xref: /llvm-project/llvm/lib/Target/Hexagon/HexagonOptAddrMode.cpp (revision c010b72e9b4e3b1ae7467eb86102fc43c338fe19)
1 //===- HexagonOptAddrMode.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // This implements a Hexagon-specific pass to optimize addressing mode for
9 // load/store instructions.
10 //===----------------------------------------------------------------------===//
11 
12 #include "HexagonInstrInfo.h"
13 #include "HexagonSubtarget.h"
14 #include "MCTargetDesc/HexagonBaseInfo.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineDominanceFrontier.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/RDFGraph.h"
28 #include "llvm/CodeGen/RDFLiveness.h"
29 #include "llvm/CodeGen/RDFRegisters.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/InitializePasses.h"
32 #include "llvm/MC/MCInstrDesc.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 #include <cassert>
40 #include <cstdint>
41 
42 #define DEBUG_TYPE "opt-addr-mode"
43 
44 using namespace llvm;
45 using namespace rdf;
46 
47 static cl::opt<int> CodeGrowthLimit("hexagon-amode-growth-limit",
48   cl::Hidden, cl::init(0), cl::desc("Code growth limit for address mode "
49   "optimization"));
50 
51 extern cl::opt<unsigned> RDFFuncBlockLimit;
52 
53 namespace llvm {
54 
55   FunctionPass *createHexagonOptAddrMode();
56   void initializeHexagonOptAddrModePass(PassRegistry&);
57 
58 } // end namespace llvm
59 
60 namespace {
61 
62 class HexagonOptAddrMode : public MachineFunctionPass {
63 public:
64   static char ID;
65 
66   HexagonOptAddrMode() : MachineFunctionPass(ID) {}
67 
68   StringRef getPassName() const override {
69     return "Optimize addressing mode of load/store";
70   }
71 
72   void getAnalysisUsage(AnalysisUsage &AU) const override {
73     MachineFunctionPass::getAnalysisUsage(AU);
74     AU.addRequired<MachineDominatorTreeWrapperPass>();
75     AU.addRequired<MachineDominanceFrontier>();
76     AU.setPreservesAll();
77   }
78 
79   bool runOnMachineFunction(MachineFunction &MF) override;
80 
81 private:
82   using MISetType = DenseSet<MachineInstr *>;
83   using InstrEvalMap = DenseMap<MachineInstr *, bool>;
84   DenseSet<MachineInstr *> ProcessedAddiInsts;
85 
86   MachineRegisterInfo *MRI = nullptr;
87   const TargetRegisterInfo *TRI = nullptr;
88   const HexagonInstrInfo *HII = nullptr;
89   const HexagonRegisterInfo *HRI = nullptr;
90   MachineDominatorTree *MDT = nullptr;
91   DataFlowGraph *DFG = nullptr;
92   DataFlowGraph::DefStackMap DefM;
93   Liveness *LV = nullptr;
94   MISetType Deleted;
95 
96   bool processBlock(NodeAddr<BlockNode *> BA);
97   bool xformUseMI(MachineInstr *TfrMI, MachineInstr *UseMI,
98                   NodeAddr<UseNode *> UseN, unsigned UseMOnum);
99   bool processAddBases(NodeAddr<StmtNode *> AddSN, MachineInstr *AddMI);
100   bool usedInLoadStore(NodeAddr<StmtNode *> CurrentInstSN, int64_t NewOffset);
101   bool findFirstReachedInst(
102       MachineInstr *AddMI,
103       std::vector<std::pair<NodeAddr<StmtNode *>, NodeAddr<UseNode *>>>
104           &AddiList,
105       NodeAddr<StmtNode *> &UseSN);
106   bool updateAddBases(MachineInstr *CurrentMI, MachineInstr *FirstReachedMI,
107                       int64_t NewOffset);
108   bool processAddUses(NodeAddr<StmtNode *> AddSN, MachineInstr *AddMI,
109                       const NodeList &UNodeList);
110   bool updateAddUses(MachineInstr *AddMI, MachineInstr *UseMI);
111   bool analyzeUses(unsigned DefR, const NodeList &UNodeList,
112                    InstrEvalMap &InstrEvalResult, short &SizeInc);
113   bool hasRepForm(MachineInstr &MI, unsigned TfrDefR);
114   bool canRemoveAddasl(NodeAddr<StmtNode *> AddAslSN, MachineInstr &MI,
115                        const NodeList &UNodeList);
116   bool isSafeToExtLR(NodeAddr<StmtNode *> SN, MachineInstr *MI,
117                      unsigned LRExtReg, const NodeList &UNodeList);
118   void getAllRealUses(NodeAddr<StmtNode *> SN, NodeList &UNodeList);
119   bool allValidCandidates(NodeAddr<StmtNode *> SA, NodeList &UNodeList);
120   short getBaseWithLongOffset(const MachineInstr &MI) const;
121   bool changeStore(MachineInstr *OldMI, MachineOperand ImmOp,
122                    unsigned ImmOpNum);
123   bool changeLoad(MachineInstr *OldMI, MachineOperand ImmOp, unsigned ImmOpNum);
124   bool changeAddAsl(NodeAddr<UseNode *> AddAslUN, MachineInstr *AddAslMI,
125                     const MachineOperand &ImmOp, unsigned ImmOpNum);
126   bool isValidOffset(MachineInstr *MI, int Offset);
127   unsigned getBaseOpPosition(MachineInstr *MI);
128   unsigned getOffsetOpPosition(MachineInstr *MI);
129 };
130 
131 } // end anonymous namespace
132 
133 char HexagonOptAddrMode::ID = 0;
134 
135 INITIALIZE_PASS_BEGIN(HexagonOptAddrMode, "amode-opt",
136                       "Optimize addressing mode", false, false)
137 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
138 INITIALIZE_PASS_DEPENDENCY(MachineDominanceFrontier)
139 INITIALIZE_PASS_END(HexagonOptAddrMode, "amode-opt", "Optimize addressing mode",
140                     false, false)
141 
142 bool HexagonOptAddrMode::hasRepForm(MachineInstr &MI, unsigned TfrDefR) {
143   const MCInstrDesc &MID = MI.getDesc();
144 
145   if ((!MID.mayStore() && !MID.mayLoad()) || HII->isPredicated(MI))
146     return false;
147 
148   if (MID.mayStore()) {
149     MachineOperand StOp = MI.getOperand(MI.getNumOperands() - 1);
150     if (StOp.isReg() && StOp.getReg() == TfrDefR)
151       return false;
152   }
153 
154   if (HII->getAddrMode(MI) == HexagonII::BaseRegOffset)
155     // Tranform to Absolute plus register offset.
156     return (HII->changeAddrMode_rr_ur(MI) >= 0);
157   else if (HII->getAddrMode(MI) == HexagonII::BaseImmOffset)
158     // Tranform to absolute addressing mode.
159     return (HII->changeAddrMode_io_abs(MI) >= 0);
160 
161   return false;
162 }
163 
164 // Check if addasl instruction can be removed. This is possible only
165 // if it's feeding to only load/store instructions with base + register
166 // offset as these instruction can be tranformed to use 'absolute plus
167 // shifted register offset'.
168 // ex:
169 // Rs = ##foo
170 // Rx = addasl(Rs, Rt, #2)
171 // Rd = memw(Rx + #28)
172 // Above three instructions can be replaced with Rd = memw(Rt<<#2 + ##foo+28)
173 
174 bool HexagonOptAddrMode::canRemoveAddasl(NodeAddr<StmtNode *> AddAslSN,
175                                          MachineInstr &MI,
176                                          const NodeList &UNodeList) {
177   // check offset size in addasl. if 'offset > 3' return false
178   const MachineOperand &OffsetOp = MI.getOperand(3);
179   if (!OffsetOp.isImm() || OffsetOp.getImm() > 3)
180     return false;
181 
182   Register OffsetReg = MI.getOperand(2).getReg();
183   RegisterRef OffsetRR;
184   NodeId OffsetRegRD = 0;
185   for (NodeAddr<UseNode *> UA : AddAslSN.Addr->members_if(DFG->IsUse, *DFG)) {
186     RegisterRef RR = UA.Addr->getRegRef(*DFG);
187     if (OffsetReg == RR.Reg) {
188       OffsetRR = RR;
189       OffsetRegRD = UA.Addr->getReachingDef();
190     }
191   }
192 
193   for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
194     NodeAddr<UseNode *> UA = *I;
195     NodeAddr<InstrNode *> IA = UA.Addr->getOwner(*DFG);
196     if (UA.Addr->getFlags() & NodeAttrs::PhiRef)
197       return false;
198     NodeAddr<RefNode*> AA = LV->getNearestAliasedRef(OffsetRR, IA);
199     if ((DFG->IsDef(AA) && AA.Id != OffsetRegRD) ||
200          AA.Addr->getReachingDef() != OffsetRegRD)
201       return false;
202 
203     MachineInstr &UseMI = *NodeAddr<StmtNode *>(IA).Addr->getCode();
204     NodeAddr<DefNode *> OffsetRegDN = DFG->addr<DefNode *>(OffsetRegRD);
205     // Reaching Def to an offset register can't be a phi.
206     if ((OffsetRegDN.Addr->getFlags() & NodeAttrs::PhiRef) &&
207         MI.getParent() != UseMI.getParent())
208     return false;
209 
210     const MCInstrDesc &UseMID = UseMI.getDesc();
211     if ((!UseMID.mayLoad() && !UseMID.mayStore()) ||
212         HII->getAddrMode(UseMI) != HexagonII::BaseImmOffset ||
213         getBaseWithLongOffset(UseMI) < 0)
214       return false;
215 
216     // Addasl output can't be a store value.
217     if (UseMID.mayStore() && UseMI.getOperand(2).isReg() &&
218         UseMI.getOperand(2).getReg() == MI.getOperand(0).getReg())
219       return false;
220 
221     for (auto &Mo : UseMI.operands())
222       // Is it a frame index?
223       if (Mo.isFI())
224         return false;
225     // Is the OffsetReg definition actually reaches UseMI?
226     if (!UseMI.getParent()->isLiveIn(OffsetReg) &&
227         MI.getParent() != UseMI.getParent()) {
228       LLVM_DEBUG(dbgs() << "  The offset reg " << printReg(OffsetReg, TRI)
229                         << " is NOT live in to MBB "
230                         << UseMI.getParent()->getName() << "\n");
231       return false;
232     }
233   }
234   return true;
235 }
236 
237 bool HexagonOptAddrMode::allValidCandidates(NodeAddr<StmtNode *> SA,
238                                             NodeList &UNodeList) {
239   for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
240     NodeAddr<UseNode *> UN = *I;
241     RegisterRef UR = UN.Addr->getRegRef(*DFG);
242     NodeSet Visited, Defs;
243     const auto &P = LV->getAllReachingDefsRec(UR, UN, Visited, Defs);
244     if (!P.second) {
245       LLVM_DEBUG({
246         dbgs() << "*** Unable to collect all reaching defs for use ***\n"
247                << PrintNode<UseNode*>(UN, *DFG) << '\n'
248                << "The program's complexity may exceed the limits.\n";
249       });
250       return false;
251     }
252     const auto &ReachingDefs = P.first;
253     if (ReachingDefs.size() > 1) {
254       LLVM_DEBUG({
255         dbgs() << "*** Multiple Reaching Defs found!!! ***\n";
256         for (auto DI : ReachingDefs) {
257           NodeAddr<UseNode *> DA = DFG->addr<UseNode *>(DI);
258           NodeAddr<StmtNode *> TempIA = DA.Addr->getOwner(*DFG);
259           dbgs() << "\t\t[Reaching Def]: "
260                  << Print<NodeAddr<InstrNode *>>(TempIA, *DFG) << "\n";
261         }
262       });
263       return false;
264     }
265   }
266   return true;
267 }
268 
269 void HexagonOptAddrMode::getAllRealUses(NodeAddr<StmtNode *> SA,
270                                         NodeList &UNodeList) {
271   for (NodeAddr<DefNode *> DA : SA.Addr->members_if(DFG->IsDef, *DFG)) {
272     LLVM_DEBUG(dbgs() << "\t\t[DefNode]: "
273                       << Print<NodeAddr<DefNode *>>(DA, *DFG) << "\n");
274     RegisterRef DR = DA.Addr->getRegRef(*DFG);
275 
276     auto UseSet = LV->getAllReachedUses(DR, DA);
277 
278     for (auto UI : UseSet) {
279       NodeAddr<UseNode *> UA = DFG->addr<UseNode *>(UI);
280       LLVM_DEBUG({
281         NodeAddr<StmtNode *> TempIA = UA.Addr->getOwner(*DFG);
282         dbgs() << "\t\t\t[Reached Use]: "
283                << Print<NodeAddr<InstrNode *>>(TempIA, *DFG) << "\n";
284       });
285 
286       if (UA.Addr->getFlags() & NodeAttrs::PhiRef) {
287         NodeAddr<PhiNode *> PA = UA.Addr->getOwner(*DFG);
288         NodeId id = PA.Id;
289         const Liveness::RefMap &phiUse = LV->getRealUses(id);
290         LLVM_DEBUG(dbgs() << "\t\t\t\tphi real Uses"
291                           << Print<Liveness::RefMap>(phiUse, *DFG) << "\n");
292         if (!phiUse.empty()) {
293           for (auto I : phiUse) {
294             if (!DFG->getPRI().alias(RegisterRef(I.first), DR))
295               continue;
296             auto phiUseSet = I.second;
297             for (auto phiUI : phiUseSet) {
298               NodeAddr<UseNode *> phiUA = DFG->addr<UseNode *>(phiUI.first);
299               UNodeList.push_back(phiUA);
300             }
301           }
302         }
303       } else
304         UNodeList.push_back(UA);
305     }
306   }
307 }
308 
309 bool HexagonOptAddrMode::isSafeToExtLR(NodeAddr<StmtNode *> SN,
310                                        MachineInstr *MI, unsigned LRExtReg,
311                                        const NodeList &UNodeList) {
312   RegisterRef LRExtRR;
313   NodeId LRExtRegRD = 0;
314   // Iterate through all the UseNodes in SN and find the reaching def
315   // for the LRExtReg.
316   for (NodeAddr<UseNode *> UA : SN.Addr->members_if(DFG->IsUse, *DFG)) {
317     RegisterRef RR = UA.Addr->getRegRef(*DFG);
318     if (LRExtReg == RR.Reg) {
319       LRExtRR = RR;
320       LRExtRegRD = UA.Addr->getReachingDef();
321     }
322   }
323 
324   for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
325     NodeAddr<UseNode *> UA = *I;
326     NodeAddr<InstrNode *> IA = UA.Addr->getOwner(*DFG);
327     // The reaching def of LRExtRR at load/store node should be same as the
328     // one reaching at the SN.
329     if (UA.Addr->getFlags() & NodeAttrs::PhiRef)
330       return false;
331     NodeAddr<RefNode*> AA = LV->getNearestAliasedRef(LRExtRR, IA);
332     if ((DFG->IsDef(AA) && AA.Id != LRExtRegRD) ||
333         AA.Addr->getReachingDef() != LRExtRegRD) {
334       LLVM_DEBUG(
335           dbgs() << "isSafeToExtLR: Returning false; another reaching def\n");
336       return false;
337     }
338 
339     // If the register is undefined (for example if it's a reserved register),
340     // it may still be possible to extend the range, but it's safer to be
341     // conservative and just punt.
342     if (LRExtRegRD == 0)
343       return false;
344 
345     MachineInstr *UseMI = NodeAddr<StmtNode *>(IA).Addr->getCode();
346     NodeAddr<DefNode *> LRExtRegDN = DFG->addr<DefNode *>(LRExtRegRD);
347     // Reaching Def to LRExtReg can't be a phi.
348     if ((LRExtRegDN.Addr->getFlags() & NodeAttrs::PhiRef) &&
349         MI->getParent() != UseMI->getParent())
350       return false;
351     // Is the OffsetReg definition actually reaches UseMI?
352     if (!UseMI->getParent()->isLiveIn(LRExtReg) &&
353         MI->getParent() != UseMI->getParent()) {
354       LLVM_DEBUG(dbgs() << "  The LRExtReg reg " << printReg(LRExtReg, TRI)
355                         << " is NOT live in to MBB "
356                         << UseMI->getParent()->getName() << "\n");
357       return false;
358     }
359   }
360   return true;
361 }
362 
363 bool HexagonOptAddrMode::isValidOffset(MachineInstr *MI, int Offset) {
364   if (HII->isHVXVec(*MI)) {
365     // only HVX vgather instructions handled
366     // TODO: extend the pass to other vector load/store operations
367     switch (MI->getOpcode()) {
368     case Hexagon::V6_vgathermh_pseudo:
369     case Hexagon::V6_vgathermw_pseudo:
370     case Hexagon::V6_vgathermhw_pseudo:
371     case Hexagon::V6_vgathermhq_pseudo:
372     case Hexagon::V6_vgathermwq_pseudo:
373     case Hexagon::V6_vgathermhwq_pseudo:
374       return HII->isValidOffset(MI->getOpcode(), Offset, HRI, false);
375     default:
376       if (HII->getAddrMode(*MI) == HexagonII::BaseImmOffset) {
377         // The immediates are mentioned in multiples of vector counts
378         unsigned AlignMask = HII->getMemAccessSize(*MI) - 1;
379         if ((AlignMask & Offset) == 0)
380           return HII->isValidOffset(MI->getOpcode(), Offset, HRI, false);
381       }
382       return false;
383     }
384   }
385 
386   if (HII->getAddrMode(*MI) != HexagonII::BaseImmOffset)
387     return false;
388 
389   unsigned AlignMask = 0;
390   switch (HII->getMemAccessSize(*MI)) {
391   case HexagonII::MemAccessSize::DoubleWordAccess:
392     AlignMask = 0x7;
393     break;
394   case HexagonII::MemAccessSize::WordAccess:
395     AlignMask = 0x3;
396     break;
397   case HexagonII::MemAccessSize::HalfWordAccess:
398     AlignMask = 0x1;
399     break;
400   case HexagonII::MemAccessSize::ByteAccess:
401     AlignMask = 0x0;
402     break;
403   default:
404     return false;
405   }
406 
407   if ((AlignMask & Offset) != 0)
408     return false;
409   return HII->isValidOffset(MI->getOpcode(), Offset, HRI, false);
410 }
411 
412 unsigned HexagonOptAddrMode::getBaseOpPosition(MachineInstr *MI) {
413   const MCInstrDesc &MID = MI->getDesc();
414   switch (MI->getOpcode()) {
415   // vgather pseudos are mayLoad and mayStore
416   // hence need to explicitly specify Base and
417   // Offset operand positions
418   case Hexagon::V6_vgathermh_pseudo:
419   case Hexagon::V6_vgathermw_pseudo:
420   case Hexagon::V6_vgathermhw_pseudo:
421   case Hexagon::V6_vgathermhq_pseudo:
422   case Hexagon::V6_vgathermwq_pseudo:
423   case Hexagon::V6_vgathermhwq_pseudo:
424     return 0;
425   default:
426     return MID.mayLoad() ? 1 : 0;
427   }
428 }
429 
430 unsigned HexagonOptAddrMode::getOffsetOpPosition(MachineInstr *MI) {
431   assert(
432       (HII->getAddrMode(*MI) == HexagonII::BaseImmOffset) &&
433       "Looking for an offset in non-BaseImmOffset addressing mode instruction");
434 
435   const MCInstrDesc &MID = MI->getDesc();
436   switch (MI->getOpcode()) {
437   // vgather pseudos are mayLoad and mayStore
438   // hence need to explicitly specify Base and
439   // Offset operand positions
440   case Hexagon::V6_vgathermh_pseudo:
441   case Hexagon::V6_vgathermw_pseudo:
442   case Hexagon::V6_vgathermhw_pseudo:
443   case Hexagon::V6_vgathermhq_pseudo:
444   case Hexagon::V6_vgathermwq_pseudo:
445   case Hexagon::V6_vgathermhwq_pseudo:
446     return 1;
447   default:
448     return MID.mayLoad() ? 2 : 1;
449   }
450 }
451 
452 bool HexagonOptAddrMode::usedInLoadStore(NodeAddr<StmtNode *> CurrentInstSN,
453                                          int64_t NewOffset) {
454   NodeList LoadStoreUseList;
455 
456   getAllRealUses(CurrentInstSN, LoadStoreUseList);
457   bool FoundLoadStoreUse = false;
458   for (auto I = LoadStoreUseList.begin(), E = LoadStoreUseList.end(); I != E;
459        ++I) {
460     NodeAddr<UseNode *> UN = *I;
461     NodeAddr<StmtNode *> SN = UN.Addr->getOwner(*DFG);
462     MachineInstr *LoadStoreMI = SN.Addr->getCode();
463     const MCInstrDesc &MID = LoadStoreMI->getDesc();
464     if ((MID.mayLoad() || MID.mayStore()) &&
465         isValidOffset(LoadStoreMI, NewOffset)) {
466       FoundLoadStoreUse = true;
467       break;
468     }
469   }
470   return FoundLoadStoreUse;
471 }
472 
473 bool HexagonOptAddrMode::findFirstReachedInst(
474     MachineInstr *AddMI,
475     std::vector<std::pair<NodeAddr<StmtNode *>, NodeAddr<UseNode *>>> &AddiList,
476     NodeAddr<StmtNode *> &UseSN) {
477   // Find the very first Addi instruction in the current basic block among the
478   // AddiList This is the Addi that should be preserved so that we do not need
479   // to handle the complexity of moving instructions
480   //
481   // TODO: find Addi instructions across basic blocks
482   //
483   // TODO: Try to remove this and add a solution that optimizes the number of
484   // Addi instructions that can be modified.
485   // This change requires choosing the Addi with the median offset value, but
486   // would also require moving that instruction above the others. Since this
487   // pass runs after register allocation, there might be multiple cases that
488   // need to be handled if we move instructions around
489   MachineBasicBlock *CurrentMBB = AddMI->getParent();
490   for (auto &InstIter : *CurrentMBB) {
491     // If the instruction is an Addi and is in the AddiList
492     if (InstIter.getOpcode() == Hexagon::A2_addi) {
493       auto Iter = std::find_if(
494           AddiList.begin(), AddiList.end(), [&InstIter](const auto &SUPair) {
495             return SUPair.first.Addr->getCode() == &InstIter;
496           });
497       if (Iter != AddiList.end()) {
498         UseSN = Iter->first;
499         return true;
500       }
501     }
502   }
503   return false;
504 }
505 
506 // This function tries to modify the immediate value in Hexagon::Addi
507 // instructions, so that the immediates could then be moved into a load/store
508 // instruction with offset and the add removed completely when we call
509 // processAddUses
510 //
511 // For Example, If we have the below sequence of instructions:
512 //
513 //         r1 = add(r2,#1024)
514 //               ...
515 //         r3 = add(r2,#1152)
516 //               ...
517 //         r4 = add(r2,#1280)
518 //
519 // Where the register r2 has the same reaching definition, They get modified to
520 // the below sequence:
521 //
522 //         r1 = add(r2,#1024)
523 //              ...
524 //         r3 = add(r1,#128)
525 //              ...
526 //         r4 = add(r1,#256)
527 //
528 //  The below change helps the processAddUses method to later move the
529 //  immediates #128 and #256 into a load/store instruction that can take an
530 //  offset, like the Vd = mem(Rt+#s4)
531 bool HexagonOptAddrMode::processAddBases(NodeAddr<StmtNode *> AddSN,
532                                          MachineInstr *AddMI) {
533 
534   bool Changed = false;
535 
536   LLVM_DEBUG(dbgs() << "\n\t\t[Processing Addi]: " << *AddMI << "\n");
537 
538   auto Processed =
539       [](const MachineInstr *MI,
540          const DenseSet<MachineInstr *> &ProcessedAddiInsts) -> bool {
541     // If we've already processed this Addi, just return
542     if (ProcessedAddiInsts.find(MI) != ProcessedAddiInsts.end()) {
543       LLVM_DEBUG(dbgs() << "\t\t\tAddi already found in ProcessedAddiInsts: "
544                         << *MI << "\n\t\t\tSkipping...");
545       return true;
546     }
547     return false;
548   };
549 
550   if (Processed(AddMI, ProcessedAddiInsts))
551     return Changed;
552   ProcessedAddiInsts.insert(AddMI);
553 
554   // Get the base register that would be shared by other Addi Intructions
555   Register BaseReg = AddMI->getOperand(1).getReg();
556 
557   // Store a list of all Addi instructions that share the above common base
558   // register
559   std::vector<std::pair<NodeAddr<StmtNode *>, NodeAddr<UseNode *>>> AddiList;
560 
561   NodeId UAReachingDefID;
562   // Find the UseNode that contains the base register and it's reachingDef
563   for (NodeAddr<UseNode *> UA : AddSN.Addr->members_if(DFG->IsUse, *DFG)) {
564     RegisterRef URR = UA.Addr->getRegRef(*DFG);
565     if (BaseReg != URR.Reg)
566       continue;
567 
568     UAReachingDefID = UA.Addr->getReachingDef();
569     NodeAddr<DefNode *> UADef = DFG->addr<DefNode *>(UAReachingDefID);
570     if (!UAReachingDefID || UADef.Addr->getFlags() & NodeAttrs::PhiRef) {
571       LLVM_DEBUG(dbgs() << "\t\t\t Could not find reachingDef. Skipping...\n");
572       return false;
573     }
574   }
575 
576   NodeAddr<DefNode *> UAReachingDef = DFG->addr<DefNode *>(UAReachingDefID);
577   NodeAddr<StmtNode *> ReachingDefStmt = UAReachingDef.Addr->getOwner(*DFG);
578 
579   // If the reaching definition is a predicated instruction, this might not be
580   // the only definition of our base register, so return immediately.
581   MachineInstr *ReachingDefInstr = ReachingDefStmt.Addr->getCode();
582   if (HII->isPredicated(*ReachingDefInstr))
583     return false;
584 
585   NodeList AddiUseList;
586 
587   // Find all Addi instructions that share the same base register and add them
588   // to the AddiList
589   getAllRealUses(ReachingDefStmt, AddiUseList);
590   for (auto I = AddiUseList.begin(), E = AddiUseList.end(); I != E; ++I) {
591     NodeAddr<UseNode *> UN = *I;
592     NodeAddr<StmtNode *> SN = UN.Addr->getOwner(*DFG);
593     MachineInstr *MI = SN.Addr->getCode();
594 
595     // Only add instructions if it's an Addi and it's not already processed.
596     if (MI->getOpcode() == Hexagon::A2_addi &&
597         !(MI != AddMI && Processed(MI, ProcessedAddiInsts))) {
598       AddiList.push_back({SN, UN});
599 
600       // This ensures that we process each instruction only once
601       ProcessedAddiInsts.insert(MI);
602     }
603   }
604 
605   // If there's only one Addi instruction, nothing to do here
606   if (AddiList.size() <= 1)
607     return Changed;
608 
609   NodeAddr<StmtNode *> FirstReachedUseSN;
610   // Find the first reached use of Addi instruction from the list
611   if (!findFirstReachedInst(AddMI, AddiList, FirstReachedUseSN))
612     return Changed;
613 
614   // If we reach this point we know that the StmtNode FirstReachedUseSN is for
615   // an Addi instruction. So, we're guaranteed to have just one DefNode, and
616   // hence we can access the front() directly without checks
617   NodeAddr<DefNode *> FirstReachedUseDN =
618       FirstReachedUseSN.Addr->members_if(DFG->IsDef, *DFG).front();
619 
620   MachineInstr *FirstReachedMI = FirstReachedUseSN.Addr->getCode();
621   const MachineOperand FirstReachedMIImmOp = FirstReachedMI->getOperand(2);
622   if (!FirstReachedMIImmOp.isImm())
623     return false;
624 
625   for (auto &I : AddiList) {
626     NodeAddr<StmtNode *> CurrentInstSN = I.first;
627     NodeAddr<UseNode *> CurrentInstUN = I.second;
628 
629     MachineInstr *CurrentMI = CurrentInstSN.Addr->getCode();
630     MachineOperand &CurrentMIImmOp = CurrentMI->getOperand(2);
631 
632     int64_t NewOffset;
633 
634     // Even though we know it's an Addi instruction, the second operand could be
635     // a global value and not an immediate
636     if (!CurrentMIImmOp.isImm())
637       continue;
638 
639     NewOffset = CurrentMIImmOp.getImm() - FirstReachedMIImmOp.getImm();
640 
641     // This is the first occuring Addi, so skip modifying this
642     if (CurrentMI == FirstReachedMI) {
643       continue;
644     }
645 
646     if (CurrentMI->getParent() != FirstReachedMI->getParent())
647       continue;
648 
649     // Modify the Addi instruction only if it could be used to modify a
650     // future load/store instruction and get removed
651     //
652     // This check is needed because, if we modify the current Addi instruction
653     // we create RAW dependence between the FirstReached Addi and the current
654     // one, which could result in extra packets. So we only do this change if
655     // we know the current Addi would get removed later
656     if (!usedInLoadStore(CurrentInstSN, NewOffset)) {
657       return false;
658     }
659 
660     // Verify whether the First Addi's definition register is still live when
661     // we reach the current Addi
662     RegisterRef FirstReachedDefRR = FirstReachedUseDN.Addr->getRegRef(*DFG);
663     NodeAddr<InstrNode *> CurrentAddiIN = CurrentInstUN.Addr->getOwner(*DFG);
664     NodeAddr<RefNode *> NearestAA =
665         LV->getNearestAliasedRef(FirstReachedDefRR, CurrentAddiIN);
666     if ((DFG->IsDef(NearestAA) && NearestAA.Id != FirstReachedUseDN.Id) ||
667         (!DFG->IsDef(NearestAA) &&
668          NearestAA.Addr->getReachingDef() != FirstReachedUseDN.Id)) {
669       // Found another definition of FirstReachedDef
670       LLVM_DEBUG(dbgs() << "\t\t\tCould not modify below Addi since the first "
671                            "defined Addi register was redefined\n");
672       continue;
673     }
674 
675     MachineOperand CurrentMIBaseOp = CurrentMI->getOperand(1);
676     if (CurrentMIBaseOp.getReg() != FirstReachedMI->getOperand(1).getReg()) {
677       continue;
678     }
679 
680     // If we reached this point, then we can modify MI to use the result of
681     // FirstReachedMI
682     Changed |= updateAddBases(CurrentMI, FirstReachedMI, NewOffset);
683 
684     // Update the reachingDef of the Current AddI use after change
685     CurrentInstUN.Addr->linkToDef(CurrentInstUN.Id, FirstReachedUseDN);
686   }
687 
688   return Changed;
689 }
690 
691 bool HexagonOptAddrMode::updateAddBases(MachineInstr *CurrentMI,
692                                         MachineInstr *FirstReachedMI,
693                                         int64_t NewOffset) {
694   LLVM_DEBUG(dbgs() << "[About to modify the Addi]: " << *CurrentMI << "\n");
695   const MachineOperand FirstReachedDef = FirstReachedMI->getOperand(0);
696   Register FirstDefRegister = FirstReachedDef.getReg();
697 
698   MachineOperand &CurrentMIBaseOp = CurrentMI->getOperand(1);
699   MachineOperand &CurrentMIImmOp = CurrentMI->getOperand(2);
700 
701   CurrentMIBaseOp.setReg(FirstDefRegister);
702   CurrentMIBaseOp.setIsUndef(FirstReachedDef.isUndef());
703   CurrentMIBaseOp.setImplicit(FirstReachedDef.isImplicit());
704   CurrentMIImmOp.setImm(NewOffset);
705   ProcessedAddiInsts.insert(CurrentMI);
706   MRI->clearKillFlags(FirstDefRegister);
707   return true;
708 }
709 
710 bool HexagonOptAddrMode::processAddUses(NodeAddr<StmtNode *> AddSN,
711                                         MachineInstr *AddMI,
712                                         const NodeList &UNodeList) {
713 
714   Register AddDefR = AddMI->getOperand(0).getReg();
715   Register BaseReg = AddMI->getOperand(1).getReg();
716   for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
717     NodeAddr<UseNode *> UN = *I;
718     NodeAddr<StmtNode *> SN = UN.Addr->getOwner(*DFG);
719     MachineInstr *MI = SN.Addr->getCode();
720     const MCInstrDesc &MID = MI->getDesc();
721     if ((!MID.mayLoad() && !MID.mayStore()) ||
722         HII->getAddrMode(*MI) != HexagonII::BaseImmOffset)
723       return false;
724 
725     MachineOperand BaseOp = MI->getOperand(getBaseOpPosition(MI));
726 
727     if (!BaseOp.isReg() || BaseOp.getReg() != AddDefR)
728       return false;
729 
730     MachineOperand OffsetOp = MI->getOperand(getOffsetOpPosition(MI));
731     if (!OffsetOp.isImm())
732       return false;
733 
734     int64_t newOffset = OffsetOp.getImm() + AddMI->getOperand(2).getImm();
735     if (!isValidOffset(MI, newOffset))
736       return false;
737 
738     // Since we'll be extending the live range of Rt in the following example,
739     // make sure that is safe. another definition of Rt doesn't exist between 'add'
740     // and load/store instruction.
741     //
742     // Ex: Rx= add(Rt,#10)
743     //     memw(Rx+#0) = Rs
744     // will be replaced with =>  memw(Rt+#10) = Rs
745     if (!isSafeToExtLR(AddSN, AddMI, BaseReg, UNodeList))
746       return false;
747   }
748 
749   NodeId LRExtRegRD = 0;
750   // Iterate through all the UseNodes in SN and find the reaching def
751   // for the LRExtReg.
752   for (NodeAddr<UseNode *> UA : AddSN.Addr->members_if(DFG->IsUse, *DFG)) {
753     RegisterRef RR = UA.Addr->getRegRef(*DFG);
754     if (BaseReg == RR.Reg)
755       LRExtRegRD = UA.Addr->getReachingDef();
756   }
757 
758   // Update all the uses of 'add' with the appropriate base and offset
759   // values.
760   bool Changed = false;
761   for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
762     NodeAddr<UseNode *> UseN = *I;
763     assert(!(UseN.Addr->getFlags() & NodeAttrs::PhiRef) &&
764            "Found a PhiRef node as a real reached use!!");
765 
766     NodeAddr<StmtNode *> OwnerN = UseN.Addr->getOwner(*DFG);
767     MachineInstr *UseMI = OwnerN.Addr->getCode();
768     LLVM_DEBUG(dbgs() << "\t\t[MI <BB#" << UseMI->getParent()->getNumber()
769                       << ">]: " << *UseMI << "\n");
770     Changed |= updateAddUses(AddMI, UseMI);
771 
772     // Set the reachingDef for UseNode under consideration
773     // after updating the Add use. This local change is
774     // to avoid rebuilding of the RDF graph after update.
775     NodeAddr<DefNode *> LRExtRegDN = DFG->addr<DefNode *>(LRExtRegRD);
776     UseN.Addr->linkToDef(UseN.Id, LRExtRegDN);
777   }
778 
779   if (Changed)
780     Deleted.insert(AddMI);
781 
782   return Changed;
783 }
784 
785 bool HexagonOptAddrMode::updateAddUses(MachineInstr *AddMI,
786                                        MachineInstr *UseMI) {
787   const MachineOperand ImmOp = AddMI->getOperand(2);
788   const MachineOperand AddRegOp = AddMI->getOperand(1);
789   Register NewReg = AddRegOp.getReg();
790 
791   MachineOperand &BaseOp = UseMI->getOperand(getBaseOpPosition(UseMI));
792   MachineOperand &OffsetOp = UseMI->getOperand(getOffsetOpPosition(UseMI));
793   BaseOp.setReg(NewReg);
794   BaseOp.setIsUndef(AddRegOp.isUndef());
795   BaseOp.setImplicit(AddRegOp.isImplicit());
796   OffsetOp.setImm(ImmOp.getImm() + OffsetOp.getImm());
797   MRI->clearKillFlags(NewReg);
798 
799   return true;
800 }
801 
802 bool HexagonOptAddrMode::analyzeUses(unsigned tfrDefR,
803                                      const NodeList &UNodeList,
804                                      InstrEvalMap &InstrEvalResult,
805                                      short &SizeInc) {
806   bool KeepTfr = false;
807   bool HasRepInstr = false;
808   InstrEvalResult.clear();
809 
810   for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
811     bool CanBeReplaced = false;
812     NodeAddr<UseNode *> UN = *I;
813     NodeAddr<StmtNode *> SN = UN.Addr->getOwner(*DFG);
814     MachineInstr &MI = *SN.Addr->getCode();
815     const MCInstrDesc &MID = MI.getDesc();
816     if ((MID.mayLoad() || MID.mayStore())) {
817       if (!hasRepForm(MI, tfrDefR)) {
818         KeepTfr = true;
819         continue;
820       }
821       SizeInc++;
822       CanBeReplaced = true;
823     } else if (MI.getOpcode() == Hexagon::S2_addasl_rrri) {
824       NodeList AddaslUseList;
825 
826       LLVM_DEBUG(dbgs() << "\nGetting ReachedUses for === " << MI << "\n");
827       getAllRealUses(SN, AddaslUseList);
828       // Process phi nodes.
829       if (allValidCandidates(SN, AddaslUseList) &&
830           canRemoveAddasl(SN, MI, AddaslUseList)) {
831         SizeInc += AddaslUseList.size();
832         SizeInc -= 1; // Reduce size by 1 as addasl itself can be removed.
833         CanBeReplaced = true;
834       } else
835         SizeInc++;
836     } else
837       // Currently, only load/store and addasl are handled.
838       // Some other instructions to consider -
839       // A2_add -> A2_addi
840       // M4_mpyrr_addr -> M4_mpyrr_addi
841       KeepTfr = true;
842 
843     InstrEvalResult[&MI] = CanBeReplaced;
844     HasRepInstr |= CanBeReplaced;
845   }
846 
847   // Reduce total size by 2 if original tfr can be deleted.
848   if (!KeepTfr)
849     SizeInc -= 2;
850 
851   return HasRepInstr;
852 }
853 
854 bool HexagonOptAddrMode::changeLoad(MachineInstr *OldMI, MachineOperand ImmOp,
855                                     unsigned ImmOpNum) {
856   bool Changed = false;
857   MachineBasicBlock *BB = OldMI->getParent();
858   auto UsePos = MachineBasicBlock::iterator(OldMI);
859   MachineBasicBlock::instr_iterator InsertPt = UsePos.getInstrIterator();
860   ++InsertPt;
861   unsigned OpStart;
862   unsigned OpEnd = OldMI->getNumOperands();
863   MachineInstrBuilder MIB;
864 
865   if (ImmOpNum == 1) {
866     if (HII->getAddrMode(*OldMI) == HexagonII::BaseRegOffset) {
867       short NewOpCode = HII->changeAddrMode_rr_ur(*OldMI);
868       assert(NewOpCode >= 0 && "Invalid New opcode\n");
869       MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode));
870       MIB.add(OldMI->getOperand(0));
871       MIB.add(OldMI->getOperand(2));
872       MIB.add(OldMI->getOperand(3));
873       MIB.add(ImmOp);
874       OpStart = 4;
875       Changed = true;
876     } else if (HII->getAddrMode(*OldMI) == HexagonII::BaseImmOffset &&
877                OldMI->getOperand(2).isImm()) {
878       short NewOpCode = HII->changeAddrMode_io_abs(*OldMI);
879       assert(NewOpCode >= 0 && "Invalid New opcode\n");
880       MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode))
881                 .add(OldMI->getOperand(0));
882       const GlobalValue *GV = ImmOp.getGlobal();
883       int64_t Offset = ImmOp.getOffset() + OldMI->getOperand(2).getImm();
884 
885       MIB.addGlobalAddress(GV, Offset, ImmOp.getTargetFlags());
886       OpStart = 3;
887       Changed = true;
888     } else
889       Changed = false;
890 
891     LLVM_DEBUG(dbgs() << "[Changing]: " << *OldMI << "\n");
892     LLVM_DEBUG(dbgs() << "[TO]: " << *MIB << "\n");
893   } else if (ImmOpNum == 2) {
894     if (OldMI->getOperand(3).isImm() && OldMI->getOperand(3).getImm() == 0) {
895       short NewOpCode = HII->changeAddrMode_rr_io(*OldMI);
896       assert(NewOpCode >= 0 && "Invalid New opcode\n");
897       MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode));
898       MIB.add(OldMI->getOperand(0));
899       MIB.add(OldMI->getOperand(1));
900       MIB.add(ImmOp);
901       OpStart = 4;
902       Changed = true;
903       LLVM_DEBUG(dbgs() << "[Changing]: " << *OldMI << "\n");
904       LLVM_DEBUG(dbgs() << "[TO]: " << *MIB << "\n");
905     }
906   }
907 
908   if (Changed)
909     for (unsigned i = OpStart; i < OpEnd; ++i)
910       MIB.add(OldMI->getOperand(i));
911 
912   return Changed;
913 }
914 
915 bool HexagonOptAddrMode::changeStore(MachineInstr *OldMI, MachineOperand ImmOp,
916                                      unsigned ImmOpNum) {
917   bool Changed = false;
918   unsigned OpStart = 0;
919   unsigned OpEnd = OldMI->getNumOperands();
920   MachineBasicBlock *BB = OldMI->getParent();
921   auto UsePos = MachineBasicBlock::iterator(OldMI);
922   MachineBasicBlock::instr_iterator InsertPt = UsePos.getInstrIterator();
923   ++InsertPt;
924   MachineInstrBuilder MIB;
925   if (ImmOpNum == 0) {
926     if (HII->getAddrMode(*OldMI) == HexagonII::BaseRegOffset) {
927       short NewOpCode = HII->changeAddrMode_rr_ur(*OldMI);
928       assert(NewOpCode >= 0 && "Invalid New opcode\n");
929       MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode));
930       MIB.add(OldMI->getOperand(1));
931       MIB.add(OldMI->getOperand(2));
932       MIB.add(ImmOp);
933       MIB.add(OldMI->getOperand(3));
934       OpStart = 4;
935       Changed = true;
936     } else if (HII->getAddrMode(*OldMI) == HexagonII::BaseImmOffset) {
937       short NewOpCode = HII->changeAddrMode_io_abs(*OldMI);
938       assert(NewOpCode >= 0 && "Invalid New opcode\n");
939       MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode));
940       const GlobalValue *GV = ImmOp.getGlobal();
941       int64_t Offset = ImmOp.getOffset() + OldMI->getOperand(1).getImm();
942       MIB.addGlobalAddress(GV, Offset, ImmOp.getTargetFlags());
943       MIB.add(OldMI->getOperand(2));
944       OpStart = 3;
945       Changed = true;
946     }
947   } else if (ImmOpNum == 1 && OldMI->getOperand(2).getImm() == 0) {
948     short NewOpCode = HII->changeAddrMode_rr_io(*OldMI);
949     assert(NewOpCode >= 0 && "Invalid New opcode\n");
950     MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode));
951     MIB.add(OldMI->getOperand(0));
952     MIB.add(ImmOp);
953     OpStart = 3;
954     Changed = true;
955   }
956   if (Changed) {
957     LLVM_DEBUG(dbgs() << "[Changing]: " << *OldMI << "\n");
958     LLVM_DEBUG(dbgs() << "[TO]: " << *MIB << "\n");
959 
960     for (unsigned i = OpStart; i < OpEnd; ++i)
961       MIB.add(OldMI->getOperand(i));
962   }
963 
964   return Changed;
965 }
966 
967 short HexagonOptAddrMode::getBaseWithLongOffset(const MachineInstr &MI) const {
968   if (HII->getAddrMode(MI) == HexagonII::BaseImmOffset) {
969     short TempOpCode = HII->changeAddrMode_io_rr(MI);
970     return HII->changeAddrMode_rr_ur(TempOpCode);
971   }
972   return HII->changeAddrMode_rr_ur(MI);
973 }
974 
975 bool HexagonOptAddrMode::changeAddAsl(NodeAddr<UseNode *> AddAslUN,
976                                       MachineInstr *AddAslMI,
977                                       const MachineOperand &ImmOp,
978                                       unsigned ImmOpNum) {
979   NodeAddr<StmtNode *> SA = AddAslUN.Addr->getOwner(*DFG);
980 
981   LLVM_DEBUG(dbgs() << "Processing addasl :" << *AddAslMI << "\n");
982 
983   NodeList UNodeList;
984   getAllRealUses(SA, UNodeList);
985 
986   for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
987     NodeAddr<UseNode *> UseUN = *I;
988     assert(!(UseUN.Addr->getFlags() & NodeAttrs::PhiRef) &&
989            "Can't transform this 'AddAsl' instruction!");
990 
991     NodeAddr<StmtNode *> UseIA = UseUN.Addr->getOwner(*DFG);
992     LLVM_DEBUG(dbgs() << "[InstrNode]: "
993                       << Print<NodeAddr<InstrNode *>>(UseIA, *DFG) << "\n");
994     MachineInstr *UseMI = UseIA.Addr->getCode();
995     LLVM_DEBUG(dbgs() << "[MI <" << printMBBReference(*UseMI->getParent())
996                       << ">]: " << *UseMI << "\n");
997     const MCInstrDesc &UseMID = UseMI->getDesc();
998     assert(HII->getAddrMode(*UseMI) == HexagonII::BaseImmOffset);
999 
1000     auto UsePos = MachineBasicBlock::iterator(UseMI);
1001     MachineBasicBlock::instr_iterator InsertPt = UsePos.getInstrIterator();
1002     short NewOpCode = getBaseWithLongOffset(*UseMI);
1003     assert(NewOpCode >= 0 && "Invalid New opcode\n");
1004 
1005     unsigned OpStart;
1006     unsigned OpEnd = UseMI->getNumOperands();
1007 
1008     MachineBasicBlock *BB = UseMI->getParent();
1009     MachineInstrBuilder MIB =
1010         BuildMI(*BB, InsertPt, UseMI->getDebugLoc(), HII->get(NewOpCode));
1011     // change mem(Rs + # ) -> mem(Rt << # + ##)
1012     if (UseMID.mayLoad()) {
1013       MIB.add(UseMI->getOperand(0));
1014       MIB.add(AddAslMI->getOperand(2));
1015       MIB.add(AddAslMI->getOperand(3));
1016       const GlobalValue *GV = ImmOp.getGlobal();
1017       MIB.addGlobalAddress(GV, UseMI->getOperand(2).getImm()+ImmOp.getOffset(),
1018                            ImmOp.getTargetFlags());
1019       OpStart = 3;
1020     } else if (UseMID.mayStore()) {
1021       MIB.add(AddAslMI->getOperand(2));
1022       MIB.add(AddAslMI->getOperand(3));
1023       const GlobalValue *GV = ImmOp.getGlobal();
1024       MIB.addGlobalAddress(GV, UseMI->getOperand(1).getImm()+ImmOp.getOffset(),
1025                            ImmOp.getTargetFlags());
1026       MIB.add(UseMI->getOperand(2));
1027       OpStart = 3;
1028     } else
1029       llvm_unreachable("Unhandled instruction");
1030 
1031     for (unsigned i = OpStart; i < OpEnd; ++i)
1032       MIB.add(UseMI->getOperand(i));
1033     Deleted.insert(UseMI);
1034   }
1035 
1036   return true;
1037 }
1038 
1039 bool HexagonOptAddrMode::xformUseMI(MachineInstr *TfrMI, MachineInstr *UseMI,
1040                                     NodeAddr<UseNode *> UseN,
1041                                     unsigned UseMOnum) {
1042   const MachineOperand ImmOp = TfrMI->getOperand(1);
1043   const MCInstrDesc &MID = UseMI->getDesc();
1044   unsigned Changed = false;
1045   if (MID.mayLoad())
1046     Changed = changeLoad(UseMI, ImmOp, UseMOnum);
1047   else if (MID.mayStore())
1048     Changed = changeStore(UseMI, ImmOp, UseMOnum);
1049   else if (UseMI->getOpcode() == Hexagon::S2_addasl_rrri)
1050     Changed = changeAddAsl(UseN, UseMI, ImmOp, UseMOnum);
1051 
1052   if (Changed)
1053     Deleted.insert(UseMI);
1054 
1055   return Changed;
1056 }
1057 
1058 bool HexagonOptAddrMode::processBlock(NodeAddr<BlockNode *> BA) {
1059   bool Changed = false;
1060 
1061   for (auto IA : BA.Addr->members(*DFG)) {
1062     if (!DFG->IsCode<NodeAttrs::Stmt>(IA))
1063       continue;
1064 
1065     NodeAddr<StmtNode *> SA = IA;
1066     MachineInstr *MI = SA.Addr->getCode();
1067     if ((MI->getOpcode() != Hexagon::A2_tfrsi ||
1068          !MI->getOperand(1).isGlobal()) &&
1069         (MI->getOpcode() != Hexagon::A2_addi ||
1070          !MI->getOperand(2).isImm() || HII->isConstExtended(*MI)))
1071     continue;
1072 
1073     LLVM_DEBUG(dbgs() << "[Analyzing " << HII->getName(MI->getOpcode())
1074                       << "]: " << *MI << "\n\t[InstrNode]: "
1075                       << Print<NodeAddr<InstrNode *>>(IA, *DFG) << '\n');
1076 
1077     if (MI->getOpcode() == Hexagon::A2_addi)
1078       Changed |= processAddBases(SA, MI);
1079     NodeList UNodeList;
1080     getAllRealUses(SA, UNodeList);
1081 
1082     if (!allValidCandidates(SA, UNodeList))
1083       continue;
1084 
1085     // Analyze all uses of 'add'. If the output of 'add' is used as an address
1086     // in the base+immediate addressing mode load/store instructions, see if
1087     // they can be updated to use the immediate value as an offet. Thus,
1088     // providing us the opportunity to eliminate 'add'.
1089     // Ex: Rx= add(Rt,#12)
1090     //     memw(Rx+#0) = Rs
1091     // This can be replaced with memw(Rt+#12) = Rs
1092     //
1093     // This transformation is only performed if all uses can be updated and
1094     // the offset isn't required to be constant extended.
1095     if (MI->getOpcode() == Hexagon::A2_addi) {
1096       Changed |= processAddUses(SA, MI, UNodeList);
1097       continue;
1098     }
1099 
1100     short SizeInc = 0;
1101     Register DefR = MI->getOperand(0).getReg();
1102     InstrEvalMap InstrEvalResult;
1103 
1104     // Analyze all uses and calculate increase in size. Perform the optimization
1105     // only if there is no increase in size.
1106     if (!analyzeUses(DefR, UNodeList, InstrEvalResult, SizeInc))
1107       continue;
1108     if (SizeInc > CodeGrowthLimit)
1109       continue;
1110 
1111     bool KeepTfr = false;
1112 
1113     LLVM_DEBUG(dbgs() << "\t[Total reached uses] : " << UNodeList.size()
1114                       << "\n");
1115     LLVM_DEBUG(dbgs() << "\t[Processing Reached Uses] ===\n");
1116     for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) {
1117       NodeAddr<UseNode *> UseN = *I;
1118       assert(!(UseN.Addr->getFlags() & NodeAttrs::PhiRef) &&
1119              "Found a PhiRef node as a real reached use!!");
1120 
1121       NodeAddr<StmtNode *> OwnerN = UseN.Addr->getOwner(*DFG);
1122       MachineInstr *UseMI = OwnerN.Addr->getCode();
1123       LLVM_DEBUG(dbgs() << "\t\t[MI <" << printMBBReference(*UseMI->getParent())
1124                         << ">]: " << *UseMI << "\n");
1125 
1126       int UseMOnum = -1;
1127       unsigned NumOperands = UseMI->getNumOperands();
1128       for (unsigned j = 0; j < NumOperands - 1; ++j) {
1129         const MachineOperand &op = UseMI->getOperand(j);
1130         if (op.isReg() && op.isUse() && DefR == op.getReg())
1131           UseMOnum = j;
1132       }
1133       // It is possible that the register will not be found in any operand.
1134       // This could happen, for example, when DefR = R4, but the used
1135       // register is D2.
1136 
1137       // Change UseMI if replacement is possible. If any replacement failed,
1138       // or wasn't attempted, make sure to keep the TFR.
1139       bool Xformed = false;
1140       if (UseMOnum >= 0 && InstrEvalResult[UseMI])
1141         Xformed = xformUseMI(MI, UseMI, UseN, UseMOnum);
1142       Changed |=  Xformed;
1143       KeepTfr |= !Xformed;
1144     }
1145     if (!KeepTfr)
1146       Deleted.insert(MI);
1147   }
1148   return Changed;
1149 }
1150 
1151 bool HexagonOptAddrMode::runOnMachineFunction(MachineFunction &MF) {
1152   if (skipFunction(MF.getFunction()))
1153     return false;
1154 
1155   // Perform RDF optimizations only if number of basic blocks in the
1156   // function is less than the limit
1157   if (MF.size() > RDFFuncBlockLimit) {
1158     LLVM_DEBUG(dbgs() << "Skipping " << getPassName()
1159                       << ": too many basic blocks\n");
1160     return false;
1161   }
1162 
1163   bool Changed = false;
1164   auto &HST = MF.getSubtarget<HexagonSubtarget>();
1165   MRI = &MF.getRegInfo();
1166   TRI = MF.getSubtarget().getRegisterInfo();
1167   HII = HST.getInstrInfo();
1168   HRI = HST.getRegisterInfo();
1169   const auto &MDF = getAnalysis<MachineDominanceFrontier>();
1170   MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
1171 
1172   DataFlowGraph G(MF, *HII, *HRI, *MDT, MDF);
1173   // Need to keep dead phis because we can propagate uses of registers into
1174   // nodes dominated by those would-be phis.
1175   G.build(BuildOptions::KeepDeadPhis);
1176   DFG = &G;
1177 
1178   Liveness L(*MRI, *DFG);
1179   L.computePhiInfo();
1180   LV = &L;
1181 
1182   Deleted.clear();
1183   ProcessedAddiInsts.clear();
1184   NodeAddr<FuncNode *> FA = DFG->getFunc();
1185   LLVM_DEBUG(dbgs() << "==== [RefMap#]=====:\n "
1186                     << Print<NodeAddr<FuncNode *>>(FA, *DFG) << "\n");
1187 
1188   for (NodeAddr<BlockNode *> BA : FA.Addr->members(*DFG))
1189     Changed |= processBlock(BA);
1190 
1191   for (auto *MI : Deleted)
1192     MI->eraseFromParent();
1193 
1194   if (Changed) {
1195     G.build();
1196     L.computeLiveIns();
1197     L.resetLiveIns();
1198     L.resetKills();
1199   }
1200 
1201   return Changed;
1202 }
1203 
1204 //===----------------------------------------------------------------------===//
1205 //                         Public Constructor Functions
1206 //===----------------------------------------------------------------------===//
1207 
1208 FunctionPass *llvm::createHexagonOptAddrMode() {
1209   return new HexagonOptAddrMode();
1210 }
1211