xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Target/Hexagon/HexagonVectorCombine.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===-- HexagonVectorCombine.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // HexagonVectorCombine is a utility class implementing a variety of functions
9 // that assist in vector-based optimizations.
10 //
11 // AlignVectors: replace unaligned vector loads and stores with aligned ones.
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 #include "llvm/CodeGen/TargetPassConfig.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/IntrinsicsHexagon.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/InitializePasses.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetMachine.h"
39 
40 #include "HexagonSubtarget.h"
41 #include "HexagonTargetMachine.h"
42 
43 #include <algorithm>
44 #include <deque>
45 #include <map>
46 #include <set>
47 #include <utility>
48 #include <vector>
49 
50 #define DEBUG_TYPE "hexagon-vc"
51 
52 using namespace llvm;
53 
54 namespace {
55 class HexagonVectorCombine {
56 public:
HexagonVectorCombine(Function & F_,AliasAnalysis & AA_,AssumptionCache & AC_,DominatorTree & DT_,TargetLibraryInfo & TLI_,const TargetMachine & TM_)57   HexagonVectorCombine(Function &F_, AliasAnalysis &AA_, AssumptionCache &AC_,
58                        DominatorTree &DT_, TargetLibraryInfo &TLI_,
59                        const TargetMachine &TM_)
60       : F(F_), DL(F.getParent()->getDataLayout()), AA(AA_), AC(AC_), DT(DT_),
61         TLI(TLI_),
62         HST(static_cast<const HexagonSubtarget &>(*TM_.getSubtargetImpl(F))) {}
63 
64   bool run();
65 
66   // Common integer type.
67   IntegerType *getIntTy() const;
68   // Byte type: either scalar (when Length = 0), or vector with given
69   // element count.
70   Type *getByteTy(int ElemCount = 0) const;
71   // Boolean type: either scalar (when Length = 0), or vector with given
72   // element count.
73   Type *getBoolTy(int ElemCount = 0) const;
74   // Create a ConstantInt of type returned by getIntTy with the value Val.
75   ConstantInt *getConstInt(int Val) const;
76   // Get the integer value of V, if it exists.
77   Optional<APInt> getIntValue(const Value *Val) const;
78   // Is V a constant 0, or a vector of 0s?
79   bool isZero(const Value *Val) const;
80   // Is V an undef value?
81   bool isUndef(const Value *Val) const;
82 
83   int getSizeOf(const Value *Val) const;
84   int getSizeOf(const Type *Ty) const;
85   int getTypeAlignment(Type *Ty) const;
86 
87   VectorType *getByteVectorTy(int ScLen) const;
88   Constant *getNullValue(Type *Ty) const;
89   Constant *getFullValue(Type *Ty) const;
90 
91   Value *insertb(IRBuilder<> &Builder, Value *Dest, Value *Src, int Start,
92                  int Length, int Where) const;
93   Value *vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const;
94   Value *vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const;
95   Value *concat(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) const;
96   Value *vresize(IRBuilder<> &Builder, Value *Val, int NewSize,
97                  Value *Pad) const;
98   Value *rescale(IRBuilder<> &Builder, Value *Mask, Type *FromTy,
99                  Type *ToTy) const;
100   Value *vlsb(IRBuilder<> &Builder, Value *Val) const;
101   Value *vbytes(IRBuilder<> &Builder, Value *Val) const;
102 
103   Value *createHvxIntrinsic(IRBuilder<> &Builder, Intrinsic::ID IntID,
104                             Type *RetTy, ArrayRef<Value *> Args) const;
105 
106   Optional<int> calculatePointerDifference(Value *Ptr0, Value *Ptr1) const;
107 
108   template <typename T = std::vector<Instruction *>>
109   bool isSafeToMoveBeforeInBB(const Instruction &In,
110                               BasicBlock::const_iterator To,
111                               const T &Ignore = {}) const;
112 
113   Function &F;
114   const DataLayout &DL;
115   AliasAnalysis &AA;
116   AssumptionCache &AC;
117   DominatorTree &DT;
118   TargetLibraryInfo &TLI;
119   const HexagonSubtarget &HST;
120 
121 private:
122 #ifndef NDEBUG
123   // These two functions are only used for assertions at the moment.
124   bool isByteVecTy(Type *Ty) const;
125   bool isSectorTy(Type *Ty) const;
126 #endif
127   Value *getElementRange(IRBuilder<> &Builder, Value *Lo, Value *Hi, int Start,
128                          int Length) const;
129 };
130 
131 class AlignVectors {
132 public:
AlignVectors(HexagonVectorCombine & HVC_)133   AlignVectors(HexagonVectorCombine &HVC_) : HVC(HVC_) {}
134 
135   bool run();
136 
137 private:
138   using InstList = std::vector<Instruction *>;
139 
140   struct Segment {
141     void *Data;
142     int Start;
143     int Size;
144   };
145 
146   struct AddrInfo {
147     AddrInfo(const AddrInfo &) = default;
AddrInfo__anon8795e6040111::AlignVectors::AddrInfo148     AddrInfo(const HexagonVectorCombine &HVC, Instruction *I, Value *A, Type *T,
149              Align H)
150         : Inst(I), Addr(A), ValTy(T), HaveAlign(H),
151           NeedAlign(HVC.getTypeAlignment(ValTy)) {}
152 
153     // XXX: add Size member?
154     Instruction *Inst;
155     Value *Addr;
156     Type *ValTy;
157     Align HaveAlign;
158     Align NeedAlign;
159     int Offset = 0; // Offset (in bytes) from the first member of the
160                     // containing AddrList.
161   };
162   using AddrList = std::vector<AddrInfo>;
163 
164   struct InstrLess {
operator ()__anon8795e6040111::AlignVectors::InstrLess165     bool operator()(const Instruction *A, const Instruction *B) const {
166       return A->comesBefore(B);
167     }
168   };
169   using DepList = std::set<Instruction *, InstrLess>;
170 
171   struct MoveGroup {
MoveGroup__anon8795e6040111::AlignVectors::MoveGroup172     MoveGroup(const AddrInfo &AI, Instruction *B, bool Hvx, bool Load)
173         : Base(B), Main{AI.Inst}, IsHvx(Hvx), IsLoad(Load) {}
174     Instruction *Base; // Base instruction of the parent address group.
175     InstList Main;     // Main group of instructions.
176     InstList Deps;     // List of dependencies.
177     bool IsHvx;        // Is this group of HVX instructions?
178     bool IsLoad;       // Is this a load group?
179   };
180   using MoveList = std::vector<MoveGroup>;
181 
182   struct ByteSpan {
183     struct Segment {
184       // Segment of a Value: 'Len' bytes starting at byte 'Begin'.
Segment__anon8795e6040111::AlignVectors::ByteSpan::Segment185       Segment(Value *Val, int Begin, int Len)
186           : Val(Val), Start(Begin), Size(Len) {}
187       Segment(const Segment &Seg) = default;
188       Value *Val; // Value representable as a sequence of bytes.
189       int Start;  // First byte of the value that belongs to the segment.
190       int Size;   // Number of bytes in the segment.
191     };
192 
193     struct Block {
Block__anon8795e6040111::AlignVectors::ByteSpan::Block194       Block(Value *Val, int Len, int Pos) : Seg(Val, 0, Len), Pos(Pos) {}
Block__anon8795e6040111::AlignVectors::ByteSpan::Block195       Block(Value *Val, int Off, int Len, int Pos)
196           : Seg(Val, Off, Len), Pos(Pos) {}
197       Block(const Block &Blk) = default;
198       Segment Seg; // Value segment.
199       int Pos;     // Position (offset) of the segment in the Block.
200     };
201 
202     int extent() const;
203     ByteSpan section(int Start, int Length) const;
204     ByteSpan &shift(int Offset);
205     SmallVector<Value *, 8> values() const;
206 
size__anon8795e6040111::AlignVectors::ByteSpan207     int size() const { return Blocks.size(); }
operator []__anon8795e6040111::AlignVectors::ByteSpan208     Block &operator[](int i) { return Blocks[i]; }
209 
210     std::vector<Block> Blocks;
211 
212     using iterator = decltype(Blocks)::iterator;
begin__anon8795e6040111::AlignVectors::ByteSpan213     iterator begin() { return Blocks.begin(); }
end__anon8795e6040111::AlignVectors::ByteSpan214     iterator end() { return Blocks.end(); }
215     using const_iterator = decltype(Blocks)::const_iterator;
begin__anon8795e6040111::AlignVectors::ByteSpan216     const_iterator begin() const { return Blocks.begin(); }
end__anon8795e6040111::AlignVectors::ByteSpan217     const_iterator end() const { return Blocks.end(); }
218   };
219 
220   Align getAlignFromValue(const Value *V) const;
221   Optional<MemoryLocation> getLocation(const Instruction &In) const;
222   Optional<AddrInfo> getAddrInfo(Instruction &In) const;
223   bool isHvx(const AddrInfo &AI) const;
224 
225   Value *getPayload(Value *Val) const;
226   Value *getMask(Value *Val) const;
227   Value *getPassThrough(Value *Val) const;
228 
229   Value *createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy,
230                                int Adjust) const;
231   Value *createAlignedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy,
232                               int Alignment) const;
233   Value *createAlignedLoad(IRBuilder<> &Builder, Type *ValTy, Value *Ptr,
234                            int Alignment, Value *Mask, Value *PassThru) const;
235   Value *createAlignedStore(IRBuilder<> &Builder, Value *Val, Value *Ptr,
236                             int Alignment, Value *Mask) const;
237 
238   bool createAddressGroups();
239   MoveList createLoadGroups(const AddrList &Group) const;
240   MoveList createStoreGroups(const AddrList &Group) const;
241   bool move(const MoveGroup &Move) const;
242   bool realignGroup(const MoveGroup &Move) const;
243 
244   friend raw_ostream &operator<<(raw_ostream &OS, const AddrInfo &AI);
245   friend raw_ostream &operator<<(raw_ostream &OS, const MoveGroup &MG);
246   friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan &BS);
247 
248   std::map<Instruction *, AddrList> AddrGroups;
249   HexagonVectorCombine &HVC;
250 };
251 
252 LLVM_ATTRIBUTE_UNUSED
operator <<(raw_ostream & OS,const AlignVectors::AddrInfo & AI)253 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::AddrInfo &AI) {
254   OS << "Inst: " << AI.Inst << "  " << *AI.Inst << '\n';
255   OS << "Addr: " << *AI.Addr << '\n';
256   OS << "Type: " << *AI.ValTy << '\n';
257   OS << "HaveAlign: " << AI.HaveAlign.value() << '\n';
258   OS << "NeedAlign: " << AI.NeedAlign.value() << '\n';
259   OS << "Offset: " << AI.Offset;
260   return OS;
261 }
262 
263 LLVM_ATTRIBUTE_UNUSED
operator <<(raw_ostream & OS,const AlignVectors::MoveGroup & MG)264 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::MoveGroup &MG) {
265   OS << "Main\n";
266   for (Instruction *I : MG.Main)
267     OS << "  " << *I << '\n';
268   OS << "Deps\n";
269   for (Instruction *I : MG.Deps)
270     OS << "  " << *I << '\n';
271   return OS;
272 }
273 
274 LLVM_ATTRIBUTE_UNUSED
operator <<(raw_ostream & OS,const AlignVectors::ByteSpan & BS)275 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::ByteSpan &BS) {
276   OS << "ByteSpan[size=" << BS.size() << ", extent=" << BS.extent() << '\n';
277   for (const AlignVectors::ByteSpan::Block &B : BS) {
278     OS << "  @" << B.Pos << " [" << B.Seg.Start << ',' << B.Seg.Size << "] "
279        << *B.Seg.Val << '\n';
280   }
281   OS << ']';
282   return OS;
283 }
284 
285 } // namespace
286 
287 namespace {
288 
getIfUnordered(T * MaybeT)289 template <typename T> T *getIfUnordered(T *MaybeT) {
290   return MaybeT && MaybeT->isUnordered() ? MaybeT : nullptr;
291 }
isCandidate(Instruction * In)292 template <typename T> T *isCandidate(Instruction *In) {
293   return dyn_cast<T>(In);
294 }
isCandidate(Instruction * In)295 template <> LoadInst *isCandidate<LoadInst>(Instruction *In) {
296   return getIfUnordered(dyn_cast<LoadInst>(In));
297 }
isCandidate(Instruction * In)298 template <> StoreInst *isCandidate<StoreInst>(Instruction *In) {
299   return getIfUnordered(dyn_cast<StoreInst>(In));
300 }
301 
302 #if !defined(_MSC_VER) || _MSC_VER >= 1926
303 // VS2017 and some versions of VS2019 have trouble compiling this:
304 // error C2976: 'std::map': too few template arguments
305 // VS 2019 16.x is known to work, except for 16.4/16.5 (MSC_VER 1924/1925)
306 template <typename Pred, typename... Ts>
erase_if(std::map<Ts...> & map,Pred p)307 void erase_if(std::map<Ts...> &map, Pred p)
308 #else
309 template <typename Pred, typename T, typename U>
310 void erase_if(std::map<T, U> &map, Pred p)
311 #endif
312 {
313   for (auto i = map.begin(), e = map.end(); i != e;) {
314     if (p(*i))
315       i = map.erase(i);
316     else
317       i = std::next(i);
318   }
319 }
320 
321 // Forward other erase_ifs to the LLVM implementations.
erase_if(T && container,Pred p)322 template <typename Pred, typename T> void erase_if(T &&container, Pred p) {
323   llvm::erase_if(std::forward<T>(container), p);
324 }
325 
326 } // namespace
327 
328 // --- Begin AlignVectors
329 
extent() const330 auto AlignVectors::ByteSpan::extent() const -> int {
331   if (size() == 0)
332     return 0;
333   int Min = Blocks[0].Pos;
334   int Max = Blocks[0].Pos + Blocks[0].Seg.Size;
335   for (int i = 1, e = size(); i != e; ++i) {
336     Min = std::min(Min, Blocks[i].Pos);
337     Max = std::max(Max, Blocks[i].Pos + Blocks[i].Seg.Size);
338   }
339   return Max - Min;
340 }
341 
section(int Start,int Length) const342 auto AlignVectors::ByteSpan::section(int Start, int Length) const -> ByteSpan {
343   ByteSpan Section;
344   for (const ByteSpan::Block &B : Blocks) {
345     int L = std::max(B.Pos, Start);                       // Left end.
346     int R = std::min(B.Pos + B.Seg.Size, Start + Length); // Right end+1.
347     if (L < R) {
348       // How much to chop off the beginning of the segment:
349       int Off = L > B.Pos ? L - B.Pos : 0;
350       Section.Blocks.emplace_back(B.Seg.Val, B.Seg.Start + Off, R - L, L);
351     }
352   }
353   return Section;
354 }
355 
shift(int Offset)356 auto AlignVectors::ByteSpan::shift(int Offset) -> ByteSpan & {
357   for (Block &B : Blocks)
358     B.Pos += Offset;
359   return *this;
360 }
361 
values() const362 auto AlignVectors::ByteSpan::values() const -> SmallVector<Value *, 8> {
363   SmallVector<Value *, 8> Values(Blocks.size());
364   for (int i = 0, e = Blocks.size(); i != e; ++i)
365     Values[i] = Blocks[i].Seg.Val;
366   return Values;
367 }
368 
getAlignFromValue(const Value * V) const369 auto AlignVectors::getAlignFromValue(const Value *V) const -> Align {
370   const auto *C = dyn_cast<ConstantInt>(V);
371   assert(C && "Alignment must be a compile-time constant integer");
372   return C->getAlignValue();
373 }
374 
getAddrInfo(Instruction & In) const375 auto AlignVectors::getAddrInfo(Instruction &In) const -> Optional<AddrInfo> {
376   if (auto *L = isCandidate<LoadInst>(&In))
377     return AddrInfo(HVC, L, L->getPointerOperand(), L->getType(),
378                     L->getAlign());
379   if (auto *S = isCandidate<StoreInst>(&In))
380     return AddrInfo(HVC, S, S->getPointerOperand(),
381                     S->getValueOperand()->getType(), S->getAlign());
382   if (auto *II = isCandidate<IntrinsicInst>(&In)) {
383     Intrinsic::ID ID = II->getIntrinsicID();
384     switch (ID) {
385     case Intrinsic::masked_load:
386       return AddrInfo(HVC, II, II->getArgOperand(0), II->getType(),
387                       getAlignFromValue(II->getArgOperand(1)));
388     case Intrinsic::masked_store:
389       return AddrInfo(HVC, II, II->getArgOperand(1),
390                       II->getArgOperand(0)->getType(),
391                       getAlignFromValue(II->getArgOperand(2)));
392     }
393   }
394   return Optional<AddrInfo>();
395 }
396 
isHvx(const AddrInfo & AI) const397 auto AlignVectors::isHvx(const AddrInfo &AI) const -> bool {
398   return HVC.HST.isTypeForHVX(AI.ValTy);
399 }
400 
getPayload(Value * Val) const401 auto AlignVectors::getPayload(Value *Val) const -> Value * {
402   if (auto *In = dyn_cast<Instruction>(Val)) {
403     Intrinsic::ID ID = 0;
404     if (auto *II = dyn_cast<IntrinsicInst>(In))
405       ID = II->getIntrinsicID();
406     if (isa<StoreInst>(In) || ID == Intrinsic::masked_store)
407       return In->getOperand(0);
408   }
409   return Val;
410 }
411 
getMask(Value * Val) const412 auto AlignVectors::getMask(Value *Val) const -> Value * {
413   if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
414     switch (II->getIntrinsicID()) {
415     case Intrinsic::masked_load:
416       return II->getArgOperand(2);
417     case Intrinsic::masked_store:
418       return II->getArgOperand(3);
419     }
420   }
421 
422   Type *ValTy = getPayload(Val)->getType();
423   if (auto *VecTy = dyn_cast<VectorType>(ValTy)) {
424     int ElemCount = VecTy->getElementCount().getFixedValue();
425     return HVC.getFullValue(HVC.getBoolTy(ElemCount));
426   }
427   return HVC.getFullValue(HVC.getBoolTy());
428 }
429 
getPassThrough(Value * Val) const430 auto AlignVectors::getPassThrough(Value *Val) const -> Value * {
431   if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
432     if (II->getIntrinsicID() == Intrinsic::masked_load)
433       return II->getArgOperand(3);
434   }
435   return UndefValue::get(getPayload(Val)->getType());
436 }
437 
createAdjustedPointer(IRBuilder<> & Builder,Value * Ptr,Type * ValTy,int Adjust) const438 auto AlignVectors::createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr,
439                                          Type *ValTy, int Adjust) const
440     -> Value * {
441   // The adjustment is in bytes, but if it's a multiple of the type size,
442   // we don't need to do pointer casts.
443   Type *ElemTy = cast<PointerType>(Ptr->getType())->getElementType();
444   int ElemSize = HVC.getSizeOf(ElemTy);
445   if (Adjust % ElemSize == 0) {
446     Value *Tmp0 = Builder.CreateGEP(Ptr, HVC.getConstInt(Adjust / ElemSize));
447     return Builder.CreatePointerCast(Tmp0, ValTy->getPointerTo());
448   }
449 
450   PointerType *CharPtrTy = Type::getInt8PtrTy(HVC.F.getContext());
451   Value *Tmp0 = Builder.CreatePointerCast(Ptr, CharPtrTy);
452   Value *Tmp1 = Builder.CreateGEP(Tmp0, HVC.getConstInt(Adjust));
453   return Builder.CreatePointerCast(Tmp1, ValTy->getPointerTo());
454 }
455 
createAlignedPointer(IRBuilder<> & Builder,Value * Ptr,Type * ValTy,int Alignment) const456 auto AlignVectors::createAlignedPointer(IRBuilder<> &Builder, Value *Ptr,
457                                         Type *ValTy, int Alignment) const
458     -> Value * {
459   Value *AsInt = Builder.CreatePtrToInt(Ptr, HVC.getIntTy());
460   Value *Mask = HVC.getConstInt(-Alignment);
461   Value *And = Builder.CreateAnd(AsInt, Mask);
462   return Builder.CreateIntToPtr(And, ValTy->getPointerTo());
463 }
464 
createAlignedLoad(IRBuilder<> & Builder,Type * ValTy,Value * Ptr,int Alignment,Value * Mask,Value * PassThru) const465 auto AlignVectors::createAlignedLoad(IRBuilder<> &Builder, Type *ValTy,
466                                      Value *Ptr, int Alignment, Value *Mask,
467                                      Value *PassThru) const -> Value * {
468   assert(!HVC.isUndef(Mask)); // Should this be allowed?
469   if (HVC.isZero(Mask))
470     return PassThru;
471   if (Mask == ConstantInt::getTrue(Mask->getType()))
472     return Builder.CreateAlignedLoad(ValTy, Ptr, Align(Alignment));
473   return Builder.CreateMaskedLoad(Ptr, Align(Alignment), Mask, PassThru);
474 }
475 
createAlignedStore(IRBuilder<> & Builder,Value * Val,Value * Ptr,int Alignment,Value * Mask) const476 auto AlignVectors::createAlignedStore(IRBuilder<> &Builder, Value *Val,
477                                       Value *Ptr, int Alignment,
478                                       Value *Mask) const -> Value * {
479   if (HVC.isZero(Mask) || HVC.isUndef(Val) || HVC.isUndef(Mask))
480     return UndefValue::get(Val->getType());
481   if (Mask == ConstantInt::getTrue(Mask->getType()))
482     return Builder.CreateAlignedStore(Val, Ptr, Align(Alignment));
483   return Builder.CreateMaskedStore(Val, Ptr, Align(Alignment), Mask);
484 }
485 
createAddressGroups()486 auto AlignVectors::createAddressGroups() -> bool {
487   // An address group created here may contain instructions spanning
488   // multiple basic blocks.
489   AddrList WorkStack;
490 
491   auto findBaseAndOffset = [&](AddrInfo &AI) -> std::pair<Instruction *, int> {
492     for (AddrInfo &W : WorkStack) {
493       if (auto D = HVC.calculatePointerDifference(AI.Addr, W.Addr))
494         return std::make_pair(W.Inst, *D);
495     }
496     return std::make_pair(nullptr, 0);
497   };
498 
499   auto traverseBlock = [&](DomTreeNode *DomN, auto Visit) -> void {
500     BasicBlock &Block = *DomN->getBlock();
501     for (Instruction &I : Block) {
502       auto AI = this->getAddrInfo(I); // Use this-> for gcc6.
503       if (!AI)
504         continue;
505       auto F = findBaseAndOffset(*AI);
506       Instruction *GroupInst;
507       if (Instruction *BI = F.first) {
508         AI->Offset = F.second;
509         GroupInst = BI;
510       } else {
511         WorkStack.push_back(*AI);
512         GroupInst = AI->Inst;
513       }
514       AddrGroups[GroupInst].push_back(*AI);
515     }
516 
517     for (DomTreeNode *C : DomN->children())
518       Visit(C, Visit);
519 
520     while (!WorkStack.empty() && WorkStack.back().Inst->getParent() == &Block)
521       WorkStack.pop_back();
522   };
523 
524   traverseBlock(HVC.DT.getRootNode(), traverseBlock);
525   assert(WorkStack.empty());
526 
527   // AddrGroups are formed.
528 
529   // Remove groups of size 1.
530   erase_if(AddrGroups, [](auto &G) { return G.second.size() == 1; });
531   // Remove groups that don't use HVX types.
532   erase_if(AddrGroups, [&](auto &G) {
533     return !llvm::any_of(
534         G.second, [&](auto &I) { return HVC.HST.isTypeForHVX(I.ValTy); });
535   });
536 
537   return !AddrGroups.empty();
538 }
539 
createLoadGroups(const AddrList & Group) const540 auto AlignVectors::createLoadGroups(const AddrList &Group) const -> MoveList {
541   // Form load groups.
542   // To avoid complications with moving code across basic blocks, only form
543   // groups that are contained within a single basic block.
544 
545   auto getUpwardDeps = [](Instruction *In, Instruction *Base) {
546     BasicBlock *Parent = Base->getParent();
547     assert(In->getParent() == Parent &&
548            "Base and In should be in the same block");
549     assert(Base->comesBefore(In) && "Base should come before In");
550 
551     DepList Deps;
552     std::deque<Instruction *> WorkQ = {In};
553     while (!WorkQ.empty()) {
554       Instruction *D = WorkQ.front();
555       WorkQ.pop_front();
556       Deps.insert(D);
557       for (Value *Op : D->operands()) {
558         if (auto *I = dyn_cast<Instruction>(Op)) {
559           if (I->getParent() == Parent && Base->comesBefore(I))
560             WorkQ.push_back(I);
561         }
562       }
563     }
564     return Deps;
565   };
566 
567   auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
568     assert(!Move.Main.empty() && "Move group should have non-empty Main");
569     // Don't mix HVX and non-HVX instructions.
570     if (Move.IsHvx != isHvx(Info))
571       return false;
572     // Leading instruction in the load group.
573     Instruction *Base = Move.Main.front();
574     if (Base->getParent() != Info.Inst->getParent())
575       return false;
576 
577     auto isSafeToMoveToBase = [&](const Instruction *I) {
578       return HVC.isSafeToMoveBeforeInBB(*I, Base->getIterator());
579     };
580     DepList Deps = getUpwardDeps(Info.Inst, Base);
581     if (!llvm::all_of(Deps, isSafeToMoveToBase))
582       return false;
583 
584     // The dependencies will be moved together with the load, so make sure
585     // that none of them could be moved independently in another group.
586     Deps.erase(Info.Inst);
587     auto inAddrMap = [&](Instruction *I) { return AddrGroups.count(I) > 0; };
588     if (llvm::any_of(Deps, inAddrMap))
589       return false;
590     Move.Main.push_back(Info.Inst);
591     llvm::append_range(Move.Deps, Deps);
592     return true;
593   };
594 
595   MoveList LoadGroups;
596 
597   for (const AddrInfo &Info : Group) {
598     if (!Info.Inst->mayReadFromMemory())
599       continue;
600     if (LoadGroups.empty() || !tryAddTo(Info, LoadGroups.back()))
601       LoadGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), true);
602   }
603 
604   // Erase singleton groups.
605   erase_if(LoadGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
606   return LoadGroups;
607 }
608 
createStoreGroups(const AddrList & Group) const609 auto AlignVectors::createStoreGroups(const AddrList &Group) const -> MoveList {
610   // Form store groups.
611   // To avoid complications with moving code across basic blocks, only form
612   // groups that are contained within a single basic block.
613 
614   auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
615     assert(!Move.Main.empty() && "Move group should have non-empty Main");
616     // For stores with return values we'd have to collect downward depenencies.
617     // There are no such stores that we handle at the moment, so omit that.
618     assert(Info.Inst->getType()->isVoidTy() &&
619            "Not handling stores with return values");
620     // Don't mix HVX and non-HVX instructions.
621     if (Move.IsHvx != isHvx(Info))
622       return false;
623     // For stores we need to be careful whether it's safe to move them.
624     // Stores that are otherwise safe to move together may not appear safe
625     // to move over one another (i.e. isSafeToMoveBefore may return false).
626     Instruction *Base = Move.Main.front();
627     if (Base->getParent() != Info.Inst->getParent())
628       return false;
629     if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator(), Move.Main))
630       return false;
631     Move.Main.push_back(Info.Inst);
632     return true;
633   };
634 
635   MoveList StoreGroups;
636 
637   for (auto I = Group.rbegin(), E = Group.rend(); I != E; ++I) {
638     const AddrInfo &Info = *I;
639     if (!Info.Inst->mayWriteToMemory())
640       continue;
641     if (StoreGroups.empty() || !tryAddTo(Info, StoreGroups.back()))
642       StoreGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), false);
643   }
644 
645   // Erase singleton groups.
646   erase_if(StoreGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
647   return StoreGroups;
648 }
649 
move(const MoveGroup & Move) const650 auto AlignVectors::move(const MoveGroup &Move) const -> bool {
651   assert(!Move.Main.empty() && "Move group should have non-empty Main");
652   Instruction *Where = Move.Main.front();
653 
654   if (Move.IsLoad) {
655     // Move all deps to before Where, keeping order.
656     for (Instruction *D : Move.Deps)
657       D->moveBefore(Where);
658     // Move all main instructions to after Where, keeping order.
659     ArrayRef<Instruction *> Main(Move.Main);
660     for (Instruction *M : Main.drop_front(1)) {
661       M->moveAfter(Where);
662       Where = M;
663     }
664   } else {
665     // NOTE: Deps are empty for "store" groups. If they need to be
666     // non-empty, decide on the order.
667     assert(Move.Deps.empty());
668     // Move all main instructions to before Where, inverting order.
669     ArrayRef<Instruction *> Main(Move.Main);
670     for (Instruction *M : Main.drop_front(1)) {
671       M->moveBefore(Where);
672       Where = M;
673     }
674   }
675 
676   return Move.Main.size() + Move.Deps.size() > 1;
677 }
678 
realignGroup(const MoveGroup & Move) const679 auto AlignVectors::realignGroup(const MoveGroup &Move) const -> bool {
680   // TODO: Needs support for masked loads/stores of "scalar" vectors.
681   if (!Move.IsHvx)
682     return false;
683 
684   // Return the element with the maximum alignment from Range,
685   // where GetValue obtains the value to compare from an element.
686   auto getMaxOf = [](auto Range, auto GetValue) {
687     return *std::max_element(
688         Range.begin(), Range.end(),
689         [&GetValue](auto &A, auto &B) { return GetValue(A) < GetValue(B); });
690   };
691 
692   const AddrList &BaseInfos = AddrGroups.at(Move.Base);
693 
694   // Conceptually, there is a vector of N bytes covering the addresses
695   // starting from the minimum offset (i.e. Base.Addr+Start). This vector
696   // represents a contiguous memory region that spans all accessed memory
697   // locations.
698   // The correspondence between loaded or stored values will be expressed
699   // in terms of this vector. For example, the 0th element of the vector
700   // from the Base address info will start at byte Start from the beginning
701   // of this conceptual vector.
702   //
703   // This vector will be loaded/stored starting at the nearest down-aligned
704   // address and the amount od the down-alignment will be AlignVal:
705   //   valign(load_vector(align_down(Base+Start)), AlignVal)
706 
707   std::set<Instruction *> TestSet(Move.Main.begin(), Move.Main.end());
708   AddrList MoveInfos;
709   llvm::copy_if(
710       BaseInfos, std::back_inserter(MoveInfos),
711       [&TestSet](const AddrInfo &AI) { return TestSet.count(AI.Inst); });
712 
713   // Maximum alignment present in the whole address group.
714   const AddrInfo &WithMaxAlign =
715       getMaxOf(BaseInfos, [](const AddrInfo &AI) { return AI.HaveAlign; });
716   Align MaxGiven = WithMaxAlign.HaveAlign;
717 
718   // Minimum alignment present in the move address group.
719   const AddrInfo &WithMinOffset =
720       getMaxOf(MoveInfos, [](const AddrInfo &AI) { return -AI.Offset; });
721 
722   const AddrInfo &WithMaxNeeded =
723       getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.NeedAlign; });
724   Align MinNeeded = WithMaxNeeded.NeedAlign;
725 
726   // Set the builder at the top instruction in the move group.
727   Instruction *TopIn = Move.IsLoad ? Move.Main.front() : Move.Main.back();
728   IRBuilder<> Builder(TopIn);
729   Value *AlignAddr = nullptr; // Actual aligned address.
730   Value *AlignVal = nullptr;  // Right-shift amount (for valign).
731 
732   if (MinNeeded <= MaxGiven) {
733     int Start = WithMinOffset.Offset;
734     int OffAtMax = WithMaxAlign.Offset;
735     // Shift the offset of the maximally aligned instruction (OffAtMax)
736     // back by just enough multiples of the required alignment to cover the
737     // distance from Start to OffAtMax.
738     // Calculate the address adjustment amount based on the address with the
739     // maximum alignment. This is to allow a simple gep instruction instead
740     // of potential bitcasts to i8*.
741     int Adjust = -alignTo(OffAtMax - Start, MinNeeded.value());
742     AlignAddr = createAdjustedPointer(Builder, WithMaxAlign.Addr,
743                                       WithMaxAlign.ValTy, Adjust);
744     int Diff = Start - (OffAtMax + Adjust);
745     AlignVal = HVC.getConstInt(Diff);
746     // Sanity.
747     assert(Diff >= 0);
748     assert(static_cast<decltype(MinNeeded.value())>(Diff) < MinNeeded.value());
749   } else {
750     // WithMinOffset is the lowest address in the group,
751     //   WithMinOffset.Addr = Base+Start.
752     // Align instructions for both HVX (V6_valign) and scalar (S2_valignrb)
753     // mask off unnecessary bits, so it's ok to just the original pointer as
754     // the alignment amount.
755     // Do an explicit down-alignment of the address to avoid creating an
756     // aligned instruction with an address that is not really aligned.
757     AlignAddr = createAlignedPointer(Builder, WithMinOffset.Addr,
758                                      WithMinOffset.ValTy, MinNeeded.value());
759     AlignVal = Builder.CreatePtrToInt(WithMinOffset.Addr, HVC.getIntTy());
760   }
761 
762   ByteSpan VSpan;
763   for (const AddrInfo &AI : MoveInfos) {
764     VSpan.Blocks.emplace_back(AI.Inst, HVC.getSizeOf(AI.ValTy),
765                               AI.Offset - WithMinOffset.Offset);
766   }
767 
768   // The aligned loads/stores will use blocks that are either scalars,
769   // or HVX vectors. Let "sector" be the unified term for such a block.
770   // blend(scalar, vector) -> sector...
771   int ScLen = Move.IsHvx ? HVC.HST.getVectorLength()
772                          : std::max<int>(MinNeeded.value(), 4);
773   assert(!Move.IsHvx || ScLen == 64 || ScLen == 128);
774   assert(Move.IsHvx || ScLen == 4 || ScLen == 8);
775 
776   Type *SecTy = HVC.getByteTy(ScLen);
777   int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen;
778   bool DoAlign = !HVC.isZero(AlignVal);
779 
780   if (Move.IsLoad) {
781     ByteSpan ASpan;
782     auto *True = HVC.getFullValue(HVC.getBoolTy(ScLen));
783     auto *Undef = UndefValue::get(SecTy);
784 
785     for (int i = 0; i != NumSectors + DoAlign; ++i) {
786       Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen);
787       // FIXME: generate a predicated load?
788       Value *Load = createAlignedLoad(Builder, SecTy, Ptr, ScLen, True, Undef);
789       // If vector shifting is potentially needed, accumulate metadata
790       // from source sections of twice the load width.
791       int Start = (i - DoAlign) * ScLen;
792       int Width = (1 + DoAlign) * ScLen;
793       propagateMetadata(cast<Instruction>(Load),
794                         VSpan.section(Start, Width).values());
795       ASpan.Blocks.emplace_back(Load, ScLen, i * ScLen);
796     }
797 
798     if (DoAlign) {
799       for (int j = 0; j != NumSectors; ++j) {
800         ASpan[j].Seg.Val = HVC.vralignb(Builder, ASpan[j].Seg.Val,
801                                         ASpan[j + 1].Seg.Val, AlignVal);
802       }
803     }
804 
805     for (ByteSpan::Block &B : VSpan) {
806       ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size).shift(-B.Pos);
807       Value *Accum = UndefValue::get(HVC.getByteTy(B.Seg.Size));
808       for (ByteSpan::Block &S : ASection) {
809         Value *Pay = HVC.vbytes(Builder, getPayload(S.Seg.Val));
810         Accum =
811             HVC.insertb(Builder, Accum, Pay, S.Seg.Start, S.Seg.Size, S.Pos);
812       }
813       // Instead of casting everything to bytes for the vselect, cast to the
814       // original value type. This will avoid complications with casting masks.
815       // For example, in cases when the original mask applied to i32, it could
816       // be converted to a mask applicable to i8 via pred_typecast intrinsic,
817       // but if the mask is not exactly of HVX length, extra handling would be
818       // needed to make it work.
819       Type *ValTy = getPayload(B.Seg.Val)->getType();
820       Value *Cast = Builder.CreateBitCast(Accum, ValTy);
821       Value *Sel = Builder.CreateSelect(getMask(B.Seg.Val), Cast,
822                                         getPassThrough(B.Seg.Val));
823       B.Seg.Val->replaceAllUsesWith(Sel);
824     }
825   } else {
826     // Stores.
827     ByteSpan ASpanV, ASpanM;
828 
829     // Return a vector value corresponding to the input value Val:
830     // either <1 x Val> for scalar Val, or Val itself for vector Val.
831     auto MakeVec = [](IRBuilder<> &Builder, Value *Val) -> Value * {
832       Type *Ty = Val->getType();
833       if (Ty->isVectorTy())
834         return Val;
835       auto *VecTy = VectorType::get(Ty, 1, /*Scalable*/ false);
836       return Builder.CreateBitCast(Val, VecTy);
837     };
838 
839     // Create an extra "undef" sector at the beginning and at the end.
840     // They will be used as the left/right filler in the vlalign step.
841     for (int i = (DoAlign ? -1 : 0); i != NumSectors + DoAlign; ++i) {
842       // For stores, the size of each section is an aligned vector length.
843       // Adjust the store offsets relative to the section start offset.
844       ByteSpan VSection = VSpan.section(i * ScLen, ScLen).shift(-i * ScLen);
845       Value *AccumV = UndefValue::get(SecTy);
846       Value *AccumM = HVC.getNullValue(SecTy);
847       for (ByteSpan::Block &S : VSection) {
848         Value *Pay = getPayload(S.Seg.Val);
849         Value *Mask = HVC.rescale(Builder, MakeVec(Builder, getMask(S.Seg.Val)),
850                                   Pay->getType(), HVC.getByteTy());
851         AccumM = HVC.insertb(Builder, AccumM, HVC.vbytes(Builder, Mask),
852                              S.Seg.Start, S.Seg.Size, S.Pos);
853         AccumV = HVC.insertb(Builder, AccumV, HVC.vbytes(Builder, Pay),
854                              S.Seg.Start, S.Seg.Size, S.Pos);
855       }
856       ASpanV.Blocks.emplace_back(AccumV, ScLen, i * ScLen);
857       ASpanM.Blocks.emplace_back(AccumM, ScLen, i * ScLen);
858     }
859 
860     // vlalign
861     if (DoAlign) {
862       for (int j = 1; j != NumSectors + 2; ++j) {
863         ASpanV[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanV[j - 1].Seg.Val,
864                                              ASpanV[j].Seg.Val, AlignVal);
865         ASpanM[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanM[j - 1].Seg.Val,
866                                              ASpanM[j].Seg.Val, AlignVal);
867       }
868     }
869 
870     for (int i = 0; i != NumSectors + DoAlign; ++i) {
871       Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen);
872       Value *Val = ASpanV[i].Seg.Val;
873       Value *Mask = ASpanM[i].Seg.Val; // bytes
874       if (!HVC.isUndef(Val) && !HVC.isZero(Mask)) {
875         Value *Store = createAlignedStore(Builder, Val, Ptr, ScLen,
876                                           HVC.vlsb(Builder, Mask));
877         // If vector shifting is potentially needed, accumulate metadata
878         // from source sections of twice the store width.
879         int Start = (i - DoAlign) * ScLen;
880         int Width = (1 + DoAlign) * ScLen;
881         propagateMetadata(cast<Instruction>(Store),
882                           VSpan.section(Start, Width).values());
883       }
884     }
885   }
886 
887   for (auto *Inst : Move.Main)
888     Inst->eraseFromParent();
889 
890   return true;
891 }
892 
run()893 auto AlignVectors::run() -> bool {
894   if (!createAddressGroups())
895     return false;
896 
897   bool Changed = false;
898   MoveList LoadGroups, StoreGroups;
899 
900   for (auto &G : AddrGroups) {
901     llvm::append_range(LoadGroups, createLoadGroups(G.second));
902     llvm::append_range(StoreGroups, createStoreGroups(G.second));
903   }
904 
905   for (auto &M : LoadGroups)
906     Changed |= move(M);
907   for (auto &M : StoreGroups)
908     Changed |= move(M);
909 
910   for (auto &M : LoadGroups)
911     Changed |= realignGroup(M);
912   for (auto &M : StoreGroups)
913     Changed |= realignGroup(M);
914 
915   return Changed;
916 }
917 
918 // --- End AlignVectors
919 
run()920 auto HexagonVectorCombine::run() -> bool {
921   if (!HST.useHVXOps())
922     return false;
923 
924   bool Changed = AlignVectors(*this).run();
925   return Changed;
926 }
927 
getIntTy() const928 auto HexagonVectorCombine::getIntTy() const -> IntegerType * {
929   return Type::getInt32Ty(F.getContext());
930 }
931 
getByteTy(int ElemCount) const932 auto HexagonVectorCombine::getByteTy(int ElemCount) const -> Type * {
933   assert(ElemCount >= 0);
934   IntegerType *ByteTy = Type::getInt8Ty(F.getContext());
935   if (ElemCount == 0)
936     return ByteTy;
937   return VectorType::get(ByteTy, ElemCount, /*Scalable*/ false);
938 }
939 
getBoolTy(int ElemCount) const940 auto HexagonVectorCombine::getBoolTy(int ElemCount) const -> Type * {
941   assert(ElemCount >= 0);
942   IntegerType *BoolTy = Type::getInt1Ty(F.getContext());
943   if (ElemCount == 0)
944     return BoolTy;
945   return VectorType::get(BoolTy, ElemCount, /*Scalable*/ false);
946 }
947 
getConstInt(int Val) const948 auto HexagonVectorCombine::getConstInt(int Val) const -> ConstantInt * {
949   return ConstantInt::getSigned(getIntTy(), Val);
950 }
951 
isZero(const Value * Val) const952 auto HexagonVectorCombine::isZero(const Value *Val) const -> bool {
953   if (auto *C = dyn_cast<Constant>(Val))
954     return C->isZeroValue();
955   return false;
956 }
957 
getIntValue(const Value * Val) const958 auto HexagonVectorCombine::getIntValue(const Value *Val) const
959     -> Optional<APInt> {
960   if (auto *CI = dyn_cast<ConstantInt>(Val))
961     return CI->getValue();
962   return None;
963 }
964 
isUndef(const Value * Val) const965 auto HexagonVectorCombine::isUndef(const Value *Val) const -> bool {
966   return isa<UndefValue>(Val);
967 }
968 
getSizeOf(const Value * Val) const969 auto HexagonVectorCombine::getSizeOf(const Value *Val) const -> int {
970   return getSizeOf(Val->getType());
971 }
972 
getSizeOf(const Type * Ty) const973 auto HexagonVectorCombine::getSizeOf(const Type *Ty) const -> int {
974   return DL.getTypeStoreSize(const_cast<Type *>(Ty)).getFixedValue();
975 }
976 
getTypeAlignment(Type * Ty) const977 auto HexagonVectorCombine::getTypeAlignment(Type *Ty) const -> int {
978   // The actual type may be shorter than the HVX vector, so determine
979   // the alignment based on subtarget info.
980   if (HST.isTypeForHVX(Ty))
981     return HST.getVectorLength();
982   return DL.getABITypeAlign(Ty).value();
983 }
984 
getNullValue(Type * Ty) const985 auto HexagonVectorCombine::getNullValue(Type *Ty) const -> Constant * {
986   assert(Ty->isIntOrIntVectorTy());
987   auto Zero = ConstantInt::get(Ty->getScalarType(), 0);
988   if (auto *VecTy = dyn_cast<VectorType>(Ty))
989     return ConstantVector::getSplat(VecTy->getElementCount(), Zero);
990   return Zero;
991 }
992 
getFullValue(Type * Ty) const993 auto HexagonVectorCombine::getFullValue(Type *Ty) const -> Constant * {
994   assert(Ty->isIntOrIntVectorTy());
995   auto Minus1 = ConstantInt::get(Ty->getScalarType(), -1);
996   if (auto *VecTy = dyn_cast<VectorType>(Ty))
997     return ConstantVector::getSplat(VecTy->getElementCount(), Minus1);
998   return Minus1;
999 }
1000 
1001 // Insert bytes [Start..Start+Length) of Src into Dst at byte Where.
insertb(IRBuilder<> & Builder,Value * Dst,Value * Src,int Start,int Length,int Where) const1002 auto HexagonVectorCombine::insertb(IRBuilder<> &Builder, Value *Dst, Value *Src,
1003                                    int Start, int Length, int Where) const
1004     -> Value * {
1005   assert(isByteVecTy(Dst->getType()) && isByteVecTy(Src->getType()));
1006   int SrcLen = getSizeOf(Src);
1007   int DstLen = getSizeOf(Dst);
1008   assert(0 <= Start && Start + Length <= SrcLen);
1009   assert(0 <= Where && Where + Length <= DstLen);
1010 
1011   int P2Len = PowerOf2Ceil(SrcLen | DstLen);
1012   auto *Undef = UndefValue::get(getByteTy());
1013   Value *P2Src = vresize(Builder, Src, P2Len, Undef);
1014   Value *P2Dst = vresize(Builder, Dst, P2Len, Undef);
1015 
1016   SmallVector<int, 256> SMask(P2Len);
1017   for (int i = 0; i != P2Len; ++i) {
1018     // If i is in [Where, Where+Length), pick Src[Start+(i-Where)].
1019     // Otherwise, pick Dst[i];
1020     SMask[i] =
1021         (Where <= i && i < Where + Length) ? P2Len + Start + (i - Where) : i;
1022   }
1023 
1024   Value *P2Insert = Builder.CreateShuffleVector(P2Dst, P2Src, SMask);
1025   return vresize(Builder, P2Insert, DstLen, Undef);
1026 }
1027 
vlalignb(IRBuilder<> & Builder,Value * Lo,Value * Hi,Value * Amt) const1028 auto HexagonVectorCombine::vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi,
1029                                     Value *Amt) const -> Value * {
1030   assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
1031   assert(isSectorTy(Hi->getType()));
1032   if (isZero(Amt))
1033     return Hi;
1034   int VecLen = getSizeOf(Hi);
1035   if (auto IntAmt = getIntValue(Amt))
1036     return getElementRange(Builder, Lo, Hi, VecLen - IntAmt->getSExtValue(),
1037                            VecLen);
1038 
1039   if (HST.isTypeForHVX(Hi->getType())) {
1040     int HwLen = HST.getVectorLength();
1041     assert(VecLen == HwLen && "Expecting an exact HVX type");
1042     Intrinsic::ID V6_vlalignb = HwLen == 64
1043                                     ? Intrinsic::hexagon_V6_vlalignb
1044                                     : Intrinsic::hexagon_V6_vlalignb_128B;
1045     return createHvxIntrinsic(Builder, V6_vlalignb, Hi->getType(),
1046                               {Hi, Lo, Amt});
1047   }
1048 
1049   if (VecLen == 4) {
1050     Value *Pair = concat(Builder, {Lo, Hi});
1051     Value *Shift = Builder.CreateLShr(Builder.CreateShl(Pair, Amt), 32);
1052     Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()));
1053     return Builder.CreateBitCast(Trunc, Hi->getType());
1054   }
1055   if (VecLen == 8) {
1056     Value *Sub = Builder.CreateSub(getConstInt(VecLen), Amt);
1057     return vralignb(Builder, Lo, Hi, Sub);
1058   }
1059   llvm_unreachable("Unexpected vector length");
1060 }
1061 
vralignb(IRBuilder<> & Builder,Value * Lo,Value * Hi,Value * Amt) const1062 auto HexagonVectorCombine::vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi,
1063                                     Value *Amt) const -> Value * {
1064   assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
1065   assert(isSectorTy(Lo->getType()));
1066   if (isZero(Amt))
1067     return Lo;
1068   int VecLen = getSizeOf(Lo);
1069   if (auto IntAmt = getIntValue(Amt))
1070     return getElementRange(Builder, Lo, Hi, IntAmt->getSExtValue(), VecLen);
1071 
1072   if (HST.isTypeForHVX(Lo->getType())) {
1073     int HwLen = HST.getVectorLength();
1074     assert(VecLen == HwLen && "Expecting an exact HVX type");
1075     Intrinsic::ID V6_valignb = HwLen == 64 ? Intrinsic::hexagon_V6_valignb
1076                                            : Intrinsic::hexagon_V6_valignb_128B;
1077     return createHvxIntrinsic(Builder, V6_valignb, Lo->getType(),
1078                               {Hi, Lo, Amt});
1079   }
1080 
1081   if (VecLen == 4) {
1082     Value *Pair = concat(Builder, {Lo, Hi});
1083     Value *Shift = Builder.CreateLShr(Pair, Amt);
1084     Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()));
1085     return Builder.CreateBitCast(Trunc, Lo->getType());
1086   }
1087   if (VecLen == 8) {
1088     Type *Int64Ty = Type::getInt64Ty(F.getContext());
1089     Value *Lo64 = Builder.CreateBitCast(Lo, Int64Ty);
1090     Value *Hi64 = Builder.CreateBitCast(Hi, Int64Ty);
1091     Function *FI = Intrinsic::getDeclaration(F.getParent(),
1092                                              Intrinsic::hexagon_S2_valignrb);
1093     Value *Call = Builder.CreateCall(FI, {Hi64, Lo64, Amt});
1094     return Builder.CreateBitCast(Call, Lo->getType());
1095   }
1096   llvm_unreachable("Unexpected vector length");
1097 }
1098 
1099 // Concatenates a sequence of vectors of the same type.
concat(IRBuilder<> & Builder,ArrayRef<Value * > Vecs) const1100 auto HexagonVectorCombine::concat(IRBuilder<> &Builder,
1101                                   ArrayRef<Value *> Vecs) const -> Value * {
1102   assert(!Vecs.empty());
1103   SmallVector<int, 256> SMask;
1104   std::vector<Value *> Work[2];
1105   int ThisW = 0, OtherW = 1;
1106 
1107   Work[ThisW].assign(Vecs.begin(), Vecs.end());
1108   while (Work[ThisW].size() > 1) {
1109     auto *Ty = cast<VectorType>(Work[ThisW].front()->getType());
1110     int ElemCount = Ty->getElementCount().getFixedValue();
1111     SMask.resize(ElemCount * 2);
1112     std::iota(SMask.begin(), SMask.end(), 0);
1113 
1114     Work[OtherW].clear();
1115     if (Work[ThisW].size() % 2 != 0)
1116       Work[ThisW].push_back(UndefValue::get(Ty));
1117     for (int i = 0, e = Work[ThisW].size(); i < e; i += 2) {
1118       Value *Joined = Builder.CreateShuffleVector(Work[ThisW][i],
1119                                                   Work[ThisW][i + 1], SMask);
1120       Work[OtherW].push_back(Joined);
1121     }
1122     std::swap(ThisW, OtherW);
1123   }
1124 
1125   // Since there may have been some undefs appended to make shuffle operands
1126   // have the same type, perform the last shuffle to only pick the original
1127   // elements.
1128   SMask.resize(Vecs.size() * getSizeOf(Vecs.front()->getType()));
1129   std::iota(SMask.begin(), SMask.end(), 0);
1130   Value *Total = Work[OtherW].front();
1131   return Builder.CreateShuffleVector(Total, SMask);
1132 }
1133 
vresize(IRBuilder<> & Builder,Value * Val,int NewSize,Value * Pad) const1134 auto HexagonVectorCombine::vresize(IRBuilder<> &Builder, Value *Val,
1135                                    int NewSize, Value *Pad) const -> Value * {
1136   assert(isa<VectorType>(Val->getType()));
1137   auto *ValTy = cast<VectorType>(Val->getType());
1138   assert(ValTy->getElementType() == Pad->getType());
1139 
1140   int CurSize = ValTy->getElementCount().getFixedValue();
1141   if (CurSize == NewSize)
1142     return Val;
1143   // Truncate?
1144   if (CurSize > NewSize)
1145     return getElementRange(Builder, Val, /*Unused*/ Val, 0, NewSize);
1146   // Extend.
1147   SmallVector<int, 128> SMask(NewSize);
1148   std::iota(SMask.begin(), SMask.begin() + CurSize, 0);
1149   std::fill(SMask.begin() + CurSize, SMask.end(), CurSize);
1150   Value *PadVec = Builder.CreateVectorSplat(CurSize, Pad);
1151   return Builder.CreateShuffleVector(Val, PadVec, SMask);
1152 }
1153 
rescale(IRBuilder<> & Builder,Value * Mask,Type * FromTy,Type * ToTy) const1154 auto HexagonVectorCombine::rescale(IRBuilder<> &Builder, Value *Mask,
1155                                    Type *FromTy, Type *ToTy) const -> Value * {
1156   // Mask is a vector <N x i1>, where each element corresponds to an
1157   // element of FromTy. Remap it so that each element will correspond
1158   // to an element of ToTy.
1159   assert(isa<VectorType>(Mask->getType()));
1160 
1161   Type *FromSTy = FromTy->getScalarType();
1162   Type *ToSTy = ToTy->getScalarType();
1163   if (FromSTy == ToSTy)
1164     return Mask;
1165 
1166   int FromSize = getSizeOf(FromSTy);
1167   int ToSize = getSizeOf(ToSTy);
1168   assert(FromSize % ToSize == 0 || ToSize % FromSize == 0);
1169 
1170   auto *MaskTy = cast<VectorType>(Mask->getType());
1171   int FromCount = MaskTy->getElementCount().getFixedValue();
1172   int ToCount = (FromCount * FromSize) / ToSize;
1173   assert((FromCount * FromSize) % ToSize == 0);
1174 
1175   // Mask <N x i1> -> sext to <N x FromTy> -> bitcast to <M x ToTy> ->
1176   // -> trunc to <M x i1>.
1177   Value *Ext = Builder.CreateSExt(
1178       Mask, VectorType::get(FromSTy, FromCount, /*Scalable*/ false));
1179   Value *Cast = Builder.CreateBitCast(
1180       Ext, VectorType::get(ToSTy, ToCount, /*Scalable*/ false));
1181   return Builder.CreateTrunc(
1182       Cast, VectorType::get(getBoolTy(), ToCount, /*Scalable*/ false));
1183 }
1184 
1185 // Bitcast to bytes, and return least significant bits.
vlsb(IRBuilder<> & Builder,Value * Val) const1186 auto HexagonVectorCombine::vlsb(IRBuilder<> &Builder, Value *Val) const
1187     -> Value * {
1188   Type *ScalarTy = Val->getType()->getScalarType();
1189   if (ScalarTy == getBoolTy())
1190     return Val;
1191 
1192   Value *Bytes = vbytes(Builder, Val);
1193   if (auto *VecTy = dyn_cast<VectorType>(Bytes->getType()))
1194     return Builder.CreateTrunc(Bytes, getBoolTy(getSizeOf(VecTy)));
1195   // If Bytes is a scalar (i.e. Val was a scalar byte), return i1, not
1196   // <1 x i1>.
1197   return Builder.CreateTrunc(Bytes, getBoolTy());
1198 }
1199 
1200 // Bitcast to bytes for non-bool. For bool, convert i1 -> i8.
vbytes(IRBuilder<> & Builder,Value * Val) const1201 auto HexagonVectorCombine::vbytes(IRBuilder<> &Builder, Value *Val) const
1202     -> Value * {
1203   Type *ScalarTy = Val->getType()->getScalarType();
1204   if (ScalarTy == getByteTy())
1205     return Val;
1206 
1207   if (ScalarTy != getBoolTy())
1208     return Builder.CreateBitCast(Val, getByteTy(getSizeOf(Val)));
1209   // For bool, return a sext from i1 to i8.
1210   if (auto *VecTy = dyn_cast<VectorType>(Val->getType()))
1211     return Builder.CreateSExt(Val, VectorType::get(getByteTy(), VecTy));
1212   return Builder.CreateSExt(Val, getByteTy());
1213 }
1214 
createHvxIntrinsic(IRBuilder<> & Builder,Intrinsic::ID IntID,Type * RetTy,ArrayRef<Value * > Args) const1215 auto HexagonVectorCombine::createHvxIntrinsic(IRBuilder<> &Builder,
1216                                               Intrinsic::ID IntID, Type *RetTy,
1217                                               ArrayRef<Value *> Args) const
1218     -> Value * {
1219   int HwLen = HST.getVectorLength();
1220   Type *BoolTy = Type::getInt1Ty(F.getContext());
1221   Type *Int32Ty = Type::getInt32Ty(F.getContext());
1222   // HVX vector -> v16i32/v32i32
1223   // HVX vector predicate -> v512i1/v1024i1
1224   auto getTypeForIntrin = [&](Type *Ty) -> Type * {
1225     if (HST.isTypeForHVX(Ty, /*IncludeBool*/ true)) {
1226       Type *ElemTy = cast<VectorType>(Ty)->getElementType();
1227       if (ElemTy == Int32Ty)
1228         return Ty;
1229       if (ElemTy == BoolTy)
1230         return VectorType::get(BoolTy, 8 * HwLen, /*Scalable*/ false);
1231       return VectorType::get(Int32Ty, HwLen / 4, /*Scalable*/ false);
1232     }
1233     // Non-HVX type. It should be a scalar.
1234     assert(Ty == Int32Ty || Ty->isIntegerTy(64));
1235     return Ty;
1236   };
1237 
1238   auto getCast = [&](IRBuilder<> &Builder, Value *Val,
1239                      Type *DestTy) -> Value * {
1240     Type *SrcTy = Val->getType();
1241     if (SrcTy == DestTy)
1242       return Val;
1243     if (HST.isTypeForHVX(SrcTy, /*IncludeBool*/ true)) {
1244       if (cast<VectorType>(SrcTy)->getElementType() == BoolTy) {
1245         // This should take care of casts the other way too, for example
1246         // v1024i1 -> v32i1.
1247         Intrinsic::ID TC = HwLen == 64
1248                                ? Intrinsic::hexagon_V6_pred_typecast
1249                                : Intrinsic::hexagon_V6_pred_typecast_128B;
1250         Function *FI = Intrinsic::getDeclaration(F.getParent(), TC,
1251                                                  {DestTy, Val->getType()});
1252         return Builder.CreateCall(FI, {Val});
1253       }
1254       // Non-predicate HVX vector.
1255       return Builder.CreateBitCast(Val, DestTy);
1256     }
1257     // Non-HVX type. It should be a scalar, and it should already have
1258     // a valid type.
1259     llvm_unreachable("Unexpected type");
1260   };
1261 
1262   SmallVector<Value *, 4> IntOps;
1263   for (Value *A : Args)
1264     IntOps.push_back(getCast(Builder, A, getTypeForIntrin(A->getType())));
1265   Function *FI = Intrinsic::getDeclaration(F.getParent(), IntID);
1266   Value *Call = Builder.CreateCall(FI, IntOps);
1267 
1268   Type *CallTy = Call->getType();
1269   if (CallTy == RetTy)
1270     return Call;
1271   // Scalar types should have RetTy matching the call return type.
1272   assert(HST.isTypeForHVX(CallTy, /*IncludeBool*/ true));
1273   if (cast<VectorType>(CallTy)->getElementType() == BoolTy)
1274     return getCast(Builder, Call, RetTy);
1275   return Builder.CreateBitCast(Call, RetTy);
1276 }
1277 
calculatePointerDifference(Value * Ptr0,Value * Ptr1) const1278 auto HexagonVectorCombine::calculatePointerDifference(Value *Ptr0,
1279                                                       Value *Ptr1) const
1280     -> Optional<int> {
1281   struct Builder : IRBuilder<> {
1282     Builder(BasicBlock *B) : IRBuilder<>(B) {}
1283     ~Builder() {
1284       for (Instruction *I : llvm::reverse(ToErase))
1285         I->eraseFromParent();
1286     }
1287     SmallVector<Instruction *, 8> ToErase;
1288   };
1289 
1290 #define CallBuilder(B, F)                                                      \
1291   [&](auto &B_) {                                                              \
1292     Value *V = B_.F;                                                           \
1293     if (auto *I = dyn_cast<Instruction>(V))                                    \
1294       B_.ToErase.push_back(I);                                                 \
1295     return V;                                                                  \
1296   }(B)
1297 
1298   auto Simplify = [&](Value *V) {
1299     if (auto *I = dyn_cast<Instruction>(V)) {
1300       SimplifyQuery Q(DL, &TLI, &DT, &AC, I);
1301       if (Value *S = SimplifyInstruction(I, Q))
1302         return S;
1303     }
1304     return V;
1305   };
1306 
1307   auto StripBitCast = [](Value *V) {
1308     while (auto *C = dyn_cast<BitCastInst>(V))
1309       V = C->getOperand(0);
1310     return V;
1311   };
1312 
1313   Ptr0 = StripBitCast(Ptr0);
1314   Ptr1 = StripBitCast(Ptr1);
1315   if (!isa<GetElementPtrInst>(Ptr0) || !isa<GetElementPtrInst>(Ptr1))
1316     return None;
1317 
1318   auto *Gep0 = cast<GetElementPtrInst>(Ptr0);
1319   auto *Gep1 = cast<GetElementPtrInst>(Ptr1);
1320   if (Gep0->getPointerOperand() != Gep1->getPointerOperand())
1321     return None;
1322 
1323   Builder B(Gep0->getParent());
1324   Value *BasePtr = Gep0->getPointerOperand();
1325   int Scale = DL.getTypeStoreSize(BasePtr->getType()->getPointerElementType());
1326 
1327   // FIXME: for now only check GEPs with a single index.
1328   if (Gep0->getNumOperands() != 2 || Gep1->getNumOperands() != 2)
1329     return None;
1330 
1331   Value *Idx0 = Gep0->getOperand(1);
1332   Value *Idx1 = Gep1->getOperand(1);
1333 
1334   // First, try to simplify the subtraction directly.
1335   if (auto *Diff = dyn_cast<ConstantInt>(
1336           Simplify(CallBuilder(B, CreateSub(Idx0, Idx1)))))
1337     return Diff->getSExtValue() * Scale;
1338 
1339   KnownBits Known0 = computeKnownBits(Idx0, DL, 0, &AC, Gep0, &DT);
1340   KnownBits Known1 = computeKnownBits(Idx1, DL, 0, &AC, Gep1, &DT);
1341   APInt Unknown = ~(Known0.Zero | Known0.One) | ~(Known1.Zero | Known1.One);
1342   if (Unknown.isAllOnesValue())
1343     return None;
1344 
1345   Value *MaskU = ConstantInt::get(Idx0->getType(), Unknown);
1346   Value *AndU0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskU)));
1347   Value *AndU1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskU)));
1348   Value *SubU = Simplify(CallBuilder(B, CreateSub(AndU0, AndU1)));
1349   int Diff0 = 0;
1350   if (auto *C = dyn_cast<ConstantInt>(SubU)) {
1351     Diff0 = C->getSExtValue();
1352   } else {
1353     return None;
1354   }
1355 
1356   Value *MaskK = ConstantInt::get(MaskU->getType(), ~Unknown);
1357   Value *AndK0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskK)));
1358   Value *AndK1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskK)));
1359   Value *SubK = Simplify(CallBuilder(B, CreateSub(AndK0, AndK1)));
1360   int Diff1 = 0;
1361   if (auto *C = dyn_cast<ConstantInt>(SubK)) {
1362     Diff1 = C->getSExtValue();
1363   } else {
1364     return None;
1365   }
1366 
1367   return (Diff0 + Diff1) * Scale;
1368 
1369 #undef CallBuilder
1370 }
1371 
1372 template <typename T>
isSafeToMoveBeforeInBB(const Instruction & In,BasicBlock::const_iterator To,const T & Ignore) const1373 auto HexagonVectorCombine::isSafeToMoveBeforeInBB(const Instruction &In,
1374                                                   BasicBlock::const_iterator To,
1375                                                   const T &Ignore) const
1376     -> bool {
1377   auto getLocOrNone = [this](const Instruction &I) -> Optional<MemoryLocation> {
1378     if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
1379       switch (II->getIntrinsicID()) {
1380       case Intrinsic::masked_load:
1381         return MemoryLocation::getForArgument(II, 0, TLI);
1382       case Intrinsic::masked_store:
1383         return MemoryLocation::getForArgument(II, 1, TLI);
1384       }
1385     }
1386     return MemoryLocation::getOrNone(&I);
1387   };
1388 
1389   // The source and the destination must be in the same basic block.
1390   const BasicBlock &Block = *In.getParent();
1391   assert(Block.begin() == To || Block.end() == To || To->getParent() == &Block);
1392   // No PHIs.
1393   if (isa<PHINode>(In) || (To != Block.end() && isa<PHINode>(*To)))
1394     return false;
1395 
1396   if (!mayBeMemoryDependent(In))
1397     return true;
1398   bool MayWrite = In.mayWriteToMemory();
1399   auto MaybeLoc = getLocOrNone(In);
1400 
1401   auto From = In.getIterator();
1402   if (From == To)
1403     return true;
1404   bool MoveUp = (To != Block.end() && To->comesBefore(&In));
1405   auto Range =
1406       MoveUp ? std::make_pair(To, From) : std::make_pair(std::next(From), To);
1407   for (auto It = Range.first; It != Range.second; ++It) {
1408     const Instruction &I = *It;
1409     if (llvm::is_contained(Ignore, &I))
1410       continue;
1411     // assume intrinsic can be ignored
1412     if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1413       if (II->getIntrinsicID() == Intrinsic::assume)
1414         continue;
1415     }
1416     // Parts based on isSafeToMoveBefore from CoveMoverUtils.cpp.
1417     if (I.mayThrow())
1418       return false;
1419     if (auto *CB = dyn_cast<CallBase>(&I)) {
1420       if (!CB->hasFnAttr(Attribute::WillReturn))
1421         return false;
1422       if (!CB->hasFnAttr(Attribute::NoSync))
1423         return false;
1424     }
1425     if (I.mayReadOrWriteMemory()) {
1426       auto MaybeLocI = getLocOrNone(I);
1427       if (MayWrite || I.mayWriteToMemory()) {
1428         if (!MaybeLoc || !MaybeLocI)
1429           return false;
1430         if (!AA.isNoAlias(*MaybeLoc, *MaybeLocI))
1431           return false;
1432       }
1433     }
1434   }
1435   return true;
1436 }
1437 
1438 #ifndef NDEBUG
isByteVecTy(Type * Ty) const1439 auto HexagonVectorCombine::isByteVecTy(Type *Ty) const -> bool {
1440   if (auto *VecTy = dyn_cast<VectorType>(Ty))
1441     return VecTy->getElementType() == getByteTy();
1442   return false;
1443 }
1444 
isSectorTy(Type * Ty) const1445 auto HexagonVectorCombine::isSectorTy(Type *Ty) const -> bool {
1446   if (!isByteVecTy(Ty))
1447     return false;
1448   int Size = getSizeOf(Ty);
1449   if (HST.isTypeForHVX(Ty))
1450     return Size == static_cast<int>(HST.getVectorLength());
1451   return Size == 4 || Size == 8;
1452 }
1453 #endif
1454 
getElementRange(IRBuilder<> & Builder,Value * Lo,Value * Hi,int Start,int Length) const1455 auto HexagonVectorCombine::getElementRange(IRBuilder<> &Builder, Value *Lo,
1456                                            Value *Hi, int Start,
1457                                            int Length) const -> Value * {
1458   assert(0 <= Start && Start < Length);
1459   SmallVector<int, 128> SMask(Length);
1460   std::iota(SMask.begin(), SMask.end(), Start);
1461   return Builder.CreateShuffleVector(Lo, Hi, SMask);
1462 }
1463 
1464 // Pass management.
1465 
1466 namespace llvm {
1467 void initializeHexagonVectorCombineLegacyPass(PassRegistry &);
1468 FunctionPass *createHexagonVectorCombineLegacyPass();
1469 } // namespace llvm
1470 
1471 namespace {
1472 class HexagonVectorCombineLegacy : public FunctionPass {
1473 public:
1474   static char ID;
1475 
HexagonVectorCombineLegacy()1476   HexagonVectorCombineLegacy() : FunctionPass(ID) {}
1477 
getPassName() const1478   StringRef getPassName() const override { return "Hexagon Vector Combine"; }
1479 
getAnalysisUsage(AnalysisUsage & AU) const1480   void getAnalysisUsage(AnalysisUsage &AU) const override {
1481     AU.setPreservesCFG();
1482     AU.addRequired<AAResultsWrapperPass>();
1483     AU.addRequired<AssumptionCacheTracker>();
1484     AU.addRequired<DominatorTreeWrapperPass>();
1485     AU.addRequired<TargetLibraryInfoWrapperPass>();
1486     AU.addRequired<TargetPassConfig>();
1487     FunctionPass::getAnalysisUsage(AU);
1488   }
1489 
runOnFunction(Function & F)1490   bool runOnFunction(Function &F) override {
1491     if (skipFunction(F))
1492       return false;
1493     AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1494     AssumptionCache &AC =
1495         getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1496     DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1497     TargetLibraryInfo &TLI =
1498         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1499     auto &TM = getAnalysis<TargetPassConfig>().getTM<HexagonTargetMachine>();
1500     HexagonVectorCombine HVC(F, AA, AC, DT, TLI, TM);
1501     return HVC.run();
1502   }
1503 };
1504 } // namespace
1505 
1506 char HexagonVectorCombineLegacy::ID = 0;
1507 
1508 INITIALIZE_PASS_BEGIN(HexagonVectorCombineLegacy, DEBUG_TYPE,
1509                       "Hexagon Vector Combine", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)1510 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1511 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1512 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1513 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1514 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
1515 INITIALIZE_PASS_END(HexagonVectorCombineLegacy, DEBUG_TYPE,
1516                     "Hexagon Vector Combine", false, false)
1517 
1518 FunctionPass *llvm::createHexagonVectorCombineLegacyPass() {
1519   return new HexagonVectorCombineLegacy();
1520 }
1521