750       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3751         return FMulAdd;
3752       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
3753     }
3754 
3755     if (op.isFixedPointOp())
3756       return EmitFixedPointBinOp(op);
3757 
3758     return Builder.CreateSub(op.LHS, op.RHS, "sub");
3759   }
3760 
3761   // If the RHS is not a pointer, then we have normal pointer
3762   // arithmetic.
3763   if (!op.RHS->getType()->isPointerTy())
3764     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3765 
3766   // Otherwise, this is a pointer subtraction.
3767 
3768   // Do the raw subtraction part.
3769   llvm::Value *LHS
3770     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3771   llvm::Value *RHS
3772     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3773   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3774 
3775   // Okay, figure out the element size.
3776   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3777   QualType elementType = expr->getLHS()->getType()->getPointeeType();
3778 
3779   llvm::Value *divisor = nullptr;
3780 
3781   // For a variable-length array, this is going to be non-constant.
3782   if (const VariableArrayType *vla
3783         = CGF.getContext().getAsVariableArrayType(elementType)) {
3784     auto VlaSize = CGF.getVLASize(vla);
3785     elementType = VlaSize.Type;
3786     divisor = VlaSize.NumElts;
3787 
3788     // Scale the number of non-VLA elements by the non-VLA element size.
3789     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3790     if (!eltSize.isOne())
3791       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3792 
3793   // For everything elese, we can just compute it, safe in the
3794   // assumption that Sema won't let anything through that we can't
3795   // safely compute the size of.
3796   } else {
3797     CharUnits elementSize;
3798     // Handle GCC extension for pointer arithmetic on void* and
3799     // function pointer types.
3800     if (elementType->isVoidType() || elementType->isFunctionType())
3801       elementSize = CharUnits::One();
3802     else
3803       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3804 
3805     // Don't even emit the divide for element size of 1.
3806     if (elementSize.isOne())
3807       return diffInChars;
3808 
3809     divisor = CGF.CGM.getSize(elementSize);
3810   }
3811 
3812   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3813   // pointer difference in C is only defined in the case where both operands
3814   // are pointing to elements of an array.
3815   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3816 }
3817 
GetWidthMinusOneValue(Value * LHS,Value * RHS)3818 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3819   llvm::IntegerType *Ty;
3820   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3821     Ty = cast<llvm::IntegerType>(VT->getElementType());
3822   else
3823     Ty = cast<llvm::IntegerType>(LHS->getType());
3824   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3825 }
3826 
ConstrainShiftValue(Value * LHS,Value * RHS,const Twine & Name)3827 Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
3828                                               const Twine &Name) {
3829   llvm::IntegerType *Ty;
3830   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3831     Ty = cast<llvm::IntegerType>(VT->getElementType());
3832   else
3833     Ty = cast<llvm::IntegerType>(LHS->getType());
3834 
3835   if (llvm::isPowerOf2_64(Ty->getBitWidth()))
3836         return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
3837 
3838   return Builder.CreateURem(
3839       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
3840 }
3841 
EmitShl(const BinOpInfo & Ops)3842 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3843   // TODO: This misses out on the sanitizer check below.
3844   if (Ops.isFixedPointOp())
3845     return EmitFixedPointBinOp(Ops);
3846 
3847   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3848   // RHS to the same size as the LHS.
3849   Value *RHS = Ops.RHS;
3850   if (Ops.LHS->getType() != RHS->getType())
3851     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3852 
3853   bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3854                             Ops.Ty->hasSignedIntegerRepresentation() &&
3855                             !CGF.getLangOpts().isSignedOverflowDefined() &&
3856                             !CGF.getLangOpts().CPlusPlus20;
3857   bool SanitizeUnsignedBase =
3858       CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
3859       Ops.Ty->hasUnsignedIntegerRepresentation();
3860   bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
3861   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3862   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3863   if (CGF.getLangOpts().OpenCL)
3864     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
3865   else if ((SanitizeBase || SanitizeExponent) &&
3866            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3867     CodeGenFunction::SanitizerScope SanScope(&CGF);
3868     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3869     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3870     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3871 
3872     if (SanitizeExponent) {
3873       Checks.push_back(
3874           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3875     }
3876 
3877     if (SanitizeBase) {
3878       // Check whether we are shifting any non-zero bits off the top of the
3879       // integer. We only emit this check if exponent is valid - otherwise
3880       // instructions below will have undefined behavior themselves.
3881       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3882       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3883       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3884       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3885       llvm::Value *PromotedWidthMinusOne =
3886           (RHS == Ops.RHS) ? WidthMinusOne
3887                            : GetWidthMinusOneValue(Ops.LHS, RHS);
3888       CGF.EmitBlock(CheckShiftBase);
3889       llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3890           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3891                                      /*NUW*/ true, /*NSW*/ true),
3892           "shl.check");
3893       if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
3894         // In C99, we are not permitted to shift a 1 bit into the sign bit.
3895         // Under C++11's rules, shifting a 1 bit into the sign bit is
3896         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3897         // define signed left shifts, so we use the C99 and C++11 rules there).
3898         // Unsigned shifts can always shift into the top bit.
3899         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3900         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3901       }
3902       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3903       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3904       CGF.EmitBlock(Cont);
3905       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3906       BaseCheck->addIncoming(Builder.getTrue(), Orig);
3907       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3908       Checks.push_back(std::make_pair(
3909           BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
3910                                         : SanitizerKind::UnsignedShiftBase));
3911     }
3912 
3913     assert(!Checks.empty());
3914     EmitBinOpCheck(Checks, Ops);
3915   }
3916 
3917   return Builder.CreateShl(Ops.LHS, RHS, "shl");
3918 }
3919 
EmitShr(const BinOpInfo & Ops)3920 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3921   // TODO: This misses out on the sanitizer check below.
3922   if (Ops.isFixedPointOp())
3923     return EmitFixedPointBinOp(Ops);
3924 
3925   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3926   // RHS to the same size as the LHS.
3927   Value *RHS = Ops.RHS;
3928   if (Ops.LHS->getType() != RHS->getType())
3929     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3930 
3931   // OpenCL 6.3j: shift values are effectively % word size of LHS.
3932   if (CGF.getLangOpts().OpenCL)
3933     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
3934   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3935            isa<llvm::IntegerType>(Ops.LHS->getType())) {
3936     CodeGenFunction::SanitizerScope SanScope(&CGF);
3937     llvm::Value *Valid =
3938         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3939     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3940   }
3941 
3942   if (Ops.Ty->hasUnsignedIntegerRepresentation())
3943     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3944   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3945 }
3946 
3947 enum IntrinsicType { VCMPEQ, VCMPGT };
3948 // return corresponding comparison intrinsic for given vector type
GetIntrinsic(IntrinsicType IT,BuiltinType::Kind ElemKind)3949 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3950                                         BuiltinType::Kind ElemKind) {
3951   switch (ElemKind) {
3952   default: llvm_unreachable("unexpected element type");
3953   case BuiltinType::Char_U:
3954   case BuiltinType::UChar:
3955     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3956                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3957   case BuiltinType::Char_S:
3958   case BuiltinType::SChar:
3959     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3960                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3961   case BuiltinType::UShort:
3962     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3963                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3964   case BuiltinType::Short:
3965     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3966                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3967   case BuiltinType::UInt:
3968     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3969                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3970   case BuiltinType::Int:
3971     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3972                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3973   case BuiltinType::ULong:
3974   case BuiltinType::ULongLong:
3975     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3976                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3977   case BuiltinType::Long:
3978   case BuiltinType::LongLong:
3979     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3980                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3981   case BuiltinType::Float:
3982     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3983                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3984   case BuiltinType::Double:
3985     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3986                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3987   case BuiltinType::UInt128:
3988     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
3989                           : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
3990   case BuiltinType::Int128:
3991     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
3992                           : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
3993   }
3994 }
3995 
EmitCompare(const BinaryOperator * E,llvm::CmpInst::Predicate UICmpOpc,llvm::CmpInst::Predicate SICmpOpc,llvm::CmpInst::Predicate FCmpOpc,bool IsSignaling)3996 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3997                                       llvm::CmpInst::Predicate UICmpOpc,
3998                                       llvm::CmpInst::Predicate SICmpOpc,
3999                                       llvm::CmpInst::Predicate FCmpOpc,
4000                                       bool IsSignaling) {
4001   TestAndClearIgnoreResultAssign();
4002   Value *Result;
4003   QualType LHSTy = E->getLHS()->getType();
4004   QualType RHSTy = E->getRHS()->getType();
4005   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
4006     assert(E->getOpcode() == BO_EQ ||
4007            E->getOpcode() == BO_NE);
4008     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
4009     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
4010     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
4011                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
4012   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4013     BinOpInfo BOInfo = EmitBinOps(E);
4014     Value *LHS = BOInfo.LHS;
4015     Value *RHS = BOInfo.RHS;
4016 
4017     // If AltiVec, the comparison results in a numeric type, so we use
4018     // intrinsics comparing vectors and giving 0 or 1 as a result
4019     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
4020       // constants for mapping CR6 register bits to predicate result
4021       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
4022 
4023       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
4024 
4025       // in several cases vector arguments order will be reversed
4026       Value *FirstVecArg = LHS,
4027             *SecondVecArg = RHS;
4028 
4029       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
4030       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();
4031 
4032       switch(E->getOpcode()) {
4033       default: llvm_unreachable("is not a comparison operation");
4034       case BO_EQ:
4035         CR6 = CR6_LT;
4036         ID = GetIntrinsic(VCMPEQ, ElementKind);
4037         break;
4038       case BO_NE:
4039         CR6 = CR6_EQ;
4040         ID = GetIntrinsic(VCMPEQ, ElementKind);
4041         break;
4042       case BO_LT:
4043         CR6 = CR6_LT;
4044         ID = GetIntrinsic(VCMPGT, ElementKind);
4045         std::swap(FirstVecArg, SecondVecArg);
4046         break;
4047       case BO_GT:
4048         CR6 = CR6_LT;
4049         ID = GetIntrinsic(VCMPGT, ElementKind);
4050         break;
4051       case BO_LE:
4052         if (ElementKind == BuiltinType::Float) {
4053           CR6 = CR6_LT;
4054           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4055           std::swap(FirstVecArg, SecondVecArg);
4056         }
4057         else {
4058           CR6 = CR6_EQ;
4059           ID = GetIntrinsic(VCMPGT, ElementKind);
4060         }
4061         break;
4062       case BO_GE:
4063         if (ElementKind == BuiltinType::Float) {
4064           CR6 = CR6_LT;
4065           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
4066         }
4067         else {
4068           CR6 = CR6_EQ;
4069           ID = GetIntrinsic(VCMPGT, ElementKind);
4070           std::swap(FirstVecArg, SecondVecArg);
4071         }
4072         break;
4073       }
4074 
4075       Value *CR6Param = Builder.getInt32(CR6);
4076       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
4077       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
4078 
4079       // The result type of intrinsic may not be same as E->getType().
4080       // If E->getType() is not BoolTy, EmitScalarConversion will do the
4081       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
4082       // do nothing, if ResultTy is not i1 at the same time, it will cause
4083       // crash later.
4084       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
4085       if (ResultTy->getBitWidth() > 1 &&
4086           E->getType() == CGF.getContext().BoolTy)
4087         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
4088       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4089                                   E->getExprLoc());
4090     }
4091 
4092     if (BOInfo.isFixedPointOp()) {
4093       Result = EmitFixedPointBinOp(BOInfo);
4094     } else if (LHS->getType()->isFPOrFPVectorTy()) {
4095       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
4096       if (!IsSignaling)
4097         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
4098       else
4099         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
4100     } else if (LHSTy->hasSignedIntegerRepresentation()) {
4101       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
4102     } else {
4103       // Unsigned integers and pointers.
4104 
4105       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
4106           !isa<llvm::ConstantPointerNull>(LHS) &&
4107           !isa<llvm::ConstantPointerNull>(RHS)) {
4108 
4109         // Dynamic information is required to be stripped for comparisons,
4110         // because it could leak the dynamic information.  Based on comparisons
4111         // of pointers to dynamic objects, the optimizer can replace one pointer
4112         // with another, which might be incorrect in presence of invariant
4113         // groups. Comparison with null is safe because null does not carry any
4114         // dynamic information.
4115         if (LHSTy.mayBeDynamicClass())
4116           LHS = Builder.CreateStripInvariantGroup(LHS);
4117         if (RHSTy.mayBeDynamicClass())
4118           RHS = Builder.CreateStripInvariantGroup(RHS);
4119       }
4120 
4121       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
4122     }
4123 
4124     // If this is a vector comparison, sign extend the result to the appropriate
4125     // vector integer type and return it (don't convert to bool).
4126     if (LHSTy->isVectorType())
4127       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
4128 
4129   } else {
4130     // Complex Comparison: can only be an equality comparison.
4131     CodeGenFunction::ComplexPairTy LHS, RHS;
4132     QualType CETy;
4133     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
4134       LHS = CGF.EmitComplexExpr(E->getLHS());
4135       CETy = CTy->getElementType();
4136     } else {
4137       LHS.first = Visit(E->getLHS());
4138       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
4139       CETy = LHSTy;
4140     }
4141     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
4142       RHS = CGF.EmitComplexExpr(E->getRHS());
4143       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
4144                                                      CTy->getElementType()) &&
4145              "The element types must always match.");
4146       (void)CTy;
4147     } else {
4148       RHS.first = Visit(E->getRHS());
4149       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
4150       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
4151              "The element types must always match.");
4152     }
4153 
4154     Value *ResultR, *ResultI;
4155     if (CETy->isRealFloatingType()) {
4156       // As complex comparisons can only be equality comparisons, they
4157       // are never signaling comparisons.
4158       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
4159       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
4160     } else {
4161       // Complex comparisons can only be equality comparisons.  As such, signed
4162       // and unsigned opcodes are the same.
4163       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
4164       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
4165     }
4166 
4167     if (E->getOpcode() == BO_EQ) {
4168       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
4169     } else {
4170       assert(E->getOpcode() == BO_NE &&
4171              "Complex comparison other than == or != ?");
4172       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
4173     }
4174   }
4175 
4176   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
4177                               E->getExprLoc());
4178 }
4179 
VisitBinAssign(const BinaryOperator * E)4180 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
4181   bool Ignore = TestAndClearIgnoreResultAssign();
4182 
4183   Value *RHS;
4184   LValue LHS;
4185 
4186   switch (E->getLHS()->getType().getObjCLifetime()) {
4187   case Qualifiers::OCL_Strong:
4188     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
4189     break;
4190 
4191   case Qualifiers::OCL_Autoreleasing:
4192     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
4193     break;
4194 
4195   case Qualifiers::OCL_ExplicitNone:
4196     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
4197     break;
4198 
4199   case Qualifiers::OCL_Weak:
4200     RHS = Visit(E->getRHS());
4201     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4202     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
4203     break;
4204 
4205   case Qualifiers::OCL_None:
4206     // __block variables need to have the rhs evaluated first, plus
4207     // this should improve codegen just a little.
4208     RHS = Visit(E->getRHS());
4209     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
4210 
4211     // Store the value into the LHS.  Bit-fields are handled specially
4212     // because the result is altered by the store, i.e., [C99 6.5.16p1]
4213     // 'An assignment expression has the value of the left operand after
4214     // the assignment...'.
4215     if (LHS.isBitField()) {
4216       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
4217     } else {
4218       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
4219       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
4220     }
4221   }
4222 
4223   // If the result is clearly ignored, return now.
4224   if (Ignore)
4225     return nullptr;
4226 
4227   // The result of an assignment in C is the assigned r-value.
4228   if (!CGF.getLangOpts().CPlusPlus)
4229     return RHS;
4230 
4231   // If the lvalue is non-volatile, return the computed value of the assignment.
4232   if (!LHS.isVolatileQualified())
4233     return RHS;
4234 
4235   // Otherwise, reload the value.
4236   return EmitLoadOfLValue(LHS, E->getExprLoc());
4237 }
4238 
VisitBinLAnd(const BinaryOperator * E)4239 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
4240   // Perform vector logical and on comparisons with zero vectors.
4241   if (E->getType()->isVectorType()) {
4242     CGF.incrementProfileCounter(E);
4243 
4244     Value *LHS = Visit(E->getLHS());
4245     Value *RHS = Visit(E->getRHS());
4246     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4247     if (LHS->getType()->isFPOrFPVectorTy()) {
4248       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4249           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4250       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4251       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4252     } else {
4253       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4254       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4255     }
4256     Value *And = Builder.CreateAnd(LHS, RHS);
4257     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4258   }
4259 
4260   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4261   llvm::Type *ResTy = ConvertType(E->getType());
4262 
4263   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4264   // If we have 1 && X, just emit X without inserting the control flow.
4265   bool LHSCondVal;
4266   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4267     if (LHSCondVal) { // If we have 1 && X, just emit X.
4268       CGF.incrementProfileCounter(E);
4269 
4270       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4271 
4272       // If we're generating for profiling or coverage, generate a branch to a
4273       // block that increments the RHS counter needed to track branch condition
4274       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4275       // "FalseBlock" after the increment is done.
4276       if (InstrumentRegions &&
4277           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4278         llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end");
4279         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4280         Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock);
4281         CGF.EmitBlock(RHSBlockCnt);
4282         CGF.incrementProfileCounter(E->getRHS());
4283         CGF.EmitBranch(FBlock);
4284         CGF.EmitBlock(FBlock);
4285       }
4286 
4287       // ZExt result to int or bool.
4288       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4289     }
4290 
4291     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4292     if (!CGF.ContainsLabel(E->getRHS()))
4293       return llvm::Constant::getNullValue(ResTy);
4294   }
4295 
4296   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4297   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
4298 
4299   CodeGenFunction::ConditionalEvaluation eval(CGF);
4300 
4301   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
4302   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4303                            CGF.getProfileCount(E->getRHS()));
4304 
4305   // Any edges into the ContBlock are now from an (indeterminate number of)
4306   // edges from this first condition.  All of these values will be false.  Start
4307   // setting up the PHI node in the Cont Block for this.
4308   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4309                                             "", ContBlock);
4310   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4311        PI != PE; ++PI)
4312     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4313 
4314   eval.begin(CGF);
4315   CGF.EmitBlock(RHSBlock);
4316   CGF.incrementProfileCounter(E);
4317   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4318   eval.end(CGF);
4319 
4320   // Reaquire the RHS block, as there may be subblocks inserted.
4321   RHSBlock = Builder.GetInsertBlock();
4322 
4323   // If we're generating for profiling or coverage, generate a branch on the
4324   // RHS to a block that increments the RHS true counter needed to track branch
4325   // condition coverage.
4326   if (InstrumentRegions &&
4327       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4328     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt");
4329     Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock);
4330     CGF.EmitBlock(RHSBlockCnt);
4331     CGF.incrementProfileCounter(E->getRHS());
4332     CGF.EmitBranch(ContBlock);
4333     PN->addIncoming(RHSCond, RHSBlockCnt);
4334   }
4335 
4336   // Emit an unconditional branch from this block to ContBlock.
4337   {
4338     // There is no need to emit line number for unconditional branch.
4339     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4340     CGF.EmitBlock(ContBlock);
4341   }
4342   // Insert an entry into the phi node for the edge with the value of RHSCond.
4343   PN->addIncoming(RHSCond, RHSBlock);
4344 
4345   // Artificial location to preserve the scope information
4346   {
4347     auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4348     PN->setDebugLoc(Builder.getCurrentDebugLocation());
4349   }
4350 
4351   // ZExt result to int.
4352   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4353 }
4354 
VisitBinLOr(const BinaryOperator * E)4355 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4356   // Perform vector logical or on comparisons with zero vectors.
4357   if (E->getType()->isVectorType()) {
4358     CGF.incrementProfileCounter(E);
4359 
4360     Value *LHS = Visit(E->getLHS());
4361     Value *RHS = Visit(E->getRHS());
4362     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4363     if (LHS->getType()->isFPOrFPVectorTy()) {
4364       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
4365           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
4366       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4367       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4368     } else {
4369       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4370       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4371     }
4372     Value *Or = Builder.CreateOr(LHS, RHS);
4373     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4374   }
4375 
4376   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr();
4377   llvm::Type *ResTy = ConvertType(E->getType());
4378 
4379   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4380   // If we have 0 || X, just emit X without inserting the control flow.
4381   bool LHSCondVal;
4382   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4383     if (!LHSCondVal) { // If we have 0 || X, just emit X.
4384       CGF.incrementProfileCounter(E);
4385 
4386       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4387 
4388       // If we're generating for profiling or coverage, generate a branch to a
4389       // block that increments the RHS counter need to track branch condition
4390       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and
4391       // "FalseBlock" after the increment is done.
4392       if (InstrumentRegions &&
4393           CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4394         llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end");
4395         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4396         Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt);
4397         CGF.EmitBlock(RHSBlockCnt);
4398         CGF.incrementProfileCounter(E->getRHS());
4399         CGF.EmitBranch(FBlock);
4400         CGF.EmitBlock(FBlock);
4401       }
4402 
4403       // ZExt result to int or bool.
4404       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4405     }
4406 
4407     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4408     if (!CGF.ContainsLabel(E->getRHS()))
4409       return llvm::ConstantInt::get(ResTy, 1);
4410   }
4411 
4412   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4413   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4414 
4415   CodeGenFunction::ConditionalEvaluation eval(CGF);
4416 
4417   // Branch on the LHS first.  If it is true, go to the success (cont) block.
4418   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4419                            CGF.getCurrentProfileCount() -
4420                                CGF.getProfileCount(E->getRHS()));
4421 
4422   // Any edges into the ContBlock are now from an (indeterminate number of)
4423   // edges from this first condition.  All of these values will be true.  Start
4424   // setting up the PHI node in the Cont Block for this.
4425   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4426                                             "", ContBlock);
4427   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4428        PI != PE; ++PI)
4429     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4430 
4431   eval.begin(CGF);
4432 
4433   // Emit the RHS condition as a bool value.
4434   CGF.EmitBlock(RHSBlock);
4435   CGF.incrementProfileCounter(E);
4436   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4437 
4438   eval.end(CGF);
4439 
4440   // Reaquire the RHS block, as there may be subblocks inserted.
4441   RHSBlock = Builder.GetInsertBlock();
4442 
4443   // If we're generating for profiling or coverage, generate a branch on the
4444   // RHS to a block that increments the RHS true counter needed to track branch
4445   // condition coverage.
4446   if (InstrumentRegions &&
4447       CodeGenFunction::isInstrumentedCondition(E->getRHS())) {
4448     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt");
4449     Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt);
4450     CGF.EmitBlock(RHSBlockCnt);
4451     CGF.incrementProfileCounter(E->getRHS());
4452     CGF.EmitBranch(ContBlock);
4453     PN->addIncoming(RHSCond, RHSBlockCnt);
4454   }
4455 
4456   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
4457   // into the phi node for the edge with the value of RHSCond.
4458   CGF.EmitBlock(ContBlock);
4459   PN->addIncoming(RHSCond, RHSBlock);
4460 
4461   // ZExt result to int.
4462   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4463 }
4464 
VisitBinComma(const BinaryOperator * E)4465 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4466   CGF.EmitIgnoredExpr(E->getLHS());
4467   CGF.EnsureInsertPoint();
4468   return Visit(E->getRHS());
4469 }
4470 
4471 //===----------------------------------------------------------------------===//
4472 //                             Other Operators
4473 //===----------------------------------------------------------------------===//
4474 
4475 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4476 /// expression is cheap enough and side-effect-free enough to evaluate
4477 /// unconditionally instead of conditionally.  This is used to convert control
4478 /// flow into selects in some cases.
isCheapEnoughToEvaluateUnconditionally(const Expr * E,CodeGenFunction & CGF)4479 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4480                                                    CodeGenFunction &CGF) {
4481   // Anything that is an integer or floating point constant is fine.
4482   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4483 
4484   // Even non-volatile automatic variables can't be evaluated unconditionally.
4485   // Referencing a thread_local may cause non-trivial initialization work to
4486   // occur. If we're inside a lambda and one of the variables is from the scope
4487   // outside the lambda, that function may have returned already. Reading its
4488   // locals is a bad idea. Also, these reads may introduce races there didn't
4489   // exist in the source-level program.
4490 }
4491 
4492 
4493 Value *ScalarExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)4494 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4495   TestAndClearIgnoreResultAssign();
4496 
4497   // Bind the common expression if necessary.
4498   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4499 
4500   Expr *condExpr = E->getCond();
4501   Expr *lhsExpr = E->getTrueExpr();
4502   Expr *rhsExpr = E->getFalseExpr();
4503 
4504   // If the condition constant folds and can be elided, try to avoid emitting
4505   // the condition and the dead arm.
4506   bool CondExprBool;
4507   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4508     Expr *live = lhsExpr, *dead = rhsExpr;
4509     if (!CondExprBool) std::swap(live, dead);
4510 
4511     // If the dead side doesn't have labels we need, just emit the Live part.
4512     if (!CGF.ContainsLabel(dead)) {
4513       if (CondExprBool)
4514         CGF.incrementProfileCounter(E);
4515       Value *Result = Visit(live);
4516 
4517       // If the live part is a throw expression, it acts like it has a void
4518       // type, so evaluating it returns a null Value*.  However, a conditional
4519       // with non-void type must return a non-null Value*.
4520       if (!Result && !E->getType()->isVoidType())
4521         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4522 
4523       return Result;
4524     }
4525   }
4526 
4527   // OpenCL: If the condition is a vector, we can treat this condition like
4528   // the select function.
4529   if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
4530       condExpr->getType()->isExtVectorType()) {
4531     CGF.incrementProfileCounter(E);
4532 
4533     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4534     llvm::Value *LHS = Visit(lhsExpr);
4535     llvm::Value *RHS = Visit(rhsExpr);
4536 
4537     llvm::Type *condType = ConvertType(condExpr->getType());
4538     auto *vecTy = cast<llvm::FixedVectorType>(condType);
4539 
4540     unsigned numElem = vecTy->getNumElements();
4541     llvm::Type *elemType = vecTy->getElementType();
4542 
4543     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4544     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4545     llvm::Value *tmp = Builder.CreateSExt(
4546         TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
4547     llvm::Value *tmp2 = Builder.CreateNot(tmp);
4548 
4549     // Cast float to int to perform ANDs if necessary.
4550     llvm::Value *RHSTmp = RHS;
4551     llvm::Value *LHSTmp = LHS;
4552     bool wasCast = false;
4553     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4554     if (rhsVTy->getElementType()->isFloatingPointTy()) {
4555       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4556       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4557       wasCast = true;
4558     }
4559 
4560     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4561     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4562     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4563     if (wasCast)
4564       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4565 
4566     return tmp5;
4567   }
4568 
4569   if (condExpr->getType()->isVectorType()) {
4570     CGF.incrementProfileCounter(E);
4571 
4572     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4573     llvm::Value *LHS = Visit(lhsExpr);
4574     llvm::Value *RHS = Visit(rhsExpr);
4575 
4576     llvm::Type *CondType = ConvertType(condExpr->getType());
4577     auto *VecTy = cast<llvm::VectorType>(CondType);
4578     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);
4579 
4580     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
4581     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
4582   }
4583 
4584   // If this is a really simple expression (like x ? 4 : 5), emit this as a
4585   // select instead of as control flow.  We can only do this if it is cheap and
4586   // safe to evaluate the LHS and RHS unconditionally.
4587   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4588       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4589     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4590     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4591 
4592     CGF.incrementProfileCounter(E, StepV);
4593 
4594     llvm::Value *LHS = Visit(lhsExpr);
4595     llvm::Value *RHS = Visit(rhsExpr);
4596     if (!LHS) {
4597       // If the conditional has void type, make sure we return a null Value*.
4598       assert(!RHS && "LHS and RHS types must match");
4599       return nullptr;
4600     }
4601     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4602   }
4603 
4604   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4605   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4606   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4607 
4608   CodeGenFunction::ConditionalEvaluation eval(CGF);
4609   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4610                            CGF.getProfileCount(lhsExpr));
4611 
4612   CGF.EmitBlock(LHSBlock);
4613   CGF.incrementProfileCounter(E);
4614   eval.begin(CGF);
4615   Value *LHS = Visit(lhsExpr);
4616   eval.end(CGF);
4617 
4618   LHSBlock = Builder.GetInsertBlock();
4619   Builder.CreateBr(ContBlock);
4620 
4621   CGF.EmitBlock(RHSBlock);
4622   eval.begin(CGF);
4623   Value *RHS = Visit(rhsExpr);
4624   eval.end(CGF);
4625 
4626   RHSBlock = Builder.GetInsertBlock();
4627   CGF.EmitBlock(ContBlock);
4628 
4629   // If the LHS or RHS is a throw expression, it will be legitimately null.
4630   if (!LHS)
4631     return RHS;
4632   if (!RHS)
4633     return LHS;
4634 
4635   // Create a PHI node for the real part.
4636   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4637   PN->addIncoming(LHS, LHSBlock);
4638   PN->addIncoming(RHS, RHSBlock);
4639   return PN;
4640 }
4641 
VisitChooseExpr(ChooseExpr * E)4642 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4643   return Visit(E->getChosenSubExpr());
4644 }
4645 
VisitVAArgExpr(VAArgExpr * VE)4646 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4647   QualType Ty = VE->getType();
4648 
4649   if (Ty->isVariablyModifiedType())
4650     CGF.EmitVariablyModifiedType(Ty);
4651 
4652   Address ArgValue = Address::invalid();
4653   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4654 
4655   llvm::Type *ArgTy = ConvertType(VE->getType());
4656 
4657   // If EmitVAArg fails, emit an error.
4658   if (!ArgPtr.isValid()) {
4659     CGF.ErrorUnsupported(VE, "va_arg expression");
4660     return llvm::UndefValue::get(ArgTy);
4661   }
4662 
4663   // FIXME Volatility.
4664   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4665 
4666   // If EmitVAArg promoted the type, we must truncate it.
4667   if (ArgTy != Val->getType()) {
4668     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4669       Val = Builder.CreateIntToPtr(Val, ArgTy);
4670     else
4671       Val = Builder.CreateTrunc(Val, ArgTy);
4672   }
4673 
4674   return Val;
4675 }
4676 
VisitBlockExpr(const BlockExpr * block)4677 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4678   return CGF.EmitBlockLiteral(block);
4679 }
4680 
4681 // Convert a vec3 to vec4, or vice versa.
ConvertVec3AndVec4(CGBuilderTy & Builder,CodeGenFunction & CGF,Value * Src,unsigned NumElementsDst)4682 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4683                                  Value *Src, unsigned NumElementsDst) {
4684   static constexpr int Mask[] = {0, 1, 2, -1};
4685   return Builder.CreateShuffleVector(Src,
4686                                      llvm::makeArrayRef(Mask, NumElementsDst));
4687 }
4688 
4689 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
4690 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
4691 // but could be scalar or vectors of different lengths, and either can be
4692 // pointer.
4693 // There are 4 cases:
4694 // 1. non-pointer -> non-pointer  : needs 1 bitcast
4695 // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
4696 // 3. pointer -> non-pointer
4697 //   a) pointer -> intptr_t       : needs 1 ptrtoint
4698 //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
4699 // 4. non-pointer -> pointer
4700 //   a) intptr_t -> pointer       : needs 1 inttoptr
4701 //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
4702 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
4703 // allow casting directly between pointer types and non-integer non-pointer
4704 // types.
createCastsForTypeOfSameSize(CGBuilderTy & Builder,const llvm::DataLayout & DL,Value * Src,llvm::Type * DstTy,StringRef Name="")4705 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4706                                            const llvm::DataLayout &DL,
4707                                            Value *Src, llvm::Type *DstTy,
4708                                            StringRef Name = "") {
4709   auto SrcTy = Src->getType();
4710 
4711   // Case 1.
4712   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4713     return Builder.CreateBitCast(Src, DstTy, Name);
4714 
4715   // Case 2.
4716   if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4717     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4718 
4719   // Case 3.
4720   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4721     // Case 3b.
4722     if (!DstTy->isIntegerTy())
4723       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4724     // Cases 3a and 3b.
4725     return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4726   }
4727 
4728   // Case 4b.
4729   if (!SrcTy->isIntegerTy())
4730     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4731   // Cases 4a and 4b.
4732   return Builder.CreateIntToPtr(Src, DstTy, Name);
4733 }
4734 
VisitAsTypeExpr(AsTypeExpr * E)4735 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4736   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
4737   llvm::Type *DstTy = ConvertType(E->getType());
4738 
4739   llvm::Type *SrcTy = Src->getType();
4740   unsigned NumElementsSrc =
4741       isa<llvm::VectorType>(SrcTy)
4742           ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
4743           : 0;
4744   unsigned NumElementsDst =
4745       isa<llvm::VectorType>(DstTy)
4746           ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
4747           : 0;
4748 
4749   // Going from vec3 to non-vec3 is a special case and requires a shuffle
4750   // vector to get a vec4, then a bitcast if the target type is different.
4751   if (NumElementsSrc == 3 && NumElementsDst != 3) {
4752     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4753 
4754     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4755       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4756                                          DstTy);
4757     }
4758 
4759     Src->setName("astype");
4760     return Src;
4761   }
4762 
4763   // Going from non-vec3 to vec3 is a special case and requires a bitcast
4764   // to vec4 if the original type is not vec4, then a shuffle vector to
4765   // get a vec3.
4766   if (NumElementsSrc != 3 && NumElementsDst == 3) {
4767     if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4768       auto *Vec4Ty = llvm::FixedVectorType::get(
4769           cast<llvm::VectorType>(DstTy)->getElementType(), 4);
4770       Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4771                                          Vec4Ty);
4772     }
4773 
4774     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4775     Src->setName("astype");
4776     return Src;
4777   }
4778 
4779   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4780                                       Src, DstTy, "astype");
4781 }
4782 
VisitAtomicExpr(AtomicExpr * E)4783 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4784   return CGF.EmitAtomicExpr(E).getScalarVal();
4785 }
4786 
4787 //===----------------------------------------------------------------------===//
4788 //                         Entry Point into this File
4789 //===----------------------------------------------------------------------===//
4790 
4791 /// Emit the computation of the specified expression of scalar type, ignoring
4792 /// the result.
EmitScalarExpr(const Expr * E,bool IgnoreResultAssign)4793 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4794   assert(E && hasScalarEvaluationKind(E->getType()) &&
4795          "Invalid scalar expression to emit");
4796 
4797   return ScalarExprEmitter(*this, IgnoreResultAssign)
4798       .Visit(const_cast<Expr *>(E));
4799 }
4800 
4801 /// Emit a conversion from the specified type to the specified destination type,
4802 /// both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)4803 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4804                                              QualType DstTy,
4805                                              SourceLocation Loc) {
4806   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
4807          "Invalid scalar expression to emit");
4808   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4809 }
4810 
4811 /// Emit a conversion from the specified complex type to the specified
4812 /// destination type, where the destination type is an LLVM scalar type.
EmitComplexToScalarConversion(ComplexPairTy Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)4813 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4814                                                       QualType SrcTy,
4815                                                       QualType DstTy,
4816                                                       SourceLocation Loc) {
4817   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
4818          "Invalid complex -> scalar conversion");
4819   return ScalarExprEmitter(*this)
4820       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4821 }
4822 
4823 
4824 llvm::Value *CodeGenFunction::
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)4825 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4826                         bool isInc, bool isPre) {
4827   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4828 }
4829 
EmitObjCIsaExpr(const ObjCIsaExpr * E)4830 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4831   // object->isa or (*object).isa
4832   // Generate code as for: *(Class*)object
4833 
4834   Expr *BaseExpr = E->getBase();
4835   Address Addr = Address::invalid();
4836   if (BaseExpr->isRValue()) {
4837     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4838   } else {
4839     Addr = EmitLValue(BaseExpr).getAddress(*this);
4840   }
4841 
4842   // Cast the address to Class*.
4843   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4844   return MakeAddrLValue(Addr, E->getType());
4845 }
4846 
4847 
EmitCompoundAssignmentLValue(const CompoundAssignOperator * E)4848 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4849                                             const CompoundAssignOperator *E) {
4850   ScalarExprEmitter Scalar(*this);
4851   Value *Result = nullptr;
4852   switch (E->getOpcode()) {
4853 #define COMPOUND_OP(Op)                                                       \
4854     case BO_##Op##Assign:                                                     \
4855       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4856                                              Result)
4857   COMPOUND_OP(Mul);
4858   COMPOUND_OP(Div);
4859   COMPOUND_OP(Rem);
4860   COMPOUND_OP(Add);
4861   COMPOUND_OP(Sub);
4862   COMPOUND_OP(Shl);
4863   COMPOUND_OP(Shr);
4864   COMPOUND_OP(And);
4865   COMPOUND_OP(Xor);
4866   COMPOUND_OP(Or);
4867 #undef COMPOUND_OP
4868 
4869   case BO_PtrMemD:
4870   case BO_PtrMemI:
4871   case BO_Mul:
4872   case BO_Div:
4873   case BO_Rem:
4874   case BO_Add:
4875   case BO_Sub:
4876   case BO_Shl:
4877   case BO_Shr:
4878   case BO_LT:
4879   case BO_GT:
4880   case BO_LE:
4881   case BO_GE:
4882   case BO_EQ:
4883   case BO_NE:
4884   case BO_Cmp:
4885   case BO_And:
4886   case BO_Xor:
4887   case BO_Or:
4888   case BO_LAnd:
4889   case BO_LOr:
4890   case BO_Assign:
4891   case BO_Comma:
4892     llvm_unreachable("Not valid compound assignment operators");
4893   }
4894 
4895   llvm_unreachable("Unhandled compound assignment operator");
4896 }
4897 
4898 struct GEPOffsetAndOverflow {
4899   // The total (signed) byte offset for the GEP.
4900   llvm::Value *TotalOffset;
4901   // The offset overflow flag - true if the total offset overflows.
4902   llvm::Value *OffsetOverflows;
4903 };
4904 
4905 /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4906 /// and compute the total offset it applies from it's base pointer BasePtr.
4907 /// Returns offset in bytes and a boolean flag whether an overflow happened
4908 /// during evaluation.
EmitGEPOffsetInBytes(Value * BasePtr,Value * GEPVal,llvm::LLVMContext & VMContext,CodeGenModule & CGM,CGBuilderTy & Builder)4909 static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4910                                                  llvm::LLVMContext &VMContext,
4911                                                  CodeGenModule &CGM,
4912                                                  CGBuilderTy &Builder) {
4913   const auto &DL = CGM.getDataLayout();
4914 
4915   // The total (signed) byte offset for the GEP.
4916   llvm::Value *TotalOffset = nullptr;
4917 
4918   // Was the GEP already reduced to a constant?
4919   if (isa<llvm::Constant>(GEPVal)) {
4920     // Compute the offset by casting both pointers to integers and subtracting:
4921     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4922     Value *BasePtr_int =
4923         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4924     Value *GEPVal_int =
4925         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4926     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4927     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4928   }
4929 
4930   auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4931   assert(GEP->getPointerOperand() == BasePtr &&
4932          "BasePtr must be the the base of the GEP.");
4933   assert(GEP->isInBounds() && "Expected inbounds GEP");
4934 
4935   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4936 
4937   // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4938   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4939   auto *SAddIntrinsic =
4940       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4941   auto *SMulIntrinsic =
4942       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4943 
4944   // The offset overflow flag - true if the total offset overflows.
4945   llvm::Value *OffsetOverflows = Builder.getFalse();
4946 
4947   /// Return the result of the given binary operation.
4948   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4949                   llvm::Value *RHS) -> llvm::Value * {
4950     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
4951 
4952     // If the operands are constants, return a constant result.
4953     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4954       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4955         llvm::APInt N;
4956         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4957                                                   /*Signed=*/true, N);
4958         if (HasOverflow)
4959           OffsetOverflows = Builder.getTrue();
4960         return llvm::ConstantInt::get(VMContext, N);
4961       }
4962     }
4963 
4964     // Otherwise, compute the result with checked arithmetic.
4965     auto *ResultAndOverflow = Builder.CreateCall(
4966         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4967     OffsetOverflows = Builder.CreateOr(
4968         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4969     return Builder.CreateExtractValue(ResultAndOverflow, 0);
4970   };
4971 
4972   // Determine the total byte offset by looking at each GEP operand.
4973   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4974        GTI != GTE; ++GTI) {
4975     llvm::Value *LocalOffset;
4976     auto *Index = GTI.getOperand();
4977     // Compute the local offset contributed by this indexing step:
4978     if (auto *STy = GTI.getStructTypeOrNull()) {
4979       // For struct indexing, the local offset is the byte position of the
4980       // specified field.
4981       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4982       LocalOffset = llvm::ConstantInt::get(
4983           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4984     } else {
4985       // Otherwise this is array-like indexing. The local offset is the index
4986       // multiplied by the element size.
4987       auto *ElementSize = llvm::ConstantInt::get(
4988           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4989       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4990       LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4991     }
4992 
4993     // If this is the first offset, set it as the total offset. Otherwise, add
4994     // the local offset into the running total.
4995     if (!TotalOffset || TotalOffset == Zero)
4996       TotalOffset = LocalOffset;
4997     else
4998       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4999   }
5000 
5001   return {TotalOffset, OffsetOverflows};
5002 }
5003 
5004 Value *
EmitCheckedInBoundsGEP(Value * Ptr,ArrayRef<Value * > IdxList,bool SignedIndices,bool IsSubtraction,SourceLocation Loc,const Twine & Name)5005 CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
5006                                         bool SignedIndices, bool IsSubtraction,
5007                                         SourceLocation Loc, const Twine &Name) {
5008   Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
5009 
5010   // If the pointer overflow sanitizer isn't enabled, do nothing.
5011   if (!SanOpts.has(SanitizerKind::PointerOverflow))
5012     return GEPVal;
5013 
5014   llvm::Type *PtrTy = Ptr->getType();
5015 
5016   // Perform nullptr-and-offset check unless the nullptr is defined.
5017   bool PerformNullCheck = !NullPointerIsDefined(
5018       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
5019   // Check for overflows unless the GEP got constant-folded,
5020   // and only in the default address space
5021   bool PerformOverflowCheck =
5022       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
5023 
5024   if (!(PerformNullCheck || PerformOverflowCheck))
5025     return GEPVal;
5026 
5027   const auto &DL = CGM.getDataLayout();
5028 
5029   SanitizerScope SanScope(this);
5030   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
5031 
5032   GEPOffsetAndOverflow EvaluatedGEP =
5033       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
5034 
5035   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
5036           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
5037          "If the offset got constant-folded, we don't expect that there was an "
5038          "overflow.");
5039 
5040   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
5041 
5042   // Common case: if the total offset is zero, and we are using C++ semantics,
5043   // where nullptr+0 is defined, don't emit a check.
5044   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
5045     return GEPVal;
5046 
5047   // Now that we've computed the total offset, add it to the base pointer (with
5048   // wrapping semantics).
5049   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
5050   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
5051 
5052   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
5053 
5054   if (PerformNullCheck) {
5055     // In C++, if the base pointer evaluates to a null pointer value,
5056     // the only valid  pointer this inbounds GEP can produce is also
5057     // a null pointer, so the offset must also evaluate to zero.
5058     // Likewise, if we have non-zero base pointer, we can not get null pointer
5059     // as a result, so the offset can not be -intptr_t(BasePtr).
5060     // In other words, both pointers are either null, or both are non-null,
5061     // or the behaviour is undefined.
5062     //
5063     // C, however, is more strict in this regard, and gives more
5064     // optimization opportunities: in C, additionally, nullptr+0 is undefined.
5065     // So both the input to the 'gep inbounds' AND the output must not be null.
5066     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
5067     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
5068     auto *Valid =
5069         CGM.getLangOpts().CPlusPlus
5070             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
5071             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
5072     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
5073   }
5074 
5075   if (PerformOverflowCheck) {
5076     // The GEP is valid if:
5077     // 1) The total offset doesn't overflow, and
5078     // 2) The sign of the difference between the computed address and the base
5079     // pointer matches the sign of the total offset.
5080     llvm::Value *ValidGEP;
5081     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
5082     if (SignedIndices) {
5083       // GEP is computed as `unsigned base + signed offset`, therefore:
5084       // * If offset was positive, then the computed pointer can not be
5085       //   [unsigned] less than the base pointer, unless it overflowed.
5086       // * If offset was negative, then the computed pointer can not be
5087       //   [unsigned] greater than the bas pointere, unless it overflowed.
5088       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5089       auto *PosOrZeroOffset =
5090           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
5091       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
5092       ValidGEP =
5093           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
5094     } else if (!IsSubtraction) {
5095       // GEP is computed as `unsigned base + unsigned offset`,  therefore the
5096       // computed pointer can not be [unsigned] less than base pointer,
5097       // unless there was an overflow.
5098       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
5099       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
5100     } else {
5101       // GEP is computed as `unsigned base - unsigned offset`, therefore the
5102       // computed pointer can not be [unsigned] greater than base pointer,
5103       // unless there was an overflow.
5104       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
5105       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
5106     }
5107     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
5108     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
5109   }
5110 
5111   assert(!Checks.empty() && "Should have produced some checks.");
5112 
5113   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
5114   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
5115   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
5116   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
5117 
5118   return GEPVal;
5119 }
5120