//===- CSE.cpp - Common Sub-expression Elimination ------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This transformation pass performs a simple common sub-expression elimination // algorithm on operations within a region. // //===----------------------------------------------------------------------===// #include "PassDetail.h" #include "mlir/IR/Dominance.h" #include "mlir/Interfaces/SideEffectInterfaces.h" #include "mlir/Pass/Pass.h" #include "mlir/Transforms/Passes.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/ScopedHashTable.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/RecyclingAllocator.h" #include using namespace mlir; namespace { struct SimpleOperationInfo : public llvm::DenseMapInfo { static unsigned getHashValue(const Operation *opC) { return OperationEquivalence::computeHash( const_cast(opC), /*hashOperands=*/OperationEquivalence::directHashValue, /*hashResults=*/OperationEquivalence::ignoreHashValue, OperationEquivalence::IgnoreLocations); } static bool isEqual(const Operation *lhsC, const Operation *rhsC) { auto *lhs = const_cast(lhsC); auto *rhs = const_cast(rhsC); if (lhs == rhs) return true; if (lhs == getTombstoneKey() || lhs == getEmptyKey() || rhs == getTombstoneKey() || rhs == getEmptyKey()) return false; return OperationEquivalence::isEquivalentTo( const_cast(lhsC), const_cast(rhsC), /*mapOperands=*/OperationEquivalence::exactValueMatch, /*mapResults=*/OperationEquivalence::ignoreValueEquivalence, OperationEquivalence::IgnoreLocations); } }; } // namespace namespace { /// Simple common sub-expression elimination. struct CSE : public CSEBase { /// Shared implementation of operation elimination and scoped map definitions. using AllocatorTy = llvm::RecyclingAllocator< llvm::BumpPtrAllocator, llvm::ScopedHashTableVal>; using ScopedMapTy = llvm::ScopedHashTable; /// Cache holding MemoryEffects information between two operations. The first /// operation is stored has the key. The second operation is stored inside a /// pair in the value. The pair also hold the MemoryEffects between those /// two operations. If the MemoryEffects is nullptr then we assume there is /// no operation with MemoryEffects::Write between the two operations. using MemEffectsCache = DenseMap>; /// Represents a single entry in the depth first traversal of a CFG. struct CFGStackNode { CFGStackNode(ScopedMapTy &knownValues, DominanceInfoNode *node) : scope(knownValues), node(node), childIterator(node->begin()) {} /// Scope for the known values. ScopedMapTy::ScopeTy scope; DominanceInfoNode *node; DominanceInfoNode::const_iterator childIterator; /// If this node has been fully processed yet or not. bool processed = false; }; /// Attempt to eliminate a redundant operation. Returns success if the /// operation was marked for removal, failure otherwise. LogicalResult simplifyOperation(ScopedMapTy &knownValues, Operation *op, bool hasSSADominance); void simplifyBlock(ScopedMapTy &knownValues, Block *bb, bool hasSSADominance); void simplifyRegion(ScopedMapTy &knownValues, Region ®ion); void runOnOperation() override; private: void replaceUsesAndDelete(ScopedMapTy &knownValues, Operation *op, Operation *existing, bool hasSSADominance); /// Check if there is side-effecting operations other than the given effect /// between the two operations. bool hasOtherSideEffectingOpInBetween(Operation *fromOp, Operation *toOp); /// Operations marked as dead and to be erased. std::vector opsToErase; DominanceInfo *domInfo = nullptr; MemEffectsCache memEffectsCache; }; } // namespace void CSE::replaceUsesAndDelete(ScopedMapTy &knownValues, Operation *op, Operation *existing, bool hasSSADominance) { // If we find one then replace all uses of the current operation with the // existing one and mark it for deletion. We can only replace an operand in // an operation if it has not been visited yet. if (hasSSADominance) { // If the region has SSA dominance, then we are guaranteed to have not // visited any use of the current operation. op->replaceAllUsesWith(existing); opsToErase.push_back(op); } else { // When the region does not have SSA dominance, we need to check if we // have visited a use before replacing any use. for (auto it : llvm::zip(op->getResults(), existing->getResults())) { std::get<0>(it).replaceUsesWithIf( std::get<1>(it), [&](OpOperand &operand) { return !knownValues.count(operand.getOwner()); }); } // There may be some remaining uses of the operation. if (op->use_empty()) opsToErase.push_back(op); } // If the existing operation has an unknown location and the current // operation doesn't, then set the existing op's location to that of the // current op. if (existing->getLoc().isa() && !op->getLoc().isa()) existing->setLoc(op->getLoc()); ++numCSE; } bool CSE::hasOtherSideEffectingOpInBetween(Operation *fromOp, Operation *toOp) { assert(fromOp->getBlock() == toOp->getBlock()); assert( isa(fromOp) && cast(fromOp).hasEffect() && isa(toOp) && cast(toOp).hasEffect()); Operation *nextOp = fromOp->getNextNode(); auto result = memEffectsCache.try_emplace(fromOp, std::make_pair(fromOp, nullptr)); if (result.second) { auto memEffectsCachePair = result.first->second; if (memEffectsCachePair.second == nullptr) { // No MemoryEffects::Write has been detected until the cached operation. // Continue looking from the cached operation to toOp. nextOp = memEffectsCachePair.first; } else { // MemoryEffects::Write has been detected before so there is no need to // check further. return true; } } while (nextOp && nextOp != toOp) { auto nextOpMemEffects = dyn_cast(nextOp); // TODO: Do we need to handle other effects generically? // If the operation does not implement the MemoryEffectOpInterface we // conservatively assumes it writes. if ((nextOpMemEffects && nextOpMemEffects.hasEffect()) || !nextOpMemEffects) { result.first->second = std::make_pair(nextOp, MemoryEffects::Write::get()); return true; } nextOp = nextOp->getNextNode(); } result.first->second = std::make_pair(toOp, nullptr); return false; } /// Attempt to eliminate a redundant operation. LogicalResult CSE::simplifyOperation(ScopedMapTy &knownValues, Operation *op, bool hasSSADominance) { // Don't simplify terminator operations. if (op->hasTrait()) return failure(); // If the operation is already trivially dead just add it to the erase list. if (isOpTriviallyDead(op)) { opsToErase.push_back(op); ++numDCE; return success(); } // Don't simplify operations with nested blocks. We don't currently model // equality comparisons correctly among other things. It is also unclear // whether we would want to CSE such operations. if (op->getNumRegions() != 0) return failure(); // Some simple use case of operation with memory side-effect are dealt with // here. Operations with no side-effect are done after. if (!MemoryEffectOpInterface::hasNoEffect(op)) { auto memEffects = dyn_cast(op); // TODO: Only basic use case for operations with MemoryEffects::Read can be // eleminated now. More work needs to be done for more complicated patterns // and other side-effects. if (!memEffects || !memEffects.onlyHasEffect()) return failure(); // Look for an existing definition for the operation. if (auto *existing = knownValues.lookup(op)) { if (existing->getBlock() == op->getBlock() && !hasOtherSideEffectingOpInBetween(existing, op)) { // The operation that can be deleted has been reach with no // side-effecting operations in between the existing operation and // this one so we can remove the duplicate. replaceUsesAndDelete(knownValues, op, existing, hasSSADominance); return success(); } } knownValues.insert(op, op); return failure(); } // Look for an existing definition for the operation. if (auto *existing = knownValues.lookup(op)) { replaceUsesAndDelete(knownValues, op, existing, hasSSADominance); ++numCSE; return success(); } // Otherwise, we add this operation to the known values map. knownValues.insert(op, op); return failure(); } void CSE::simplifyBlock(ScopedMapTy &knownValues, Block *bb, bool hasSSADominance) { for (auto &op : *bb) { // If the operation is simplified, we don't process any held regions. if (succeeded(simplifyOperation(knownValues, &op, hasSSADominance))) continue; // Most operations don't have regions, so fast path that case. if (op.getNumRegions() == 0) continue; // If this operation is isolated above, we can't process nested regions with // the given 'knownValues' map. This would cause the insertion of implicit // captures in explicit capture only regions. if (op.mightHaveTrait()) { ScopedMapTy nestedKnownValues; for (auto ®ion : op.getRegions()) simplifyRegion(nestedKnownValues, region); continue; } // Otherwise, process nested regions normally. for (auto ®ion : op.getRegions()) simplifyRegion(knownValues, region); } // Clear the MemoryEffects cache since its usage is by block only. memEffectsCache.clear(); } void CSE::simplifyRegion(ScopedMapTy &knownValues, Region ®ion) { // If the region is empty there is nothing to do. if (region.empty()) return; bool hasSSADominance = domInfo->hasSSADominance(®ion); // If the region only contains one block, then simplify it directly. if (region.hasOneBlock()) { ScopedMapTy::ScopeTy scope(knownValues); simplifyBlock(knownValues, ®ion.front(), hasSSADominance); return; } // If the region does not have dominanceInfo, then skip it. // TODO: Regions without SSA dominance should define a different // traversal order which is appropriate and can be used here. if (!hasSSADominance) return; // Note, deque is being used here because there was significant performance // gains over vector when the container becomes very large due to the // specific access patterns. If/when these performance issues are no // longer a problem we can change this to vector. For more information see // the llvm mailing list discussion on this: // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html std::deque> stack; // Process the nodes of the dom tree for this region. stack.emplace_back(std::make_unique( knownValues, domInfo->getRootNode(®ion))); while (!stack.empty()) { auto ¤tNode = stack.back(); // Check to see if we need to process this node. if (!currentNode->processed) { currentNode->processed = true; simplifyBlock(knownValues, currentNode->node->getBlock(), hasSSADominance); } // Otherwise, check to see if we need to process a child node. if (currentNode->childIterator != currentNode->node->end()) { auto *childNode = *(currentNode->childIterator++); stack.emplace_back( std::make_unique(knownValues, childNode)); } else { // Finally, if the node and all of its children have been processed // then we delete the node. stack.pop_back(); } } } void CSE::runOnOperation() { /// A scoped hash table of defining operations within a region. ScopedMapTy knownValues; domInfo = &getAnalysis(); Operation *rootOp = getOperation(); for (auto ®ion : rootOp->getRegions()) simplifyRegion(knownValues, region); // If no operations were erased, then we mark all analyses as preserved. if (opsToErase.empty()) return markAllAnalysesPreserved(); /// Erase any operations that were marked as dead during simplification. for (auto *op : opsToErase) op->erase(); opsToErase.clear(); // We currently don't remove region operations, so mark dominance as // preserved. markAnalysesPreserved(); domInfo = nullptr; } std::unique_ptr mlir::createCSEPass() { return std::make_unique(); }