# RUN: env SUPPORT_LIB=%mlir_cuda_runtime \ # RUN: %PYTHON %s | FileCheck %s # ===----------------------------------------------------------------------===// # Chapter 2 : 2D Saxpy with TMA # ===----------------------------------------------------------------------===// # # This program demonstrates 2D Saxpy. It is same as Chapter 1, # but it loads data using TMA (Tensor Memory Accelerator) # # This chapter introduces demonstrates: # 1. Computes 2D SAXPY in the same way as Ch1.py but loads data using TMA # 2. Create and initialize 1 asynchronous transactional barrier (mbarrier) # 3. Thread-0 Load request data load from TMA for each thread block # 4. Each thread block loads <1x32xf32> for x and y. # 5. Wait for completion of TMA load with mbarrier # # ===----------------------------------------------------------------------===// from mlir import ir from mlir.dialects import nvgpu, scf, arith, memref, vector, gpu from tools.nvdsl import * from mlir import runtime as rt from mlir.extras import types as T import numpy as np @NVDSL.mlir_func def saxpy(x, y, alpha): token_ty = gpu.AsyncTokenType.get() t1 = gpu.wait(token_ty, []) x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], []) y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], []) t4 = gpu.memcpy(token_ty, [t3], x_dev, x) t5 = gpu.memcpy(token_ty, [t4], y_dev, y) t6 = gpu.wait(token_ty, [t5]) x_tma = TMA([1, N], x.type) y_tma = TMA([1, N], y.type) x_tma.create_descriptor(x_dev) y_tma.create_descriptor(y_dev) sz_x = get_type_size(x_tma.tma_memref) sz_y = get_type_size(x_tma.tma_memref) sz = sz_x + sz_y @NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1), smem=sz) def saxpy_tma_kernel(): bidx = gpu.block_id(gpu.Dimension.x) tidx = gpu.thread_id(gpu.Dimension.x) isThread0 = tidx == 0 # 1. Create and initialize asynchronous transactional barrier (mbarrier) mbar_group = Mbarriers(number_of_barriers=1) mbar_group[0].init(1, predicate=isThread0) # 2. Execute Tensor Memory Accelerator (TMA) Load x_smem = get_dynamic_shared_memory([1, N], T.f32()) y_smem = get_dynamic_shared_memory([1, N], T.f32(), offset=sz_x) x_tma.load(x_smem, mbar_group[0], coords=[0, bidx], predicate=isThread0) y_tma.load(y_smem, mbar_group[0], coords=[0, bidx], predicate=isThread0) mbar_group[0].arrive(txcount=sz, predicate=isThread0) # 3. Wait for completion of TMA load with mbarrier mbar_group[0].try_wait() x_val = memref.load(x_smem, [const(0), tidx]) y_val = memref.load(y_smem, [const(0), tidx]) # SAXPY: y[i] += a * x[i]; y_val += x_val * alpha memref.store(y_val, y_dev, [bidx, tidx]) saxpy_tma_kernel() t7 = gpu.memcpy(token_ty, [t6], y, y_dev) gpu.wait(token_ty, [t7]) # 3. Pass numpy arrays to MLIR M = 256 N = 32 alpha = 2.0 x = np.random.randn(M, N).astype(np.float32) y = np.ones((M, N), np.float32) saxpy(x, y, alpha) # 4. Verify MLIR with reference computation ref = np.ones((M, N), np.float32) ref += x * alpha np.testing.assert_allclose(y, ref, rtol=5e-03, atol=1e-01) print("PASS") # CHECK-NOT: Mismatched elements