1 //===-- HexagonVectorCombine.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // HexagonVectorCombine is a utility class implementing a variety of functions
9 // that assist in vector-based optimizations.
10 //
11 // AlignVectors: replace unaligned vector loads and stores with aligned ones.
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 #include "llvm/CodeGen/TargetPassConfig.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/IntrinsicsHexagon.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/InitializePasses.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetMachine.h"
39
40 #include "HexagonSubtarget.h"
41 #include "HexagonTargetMachine.h"
42
43 #include <algorithm>
44 #include <deque>
45 #include <map>
46 #include <set>
47 #include <utility>
48 #include <vector>
49
50 #define DEBUG_TYPE "hexagon-vc"
51
52 using namespace llvm;
53
54 namespace {
55 class HexagonVectorCombine {
56 public:
HexagonVectorCombine(Function & F_,AliasAnalysis & AA_,AssumptionCache & AC_,DominatorTree & DT_,TargetLibraryInfo & TLI_,const TargetMachine & TM_)57 HexagonVectorCombine(Function &F_, AliasAnalysis &AA_, AssumptionCache &AC_,
58 DominatorTree &DT_, TargetLibraryInfo &TLI_,
59 const TargetMachine &TM_)
60 : F(F_), DL(F.getParent()->getDataLayout()), AA(AA_), AC(AC_), DT(DT_),
61 TLI(TLI_),
62 HST(static_cast<const HexagonSubtarget &>(*TM_.getSubtargetImpl(F))) {}
63
64 bool run();
65
66 // Common integer type.
67 IntegerType *getIntTy() const;
68 // Byte type: either scalar (when Length = 0), or vector with given
69 // element count.
70 Type *getByteTy(int ElemCount = 0) const;
71 // Boolean type: either scalar (when Length = 0), or vector with given
72 // element count.
73 Type *getBoolTy(int ElemCount = 0) const;
74 // Create a ConstantInt of type returned by getIntTy with the value Val.
75 ConstantInt *getConstInt(int Val) const;
76 // Get the integer value of V, if it exists.
77 Optional<APInt> getIntValue(const Value *Val) const;
78 // Is V a constant 0, or a vector of 0s?
79 bool isZero(const Value *Val) const;
80 // Is V an undef value?
81 bool isUndef(const Value *Val) const;
82
83 int getSizeOf(const Value *Val) const;
84 int getSizeOf(const Type *Ty) const;
85 int getTypeAlignment(Type *Ty) const;
86
87 VectorType *getByteVectorTy(int ScLen) const;
88 Constant *getNullValue(Type *Ty) const;
89 Constant *getFullValue(Type *Ty) const;
90
91 Value *insertb(IRBuilder<> &Builder, Value *Dest, Value *Src, int Start,
92 int Length, int Where) const;
93 Value *vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const;
94 Value *vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const;
95 Value *concat(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) const;
96 Value *vresize(IRBuilder<> &Builder, Value *Val, int NewSize,
97 Value *Pad) const;
98 Value *rescale(IRBuilder<> &Builder, Value *Mask, Type *FromTy,
99 Type *ToTy) const;
100 Value *vlsb(IRBuilder<> &Builder, Value *Val) const;
101 Value *vbytes(IRBuilder<> &Builder, Value *Val) const;
102
103 Value *createHvxIntrinsic(IRBuilder<> &Builder, Intrinsic::ID IntID,
104 Type *RetTy, ArrayRef<Value *> Args) const;
105
106 Optional<int> calculatePointerDifference(Value *Ptr0, Value *Ptr1) const;
107
108 template <typename T = std::vector<Instruction *>>
109 bool isSafeToMoveBeforeInBB(const Instruction &In,
110 BasicBlock::const_iterator To,
111 const T &Ignore = {}) const;
112
113 Function &F;
114 const DataLayout &DL;
115 AliasAnalysis &AA;
116 AssumptionCache &AC;
117 DominatorTree &DT;
118 TargetLibraryInfo &TLI;
119 const HexagonSubtarget &HST;
120
121 private:
122 #ifndef NDEBUG
123 // These two functions are only used for assertions at the moment.
124 bool isByteVecTy(Type *Ty) const;
125 bool isSectorTy(Type *Ty) const;
126 #endif
127 Value *getElementRange(IRBuilder<> &Builder, Value *Lo, Value *Hi, int Start,
128 int Length) const;
129 };
130
131 class AlignVectors {
132 public:
AlignVectors(HexagonVectorCombine & HVC_)133 AlignVectors(HexagonVectorCombine &HVC_) : HVC(HVC_) {}
134
135 bool run();
136
137 private:
138 using InstList = std::vector<Instruction *>;
139
140 struct Segment {
141 void *Data;
142 int Start;
143 int Size;
144 };
145
146 struct AddrInfo {
147 AddrInfo(const AddrInfo &) = default;
AddrInfo__anon8795e6040111::AlignVectors::AddrInfo148 AddrInfo(const HexagonVectorCombine &HVC, Instruction *I, Value *A, Type *T,
149 Align H)
150 : Inst(I), Addr(A), ValTy(T), HaveAlign(H),
151 NeedAlign(HVC.getTypeAlignment(ValTy)) {}
152
153 // XXX: add Size member?
154 Instruction *Inst;
155 Value *Addr;
156 Type *ValTy;
157 Align HaveAlign;
158 Align NeedAlign;
159 int Offset = 0; // Offset (in bytes) from the first member of the
160 // containing AddrList.
161 };
162 using AddrList = std::vector<AddrInfo>;
163
164 struct InstrLess {
operator ()__anon8795e6040111::AlignVectors::InstrLess165 bool operator()(const Instruction *A, const Instruction *B) const {
166 return A->comesBefore(B);
167 }
168 };
169 using DepList = std::set<Instruction *, InstrLess>;
170
171 struct MoveGroup {
MoveGroup__anon8795e6040111::AlignVectors::MoveGroup172 MoveGroup(const AddrInfo &AI, Instruction *B, bool Hvx, bool Load)
173 : Base(B), Main{AI.Inst}, IsHvx(Hvx), IsLoad(Load) {}
174 Instruction *Base; // Base instruction of the parent address group.
175 InstList Main; // Main group of instructions.
176 InstList Deps; // List of dependencies.
177 bool IsHvx; // Is this group of HVX instructions?
178 bool IsLoad; // Is this a load group?
179 };
180 using MoveList = std::vector<MoveGroup>;
181
182 struct ByteSpan {
183 struct Segment {
184 // Segment of a Value: 'Len' bytes starting at byte 'Begin'.
Segment__anon8795e6040111::AlignVectors::ByteSpan::Segment185 Segment(Value *Val, int Begin, int Len)
186 : Val(Val), Start(Begin), Size(Len) {}
187 Segment(const Segment &Seg) = default;
188 Value *Val; // Value representable as a sequence of bytes.
189 int Start; // First byte of the value that belongs to the segment.
190 int Size; // Number of bytes in the segment.
191 };
192
193 struct Block {
Block__anon8795e6040111::AlignVectors::ByteSpan::Block194 Block(Value *Val, int Len, int Pos) : Seg(Val, 0, Len), Pos(Pos) {}
Block__anon8795e6040111::AlignVectors::ByteSpan::Block195 Block(Value *Val, int Off, int Len, int Pos)
196 : Seg(Val, Off, Len), Pos(Pos) {}
197 Block(const Block &Blk) = default;
198 Segment Seg; // Value segment.
199 int Pos; // Position (offset) of the segment in the Block.
200 };
201
202 int extent() const;
203 ByteSpan section(int Start, int Length) const;
204 ByteSpan &shift(int Offset);
205 SmallVector<Value *, 8> values() const;
206
size__anon8795e6040111::AlignVectors::ByteSpan207 int size() const { return Blocks.size(); }
operator []__anon8795e6040111::AlignVectors::ByteSpan208 Block &operator[](int i) { return Blocks[i]; }
209
210 std::vector<Block> Blocks;
211
212 using iterator = decltype(Blocks)::iterator;
begin__anon8795e6040111::AlignVectors::ByteSpan213 iterator begin() { return Blocks.begin(); }
end__anon8795e6040111::AlignVectors::ByteSpan214 iterator end() { return Blocks.end(); }
215 using const_iterator = decltype(Blocks)::const_iterator;
begin__anon8795e6040111::AlignVectors::ByteSpan216 const_iterator begin() const { return Blocks.begin(); }
end__anon8795e6040111::AlignVectors::ByteSpan217 const_iterator end() const { return Blocks.end(); }
218 };
219
220 Align getAlignFromValue(const Value *V) const;
221 Optional<MemoryLocation> getLocation(const Instruction &In) const;
222 Optional<AddrInfo> getAddrInfo(Instruction &In) const;
223 bool isHvx(const AddrInfo &AI) const;
224
225 Value *getPayload(Value *Val) const;
226 Value *getMask(Value *Val) const;
227 Value *getPassThrough(Value *Val) const;
228
229 Value *createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy,
230 int Adjust) const;
231 Value *createAlignedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy,
232 int Alignment) const;
233 Value *createAlignedLoad(IRBuilder<> &Builder, Type *ValTy, Value *Ptr,
234 int Alignment, Value *Mask, Value *PassThru) const;
235 Value *createAlignedStore(IRBuilder<> &Builder, Value *Val, Value *Ptr,
236 int Alignment, Value *Mask) const;
237
238 bool createAddressGroups();
239 MoveList createLoadGroups(const AddrList &Group) const;
240 MoveList createStoreGroups(const AddrList &Group) const;
241 bool move(const MoveGroup &Move) const;
242 bool realignGroup(const MoveGroup &Move) const;
243
244 friend raw_ostream &operator<<(raw_ostream &OS, const AddrInfo &AI);
245 friend raw_ostream &operator<<(raw_ostream &OS, const MoveGroup &MG);
246 friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan &BS);
247
248 std::map<Instruction *, AddrList> AddrGroups;
249 HexagonVectorCombine &HVC;
250 };
251
252 LLVM_ATTRIBUTE_UNUSED
operator <<(raw_ostream & OS,const AlignVectors::AddrInfo & AI)253 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::AddrInfo &AI) {
254 OS << "Inst: " << AI.Inst << " " << *AI.Inst << '\n';
255 OS << "Addr: " << *AI.Addr << '\n';
256 OS << "Type: " << *AI.ValTy << '\n';
257 OS << "HaveAlign: " << AI.HaveAlign.value() << '\n';
258 OS << "NeedAlign: " << AI.NeedAlign.value() << '\n';
259 OS << "Offset: " << AI.Offset;
260 return OS;
261 }
262
263 LLVM_ATTRIBUTE_UNUSED
operator <<(raw_ostream & OS,const AlignVectors::MoveGroup & MG)264 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::MoveGroup &MG) {
265 OS << "Main\n";
266 for (Instruction *I : MG.Main)
267 OS << " " << *I << '\n';
268 OS << "Deps\n";
269 for (Instruction *I : MG.Deps)
270 OS << " " << *I << '\n';
271 return OS;
272 }
273
274 LLVM_ATTRIBUTE_UNUSED
operator <<(raw_ostream & OS,const AlignVectors::ByteSpan & BS)275 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::ByteSpan &BS) {
276 OS << "ByteSpan[size=" << BS.size() << ", extent=" << BS.extent() << '\n';
277 for (const AlignVectors::ByteSpan::Block &B : BS) {
278 OS << " @" << B.Pos << " [" << B.Seg.Start << ',' << B.Seg.Size << "] "
279 << *B.Seg.Val << '\n';
280 }
281 OS << ']';
282 return OS;
283 }
284
285 } // namespace
286
287 namespace {
288
getIfUnordered(T * MaybeT)289 template <typename T> T *getIfUnordered(T *MaybeT) {
290 return MaybeT && MaybeT->isUnordered() ? MaybeT : nullptr;
291 }
isCandidate(Instruction * In)292 template <typename T> T *isCandidate(Instruction *In) {
293 return dyn_cast<T>(In);
294 }
isCandidate(Instruction * In)295 template <> LoadInst *isCandidate<LoadInst>(Instruction *In) {
296 return getIfUnordered(dyn_cast<LoadInst>(In));
297 }
isCandidate(Instruction * In)298 template <> StoreInst *isCandidate<StoreInst>(Instruction *In) {
299 return getIfUnordered(dyn_cast<StoreInst>(In));
300 }
301
302 #if !defined(_MSC_VER) || _MSC_VER >= 1926
303 // VS2017 and some versions of VS2019 have trouble compiling this:
304 // error C2976: 'std::map': too few template arguments
305 // VS 2019 16.x is known to work, except for 16.4/16.5 (MSC_VER 1924/1925)
306 template <typename Pred, typename... Ts>
erase_if(std::map<Ts...> & map,Pred p)307 void erase_if(std::map<Ts...> &map, Pred p)
308 #else
309 template <typename Pred, typename T, typename U>
310 void erase_if(std::map<T, U> &map, Pred p)
311 #endif
312 {
313 for (auto i = map.begin(), e = map.end(); i != e;) {
314 if (p(*i))
315 i = map.erase(i);
316 else
317 i = std::next(i);
318 }
319 }
320
321 // Forward other erase_ifs to the LLVM implementations.
erase_if(T && container,Pred p)322 template <typename Pred, typename T> void erase_if(T &&container, Pred p) {
323 llvm::erase_if(std::forward<T>(container), p);
324 }
325
326 } // namespace
327
328 // --- Begin AlignVectors
329
extent() const330 auto AlignVectors::ByteSpan::extent() const -> int {
331 if (size() == 0)
332 return 0;
333 int Min = Blocks[0].Pos;
334 int Max = Blocks[0].Pos + Blocks[0].Seg.Size;
335 for (int i = 1, e = size(); i != e; ++i) {
336 Min = std::min(Min, Blocks[i].Pos);
337 Max = std::max(Max, Blocks[i].Pos + Blocks[i].Seg.Size);
338 }
339 return Max - Min;
340 }
341
section(int Start,int Length) const342 auto AlignVectors::ByteSpan::section(int Start, int Length) const -> ByteSpan {
343 ByteSpan Section;
344 for (const ByteSpan::Block &B : Blocks) {
345 int L = std::max(B.Pos, Start); // Left end.
346 int R = std::min(B.Pos + B.Seg.Size, Start + Length); // Right end+1.
347 if (L < R) {
348 // How much to chop off the beginning of the segment:
349 int Off = L > B.Pos ? L - B.Pos : 0;
350 Section.Blocks.emplace_back(B.Seg.Val, B.Seg.Start + Off, R - L, L);
351 }
352 }
353 return Section;
354 }
355
shift(int Offset)356 auto AlignVectors::ByteSpan::shift(int Offset) -> ByteSpan & {
357 for (Block &B : Blocks)
358 B.Pos += Offset;
359 return *this;
360 }
361
values() const362 auto AlignVectors::ByteSpan::values() const -> SmallVector<Value *, 8> {
363 SmallVector<Value *, 8> Values(Blocks.size());
364 for (int i = 0, e = Blocks.size(); i != e; ++i)
365 Values[i] = Blocks[i].Seg.Val;
366 return Values;
367 }
368
getAlignFromValue(const Value * V) const369 auto AlignVectors::getAlignFromValue(const Value *V) const -> Align {
370 const auto *C = dyn_cast<ConstantInt>(V);
371 assert(C && "Alignment must be a compile-time constant integer");
372 return C->getAlignValue();
373 }
374
getAddrInfo(Instruction & In) const375 auto AlignVectors::getAddrInfo(Instruction &In) const -> Optional<AddrInfo> {
376 if (auto *L = isCandidate<LoadInst>(&In))
377 return AddrInfo(HVC, L, L->getPointerOperand(), L->getType(),
378 L->getAlign());
379 if (auto *S = isCandidate<StoreInst>(&In))
380 return AddrInfo(HVC, S, S->getPointerOperand(),
381 S->getValueOperand()->getType(), S->getAlign());
382 if (auto *II = isCandidate<IntrinsicInst>(&In)) {
383 Intrinsic::ID ID = II->getIntrinsicID();
384 switch (ID) {
385 case Intrinsic::masked_load:
386 return AddrInfo(HVC, II, II->getArgOperand(0), II->getType(),
387 getAlignFromValue(II->getArgOperand(1)));
388 case Intrinsic::masked_store:
389 return AddrInfo(HVC, II, II->getArgOperand(1),
390 II->getArgOperand(0)->getType(),
391 getAlignFromValue(II->getArgOperand(2)));
392 }
393 }
394 return Optional<AddrInfo>();
395 }
396
isHvx(const AddrInfo & AI) const397 auto AlignVectors::isHvx(const AddrInfo &AI) const -> bool {
398 return HVC.HST.isTypeForHVX(AI.ValTy);
399 }
400
getPayload(Value * Val) const401 auto AlignVectors::getPayload(Value *Val) const -> Value * {
402 if (auto *In = dyn_cast<Instruction>(Val)) {
403 Intrinsic::ID ID = 0;
404 if (auto *II = dyn_cast<IntrinsicInst>(In))
405 ID = II->getIntrinsicID();
406 if (isa<StoreInst>(In) || ID == Intrinsic::masked_store)
407 return In->getOperand(0);
408 }
409 return Val;
410 }
411
getMask(Value * Val) const412 auto AlignVectors::getMask(Value *Val) const -> Value * {
413 if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
414 switch (II->getIntrinsicID()) {
415 case Intrinsic::masked_load:
416 return II->getArgOperand(2);
417 case Intrinsic::masked_store:
418 return II->getArgOperand(3);
419 }
420 }
421
422 Type *ValTy = getPayload(Val)->getType();
423 if (auto *VecTy = dyn_cast<VectorType>(ValTy)) {
424 int ElemCount = VecTy->getElementCount().getFixedValue();
425 return HVC.getFullValue(HVC.getBoolTy(ElemCount));
426 }
427 return HVC.getFullValue(HVC.getBoolTy());
428 }
429
getPassThrough(Value * Val) const430 auto AlignVectors::getPassThrough(Value *Val) const -> Value * {
431 if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
432 if (II->getIntrinsicID() == Intrinsic::masked_load)
433 return II->getArgOperand(3);
434 }
435 return UndefValue::get(getPayload(Val)->getType());
436 }
437
createAdjustedPointer(IRBuilder<> & Builder,Value * Ptr,Type * ValTy,int Adjust) const438 auto AlignVectors::createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr,
439 Type *ValTy, int Adjust) const
440 -> Value * {
441 // The adjustment is in bytes, but if it's a multiple of the type size,
442 // we don't need to do pointer casts.
443 Type *ElemTy = cast<PointerType>(Ptr->getType())->getElementType();
444 int ElemSize = HVC.getSizeOf(ElemTy);
445 if (Adjust % ElemSize == 0) {
446 Value *Tmp0 = Builder.CreateGEP(Ptr, HVC.getConstInt(Adjust / ElemSize));
447 return Builder.CreatePointerCast(Tmp0, ValTy->getPointerTo());
448 }
449
450 PointerType *CharPtrTy = Type::getInt8PtrTy(HVC.F.getContext());
451 Value *Tmp0 = Builder.CreatePointerCast(Ptr, CharPtrTy);
452 Value *Tmp1 = Builder.CreateGEP(Tmp0, HVC.getConstInt(Adjust));
453 return Builder.CreatePointerCast(Tmp1, ValTy->getPointerTo());
454 }
455
createAlignedPointer(IRBuilder<> & Builder,Value * Ptr,Type * ValTy,int Alignment) const456 auto AlignVectors::createAlignedPointer(IRBuilder<> &Builder, Value *Ptr,
457 Type *ValTy, int Alignment) const
458 -> Value * {
459 Value *AsInt = Builder.CreatePtrToInt(Ptr, HVC.getIntTy());
460 Value *Mask = HVC.getConstInt(-Alignment);
461 Value *And = Builder.CreateAnd(AsInt, Mask);
462 return Builder.CreateIntToPtr(And, ValTy->getPointerTo());
463 }
464
createAlignedLoad(IRBuilder<> & Builder,Type * ValTy,Value * Ptr,int Alignment,Value * Mask,Value * PassThru) const465 auto AlignVectors::createAlignedLoad(IRBuilder<> &Builder, Type *ValTy,
466 Value *Ptr, int Alignment, Value *Mask,
467 Value *PassThru) const -> Value * {
468 assert(!HVC.isUndef(Mask)); // Should this be allowed?
469 if (HVC.isZero(Mask))
470 return PassThru;
471 if (Mask == ConstantInt::getTrue(Mask->getType()))
472 return Builder.CreateAlignedLoad(ValTy, Ptr, Align(Alignment));
473 return Builder.CreateMaskedLoad(Ptr, Align(Alignment), Mask, PassThru);
474 }
475
createAlignedStore(IRBuilder<> & Builder,Value * Val,Value * Ptr,int Alignment,Value * Mask) const476 auto AlignVectors::createAlignedStore(IRBuilder<> &Builder, Value *Val,
477 Value *Ptr, int Alignment,
478 Value *Mask) const -> Value * {
479 if (HVC.isZero(Mask) || HVC.isUndef(Val) || HVC.isUndef(Mask))
480 return UndefValue::get(Val->getType());
481 if (Mask == ConstantInt::getTrue(Mask->getType()))
482 return Builder.CreateAlignedStore(Val, Ptr, Align(Alignment));
483 return Builder.CreateMaskedStore(Val, Ptr, Align(Alignment), Mask);
484 }
485
createAddressGroups()486 auto AlignVectors::createAddressGroups() -> bool {
487 // An address group created here may contain instructions spanning
488 // multiple basic blocks.
489 AddrList WorkStack;
490
491 auto findBaseAndOffset = [&](AddrInfo &AI) -> std::pair<Instruction *, int> {
492 for (AddrInfo &W : WorkStack) {
493 if (auto D = HVC.calculatePointerDifference(AI.Addr, W.Addr))
494 return std::make_pair(W.Inst, *D);
495 }
496 return std::make_pair(nullptr, 0);
497 };
498
499 auto traverseBlock = [&](DomTreeNode *DomN, auto Visit) -> void {
500 BasicBlock &Block = *DomN->getBlock();
501 for (Instruction &I : Block) {
502 auto AI = this->getAddrInfo(I); // Use this-> for gcc6.
503 if (!AI)
504 continue;
505 auto F = findBaseAndOffset(*AI);
506 Instruction *GroupInst;
507 if (Instruction *BI = F.first) {
508 AI->Offset = F.second;
509 GroupInst = BI;
510 } else {
511 WorkStack.push_back(*AI);
512 GroupInst = AI->Inst;
513 }
514 AddrGroups[GroupInst].push_back(*AI);
515 }
516
517 for (DomTreeNode *C : DomN->children())
518 Visit(C, Visit);
519
520 while (!WorkStack.empty() && WorkStack.back().Inst->getParent() == &Block)
521 WorkStack.pop_back();
522 };
523
524 traverseBlock(HVC.DT.getRootNode(), traverseBlock);
525 assert(WorkStack.empty());
526
527 // AddrGroups are formed.
528
529 // Remove groups of size 1.
530 erase_if(AddrGroups, [](auto &G) { return G.second.size() == 1; });
531 // Remove groups that don't use HVX types.
532 erase_if(AddrGroups, [&](auto &G) {
533 return !llvm::any_of(
534 G.second, [&](auto &I) { return HVC.HST.isTypeForHVX(I.ValTy); });
535 });
536
537 return !AddrGroups.empty();
538 }
539
createLoadGroups(const AddrList & Group) const540 auto AlignVectors::createLoadGroups(const AddrList &Group) const -> MoveList {
541 // Form load groups.
542 // To avoid complications with moving code across basic blocks, only form
543 // groups that are contained within a single basic block.
544
545 auto getUpwardDeps = [](Instruction *In, Instruction *Base) {
546 BasicBlock *Parent = Base->getParent();
547 assert(In->getParent() == Parent &&
548 "Base and In should be in the same block");
549 assert(Base->comesBefore(In) && "Base should come before In");
550
551 DepList Deps;
552 std::deque<Instruction *> WorkQ = {In};
553 while (!WorkQ.empty()) {
554 Instruction *D = WorkQ.front();
555 WorkQ.pop_front();
556 Deps.insert(D);
557 for (Value *Op : D->operands()) {
558 if (auto *I = dyn_cast<Instruction>(Op)) {
559 if (I->getParent() == Parent && Base->comesBefore(I))
560 WorkQ.push_back(I);
561 }
562 }
563 }
564 return Deps;
565 };
566
567 auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
568 assert(!Move.Main.empty() && "Move group should have non-empty Main");
569 // Don't mix HVX and non-HVX instructions.
570 if (Move.IsHvx != isHvx(Info))
571 return false;
572 // Leading instruction in the load group.
573 Instruction *Base = Move.Main.front();
574 if (Base->getParent() != Info.Inst->getParent())
575 return false;
576
577 auto isSafeToMoveToBase = [&](const Instruction *I) {
578 return HVC.isSafeToMoveBeforeInBB(*I, Base->getIterator());
579 };
580 DepList Deps = getUpwardDeps(Info.Inst, Base);
581 if (!llvm::all_of(Deps, isSafeToMoveToBase))
582 return false;
583
584 // The dependencies will be moved together with the load, so make sure
585 // that none of them could be moved independently in another group.
586 Deps.erase(Info.Inst);
587 auto inAddrMap = [&](Instruction *I) { return AddrGroups.count(I) > 0; };
588 if (llvm::any_of(Deps, inAddrMap))
589 return false;
590 Move.Main.push_back(Info.Inst);
591 llvm::append_range(Move.Deps, Deps);
592 return true;
593 };
594
595 MoveList LoadGroups;
596
597 for (const AddrInfo &Info : Group) {
598 if (!Info.Inst->mayReadFromMemory())
599 continue;
600 if (LoadGroups.empty() || !tryAddTo(Info, LoadGroups.back()))
601 LoadGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), true);
602 }
603
604 // Erase singleton groups.
605 erase_if(LoadGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
606 return LoadGroups;
607 }
608
createStoreGroups(const AddrList & Group) const609 auto AlignVectors::createStoreGroups(const AddrList &Group) const -> MoveList {
610 // Form store groups.
611 // To avoid complications with moving code across basic blocks, only form
612 // groups that are contained within a single basic block.
613
614 auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
615 assert(!Move.Main.empty() && "Move group should have non-empty Main");
616 // For stores with return values we'd have to collect downward depenencies.
617 // There are no such stores that we handle at the moment, so omit that.
618 assert(Info.Inst->getType()->isVoidTy() &&
619 "Not handling stores with return values");
620 // Don't mix HVX and non-HVX instructions.
621 if (Move.IsHvx != isHvx(Info))
622 return false;
623 // For stores we need to be careful whether it's safe to move them.
624 // Stores that are otherwise safe to move together may not appear safe
625 // to move over one another (i.e. isSafeToMoveBefore may return false).
626 Instruction *Base = Move.Main.front();
627 if (Base->getParent() != Info.Inst->getParent())
628 return false;
629 if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator(), Move.Main))
630 return false;
631 Move.Main.push_back(Info.Inst);
632 return true;
633 };
634
635 MoveList StoreGroups;
636
637 for (auto I = Group.rbegin(), E = Group.rend(); I != E; ++I) {
638 const AddrInfo &Info = *I;
639 if (!Info.Inst->mayWriteToMemory())
640 continue;
641 if (StoreGroups.empty() || !tryAddTo(Info, StoreGroups.back()))
642 StoreGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), false);
643 }
644
645 // Erase singleton groups.
646 erase_if(StoreGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
647 return StoreGroups;
648 }
649
move(const MoveGroup & Move) const650 auto AlignVectors::move(const MoveGroup &Move) const -> bool {
651 assert(!Move.Main.empty() && "Move group should have non-empty Main");
652 Instruction *Where = Move.Main.front();
653
654 if (Move.IsLoad) {
655 // Move all deps to before Where, keeping order.
656 for (Instruction *D : Move.Deps)
657 D->moveBefore(Where);
658 // Move all main instructions to after Where, keeping order.
659 ArrayRef<Instruction *> Main(Move.Main);
660 for (Instruction *M : Main.drop_front(1)) {
661 M->moveAfter(Where);
662 Where = M;
663 }
664 } else {
665 // NOTE: Deps are empty for "store" groups. If they need to be
666 // non-empty, decide on the order.
667 assert(Move.Deps.empty());
668 // Move all main instructions to before Where, inverting order.
669 ArrayRef<Instruction *> Main(Move.Main);
670 for (Instruction *M : Main.drop_front(1)) {
671 M->moveBefore(Where);
672 Where = M;
673 }
674 }
675
676 return Move.Main.size() + Move.Deps.size() > 1;
677 }
678
realignGroup(const MoveGroup & Move) const679 auto AlignVectors::realignGroup(const MoveGroup &Move) const -> bool {
680 // TODO: Needs support for masked loads/stores of "scalar" vectors.
681 if (!Move.IsHvx)
682 return false;
683
684 // Return the element with the maximum alignment from Range,
685 // where GetValue obtains the value to compare from an element.
686 auto getMaxOf = [](auto Range, auto GetValue) {
687 return *std::max_element(
688 Range.begin(), Range.end(),
689 [&GetValue](auto &A, auto &B) { return GetValue(A) < GetValue(B); });
690 };
691
692 const AddrList &BaseInfos = AddrGroups.at(Move.Base);
693
694 // Conceptually, there is a vector of N bytes covering the addresses
695 // starting from the minimum offset (i.e. Base.Addr+Start). This vector
696 // represents a contiguous memory region that spans all accessed memory
697 // locations.
698 // The correspondence between loaded or stored values will be expressed
699 // in terms of this vector. For example, the 0th element of the vector
700 // from the Base address info will start at byte Start from the beginning
701 // of this conceptual vector.
702 //
703 // This vector will be loaded/stored starting at the nearest down-aligned
704 // address and the amount od the down-alignment will be AlignVal:
705 // valign(load_vector(align_down(Base+Start)), AlignVal)
706
707 std::set<Instruction *> TestSet(Move.Main.begin(), Move.Main.end());
708 AddrList MoveInfos;
709 llvm::copy_if(
710 BaseInfos, std::back_inserter(MoveInfos),
711 [&TestSet](const AddrInfo &AI) { return TestSet.count(AI.Inst); });
712
713 // Maximum alignment present in the whole address group.
714 const AddrInfo &WithMaxAlign =
715 getMaxOf(BaseInfos, [](const AddrInfo &AI) { return AI.HaveAlign; });
716 Align MaxGiven = WithMaxAlign.HaveAlign;
717
718 // Minimum alignment present in the move address group.
719 const AddrInfo &WithMinOffset =
720 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return -AI.Offset; });
721
722 const AddrInfo &WithMaxNeeded =
723 getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.NeedAlign; });
724 Align MinNeeded = WithMaxNeeded.NeedAlign;
725
726 // Set the builder at the top instruction in the move group.
727 Instruction *TopIn = Move.IsLoad ? Move.Main.front() : Move.Main.back();
728 IRBuilder<> Builder(TopIn);
729 Value *AlignAddr = nullptr; // Actual aligned address.
730 Value *AlignVal = nullptr; // Right-shift amount (for valign).
731
732 if (MinNeeded <= MaxGiven) {
733 int Start = WithMinOffset.Offset;
734 int OffAtMax = WithMaxAlign.Offset;
735 // Shift the offset of the maximally aligned instruction (OffAtMax)
736 // back by just enough multiples of the required alignment to cover the
737 // distance from Start to OffAtMax.
738 // Calculate the address adjustment amount based on the address with the
739 // maximum alignment. This is to allow a simple gep instruction instead
740 // of potential bitcasts to i8*.
741 int Adjust = -alignTo(OffAtMax - Start, MinNeeded.value());
742 AlignAddr = createAdjustedPointer(Builder, WithMaxAlign.Addr,
743 WithMaxAlign.ValTy, Adjust);
744 int Diff = Start - (OffAtMax + Adjust);
745 AlignVal = HVC.getConstInt(Diff);
746 // Sanity.
747 assert(Diff >= 0);
748 assert(static_cast<decltype(MinNeeded.value())>(Diff) < MinNeeded.value());
749 } else {
750 // WithMinOffset is the lowest address in the group,
751 // WithMinOffset.Addr = Base+Start.
752 // Align instructions for both HVX (V6_valign) and scalar (S2_valignrb)
753 // mask off unnecessary bits, so it's ok to just the original pointer as
754 // the alignment amount.
755 // Do an explicit down-alignment of the address to avoid creating an
756 // aligned instruction with an address that is not really aligned.
757 AlignAddr = createAlignedPointer(Builder, WithMinOffset.Addr,
758 WithMinOffset.ValTy, MinNeeded.value());
759 AlignVal = Builder.CreatePtrToInt(WithMinOffset.Addr, HVC.getIntTy());
760 }
761
762 ByteSpan VSpan;
763 for (const AddrInfo &AI : MoveInfos) {
764 VSpan.Blocks.emplace_back(AI.Inst, HVC.getSizeOf(AI.ValTy),
765 AI.Offset - WithMinOffset.Offset);
766 }
767
768 // The aligned loads/stores will use blocks that are either scalars,
769 // or HVX vectors. Let "sector" be the unified term for such a block.
770 // blend(scalar, vector) -> sector...
771 int ScLen = Move.IsHvx ? HVC.HST.getVectorLength()
772 : std::max<int>(MinNeeded.value(), 4);
773 assert(!Move.IsHvx || ScLen == 64 || ScLen == 128);
774 assert(Move.IsHvx || ScLen == 4 || ScLen == 8);
775
776 Type *SecTy = HVC.getByteTy(ScLen);
777 int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen;
778 bool DoAlign = !HVC.isZero(AlignVal);
779
780 if (Move.IsLoad) {
781 ByteSpan ASpan;
782 auto *True = HVC.getFullValue(HVC.getBoolTy(ScLen));
783 auto *Undef = UndefValue::get(SecTy);
784
785 for (int i = 0; i != NumSectors + DoAlign; ++i) {
786 Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen);
787 // FIXME: generate a predicated load?
788 Value *Load = createAlignedLoad(Builder, SecTy, Ptr, ScLen, True, Undef);
789 // If vector shifting is potentially needed, accumulate metadata
790 // from source sections of twice the load width.
791 int Start = (i - DoAlign) * ScLen;
792 int Width = (1 + DoAlign) * ScLen;
793 propagateMetadata(cast<Instruction>(Load),
794 VSpan.section(Start, Width).values());
795 ASpan.Blocks.emplace_back(Load, ScLen, i * ScLen);
796 }
797
798 if (DoAlign) {
799 for (int j = 0; j != NumSectors; ++j) {
800 ASpan[j].Seg.Val = HVC.vralignb(Builder, ASpan[j].Seg.Val,
801 ASpan[j + 1].Seg.Val, AlignVal);
802 }
803 }
804
805 for (ByteSpan::Block &B : VSpan) {
806 ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size).shift(-B.Pos);
807 Value *Accum = UndefValue::get(HVC.getByteTy(B.Seg.Size));
808 for (ByteSpan::Block &S : ASection) {
809 Value *Pay = HVC.vbytes(Builder, getPayload(S.Seg.Val));
810 Accum =
811 HVC.insertb(Builder, Accum, Pay, S.Seg.Start, S.Seg.Size, S.Pos);
812 }
813 // Instead of casting everything to bytes for the vselect, cast to the
814 // original value type. This will avoid complications with casting masks.
815 // For example, in cases when the original mask applied to i32, it could
816 // be converted to a mask applicable to i8 via pred_typecast intrinsic,
817 // but if the mask is not exactly of HVX length, extra handling would be
818 // needed to make it work.
819 Type *ValTy = getPayload(B.Seg.Val)->getType();
820 Value *Cast = Builder.CreateBitCast(Accum, ValTy);
821 Value *Sel = Builder.CreateSelect(getMask(B.Seg.Val), Cast,
822 getPassThrough(B.Seg.Val));
823 B.Seg.Val->replaceAllUsesWith(Sel);
824 }
825 } else {
826 // Stores.
827 ByteSpan ASpanV, ASpanM;
828
829 // Return a vector value corresponding to the input value Val:
830 // either <1 x Val> for scalar Val, or Val itself for vector Val.
831 auto MakeVec = [](IRBuilder<> &Builder, Value *Val) -> Value * {
832 Type *Ty = Val->getType();
833 if (Ty->isVectorTy())
834 return Val;
835 auto *VecTy = VectorType::get(Ty, 1, /*Scalable*/ false);
836 return Builder.CreateBitCast(Val, VecTy);
837 };
838
839 // Create an extra "undef" sector at the beginning and at the end.
840 // They will be used as the left/right filler in the vlalign step.
841 for (int i = (DoAlign ? -1 : 0); i != NumSectors + DoAlign; ++i) {
842 // For stores, the size of each section is an aligned vector length.
843 // Adjust the store offsets relative to the section start offset.
844 ByteSpan VSection = VSpan.section(i * ScLen, ScLen).shift(-i * ScLen);
845 Value *AccumV = UndefValue::get(SecTy);
846 Value *AccumM = HVC.getNullValue(SecTy);
847 for (ByteSpan::Block &S : VSection) {
848 Value *Pay = getPayload(S.Seg.Val);
849 Value *Mask = HVC.rescale(Builder, MakeVec(Builder, getMask(S.Seg.Val)),
850 Pay->getType(), HVC.getByteTy());
851 AccumM = HVC.insertb(Builder, AccumM, HVC.vbytes(Builder, Mask),
852 S.Seg.Start, S.Seg.Size, S.Pos);
853 AccumV = HVC.insertb(Builder, AccumV, HVC.vbytes(Builder, Pay),
854 S.Seg.Start, S.Seg.Size, S.Pos);
855 }
856 ASpanV.Blocks.emplace_back(AccumV, ScLen, i * ScLen);
857 ASpanM.Blocks.emplace_back(AccumM, ScLen, i * ScLen);
858 }
859
860 // vlalign
861 if (DoAlign) {
862 for (int j = 1; j != NumSectors + 2; ++j) {
863 ASpanV[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanV[j - 1].Seg.Val,
864 ASpanV[j].Seg.Val, AlignVal);
865 ASpanM[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanM[j - 1].Seg.Val,
866 ASpanM[j].Seg.Val, AlignVal);
867 }
868 }
869
870 for (int i = 0; i != NumSectors + DoAlign; ++i) {
871 Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen);
872 Value *Val = ASpanV[i].Seg.Val;
873 Value *Mask = ASpanM[i].Seg.Val; // bytes
874 if (!HVC.isUndef(Val) && !HVC.isZero(Mask)) {
875 Value *Store = createAlignedStore(Builder, Val, Ptr, ScLen,
876 HVC.vlsb(Builder, Mask));
877 // If vector shifting is potentially needed, accumulate metadata
878 // from source sections of twice the store width.
879 int Start = (i - DoAlign) * ScLen;
880 int Width = (1 + DoAlign) * ScLen;
881 propagateMetadata(cast<Instruction>(Store),
882 VSpan.section(Start, Width).values());
883 }
884 }
885 }
886
887 for (auto *Inst : Move.Main)
888 Inst->eraseFromParent();
889
890 return true;
891 }
892
run()893 auto AlignVectors::run() -> bool {
894 if (!createAddressGroups())
895 return false;
896
897 bool Changed = false;
898 MoveList LoadGroups, StoreGroups;
899
900 for (auto &G : AddrGroups) {
901 llvm::append_range(LoadGroups, createLoadGroups(G.second));
902 llvm::append_range(StoreGroups, createStoreGroups(G.second));
903 }
904
905 for (auto &M : LoadGroups)
906 Changed |= move(M);
907 for (auto &M : StoreGroups)
908 Changed |= move(M);
909
910 for (auto &M : LoadGroups)
911 Changed |= realignGroup(M);
912 for (auto &M : StoreGroups)
913 Changed |= realignGroup(M);
914
915 return Changed;
916 }
917
918 // --- End AlignVectors
919
run()920 auto HexagonVectorCombine::run() -> bool {
921 if (!HST.useHVXOps())
922 return false;
923
924 bool Changed = AlignVectors(*this).run();
925 return Changed;
926 }
927
getIntTy() const928 auto HexagonVectorCombine::getIntTy() const -> IntegerType * {
929 return Type::getInt32Ty(F.getContext());
930 }
931
getByteTy(int ElemCount) const932 auto HexagonVectorCombine::getByteTy(int ElemCount) const -> Type * {
933 assert(ElemCount >= 0);
934 IntegerType *ByteTy = Type::getInt8Ty(F.getContext());
935 if (ElemCount == 0)
936 return ByteTy;
937 return VectorType::get(ByteTy, ElemCount, /*Scalable*/ false);
938 }
939
getBoolTy(int ElemCount) const940 auto HexagonVectorCombine::getBoolTy(int ElemCount) const -> Type * {
941 assert(ElemCount >= 0);
942 IntegerType *BoolTy = Type::getInt1Ty(F.getContext());
943 if (ElemCount == 0)
944 return BoolTy;
945 return VectorType::get(BoolTy, ElemCount, /*Scalable*/ false);
946 }
947
getConstInt(int Val) const948 auto HexagonVectorCombine::getConstInt(int Val) const -> ConstantInt * {
949 return ConstantInt::getSigned(getIntTy(), Val);
950 }
951
isZero(const Value * Val) const952 auto HexagonVectorCombine::isZero(const Value *Val) const -> bool {
953 if (auto *C = dyn_cast<Constant>(Val))
954 return C->isZeroValue();
955 return false;
956 }
957
getIntValue(const Value * Val) const958 auto HexagonVectorCombine::getIntValue(const Value *Val) const
959 -> Optional<APInt> {
960 if (auto *CI = dyn_cast<ConstantInt>(Val))
961 return CI->getValue();
962 return None;
963 }
964
isUndef(const Value * Val) const965 auto HexagonVectorCombine::isUndef(const Value *Val) const -> bool {
966 return isa<UndefValue>(Val);
967 }
968
getSizeOf(const Value * Val) const969 auto HexagonVectorCombine::getSizeOf(const Value *Val) const -> int {
970 return getSizeOf(Val->getType());
971 }
972
getSizeOf(const Type * Ty) const973 auto HexagonVectorCombine::getSizeOf(const Type *Ty) const -> int {
974 return DL.getTypeStoreSize(const_cast<Type *>(Ty)).getFixedValue();
975 }
976
getTypeAlignment(Type * Ty) const977 auto HexagonVectorCombine::getTypeAlignment(Type *Ty) const -> int {
978 // The actual type may be shorter than the HVX vector, so determine
979 // the alignment based on subtarget info.
980 if (HST.isTypeForHVX(Ty))
981 return HST.getVectorLength();
982 return DL.getABITypeAlign(Ty).value();
983 }
984
getNullValue(Type * Ty) const985 auto HexagonVectorCombine::getNullValue(Type *Ty) const -> Constant * {
986 assert(Ty->isIntOrIntVectorTy());
987 auto Zero = ConstantInt::get(Ty->getScalarType(), 0);
988 if (auto *VecTy = dyn_cast<VectorType>(Ty))
989 return ConstantVector::getSplat(VecTy->getElementCount(), Zero);
990 return Zero;
991 }
992
getFullValue(Type * Ty) const993 auto HexagonVectorCombine::getFullValue(Type *Ty) const -> Constant * {
994 assert(Ty->isIntOrIntVectorTy());
995 auto Minus1 = ConstantInt::get(Ty->getScalarType(), -1);
996 if (auto *VecTy = dyn_cast<VectorType>(Ty))
997 return ConstantVector::getSplat(VecTy->getElementCount(), Minus1);
998 return Minus1;
999 }
1000
1001 // Insert bytes [Start..Start+Length) of Src into Dst at byte Where.
insertb(IRBuilder<> & Builder,Value * Dst,Value * Src,int Start,int Length,int Where) const1002 auto HexagonVectorCombine::insertb(IRBuilder<> &Builder, Value *Dst, Value *Src,
1003 int Start, int Length, int Where) const
1004 -> Value * {
1005 assert(isByteVecTy(Dst->getType()) && isByteVecTy(Src->getType()));
1006 int SrcLen = getSizeOf(Src);
1007 int DstLen = getSizeOf(Dst);
1008 assert(0 <= Start && Start + Length <= SrcLen);
1009 assert(0 <= Where && Where + Length <= DstLen);
1010
1011 int P2Len = PowerOf2Ceil(SrcLen | DstLen);
1012 auto *Undef = UndefValue::get(getByteTy());
1013 Value *P2Src = vresize(Builder, Src, P2Len, Undef);
1014 Value *P2Dst = vresize(Builder, Dst, P2Len, Undef);
1015
1016 SmallVector<int, 256> SMask(P2Len);
1017 for (int i = 0; i != P2Len; ++i) {
1018 // If i is in [Where, Where+Length), pick Src[Start+(i-Where)].
1019 // Otherwise, pick Dst[i];
1020 SMask[i] =
1021 (Where <= i && i < Where + Length) ? P2Len + Start + (i - Where) : i;
1022 }
1023
1024 Value *P2Insert = Builder.CreateShuffleVector(P2Dst, P2Src, SMask);
1025 return vresize(Builder, P2Insert, DstLen, Undef);
1026 }
1027
vlalignb(IRBuilder<> & Builder,Value * Lo,Value * Hi,Value * Amt) const1028 auto HexagonVectorCombine::vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi,
1029 Value *Amt) const -> Value * {
1030 assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
1031 assert(isSectorTy(Hi->getType()));
1032 if (isZero(Amt))
1033 return Hi;
1034 int VecLen = getSizeOf(Hi);
1035 if (auto IntAmt = getIntValue(Amt))
1036 return getElementRange(Builder, Lo, Hi, VecLen - IntAmt->getSExtValue(),
1037 VecLen);
1038
1039 if (HST.isTypeForHVX(Hi->getType())) {
1040 int HwLen = HST.getVectorLength();
1041 assert(VecLen == HwLen && "Expecting an exact HVX type");
1042 Intrinsic::ID V6_vlalignb = HwLen == 64
1043 ? Intrinsic::hexagon_V6_vlalignb
1044 : Intrinsic::hexagon_V6_vlalignb_128B;
1045 return createHvxIntrinsic(Builder, V6_vlalignb, Hi->getType(),
1046 {Hi, Lo, Amt});
1047 }
1048
1049 if (VecLen == 4) {
1050 Value *Pair = concat(Builder, {Lo, Hi});
1051 Value *Shift = Builder.CreateLShr(Builder.CreateShl(Pair, Amt), 32);
1052 Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()));
1053 return Builder.CreateBitCast(Trunc, Hi->getType());
1054 }
1055 if (VecLen == 8) {
1056 Value *Sub = Builder.CreateSub(getConstInt(VecLen), Amt);
1057 return vralignb(Builder, Lo, Hi, Sub);
1058 }
1059 llvm_unreachable("Unexpected vector length");
1060 }
1061
vralignb(IRBuilder<> & Builder,Value * Lo,Value * Hi,Value * Amt) const1062 auto HexagonVectorCombine::vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi,
1063 Value *Amt) const -> Value * {
1064 assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
1065 assert(isSectorTy(Lo->getType()));
1066 if (isZero(Amt))
1067 return Lo;
1068 int VecLen = getSizeOf(Lo);
1069 if (auto IntAmt = getIntValue(Amt))
1070 return getElementRange(Builder, Lo, Hi, IntAmt->getSExtValue(), VecLen);
1071
1072 if (HST.isTypeForHVX(Lo->getType())) {
1073 int HwLen = HST.getVectorLength();
1074 assert(VecLen == HwLen && "Expecting an exact HVX type");
1075 Intrinsic::ID V6_valignb = HwLen == 64 ? Intrinsic::hexagon_V6_valignb
1076 : Intrinsic::hexagon_V6_valignb_128B;
1077 return createHvxIntrinsic(Builder, V6_valignb, Lo->getType(),
1078 {Hi, Lo, Amt});
1079 }
1080
1081 if (VecLen == 4) {
1082 Value *Pair = concat(Builder, {Lo, Hi});
1083 Value *Shift = Builder.CreateLShr(Pair, Amt);
1084 Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()));
1085 return Builder.CreateBitCast(Trunc, Lo->getType());
1086 }
1087 if (VecLen == 8) {
1088 Type *Int64Ty = Type::getInt64Ty(F.getContext());
1089 Value *Lo64 = Builder.CreateBitCast(Lo, Int64Ty);
1090 Value *Hi64 = Builder.CreateBitCast(Hi, Int64Ty);
1091 Function *FI = Intrinsic::getDeclaration(F.getParent(),
1092 Intrinsic::hexagon_S2_valignrb);
1093 Value *Call = Builder.CreateCall(FI, {Hi64, Lo64, Amt});
1094 return Builder.CreateBitCast(Call, Lo->getType());
1095 }
1096 llvm_unreachable("Unexpected vector length");
1097 }
1098
1099 // Concatenates a sequence of vectors of the same type.
concat(IRBuilder<> & Builder,ArrayRef<Value * > Vecs) const1100 auto HexagonVectorCombine::concat(IRBuilder<> &Builder,
1101 ArrayRef<Value *> Vecs) const -> Value * {
1102 assert(!Vecs.empty());
1103 SmallVector<int, 256> SMask;
1104 std::vector<Value *> Work[2];
1105 int ThisW = 0, OtherW = 1;
1106
1107 Work[ThisW].assign(Vecs.begin(), Vecs.end());
1108 while (Work[ThisW].size() > 1) {
1109 auto *Ty = cast<VectorType>(Work[ThisW].front()->getType());
1110 int ElemCount = Ty->getElementCount().getFixedValue();
1111 SMask.resize(ElemCount * 2);
1112 std::iota(SMask.begin(), SMask.end(), 0);
1113
1114 Work[OtherW].clear();
1115 if (Work[ThisW].size() % 2 != 0)
1116 Work[ThisW].push_back(UndefValue::get(Ty));
1117 for (int i = 0, e = Work[ThisW].size(); i < e; i += 2) {
1118 Value *Joined = Builder.CreateShuffleVector(Work[ThisW][i],
1119 Work[ThisW][i + 1], SMask);
1120 Work[OtherW].push_back(Joined);
1121 }
1122 std::swap(ThisW, OtherW);
1123 }
1124
1125 // Since there may have been some undefs appended to make shuffle operands
1126 // have the same type, perform the last shuffle to only pick the original
1127 // elements.
1128 SMask.resize(Vecs.size() * getSizeOf(Vecs.front()->getType()));
1129 std::iota(SMask.begin(), SMask.end(), 0);
1130 Value *Total = Work[OtherW].front();
1131 return Builder.CreateShuffleVector(Total, SMask);
1132 }
1133
vresize(IRBuilder<> & Builder,Value * Val,int NewSize,Value * Pad) const1134 auto HexagonVectorCombine::vresize(IRBuilder<> &Builder, Value *Val,
1135 int NewSize, Value *Pad) const -> Value * {
1136 assert(isa<VectorType>(Val->getType()));
1137 auto *ValTy = cast<VectorType>(Val->getType());
1138 assert(ValTy->getElementType() == Pad->getType());
1139
1140 int CurSize = ValTy->getElementCount().getFixedValue();
1141 if (CurSize == NewSize)
1142 return Val;
1143 // Truncate?
1144 if (CurSize > NewSize)
1145 return getElementRange(Builder, Val, /*Unused*/ Val, 0, NewSize);
1146 // Extend.
1147 SmallVector<int, 128> SMask(NewSize);
1148 std::iota(SMask.begin(), SMask.begin() + CurSize, 0);
1149 std::fill(SMask.begin() + CurSize, SMask.end(), CurSize);
1150 Value *PadVec = Builder.CreateVectorSplat(CurSize, Pad);
1151 return Builder.CreateShuffleVector(Val, PadVec, SMask);
1152 }
1153
rescale(IRBuilder<> & Builder,Value * Mask,Type * FromTy,Type * ToTy) const1154 auto HexagonVectorCombine::rescale(IRBuilder<> &Builder, Value *Mask,
1155 Type *FromTy, Type *ToTy) const -> Value * {
1156 // Mask is a vector <N x i1>, where each element corresponds to an
1157 // element of FromTy. Remap it so that each element will correspond
1158 // to an element of ToTy.
1159 assert(isa<VectorType>(Mask->getType()));
1160
1161 Type *FromSTy = FromTy->getScalarType();
1162 Type *ToSTy = ToTy->getScalarType();
1163 if (FromSTy == ToSTy)
1164 return Mask;
1165
1166 int FromSize = getSizeOf(FromSTy);
1167 int ToSize = getSizeOf(ToSTy);
1168 assert(FromSize % ToSize == 0 || ToSize % FromSize == 0);
1169
1170 auto *MaskTy = cast<VectorType>(Mask->getType());
1171 int FromCount = MaskTy->getElementCount().getFixedValue();
1172 int ToCount = (FromCount * FromSize) / ToSize;
1173 assert((FromCount * FromSize) % ToSize == 0);
1174
1175 // Mask <N x i1> -> sext to <N x FromTy> -> bitcast to <M x ToTy> ->
1176 // -> trunc to <M x i1>.
1177 Value *Ext = Builder.CreateSExt(
1178 Mask, VectorType::get(FromSTy, FromCount, /*Scalable*/ false));
1179 Value *Cast = Builder.CreateBitCast(
1180 Ext, VectorType::get(ToSTy, ToCount, /*Scalable*/ false));
1181 return Builder.CreateTrunc(
1182 Cast, VectorType::get(getBoolTy(), ToCount, /*Scalable*/ false));
1183 }
1184
1185 // Bitcast to bytes, and return least significant bits.
vlsb(IRBuilder<> & Builder,Value * Val) const1186 auto HexagonVectorCombine::vlsb(IRBuilder<> &Builder, Value *Val) const
1187 -> Value * {
1188 Type *ScalarTy = Val->getType()->getScalarType();
1189 if (ScalarTy == getBoolTy())
1190 return Val;
1191
1192 Value *Bytes = vbytes(Builder, Val);
1193 if (auto *VecTy = dyn_cast<VectorType>(Bytes->getType()))
1194 return Builder.CreateTrunc(Bytes, getBoolTy(getSizeOf(VecTy)));
1195 // If Bytes is a scalar (i.e. Val was a scalar byte), return i1, not
1196 // <1 x i1>.
1197 return Builder.CreateTrunc(Bytes, getBoolTy());
1198 }
1199
1200 // Bitcast to bytes for non-bool. For bool, convert i1 -> i8.
vbytes(IRBuilder<> & Builder,Value * Val) const1201 auto HexagonVectorCombine::vbytes(IRBuilder<> &Builder, Value *Val) const
1202 -> Value * {
1203 Type *ScalarTy = Val->getType()->getScalarType();
1204 if (ScalarTy == getByteTy())
1205 return Val;
1206
1207 if (ScalarTy != getBoolTy())
1208 return Builder.CreateBitCast(Val, getByteTy(getSizeOf(Val)));
1209 // For bool, return a sext from i1 to i8.
1210 if (auto *VecTy = dyn_cast<VectorType>(Val->getType()))
1211 return Builder.CreateSExt(Val, VectorType::get(getByteTy(), VecTy));
1212 return Builder.CreateSExt(Val, getByteTy());
1213 }
1214
createHvxIntrinsic(IRBuilder<> & Builder,Intrinsic::ID IntID,Type * RetTy,ArrayRef<Value * > Args) const1215 auto HexagonVectorCombine::createHvxIntrinsic(IRBuilder<> &Builder,
1216 Intrinsic::ID IntID, Type *RetTy,
1217 ArrayRef<Value *> Args) const
1218 -> Value * {
1219 int HwLen = HST.getVectorLength();
1220 Type *BoolTy = Type::getInt1Ty(F.getContext());
1221 Type *Int32Ty = Type::getInt32Ty(F.getContext());
1222 // HVX vector -> v16i32/v32i32
1223 // HVX vector predicate -> v512i1/v1024i1
1224 auto getTypeForIntrin = [&](Type *Ty) -> Type * {
1225 if (HST.isTypeForHVX(Ty, /*IncludeBool*/ true)) {
1226 Type *ElemTy = cast<VectorType>(Ty)->getElementType();
1227 if (ElemTy == Int32Ty)
1228 return Ty;
1229 if (ElemTy == BoolTy)
1230 return VectorType::get(BoolTy, 8 * HwLen, /*Scalable*/ false);
1231 return VectorType::get(Int32Ty, HwLen / 4, /*Scalable*/ false);
1232 }
1233 // Non-HVX type. It should be a scalar.
1234 assert(Ty == Int32Ty || Ty->isIntegerTy(64));
1235 return Ty;
1236 };
1237
1238 auto getCast = [&](IRBuilder<> &Builder, Value *Val,
1239 Type *DestTy) -> Value * {
1240 Type *SrcTy = Val->getType();
1241 if (SrcTy == DestTy)
1242 return Val;
1243 if (HST.isTypeForHVX(SrcTy, /*IncludeBool*/ true)) {
1244 if (cast<VectorType>(SrcTy)->getElementType() == BoolTy) {
1245 // This should take care of casts the other way too, for example
1246 // v1024i1 -> v32i1.
1247 Intrinsic::ID TC = HwLen == 64
1248 ? Intrinsic::hexagon_V6_pred_typecast
1249 : Intrinsic::hexagon_V6_pred_typecast_128B;
1250 Function *FI = Intrinsic::getDeclaration(F.getParent(), TC,
1251 {DestTy, Val->getType()});
1252 return Builder.CreateCall(FI, {Val});
1253 }
1254 // Non-predicate HVX vector.
1255 return Builder.CreateBitCast(Val, DestTy);
1256 }
1257 // Non-HVX type. It should be a scalar, and it should already have
1258 // a valid type.
1259 llvm_unreachable("Unexpected type");
1260 };
1261
1262 SmallVector<Value *, 4> IntOps;
1263 for (Value *A : Args)
1264 IntOps.push_back(getCast(Builder, A, getTypeForIntrin(A->getType())));
1265 Function *FI = Intrinsic::getDeclaration(F.getParent(), IntID);
1266 Value *Call = Builder.CreateCall(FI, IntOps);
1267
1268 Type *CallTy = Call->getType();
1269 if (CallTy == RetTy)
1270 return Call;
1271 // Scalar types should have RetTy matching the call return type.
1272 assert(HST.isTypeForHVX(CallTy, /*IncludeBool*/ true));
1273 if (cast<VectorType>(CallTy)->getElementType() == BoolTy)
1274 return getCast(Builder, Call, RetTy);
1275 return Builder.CreateBitCast(Call, RetTy);
1276 }
1277
calculatePointerDifference(Value * Ptr0,Value * Ptr1) const1278 auto HexagonVectorCombine::calculatePointerDifference(Value *Ptr0,
1279 Value *Ptr1) const
1280 -> Optional<int> {
1281 struct Builder : IRBuilder<> {
1282 Builder(BasicBlock *B) : IRBuilder<>(B) {}
1283 ~Builder() {
1284 for (Instruction *I : llvm::reverse(ToErase))
1285 I->eraseFromParent();
1286 }
1287 SmallVector<Instruction *, 8> ToErase;
1288 };
1289
1290 #define CallBuilder(B, F) \
1291 [&](auto &B_) { \
1292 Value *V = B_.F; \
1293 if (auto *I = dyn_cast<Instruction>(V)) \
1294 B_.ToErase.push_back(I); \
1295 return V; \
1296 }(B)
1297
1298 auto Simplify = [&](Value *V) {
1299 if (auto *I = dyn_cast<Instruction>(V)) {
1300 SimplifyQuery Q(DL, &TLI, &DT, &AC, I);
1301 if (Value *S = SimplifyInstruction(I, Q))
1302 return S;
1303 }
1304 return V;
1305 };
1306
1307 auto StripBitCast = [](Value *V) {
1308 while (auto *C = dyn_cast<BitCastInst>(V))
1309 V = C->getOperand(0);
1310 return V;
1311 };
1312
1313 Ptr0 = StripBitCast(Ptr0);
1314 Ptr1 = StripBitCast(Ptr1);
1315 if (!isa<GetElementPtrInst>(Ptr0) || !isa<GetElementPtrInst>(Ptr1))
1316 return None;
1317
1318 auto *Gep0 = cast<GetElementPtrInst>(Ptr0);
1319 auto *Gep1 = cast<GetElementPtrInst>(Ptr1);
1320 if (Gep0->getPointerOperand() != Gep1->getPointerOperand())
1321 return None;
1322
1323 Builder B(Gep0->getParent());
1324 Value *BasePtr = Gep0->getPointerOperand();
1325 int Scale = DL.getTypeStoreSize(BasePtr->getType()->getPointerElementType());
1326
1327 // FIXME: for now only check GEPs with a single index.
1328 if (Gep0->getNumOperands() != 2 || Gep1->getNumOperands() != 2)
1329 return None;
1330
1331 Value *Idx0 = Gep0->getOperand(1);
1332 Value *Idx1 = Gep1->getOperand(1);
1333
1334 // First, try to simplify the subtraction directly.
1335 if (auto *Diff = dyn_cast<ConstantInt>(
1336 Simplify(CallBuilder(B, CreateSub(Idx0, Idx1)))))
1337 return Diff->getSExtValue() * Scale;
1338
1339 KnownBits Known0 = computeKnownBits(Idx0, DL, 0, &AC, Gep0, &DT);
1340 KnownBits Known1 = computeKnownBits(Idx1, DL, 0, &AC, Gep1, &DT);
1341 APInt Unknown = ~(Known0.Zero | Known0.One) | ~(Known1.Zero | Known1.One);
1342 if (Unknown.isAllOnesValue())
1343 return None;
1344
1345 Value *MaskU = ConstantInt::get(Idx0->getType(), Unknown);
1346 Value *AndU0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskU)));
1347 Value *AndU1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskU)));
1348 Value *SubU = Simplify(CallBuilder(B, CreateSub(AndU0, AndU1)));
1349 int Diff0 = 0;
1350 if (auto *C = dyn_cast<ConstantInt>(SubU)) {
1351 Diff0 = C->getSExtValue();
1352 } else {
1353 return None;
1354 }
1355
1356 Value *MaskK = ConstantInt::get(MaskU->getType(), ~Unknown);
1357 Value *AndK0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskK)));
1358 Value *AndK1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskK)));
1359 Value *SubK = Simplify(CallBuilder(B, CreateSub(AndK0, AndK1)));
1360 int Diff1 = 0;
1361 if (auto *C = dyn_cast<ConstantInt>(SubK)) {
1362 Diff1 = C->getSExtValue();
1363 } else {
1364 return None;
1365 }
1366
1367 return (Diff0 + Diff1) * Scale;
1368
1369 #undef CallBuilder
1370 }
1371
1372 template <typename T>
isSafeToMoveBeforeInBB(const Instruction & In,BasicBlock::const_iterator To,const T & Ignore) const1373 auto HexagonVectorCombine::isSafeToMoveBeforeInBB(const Instruction &In,
1374 BasicBlock::const_iterator To,
1375 const T &Ignore) const
1376 -> bool {
1377 auto getLocOrNone = [this](const Instruction &I) -> Optional<MemoryLocation> {
1378 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
1379 switch (II->getIntrinsicID()) {
1380 case Intrinsic::masked_load:
1381 return MemoryLocation::getForArgument(II, 0, TLI);
1382 case Intrinsic::masked_store:
1383 return MemoryLocation::getForArgument(II, 1, TLI);
1384 }
1385 }
1386 return MemoryLocation::getOrNone(&I);
1387 };
1388
1389 // The source and the destination must be in the same basic block.
1390 const BasicBlock &Block = *In.getParent();
1391 assert(Block.begin() == To || Block.end() == To || To->getParent() == &Block);
1392 // No PHIs.
1393 if (isa<PHINode>(In) || (To != Block.end() && isa<PHINode>(*To)))
1394 return false;
1395
1396 if (!mayBeMemoryDependent(In))
1397 return true;
1398 bool MayWrite = In.mayWriteToMemory();
1399 auto MaybeLoc = getLocOrNone(In);
1400
1401 auto From = In.getIterator();
1402 if (From == To)
1403 return true;
1404 bool MoveUp = (To != Block.end() && To->comesBefore(&In));
1405 auto Range =
1406 MoveUp ? std::make_pair(To, From) : std::make_pair(std::next(From), To);
1407 for (auto It = Range.first; It != Range.second; ++It) {
1408 const Instruction &I = *It;
1409 if (llvm::is_contained(Ignore, &I))
1410 continue;
1411 // assume intrinsic can be ignored
1412 if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1413 if (II->getIntrinsicID() == Intrinsic::assume)
1414 continue;
1415 }
1416 // Parts based on isSafeToMoveBefore from CoveMoverUtils.cpp.
1417 if (I.mayThrow())
1418 return false;
1419 if (auto *CB = dyn_cast<CallBase>(&I)) {
1420 if (!CB->hasFnAttr(Attribute::WillReturn))
1421 return false;
1422 if (!CB->hasFnAttr(Attribute::NoSync))
1423 return false;
1424 }
1425 if (I.mayReadOrWriteMemory()) {
1426 auto MaybeLocI = getLocOrNone(I);
1427 if (MayWrite || I.mayWriteToMemory()) {
1428 if (!MaybeLoc || !MaybeLocI)
1429 return false;
1430 if (!AA.isNoAlias(*MaybeLoc, *MaybeLocI))
1431 return false;
1432 }
1433 }
1434 }
1435 return true;
1436 }
1437
1438 #ifndef NDEBUG
isByteVecTy(Type * Ty) const1439 auto HexagonVectorCombine::isByteVecTy(Type *Ty) const -> bool {
1440 if (auto *VecTy = dyn_cast<VectorType>(Ty))
1441 return VecTy->getElementType() == getByteTy();
1442 return false;
1443 }
1444
isSectorTy(Type * Ty) const1445 auto HexagonVectorCombine::isSectorTy(Type *Ty) const -> bool {
1446 if (!isByteVecTy(Ty))
1447 return false;
1448 int Size = getSizeOf(Ty);
1449 if (HST.isTypeForHVX(Ty))
1450 return Size == static_cast<int>(HST.getVectorLength());
1451 return Size == 4 || Size == 8;
1452 }
1453 #endif
1454
getElementRange(IRBuilder<> & Builder,Value * Lo,Value * Hi,int Start,int Length) const1455 auto HexagonVectorCombine::getElementRange(IRBuilder<> &Builder, Value *Lo,
1456 Value *Hi, int Start,
1457 int Length) const -> Value * {
1458 assert(0 <= Start && Start < Length);
1459 SmallVector<int, 128> SMask(Length);
1460 std::iota(SMask.begin(), SMask.end(), Start);
1461 return Builder.CreateShuffleVector(Lo, Hi, SMask);
1462 }
1463
1464 // Pass management.
1465
1466 namespace llvm {
1467 void initializeHexagonVectorCombineLegacyPass(PassRegistry &);
1468 FunctionPass *createHexagonVectorCombineLegacyPass();
1469 } // namespace llvm
1470
1471 namespace {
1472 class HexagonVectorCombineLegacy : public FunctionPass {
1473 public:
1474 static char ID;
1475
HexagonVectorCombineLegacy()1476 HexagonVectorCombineLegacy() : FunctionPass(ID) {}
1477
getPassName() const1478 StringRef getPassName() const override { return "Hexagon Vector Combine"; }
1479
getAnalysisUsage(AnalysisUsage & AU) const1480 void getAnalysisUsage(AnalysisUsage &AU) const override {
1481 AU.setPreservesCFG();
1482 AU.addRequired<AAResultsWrapperPass>();
1483 AU.addRequired<AssumptionCacheTracker>();
1484 AU.addRequired<DominatorTreeWrapperPass>();
1485 AU.addRequired<TargetLibraryInfoWrapperPass>();
1486 AU.addRequired<TargetPassConfig>();
1487 FunctionPass::getAnalysisUsage(AU);
1488 }
1489
runOnFunction(Function & F)1490 bool runOnFunction(Function &F) override {
1491 if (skipFunction(F))
1492 return false;
1493 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1494 AssumptionCache &AC =
1495 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1496 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1497 TargetLibraryInfo &TLI =
1498 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1499 auto &TM = getAnalysis<TargetPassConfig>().getTM<HexagonTargetMachine>();
1500 HexagonVectorCombine HVC(F, AA, AC, DT, TLI, TM);
1501 return HVC.run();
1502 }
1503 };
1504 } // namespace
1505
1506 char HexagonVectorCombineLegacy::ID = 0;
1507
1508 INITIALIZE_PASS_BEGIN(HexagonVectorCombineLegacy, DEBUG_TYPE,
1509 "Hexagon Vector Combine", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)1510 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1511 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1512 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1513 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1514 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
1515 INITIALIZE_PASS_END(HexagonVectorCombineLegacy, DEBUG_TYPE,
1516 "Hexagon Vector Combine", false, false)
1517
1518 FunctionPass *llvm::createHexagonVectorCombineLegacyPass() {
1519 return new HexagonVectorCombineLegacy();
1520 }
1521