//===- SimplexTest.cpp - Tests for Simplex --------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "Parser.h" #include "Utils.h" #include "mlir/Analysis/Presburger/Simplex.h" #include "mlir/IR/MLIRContext.h" #include #include #include using namespace mlir; using namespace presburger; /// Convenience functions to pass literals to Simplex. void addInequality(SimplexBase &simplex, ArrayRef coeffs) { simplex.addInequality(getDynamicAPIntVec(coeffs)); } void addEquality(SimplexBase &simplex, ArrayRef coeffs) { simplex.addEquality(getDynamicAPIntVec(coeffs)); } bool isRedundantInequality(Simplex &simplex, ArrayRef coeffs) { return simplex.isRedundantInequality(getDynamicAPIntVec(coeffs)); } bool isRedundantInequality(LexSimplex &simplex, ArrayRef coeffs) { return simplex.isRedundantInequality(getDynamicAPIntVec(coeffs)); } bool isRedundantEquality(Simplex &simplex, ArrayRef coeffs) { return simplex.isRedundantEquality(getDynamicAPIntVec(coeffs)); } bool isSeparateInequality(LexSimplex &simplex, ArrayRef coeffs) { return simplex.isSeparateInequality(getDynamicAPIntVec(coeffs)); } Simplex::IneqType findIneqType(Simplex &simplex, ArrayRef coeffs) { return simplex.findIneqType(getDynamicAPIntVec(coeffs)); } /// Take a snapshot, add constraints making the set empty, and rollback. /// The set should not be empty after rolling back. We add additional /// constraints after the set is already empty and roll back the addition /// of these. The set should be marked non-empty only once we rollback /// past the addition of the first constraint that made it empty. TEST(SimplexTest, emptyRollback) { Simplex simplex(2); // (u - v) >= 0 addInequality(simplex, {1, -1, 0}); ASSERT_FALSE(simplex.isEmpty()); unsigned snapshot = simplex.getSnapshot(); // (u - v) <= -1 addInequality(simplex, {-1, 1, -1}); ASSERT_TRUE(simplex.isEmpty()); unsigned snapshot2 = simplex.getSnapshot(); // (u - v) <= -3 addInequality(simplex, {-1, 1, -3}); ASSERT_TRUE(simplex.isEmpty()); simplex.rollback(snapshot2); ASSERT_TRUE(simplex.isEmpty()); simplex.rollback(snapshot); ASSERT_FALSE(simplex.isEmpty()); } /// Check that the set gets marked as empty when we add contradictory /// constraints. TEST(SimplexTest, addEquality_separate) { Simplex simplex(1); addInequality(simplex, {1, -1}); // x >= 1. ASSERT_FALSE(simplex.isEmpty()); addEquality(simplex, {1, 0}); // x == 0. EXPECT_TRUE(simplex.isEmpty()); } void expectInequalityMakesSetEmpty(Simplex &simplex, ArrayRef coeffs, bool expect) { ASSERT_FALSE(simplex.isEmpty()); unsigned snapshot = simplex.getSnapshot(); addInequality(simplex, coeffs); EXPECT_EQ(simplex.isEmpty(), expect); simplex.rollback(snapshot); } TEST(SimplexTest, addInequality_rollback) { Simplex simplex(3); SmallVector coeffs[]{{1, 0, 0, 0}, // u >= 0. {-1, 0, 0, 0}, // u <= 0. {1, -1, 1, 0}, // u - v + w >= 0. {1, 1, -1, 0}}; // u + v - w >= 0. // The above constraints force u = 0 and v = w. // The constraints below violate v = w. SmallVector checkCoeffs[]{{0, 1, -1, -1}, // v - w >= 1. {0, -1, 1, -1}}; // v - w <= -1. for (int run = 0; run < 4; run++) { unsigned snapshot = simplex.getSnapshot(); expectInequalityMakesSetEmpty(simplex, checkCoeffs[0], false); expectInequalityMakesSetEmpty(simplex, checkCoeffs[1], false); for (int i = 0; i < 4; i++) addInequality(simplex, coeffs[(run + i) % 4]); expectInequalityMakesSetEmpty(simplex, checkCoeffs[0], true); expectInequalityMakesSetEmpty(simplex, checkCoeffs[1], true); simplex.rollback(snapshot); EXPECT_EQ(simplex.getNumConstraints(), 0u); expectInequalityMakesSetEmpty(simplex, checkCoeffs[0], false); expectInequalityMakesSetEmpty(simplex, checkCoeffs[1], false); } } Simplex simplexFromConstraints(unsigned nDim, ArrayRef> ineqs, ArrayRef> eqs) { Simplex simplex(nDim); for (const auto &ineq : ineqs) addInequality(simplex, ineq); for (const auto &eq : eqs) addEquality(simplex, eq); return simplex; } TEST(SimplexTest, isUnbounded) { EXPECT_FALSE(simplexFromConstraints( 2, {{1, 1, 0}, {-1, -1, 0}, {1, -1, 5}, {-1, 1, -5}}, {}) .isUnbounded()); EXPECT_TRUE( simplexFromConstraints(2, {{1, 1, 0}, {1, -1, 5}, {-1, 1, -5}}, {}) .isUnbounded()); EXPECT_TRUE( simplexFromConstraints(2, {{-1, -1, 0}, {1, -1, 5}, {-1, 1, -5}}, {}) .isUnbounded()); EXPECT_TRUE(simplexFromConstraints(2, {}, {}).isUnbounded()); EXPECT_FALSE(simplexFromConstraints(3, { {2, 0, 0, -1}, {-2, 0, 0, 1}, {0, 2, 0, -1}, {0, -2, 0, 1}, {0, 0, 2, -1}, {0, 0, -2, 1}, }, {}) .isUnbounded()); EXPECT_TRUE(simplexFromConstraints(3, { {2, 0, 0, -1}, {-2, 0, 0, 1}, {0, 2, 0, -1}, {0, -2, 0, 1}, {0, 0, -2, 1}, }, {}) .isUnbounded()); EXPECT_TRUE(simplexFromConstraints(3, { {2, 0, 0, -1}, {-2, 0, 0, 1}, {0, 2, 0, -1}, {0, -2, 0, 1}, {0, 0, 2, -1}, }, {}) .isUnbounded()); // Bounded set with equalities. EXPECT_FALSE(simplexFromConstraints(2, {{1, 1, 1}, // x + y >= -1. {-1, -1, 1}}, // x + y <= 1. {{1, -1, 0}} // x = y. ) .isUnbounded()); // Unbounded set with equalities. EXPECT_TRUE(simplexFromConstraints(3, {{1, 1, 1, 1}, // x + y + z >= -1. {-1, -1, -1, 1}}, // x + y + z <= 1. {{1, -1, -1, 0}} // x = y + z. ) .isUnbounded()); // Rational empty set. EXPECT_FALSE(simplexFromConstraints(3, { {2, 0, 0, -1}, {-2, 0, 0, 1}, {0, 2, 2, -1}, {0, -2, -2, 1}, {3, 3, 3, -4}, }, {}) .isUnbounded()); } TEST(SimplexTest, getSamplePointIfIntegral) { // Empty set. EXPECT_FALSE(simplexFromConstraints(3, { {2, 0, 0, -1}, {-2, 0, 0, 1}, {0, 2, 2, -1}, {0, -2, -2, 1}, {3, 3, 3, -4}, }, {}) .getSamplePointIfIntegral() .has_value()); auto maybeSample = simplexFromConstraints(2, {// x = y - 2. {1, -1, 2}, {-1, 1, -2}, // x + y = 2. {1, 1, -2}, {-1, -1, 2}}, {}) .getSamplePointIfIntegral(); EXPECT_TRUE(maybeSample.has_value()); EXPECT_THAT(*maybeSample, testing::ElementsAre(0, 2)); auto maybeSample2 = simplexFromConstraints(2, { {1, 0, 0}, // x >= 0. {-1, 0, 0}, // x <= 0. }, { {0, 1, -2} // y = 2. }) .getSamplePointIfIntegral(); EXPECT_TRUE(maybeSample2.has_value()); EXPECT_THAT(*maybeSample2, testing::ElementsAre(0, 2)); EXPECT_FALSE(simplexFromConstraints(1, {// 2x = 1. (no integer solutions) {2, -1}, {-2, +1}}, {}) .getSamplePointIfIntegral() .has_value()); } /// Some basic sanity checks involving zero or one variables. TEST(SimplexTest, isMarkedRedundant_no_var_ge_zero) { Simplex simplex(0); addInequality(simplex, {0}); // 0 >= 0. simplex.detectRedundant(); ASSERT_FALSE(simplex.isEmpty()); EXPECT_TRUE(simplex.isMarkedRedundant(0)); } TEST(SimplexTest, isMarkedRedundant_no_var_eq) { Simplex simplex(0); addEquality(simplex, {0}); // 0 == 0. simplex.detectRedundant(); ASSERT_FALSE(simplex.isEmpty()); EXPECT_TRUE(simplex.isMarkedRedundant(0)); } TEST(SimplexTest, isMarkedRedundant_pos_var_eq) { Simplex simplex(1); addEquality(simplex, {1, 0}); // x == 0. simplex.detectRedundant(); ASSERT_FALSE(simplex.isEmpty()); EXPECT_FALSE(simplex.isMarkedRedundant(0)); } TEST(SimplexTest, isMarkedRedundant_zero_var_eq) { Simplex simplex(1); addEquality(simplex, {0, 0}); // 0x == 0. simplex.detectRedundant(); ASSERT_FALSE(simplex.isEmpty()); EXPECT_TRUE(simplex.isMarkedRedundant(0)); } TEST(SimplexTest, isMarkedRedundant_neg_var_eq) { Simplex simplex(1); addEquality(simplex, {-1, 0}); // -x == 0. simplex.detectRedundant(); ASSERT_FALSE(simplex.isEmpty()); EXPECT_FALSE(simplex.isMarkedRedundant(0)); } TEST(SimplexTest, isMarkedRedundant_pos_var_ge) { Simplex simplex(1); addInequality(simplex, {1, 0}); // x >= 0. simplex.detectRedundant(); ASSERT_FALSE(simplex.isEmpty()); EXPECT_FALSE(simplex.isMarkedRedundant(0)); } TEST(SimplexTest, isMarkedRedundant_zero_var_ge) { Simplex simplex(1); addInequality(simplex, {0, 0}); // 0x >= 0. simplex.detectRedundant(); ASSERT_FALSE(simplex.isEmpty()); EXPECT_TRUE(simplex.isMarkedRedundant(0)); } TEST(SimplexTest, isMarkedRedundant_neg_var_ge) { Simplex simplex(1); addInequality(simplex, {-1, 0}); // x <= 0. simplex.detectRedundant(); ASSERT_FALSE(simplex.isEmpty()); EXPECT_FALSE(simplex.isMarkedRedundant(0)); } /// None of the constraints are redundant. Slightly more complicated test /// involving an equality. TEST(SimplexTest, isMarkedRedundant_no_redundant) { Simplex simplex(3); addEquality(simplex, {-1, 0, 1, 0}); // u = w. addInequality(simplex, {-1, 16, 0, 15}); // 15 - (u - 16v) >= 0. addInequality(simplex, {1, -16, 0, 0}); // (u - 16v) >= 0. simplex.detectRedundant(); ASSERT_FALSE(simplex.isEmpty()); for (unsigned i = 0; i < simplex.getNumConstraints(); ++i) EXPECT_FALSE(simplex.isMarkedRedundant(i)) << "i = " << i << "\n"; } TEST(SimplexTest, isMarkedRedundant_repeated_constraints) { Simplex simplex(3); // [4] to [7] are repeats of [0] to [3]. addInequality(simplex, {0, -1, 0, 1}); // [0]: y <= 1. addInequality(simplex, {-1, 0, 8, 7}); // [1]: 8z >= x - 7. addInequality(simplex, {1, 0, -8, 0}); // [2]: 8z <= x. addInequality(simplex, {0, 1, 0, 0}); // [3]: y >= 0. addInequality(simplex, {-1, 0, 8, 7}); // [4]: 8z >= 7 - x. addInequality(simplex, {1, 0, -8, 0}); // [5]: 8z <= x. addInequality(simplex, {0, 1, 0, 0}); // [6]: y >= 0. addInequality(simplex, {0, -1, 0, 1}); // [7]: y <= 1. simplex.detectRedundant(); ASSERT_FALSE(simplex.isEmpty()); EXPECT_EQ(simplex.isMarkedRedundant(0), true); EXPECT_EQ(simplex.isMarkedRedundant(1), true); EXPECT_EQ(simplex.isMarkedRedundant(2), true); EXPECT_EQ(simplex.isMarkedRedundant(3), true); EXPECT_EQ(simplex.isMarkedRedundant(4), false); EXPECT_EQ(simplex.isMarkedRedundant(5), false); EXPECT_EQ(simplex.isMarkedRedundant(6), false); EXPECT_EQ(simplex.isMarkedRedundant(7), false); } TEST(SimplexTest, isMarkedRedundant) { Simplex simplex(3); addInequality(simplex, {0, -1, 0, 1}); // [0]: y <= 1. addInequality(simplex, {1, 0, 0, -1}); // [1]: x >= 1. addInequality(simplex, {-1, 0, 0, 2}); // [2]: x <= 2. addInequality(simplex, {-1, 0, 2, 7}); // [3]: 2z >= x - 7. addInequality(simplex, {1, 0, -2, 0}); // [4]: 2z <= x. addInequality(simplex, {0, 1, 0, 0}); // [5]: y >= 0. addInequality(simplex, {0, 1, -2, 1}); // [6]: y >= 2z - 1. addInequality(simplex, {-1, 1, 0, 1}); // [7]: y >= x - 1. simplex.detectRedundant(); ASSERT_FALSE(simplex.isEmpty()); // [0], [1], [3], [4], [7] together imply [2], [5], [6] must hold. // // From [7], [0]: x <= y + 1 <= 2, so we have [2]. // From [7], [1]: y >= x - 1 >= 0, so we have [5]. // From [4], [7]: 2z - 1 <= x - 1 <= y, so we have [6]. EXPECT_FALSE(simplex.isMarkedRedundant(0)); EXPECT_FALSE(simplex.isMarkedRedundant(1)); EXPECT_TRUE(simplex.isMarkedRedundant(2)); EXPECT_FALSE(simplex.isMarkedRedundant(3)); EXPECT_FALSE(simplex.isMarkedRedundant(4)); EXPECT_TRUE(simplex.isMarkedRedundant(5)); EXPECT_TRUE(simplex.isMarkedRedundant(6)); EXPECT_FALSE(simplex.isMarkedRedundant(7)); } TEST(SimplexTest, isMarkedRedundantTiledLoopNestConstraints) { Simplex simplex(3); // Variables are x, y, N. addInequality(simplex, {1, 0, 0, 0}); // [0]: x >= 0. addInequality(simplex, {-32, 0, 1, -1}); // [1]: 32x <= N - 1. addInequality(simplex, {0, 1, 0, 0}); // [2]: y >= 0. addInequality(simplex, {-32, 1, 0, 0}); // [3]: y >= 32x. addInequality(simplex, {32, -1, 0, 31}); // [4]: y <= 32x + 31. addInequality(simplex, {0, -1, 1, -1}); // [5]: y <= N - 1. // [3] and [0] imply [2], as we have y >= 32x >= 0. // [3] and [5] imply [1], as we have 32x <= y <= N - 1. simplex.detectRedundant(); EXPECT_FALSE(simplex.isMarkedRedundant(0)); EXPECT_TRUE(simplex.isMarkedRedundant(1)); EXPECT_TRUE(simplex.isMarkedRedundant(2)); EXPECT_FALSE(simplex.isMarkedRedundant(3)); EXPECT_FALSE(simplex.isMarkedRedundant(4)); EXPECT_FALSE(simplex.isMarkedRedundant(5)); } TEST(SimplexTest, pivotRedundantRegressionTest) { Simplex simplex(2); addInequality(simplex, {-1, 0, -1}); // x <= -1. unsigned snapshot = simplex.getSnapshot(); addInequality(simplex, {-1, 0, -2}); // x <= -2. addInequality(simplex, {-3, 0, -6}); // This first marks x <= -1 as redundant. Then it performs some more pivots // to check if the other constraints are redundant. Pivot must update the // non-redundant rows as well, otherwise these pivots result in an incorrect // tableau state. In particular, after the rollback below, some rows that are // NOT marked redundant will have an incorrect state. simplex.detectRedundant(); // After the rollback, the only remaining constraint is x <= -1. // The maximum value of x should be -1. simplex.rollback(snapshot); MaybeOptimum maxX = simplex.computeOptimum( Simplex::Direction::Up, getDynamicAPIntVec({1, 0, 0})); EXPECT_TRUE(maxX.isBounded() && *maxX == Fraction(-1, 1)); } TEST(SimplexTest, addInequality_already_redundant) { Simplex simplex(1); addInequality(simplex, {1, -1}); // x >= 1. addInequality(simplex, {1, 0}); // x >= 0. simplex.detectRedundant(); ASSERT_FALSE(simplex.isEmpty()); EXPECT_FALSE(simplex.isMarkedRedundant(0)); EXPECT_TRUE(simplex.isMarkedRedundant(1)); } TEST(SimplexTest, appendVariable) { Simplex simplex(1); unsigned snapshot1 = simplex.getSnapshot(); simplex.appendVariable(); simplex.appendVariable(0); EXPECT_EQ(simplex.getNumVariables(), 2u); int64_t yMin = 2, yMax = 5; addInequality(simplex, {0, 1, -yMin}); // y >= 2. addInequality(simplex, {0, -1, yMax}); // y <= 5. unsigned snapshot2 = simplex.getSnapshot(); simplex.appendVariable(2); EXPECT_EQ(simplex.getNumVariables(), 4u); simplex.rollback(snapshot2); EXPECT_EQ(simplex.getNumVariables(), 2u); EXPECT_EQ(simplex.getNumConstraints(), 2u); EXPECT_EQ(simplex.computeIntegerBounds(getDynamicAPIntVec({0, 1, 0})), std::make_pair(MaybeOptimum(DynamicAPInt(yMin)), MaybeOptimum(DynamicAPInt(yMax)))); simplex.rollback(snapshot1); EXPECT_EQ(simplex.getNumVariables(), 1u); EXPECT_EQ(simplex.getNumConstraints(), 0u); } TEST(SimplexTest, isRedundantInequality) { Simplex simplex(2); addInequality(simplex, {0, -1, 2}); // y <= 2. addInequality(simplex, {1, 0, 0}); // x >= 0. addEquality(simplex, {-1, 1, 0}); // y = x. EXPECT_TRUE(isRedundantInequality(simplex, {-1, 0, 2})); // x <= 2. EXPECT_TRUE(isRedundantInequality(simplex, {0, 1, 0})); // y >= 0. EXPECT_FALSE(isRedundantInequality(simplex, {-1, 0, -1})); // x <= -1. EXPECT_FALSE(isRedundantInequality(simplex, {0, 1, -2})); // y >= 2. EXPECT_FALSE(isRedundantInequality(simplex, {0, 1, -1})); // y >= 1. } TEST(SimplexTest, ineqType) { Simplex simplex(2); addInequality(simplex, {0, -1, 2}); // y <= 2. addInequality(simplex, {1, 0, 0}); // x >= 0. addEquality(simplex, {-1, 1, 0}); // y = x. EXPECT_EQ(findIneqType(simplex, {-1, 0, 2}), Simplex::IneqType::Redundant); // x <= 2. EXPECT_EQ(findIneqType(simplex, {0, 1, 0}), Simplex::IneqType::Redundant); // y >= 0. EXPECT_EQ(findIneqType(simplex, {0, 1, -1}), Simplex::IneqType::Cut); // y >= 1. EXPECT_EQ(findIneqType(simplex, {-1, 0, 1}), Simplex::IneqType::Cut); // x <= 1. EXPECT_EQ(findIneqType(simplex, {0, 1, -2}), Simplex::IneqType::Cut); // y >= 2. EXPECT_EQ(findIneqType(simplex, {-1, 0, -1}), Simplex::IneqType::Separate); // x <= -1. } TEST(SimplexTest, isRedundantEquality) { Simplex simplex(2); addInequality(simplex, {0, -1, 2}); // y <= 2. addInequality(simplex, {1, 0, 0}); // x >= 0. addEquality(simplex, {-1, 1, 0}); // y = x. EXPECT_TRUE(isRedundantEquality(simplex, {-1, 1, 0})); // y = x. EXPECT_TRUE(isRedundantEquality(simplex, {1, -1, 0})); // x = y. EXPECT_FALSE(isRedundantEquality(simplex, {0, 1, -1})); // y = 1. addEquality(simplex, {0, -1, 2}); // y = 2. EXPECT_TRUE(isRedundantEquality(simplex, {-1, 0, 2})); // x = 2. } TEST(SimplexTest, IsRationalSubsetOf) { IntegerPolyhedron univ = parseIntegerPolyhedron("(x) : ()"); IntegerPolyhedron empty = parseIntegerPolyhedron("(x) : (x + 0 >= 0, -x - 1 >= 0)"); IntegerPolyhedron s1 = parseIntegerPolyhedron("(x) : ( x >= 0, -x + 4 >= 0)"); IntegerPolyhedron s2 = parseIntegerPolyhedron("(x) : (x - 1 >= 0, -x + 3 >= 0)"); Simplex simUniv(univ); Simplex simEmpty(empty); Simplex sim1(s1); Simplex sim2(s2); EXPECT_TRUE(simUniv.isRationalSubsetOf(univ)); EXPECT_TRUE(simEmpty.isRationalSubsetOf(empty)); EXPECT_TRUE(sim1.isRationalSubsetOf(s1)); EXPECT_TRUE(sim2.isRationalSubsetOf(s2)); EXPECT_TRUE(simEmpty.isRationalSubsetOf(univ)); EXPECT_TRUE(simEmpty.isRationalSubsetOf(s1)); EXPECT_TRUE(simEmpty.isRationalSubsetOf(s2)); EXPECT_TRUE(simEmpty.isRationalSubsetOf(empty)); EXPECT_TRUE(simUniv.isRationalSubsetOf(univ)); EXPECT_FALSE(simUniv.isRationalSubsetOf(s1)); EXPECT_FALSE(simUniv.isRationalSubsetOf(s2)); EXPECT_FALSE(simUniv.isRationalSubsetOf(empty)); EXPECT_TRUE(sim1.isRationalSubsetOf(univ)); EXPECT_TRUE(sim1.isRationalSubsetOf(s1)); EXPECT_FALSE(sim1.isRationalSubsetOf(s2)); EXPECT_FALSE(sim1.isRationalSubsetOf(empty)); EXPECT_TRUE(sim2.isRationalSubsetOf(univ)); EXPECT_TRUE(sim2.isRationalSubsetOf(s1)); EXPECT_TRUE(sim2.isRationalSubsetOf(s2)); EXPECT_FALSE(sim2.isRationalSubsetOf(empty)); } TEST(SimplexTest, addDivisionVariable) { Simplex simplex(/*nVar=*/1); simplex.addDivisionVariable(getDynamicAPIntVec({1, 0}), DynamicAPInt(2)); addInequality(simplex, {1, 0, -3}); // x >= 3. addInequality(simplex, {-1, 0, 9}); // x <= 9. std::optional> sample = simplex.findIntegerSample(); ASSERT_TRUE(sample.has_value()); EXPECT_EQ((*sample)[0] / 2, (*sample)[1]); } TEST(SimplexTest, LexIneqType) { LexSimplex simplex(/*nVar=*/1); addInequality(simplex, {2, -1}); // x >= 1/2. // Redundant inequality x >= 2/3. EXPECT_TRUE(isRedundantInequality(simplex, {3, -2})); EXPECT_FALSE(isSeparateInequality(simplex, {3, -2})); // Separate inequality x <= 2/3. EXPECT_FALSE(isRedundantInequality(simplex, {-3, 2})); EXPECT_TRUE(isSeparateInequality(simplex, {-3, 2})); // Cut inequality x <= 1. EXPECT_FALSE(isRedundantInequality(simplex, {-1, 1})); EXPECT_FALSE(isSeparateInequality(simplex, {-1, 1})); }