//===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements convenience types for working with super-vectorization // operations, in particular super-vector loads and stores. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Vector/IR/VectorOps.h" #include "mlir/Dialect/Affine/IR/ValueBoundsOpInterfaceImpl.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Arith/Utils/Utils.h" #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/Dialect/UB/IR/UBOps.h" #include "mlir/Dialect/Utils/IndexingUtils.h" #include "mlir/Dialect/Utils/StructuredOpsUtils.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/DialectImplementation.h" #include "mlir/IR/IRMapping.h" #include "mlir/IR/OpImplementation.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/TypeUtilities.h" #include "mlir/Interfaces/SubsetOpInterface.h" #include "mlir/Interfaces/ValueBoundsOpInterface.h" #include "mlir/Support/LLVM.h" #include "mlir/Transforms/InliningUtils.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringSet.h" #include "llvm/ADT/TypeSwitch.h" #include "llvm/ADT/bit.h" #include #include #include #include "mlir/Dialect/Vector/IR/VectorDialect.cpp.inc" // Pull in all enum type and utility function definitions. #include "mlir/Dialect/Vector/IR/VectorEnums.cpp.inc" using namespace mlir; using namespace mlir::vector; /// Helper enum to classify mask value. enum class MaskFormat { AllTrue = 0, AllFalse = 1, Unknown = 2, }; /// Helper method to classify a mask value. Currently, the method /// looks "under the hood" of a constant value with dense attributes /// and a constant mask operation (since the client may be called at /// various stages during progressive lowering). static MaskFormat getMaskFormat(Value mask) { if (auto c = mask.getDefiningOp()) { // Inspect constant dense values. We count up for bits that // are set, count down for bits that are cleared, and bail // when a mix is detected. if (auto denseElts = llvm::dyn_cast(c.getValue())) { int64_t val = 0; for (bool b : denseElts.getValues()) if (b && val >= 0) val++; else if (!b && val <= 0) val--; else return MaskFormat::Unknown; if (val > 0) return MaskFormat::AllTrue; if (val < 0) return MaskFormat::AllFalse; } } else if (auto m = mask.getDefiningOp()) { // Inspect constant mask index. If the index exceeds the // dimension size, all bits are set. If the index is zero // or less, no bits are set. ArrayRef masks = m.getMaskDimSizes(); auto shape = m.getType().getShape(); bool allTrue = true; bool allFalse = true; for (auto [maskIdx, dimSize] : llvm::zip_equal(masks, shape)) { if (maskIdx < dimSize) allTrue = false; if (maskIdx > 0) allFalse = false; } if (allTrue) return MaskFormat::AllTrue; if (allFalse) return MaskFormat::AllFalse; } else if (auto m = mask.getDefiningOp()) { // Finds all-false create_masks. An all-true create_mask requires all // dims to be constants, so that'll be folded to a constant_mask, then // detected in the constant_mask case. auto maskOperands = m.getOperands(); for (Value operand : maskOperands) { if (auto constantOp = operand.getDefiningOp()) { int64_t dimSize = llvm::cast(constantOp.getValue()).getInt(); if (dimSize <= 0) return MaskFormat::AllFalse; } } return MaskFormat::Unknown; } return MaskFormat::Unknown; } /// Default callback to build a region with a 'vector.yield' terminator with no /// arguments. void mlir::vector::buildTerminatedBody(OpBuilder &builder, Location loc) { builder.create(loc); } // Helper for verifying combining kinds in contractions and reductions. static bool isSupportedCombiningKind(CombiningKind combiningKind, Type elementType) { switch (combiningKind) { case CombiningKind::ADD: case CombiningKind::MUL: return elementType.isIntOrIndexOrFloat(); case CombiningKind::MINUI: case CombiningKind::MINSI: case CombiningKind::MAXUI: case CombiningKind::MAXSI: case CombiningKind::AND: case CombiningKind::OR: case CombiningKind::XOR: return elementType.isIntOrIndex(); case CombiningKind::MINNUMF: case CombiningKind::MAXNUMF: case CombiningKind::MINIMUMF: case CombiningKind::MAXIMUMF: return llvm::isa(elementType); } return false; } AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType, VectorType vectorType) { int64_t elementVectorRank = 0; VectorType elementVectorType = llvm::dyn_cast(shapedType.getElementType()); if (elementVectorType) elementVectorRank += elementVectorType.getRank(); // 0-d transfers are to/from tensor/memref and vector<1xt>. // TODO: replace once we have 0-d vectors. if (shapedType.getRank() == 0 && vectorType.getShape() == ArrayRef{1}) return AffineMap::get( /*numDims=*/0, /*numSymbols=*/0, getAffineConstantExpr(0, shapedType.getContext())); return AffineMap::getMinorIdentityMap( shapedType.getRank(), vectorType.getRank() - elementVectorRank, shapedType.getContext()); } /// Check if `write` is of a constant splat and the masked `read` is padded with /// the same splat value -- meaning it could be the same value as the initial /// constant splat. static bool isSplatWriteConsistentWithMaskedRead(vector::TransferWriteOp write, vector::TransferReadOp read) { auto readMask = read.getMask(); auto writeMask = write.getMask(); // Check if the masks are consistent. The splat value could be the same if the // read is masked (and padded with the splat value), and the write is unmasked // or has the same mask. Note this does not allow the case where the write is // masked and the read is unmasked, as then the read could be of more elements // than the write (which may not be the same value). bool couldBeSameSplat = readMask && (!writeMask || writeMask == readMask); if (!couldBeSameSplat) return false; // Check for constant splat (as the source of the write). DenseElementsAttr splatAttr; if (!matchPattern(write.getVector(), m_Constant(&splatAttr)) || !splatAttr.isSplat()) { return false; } // The padding of the read and the constant splat value must be the same. Attribute padAttr; if (!matchPattern(read.getPadding(), m_Constant(&padAttr))) return false; return padAttr == splatAttr.getSplatValue(); } bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite, vector::TransferReadOp read) { return !defWrite.hasOutOfBoundsDim() && defWrite.getIndices() == read.getIndices() && defWrite.getVectorType() == read.getVectorType() && defWrite.getPermutationMap() == read.getPermutationMap() && ((!defWrite.getMask() && !read.getMask()) || isSplatWriteConsistentWithMaskedRead(defWrite, read)); } bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write, vector::TransferWriteOp priorWrite) { return priorWrite.getIndices() == write.getIndices() && priorWrite.getMask() == write.getMask() && priorWrite.getVectorType() == write.getVectorType() && priorWrite.getPermutationMap() == write.getPermutationMap(); } bool mlir::vector::isDisjointTransferIndices( VectorTransferOpInterface transferA, VectorTransferOpInterface transferB, bool testDynamicValueUsingBounds) { // For simplicity only look at transfer of same type. if (transferA.getVectorType() != transferB.getVectorType()) return false; unsigned rankOffset = transferA.getLeadingShapedRank(); for (unsigned i = 0, e = transferA.getIndices().size(); i < e; i++) { Value indexA = transferA.getIndices()[i]; Value indexB = transferB.getIndices()[i]; std::optional cstIndexA = getConstantIntValue(indexA); std::optional cstIndexB = getConstantIntValue(indexB); if (i < rankOffset) { // For leading dimensions, if we can prove that index are different we // know we are accessing disjoint slices. if (cstIndexA.has_value() && cstIndexB.has_value()) { if (*cstIndexA != *cstIndexB) return true; continue; } if (testDynamicValueUsingBounds) { // First try to see if we can fully compose and simplify the affine // expression as a fast track. FailureOr delta = affine::fullyComposeAndComputeConstantDelta(indexA, indexB); if (succeeded(delta) && *delta != 0) return true; FailureOr testEqual = ValueBoundsConstraintSet::areEqual(indexA, indexB); if (succeeded(testEqual) && !testEqual.value()) return true; } } else { // For this dimension, we slice a part of the memref we need to make sure // the intervals accessed don't overlap. int64_t vectorDim = transferA.getVectorType().getDimSize(i - rankOffset); if (cstIndexA.has_value() && cstIndexB.has_value()) { int64_t distance = std::abs(*cstIndexA - *cstIndexB); if (distance >= vectorDim) return true; continue; } if (testDynamicValueUsingBounds) { // First try to see if we can fully compose and simplify the affine // expression as a fast track. FailureOr delta = affine::fullyComposeAndComputeConstantDelta(indexA, indexB); if (succeeded(delta) && std::abs(*delta) >= vectorDim) return true; FailureOr computeDelta = ValueBoundsConstraintSet::computeConstantDelta(indexA, indexB); if (succeeded(computeDelta)) { if (std::abs(computeDelta.value()) >= vectorDim) return true; } } } } return false; } bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA, VectorTransferOpInterface transferB, bool testDynamicValueUsingBounds) { if (transferA.getSource() != transferB.getSource()) return false; return isDisjointTransferIndices(transferA, transferB, testDynamicValueUsingBounds); } // Helper to iterate over n-D vector slice elements. Calculate the next // `position` in the n-D vector of size `shape`, applying an offset `offsets`. // Modifies the `position` in place. Returns a failure when `position` becomes // the end position. static LogicalResult incSlicePosition(MutableArrayRef position, ArrayRef shape, ArrayRef offsets) { for (auto [posInDim, dimSize, offsetInDim] : llvm::reverse(llvm::zip_equal(position, shape, offsets))) { ++posInDim; if (posInDim < dimSize + offsetInDim) return success(); // Carry the overflow to the next loop iteration. posInDim = offsetInDim; } return failure(); } /// Returns the integer numbers in `values`. `values` are expected to be /// constant operations. SmallVector vector::getAsIntegers(ArrayRef values) { SmallVector ints; llvm::transform(values, std::back_inserter(ints), [](Value value) { auto constOp = value.getDefiningOp(); assert(constOp && "Unexpected non-constant index"); return constOp.value(); }); return ints; } /// Returns the integer numbers in `foldResults`. `foldResults` are expected to /// be constant operations. SmallVector vector::getAsIntegers(ArrayRef foldResults) { SmallVector ints; llvm::transform( foldResults, std::back_inserter(ints), [](OpFoldResult foldResult) { assert(isa(foldResult) && "Unexpected non-constant index"); return cast(cast(foldResult)).getInt(); }); return ints; } /// Convert `foldResults` into Values. Integer attributes are converted to /// constant op. SmallVector vector::getAsValues(OpBuilder &builder, Location loc, ArrayRef foldResults) { SmallVector values; llvm::transform(foldResults, std::back_inserter(values), [&](OpFoldResult foldResult) { if (auto attr = foldResult.dyn_cast()) return builder .create( loc, cast(attr).getInt()) .getResult(); return cast(foldResult); }); return values; } std::optional vector::getConstantVscaleMultiplier(Value value) { if (value.getDefiningOp()) return 1; auto mul = value.getDefiningOp(); if (!mul) return {}; auto lhs = mul.getLhs(); auto rhs = mul.getRhs(); if (lhs.getDefiningOp()) return getConstantIntValue(rhs); if (rhs.getDefiningOp()) return getConstantIntValue(lhs); return {}; } //===----------------------------------------------------------------------===// // CombiningKindAttr //===----------------------------------------------------------------------===// namespace mlir { namespace vector { namespace detail { struct BitmaskEnumStorage : public AttributeStorage { using KeyTy = uint64_t; BitmaskEnumStorage(KeyTy val) : value(val) {} bool operator==(const KeyTy &key) const { return value == key; } static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator, const KeyTy &key) { return new (allocator.allocate()) BitmaskEnumStorage(key); } KeyTy value = 0; }; } // namespace detail } // namespace vector } // namespace mlir //===----------------------------------------------------------------------===// // VectorDialect //===----------------------------------------------------------------------===// namespace { /// This class defines the interface for handling inlining with vector dialect /// operations. struct VectorInlinerInterface : public DialectInlinerInterface { using DialectInlinerInterface::DialectInlinerInterface; /// All vector dialect ops can be inlined. bool isLegalToInline(Operation *, Region *, bool, IRMapping &) const final { return true; } }; } // namespace void VectorDialect::initialize() { addAttributes< #define GET_ATTRDEF_LIST #include "mlir/Dialect/Vector/IR/VectorAttributes.cpp.inc" >(); addOperations< #define GET_OP_LIST #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc" >(); addInterfaces(); declarePromisedInterfaces(); declarePromisedInterfaces(); declarePromisedInterface(); declarePromisedInterface(); } /// Materialize a single constant operation from a given attribute value with /// the desired resultant type. Operation *VectorDialect::materializeConstant(OpBuilder &builder, Attribute value, Type type, Location loc) { return arith::ConstantOp::materialize(builder, value, type, loc); } IntegerType vector::getVectorSubscriptType(Builder &builder) { return builder.getIntegerType(64); } ArrayAttr vector::getVectorSubscriptAttr(Builder &builder, ArrayRef values) { return builder.getI64ArrayAttr(values); } //===----------------------------------------------------------------------===// // MultiDimReductionOp //===----------------------------------------------------------------------===// void vector::MultiDimReductionOp::build(OpBuilder &builder, OperationState &result, Value source, Value acc, ArrayRef reductionMask, CombiningKind kind) { SmallVector reductionDims; for (const auto &en : llvm::enumerate(reductionMask)) if (en.value()) reductionDims.push_back(en.index()); build(builder, result, kind, source, acc, reductionDims); } OpFoldResult MultiDimReductionOp::fold(FoldAdaptor adaptor) { // Single parallel dim, this is a noop. if (getSourceVectorType().getRank() == 1 && !isReducedDim(0)) return getSource(); return {}; } std::optional> MultiDimReductionOp::getShapeForUnroll() { return llvm::to_vector<4>(getSourceVectorType().getShape()); } LogicalResult MultiDimReductionOp::verify() { SmallVector targetShape; SmallVector scalableDims; Type inferredReturnType; auto sourceScalableDims = getSourceVectorType().getScalableDims(); for (auto [dimIdx, dimSize] : llvm::enumerate(getSourceVectorType().getShape())) if (!llvm::any_of(getReductionDims(), [dimIdx = dimIdx](int64_t reductionDimIdx) { return reductionDimIdx == static_cast(dimIdx); })) { targetShape.push_back(dimSize); scalableDims.push_back(sourceScalableDims[dimIdx]); } // TODO: update to also allow 0-d vectors when available. if (targetShape.empty()) inferredReturnType = getSourceVectorType().getElementType(); else inferredReturnType = VectorType::get( targetShape, getSourceVectorType().getElementType(), scalableDims); if (getType() != inferredReturnType) return emitOpError() << "destination type " << getType() << " is incompatible with source type " << getSourceVectorType(); return success(); } /// Returns the mask type expected by this operation. Type MultiDimReductionOp::getExpectedMaskType() { auto vecType = getSourceVectorType(); return VectorType::get(vecType.getShape(), IntegerType::get(vecType.getContext(), /*width=*/1), vecType.getScalableDims()); } namespace { // Only unit dimensions that are being reduced are folded. If the dimension is // unit, but not reduced, it is not folded, thereby keeping the output type the // same. If not all dimensions which are reduced are of unit dimension, this // transformation does nothing. This is just a generalization of // ElideSingleElementReduction for ReduceOp. struct ElideUnitDimsInMultiDimReduction : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(MultiDimReductionOp reductionOp, PatternRewriter &rewriter) const override { ArrayRef shape = reductionOp.getSourceVectorType().getShape(); for (const auto &dim : enumerate(shape)) { if (reductionOp.isReducedDim(dim.index()) && dim.value() != 1) return failure(); } // Vector mask setup. OpBuilder::InsertionGuard guard(rewriter); Operation *rootOp; Value mask; if (reductionOp.isMasked()) { rewriter.setInsertionPoint(reductionOp.getMaskingOp()); rootOp = reductionOp.getMaskingOp(); mask = reductionOp.getMaskingOp().getMask(); } else { rootOp = reductionOp; } Location loc = reductionOp.getLoc(); Value acc = reductionOp.getAcc(); Value cast; if (auto dstVecType = dyn_cast(reductionOp.getDestType())) { if (mask) { VectorType newMaskType = VectorType::get(dstVecType.getShape(), rewriter.getI1Type(), dstVecType.getScalableDims()); mask = rewriter.create(loc, newMaskType, mask); } cast = rewriter.create( loc, reductionOp.getDestType(), reductionOp.getSource()); } else { // This means we are reducing all the dimensions, and all reduction // dimensions are of size 1. So a simple extraction would do. SmallVector zeroIdx(shape.size(), 0); if (mask) mask = rewriter.create(loc, mask, zeroIdx); cast = rewriter.create(loc, reductionOp.getSource(), zeroIdx); } Value result = vector::makeArithReduction(rewriter, loc, reductionOp.getKind(), acc, cast, /*fastmath=*/nullptr, mask); rewriter.replaceOp(rootOp, result); return success(); } }; } // namespace void MultiDimReductionOp::getCanonicalizationPatterns( RewritePatternSet &results, MLIRContext *context) { results.add(context); } //===----------------------------------------------------------------------===// // ReductionOp //===----------------------------------------------------------------------===// void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, CombiningKind kind, Value vector, arith::FastMathFlags fastMathFlags) { build(builder, result, kind, vector, /*acc=*/Value(), fastMathFlags); } void vector::ReductionOp::build(OpBuilder &builder, OperationState &result, CombiningKind kind, Value vector, Value acc, arith::FastMathFlags fastMathFlags) { build(builder, result, llvm::cast(vector.getType()).getElementType(), kind, vector, acc, fastMathFlags); } LogicalResult ReductionOp::verify() { // Verify for 0-D and 1-D vector. int64_t rank = getSourceVectorType().getRank(); if (rank > 1) return emitOpError("unsupported reduction rank: ") << rank; // Verify supported reduction kind. Type eltType = getDest().getType(); if (!isSupportedCombiningKind(getKind(), eltType)) return emitOpError("unsupported reduction type '") << eltType << "' for kind '" << stringifyCombiningKind(getKind()) << "'"; return success(); } // MaskableOpInterface methods. /// Returns the mask type expected by this operation. Type ReductionOp::getExpectedMaskType() { auto vecType = getSourceVectorType(); return VectorType::get(vecType.getShape(), IntegerType::get(vecType.getContext(), /*width=*/1), vecType.getScalableDims()); } Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op, OpBuilder &builder, Location loc, Value vector) { switch (op) { case arith::AtomicRMWKind::addf: case arith::AtomicRMWKind::addi: return builder.create(vector.getLoc(), CombiningKind::ADD, vector); case arith::AtomicRMWKind::mulf: case arith::AtomicRMWKind::muli: return builder.create(vector.getLoc(), CombiningKind::MUL, vector); case arith::AtomicRMWKind::minimumf: return builder.create(vector.getLoc(), CombiningKind::MINIMUMF, vector); case arith::AtomicRMWKind::mins: return builder.create(vector.getLoc(), CombiningKind::MINSI, vector); case arith::AtomicRMWKind::minu: return builder.create(vector.getLoc(), CombiningKind::MINUI, vector); case arith::AtomicRMWKind::maximumf: return builder.create(vector.getLoc(), CombiningKind::MAXIMUMF, vector); case arith::AtomicRMWKind::maxs: return builder.create(vector.getLoc(), CombiningKind::MAXSI, vector); case arith::AtomicRMWKind::maxu: return builder.create(vector.getLoc(), CombiningKind::MAXUI, vector); case arith::AtomicRMWKind::andi: return builder.create(vector.getLoc(), CombiningKind::AND, vector); case arith::AtomicRMWKind::ori: return builder.create(vector.getLoc(), CombiningKind::OR, vector); // TODO: Add remaining reduction operations. default: (void)emitOptionalError(loc, "Reduction operation type not supported"); break; } return nullptr; } std::optional> ReductionOp::getShapeForUnroll() { return llvm::to_vector<4>(getSourceVectorType().getShape()); } namespace { struct ElideSingleElementReduction : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ReductionOp reductionOp, PatternRewriter &rewriter) const override { // Vector mask setup. OpBuilder::InsertionGuard guard(rewriter); auto maskableOp = cast(reductionOp.getOperation()); Operation *rootOp; Value mask; if (maskableOp.isMasked()) { rewriter.setInsertionPoint(maskableOp.getMaskingOp()); rootOp = maskableOp.getMaskingOp(); mask = maskableOp.getMaskingOp().getMask(); } else { rootOp = reductionOp; } auto vectorType = reductionOp.getSourceVectorType(); if (vectorType.getRank() != 0 && vectorType.getDimSize(0) != 1) return failure(); Location loc = reductionOp.getLoc(); Value result; if (vectorType.getRank() == 0) { if (mask) mask = rewriter.create(loc, mask); result = rewriter.create(loc, reductionOp.getVector()); } else { if (mask) mask = rewriter.create(loc, mask, 0); result = rewriter.create(loc, reductionOp.getVector(), 0); } if (Value acc = reductionOp.getAcc()) result = vector::makeArithReduction(rewriter, loc, reductionOp.getKind(), result, acc, reductionOp.getFastmathAttr(), mask); rewriter.replaceOp(rootOp, result); return success(); } }; } // namespace void ReductionOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); } //===----------------------------------------------------------------------===// // ContractionOp //===----------------------------------------------------------------------===// void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, Value lhs, Value rhs, Value acc, ArrayRef> indexingExprs, ArrayRef iteratorTypes) { result.addOperands({lhs, rhs, acc}); result.addTypes(acc.getType()); result.addAttribute( getIndexingMapsAttrName(result.name), builder.getAffineMapArrayAttr( AffineMap::inferFromExprList(indexingExprs, builder.getContext()))); result.addAttribute( getIteratorTypesAttrName(result.name), builder.getArrayAttr(llvm::to_vector(llvm::map_range( iteratorTypes, [&](IteratorType t) -> mlir::Attribute { return IteratorTypeAttr::get(builder.getContext(), t); })))); } void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, Value lhs, Value rhs, Value acc, ArrayAttr indexingMaps, ArrayAttr iteratorTypes) { build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes, ContractionOp::getDefaultKind()); } void vector::ContractionOp::build(OpBuilder &builder, OperationState &result, Value lhs, Value rhs, Value acc, ArrayAttr indexingMaps, ArrayAttr iteratorTypes, CombiningKind kind) { result.addOperands({lhs, rhs, acc}); result.addTypes(acc.getType()); result.addAttribute(getIndexingMapsAttrName(result.name), indexingMaps); result.addAttribute(getIteratorTypesAttrName(result.name), iteratorTypes); result.addAttribute(getKindAttrName(result.name), CombiningKindAttr::get(builder.getContext(), kind)); } ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) { OpAsmParser::UnresolvedOperand lhsInfo; OpAsmParser::UnresolvedOperand rhsInfo; OpAsmParser::UnresolvedOperand accInfo; SmallVector masksInfo; SmallVector types; Type resultType; auto loc = parser.getCurrentLocation(); DictionaryAttr dictAttr; // TODO: Unify linalg op attribute parsing. if (parser.parseAttribute(dictAttr) || parser.parseOperand(lhsInfo) || parser.parseComma() || parser.parseOperand(rhsInfo) || parser.parseComma() || parser.parseOperand(accInfo) || parser.parseTrailingOperandList(masksInfo) || parser.parseOptionalAttrDict(result.attributes) || parser.parseColonTypeList(types) || parser.parseKeywordType("into", resultType) || parser.resolveOperand(lhsInfo, types[0], result.operands) || parser.resolveOperand(rhsInfo, types[1], result.operands) || parser.resolveOperand(accInfo, resultType, result.operands) || parser.addTypeToList(resultType, result.types)) return failure(); result.attributes.append(dictAttr.getValue().begin(), dictAttr.getValue().end()); // Convert array of string into an array of IteratyType enums. This is needed, // because tests still use the old format when 'iterator_types' attribute is // represented as an array of strings. // TODO: Remove this conversion once tests are fixed. ArrayAttr iteratorTypes = llvm::cast( result.attributes.get(getIteratorTypesAttrName(result.name))); SmallVector iteratorTypeAttrs; for (StringRef s : iteratorTypes.getAsValueRange()) { auto maybeIteratorType = symbolizeIteratorType(s); if (!maybeIteratorType.has_value()) return parser.emitError(loc) << "unexpected iterator_type (" << s << ")"; iteratorTypeAttrs.push_back( IteratorTypeAttr::get(parser.getContext(), maybeIteratorType.value())); } result.attributes.set(getIteratorTypesAttrName(result.name), parser.getBuilder().getArrayAttr(iteratorTypeAttrs)); if (!result.attributes.get(getKindAttrName(result.name))) { result.addAttribute( getKindAttrName(result.name), CombiningKindAttr::get(result.getContext(), ContractionOp::getDefaultKind())); } if (masksInfo.empty()) return success(); if (masksInfo.size() != 2) return parser.emitError(parser.getNameLoc(), "expected zero or exactly 2 vector mask operands"); auto lhsType = llvm::cast(types[0]); auto rhsType = llvm::cast(types[1]); auto maskElementType = parser.getBuilder().getI1Type(); std::array maskTypes = { VectorType::Builder(lhsType).setElementType(maskElementType), VectorType::Builder(rhsType).setElementType(maskElementType)}; if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands)) return failure(); return success(); } void ContractionOp::print(OpAsmPrinter &p) { // TODO: Unify printing code with linalg ops. auto attrNames = getTraitAttrNames(); llvm::StringSet<> traitAttrsSet; traitAttrsSet.insert(attrNames.begin(), attrNames.end()); SmallVector attrs; for (auto attr : (*this)->getAttrs()) { if (attr.getName() == getIteratorTypesAttrName()) { auto iteratorTypes = llvm::cast(attr.getValue()) .getAsValueRange(); // Convert IteratorType enums into the string representation. This is // needed, because tests still use the old format when 'iterator_types' // attribute is represented as an array of strings. // TODO: Remove this conversion once tests are fixed. SmallVector iteratorTypeNames = llvm::to_vector( llvm::map_range(iteratorTypes, [&](IteratorType t) -> Attribute { return StringAttr::get(getContext(), stringifyIteratorType(t)); })); attrs.emplace_back(getIteratorTypesAttrName(), ArrayAttr::get(getContext(), iteratorTypeNames)); } else if (traitAttrsSet.count(attr.getName().strref()) > 0) attrs.push_back(attr); } auto dictAttr = DictionaryAttr::get(getContext(), attrs); p << " " << dictAttr << " " << getLhs() << ", "; p << getRhs() << ", " << getAcc(); p.printOptionalAttrDict((*this)->getAttrs(), attrNames); p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into " << getResultType(); } static bool verifyDimMap(VectorType lhsType, VectorType rhsType, const std::vector> &map) { for (auto &dimPair : map) { if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() || dimPair.second < 0 || dimPair.second >= rhsType.getRank() || lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second)) return false; } return true; } static LogicalResult verifyOutputShape( ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType, Type resType, const std::vector> &contractingDimMap, const std::vector> &batchDimMap) { DenseSet lhsContractingDimSet; DenseSet rhsContractingDimSet; for (auto &dimPair : contractingDimMap) { lhsContractingDimSet.insert(dimPair.first); rhsContractingDimSet.insert(dimPair.second); } DenseSet rhsBatchDimSet; for (auto &dimPair : batchDimMap) rhsBatchDimSet.insert(dimPair.second); // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'. SmallVector expectedResultDims; for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) { if (lhsContractingDimSet.count(i) > 0) continue; expectedResultDims.push_back(lhsType.getDimSize(i)); } // Add free dimensions from 'rhsType' to 'expectedResultDims'. for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) { if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0) continue; expectedResultDims.push_back(rhsType.getDimSize(i)); } // Verify 'expectedResultDims'. if (expectedResultDims.empty()) { // No batch or free dimension implies a scalar result. if (llvm::isa(resType) || llvm::isa(accType)) return op.emitOpError("invalid accumulator/result vector shape"); } else { // At least one batch or free dimension implies a vector result. auto resVectorType = llvm::dyn_cast(resType); auto accVectorType = llvm::dyn_cast(accType); if (!resVectorType || !accVectorType) return op.emitOpError("invalid accumulator/result vector shape"); // Infer expected result vector type. Lhs + rhs map and lhs + rhs vector // types fully define the result vector type. This assumes the affine maps // are well-formed, which must have been verified already. MLIRContext *ctx = op.getContext(); AffineMap lhsMap = op.getIndexingMapsArray()[0]; AffineMap rhsMap = op.getIndexingMapsArray()[1]; if (getUnusedDimsBitVector({lhsMap, rhsMap}).any()) return op.emitOpError( "expected all dimensions to be either a LHS or a RHS dimension"); SmallVector extents(lhsMap.getNumInputs()); for (auto pair : {std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) { VectorType v = pair.first; auto map = pair.second; for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) { unsigned pos = map.getDimPosition(idx); if (!extents[pos]) extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx); } } if (!llvm::all_of(extents, [](AffineExpr e) { return e; })) return op.emitOpError("expected all dimensions to get an extent as " "either a LHS or a RHS dimension"); AffineMap resMap = op.getIndexingMapsArray()[2]; auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(), /*symbolCount=*/0, extents, ctx); // Compose the resMap with the extentsMap, which is a constant map. AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap)); assert(llvm::all_of(expectedMap.getResults(), llvm::IsaPred) && "expected constant extent along all dimensions."); // Extract the expected shape and build the type. auto expectedShape = llvm::to_vector<4>( llvm::map_range(expectedMap.getResults(), [](AffineExpr e) { return cast(e).getValue(); })); auto expected = VectorType::get(expectedShape, resVectorType.getElementType(), resVectorType.getScalableDims()); if (resVectorType != expected || accVectorType != expected) return op.emitOpError( "invalid accumulator/result vector shape, expected: ") << expected; } return success(); } LogicalResult ContractionOp::verify() { VectorType lhsType = getLhsType(); VectorType rhsType = getRhsType(); Type accType = getAccType(); Type resType = getResultType(); if (llvm::isa(lhsType.getElementType())) { if (!lhsType.getElementType().isSignlessInteger()) return emitOpError("only supports signless integer types"); } // Verify that an indexing map was specified for each vector operand. if (getIndexingMapsArray().size() != 3) return emitOpError("expected an indexing map for each vector operand"); // Verify that each index map has 'numIterators' inputs, no symbols, and // that the number of map outputs equals the rank of its associated // vector operand. unsigned numIterators = getIteratorTypes().getValue().size(); for (const auto &it : llvm::enumerate(getIndexingMapsArray())) { auto index = it.index(); auto map = it.value(); if (map.getNumSymbols() != 0) return emitOpError("expected indexing map ") << index << " to have no symbols"; auto vectorType = llvm::dyn_cast(getOperand(index).getType()); unsigned rank = vectorType ? vectorType.getShape().size() : 0; // Verify that the map has the right number of inputs, outputs, and indices. // This also correctly accounts for (..) -> () for rank-0 results. if (map.getNumDims() != numIterators) return emitOpError("expected indexing map ") << index << " to have " << numIterators << " number of inputs"; if (map.getNumResults() != rank) return emitOpError("expected indexing map ") << index << " to have " << rank << " number of outputs"; if (!map.isProjectedPermutation()) return emitOpError("expected indexing map ") << index << " to be a projected permutation of its inputs"; } auto contractingDimMap = getContractingDimMap(); auto batchDimMap = getBatchDimMap(); // Verify at least one contracting dimension pair was specified. if (contractingDimMap.empty()) return emitOpError("expected at least one contracting dimension pair"); // Verify contracting dimension map was properly constructed. if (!verifyDimMap(lhsType, rhsType, contractingDimMap)) return emitOpError("invalid contracting dimension map"); // Verify batch dimension map was properly constructed. if (!verifyDimMap(lhsType, rhsType, batchDimMap)) return emitOpError("invalid batch dimension map"); // Verify 'accType' and 'resType' shape. if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType, contractingDimMap, batchDimMap))) return failure(); // Verify supported combining kind. auto vectorType = llvm::dyn_cast(resType); auto elementType = vectorType ? vectorType.getElementType() : resType; if (!isSupportedCombiningKind(getKind(), elementType)) return emitOpError("unsupported contraction type"); return success(); } // MaskableOpInterface methods. /// Returns the mask type expected by this operation. Mostly used for /// verification purposes. It requires the operation to be vectorized." Type ContractionOp::getExpectedMaskType() { auto indexingMaps = this->getIndexingMapsArray(); AffineMap lhsIdxMap = indexingMaps[0]; AffineMap rhsIdxMap = indexingMaps[1]; VectorType lhsType = this->getLhsType(); VectorType rhsType = this->getRhsType(); unsigned numVecDims = lhsIdxMap.getNumDims(); SmallVector maskShape(numVecDims, ShapedType::kDynamic); SmallVector maskShapeScalableDims(numVecDims, false); // Using the information in the indexing maps, extract the size of each // dimension in the vector.contract operation from the two input operands. for (auto [dimIdx, dimSize] : llvm::enumerate(lhsType.getShape())) { maskShape[lhsIdxMap.getDimPosition(dimIdx)] = dimSize; maskShapeScalableDims[lhsIdxMap.getDimPosition(dimIdx)] = lhsType.getScalableDims()[dimIdx]; } for (auto [dimIdx, dimSize] : llvm::enumerate(rhsType.getShape())) { maskShape[rhsIdxMap.getDimPosition(dimIdx)] = dimSize; maskShapeScalableDims[rhsIdxMap.getDimPosition(dimIdx)] = rhsType.getScalableDims()[dimIdx]; } assert(!ShapedType::isDynamicShape(maskShape) && "Mask shape couldn't be computed"); return VectorType::get(maskShape, IntegerType::get(lhsType.getContext(), /*width=*/1), maskShapeScalableDims); } SmallVector ContractionOp::getTraitAttrNames() { return SmallVector{getIndexingMapsAttrName(), getIteratorTypesAttrName(), getKindAttrName()}; } static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) { for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) if (targetExpr == map.getResult(i)) return i; return -1; } static std::vector> getDimMap(ArrayRef indexingMaps, ArrayAttr iteratorTypes, IteratorType targetIteratorType, MLIRContext *context) { std::vector> dimMap; for (const auto &it : llvm::enumerate(iteratorTypes)) { auto iteratorType = llvm::cast(it.value()).getValue(); if (iteratorType != targetIteratorType) continue; // Search lhs/rhs map results for 'targetExpr'. auto targetExpr = getAffineDimExpr(it.index(), context); int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr); int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr); if (lhsDim >= 0 && rhsDim >= 0) dimMap.emplace_back(lhsDim, rhsDim); } return dimMap; } void ContractionOp::getIterationBounds( SmallVectorImpl &iterationBounds) { auto lhsShape = getLhsType().getShape(); auto resVectorType = llvm::dyn_cast(getResultType()); SmallVector indexingMaps(getIndexingMapsArray()); SmallVector iterationShape; for (const auto &it : llvm::enumerate(getIteratorTypes())) { // Search lhs/rhs map results for 'targetExpr'. auto targetExpr = getAffineDimExpr(it.index(), getContext()); auto iteratorType = llvm::cast(it.value()).getValue(); if (iteratorType == IteratorType::reduction) { // Get reduction dim size from lhs shape (same size in rhsShape). int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr); assert(lhsDimIndex >= 0); iterationBounds.push_back(lhsShape[lhsDimIndex]); continue; } // Get parallel dimension size from result shape. int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr); assert(resDimIndex >= 0); assert(resVectorType != nullptr); iterationBounds.push_back(resVectorType.getShape()[resDimIndex]); } } void ContractionOp::getIterationIndexMap( std::vector> &iterationIndexMap) { unsigned numMaps = getIndexingMapsArray().size(); iterationIndexMap.resize(numMaps); for (const auto &it : llvm::enumerate(getIndexingMapsArray())) { auto index = it.index(); auto map = it.value(); for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) { auto dim = cast(map.getResult(i)); iterationIndexMap[index][dim.getPosition()] = i; } } } std::vector> ContractionOp::getContractingDimMap() { SmallVector indexingMaps(getIndexingMapsArray()); return getDimMap(indexingMaps, getIteratorTypes(), IteratorType::reduction, getContext()); } std::vector> ContractionOp::getBatchDimMap() { SmallVector indexingMaps(getIndexingMapsArray()); return getDimMap(indexingMaps, getIteratorTypes(), IteratorType::parallel, getContext()); } std::optional> ContractionOp::getShapeForUnroll() { SmallVector shape; getIterationBounds(shape); return shape; } /// Return a fused vector::ContractionOp which represents a patterns such as: /// /// ```mlir /// %c0 = vector.constant 0: ... /// %c = vector.contract %a, %b, %c0: ... /// %e = add %c, %d: ... /// ``` /// /// by: /// /// ```mlir /// %e = vector.contract %a, %b, %d: ... /// ``` /// /// Return null if the canonicalization does not apply. // TODO: This should be a folding of Add into Contract in core but while they // live in different dialects, it is not possible without unnatural // dependencies. template struct CanonicalizeContractAdd : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AddOpType addOp, PatternRewriter &rewriter) const override { auto canonicalize = [&](Value maybeContraction, Value otherOperand) -> vector::ContractionOp { vector::ContractionOp contractionOp = dyn_cast_or_null( maybeContraction.getDefiningOp()); if (!contractionOp) return vector::ContractionOp(); if (auto maybeZero = dyn_cast_or_null( contractionOp.getAcc().getDefiningOp())) { if (maybeZero.getValue() == rewriter.getZeroAttr(contractionOp.getAcc().getType())) { IRMapping bvm; bvm.map(contractionOp.getAcc(), otherOperand); auto newContraction = cast(rewriter.clone(*contractionOp, bvm)); rewriter.replaceOp(addOp, newContraction.getResult()); return newContraction; } } return vector::ContractionOp(); }; Value a = addOp->getOperand(0), b = addOp->getOperand(1); vector::ContractionOp contract = canonicalize(a, b); contract = contract ? contract : canonicalize(b, a); return contract ? success() : failure(); } }; void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add, CanonicalizeContractAdd>(context); } //===----------------------------------------------------------------------===// // ExtractElementOp //===----------------------------------------------------------------------===// void ExtractElementOp::inferResultRanges(ArrayRef argRanges, SetIntRangeFn setResultRanges) { setResultRanges(getResult(), argRanges.front()); } void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result, Value source) { result.addOperands({source}); result.addTypes(llvm::cast(source.getType()).getElementType()); } LogicalResult vector::ExtractElementOp::verify() { VectorType vectorType = getSourceVectorType(); if (vectorType.getRank() == 0) { if (getPosition()) return emitOpError("expected position to be empty with 0-D vector"); return success(); } if (vectorType.getRank() != 1) return emitOpError("unexpected >1 vector rank"); if (!getPosition()) return emitOpError("expected position for 1-D vector"); return success(); } OpFoldResult vector::ExtractElementOp::fold(FoldAdaptor adaptor) { // Skip the 0-D vector here now. if (!adaptor.getPosition()) return {}; // Fold extractelement (splat X) -> X. if (auto splat = getVector().getDefiningOp()) return splat.getInput(); // Fold extractelement(broadcast(X)) -> X. if (auto broadcast = getVector().getDefiningOp()) if (!llvm::isa(broadcast.getSource().getType())) return broadcast.getSource(); auto src = dyn_cast_or_null(adaptor.getVector()); auto pos = dyn_cast_or_null(adaptor.getPosition()); if (!pos || !src) return {}; auto srcElements = src.getValues(); uint64_t posIdx = pos.getInt(); if (posIdx >= srcElements.size()) return {}; return srcElements[posIdx]; } // Returns `true` if `index` is either within [0, maxIndex) or equal to // `poisonValue`. static bool isValidPositiveIndexOrPoison(int64_t index, int64_t poisonValue, int64_t maxIndex) { return index == poisonValue || (index >= 0 && index < maxIndex); } //===----------------------------------------------------------------------===// // ExtractOp //===----------------------------------------------------------------------===// void ExtractOp::inferResultRanges(ArrayRef argRanges, SetIntRangeFn setResultRanges) { setResultRanges(getResult(), argRanges.front()); } void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, Value source, int64_t position) { build(builder, result, source, ArrayRef{position}); } void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, Value source, OpFoldResult position) { build(builder, result, source, ArrayRef{position}); } void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, Value source, ArrayRef position) { build(builder, result, source, /*dynamic_position=*/ArrayRef(), builder.getDenseI64ArrayAttr(position)); } void vector::ExtractOp::build(OpBuilder &builder, OperationState &result, Value source, ArrayRef position) { SmallVector staticPos; SmallVector dynamicPos; dispatchIndexOpFoldResults(position, dynamicPos, staticPos); build(builder, result, source, dynamicPos, builder.getDenseI64ArrayAttr(staticPos)); } LogicalResult ExtractOp::inferReturnTypes(MLIRContext *, std::optional, ExtractOp::Adaptor adaptor, SmallVectorImpl &inferredReturnTypes) { auto vectorType = llvm::cast(adaptor.getVector().getType()); if (static_cast(adaptor.getStaticPosition().size()) == vectorType.getRank()) { inferredReturnTypes.push_back(vectorType.getElementType()); } else { auto n = std::min(adaptor.getStaticPosition().size(), vectorType.getRank()); inferredReturnTypes.push_back(VectorType::get( vectorType.getShape().drop_front(n), vectorType.getElementType(), vectorType.getScalableDims().drop_front(n))); } return success(); } bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) { // Allow extracting 1-element vectors instead of scalars. auto isCompatible = [](TypeRange l, TypeRange r) { auto vectorType = llvm::dyn_cast(l.front()); return vectorType && vectorType.getShape().equals({1}) && vectorType.getElementType() == r.front(); }; if (l.size() == 1 && r.size() == 1 && (isCompatible(l, r) || isCompatible(r, l))) return true; return l == r; } LogicalResult vector::ExtractOp::verify() { // Note: This check must come before getMixedPosition() to prevent a crash. auto dynamicMarkersCount = llvm::count_if(getStaticPosition(), ShapedType::isDynamic); if (static_cast(dynamicMarkersCount) != getDynamicPosition().size()) return emitOpError( "mismatch between dynamic and static positions (kDynamic marker but no " "corresponding dynamic position) -- this can only happen due to an " "incorrect fold/rewrite"); auto position = getMixedPosition(); if (position.size() > static_cast(getSourceVectorType().getRank())) return emitOpError( "expected position attribute of rank no greater than vector rank"); for (auto [idx, pos] : llvm::enumerate(position)) { if (auto attr = dyn_cast(pos)) { int64_t constIdx = cast(attr).getInt(); if (!isValidPositiveIndexOrPoison( constIdx, kPoisonIndex, getSourceVectorType().getDimSize(idx))) { return emitOpError("expected position attribute #") << (idx + 1) << " to be a non-negative integer smaller than the " "corresponding vector dimension or poison (-1)"; } } } return success(); } template static SmallVector extractVector(ArrayAttr arrayAttr) { return llvm::to_vector<4>(llvm::map_range( arrayAttr.getAsRange(), [](IntegerAttr attr) { return static_cast(attr.getInt()); })); } /// Fold the result of chains of ExtractOp in place by simply concatenating the /// positions. static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) { if (!extractOp.getVector().getDefiningOp()) return failure(); // TODO: Canonicalization for dynamic position not implemented yet. if (extractOp.hasDynamicPosition()) return failure(); SmallVector globalPosition; ExtractOp currentOp = extractOp; ArrayRef extrPos = currentOp.getStaticPosition(); globalPosition.append(extrPos.rbegin(), extrPos.rend()); while (ExtractOp nextOp = currentOp.getVector().getDefiningOp()) { currentOp = nextOp; // TODO: Canonicalization for dynamic position not implemented yet. if (currentOp.hasDynamicPosition()) return failure(); ArrayRef extrPos = currentOp.getStaticPosition(); globalPosition.append(extrPos.rbegin(), extrPos.rend()); } extractOp.setOperand(0, currentOp.getVector()); // OpBuilder is only used as a helper to build an I64ArrayAttr. OpBuilder b(extractOp.getContext()); std::reverse(globalPosition.begin(), globalPosition.end()); extractOp.setStaticPosition(globalPosition); return success(); } namespace { /// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps. /// Walk back a chain of InsertOp/TransposeOp until we hit a match. /// Compose TransposeOp permutations as we walk back. /// This helper class keeps an updated extraction position `extractPosition` /// with extra trailing sentinels. /// The sentinels encode the internal transposition status of the result vector. /// As we iterate, extractPosition is permuted and updated. class ExtractFromInsertTransposeChainState { public: ExtractFromInsertTransposeChainState(ExtractOp e); /// Iterate over producing insert and transpose ops until we find a fold. Value fold(); private: /// Return true if the vector at position `a` is contained within the vector /// at position `b`. Under insert/extract semantics, this is the same as `a` /// is a prefix of `b`. template bool isContainedWithin(const ContainerA &a, const ContainerB &b) { return a.size() <= b.size() && std::equal(a.begin(), a.begin() + a.size(), b.begin()); } /// Return true if the vector at position `a` intersects the vector at /// position `b`. Under insert/extract semantics, this is the same as equality /// of all entries of `a` that are >=0 with the corresponding entries of b. /// Comparison is on the common prefix (i.e. zip). template bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) { for (auto [elemA, elemB] : llvm::zip(a, b)) { if (elemA < 0 || elemB < 0) continue; if (elemA != elemB) return false; } return true; } /// Folding is only possible in the absence of an internal permutation in the /// result vector. bool canFold() { return (sentinels == ArrayRef(extractPosition).drop_front(extractedRank)); } // Helper to get the next defining op of interest. void updateStateForNextIteration(Value v) { nextInsertOp = v.getDefiningOp(); nextTransposeOp = v.getDefiningOp(); }; // Case 1. If we hit a transpose, just compose the map and iterate. // Invariant: insert + transpose do not change rank, we can always compose. LogicalResult handleTransposeOp(); // Case 2: the insert position matches extractPosition exactly, early return. LogicalResult handleInsertOpWithMatchingPos(Value &res); /// Case 3: if the insert position is a prefix of extractPosition, extract a /// portion of the source of the insert. /// Example: /// ``` /// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5> /// // extractPosition == [1, 2, 3] /// %ext = vector.extract %ins[1, 0]: vector<5> from vector<3x4x5> /// // can fold to vector.extract %source[0, 3] /// %ext = vector.extract %source[3]: vector<6> from vector<5x6> /// ``` /// To traverse through %source, we need to set the leading dims to 0 and /// drop the extra leading dims. /// This method updates the internal state. LogicalResult handleInsertOpWithPrefixPos(Value &res); /// Try to fold in place to extract(source, extractPosition) and return the /// folded result. Return null if folding is not possible (e.g. due to an /// internal transposition in the result). Value tryToFoldExtractOpInPlace(Value source); ExtractOp extractOp; int64_t vectorRank; int64_t extractedRank; InsertOp nextInsertOp; TransposeOp nextTransposeOp; /// Sentinel values that encode the internal permutation status of the result. /// They are set to (-1, ... , -k) at the beginning and appended to /// `extractPosition`. /// In the end, the tail of `extractPosition` must be exactly `sentinels` to /// ensure that there is no internal transposition. /// Internal transposition cannot be accounted for with a folding pattern. // TODO: We could relax the internal transposition with an extra transposition // operation in a future canonicalizer. SmallVector sentinels; SmallVector extractPosition; }; } // namespace ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState( ExtractOp e) : extractOp(e), vectorRank(extractOp.getSourceVectorType().getRank()), extractedRank(extractOp.getNumIndices()) { assert(vectorRank >= extractedRank && "Extracted position overflow"); sentinels.reserve(vectorRank - extractedRank); for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i) sentinels.push_back(-(i + 1)); extractPosition.assign(extractOp.getStaticPosition().begin(), extractOp.getStaticPosition().end()); llvm::append_range(extractPosition, sentinels); } // Case 1. If we hit a transpose, just compose the map and iterate. // Invariant: insert + transpose do not change rank, we can always compose. LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() { // TODO: Canonicalization for dynamic position not implemented yet. if (extractOp.hasDynamicPosition()) return failure(); if (!nextTransposeOp) return failure(); AffineMap m = inversePermutation(AffineMap::getPermutationMap( nextTransposeOp.getPermutation(), extractOp.getContext())); extractPosition = applyPermutationMap(m, ArrayRef(extractPosition)); return success(); } // Case 2: the insert position matches extractPosition exactly, early return. LogicalResult ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos( Value &res) { // TODO: Canonicalization for dynamic position not implemented yet. if (extractOp.hasDynamicPosition() || nextInsertOp.hasDynamicPosition()) return failure(); ArrayRef insertedPos = nextInsertOp.getStaticPosition(); if (insertedPos != llvm::ArrayRef(extractPosition).take_front(extractedRank)) return failure(); // Case 2.a. early-exit fold. res = nextInsertOp.getSource(); // Case 2.b. if internal transposition is present, canFold will be false. return success(canFold()); } /// Case 3: if inserted position is a prefix of extractPosition, /// extract a portion of the source of the insertion. /// This method updates the internal state. LogicalResult ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) { // TODO: Canonicalization for dynamic position not implemented yet. if (extractOp.hasDynamicPosition() || nextInsertOp.hasDynamicPosition()) return failure(); ArrayRef insertedPos = nextInsertOp.getStaticPosition(); if (!isContainedWithin(insertedPos, extractPosition)) return failure(); // Set leading dims to zero. std::fill_n(extractPosition.begin(), insertedPos.size(), 0); // Drop extra leading dims. extractPosition.erase(extractPosition.begin(), extractPosition.begin() + insertedPos.size()); extractedRank = extractPosition.size() - sentinels.size(); // Case 3.a. early-exit fold (break and delegate to post-while path). res = nextInsertOp.getSource(); // Case 3.b. if internal transposition is present, canFold will be false. return success(); } /// Try to fold in place to extract(source, extractPosition) and return the /// folded result. Return null if folding is not possible (e.g. due to an /// internal transposition in the result). Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace( Value source) { // TODO: Canonicalization for dynamic position not implemented yet. if (extractOp.hasDynamicPosition()) return Value(); // If we can't fold (either internal transposition, or nothing to fold), bail. bool nothingToFold = (source == extractOp.getVector()); if (nothingToFold || !canFold()) return Value(); // Otherwise, fold by updating the op inplace and return its result. OpBuilder b(extractOp.getContext()); extractOp.setStaticPosition( ArrayRef(extractPosition).take_front(extractedRank)); extractOp.getVectorMutable().assign(source); return extractOp.getResult(); } /// Iterate over producing insert and transpose ops until we find a fold. Value ExtractFromInsertTransposeChainState::fold() { // TODO: Canonicalization for dynamic position not implemented yet. if (extractOp.hasDynamicPosition()) return Value(); Value valueToExtractFrom = extractOp.getVector(); updateStateForNextIteration(valueToExtractFrom); while (nextInsertOp || nextTransposeOp) { // Case 1. If we hit a transpose, just compose the map and iterate. // Invariant: insert + transpose do not change rank, we can always compose. if (succeeded(handleTransposeOp())) { valueToExtractFrom = nextTransposeOp.getVector(); updateStateForNextIteration(valueToExtractFrom); continue; } Value result; // Case 2: the position match exactly. if (succeeded(handleInsertOpWithMatchingPos(result))) return result; // Case 3: if the inserted position is a prefix of extractPosition, we can // just extract a portion of the source of the insert. if (succeeded(handleInsertOpWithPrefixPos(result))) return tryToFoldExtractOpInPlace(result); // Case 4: extractPositionRef intersects insertedPosRef on non-sentinel // values. This is a more difficult case and we bail. ArrayRef insertedPos = nextInsertOp.getStaticPosition(); if (isContainedWithin(extractPosition, insertedPos) || intersectsWhereNonNegative(extractPosition, insertedPos)) return Value(); // Case 5: No intersection, we forward the extract to insertOp.dest(). valueToExtractFrom = nextInsertOp.getDest(); updateStateForNextIteration(valueToExtractFrom); } // If after all this we can fold, go for it. return tryToFoldExtractOpInPlace(valueToExtractFrom); } /// Returns true if the operation has a 0-D vector type operand or result. static bool hasZeroDimVectors(Operation *op) { auto hasZeroDimVectorType = [](Type type) -> bool { auto vecType = dyn_cast(type); return vecType && vecType.getRank() == 0; }; return llvm::any_of(op->getOperandTypes(), hasZeroDimVectorType) || llvm::any_of(op->getResultTypes(), hasZeroDimVectorType); } /// Fold extractOp with scalar result coming from BroadcastOp or SplatOp. static Value foldExtractFromBroadcast(ExtractOp extractOp) { // TODO: Canonicalization for dynamic position not implemented yet. if (extractOp.hasDynamicPosition()) return Value(); Operation *defOp = extractOp.getVector().getDefiningOp(); if (!defOp || !isa(defOp)) return Value(); Value source = defOp->getOperand(0); if (extractOp.getType() == source.getType()) return source; auto getRank = [](Type type) { return llvm::isa(type) ? llvm::cast(type).getRank() : 0; }; // If splat or broadcast from a scalar, just return the source scalar. unsigned broadcastSrcRank = getRank(source.getType()); if (broadcastSrcRank == 0 && source.getType() == extractOp.getType()) return source; unsigned extractResultRank = getRank(extractOp.getType()); if (extractResultRank >= broadcastSrcRank) return Value(); // Check that the dimension of the result haven't been broadcasted. auto extractVecType = llvm::dyn_cast(extractOp.getType()); auto broadcastVecType = llvm::dyn_cast(source.getType()); if (extractVecType && broadcastVecType && extractVecType.getShape() != broadcastVecType.getShape().take_back(extractResultRank)) return Value(); auto broadcastOp = cast(defOp); int64_t broadcastDstRank = broadcastOp.getResultVectorType().getRank(); // Detect all the positions that come from "dim-1" broadcasting. // These dimensions correspond to "dim-1" broadcasted dims; set the mathching // extract position to `0` when extracting from the source operand. llvm::SetVector broadcastedUnitDims = broadcastOp.computeBroadcastedUnitDims(); SmallVector extractPos(extractOp.getStaticPosition()); int64_t broadcastRankDiff = broadcastDstRank - broadcastSrcRank; for (int64_t i = broadcastRankDiff, e = extractPos.size(); i < e; ++i) if (broadcastedUnitDims.contains(i)) extractPos[i] = 0; // `rankDiff` leading dimensions correspond to new broadcasted dims, drop the // matching extract position when extracting from the source operand. int64_t rankDiff = broadcastSrcRank - extractResultRank; extractPos.erase(extractPos.begin(), std::next(extractPos.begin(), extractPos.size() - rankDiff)); // OpBuilder is only used as a helper to build an I64ArrayAttr. OpBuilder b(extractOp.getContext()); extractOp.setOperand(0, source); extractOp.setStaticPosition(extractPos); return extractOp.getResult(); } /// Fold extractOp coming from ShuffleOp. /// /// Example: /// /// %shuffle = vector.shuffle %a, %b [0, 8, 7, 15] /// : vector<8xf32>, vector<8xf32> /// %extract = vector.extract %shuffle[3] : f32 from vector<4xf32> /// -> /// %extract = vector.extract %b[7] : f32 from vector<8xf32> /// static Value foldExtractFromShuffle(ExtractOp extractOp) { // Dynamic positions are not folded as the resulting code would be more // complex than the input code. if (extractOp.hasDynamicPosition()) return Value(); auto shuffleOp = extractOp.getVector().getDefiningOp(); if (!shuffleOp) return Value(); // TODO: 0-D or multi-dimensional vectors not supported yet. if (shuffleOp.getResultVectorType().getRank() != 1) return Value(); int64_t inputVecSize = shuffleOp.getV1().getType().getShape()[0]; auto shuffleMask = shuffleOp.getMask(); int64_t extractIdx = extractOp.getStaticPosition()[0]; int64_t shuffleIdx = shuffleMask[extractIdx]; // Find the shuffled vector to extract from based on the shuffle index. if (shuffleIdx < inputVecSize) { extractOp.setOperand(0, shuffleOp.getV1()); extractOp.setStaticPosition({shuffleIdx}); } else { extractOp.setOperand(0, shuffleOp.getV2()); extractOp.setStaticPosition({shuffleIdx - inputVecSize}); } return extractOp.getResult(); } // Fold extractOp with source coming from ShapeCast op. static Value foldExtractFromShapeCast(ExtractOp extractOp) { // TODO: Canonicalization for dynamic position not implemented yet. if (extractOp.hasDynamicPosition()) return Value(); auto shapeCastOp = extractOp.getVector().getDefiningOp(); if (!shapeCastOp) return Value(); // Get the nth dimension size starting from lowest dimension. auto getDimReverse = [](VectorType type, int64_t n) { return type.getShape().take_back(n + 1).front(); }; int64_t destinationRank = llvm::isa(extractOp.getType()) ? llvm::cast(extractOp.getType()).getRank() : 0; if (destinationRank > shapeCastOp.getSourceVectorType().getRank()) return Value(); if (destinationRank > 0) { auto destinationType = llvm::cast(extractOp.getResult().getType()); for (int64_t i = 0; i < destinationRank; i++) { // The lowest dimension of the destination must match the lowest // dimension of the shapecast op source. // TODO: This case could be support in a canonicalization pattern. if (getDimReverse(shapeCastOp.getSourceVectorType(), i) != getDimReverse(destinationType, i)) return Value(); } } // Extract the strides associated with the extract op vector source. Then use // this to calculate a linearized position for the extract. SmallVector extractedPos(extractOp.getStaticPosition()); std::reverse(extractedPos.begin(), extractedPos.end()); SmallVector strides; int64_t stride = 1; for (int64_t i = 0, e = extractedPos.size(); i < e; i++) { strides.push_back(stride); stride *= getDimReverse(extractOp.getSourceVectorType(), i + destinationRank); } int64_t position = linearize(extractedPos, strides); // Then extract the strides associated to the shapeCast op vector source and // delinearize the position using those strides. SmallVector newStrides; int64_t numDimension = shapeCastOp.getSourceVectorType().getRank() - destinationRank; stride = 1; for (int64_t i = 0; i < numDimension; i++) { newStrides.push_back(stride); stride *= getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank); } std::reverse(newStrides.begin(), newStrides.end()); SmallVector newPosition = delinearize(position, newStrides); // OpBuilder is only used as a helper to build an I64ArrayAttr. OpBuilder b(extractOp.getContext()); extractOp.setStaticPosition(newPosition); extractOp.setOperand(0, shapeCastOp.getSource()); return extractOp.getResult(); } /// Fold an ExtractOp from ExtractStridedSliceOp. static Value foldExtractFromExtractStrided(ExtractOp extractOp) { // TODO: Canonicalization for dynamic position not implemented yet. if (extractOp.hasDynamicPosition()) return Value(); auto extractStridedSliceOp = extractOp.getVector().getDefiningOp(); if (!extractStridedSliceOp) return Value(); // 0-D vectors not supported. assert(!hasZeroDimVectors(extractOp) && "0-D vectors not supported"); if (hasZeroDimVectors(extractStridedSliceOp)) return Value(); // Return if 'extractStridedSliceOp' has non-unit strides. if (extractStridedSliceOp.hasNonUnitStrides()) return Value(); // Trim offsets for dimensions fully extracted. auto sliceOffsets = extractVector(extractStridedSliceOp.getOffsets()); while (!sliceOffsets.empty()) { size_t lastOffset = sliceOffsets.size() - 1; if (sliceOffsets.back() != 0 || extractStridedSliceOp.getType().getDimSize(lastOffset) != extractStridedSliceOp.getSourceVectorType().getDimSize(lastOffset)) break; sliceOffsets.pop_back(); } unsigned destinationRank = 0; if (auto vecType = llvm::dyn_cast(extractOp.getType())) destinationRank = vecType.getRank(); // The dimensions of the result need to be untouched by the // extractStridedSlice op. if (destinationRank > extractStridedSliceOp.getSourceVectorType().getRank() - sliceOffsets.size()) return Value(); SmallVector extractedPos(extractOp.getStaticPosition()); assert(extractedPos.size() >= sliceOffsets.size()); for (size_t i = 0, e = sliceOffsets.size(); i < e; i++) extractedPos[i] = extractedPos[i] + sliceOffsets[i]; extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector()); // OpBuilder is only used as a helper to build an I64ArrayAttr. OpBuilder b(extractOp.getContext()); extractOp.setStaticPosition(extractedPos); return extractOp.getResult(); } /// Fold extract_op fed from a chain of insertStridedSlice ops. static Value foldExtractStridedOpFromInsertChain(ExtractOp extractOp) { // TODO: Canonicalization for dynamic position not implemented yet. if (extractOp.hasDynamicPosition()) return Value(); int64_t destinationRank = llvm::isa(extractOp.getType()) ? llvm::cast(extractOp.getType()).getRank() : 0; auto insertOp = extractOp.getVector().getDefiningOp(); if (!insertOp) return Value(); // 0-D vectors not supported. assert(!hasZeroDimVectors(extractOp) && "0-D vectors not supported"); if (hasZeroDimVectors(insertOp)) return Value(); while (insertOp) { int64_t insertRankDiff = insertOp.getDestVectorType().getRank() - insertOp.getSourceVectorType().getRank(); if (destinationRank > insertOp.getSourceVectorType().getRank()) return Value(); auto insertOffsets = extractVector(insertOp.getOffsets()); ArrayRef extractOffsets = extractOp.getStaticPosition(); if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) { return llvm::cast(attr).getInt() != 1; })) return Value(); bool disjoint = false; SmallVector offsetDiffs; for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { int64_t start = insertOffsets[dim]; int64_t size = (dim < insertRankDiff) ? 1 : insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff); int64_t end = start + size; int64_t offset = extractOffsets[dim]; // Check if the start of the extract offset is in the interval inserted. if (start <= offset && offset < end) { if (dim >= insertRankDiff) offsetDiffs.push_back(offset - start); continue; } disjoint = true; break; } // The extract element chunk overlap with the vector inserted. if (!disjoint) { // If any of the inner dimensions are only partially inserted we have a // partial overlap. int64_t srcRankDiff = insertOp.getSourceVectorType().getRank() - destinationRank; for (int64_t i = 0; i < destinationRank; i++) { if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) != insertOp.getDestVectorType().getDimSize(i + srcRankDiff + insertRankDiff)) return Value(); } extractOp.getVectorMutable().assign(insertOp.getSource()); // OpBuilder is only used as a helper to build an I64ArrayAttr. OpBuilder b(extractOp.getContext()); extractOp.setStaticPosition(offsetDiffs); return extractOp.getResult(); } // If the chunk extracted is disjoint from the chunk inserted, keep // looking in the insert chain. insertOp = insertOp.getDest().getDefiningOp(); } return Value(); } /// Try to fold the extraction of a scalar from a vector defined by /// vector.from_elements. E.g.: /// /// %0 = vector.from_elements %a, %b : vector<2xf32> /// %1 = vector.extract %0[0] : f32 from vector<2xf32> /// ==> fold to %a static Value foldScalarExtractFromFromElements(ExtractOp extractOp) { // Dynamic extractions cannot be folded. if (extractOp.hasDynamicPosition()) return {}; // Look for extract(from_elements). auto fromElementsOp = extractOp.getVector().getDefiningOp(); if (!fromElementsOp) return {}; // Scalable vectors are not supported. auto vecType = llvm::cast(fromElementsOp.getType()); if (vecType.isScalable()) return {}; // Only extractions of scalars are supported. int64_t rank = vecType.getRank(); ArrayRef indices = extractOp.getStaticPosition(); if (extractOp.getType() != vecType.getElementType()) return {}; assert(static_cast(indices.size()) == rank && "unexpected number of indices"); // Compute flattened/linearized index and fold to operand. int flatIndex = 0; int stride = 1; for (int i = rank - 1; i >= 0; --i) { flatIndex += indices[i] * stride; stride *= vecType.getDimSize(i); } return fromElementsOp.getElements()[flatIndex]; } /// Fold an insert or extract operation into an poison value when a poison index /// is found at any dimension of the static position. static ub::PoisonAttr foldPoisonIndexInsertExtractOp(MLIRContext *context, ArrayRef staticPos, int64_t poisonVal) { if (!llvm::is_contained(staticPos, poisonVal)) return ub::PoisonAttr(); return ub::PoisonAttr::get(context); } OpFoldResult ExtractOp::fold(FoldAdaptor adaptor) { // Fold "vector.extract %v[] : vector<2x2xf32> from vector<2x2xf32>" to %v. // Note: Do not fold "vector.extract %v[] : f32 from vector" (type // mismatch). if (getNumIndices() == 0 && getVector().getType() == getResult().getType()) return getVector(); if (auto res = foldPoisonIndexInsertExtractOp( getContext(), adaptor.getStaticPosition(), kPoisonIndex)) return res; if (succeeded(foldExtractOpFromExtractChain(*this))) return getResult(); if (auto res = ExtractFromInsertTransposeChainState(*this).fold()) return res; if (auto res = foldExtractFromBroadcast(*this)) return res; if (auto res = foldExtractFromShuffle(*this)) return res; if (auto res = foldExtractFromShapeCast(*this)) return res; if (auto val = foldExtractFromExtractStrided(*this)) return val; if (auto val = foldExtractStridedOpFromInsertChain(*this)) return val; if (auto val = foldScalarExtractFromFromElements(*this)) return val; return OpFoldResult(); } namespace { // Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast. class ExtractOpFromBroadcast final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ExtractOp extractOp, PatternRewriter &rewriter) const override { Operation *defOp = extractOp.getVector().getDefiningOp(); if (!defOp || !isa(defOp)) return failure(); Value source = defOp->getOperand(0); if (extractOp.getType() == source.getType()) return failure(); auto getRank = [](Type type) { return llvm::isa(type) ? llvm::cast(type).getRank() : 0; }; unsigned broadcastSrcRank = getRank(source.getType()); unsigned extractResultRank = getRank(extractOp.getType()); // We only consider the case where the rank of the source is less than or // equal to the rank of the extract dst. The other cases are handled in the // folding patterns. if (extractResultRank < broadcastSrcRank) return failure(); // Special case if broadcast src is a 0D vector. if (extractResultRank == 0) { assert(broadcastSrcRank == 0 && llvm::isa(source.getType())); rewriter.replaceOpWithNewOp(extractOp, source); return success(); } rewriter.replaceOpWithNewOp( extractOp, extractOp.getType(), source); return success(); } }; // Pattern to rewrite a ExtractOp(splat ConstantOp) -> ConstantOp. class ExtractOpSplatConstantFolder final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ExtractOp extractOp, PatternRewriter &rewriter) const override { // Return if 'ExtractOp' operand is not defined by a splat vector // ConstantOp. Value sourceVector = extractOp.getVector(); Attribute vectorCst; if (!matchPattern(sourceVector, m_Constant(&vectorCst))) return failure(); auto splat = llvm::dyn_cast(vectorCst); if (!splat) return failure(); TypedAttr newAttr = splat.getSplatValue(); if (auto vecDstType = llvm::dyn_cast(extractOp.getType())) newAttr = DenseElementsAttr::get(vecDstType, newAttr); rewriter.replaceOpWithNewOp(extractOp, newAttr); return success(); } }; // Pattern to rewrite a ExtractOp(non-splat ConstantOp)[...] -> ConstantOp. class ExtractOpNonSplatConstantFolder final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ExtractOp extractOp, PatternRewriter &rewriter) const override { // TODO: Canonicalization for dynamic position not implemented yet. if (extractOp.hasDynamicPosition()) return failure(); // Return if 'ExtractOp' operand is not defined by a compatible vector // ConstantOp. Value sourceVector = extractOp.getVector(); Attribute vectorCst; if (!matchPattern(sourceVector, m_Constant(&vectorCst))) return failure(); auto vecTy = llvm::cast(sourceVector.getType()); if (vecTy.isScalable()) return failure(); // The splat case is handled by `ExtractOpSplatConstantFolder`. auto dense = llvm::dyn_cast(vectorCst); if (!dense || dense.isSplat()) return failure(); // Calculate the linearized position of the continuous chunk of elements to // extract. llvm::SmallVector completePositions(vecTy.getRank(), 0); copy(extractOp.getStaticPosition(), completePositions.begin()); int64_t elemBeginPosition = linearize(completePositions, computeStrides(vecTy.getShape())); auto denseValuesBegin = dense.value_begin() + elemBeginPosition; TypedAttr newAttr; if (auto resVecTy = llvm::dyn_cast(extractOp.getType())) { SmallVector elementValues( denseValuesBegin, denseValuesBegin + resVecTy.getNumElements()); newAttr = DenseElementsAttr::get(resVecTy, elementValues); } else { newAttr = *denseValuesBegin; } rewriter.replaceOpWithNewOp(extractOp, newAttr); return success(); } }; // Pattern to rewrite a ExtractOp(CreateMask) -> CreateMask. class ExtractOpFromCreateMask final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ExtractOp extractOp, PatternRewriter &rewriter) const override { auto createMaskOp = extractOp.getVector().getDefiningOp(); if (!createMaskOp) return failure(); VectorType extractedMaskType = llvm::dyn_cast(extractOp.getResult().getType()); if (!extractedMaskType) return failure(); auto maskOperands = createMaskOp.getOperands(); ArrayRef extractOpPos = extractOp.getStaticPosition(); VectorType maskType = createMaskOp.getVectorType(); bool containsUnknownDims = false; bool allFalse = getMaskFormat(createMaskOp) == MaskFormat::AllFalse; for (size_t dimIdx = 0; !allFalse && dimIdx < extractOpPos.size(); dimIdx++) { int64_t pos = extractOpPos[dimIdx]; Value operand = maskOperands[dimIdx]; auto constantOp = operand.getDefiningOp(); if (!constantOp) { // Bounds of this dim unknown. containsUnknownDims = true; continue; } int64_t createMaskBound = llvm::cast(constantOp.getValue()).getInt(); if (pos != ShapedType::kDynamic) { // If any position is outside the range from the `create_mask`, then the // extracted mask will be all-false. allFalse |= pos >= createMaskBound; } else if (createMaskBound < maskType.getDimSize(dimIdx)) { // This dim is not all-true and since this is a dynamic index we don't // know if the extraction is within the true or false region. // Note: Zero dims have already handled via getMaskFormat(). containsUnknownDims = true; } } if (allFalse) { rewriter.replaceOpWithNewOp( extractOp, DenseElementsAttr::get(extractedMaskType, false)); } else if (!containsUnknownDims) { rewriter.replaceOpWithNewOp( extractOp, extractedMaskType, maskOperands.drop_front(extractOpPos.size())); } else { return failure(); } return success(); } }; // Folds extract(shape_cast(..)) into shape_cast when the total element count // does not change. LogicalResult foldExtractFromShapeCastToShapeCast(ExtractOp extractOp, PatternRewriter &rewriter) { auto castOp = extractOp.getVector().getDefiningOp(); if (!castOp) return failure(); VectorType sourceType = castOp.getSourceVectorType(); auto targetType = dyn_cast(extractOp.getResult().getType()); if (!targetType) return failure(); if (sourceType.getNumElements() != targetType.getNumElements()) return failure(); rewriter.replaceOpWithNewOp(extractOp, targetType, castOp.getSource()); return success(); } /// Try to canonicalize the extraction of a subvector from a vector defined by /// vector.from_elements. E.g.: /// /// %0 = vector.from_elements %a, %b, %a, %a : vector<2x2xf32> /// %1 = vector.extract %0[0] : vector<2xf32> from vector<2x2xf32> /// ==> canonicalize to vector.from_elements %a, %b : vector<2xf32> LogicalResult foldExtractFromFromElements(ExtractOp extractOp, PatternRewriter &rewriter) { // Dynamic positions are not supported. if (extractOp.hasDynamicPosition()) return failure(); // Scalar extracts are handled by the folder. auto resultType = dyn_cast(extractOp.getType()); if (!resultType) return failure(); // Look for extracts from a from_elements op. auto fromElementsOp = extractOp.getVector().getDefiningOp(); if (!fromElementsOp) return failure(); VectorType inputType = fromElementsOp.getType(); // Scalable vectors are not supported. if (resultType.isScalable() || inputType.isScalable()) return failure(); // Compute the position of first extracted element and flatten/linearize the // position. SmallVector firstElementPos = llvm::to_vector(extractOp.getStaticPosition()); firstElementPos.append(/*NumInputs=*/resultType.getRank(), /*Elt=*/0); int flatIndex = 0; int stride = 1; for (int64_t i = inputType.getRank() - 1; i >= 0; --i) { flatIndex += firstElementPos[i] * stride; stride *= inputType.getDimSize(i); } // Replace the op with a smaller from_elements op. rewriter.replaceOpWithNewOp( extractOp, resultType, fromElementsOp.getElements().slice(flatIndex, resultType.getNumElements())); return success(); } /// Fold an insert or extract operation into an poison value when a poison index /// is found at any dimension of the static position. template LogicalResult canonicalizePoisonIndexInsertExtractOp(OpTy op, PatternRewriter &rewriter) { if (auto poisonAttr = foldPoisonIndexInsertExtractOp( op.getContext(), op.getStaticPosition(), OpTy::kPoisonIndex)) { rewriter.replaceOpWithNewOp(op, op.getType(), poisonAttr); return success(); } return failure(); } } // namespace void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); results.add(foldExtractFromShapeCastToShapeCast); results.add(foldExtractFromFromElements); results.add(canonicalizePoisonIndexInsertExtractOp); } static void populateFromInt64AttrArray(ArrayAttr arrayAttr, SmallVectorImpl &results) { for (auto attr : arrayAttr) results.push_back(llvm::cast(attr).getInt()); } //===----------------------------------------------------------------------===// // FmaOp //===----------------------------------------------------------------------===// std::optional> FMAOp::getShapeForUnroll() { return llvm::to_vector<4>(getVectorType().getShape()); } //===----------------------------------------------------------------------===// // FromElementsOp //===----------------------------------------------------------------------===// /// Rewrite a vector.from_elements into a vector.splat if all elements are the /// same SSA value. E.g.: /// /// %0 = vector.from_elements %a, %a, %a : vector<3xf32> /// ==> rewrite to vector.splat %a : vector<3xf32> static LogicalResult rewriteFromElementsAsSplat(FromElementsOp fromElementsOp, PatternRewriter &rewriter) { if (!llvm::all_equal(fromElementsOp.getElements())) return failure(); rewriter.replaceOpWithNewOp(fromElementsOp, fromElementsOp.getType(), fromElementsOp.getElements().front()); return success(); } void FromElementsOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(rewriteFromElementsAsSplat); } //===----------------------------------------------------------------------===// // BroadcastOp //===----------------------------------------------------------------------===// void BroadcastOp::inferResultRanges(ArrayRef argRanges, SetIntRangeFn setResultRanges) { setResultRanges(getResult(), argRanges.front()); } /// Return the dimensions of the result vector that were formerly ones in the /// source tensor and thus correspond to "dim-1" broadcasting. static llvm::SetVector computeBroadcastedUnitDims(ArrayRef srcShape, ArrayRef dstShape) { int64_t rankDiff = dstShape.size() - srcShape.size(); int64_t dstDim = rankDiff; llvm::SetVector res; for (auto [s1, s2] : llvm::zip_equal(srcShape, dstShape.drop_front(rankDiff))) { if (s1 != s2) { assert(s1 == 1 && "expected dim-1 broadcasting"); res.insert(dstDim); } ++dstDim; } return res; } llvm::SetVector BroadcastOp::computeBroadcastedUnitDims() { // Scalar broadcast is without any unit dim broadcast. auto srcVectorType = llvm::dyn_cast(getSourceType()); if (!srcVectorType) return {}; return ::computeBroadcastedUnitDims(srcVectorType.getShape(), getResultVectorType().getShape()); } /// Broadcast `value` to a vector of `dstShape`, knowing that exactly the /// `broadcastedDims` dimensions in the dstShape are broadcasted. /// This requires (and asserts) that the broadcast is free of dim-1 /// broadcasting. /// Since vector.broadcast only allows expanding leading dimensions, an extra /// vector.transpose may be inserted to make the broadcast possible. /// `value`, `dstShape` and `broadcastedDims` must be properly specified or /// the helper will assert. This means: /// 1. `dstShape` must not be empty. /// 2. `broadcastedDims` must be confined to [0 .. rank(value.getVectorType)] /// 2. `dstShape` trimmed of the dimensions specified in `broadcastedDims` // must match the `value` shape. Value BroadcastOp::createOrFoldBroadcastOp( OpBuilder &b, Value value, ArrayRef dstShape, const llvm::SetVector &broadcastedDims) { assert(!dstShape.empty() && "unexpected empty dst shape"); // Well-formedness check. SmallVector checkShape; for (int i = 0, e = dstShape.size(); i < e; ++i) { if (broadcastedDims.contains(i)) continue; checkShape.push_back(dstShape[i]); } assert(broadcastedDims.size() == dstShape.size() - checkShape.size() && "ill-formed broadcastedDims contains values not confined to " "destVectorShape"); Location loc = value.getLoc(); Type elementType = getElementTypeOrSelf(value.getType()); VectorType srcVectorType = llvm::dyn_cast(value.getType()); VectorType dstVectorType = VectorType::get(dstShape, elementType); // Step 2. If scalar -> dstShape broadcast, just do it. if (!srcVectorType) { assert(checkShape.empty() && "ill-formed createOrFoldBroadcastOp arguments"); return b.createOrFold(loc, dstVectorType, value); } assert(srcVectorType.getShape().equals(checkShape) && "ill-formed createOrFoldBroadcastOp arguments"); // Step 3. Since vector.broadcast only allows creating leading dims, // vector -> dstShape broadcast may require a transpose. // Traverse the dims in order and construct: // 1. The leading entries of the broadcastShape that is guaranteed to be // achievable by a simple broadcast. // 2. The induced permutation for the subsequent vector.transpose that will // bring us from `broadcastShape` back to he desired `dstShape`. // If the induced permutation is not the identity, create a vector.transpose. SmallVector broadcastShape, permutation(dstShape.size(), -1); broadcastShape.reserve(dstShape.size()); // Consider the example: // srcShape = 2x4 // dstShape = 1x2x3x4x5 // broadcastedDims = [0, 2, 4] // // We want to build: // broadcastShape = 1x3x5x2x4 // permutation = [0, 2, 4, 1, 3] // ---V--- -----V----- // leading broadcast part src shape part // // Note that the trailing dims of broadcastShape are exactly the srcShape // by construction. // nextSrcShapeDim is used to keep track of where in the permutation the // "src shape part" occurs. int64_t nextSrcShapeDim = broadcastedDims.size(); for (int64_t i = 0, e = dstShape.size(); i < e; ++i) { if (broadcastedDims.contains(i)) { // 3.a. For each dim in the dst shape, if it is a broadcasted dim, // bring it to the head of the broadcastShape. // It will need to be permuted back from `broadcastShape.size() - 1` into // position `i`. broadcastShape.push_back(dstShape[i]); permutation[i] = broadcastShape.size() - 1; } else { // 3.b. Otherwise, the dim is not broadcasted, it comes from the src // shape and needs to be permuted into position `i`. // Don't touch `broadcastShape` here, the whole srcShape will be // appended after. permutation[i] = nextSrcShapeDim++; } } // 3.c. Append the srcShape. llvm::append_range(broadcastShape, srcVectorType.getShape()); // Ensure there are no dim-1 broadcasts. assert(::computeBroadcastedUnitDims(srcVectorType.getShape(), broadcastShape) .empty() && "unexpected dim-1 broadcast"); VectorType broadcastType = VectorType::get(broadcastShape, elementType); assert(vector::isBroadcastableTo(value.getType(), broadcastType) == vector::BroadcastableToResult::Success && "must be broadcastable"); Value res = b.createOrFold(loc, broadcastType, value); // Step 4. If we find any dimension that indeed needs to be permuted, // immediately return a new vector.transpose. for (int64_t i = 0, e = permutation.size(); i < e; ++i) if (permutation[i] != i) return b.createOrFold(loc, res, permutation); // Otherwise return res. return res; } BroadcastableToResult mlir::vector::isBroadcastableTo( Type srcType, VectorType dstVectorType, std::pair *mismatchingDims) { // Broadcast scalar to vector of the same element type. if (srcType.isIntOrIndexOrFloat() && dstVectorType && getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType)) return BroadcastableToResult::Success; // From now on, only vectors broadcast. VectorType srcVectorType = llvm::dyn_cast(srcType); if (!srcVectorType) return BroadcastableToResult::SourceTypeNotAVector; int64_t srcRank = srcVectorType.getRank(); int64_t dstRank = dstVectorType.getRank(); if (srcRank > dstRank) return BroadcastableToResult::SourceRankHigher; // Source has an exact match or singleton value for all trailing dimensions // (all leading dimensions are simply duplicated). int64_t lead = dstRank - srcRank; for (int64_t dimIdx = 0; dimIdx < srcRank; ++dimIdx) { // Have mismatching dims (in the sense of vector.broadcast semantics) been // encountered? bool foundMismatchingDims = false; // Check fixed-width dims. int64_t srcDim = srcVectorType.getDimSize(dimIdx); int64_t dstDim = dstVectorType.getDimSize(lead + dimIdx); if (srcDim != 1 && srcDim != dstDim) foundMismatchingDims = true; // Check scalable flags. bool srcDimScalableFlag = srcVectorType.getScalableDims()[dimIdx]; bool dstDimScalableFlag = dstVectorType.getScalableDims()[lead + dimIdx]; if ((srcDim == 1 && srcDimScalableFlag && dstDim != 1) || // 1 -> [N] is fine, everything else should be rejected when mixing // fixed-width and scalable dims (srcDimScalableFlag != dstDimScalableFlag && (srcDim != 1 || srcDimScalableFlag))) foundMismatchingDims = true; if (foundMismatchingDims) { if (mismatchingDims != nullptr) { mismatchingDims->first.dim = srcDim; mismatchingDims->first.isScalable = srcDimScalableFlag; mismatchingDims->second.dim = dstDim; mismatchingDims->second.isScalable = dstDimScalableFlag; } return BroadcastableToResult::DimensionMismatch; } } return BroadcastableToResult::Success; } LogicalResult BroadcastOp::verify() { std::pair mismatchingDims; BroadcastableToResult res = isBroadcastableTo( getSourceType(), getResultVectorType(), &mismatchingDims); if (res == BroadcastableToResult::Success) return success(); if (res == BroadcastableToResult::SourceRankHigher) return emitOpError("source rank higher than destination rank"); if (res == BroadcastableToResult::DimensionMismatch) { return emitOpError("dimension mismatch (") << (mismatchingDims.first.isScalable ? "[" : "") << mismatchingDims.first.dim << (mismatchingDims.first.isScalable ? "]" : "") << " vs. " << (mismatchingDims.second.isScalable ? "[" : "") << mismatchingDims.second.dim << (mismatchingDims.second.isScalable ? "]" : "") << ")"; } if (res == BroadcastableToResult::SourceTypeNotAVector) return emitOpError("source type is not a vector"); llvm_unreachable("unexpected vector.broadcast op error"); } OpFoldResult BroadcastOp::fold(FoldAdaptor adaptor) { if (getSourceType() == getResultVectorType()) return getSource(); if (!adaptor.getSource()) return {}; auto vectorType = getResultVectorType(); if (auto attr = llvm::dyn_cast(adaptor.getSource())) { if (vectorType.getElementType() != attr.getType()) return {}; return DenseElementsAttr::get(vectorType, attr); } if (auto attr = llvm::dyn_cast(adaptor.getSource())) { if (vectorType.getElementType() != attr.getType()) return {}; return DenseElementsAttr::get(vectorType, attr); } if (auto attr = llvm::dyn_cast(adaptor.getSource())) return DenseElementsAttr::get(vectorType, attr.getSplatValue()); return {}; } namespace { // Fold broadcast1(broadcast2(x)) into broadcast1(x). struct BroadcastFolder : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(BroadcastOp broadcastOp, PatternRewriter &rewriter) const override { auto srcBroadcast = broadcastOp.getSource().getDefiningOp(); if (!srcBroadcast) return failure(); rewriter.replaceOpWithNewOp(broadcastOp, broadcastOp.getResultVectorType(), srcBroadcast.getSource()); return success(); } }; } // namespace void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { // BroadcastToShapeCast is not a default canonicalization, it is opt-in by // calling `populateCastAwayVectorLeadingOneDimPatterns` results.add(context); } //===----------------------------------------------------------------------===// // ShuffleOp //===----------------------------------------------------------------------===// LogicalResult ShuffleOp::verify() { VectorType resultType = getResultVectorType(); VectorType v1Type = getV1VectorType(); VectorType v2Type = getV2VectorType(); // Verify ranks. int64_t resRank = resultType.getRank(); int64_t v1Rank = v1Type.getRank(); int64_t v2Rank = v2Type.getRank(); bool wellFormed0DCase = v1Rank == 0 && v2Rank == 0 && resRank == 1; bool wellFormedNDCase = v1Rank == resRank && v2Rank == resRank; if (!wellFormed0DCase && !wellFormedNDCase) return emitOpError("rank mismatch"); // Verify all but leading dimension sizes. for (int64_t r = 1; r < v1Rank; ++r) { int64_t resDim = resultType.getDimSize(r); int64_t v1Dim = v1Type.getDimSize(r); int64_t v2Dim = v2Type.getDimSize(r); if (resDim != v1Dim || v1Dim != v2Dim) return emitOpError("dimension mismatch"); } // Verify mask length. ArrayRef mask = getMask(); int64_t maskLength = mask.size(); if (maskLength <= 0) return emitOpError("invalid mask length"); if (maskLength != resultType.getDimSize(0)) return emitOpError("mask length mismatch"); // Verify all indices. int64_t indexSize = (v1Type.getRank() == 0 ? 1 : v1Type.getDimSize(0)) + (v2Type.getRank() == 0 ? 1 : v2Type.getDimSize(0)); for (auto [idx, maskPos] : llvm::enumerate(mask)) { if (!isValidPositiveIndexOrPoison(maskPos, kPoisonIndex, indexSize)) return emitOpError("mask index #") << (idx + 1) << " out of range"; } return success(); } LogicalResult ShuffleOp::inferReturnTypes(MLIRContext *, std::optional, ShuffleOp::Adaptor adaptor, SmallVectorImpl &inferredReturnTypes) { auto v1Type = llvm::cast(adaptor.getV1().getType()); auto v1Rank = v1Type.getRank(); // Construct resulting type: leading dimension matches mask // length, all trailing dimensions match the operands. SmallVector shape; shape.reserve(v1Rank); shape.push_back(std::max(1, adaptor.getMask().size())); // In the 0-D case there is no trailing shape to append. if (v1Rank > 0) llvm::append_range(shape, v1Type.getShape().drop_front()); inferredReturnTypes.push_back( VectorType::get(shape, v1Type.getElementType())); return success(); } template static bool isStepIndexArray(ArrayRef idxArr, uint64_t begin, size_t width) { T expected = begin; return idxArr.size() == width && llvm::all_of(idxArr, [&expected](T value) { return value == expected++; }); } OpFoldResult vector::ShuffleOp::fold(FoldAdaptor adaptor) { VectorType v1Type = getV1VectorType(); // For consistency: 0-D shuffle return type is 1-D, this cannot be a folding // but must be a canonicalization into a vector.broadcast. if (v1Type.getRank() == 0) return {}; // fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1 if (!v1Type.isScalable() && isStepIndexArray(getMask(), 0, v1Type.getDimSize(0))) return getV1(); // fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2 if (!getV1VectorType().isScalable() && !getV2VectorType().isScalable() && isStepIndexArray(getMask(), getV1VectorType().getDimSize(0), getV2VectorType().getDimSize(0))) return getV2(); Attribute lhs = adaptor.getV1(), rhs = adaptor.getV2(); if (!lhs || !rhs) return {}; auto lhsType = llvm::cast(llvm::cast(lhs).getType()); // Only support 1-D for now to avoid complicated n-D DenseElementsAttr // manipulation. if (lhsType.getRank() != 1) return {}; int64_t lhsSize = lhsType.getDimSize(0); SmallVector results; auto lhsElements = llvm::cast(lhs).getValues(); auto rhsElements = llvm::cast(rhs).getValues(); for (int64_t i : this->getMask()) { if (i >= lhsSize) { results.push_back(rhsElements[i - lhsSize]); } else { results.push_back(lhsElements[i]); } } return DenseElementsAttr::get(getResultVectorType(), results); } namespace { // Pattern to rewrite a 0-D shuffle with [0] or [1] mask returning a 1-D vector // to a broadcast. struct Canonicalize0DShuffleOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ShuffleOp shuffleOp, PatternRewriter &rewriter) const override { VectorType v1VectorType = shuffleOp.getV1VectorType(); ArrayRef mask = shuffleOp.getMask(); if (v1VectorType.getRank() > 0) return failure(); if (mask.size() != 1) return failure(); VectorType resType = VectorType::Builder(v1VectorType).setShape({1}); if (mask[0] == 0) rewriter.replaceOpWithNewOp(shuffleOp, resType, shuffleOp.getV1()); else rewriter.replaceOpWithNewOp(shuffleOp, resType, shuffleOp.getV2()); return success(); } }; /// Pattern to rewrite a ShuffleOp(SplatOp, SplatOp) to SplatOp. class ShuffleSplat final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ShuffleOp op, PatternRewriter &rewriter) const override { auto v1Splat = op.getV1().getDefiningOp(); auto v2Splat = op.getV2().getDefiningOp(); if (!v1Splat || !v2Splat) return failure(); if (v1Splat.getInput() != v2Splat.getInput()) return failure(); rewriter.replaceOpWithNewOp(op, op.getType(), v1Splat.getInput()); return success(); } }; /// Pattern to rewrite a fixed-size interleave via vector.shuffle to /// vector.interleave. class ShuffleInterleave : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ShuffleOp op, PatternRewriter &rewriter) const override { VectorType resultType = op.getResultVectorType(); if (resultType.isScalable()) return rewriter.notifyMatchFailure( op, "ShuffleOp can't represent a scalable interleave"); if (resultType.getRank() != 1) return rewriter.notifyMatchFailure( op, "ShuffleOp can't represent an n-D interleave"); VectorType sourceType = op.getV1VectorType(); if (sourceType != op.getV2VectorType() || sourceType.getNumElements() * 2 != resultType.getNumElements()) { return rewriter.notifyMatchFailure( op, "ShuffleOp types don't match an interleave"); } ArrayRef shuffleMask = op.getMask(); int64_t resultVectorSize = resultType.getNumElements(); for (int i = 0, e = resultVectorSize / 2; i < e; ++i) { int64_t maskValueA = shuffleMask[i * 2]; int64_t maskValueB = shuffleMask[(i * 2) + 1]; if (maskValueA != i || maskValueB != (resultVectorSize / 2) + i) return rewriter.notifyMatchFailure(op, "ShuffleOp mask not interleaving"); } rewriter.replaceOpWithNewOp(op, op.getV1(), op.getV2()); return success(); } }; } // namespace void ShuffleOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add( context); } //===----------------------------------------------------------------------===// // InsertElementOp //===----------------------------------------------------------------------===// void InsertElementOp::inferResultRanges(ArrayRef argRanges, SetIntRangeFn setResultRanges) { setResultRanges(getResult(), argRanges[0].rangeUnion(argRanges[1])); } void InsertElementOp::build(OpBuilder &builder, OperationState &result, Value source, Value dest) { build(builder, result, source, dest, {}); } LogicalResult InsertElementOp::verify() { auto dstVectorType = getDestVectorType(); if (dstVectorType.getRank() == 0) { if (getPosition()) return emitOpError("expected position to be empty with 0-D vector"); return success(); } if (dstVectorType.getRank() != 1) return emitOpError("unexpected >1 vector rank"); if (!getPosition()) return emitOpError("expected position for 1-D vector"); return success(); } OpFoldResult vector::InsertElementOp::fold(FoldAdaptor adaptor) { // Skip the 0-D vector here. if (!adaptor.getPosition()) return {}; auto src = dyn_cast_or_null(adaptor.getSource()); auto dst = dyn_cast_or_null(adaptor.getDest()); auto pos = dyn_cast_or_null(adaptor.getPosition()); if (!src || !dst || !pos) return {}; if (src.getType() != getDestVectorType().getElementType()) return {}; auto dstElements = dst.getValues(); SmallVector results(dstElements); uint64_t posIdx = pos.getInt(); if (posIdx >= results.size()) return {}; results[posIdx] = src; return DenseElementsAttr::get(getDestVectorType(), results); } //===----------------------------------------------------------------------===// // InsertOp //===----------------------------------------------------------------------===// void vector::InsertOp::inferResultRanges(ArrayRef argRanges, SetIntRangeFn setResultRanges) { setResultRanges(getResult(), argRanges[0].rangeUnion(argRanges[1])); } void vector::InsertOp::build(OpBuilder &builder, OperationState &result, Value source, Value dest, int64_t position) { build(builder, result, source, dest, ArrayRef{position}); } void vector::InsertOp::build(OpBuilder &builder, OperationState &result, Value source, Value dest, OpFoldResult position) { build(builder, result, source, dest, ArrayRef{position}); } void vector::InsertOp::build(OpBuilder &builder, OperationState &result, Value source, Value dest, ArrayRef position) { SmallVector posVals; posVals.reserve(position.size()); llvm::transform(position, std::back_inserter(posVals), [&](int64_t pos) { return builder.getI64IntegerAttr(pos); }); build(builder, result, source, dest, posVals); } void vector::InsertOp::build(OpBuilder &builder, OperationState &result, Value source, Value dest, ArrayRef position) { SmallVector staticPos; SmallVector dynamicPos; dispatchIndexOpFoldResults(position, dynamicPos, staticPos); build(builder, result, source, dest, dynamicPos, builder.getDenseI64ArrayAttr(staticPos)); } LogicalResult InsertOp::verify() { SmallVector position = getMixedPosition(); auto destVectorType = getDestVectorType(); if (position.size() > static_cast(destVectorType.getRank())) return emitOpError( "expected position attribute of rank no greater than dest vector rank"); auto srcVectorType = llvm::dyn_cast(getSourceType()); if (srcVectorType && (static_cast(srcVectorType.getRank()) + position.size() != static_cast(destVectorType.getRank()))) return emitOpError("expected position attribute rank + source rank to " "match dest vector rank"); if (!srcVectorType && (position.size() != static_cast(destVectorType.getRank()))) return emitOpError( "expected position attribute rank to match the dest vector rank"); for (auto [idx, pos] : llvm::enumerate(position)) { if (auto attr = pos.dyn_cast()) { int64_t constIdx = cast(attr).getInt(); if (!isValidPositiveIndexOrPoison(constIdx, kPoisonIndex, destVectorType.getDimSize(idx))) { return emitOpError("expected position attribute #") << (idx + 1) << " to be a non-negative integer smaller than the " "corresponding " "dest vector dimension"; } } } return success(); } namespace { // If insertOp is only inserting unit dimensions it can be transformed to a // broadcast. class InsertToBroadcast final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(InsertOp insertOp, PatternRewriter &rewriter) const override { auto srcVecType = llvm::dyn_cast(insertOp.getSourceType()); if (!srcVecType || insertOp.getDestVectorType().getNumElements() != srcVecType.getNumElements()) return failure(); rewriter.replaceOpWithNewOp( insertOp, insertOp.getDestVectorType(), insertOp.getSource()); return success(); } }; /// Pattern to rewrite a InsertOp(SplatOp, SplatOp) to SplatOp. class InsertSplatToSplat final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(InsertOp op, PatternRewriter &rewriter) const override { auto srcSplat = op.getSource().getDefiningOp(); auto dstSplat = op.getDest().getDefiningOp(); if (!srcSplat || !dstSplat) return failure(); if (srcSplat.getInput() != dstSplat.getInput()) return failure(); rewriter.replaceOpWithNewOp(op, op.getType(), srcSplat.getInput()); return success(); } }; // Pattern to rewrite a InsertOp(ConstantOp into ConstantOp) -> ConstantOp. class InsertOpConstantFolder final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; // Do not create constants with more than `vectorSizeFoldThreashold` elements, // unless the source vector constant has a single use. static constexpr int64_t vectorSizeFoldThreshold = 256; LogicalResult matchAndRewrite(InsertOp op, PatternRewriter &rewriter) const override { // TODO: Canonicalization for dynamic position not implemented yet. if (op.hasDynamicPosition()) return failure(); // Return if 'InsertOp' operand is not defined by a compatible vector // ConstantOp. TypedValue destVector = op.getDest(); Attribute vectorDestCst; if (!matchPattern(destVector, m_Constant(&vectorDestCst))) return failure(); auto denseDest = llvm::dyn_cast(vectorDestCst); if (!denseDest) return failure(); VectorType destTy = destVector.getType(); if (destTy.isScalable()) return failure(); // Make sure we do not create too many large constants. if (destTy.getNumElements() > vectorSizeFoldThreshold && !destVector.hasOneUse()) return failure(); Value sourceValue = op.getSource(); Attribute sourceCst; if (!matchPattern(sourceValue, m_Constant(&sourceCst))) return failure(); // Calculate the linearized position of the continuous chunk of elements to // insert. llvm::SmallVector completePositions(destTy.getRank(), 0); copy(op.getStaticPosition(), completePositions.begin()); int64_t insertBeginPosition = linearize(completePositions, computeStrides(destTy.getShape())); SmallVector insertedValues; Type destEltType = destTy.getElementType(); // The `convertIntegerAttr` method specifically handles the case // for `llvm.mlir.constant` which can hold an attribute with a // different type than the return type. if (auto denseSource = llvm::dyn_cast(sourceCst)) { for (auto value : denseSource.getValues()) insertedValues.push_back(convertIntegerAttr(value, destEltType)); } else { insertedValues.push_back(convertIntegerAttr(sourceCst, destEltType)); } auto allValues = llvm::to_vector(denseDest.getValues()); copy(insertedValues, allValues.begin() + insertBeginPosition); auto newAttr = DenseElementsAttr::get(destTy, allValues); rewriter.replaceOpWithNewOp(op, newAttr); return success(); } private: /// Converts the expected type to an IntegerAttr if there's /// a mismatch. Attribute convertIntegerAttr(Attribute attr, Type expectedType) const { if (auto intAttr = mlir::dyn_cast(attr)) { if (intAttr.getType() != expectedType) return IntegerAttr::get(expectedType, intAttr.getInt()); } return attr; } }; } // namespace void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); results.add(canonicalizePoisonIndexInsertExtractOp); } OpFoldResult vector::InsertOp::fold(FoldAdaptor adaptor) { // Fold "vector.insert %v, %dest [] : vector<2x2xf32> from vector<2x2xf32>" to // %v. Note: Do not fold "vector.insert %v, %dest [] : f32 into vector" // (type mismatch). if (getNumIndices() == 0 && getSourceType() == getType()) return getSource(); if (auto res = foldPoisonIndexInsertExtractOp( getContext(), adaptor.getStaticPosition(), kPoisonIndex)) return res; return {}; } //===----------------------------------------------------------------------===// // InsertStridedSliceOp //===----------------------------------------------------------------------===// void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result, Value source, Value dest, ArrayRef offsets, ArrayRef strides) { result.addOperands({source, dest}); auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); auto stridesAttr = getVectorSubscriptAttr(builder, strides); result.addTypes(dest.getType()); result.addAttribute(InsertStridedSliceOp::getOffsetsAttrName(result.name), offsetsAttr); result.addAttribute(InsertStridedSliceOp::getStridesAttrName(result.name), stridesAttr); } // TODO: Should be moved to Tablegen ConfinedAttr attributes. template static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op, ArrayAttr arrayAttr, ArrayRef shape, StringRef attrName) { if (arrayAttr.size() > shape.size()) return op.emitOpError("expected ") << attrName << " attribute of rank no greater than vector rank"; return success(); } // Returns true if all integers in `arrayAttr` are in the half-open [min, max} // interval. If `halfOpen` is true then the admissible interval is [min, max). // Otherwise, the admissible interval is [min, max]. template static LogicalResult isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min, int64_t max, StringRef attrName, bool halfOpen = true) { for (auto attr : arrayAttr) { auto val = llvm::cast(attr).getInt(); auto upper = max; if (!halfOpen) upper += 1; if (val < min || val >= upper) return op.emitOpError("expected ") << attrName << " to be confined to [" << min << ", " << upper << ")"; } return success(); } // Returns true if all integers in `arrayAttr` are in the half-open [min, max} // interval. If `halfOpen` is true then the admissible interval is [min, max). // Otherwise, the admissible interval is [min, max]. template static LogicalResult isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr, ArrayRef shape, StringRef attrName, bool halfOpen = true, int64_t min = 0) { for (auto [index, attrDimPair] : llvm::enumerate(llvm::zip_first(arrayAttr, shape))) { int64_t val = llvm::cast(std::get<0>(attrDimPair)).getInt(); int64_t max = std::get<1>(attrDimPair); if (!halfOpen) max += 1; if (val < min || val >= max) return op.emitOpError("expected ") << attrName << " dimension " << index << " to be confined to [" << min << ", " << max << ")"; } return success(); } // Returns true if, for all indices i = 0..shape.size()-1, val is in the // [min, max} interval: // val = `arrayAttr1[i]` + `arrayAttr2[i]`, // If `halfOpen` is true then the admissible interval is [min, max). Otherwise, // the admissible interval is [min, max]. template static LogicalResult isSumOfIntegerArrayAttrConfinedToShape( OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2, ArrayRef shape, StringRef attrName1, StringRef attrName2, bool halfOpen = true, int64_t min = 1) { assert(arrayAttr1.size() <= shape.size()); assert(arrayAttr2.size() <= shape.size()); for (auto [index, it] : llvm::enumerate(llvm::zip(arrayAttr1, arrayAttr2, shape))) { auto val1 = llvm::cast(std::get<0>(it)).getInt(); auto val2 = llvm::cast(std::get<1>(it)).getInt(); int64_t max = std::get<2>(it); if (!halfOpen) max += 1; if (val1 + val2 < 0 || val1 + val2 >= max) return op.emitOpError("expected sum(") << attrName1 << ", " << attrName2 << ") dimension " << index << " to be confined to [" << min << ", " << max << ")"; } return success(); } static ArrayAttr makeI64ArrayAttr(ArrayRef values, MLIRContext *context) { auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute { return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v)); }); return ArrayAttr::get(context, llvm::to_vector<8>(attrs)); } LogicalResult InsertStridedSliceOp::verify() { auto sourceVectorType = getSourceVectorType(); auto destVectorType = getDestVectorType(); auto offsets = getOffsetsAttr(); auto strides = getStridesAttr(); if (offsets.size() != static_cast(destVectorType.getRank())) return emitOpError( "expected offsets of same size as destination vector rank"); if (strides.size() != static_cast(sourceVectorType.getRank())) return emitOpError("expected strides of same size as source vector rank"); if (sourceVectorType.getRank() > destVectorType.getRank()) return emitOpError( "expected source rank to be no greater than destination rank"); auto sourceShape = sourceVectorType.getShape(); auto destShape = destVectorType.getShape(); SmallVector sourceShapeAsDestShape( destShape.size() - sourceShape.size(), 0); sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end()); auto offName = InsertStridedSliceOp::getOffsetsAttrName(); auto stridesName = InsertStridedSliceOp::getStridesAttrName(); if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape, offName)) || failed(isIntegerArrayAttrConfinedToRange(*this, strides, /*min=*/1, /*max=*/1, stridesName, /*halfOpen=*/false)) || failed(isSumOfIntegerArrayAttrConfinedToShape( *this, offsets, makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape, offName, "source vector shape", /*halfOpen=*/false, /*min=*/1))) return failure(); unsigned rankDiff = destShape.size() - sourceShape.size(); for (unsigned idx = 0; idx < sourceShape.size(); ++idx) { if (sourceVectorType.getScalableDims()[idx] != destVectorType.getScalableDims()[idx + rankDiff]) { return emitOpError("mismatching scalable flags (at source vector idx=") << idx << ")"; } if (sourceVectorType.getScalableDims()[idx]) { auto sourceSize = sourceShape[idx]; auto destSize = destShape[idx + rankDiff]; if (sourceSize != destSize) { return emitOpError("expected size at idx=") << idx << (" to match the corresponding base size from the input " "vector (") << sourceSize << (" vs ") << destSize << (")"); } } } return success(); } namespace { /// Pattern to rewrite an InsertStridedSliceOp(SplatOp(X):src_type, /// SplatOp(X):dst_type) to SplatOp(X):dst_type. class FoldInsertStridedSliceSplat final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp, PatternRewriter &rewriter) const override { auto srcSplatOp = insertStridedSliceOp.getSource().getDefiningOp(); auto destSplatOp = insertStridedSliceOp.getDest().getDefiningOp(); if (!srcSplatOp || !destSplatOp) return failure(); if (srcSplatOp.getInput() != destSplatOp.getInput()) return failure(); rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest()); return success(); } }; /// Pattern to rewrite an InsertStridedSliceOp(ExtractStridedSliceOp(dst), dst) /// to dst. class FoldInsertStridedSliceOfExtract final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp, PatternRewriter &rewriter) const override { auto extractStridedSliceOp = insertStridedSliceOp.getSource() .getDefiningOp(); if (!extractStridedSliceOp) return failure(); if (extractStridedSliceOp.getOperand() != insertStridedSliceOp.getDest()) return failure(); // Check if have the same strides and offsets. if (extractStridedSliceOp.getStrides() != insertStridedSliceOp.getStrides() || extractStridedSliceOp.getOffsets() != insertStridedSliceOp.getOffsets()) return failure(); rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest()); return success(); } }; // Pattern to rewrite an InsertStridedSliceOp(ConstantOp into ConstantOp) -> // ConstantOp. class InsertStridedSliceConstantFolder final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; // Do not create constants with more than `vectorSizeFoldThreashold` elements, // unless the source vector constant has a single use. static constexpr int64_t vectorSizeFoldThreshold = 256; LogicalResult matchAndRewrite(InsertStridedSliceOp op, PatternRewriter &rewriter) const override { // Return if 'InsertOp' operand is not defined by a compatible vector // ConstantOp. TypedValue destVector = op.getDest(); Attribute vectorDestCst; if (!matchPattern(destVector, m_Constant(&vectorDestCst))) return failure(); VectorType destTy = destVector.getType(); if (destTy.isScalable()) return failure(); // Make sure we do not create too many large constants. if (destTy.getNumElements() > vectorSizeFoldThreshold && !destVector.hasOneUse()) return failure(); auto denseDest = llvm::cast(vectorDestCst); TypedValue sourceValue = op.getSource(); Attribute sourceCst; if (!matchPattern(sourceValue, m_Constant(&sourceCst))) return failure(); // TODO: Handle non-unit strides when they become available. if (op.hasNonUnitStrides()) return failure(); VectorType sliceVecTy = sourceValue.getType(); ArrayRef sliceShape = sliceVecTy.getShape(); int64_t rankDifference = destTy.getRank() - sliceVecTy.getRank(); SmallVector offsets = getI64SubArray(op.getOffsets()); SmallVector destStrides = computeStrides(destTy.getShape()); // Calcualte the destination element indices by enumerating all slice // positions within the destination and linearizing them. The enumeration // order is lexicographic which yields a sequence of monotonically // increasing linearized position indices. // Because the destination may have higher dimensionality then the slice, // we keep track of two overlapping sets of positions and offsets. auto denseSlice = llvm::cast(sourceCst); auto sliceValuesIt = denseSlice.value_begin(); auto newValues = llvm::to_vector(denseDest.getValues()); SmallVector currDestPosition(offsets.begin(), offsets.end()); MutableArrayRef currSlicePosition( currDestPosition.begin() + rankDifference, currDestPosition.end()); ArrayRef sliceOffsets(offsets.begin() + rankDifference, offsets.end()); do { int64_t linearizedPosition = linearize(currDestPosition, destStrides); assert(linearizedPosition < destTy.getNumElements() && "Invalid index"); assert(sliceValuesIt != denseSlice.value_end() && "Invalid slice element"); newValues[linearizedPosition] = *sliceValuesIt; ++sliceValuesIt; } while (succeeded( incSlicePosition(currSlicePosition, sliceShape, sliceOffsets))); auto newAttr = DenseElementsAttr::get(destTy, newValues); rewriter.replaceOpWithNewOp(op, newAttr); return success(); } }; } // namespace void vector::InsertStridedSliceOp::getCanonicalizationPatterns( RewritePatternSet &results, MLIRContext *context) { results.add(context); } OpFoldResult InsertStridedSliceOp::fold(FoldAdaptor adaptor) { if (getSourceVectorType() == getDestVectorType()) return getSource(); return {}; } //===----------------------------------------------------------------------===// // OuterProductOp //===----------------------------------------------------------------------===// /// Build an op without mask, use the type of `acc` as the return type. void OuterProductOp::build(OpBuilder &builder, OperationState &result, Value lhs, Value rhs, Value acc) { result.addOperands({lhs, rhs, acc}); result.addTypes(acc.getType()); } void OuterProductOp::print(OpAsmPrinter &p) { p << " " << getLhs() << ", " << getRhs(); if (getAcc()) { p << ", " << getAcc(); p.printOptionalAttrDict((*this)->getAttrs()); } p << " : " << getLhs().getType() << ", " << getRhs().getType(); } ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) { SmallVector operandsInfo; Type tLHS, tRHS; if (parser.parseOperandList(operandsInfo) || parser.parseOptionalAttrDict(result.attributes) || parser.parseColonType(tLHS) || parser.parseComma() || parser.parseType(tRHS)) return failure(); if (operandsInfo.size() < 2) return parser.emitError(parser.getNameLoc(), "expected at least 2 operands"); VectorType vLHS = llvm::dyn_cast(tLHS); VectorType vRHS = llvm::dyn_cast(tRHS); if (!vLHS) return parser.emitError(parser.getNameLoc(), "expected vector type for operand #1"); VectorType resType; if (vRHS) { SmallVector scalableDimsRes{vLHS.getScalableDims()[0], vRHS.getScalableDims()[0]}; resType = VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)}, vLHS.getElementType(), scalableDimsRes); } else { // Scalar RHS operand SmallVector scalableDimsRes{vLHS.getScalableDims()[0]}; resType = VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType(), scalableDimsRes); } if (!result.attributes.get(OuterProductOp::getKindAttrName(result.name))) { result.attributes.append( OuterProductOp::getKindAttrName(result.name), CombiningKindAttr::get(result.getContext(), OuterProductOp::getDefaultKind())); } return failure( parser.resolveOperand(operandsInfo[0], tLHS, result.operands) || parser.resolveOperand(operandsInfo[1], tRHS, result.operands) || (operandsInfo.size() > 2 && parser.resolveOperand(operandsInfo[2], resType, result.operands)) || parser.addTypeToList(resType, result.types)); } LogicalResult OuterProductOp::verify() { Type tRHS = getOperandTypeRHS(); VectorType vLHS = getOperandVectorTypeLHS(), vRHS = llvm::dyn_cast(tRHS), vACC = getOperandVectorTypeACC(), vRES = getResultVectorType(); if (vLHS.getRank() != 1) return emitOpError("expected 1-d vector for operand #1"); if (vRHS) { // Proper OUTER operation. if (vRHS.getRank() != 1) return emitOpError("expected 1-d vector for operand #2"); if (vRES.getRank() != 2) return emitOpError("expected 2-d vector result"); if (vLHS.getDimSize(0) != vRES.getDimSize(0)) return emitOpError("expected #1 operand dim to match result dim #1"); if (vRHS.getDimSize(0) != vRES.getDimSize(1)) return emitOpError("expected #2 operand dim to match result dim #2"); if (vLHS.isScalable() && !vRHS.isScalable()) { // This restriction reflects what's currently supported in terms of // scalable vectors. However, we could relax this if there's a use case. return emitOpError( "expected either both or only #2 operand dim to be scalable"); } } else { // An AXPY operation. if (vRES.getRank() != 1) return emitOpError("expected 1-d vector result"); if (vLHS.getDimSize(0) != vRES.getDimSize(0)) return emitOpError("expected #1 operand dim to match result dim #1"); } if (vACC && vACC != vRES) return emitOpError("expected operand #3 of same type as result type"); // Verify supported combining kind. if (!isSupportedCombiningKind(getKind(), vRES.getElementType())) return emitOpError("unsupported outerproduct type"); return success(); } // MaskableOpInterface methods. /// Returns the mask type expected by this operation. Mostly used for /// verification purposes. It requires the operation to be vectorized." Type OuterProductOp::getExpectedMaskType() { auto vecType = this->getResultVectorType(); return VectorType::get(vecType.getShape(), IntegerType::get(vecType.getContext(), /*width=*/1), vecType.getScalableDims()); } //===----------------------------------------------------------------------===// // ExtractStridedSliceOp //===----------------------------------------------------------------------===// // Inference works as follows: // 1. Add 'sizes' from prefix of dims in 'offsets'. // 2. Add sizes from 'vectorType' for remaining dims. // Scalable flags are inherited from 'vectorType'. static Type inferStridedSliceOpResultType(VectorType vectorType, ArrayAttr offsets, ArrayAttr sizes, ArrayAttr strides) { assert(offsets.size() == sizes.size() && offsets.size() == strides.size()); SmallVector shape; shape.reserve(vectorType.getRank()); unsigned idx = 0; for (unsigned e = offsets.size(); idx < e; ++idx) shape.push_back(llvm::cast(sizes[idx]).getInt()); for (unsigned e = vectorType.getShape().size(); idx < e; ++idx) shape.push_back(vectorType.getShape()[idx]); return VectorType::get(shape, vectorType.getElementType(), vectorType.getScalableDims()); } void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result, Value source, ArrayRef offsets, ArrayRef sizes, ArrayRef strides) { result.addOperands(source); auto offsetsAttr = getVectorSubscriptAttr(builder, offsets); auto sizesAttr = getVectorSubscriptAttr(builder, sizes); auto stridesAttr = getVectorSubscriptAttr(builder, strides); result.addTypes( inferStridedSliceOpResultType(llvm::cast(source.getType()), offsetsAttr, sizesAttr, stridesAttr)); result.addAttribute(ExtractStridedSliceOp::getOffsetsAttrName(result.name), offsetsAttr); result.addAttribute(ExtractStridedSliceOp::getSizesAttrName(result.name), sizesAttr); result.addAttribute(ExtractStridedSliceOp::getStridesAttrName(result.name), stridesAttr); } LogicalResult ExtractStridedSliceOp::verify() { auto type = getSourceVectorType(); auto offsets = getOffsetsAttr(); auto sizes = getSizesAttr(); auto strides = getStridesAttr(); if (offsets.size() != sizes.size() || offsets.size() != strides.size()) return emitOpError( "expected offsets, sizes and strides attributes of same size"); auto shape = type.getShape(); auto offName = getOffsetsAttrName(); auto sizesName = getSizesAttrName(); auto stridesName = getStridesAttrName(); if (failed( isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) || failed( isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) || failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape, stridesName)) || failed( isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) || failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName, /*halfOpen=*/false, /*min=*/1)) || failed(isIntegerArrayAttrConfinedToRange(*this, strides, /*min=*/1, /*max=*/1, stridesName, /*halfOpen=*/false)) || failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes, shape, offName, sizesName, /*halfOpen=*/false))) return failure(); auto resultType = inferStridedSliceOpResultType(getSourceVectorType(), offsets, sizes, strides); if (getResult().getType() != resultType) return emitOpError("expected result type to be ") << resultType; for (unsigned idx = 0; idx < sizes.size(); ++idx) { if (type.getScalableDims()[idx]) { auto inputDim = type.getShape()[idx]; auto inputSize = llvm::cast(sizes[idx]).getInt(); if (inputDim != inputSize) return emitOpError("expected size at idx=") << idx << (" to match the corresponding base size from the input " "vector (") << inputSize << (" vs ") << inputDim << (")"); } } return success(); } // When the source of ExtractStrided comes from a chain of InsertStrided ops try // to use the source of the InsertStrided ops if we can detect that the // extracted vector is a subset of one of the vector inserted. static LogicalResult foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) { // Helper to extract integer out of ArrayAttr. auto getElement = [](ArrayAttr array, int idx) { return llvm::cast(array[idx]).getInt(); }; ArrayAttr extractOffsets = op.getOffsets(); ArrayAttr extractStrides = op.getStrides(); ArrayAttr extractSizes = op.getSizes(); auto insertOp = op.getVector().getDefiningOp(); while (insertOp) { if (op.getSourceVectorType().getRank() != insertOp.getSourceVectorType().getRank()) return failure(); ArrayAttr insertOffsets = insertOp.getOffsets(); ArrayAttr insertStrides = insertOp.getStrides(); // If the rank of extract is greater than the rank of insert, we are likely // extracting a partial chunk of the vector inserted. if (extractOffsets.size() > insertOffsets.size()) return failure(); bool patialoverlap = false; bool disjoint = false; SmallVector offsetDiffs; for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) { if (getElement(extractStrides, dim) != getElement(insertStrides, dim)) return failure(); int64_t start = getElement(insertOffsets, dim); int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim); int64_t offset = getElement(extractOffsets, dim); int64_t size = getElement(extractSizes, dim); // Check if the start of the extract offset is in the interval inserted. if (start <= offset && offset < end) { // If the extract interval overlaps but is not fully included we may // have a partial overlap that will prevent any folding. if (offset + size > end) patialoverlap = true; offsetDiffs.push_back(offset - start); continue; } disjoint = true; break; } // The extract element chunk is a subset of the insert element. if (!disjoint && !patialoverlap) { op.setOperand(insertOp.getSource()); // OpBuilder is only used as a helper to build an I64ArrayAttr. OpBuilder b(op.getContext()); op.setOffsetsAttr(b.getI64ArrayAttr(offsetDiffs)); return success(); } // If the chunk extracted is disjoint from the chunk inserted, keep looking // in the insert chain. if (disjoint) insertOp = insertOp.getDest().getDefiningOp(); else { // The extracted vector partially overlap the inserted vector, we cannot // fold. return failure(); } } return failure(); } OpFoldResult ExtractStridedSliceOp::fold(FoldAdaptor adaptor) { if (getSourceVectorType() == getResult().getType()) return getVector(); if (succeeded(foldExtractStridedOpFromInsertChain(*this))) return getResult(); return {}; } void ExtractStridedSliceOp::getOffsets(SmallVectorImpl &results) { populateFromInt64AttrArray(getOffsets(), results); } namespace { // Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to // ConstantMaskOp. class StridedSliceConstantMaskFolder final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, PatternRewriter &rewriter) const override { // Return if 'extractStridedSliceOp' operand is not defined by a // ConstantMaskOp. auto *defOp = extractStridedSliceOp.getVector().getDefiningOp(); auto constantMaskOp = dyn_cast_or_null(defOp); if (!constantMaskOp) return failure(); // Return if 'extractStridedSliceOp' has non-unit strides. if (extractStridedSliceOp.hasNonUnitStrides()) return failure(); // Gather constant mask dimension sizes. ArrayRef maskDimSizes = constantMaskOp.getMaskDimSizes(); // Gather strided slice offsets and sizes. SmallVector sliceOffsets; populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(), sliceOffsets); SmallVector sliceSizes; populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes); // Compute slice of vector mask region. SmallVector sliceMaskDimSizes; sliceMaskDimSizes.reserve(maskDimSizes.size()); for (auto [maskDimSize, sliceOffset, sliceSize] : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) { int64_t sliceMaskDimSize = std::max( static_cast(0), std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset); sliceMaskDimSizes.push_back(sliceMaskDimSize); } // Add unchanged dimensions. if (sliceMaskDimSizes.size() < maskDimSizes.size()) for (size_t i = sliceMaskDimSizes.size(); i < maskDimSizes.size(); ++i) sliceMaskDimSizes.push_back(maskDimSizes[i]); // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked // region is a conjunction of mask dim intervals). if (llvm::is_contained(sliceMaskDimSizes, 0)) sliceMaskDimSizes.assign(maskDimSizes.size(), 0); // Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask // region. rewriter.replaceOpWithNewOp( extractStridedSliceOp, extractStridedSliceOp.getResult().getType(), sliceMaskDimSizes); return success(); } }; // Pattern to rewrite a ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp. class StridedSliceSplatConstantFolder final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, PatternRewriter &rewriter) const override { // Return if 'ExtractStridedSliceOp' operand is not defined by a splat // ConstantOp. Value sourceVector = extractStridedSliceOp.getVector(); Attribute vectorCst; if (!matchPattern(sourceVector, m_Constant(&vectorCst))) return failure(); auto splat = llvm::dyn_cast(vectorCst); if (!splat) return failure(); auto newAttr = SplatElementsAttr::get(extractStridedSliceOp.getType(), splat.getSplatValue()); rewriter.replaceOpWithNewOp(extractStridedSliceOp, newAttr); return success(); } }; // Pattern to rewrite a ExtractStridedSliceOp(non-splat ConstantOp) -> // ConstantOp. class StridedSliceNonSplatConstantFolder final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp, PatternRewriter &rewriter) const override { // Return if 'ExtractStridedSliceOp' operand is not defined by a non-splat // ConstantOp. Value sourceVector = extractStridedSliceOp.getVector(); Attribute vectorCst; if (!matchPattern(sourceVector, m_Constant(&vectorCst))) return failure(); // The splat case is handled by `StridedSliceSplatConstantFolder`. auto dense = llvm::dyn_cast(vectorCst); if (!dense || dense.isSplat()) return failure(); // TODO: Handle non-unit strides when they become available. if (extractStridedSliceOp.hasNonUnitStrides()) return failure(); auto sourceVecTy = llvm::cast(sourceVector.getType()); ArrayRef sourceShape = sourceVecTy.getShape(); SmallVector sourceStrides = computeStrides(sourceShape); VectorType sliceVecTy = extractStridedSliceOp.getType(); ArrayRef sliceShape = sliceVecTy.getShape(); int64_t sliceRank = sliceVecTy.getRank(); // Expand offsets and sizes to match the vector rank. SmallVector offsets(sliceRank, 0); copy(getI64SubArray(extractStridedSliceOp.getOffsets()), offsets.begin()); SmallVector sizes(sourceShape); copy(getI64SubArray(extractStridedSliceOp.getSizes()), sizes.begin()); // Calculate the slice elements by enumerating all slice positions and // linearizing them. The enumeration order is lexicographic which yields a // sequence of monotonically increasing linearized position indices. auto denseValuesBegin = dense.value_begin(); SmallVector sliceValues; sliceValues.reserve(sliceVecTy.getNumElements()); SmallVector currSlicePosition(offsets.begin(), offsets.end()); do { int64_t linearizedPosition = linearize(currSlicePosition, sourceStrides); assert(linearizedPosition < sourceVecTy.getNumElements() && "Invalid index"); sliceValues.push_back(*(denseValuesBegin + linearizedPosition)); } while ( succeeded(incSlicePosition(currSlicePosition, sliceShape, offsets))); assert(static_cast(sliceValues.size()) == sliceVecTy.getNumElements() && "Invalid number of slice elements"); auto newAttr = DenseElementsAttr::get(sliceVecTy, sliceValues); rewriter.replaceOpWithNewOp(extractStridedSliceOp, newAttr); return success(); } }; // Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to // BroadcastOp(ExtractStrideSliceOp). class StridedSliceBroadcast final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ExtractStridedSliceOp op, PatternRewriter &rewriter) const override { auto broadcast = op.getVector().getDefiningOp(); if (!broadcast) return failure(); auto srcVecType = llvm::dyn_cast(broadcast.getSource().getType()); unsigned srcRank = srcVecType ? srcVecType.getRank() : 0; auto dstVecType = llvm::cast(op.getType()); unsigned dstRank = dstVecType.getRank(); unsigned rankDiff = dstRank - srcRank; // Check if the most inner dimensions of the source of the broadcast are the // same as the destination of the extract. If this is the case we can just // use a broadcast as the original dimensions are untouched. bool lowerDimMatch = true; for (unsigned i = 0; i < srcRank; i++) { if (srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) { lowerDimMatch = false; break; } } Value source = broadcast.getSource(); // If the inner dimensions don't match, it means we need to extract from the // source of the orignal broadcast and then broadcast the extracted value. // We also need to handle degenerated cases where the source is effectively // just a single scalar. bool isScalarSrc = (srcRank == 0 || srcVecType.getNumElements() == 1); if (!lowerDimMatch && !isScalarSrc) { source = rewriter.create( op->getLoc(), source, getI64SubArray(op.getOffsets(), /* dropFront=*/rankDiff), getI64SubArray(op.getSizes(), /* dropFront=*/rankDiff), getI64SubArray(op.getStrides(), /* dropFront=*/rankDiff)); } rewriter.replaceOpWithNewOp(op, op.getType(), source); return success(); } }; /// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp. class StridedSliceSplat final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ExtractStridedSliceOp op, PatternRewriter &rewriter) const override { auto splat = op.getVector().getDefiningOp(); if (!splat) return failure(); rewriter.replaceOpWithNewOp(op, op.getType(), splat.getInput()); return success(); } }; /// Pattern to rewrite simple cases of N-D extract_strided_slice, where the /// slice is contiguous, into extract and shape_cast. /// /// Example: /// Before: /// %1 = vector.extract_strided_slice %arg0 { /// offsets = [0, 0, 0, 0, 0], /// sizes = [1, 1, 1, 1, 8], /// strides = [1, 1, 1, 1, 1] /// } : vector<8x1x1x2x8xi8> to vector<1x1x1x1x8xi8> /// After: /// %0 = vector.extract %arg0[0, 0, 0, 0] /// : vector<8xi8> from vector<8x1x1x2x8xi8> /// %1 = vector.shape_cast %0 /// : vector<8xi8> to vector<1x1x1x1x8xi8> /// class ContiguousExtractStridedSliceToExtract final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ExtractStridedSliceOp op, PatternRewriter &rewriter) const override { if (op.hasNonUnitStrides()) return failure(); Value source = op.getOperand(); auto sourceType = cast(source.getType()); if (sourceType.isScalable() || sourceType.getRank() == 0) return failure(); // Compute the number of offsets to pass to ExtractOp::build. That is the // difference between the source rank and the desired slice rank. We walk // the dimensions from innermost out, and stop when the next slice dimension // is not full-size. SmallVector sizes = getI64SubArray(op.getSizes()); int numOffsets; for (numOffsets = sizes.size(); numOffsets > 0; --numOffsets) { if (sizes[numOffsets - 1] != sourceType.getDimSize(numOffsets - 1)) break; } // If the created extract op would have no offsets, then this whole // extract_strided_slice is the identity and should have been handled by // other canonicalizations. if (numOffsets == 0) return failure(); // If not even the inner-most dimension is full-size, this op can't be // rewritten as an ExtractOp. if (numOffsets == sourceType.getRank() && static_cast(sizes.size()) == sourceType.getRank()) return failure(); // The outer dimensions must have unit size. for (int i = 0; i < numOffsets; ++i) { if (sizes[i] != 1) return failure(); } // Avoid generating slices that have leading unit dimensions. The shape_cast // op that we create below would take bad generic fallback patterns // (ShapeCastOpRewritePattern). while (sizes[numOffsets] == 1 && numOffsets < static_cast(sizes.size()) - 1) { ++numOffsets; } SmallVector offsets = getI64SubArray(op.getOffsets()); auto extractOffsets = ArrayRef(offsets).take_front(numOffsets); Value extract = rewriter.create(op->getLoc(), source, extractOffsets); rewriter.replaceOpWithNewOp(op, op.getType(), extract); return success(); } }; } // namespace void ExtractStridedSliceOp::getCanonicalizationPatterns( RewritePatternSet &results, MLIRContext *context) { // Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) -> // ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp. results.add( context); } //===----------------------------------------------------------------------===// // TransferReadOp //===----------------------------------------------------------------------===// /// 1. Builder that sets padding to zero and an empty mask (variant with attrs). void TransferReadOp::build(OpBuilder &builder, OperationState &result, VectorType vectorType, Value source, ValueRange indices, AffineMapAttr permutationMapAttr, /*optional*/ ArrayAttr inBoundsAttr) { Type elemType = llvm::cast(source.getType()).getElementType(); Value padding = builder.create( result.location, elemType, builder.getZeroAttr(elemType)); build(builder, result, vectorType, source, indices, permutationMapAttr, padding, /*mask=*/Value(), inBoundsAttr); } /// 2. Builder that sets padding to zero an empty mask (variant without attrs). void TransferReadOp::build(OpBuilder &builder, OperationState &result, VectorType vectorType, Value source, ValueRange indices, AffineMap permutationMap, std::optional> inBounds) { auto permutationMapAttr = AffineMapAttr::get(permutationMap); auto inBoundsAttr = (inBounds && !inBounds.value().empty()) ? builder.getBoolArrayAttr(inBounds.value()) : builder.getBoolArrayAttr( SmallVector(vectorType.getRank(), false)); build(builder, result, vectorType, source, indices, permutationMapAttr, inBoundsAttr); } /// 3. Builder that sets permutation map to 'getMinorIdentityMap'. void TransferReadOp::build(OpBuilder &builder, OperationState &result, VectorType vectorType, Value source, ValueRange indices, Value padding, std::optional> inBounds) { AffineMap permutationMap = getTransferMinorIdentityMap( llvm::cast(source.getType()), vectorType); auto permutationMapAttr = AffineMapAttr::get(permutationMap); auto inBoundsAttr = (inBounds && !inBounds.value().empty()) ? builder.getBoolArrayAttr(inBounds.value()) : builder.getBoolArrayAttr( SmallVector(vectorType.getRank(), false)); build(builder, result, vectorType, source, indices, permutationMapAttr, padding, /*mask=*/Value(), inBoundsAttr); } /// 4. Builder that sets padding to zero and permutation map to /// 'getMinorIdentityMap'. void TransferReadOp::build(OpBuilder &builder, OperationState &result, VectorType vectorType, Value source, ValueRange indices, std::optional> inBounds) { Type elemType = llvm::cast(source.getType()).getElementType(); Value padding = builder.create( result.location, elemType, builder.getZeroAttr(elemType)); build(builder, result, vectorType, source, indices, padding, inBounds); } template static LogicalResult verifyPermutationMap(AffineMap permutationMap, EmitFun emitOpError) { SmallVector seen(permutationMap.getNumInputs(), false); for (auto expr : permutationMap.getResults()) { auto dim = dyn_cast(expr); auto zero = dyn_cast(expr); if (zero) { if (zero.getValue() != 0) { return emitOpError( "requires a projected permutation_map (at most one dim or the zero " "constant can appear in each result)"); } continue; } if (!dim) { return emitOpError("requires a projected permutation_map (at most one " "dim or the zero constant can appear in each result)"); } if (seen[dim.getPosition()]) { return emitOpError( "requires a permutation_map that is a permutation (found one dim " "used more than once)"); } seen[dim.getPosition()] = true; } return success(); } static LogicalResult verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType, VectorType vectorType, VectorType maskType, VectorType inferredMaskType, AffineMap permutationMap, ArrayAttr inBounds) { if (op->hasAttr("masked")) { return op->emitOpError("masked attribute has been removed. " "Use in_bounds instead."); } if (!llvm::isa(shapedType)) return op->emitOpError( "requires source to be a memref or ranked tensor type"); auto elementType = shapedType.getElementType(); DataLayout dataLayout = DataLayout::closest(op); if (auto vectorElementType = llvm::dyn_cast(elementType)) { // Memref or tensor has vector element type. unsigned sourceVecSize = dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) * vectorElementType.getShape().back(); unsigned resultVecSize = dataLayout.getTypeSizeInBits(vectorType.getElementType()) * vectorType.getShape().back(); if (resultVecSize % sourceVecSize != 0) return op->emitOpError( "requires the bitwidth of the minor 1-D vector to be an integral " "multiple of the bitwidth of the minor 1-D vector of the source"); unsigned sourceVecEltRank = vectorElementType.getRank(); unsigned resultVecRank = vectorType.getRank(); if (sourceVecEltRank > resultVecRank) return op->emitOpError( "requires source vector element and vector result ranks to match."); unsigned rankOffset = resultVecRank - sourceVecEltRank; // Check that permutation map results match 'rankOffset' of vector type. if (permutationMap.getNumResults() != rankOffset) return op->emitOpError("requires a permutation_map with result dims of " "the same rank as the vector type"); if (maskType) return op->emitOpError("does not support masks with vector element type"); } else { // Memref or tensor has scalar element type. unsigned minorSize = vectorType.getRank() == 0 ? 1 : vectorType.getShape().back(); unsigned resultVecSize = dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize; if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0) return op->emitOpError( "requires the bitwidth of the minor 1-D vector to be an integral " "multiple of the bitwidth of the source element type"); // Check that permutation map results match rank of vector type. if (permutationMap.getNumResults() != vectorType.getRank()) return op->emitOpError("requires a permutation_map with result dims of " "the same rank as the vector type"); } if (permutationMap.getNumSymbols() != 0) return op->emitOpError("requires permutation_map without symbols"); if (permutationMap.getNumInputs() != shapedType.getRank()) return op->emitOpError("requires a permutation_map with input dims of the " "same rank as the source type"); if (maskType && maskType != inferredMaskType) return op->emitOpError("inferred mask type (") << inferredMaskType << ") and mask operand type (" << maskType << ") don't match"; if (permutationMap.getNumResults() != static_cast(inBounds.size())) return op->emitOpError("expects the in_bounds attr of same rank " "as permutation_map results: ") << AffineMapAttr::get(permutationMap) << " vs inBounds of size: " << inBounds.size(); return success(); } static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) { SmallVector elidedAttrs; elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr()); if (op.getPermutationMap().isMinorIdentity()) elidedAttrs.push_back(op.getPermutationMapAttrName()); // Elide in_bounds attribute if all dims are out-of-bounds. if (llvm::none_of(op.getInBoundsValues(), [](bool b) { return b; })) elidedAttrs.push_back(op.getInBoundsAttrName()); p.printOptionalAttrDict(op->getAttrs(), elidedAttrs); } void TransferReadOp::print(OpAsmPrinter &p) { p << " " << getSource() << "[" << getIndices() << "], " << getPadding(); if (getMask()) p << ", " << getMask(); printTransferAttrs(p, *this); p << " : " << getShapedType() << ", " << getVectorType(); } VectorType mlir::vector::inferTransferOpMaskType(VectorType vecType, AffineMap permMap) { auto i1Type = IntegerType::get(permMap.getContext(), 1); AffineMap invPermMap = inversePermutation(compressUnusedDims(permMap)); assert(invPermMap && "Inversed permutation map couldn't be computed"); SmallVector maskShape = invPermMap.compose(vecType.getShape()); // The MaskOp specification doesn't support 0-D vectors at the moment. Turn a // 0-D mask into a single-element 1-D mask. if (maskShape.empty()) maskShape.push_back(1); SmallVector scalableDims = applyPermutationMap(invPermMap, vecType.getScalableDims()); return VectorType::get(maskShape, i1Type, scalableDims); } ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) { auto &builder = parser.getBuilder(); SMLoc typesLoc; OpAsmParser::UnresolvedOperand sourceInfo; SmallVector indexInfo; OpAsmParser::UnresolvedOperand paddingInfo; SmallVector types; OpAsmParser::UnresolvedOperand maskInfo; // Parsing with support for paddingValue. if (parser.parseOperand(sourceInfo) || parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) || parser.parseComma() || parser.parseOperand(paddingInfo)) return failure(); ParseResult hasMask = parser.parseOptionalComma(); if (hasMask.succeeded()) { if (parser.parseOperand(maskInfo)) return failure(); } if (parser.parseOptionalAttrDict(result.attributes) || parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) return failure(); if (types.size() != 2) return parser.emitError(typesLoc, "requires two types"); auto indexType = builder.getIndexType(); auto shapedType = llvm::dyn_cast(types[0]); if (!shapedType || !llvm::isa(shapedType)) return parser.emitError(typesLoc, "requires memref or ranked tensor type"); VectorType vectorType = llvm::dyn_cast(types[1]); if (!vectorType) return parser.emitError(typesLoc, "requires vector type"); auto permMapAttrName = TransferReadOp::getPermutationMapAttrName(result.name); Attribute permMapAttr = result.attributes.get(permMapAttrName); AffineMap permMap; if (!permMapAttr) { permMap = getTransferMinorIdentityMap(shapedType, vectorType); result.attributes.set(permMapAttrName, AffineMapAttr::get(permMap)); } else { permMap = llvm::cast(permMapAttr).getValue(); } auto inBoundsAttrName = TransferReadOp::getInBoundsAttrName(result.name); Attribute inBoundsAttr = result.attributes.get(inBoundsAttrName); if (!inBoundsAttr) { result.addAttribute(inBoundsAttrName, builder.getBoolArrayAttr( SmallVector(permMap.getNumResults(), false))); } if (parser.resolveOperand(sourceInfo, shapedType, result.operands) || parser.resolveOperands(indexInfo, indexType, result.operands) || parser.resolveOperand(paddingInfo, shapedType.getElementType(), result.operands)) return failure(); if (hasMask.succeeded()) { if (llvm::dyn_cast(shapedType.getElementType())) return parser.emitError( maskInfo.location, "does not support masks with vector element type"); if (vectorType.getRank() != permMap.getNumResults()) { return parser.emitError(typesLoc, "expected the same rank for the vector and the " "results of the permutation map"); } // Instead of adding the mask type as an op type, compute it based on the // vector type and the permutation map (to keep the type signature small). auto maskType = inferTransferOpMaskType(vectorType, permMap); if (parser.resolveOperand(maskInfo, maskType, result.operands)) return failure(); } result.addAttribute(TransferReadOp::getOperandSegmentSizeAttr(), builder.getDenseI32ArrayAttr( {1, static_cast(indexInfo.size()), 1, static_cast(hasMask.succeeded())})); return parser.addTypeToList(vectorType, result.types); } LogicalResult TransferReadOp::verify() { // Consistency of elemental types in source and vector. ShapedType shapedType = getShapedType(); VectorType vectorType = getVectorType(); VectorType maskType = getMaskType(); auto paddingType = getPadding().getType(); auto permutationMap = getPermutationMap(); VectorType inferredMaskType = maskType ? inferTransferOpMaskType(vectorType, permutationMap) : VectorType(); auto sourceElementType = shapedType.getElementType(); if (static_cast(getIndices().size()) != shapedType.getRank()) return emitOpError("requires ") << shapedType.getRank() << " indices"; if (failed(verifyTransferOp(cast(getOperation()), shapedType, vectorType, maskType, inferredMaskType, permutationMap, getInBounds()))) return failure(); if (auto sourceVectorElementType = llvm::dyn_cast(sourceElementType)) { // Source has vector element type. // Check that 'sourceVectorElementType' and 'paddingType' types match. if (sourceVectorElementType != paddingType) return emitOpError( "requires source element type and padding type to match."); } else { // Check that 'paddingType' is valid to store in a vector type. if (!VectorType::isValidElementType(paddingType)) return emitOpError("requires valid padding vector elemental type"); // Check that padding type and vector element types match. if (paddingType != sourceElementType) return emitOpError( "requires formal padding and source of the same elemental type"); } return verifyPermutationMap(permutationMap, [&](Twine t) { return emitOpError(t); }); } // MaskableOpInterface methods. /// Returns the mask type expected by this operation. Mostly used for /// verification purposes. It requires the operation to be vectorized." Type TransferReadOp::getExpectedMaskType() { return inferTransferOpMaskType(getVectorType(), getPermutationMap()); } template static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) { // TODO: support more aggressive createOrFold on: // op.getIndices()[indicesIdx] + vectorType < dim(op.getSource(), indicesIdx) if (op.getShapedType().isDynamicDim(indicesIdx)) return false; Value index = op.getIndices()[indicesIdx]; std::optional cstOp = getConstantIntValue(index); if (!cstOp.has_value()) return false; int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx); int64_t vectorSize = op.getVectorType().getDimSize(resultIdx); return cstOp.value() + vectorSize <= sourceSize; } template static LogicalResult foldTransferInBoundsAttribute(TransferOp op) { // TODO: support 0-d corner case. // TODO: Be less conservative. if (op.getTransferRank() == 0) return failure(); AffineMap permutationMap = op.getPermutationMap(); bool changed = false; SmallVector newInBounds; newInBounds.reserve(op.getTransferRank()); // Idxs of non-bcast dims - used when analysing bcast dims. SmallVector nonBcastDims; // 1. Process non-broadcast dims for (unsigned i = 0; i < op.getTransferRank(); ++i) { // 1.1. Already marked as in-bounds, nothing to see here. if (op.isDimInBounds(i)) { newInBounds.push_back(true); continue; } // 1.2. Currently out-of-bounds, check whether we can statically determine // it is inBounds. bool inBounds = false; auto dimExpr = dyn_cast(permutationMap.getResult(i)); if (dimExpr) { inBounds = isInBounds(op, /*resultIdx=*/i, /*indicesIdx=*/dimExpr.getPosition()); nonBcastDims.push_back(i); } newInBounds.push_back(inBounds); // We commit the pattern if it is "more inbounds". changed |= inBounds; } // 2. Handle broadcast dims // If all non-broadcast dims are "in bounds", then all bcast dims should be // "in bounds" as well. bool allNonBcastDimsInBounds = llvm::all_of( nonBcastDims, [&newInBounds](unsigned idx) { return newInBounds[idx]; }); if (allNonBcastDimsInBounds) { for (size_t idx : permutationMap.getBroadcastDims()) { changed |= !newInBounds[idx]; newInBounds[idx] = true; } } if (!changed) return failure(); // OpBuilder is only used as a helper to build an I64ArrayAttr. OpBuilder b(op.getContext()); op.setInBoundsAttr(b.getBoolArrayAttr(newInBounds)); return success(); } template static LogicalResult foldTransferFullMask(TransferOp op) { auto mask = op.getMask(); if (!mask) return failure(); if (getMaskFormat(mask) != MaskFormat::AllTrue) return failure(); op.getMaskMutable().clear(); return success(); } /// ``` /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} /// : vector<1x4xf32>, tensor<4x4xf32> /// %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]} /// : tensor<4x4xf32>, vector<1x4xf32> /// ``` /// -> Folds into /// ``` /// %v0 /// ``` static Value foldRAW(TransferReadOp readOp) { if (!llvm::isa(readOp.getShapedType())) return {}; auto defWrite = readOp.getSource().getDefiningOp(); while (defWrite) { if (checkSameValueRAW(defWrite, readOp)) return defWrite.getVector(); if (!isDisjointTransferIndices( cast(defWrite.getOperation()), cast(readOp.getOperation()))) break; defWrite = defWrite.getSource().getDefiningOp(); } return {}; } OpFoldResult TransferReadOp::fold(FoldAdaptor) { if (Value vec = foldRAW(*this)) return vec; /// transfer_read(memrefcast) -> transfer_read if (succeeded(foldTransferInBoundsAttribute(*this))) return getResult(); if (succeeded(foldTransferFullMask(*this))) return getResult(); if (succeeded(memref::foldMemRefCast(*this))) return getResult(); if (succeeded(tensor::foldTensorCast(*this))) return getResult(); return OpFoldResult(); } std::optional> TransferReadOp::getShapeForUnroll() { return llvm::to_vector<4>(getVectorType().getShape()); } void TransferReadOp::getEffects( SmallVectorImpl> &effects) { if (llvm::isa(getShapedType())) effects.emplace_back(MemoryEffects::Read::get(), &getSourceMutable(), SideEffects::DefaultResource::get()); } Speculation::Speculatability TransferReadOp::getSpeculatability() { if (hasPureTensorSemantics()) return Speculation::Speculatable; return Speculation::NotSpeculatable; } namespace { /// Store to load forwarding for transfer operations with permuation maps. /// Even if the permutation maps are different we can still propagate the store /// into the load if the size of the dimensions read and written match. Then we /// can replace the transfer_read + transfer_write by vector.broadcast and /// vector.transpose. /// Example: /// ``` /// %w0 = vector.transfer_write %v0, %arg0[%c0, %c0, %c0] /// {in_bounds = [true, true], /// permutation_map = affine_map<(d0, d1, d2) -> (d2, d1)>} : /// vector<4x1xf32>, tensor<4x4x4xf32> /// %r = vector.transfer_read %w0[%c0, %c0, %c0], %cf0 /// {in_bounds = [true, true, true, true], /// permutation_map = affine_map<(d0, d1, d2) -> (d1, 0, d2, 0)>} : /// tensor<4x4x4xf32>, vector<1x100x4x5xf32> /// ``` /// To: /// ``` /// %0 = vector.broadcast %arg1 : vector<4x1xf32> to vector<100x5x4x1xf32> /// %r = vector.transpose %0, [3, 0, 2, 1] : /// vector<100x5x4x1xf32> to vector<1x100x4x5xf32> /// ``` struct TransferReadAfterWriteToBroadcast : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(TransferReadOp readOp, PatternRewriter &rewriter) const override { if (readOp.hasOutOfBoundsDim() || !llvm::isa(readOp.getShapedType())) return failure(); auto defWrite = readOp.getSource().getDefiningOp(); if (!defWrite) return failure(); // TODO: If the written transfer chunk is a superset of the read transfer // chunk we could do an extract_strided_slice. if (readOp.getTransferChunkAccessed() != defWrite.getTransferChunkAccessed()) return failure(); // TODO: Support cases where a dim is explicitly written but implicitly // read (i.e., a unit dim that is rank reduced). if (getUnusedDimsBitVector({readOp.getPermutationMap()}) != getUnusedDimsBitVector({defWrite.getPermutationMap()})) return failure(); if (readOp.getIndices() != defWrite.getIndices() || readOp.getMask() != defWrite.getMask()) return failure(); Value vec = defWrite.getVector(); // TODO: loop through the chain of transfer_write if we can prove that they // don't overlap with the transfer_read. This requires improving // `isDisjointTransferIndices` helper. AffineMap readMap = compressUnusedDims(readOp.getPermutationMap()); AffineMap writeMap = compressUnusedDims(defWrite.getPermutationMap()); AffineMap map = readMap.compose(writeMap); if (map.getNumResults() == 0) return failure(); // Calculate the permutation to apply to go from the vector stored to the // vector read. SmallVector permutation; if (!map.isPermutationOfMinorIdentityWithBroadcasting(permutation)) return failure(); Location loc = readOp.getLoc(); // Calculate the broadcast shape by applying the reverse permutation to the // final shape we want. ArrayRef destShape = readOp.getVectorType().getShape(); SmallVector broadcastShape(destShape.size()); SmallVector broadcastScalableFlags(destShape.size()); for (const auto &pos : llvm::enumerate(permutation)) { broadcastShape[pos.value()] = destShape[pos.index()]; broadcastScalableFlags[pos.value()] = readOp.getVectorType().getScalableDims()[pos.index()]; } VectorType broadcastedType = VectorType::get( broadcastShape, defWrite.getVectorType().getElementType(), broadcastScalableFlags); vec = rewriter.create(loc, broadcastedType, vec); SmallVector transposePerm(permutation.begin(), permutation.end()); rewriter.replaceOpWithNewOp(readOp, vec, transposePerm); return success(); } }; } // namespace void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); } //===----------------------------------------------------------------------===// // TransferWriteOp //===----------------------------------------------------------------------===// /// 1. Builder with type inference. void TransferWriteOp::build(OpBuilder &builder, OperationState &result, Value vector, Value dest, ValueRange indices, AffineMapAttr permutationMapAttr, /*optional*/ Value mask, /*optional*/ ArrayAttr inBoundsAttr) { Type resultType = llvm::dyn_cast(dest.getType()); build(builder, result, resultType, vector, dest, indices, permutationMapAttr, mask, inBoundsAttr); } /// 2. Builder with type inference that sets an empty mask (variant with attrs). void TransferWriteOp::build(OpBuilder &builder, OperationState &result, Value vector, Value dest, ValueRange indices, AffineMapAttr permutationMapAttr, /*optional*/ ArrayAttr inBoundsAttr) { build(builder, result, vector, dest, indices, permutationMapAttr, /*mask=*/Value(), inBoundsAttr); } /// 3. Builder with type inference that sets an empty mask (variant without /// attrs) void TransferWriteOp::build(OpBuilder &builder, OperationState &result, Value vector, Value dest, ValueRange indices, AffineMap permutationMap, std::optional> inBounds) { auto permutationMapAttr = AffineMapAttr::get(permutationMap); auto inBoundsAttr = (inBounds && !inBounds.value().empty()) ? builder.getBoolArrayAttr(inBounds.value()) : builder.getBoolArrayAttr(SmallVector( llvm::cast(vector.getType()).getRank(), false)); build(builder, result, vector, dest, indices, permutationMapAttr, /*mask=*/Value(), inBoundsAttr); } /// 4. Builder with type inference that sets an empty mask and sets permutation /// map to 'getMinorIdentityMap'. void TransferWriteOp::build(OpBuilder &builder, OperationState &result, Value vector, Value dest, ValueRange indices, std::optional> inBounds) { auto vectorType = llvm::cast(vector.getType()); AffineMap permutationMap = getTransferMinorIdentityMap( llvm::cast(dest.getType()), vectorType); build(builder, result, vector, dest, indices, permutationMap, inBounds); } ParseResult TransferWriteOp::parse(OpAsmParser &parser, OperationState &result) { auto &builder = parser.getBuilder(); SMLoc typesLoc; OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo; SmallVector indexInfo; SmallVector types; OpAsmParser::UnresolvedOperand maskInfo; if (parser.parseOperand(vectorInfo) || parser.parseComma() || parser.parseOperand(sourceInfo) || parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square)) return failure(); ParseResult hasMask = parser.parseOptionalComma(); if (hasMask.succeeded() && parser.parseOperand(maskInfo)) return failure(); if (parser.parseOptionalAttrDict(result.attributes) || parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types)) return failure(); if (types.size() != 2) return parser.emitError(typesLoc, "requires two types"); auto indexType = builder.getIndexType(); VectorType vectorType = llvm::dyn_cast(types[0]); if (!vectorType) return parser.emitError(typesLoc, "requires vector type"); ShapedType shapedType = llvm::dyn_cast(types[1]); if (!shapedType || !llvm::isa(shapedType)) return parser.emitError(typesLoc, "requires memref or ranked tensor type"); auto permMapAttrName = TransferWriteOp::getPermutationMapAttrName(result.name); auto permMapAttr = result.attributes.get(permMapAttrName); AffineMap permMap; if (!permMapAttr) { permMap = getTransferMinorIdentityMap(shapedType, vectorType); result.attributes.set(permMapAttrName, AffineMapAttr::get(permMap)); } else { permMap = llvm::cast(permMapAttr).getValue(); } auto inBoundsAttrName = TransferWriteOp::getInBoundsAttrName(result.name); Attribute inBoundsAttr = result.attributes.get(inBoundsAttrName); if (!inBoundsAttr) { result.addAttribute(inBoundsAttrName, builder.getBoolArrayAttr( SmallVector(permMap.getNumResults(), false))); } if (parser.resolveOperand(vectorInfo, vectorType, result.operands) || parser.resolveOperand(sourceInfo, shapedType, result.operands) || parser.resolveOperands(indexInfo, indexType, result.operands)) return failure(); if (hasMask.succeeded()) { if (llvm::dyn_cast(shapedType.getElementType())) return parser.emitError( maskInfo.location, "does not support masks with vector element type"); if (vectorType.getRank() != permMap.getNumResults()) { return parser.emitError(typesLoc, "expected the same rank for the vector and the " "results of the permutation map"); } auto maskType = inferTransferOpMaskType(vectorType, permMap); if (parser.resolveOperand(maskInfo, maskType, result.operands)) return failure(); } result.addAttribute(TransferWriteOp::getOperandSegmentSizeAttr(), builder.getDenseI32ArrayAttr( {1, 1, static_cast(indexInfo.size()), static_cast(hasMask.succeeded())})); return failure(llvm::isa(shapedType) && parser.addTypeToList(shapedType, result.types)); } void TransferWriteOp::print(OpAsmPrinter &p) { p << " " << getVector() << ", " << getSource() << "[" << getIndices() << "]"; if (getMask()) p << ", " << getMask(); printTransferAttrs(p, *this); p << " : " << getVectorType() << ", " << getShapedType(); } LogicalResult TransferWriteOp::verify() { // Consistency of elemental types in shape and vector. ShapedType shapedType = getShapedType(); VectorType vectorType = getVectorType(); VectorType maskType = getMaskType(); auto permutationMap = getPermutationMap(); VectorType inferredMaskType = maskType ? inferTransferOpMaskType(vectorType, permutationMap) : VectorType(); if (llvm::size(getIndices()) != shapedType.getRank()) return emitOpError("requires ") << shapedType.getRank() << " indices"; // We do not allow broadcast dimensions on TransferWriteOps for the moment, // as the semantics is unclear. This can be revisited later if necessary. if (hasBroadcastDim()) return emitOpError("should not have broadcast dimensions"); if (failed(verifyTransferOp(cast(getOperation()), shapedType, vectorType, maskType, inferredMaskType, permutationMap, getInBounds()))) return failure(); return verifyPermutationMap(permutationMap, [&](Twine t) { return emitOpError(t); }); } // MaskableOpInterface methods. /// Returns the mask type expected by this operation. Mostly used for /// verification purposes. Type TransferWriteOp::getExpectedMaskType() { return inferTransferOpMaskType(getVectorType(), getPermutationMap()); } /// Fold: /// ``` /// %t1 = ... /// %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} : /// tensor, vector /// %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} : /// vector, tensor /// ``` /// /// into: /// /// ``` /// %t0 /// ``` /// /// The producer of t1 may or may not be DCE'd depending on whether it is a /// block argument or has side effects. static LogicalResult foldReadInitWrite(TransferWriteOp write, ArrayRef, SmallVectorImpl &results) { // TODO: support 0-d corner case. if (write.getTransferRank() == 0) return failure(); auto rankedTensorType = llvm::dyn_cast(write.getSource().getType()); // If not operating on tensors, bail. if (!rankedTensorType) return failure(); // If no read, bail. auto read = write.getVector().getDefiningOp(); if (!read) return failure(); // TODO: support 0-d corner case. if (read.getTransferRank() == 0) return failure(); // For now, only accept minor identity. Future: composition is minor identity. if (!read.getPermutationMap().isMinorIdentity() || !write.getPermutationMap().isMinorIdentity()) return failure(); // Bail on mismatching ranks. if (read.getTransferRank() != write.getTransferRank()) return failure(); // Bail on potential out-of-bounds accesses. if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim()) return failure(); // Tensor types must be the same. if (read.getSource().getType() != rankedTensorType) return failure(); // Vector types must be the same. if (read.getVectorType() != write.getVectorType()) return failure(); // Vector and Tensor shapes must match. if (read.getVectorType().getShape() != rankedTensorType.getShape()) return failure(); // If any index is nonzero. auto isNotConstantZero = [](Value v) { auto cstOp = getConstantIntValue(v); return !cstOp.has_value() || cstOp.value() != 0; }; if (llvm::any_of(read.getIndices(), isNotConstantZero) || llvm::any_of(write.getIndices(), isNotConstantZero)) return failure(); // Success. results.push_back(read.getSource()); return success(); } static bool checkSameValueWAR(vector::TransferReadOp read, vector::TransferWriteOp write) { return read.getSource() == write.getSource() && read.getIndices() == write.getIndices() && read.getPermutationMap() == write.getPermutationMap() && read.getVectorType() == write.getVectorType() && !read.getMask() && !write.getMask(); } /// Fold transfer_write write after read: /// ``` /// %t0 = ... /// %v = vector.transfer_read %t0[%c0...] : /// tensor, vector /// %t1 = vector.transfer_write %v, %t0[%c0...] : /// vector, tensor /// ``` /// /// into: /// /// ``` /// %t0 /// ``` static LogicalResult foldWAR(TransferWriteOp write, SmallVectorImpl &results) { if (!llvm::isa(write.getSource().getType())) return failure(); auto read = write.getVector().getDefiningOp(); if (!read) return failure(); if (!checkSameValueWAR(read, write)) return failure(); results.push_back(read.getSource()); return success(); } LogicalResult TransferWriteOp::fold(FoldAdaptor adaptor, SmallVectorImpl &results) { if (succeeded(foldReadInitWrite(*this, adaptor.getOperands(), results))) return success(); if (succeeded(foldWAR(*this, results))) return success(); if (succeeded(foldTransferInBoundsAttribute(*this))) return success(); if (succeeded(foldTransferFullMask(*this))) return success(); return memref::foldMemRefCast(*this); } std::optional> TransferWriteOp::getShapeForUnroll() { return llvm::to_vector<4>(getVectorType().getShape()); } void TransferWriteOp::getEffects( SmallVectorImpl> &effects) { if (llvm::isa(getShapedType())) effects.emplace_back(MemoryEffects::Write::get(), &getSourceMutable(), SideEffects::DefaultResource::get()); } Speculation::Speculatability TransferWriteOp::getSpeculatability() { if (hasPureTensorSemantics()) return Speculation::Speculatable; return Speculation::NotSpeculatable; } namespace { /// Remove dead transfer write from the SSA chain so that it an be eliminated by /// DCE /// ``` /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} /// : vector<1x4xf32>, tensor<4x4xf32> /// %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]} /// : vector<1x4xf32>, tensor<4x4xf32> /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} /// : vector<1x4xf32>, tensor<4x4xf32> /// ``` /// /// into: /// /// ``` /// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]} /// : vector<1x4xf32>, tensor<4x4xf32> /// %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]} /// : vector<1x4xf32>, tensor<4x4xf32> /// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]} /// : vector<1x4xf32>, tensor<4x4xf32> /// ``` /// /// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have /// any other uses. class FoldWaw final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(TransferWriteOp writeOp, PatternRewriter &rewriter) const override { if (!llvm::isa(writeOp.getShapedType())) return failure(); vector::TransferWriteOp writeToModify = writeOp; auto defWrite = writeOp.getSource().getDefiningOp(); while (defWrite) { if (checkSameValueWAW(writeOp, defWrite)) { rewriter.modifyOpInPlace(writeToModify, [&]() { writeToModify.getSourceMutable().assign(defWrite.getSource()); }); return success(); } if (!isDisjointTransferIndices( cast(defWrite.getOperation()), cast(writeOp.getOperation()))) break; // If the previous write op doesn't have any other use we an safely look // at the previous store to see if it can be removed. if (!defWrite->hasOneUse()) break; writeToModify = defWrite; defWrite = defWrite.getSource().getDefiningOp(); } return failure(); } }; /// Rewrite tensor::ExtractSliceOp(vector::TransferWriteOp) to /// vector::TransferWriteOp(tensor::ExtractSliceOp) if the full slice is /// overwritten and inserted into another tensor. After this rewrite, the /// operations bufferize in-place since all of them work on the same slice. /// /// For example: /// ```mlir /// %0 = vector.transfer_write %vec, %init_tensor[%c0, %c0] /// : vector<8x16xf32>, tensor<8x16xf32> /// %1 = tensor.extract_slice %0[0, 0] [%sz0, %sz1] [1, 1] /// : tensor<8x16xf32> to tensor /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] /// : tensor into tensor<27x37xf32> /// ``` /// folds to /// ```mlir /// %0 = tensor.extract_slice %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] /// : tensor<27x37xf32> to tensor /// %1 = vector.transfer_write %vec, %0[%c0, %c0] /// : vector<8x16xf32>, tensor /// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1] /// : tensor into tensor<27x37xf32> /// ``` struct SwapExtractSliceOfTransferWrite : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp, PatternRewriter &rewriter) const override { if (!insertOp.hasUnitStride()) return failure(); auto extractOp = insertOp.getSource().getDefiningOp(); if (!extractOp || !extractOp.hasUnitStride() || !extractOp->hasOneUse()) return failure(); auto transferOp = extractOp.getSource().getDefiningOp(); if (!transferOp || !transferOp->hasOneUse()) return failure(); // Fail if vector::TransferWriteOp or tensor::ExtractSliceOp is // rank-reducing. if (insertOp.getSourceType().getRank() != transferOp.getTransferRank()) { return rewriter.notifyMatchFailure(insertOp, "use-def chain is rank-reducing"); } // Fail if tensor::ExtractSliceOp has non-zero offset. if (!extractOp.hasZeroOffset()) { return rewriter.notifyMatchFailure(insertOp, "ExtractSliceOp has non-zero offset"); } // Fail if tensor::TransferWriteOp has non-zero offset. if (!llvm::all_of(transferOp.getIndices(), [](Value value) { return getConstantIntValue(value) == static_cast(0); })) { return rewriter.notifyMatchFailure(insertOp, "TranferWriteOp has non-zero offset"); } // Fail if tensor::ExtractSliceOp and tensor::InsertSliceOp sizes differ. if (insertOp.getMixedSizes().size() != extractOp.getMixedSizes().size()) { return rewriter.notifyMatchFailure( insertOp, "InsertSliceOp and ExtractSliceOp ranks differ"); } for (auto [insertSize, extractSize] : llvm::zip_equal(insertOp.getMixedSizes(), extractOp.getMixedSizes())) { if (!isEqualConstantIntOrValue(insertSize, extractSize)) { return rewriter.notifyMatchFailure( insertOp, "InsertSliceOp and ExtractSliceOp sizes differ"); } } // Fail if the vector::TransferWriteOp may not overwrite the full tensor. assert(transferOp.getVectorType().hasStaticShape() && "expected vector to have a static shape"); ArrayRef vectorShape = transferOp.getVectorType().getShape(); SmallVector resultShape = applyPermutationMap( transferOp.getPermutationMap(), transferOp.getShapedType().getShape()); if (transferOp.getMask() || !vectorShape.equals(resultShape)) { return rewriter.notifyMatchFailure( insertOp, "TransferWriteOp may not write the full tensor."); } // Swap the tensor::ExtractSliceOp in front of the vector::TransferWriteOp. // Set all in_bounds to false and let the folder infer them. SmallVector newInBounds(vectorShape.size(), false); auto newExtractOp = rewriter.create( extractOp.getLoc(), insertOp.getSourceType(), insertOp.getDest(), insertOp.getMixedOffsets(), insertOp.getMixedSizes(), insertOp.getMixedStrides()); auto newTransferWriteOp = rewriter.create( transferOp.getLoc(), transferOp.getVector(), newExtractOp.getResult(), transferOp.getIndices(), transferOp.getPermutationMapAttr(), rewriter.getBoolArrayAttr(newInBounds)); rewriter.modifyOpInPlace(insertOp, [&]() { insertOp.getSourceMutable().assign(newTransferWriteOp.getResult()); }); return success(); } }; } // namespace void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); } //===----------------------------------------------------------------------===// // LoadOp //===----------------------------------------------------------------------===// static LogicalResult verifyLoadStoreMemRefLayout(Operation *op, VectorType vecTy, MemRefType memRefTy) { // If rank==0 or size==1 it's equivalent to scalar load/store, so we don't // need any strides limitations. if (!vecTy.isScalable() && (vecTy.getRank() == 0 || vecTy.getNumElements() == 1)) return success(); if (!memRefTy.isLastDimUnitStride()) return op->emitOpError("most minor memref dim must have unit stride"); return success(); } LogicalResult vector::LoadOp::verify() { VectorType resVecTy = getVectorType(); MemRefType memRefTy = getMemRefType(); if (failed(verifyLoadStoreMemRefLayout(*this, resVecTy, memRefTy))) return failure(); // Checks for vector memrefs. Type memElemTy = memRefTy.getElementType(); if (auto memVecTy = llvm::dyn_cast(memElemTy)) { if (memVecTy != resVecTy) return emitOpError("base memref and result vector types should match"); memElemTy = memVecTy.getElementType(); } if (resVecTy.getElementType() != memElemTy) return emitOpError("base and result element types should match"); if (llvm::size(getIndices()) != memRefTy.getRank()) return emitOpError("requires ") << memRefTy.getRank() << " indices"; return success(); } OpFoldResult LoadOp::fold(FoldAdaptor) { if (succeeded(memref::foldMemRefCast(*this))) return getResult(); return OpFoldResult(); } //===----------------------------------------------------------------------===// // StoreOp //===----------------------------------------------------------------------===// LogicalResult vector::StoreOp::verify() { VectorType valueVecTy = getVectorType(); MemRefType memRefTy = getMemRefType(); if (failed(verifyLoadStoreMemRefLayout(*this, valueVecTy, memRefTy))) return failure(); // Checks for vector memrefs. Type memElemTy = memRefTy.getElementType(); if (auto memVecTy = llvm::dyn_cast(memElemTy)) { if (memVecTy != valueVecTy) return emitOpError( "base memref and valueToStore vector types should match"); memElemTy = memVecTy.getElementType(); } if (valueVecTy.getElementType() != memElemTy) return emitOpError("base and valueToStore element type should match"); if (llvm::size(getIndices()) != memRefTy.getRank()) return emitOpError("requires ") << memRefTy.getRank() << " indices"; return success(); } LogicalResult StoreOp::fold(FoldAdaptor adaptor, SmallVectorImpl &results) { return memref::foldMemRefCast(*this); } //===----------------------------------------------------------------------===// // MaskedLoadOp //===----------------------------------------------------------------------===// LogicalResult MaskedLoadOp::verify() { VectorType maskVType = getMaskVectorType(); VectorType passVType = getPassThruVectorType(); VectorType resVType = getVectorType(); MemRefType memType = getMemRefType(); if (resVType.getElementType() != memType.getElementType()) return emitOpError("base and result element type should match"); if (llvm::size(getIndices()) != memType.getRank()) return emitOpError("requires ") << memType.getRank() << " indices"; if (resVType.getShape() != maskVType.getShape()) return emitOpError("expected result shape to match mask shape"); if (resVType != passVType) return emitOpError("expected pass_thru of same type as result type"); return success(); } namespace { class MaskedLoadFolder final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(MaskedLoadOp load, PatternRewriter &rewriter) const override { switch (getMaskFormat(load.getMask())) { case MaskFormat::AllTrue: rewriter.replaceOpWithNewOp( load, load.getType(), load.getBase(), load.getIndices()); return success(); case MaskFormat::AllFalse: rewriter.replaceOp(load, load.getPassThru()); return success(); case MaskFormat::Unknown: return failure(); } llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad"); } }; } // namespace void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); } OpFoldResult MaskedLoadOp::fold(FoldAdaptor) { if (succeeded(memref::foldMemRefCast(*this))) return getResult(); return OpFoldResult(); } //===----------------------------------------------------------------------===// // MaskedStoreOp //===----------------------------------------------------------------------===// LogicalResult MaskedStoreOp::verify() { VectorType maskVType = getMaskVectorType(); VectorType valueVType = getVectorType(); MemRefType memType = getMemRefType(); if (valueVType.getElementType() != memType.getElementType()) return emitOpError("base and valueToStore element type should match"); if (llvm::size(getIndices()) != memType.getRank()) return emitOpError("requires ") << memType.getRank() << " indices"; if (valueVType.getShape() != maskVType.getShape()) return emitOpError("expected valueToStore shape to match mask shape"); return success(); } namespace { class MaskedStoreFolder final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(MaskedStoreOp store, PatternRewriter &rewriter) const override { switch (getMaskFormat(store.getMask())) { case MaskFormat::AllTrue: rewriter.replaceOpWithNewOp( store, store.getValueToStore(), store.getBase(), store.getIndices()); return success(); case MaskFormat::AllFalse: rewriter.eraseOp(store); return success(); case MaskFormat::Unknown: return failure(); } llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore"); } }; } // namespace void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); } LogicalResult MaskedStoreOp::fold(FoldAdaptor adaptor, SmallVectorImpl &results) { return memref::foldMemRefCast(*this); } //===----------------------------------------------------------------------===// // GatherOp //===----------------------------------------------------------------------===// LogicalResult GatherOp::verify() { VectorType indVType = getIndexVectorType(); VectorType maskVType = getMaskVectorType(); VectorType resVType = getVectorType(); ShapedType baseType = getBaseType(); if (!llvm::isa(baseType)) return emitOpError("requires base to be a memref or ranked tensor type"); if (resVType.getElementType() != baseType.getElementType()) return emitOpError("base and result element type should match"); if (llvm::size(getIndices()) != baseType.getRank()) return emitOpError("requires ") << baseType.getRank() << " indices"; if (resVType.getShape() != indVType.getShape()) return emitOpError("expected result dim to match indices dim"); if (resVType.getShape() != maskVType.getShape()) return emitOpError("expected result dim to match mask dim"); if (resVType != getPassThruVectorType()) return emitOpError("expected pass_thru of same type as result type"); return success(); } // MaskableOpInterface methods. /// Returns the mask type expected by this operation. Mostly used for /// verification purposes. It requires the operation to be vectorized." Type GatherOp::getExpectedMaskType() { auto vecType = this->getIndexVectorType(); return VectorType::get(vecType.getShape(), IntegerType::get(vecType.getContext(), /*width=*/1), vecType.getScalableDims()); } std::optional> GatherOp::getShapeForUnroll() { return llvm::to_vector<4>(getVectorType().getShape()); } /// Cheeck if `indexVec` is constant 1D vec of consecutive values [0, 1, 2, ...] static LogicalResult isZeroBasedContiguousSeq(Value indexVec) { auto vecType = dyn_cast(indexVec.getType()); if (!vecType || vecType.getRank() != 1 || vecType.isScalable()) return failure(); if (indexVec.getDefiningOp()) return success(); DenseIntElementsAttr elements; if (!matchPattern(indexVec, m_Constant(&elements))) return failure(); return success( llvm::equal(elements, llvm::seq(0, vecType.getNumElements()))); } namespace { class GatherFolder final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(GatherOp gather, PatternRewriter &rewriter) const override { switch (getMaskFormat(gather.getMask())) { case MaskFormat::AllTrue: return failure(); // no unmasked equivalent case MaskFormat::AllFalse: rewriter.replaceOp(gather, gather.getPassThru()); return success(); case MaskFormat::Unknown: return failure(); } llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder"); } }; /// Fold gathers with consecutive offsets [0, 1, 2, ...] into contiguous /// maskedload. Only 1D fixed vectors are supported for now. class FoldContiguousGather final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(GatherOp op, PatternRewriter &rewriter) const override { if (failed(isZeroBasedContiguousSeq(op.getIndexVec()))) return failure(); rewriter.replaceOpWithNewOp(op, op.getType(), op.getBase(), op.getIndices(), op.getMask(), op.getPassThru()); return success(); } }; } // namespace void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); } //===----------------------------------------------------------------------===// // ScatterOp //===----------------------------------------------------------------------===// LogicalResult ScatterOp::verify() { VectorType indVType = getIndexVectorType(); VectorType maskVType = getMaskVectorType(); VectorType valueVType = getVectorType(); MemRefType memType = getMemRefType(); if (valueVType.getElementType() != memType.getElementType()) return emitOpError("base and valueToStore element type should match"); if (llvm::size(getIndices()) != memType.getRank()) return emitOpError("requires ") << memType.getRank() << " indices"; if (valueVType.getDimSize(0) != indVType.getDimSize(0)) return emitOpError("expected valueToStore dim to match indices dim"); if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) return emitOpError("expected valueToStore dim to match mask dim"); return success(); } namespace { class ScatterFolder final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ScatterOp scatter, PatternRewriter &rewriter) const override { switch (getMaskFormat(scatter.getMask())) { case MaskFormat::AllTrue: return failure(); // no unmasked equivalent case MaskFormat::AllFalse: rewriter.eraseOp(scatter); return success(); case MaskFormat::Unknown: return failure(); } llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder"); } }; /// Fold scatters with consecutive offsets [0, 1, 2, ...] into contiguous /// maskedstore. Only 1D fixed vectors are supported for now. class FoldContiguousScatter final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ScatterOp op, PatternRewriter &rewriter) const override { if (failed(isZeroBasedContiguousSeq(op.getIndexVec()))) return failure(); rewriter.replaceOpWithNewOp( op, op.getBase(), op.getIndices(), op.getMask(), op.getValueToStore()); return success(); } }; } // namespace void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); } //===----------------------------------------------------------------------===// // ExpandLoadOp //===----------------------------------------------------------------------===// LogicalResult ExpandLoadOp::verify() { VectorType maskVType = getMaskVectorType(); VectorType passVType = getPassThruVectorType(); VectorType resVType = getVectorType(); MemRefType memType = getMemRefType(); if (resVType.getElementType() != memType.getElementType()) return emitOpError("base and result element type should match"); if (llvm::size(getIndices()) != memType.getRank()) return emitOpError("requires ") << memType.getRank() << " indices"; if (resVType.getDimSize(0) != maskVType.getDimSize(0)) return emitOpError("expected result dim to match mask dim"); if (resVType != passVType) return emitOpError("expected pass_thru of same type as result type"); return success(); } namespace { class ExpandLoadFolder final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ExpandLoadOp expand, PatternRewriter &rewriter) const override { switch (getMaskFormat(expand.getMask())) { case MaskFormat::AllTrue: rewriter.replaceOpWithNewOp( expand, expand.getType(), expand.getBase(), expand.getIndices()); return success(); case MaskFormat::AllFalse: rewriter.replaceOp(expand, expand.getPassThru()); return success(); case MaskFormat::Unknown: return failure(); } llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder"); } }; } // namespace void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); } //===----------------------------------------------------------------------===// // CompressStoreOp //===----------------------------------------------------------------------===// LogicalResult CompressStoreOp::verify() { VectorType maskVType = getMaskVectorType(); VectorType valueVType = getVectorType(); MemRefType memType = getMemRefType(); if (valueVType.getElementType() != memType.getElementType()) return emitOpError("base and valueToStore element type should match"); if (llvm::size(getIndices()) != memType.getRank()) return emitOpError("requires ") << memType.getRank() << " indices"; if (valueVType.getDimSize(0) != maskVType.getDimSize(0)) return emitOpError("expected valueToStore dim to match mask dim"); return success(); } namespace { class CompressStoreFolder final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(CompressStoreOp compress, PatternRewriter &rewriter) const override { switch (getMaskFormat(compress.getMask())) { case MaskFormat::AllTrue: rewriter.replaceOpWithNewOp( compress, compress.getValueToStore(), compress.getBase(), compress.getIndices()); return success(); case MaskFormat::AllFalse: rewriter.eraseOp(compress); return success(); case MaskFormat::Unknown: return failure(); } llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder"); } }; } // namespace void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); } //===----------------------------------------------------------------------===// // ShapeCastOp //===----------------------------------------------------------------------===// void ShapeCastOp::inferResultRanges(ArrayRef argRanges, SetIntRangeFn setResultRanges) { setResultRanges(getResult(), argRanges.front()); } /// Returns true if each element of 'a' is equal to the product of a contiguous /// sequence of the elements of 'b'. Returns false otherwise. static bool isValidShapeCast(ArrayRef a, ArrayRef b) { unsigned rankA = a.size(); unsigned rankB = b.size(); assert(rankA < rankB); auto isOne = [](int64_t v) { return v == 1; }; // Special-case for n-D to 0-d shape cast. 'b' must be all ones to be shape // casted to a 0-d vector. if (rankA == 0 && llvm::all_of(b, isOne)) return true; unsigned i = 0; unsigned j = 0; while (i < rankA && j < rankB) { int64_t dimA = a[i]; int64_t dimB = 1; while (dimB < dimA && j < rankB) dimB *= b[j++]; if (dimA != dimB) break; ++i; // Handle the case when trailing dimensions are of size 1. // Include them into the contiguous sequence. if (i < rankA && llvm::all_of(a.slice(i), isOne)) i = rankA; if (j < rankB && llvm::all_of(b.slice(j), isOne)) j = rankB; } return i == rankA && j == rankB; } static LogicalResult verifyVectorShapeCast(Operation *op, VectorType sourceVectorType, VectorType resultVectorType) { // Check that element type is the same. if (sourceVectorType.getElementType() != resultVectorType.getElementType()) return op->emitOpError("source/result vectors must have same element type"); auto sourceShape = sourceVectorType.getShape(); auto resultShape = resultVectorType.getShape(); // Check that product of source dim sizes matches product of result dim sizes. int64_t sourceDimProduct = std::accumulate( sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies{}); int64_t resultDimProduct = std::accumulate( resultShape.begin(), resultShape.end(), 1LL, std::multiplies{}); if (sourceDimProduct != resultDimProduct) return op->emitOpError("source/result number of elements must match"); // Check that expanding/contracting rank cases. unsigned sourceRank = sourceVectorType.getRank(); unsigned resultRank = resultVectorType.getRank(); if (sourceRank < resultRank) { if (!isValidShapeCast(sourceShape, resultShape)) return op->emitOpError("invalid shape cast"); } else if (sourceRank > resultRank) { if (!isValidShapeCast(resultShape, sourceShape)) return op->emitOpError("invalid shape cast"); } // Check that (non-)scalability is preserved int64_t sourceNScalableDims = sourceVectorType.getNumScalableDims(); int64_t resultNScalableDims = resultVectorType.getNumScalableDims(); if (sourceNScalableDims != resultNScalableDims) return op->emitOpError("different number of scalable dims at source (") << sourceNScalableDims << ") and result (" << resultNScalableDims << ")"; sourceVectorType.getNumDynamicDims(); return success(); } LogicalResult ShapeCastOp::verify() { auto sourceVectorType = llvm::dyn_cast_or_null(getSource().getType()); auto resultVectorType = llvm::dyn_cast_or_null(getResult().getType()); // Check if source/result are of vector type. if (sourceVectorType && resultVectorType) return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType); return success(); } OpFoldResult ShapeCastOp::fold(FoldAdaptor adaptor) { // No-op shape cast. if (getSource().getType() == getResult().getType()) return getSource(); // Canceling shape casts. if (auto otherOp = getSource().getDefiningOp()) { if (getResult().getType() == otherOp.getSource().getType()) return otherOp.getSource(); // Only allows valid transitive folding. VectorType srcType = llvm::cast(otherOp.getSource().getType()); VectorType resultType = llvm::cast(getResult().getType()); if (srcType.getRank() < resultType.getRank()) { if (!isValidShapeCast(srcType.getShape(), resultType.getShape())) return {}; } else if (srcType.getRank() > resultType.getRank()) { if (!isValidShapeCast(resultType.getShape(), srcType.getShape())) return {}; } else { return {}; } setOperand(otherOp.getSource()); return getResult(); } // Cancelling broadcast and shape cast ops. if (auto bcastOp = getSource().getDefiningOp()) { if (bcastOp.getSourceType() == getType()) return bcastOp.getSource(); } return {}; } namespace { // Pattern to rewrite a ShapeCast(splat ConstantOp) -> ConstantOp. class ShapeCastConstantFolder final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, PatternRewriter &rewriter) const override { auto constantOp = shapeCastOp.getSource().getDefiningOp(); if (!constantOp) return failure(); // Only handle splat for now. auto dense = llvm::dyn_cast(constantOp.getValue()); if (!dense) return failure(); auto newAttr = DenseElementsAttr::get(llvm::cast(shapeCastOp.getType()), dense.getSplatValue()); rewriter.replaceOpWithNewOp(shapeCastOp, newAttr); return success(); } }; /// Helper function that computes a new vector type based on the input vector /// type by removing the trailing one dims: /// /// vector<4x1x1xi1> --> vector<4x1> /// static VectorType trimTrailingOneDims(VectorType oldType) { ArrayRef oldShape = oldType.getShape(); ArrayRef newShape = oldShape; ArrayRef oldScalableDims = oldType.getScalableDims(); ArrayRef newScalableDims = oldScalableDims; while (!newShape.empty() && newShape.back() == 1 && !newScalableDims.back()) { newShape = newShape.drop_back(1); newScalableDims = newScalableDims.drop_back(1); } // Make sure we have at least 1 dimension. // TODO: Add support for 0-D vectors. if (newShape.empty()) { newShape = oldShape.take_back(); newScalableDims = oldScalableDims.take_back(); } return VectorType::get(newShape, oldType.getElementType(), newScalableDims); } /// Folds qualifying shape_cast(create_mask) into a new create_mask /// /// Looks at `vector.shape_cast` Ops that simply "drop" the trailing unit /// dimension. If the input vector comes from `vector.create_mask` for which /// the corresponding mask input value is 1 (e.g. `%c1` below), then it is safe /// to fold shape_cast into create_mask. /// /// BEFORE: /// %1 = vector.create_mask %c1, %dim, %c1, %c1 : vector<1x[4]x1x1xi1> /// %2 = vector.shape_cast %1 : vector<1x[4]x1x1xi1> to vector<1x[4]xi1> /// AFTER: /// %0 = vector.create_mask %c1, %dim : vector<1x[4]xi1> class ShapeCastCreateMaskFolderTrailingOneDim final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ShapeCastOp shapeOp, PatternRewriter &rewriter) const override { Value shapeOpSrc = shapeOp->getOperand(0); auto createMaskOp = shapeOpSrc.getDefiningOp(); auto constantMaskOp = shapeOpSrc.getDefiningOp(); if (!createMaskOp && !constantMaskOp) return failure(); VectorType shapeOpResTy = shapeOp.getResultVectorType(); VectorType shapeOpSrcTy = shapeOp.getSourceVectorType(); VectorType newVecType = trimTrailingOneDims(shapeOpSrcTy); if (newVecType != shapeOpResTy) return failure(); auto numDimsToDrop = shapeOpSrcTy.getShape().size() - shapeOpResTy.getShape().size(); // No unit dims to drop if (!numDimsToDrop) return failure(); if (createMaskOp) { auto maskOperands = createMaskOp.getOperands(); auto numMaskOperands = maskOperands.size(); // Check every mask dim size to see whether it can be dropped for (size_t i = numMaskOperands - 1; i >= numMaskOperands - numDimsToDrop; --i) { auto constant = maskOperands[i].getDefiningOp(); if (!constant || (constant.value() != 1)) return failure(); } SmallVector newMaskOperands = maskOperands.drop_back(numDimsToDrop); rewriter.replaceOpWithNewOp(shapeOp, shapeOpResTy, newMaskOperands); return success(); } if (constantMaskOp) { auto maskDimSizes = constantMaskOp.getMaskDimSizes(); auto numMaskOperands = maskDimSizes.size(); // Check every mask dim size to see whether it can be dropped for (size_t i = numMaskOperands - 1; i >= numMaskOperands - numDimsToDrop; --i) { if (maskDimSizes[i] != 1) return failure(); } auto newMaskOperands = maskDimSizes.drop_back(numDimsToDrop); rewriter.replaceOpWithNewOp(shapeOp, shapeOpResTy, newMaskOperands); return success(); } return failure(); } }; /// Pattern to rewrite a ShapeCast(Broadcast) -> Broadcast. /// This only applies when the shape of the broadcast source /// 1. is a suffix of the shape of the result (i.e. when broadcast without /// reshape is expressive enough to capture the result in a single op), or /// 2. has the same element count as the shape cast result. class ShapeCastBroadcastFolder final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp, PatternRewriter &rewriter) const override { auto broadcastOp = shapeCastOp.getSource().getDefiningOp(); if (!broadcastOp) return failure(); ArrayRef broadcastSourceShape; if (auto srcType = dyn_cast(broadcastOp.getSourceType())) broadcastSourceShape = srcType.getShape(); ArrayRef shapeCastTargetShape = shapeCastOp.getResultVectorType().getShape(); // If `broadcastSourceShape` is a suffix of the result, we can just replace // with a broadcast to the final shape. if (broadcastSourceShape == shapeCastTargetShape.take_back(broadcastSourceShape.size())) { rewriter.replaceOpWithNewOp( shapeCastOp, shapeCastOp.getResultVectorType(), broadcastOp.getSource()); return success(); } // Otherwise, if the final result has the same element count, we can replace // with a shape cast. if (auto srcType = dyn_cast(broadcastOp.getSourceType())) { if (srcType.getNumElements() == shapeCastOp.getResultVectorType().getNumElements()) { rewriter.replaceOpWithNewOp( shapeCastOp, shapeCastOp.getResultVectorType(), broadcastOp.getSource()); return success(); } } return failure(); } }; } // namespace void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); } //===----------------------------------------------------------------------===// // VectorBitCastOp //===----------------------------------------------------------------------===// LogicalResult BitCastOp::verify() { auto sourceVectorType = getSourceVectorType(); auto resultVectorType = getResultVectorType(); for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) { if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i)) return emitOpError("dimension size mismatch at: ") << i; } DataLayout dataLayout = DataLayout::closest(*this); auto sourceElementBits = dataLayout.getTypeSizeInBits(sourceVectorType.getElementType()); auto resultElementBits = dataLayout.getTypeSizeInBits(resultVectorType.getElementType()); if (sourceVectorType.getRank() == 0) { if (sourceElementBits != resultElementBits) return emitOpError("source/result bitwidth of the 0-D vector element " "types must be equal"); } else if (sourceElementBits * sourceVectorType.getShape().back() != resultElementBits * resultVectorType.getShape().back()) { return emitOpError( "source/result bitwidth of the minor 1-D vectors must be equal"); } return success(); } OpFoldResult BitCastOp::fold(FoldAdaptor adaptor) { // Nop cast. if (getSource().getType() == getResult().getType()) return getSource(); // Canceling bitcasts. if (auto otherOp = getSource().getDefiningOp()) { if (getResult().getType() == otherOp.getSource().getType()) return otherOp.getSource(); setOperand(otherOp.getSource()); return getResult(); } Attribute sourceConstant = adaptor.getSource(); if (!sourceConstant) return {}; Type srcElemType = getSourceVectorType().getElementType(); Type dstElemType = getResultVectorType().getElementType(); if (auto floatPack = llvm::dyn_cast(sourceConstant)) { if (floatPack.isSplat()) { auto splat = floatPack.getSplatValue(); // Casting fp16 into fp32. if (srcElemType.isF16() && dstElemType.isF32()) { uint32_t bits = static_cast( splat.getValue().bitcastToAPInt().getZExtValue()); // Duplicate the 16-bit pattern. bits = (bits << 16) | (bits & 0xffff); APInt intBits(32, bits); APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits); return DenseElementsAttr::get(getResultVectorType(), floatBits); } } } if (auto intPack = llvm::dyn_cast(sourceConstant)) { if (intPack.isSplat()) { auto splat = intPack.getSplatValue(); if (llvm::isa(dstElemType)) { uint64_t srcBitWidth = srcElemType.getIntOrFloatBitWidth(); uint64_t dstBitWidth = dstElemType.getIntOrFloatBitWidth(); // Casting to a larger integer bit width. if (dstBitWidth > srcBitWidth && dstBitWidth % srcBitWidth == 0) { APInt intBits = splat.getValue().zext(dstBitWidth); // Duplicate the lower width element. for (uint64_t i = 0; i < dstBitWidth / srcBitWidth - 1; i++) intBits = (intBits << srcBitWidth) | intBits; return DenseElementsAttr::get(getResultVectorType(), intBits); } } } } return {}; } //===----------------------------------------------------------------------===// // TypeCastOp //===----------------------------------------------------------------------===// static SmallVector extractShape(MemRefType memRefType) { auto vectorType = llvm::dyn_cast(memRefType.getElementType()); SmallVector res(memRefType.getShape()); if (vectorType) res.append(vectorType.getShape().begin(), vectorType.getShape().end()); return res; } /// Build the canonical memRefType with a single vector. /// E.g. memref<4 x 5 x vector<6 x f32>> -> memref>. void TypeCastOp::build(OpBuilder &builder, OperationState &result, Value source) { result.addOperands(source); MemRefType memRefType = llvm::cast(source.getType()); VectorType vectorType = VectorType::get(extractShape(memRefType), getElementTypeOrSelf(getElementTypeOrSelf(memRefType))); result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(), memRefType.getMemorySpace())); } LogicalResult TypeCastOp::verify() { MemRefType canonicalType = getMemRefType().canonicalizeStridedLayout(); if (!canonicalType.getLayout().isIdentity()) return emitOpError("expects operand to be a memref with identity layout"); if (!getResultMemRefType().getLayout().isIdentity()) return emitOpError("expects result to be a memref with identity layout"); if (getResultMemRefType().getMemorySpace() != getMemRefType().getMemorySpace()) return emitOpError("expects result in same memory space"); auto sourceType = getMemRefType(); auto resultType = getResultMemRefType(); if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) != getElementTypeOrSelf(getElementTypeOrSelf(resultType))) return emitOpError( "expects result and operand with same underlying scalar type: ") << resultType; if (extractShape(sourceType) != extractShape(resultType)) return emitOpError( "expects concatenated result and operand shapes to be equal: ") << resultType; return success(); } //===----------------------------------------------------------------------===// // TransposeOp //===----------------------------------------------------------------------===// void vector::TransposeOp::build(OpBuilder &builder, OperationState &result, Value vector, ArrayRef permutation) { VectorType vt = llvm::cast(vector.getType()); SmallVector transposedShape(vt.getRank()); SmallVector transposedScalableDims(vt.getRank()); for (unsigned i = 0; i < permutation.size(); ++i) { transposedShape[i] = vt.getShape()[permutation[i]]; transposedScalableDims[i] = vt.getScalableDims()[permutation[i]]; } result.addOperands(vector); result.addTypes(VectorType::get(transposedShape, vt.getElementType(), transposedScalableDims)); result.addAttribute(TransposeOp::getPermutationAttrName(result.name), builder.getDenseI64ArrayAttr(permutation)); } OpFoldResult vector::TransposeOp::fold(FoldAdaptor adaptor) { // Eliminate splat constant transpose ops. if (auto attr = llvm::dyn_cast_if_present(adaptor.getVector())) if (attr.isSplat()) return attr.reshape(getResultVectorType()); // Eliminate identity transpose ops. This happens when the dimensions of the // input vector remain in their original order after the transpose operation. ArrayRef perm = getPermutation(); // Check if the permutation of the dimensions contains sequential values: // {0, 1, 2, ...}. for (int64_t i = 0, e = perm.size(); i < e; i++) { if (perm[i] != i) return {}; } return getVector(); } LogicalResult vector::TransposeOp::verify() { VectorType vectorType = getSourceVectorType(); VectorType resultType = getResultVectorType(); int64_t rank = resultType.getRank(); if (vectorType.getRank() != rank) return emitOpError("vector result rank mismatch: ") << rank; // Verify transposition array. ArrayRef perm = getPermutation(); int64_t size = perm.size(); if (rank != size) return emitOpError("transposition length mismatch: ") << size; SmallVector seen(rank, false); for (const auto &ta : llvm::enumerate(perm)) { if (ta.value() < 0 || ta.value() >= rank) return emitOpError("transposition index out of range: ") << ta.value(); if (seen[ta.value()]) return emitOpError("duplicate position index: ") << ta.value(); seen[ta.value()] = true; if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(ta.value())) return emitOpError("dimension size mismatch at: ") << ta.value(); } return success(); } std::optional> TransposeOp::getShapeForUnroll() { return llvm::to_vector<4>(getResultVectorType().getShape()); } namespace { // Rewrites two back-to-back TransposeOp operations into a single TransposeOp. class TransposeFolder final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, PatternRewriter &rewriter) const override { // Composes two permutations: result[i] = permutation1[permutation2[i]]. auto composePermutations = [](ArrayRef permutation1, ArrayRef permutation2) { SmallVector result; for (auto index : permutation2) result.push_back(permutation1[index]); return result; }; // Return if the input of 'transposeOp' is not defined by another transpose. vector::TransposeOp parentTransposeOp = transposeOp.getVector().getDefiningOp(); if (!parentTransposeOp) return failure(); SmallVector permutation = composePermutations( parentTransposeOp.getPermutation(), transposeOp.getPermutation()); // Replace 'transposeOp' with a new transpose operation. rewriter.replaceOpWithNewOp( transposeOp, transposeOp.getResult().getType(), parentTransposeOp.getVector(), permutation); return success(); } }; // Folds transpose(broadcast()) into brodcast(). struct FoldTransposedScalarBroadcast final : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(vector::TransposeOp transposeOp, PatternRewriter &rewriter) const override { auto bcastOp = transposeOp.getVector().getDefiningOp(); if (!bcastOp) return failure(); auto srcVectorType = llvm::dyn_cast(bcastOp.getSourceType()); if (!srcVectorType || srcVectorType.getNumElements() == 1) { rewriter.replaceOpWithNewOp( transposeOp, transposeOp.getResultVectorType(), bcastOp.getSource()); return success(); } return failure(); } }; // Folds transpose(splat x : src_type) : res_type into splat x : res_type. class FoldTransposeSplat final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(TransposeOp transposeOp, PatternRewriter &rewriter) const override { auto splatOp = transposeOp.getVector().getDefiningOp(); if (!splatOp) return failure(); rewriter.replaceOpWithNewOp( transposeOp, transposeOp.getResultVectorType(), splatOp.getInput()); return success(); } }; /// Folds transpose(create_mask) into a new transposed create_mask. class FoldTransposeCreateMask final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(TransposeOp transpOp, PatternRewriter &rewriter) const override { Value transposeSrc = transpOp.getVector(); auto createMaskOp = transposeSrc.getDefiningOp(); auto constantMaskOp = transposeSrc.getDefiningOp(); if (!createMaskOp && !constantMaskOp) return failure(); // Get the transpose permutation and apply it to the vector.create_mask or // vector.constant_mask operands. ArrayRef permutation = transpOp.getPermutation(); if (createMaskOp) { auto maskOperands = createMaskOp.getOperands(); SmallVector newOperands(maskOperands.begin(), maskOperands.end()); applyPermutationToVector(newOperands, permutation); rewriter.replaceOpWithNewOp( transpOp, transpOp.getResultVectorType(), newOperands); return success(); } // ConstantMaskOp case. auto maskDimSizes = constantMaskOp.getMaskDimSizes(); auto newMaskDimSizes = applyPermutation(maskDimSizes, permutation); rewriter.replaceOpWithNewOp( transpOp, transpOp.getResultVectorType(), newMaskDimSizes); return success(); } }; } // namespace void vector::TransposeOp::getCanonicalizationPatterns( RewritePatternSet &results, MLIRContext *context) { results.add(context); } //===----------------------------------------------------------------------===// // ConstantMaskOp //===----------------------------------------------------------------------===// void ConstantMaskOp::build(OpBuilder &builder, OperationState &result, VectorType type, ConstantMaskKind kind) { assert(kind == ConstantMaskKind::AllTrue || kind == ConstantMaskKind::AllFalse); build(builder, result, type, kind == ConstantMaskKind::AllTrue ? type.getShape() : SmallVector(type.getRank(), 0)); } LogicalResult ConstantMaskOp::verify() { auto resultType = llvm::cast(getResult().getType()); // Check the corner case of 0-D vectors first. if (resultType.getRank() == 0) { if (getMaskDimSizes().size() != 1) return emitError("array attr must have length 1 for 0-D vectors"); auto dim = getMaskDimSizes()[0]; if (dim != 0 && dim != 1) return emitError("mask dim size must be either 0 or 1 for 0-D vectors"); return success(); } // Verify that array attr size matches the rank of the vector result. if (static_cast(getMaskDimSizes().size()) != resultType.getRank()) return emitOpError( "must specify array attr of size equal vector result rank"); // Verify that each array attr element is in bounds of corresponding vector // result dimension size. auto resultShape = resultType.getShape(); auto resultScalableDims = resultType.getScalableDims(); ArrayRef maskDimSizes = getMaskDimSizes(); for (const auto [index, maskDimSize] : llvm::enumerate(maskDimSizes)) { if (maskDimSize < 0 || maskDimSize > resultShape[index]) return emitOpError( "array attr of size out of bounds of vector result dimension size"); if (resultScalableDims[index] && maskDimSize != 0 && maskDimSize != resultShape[index]) return emitOpError( "only supports 'none set' or 'all set' scalable dimensions"); } // Verify that if one mask dim size is zero, they all should be zero (because // the mask region is a conjunction of each mask dimension interval). bool anyZeros = llvm::is_contained(maskDimSizes, 0); bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; }); if (anyZeros && !allZeros) return emitOpError("expected all mask dim sizes to be zeros, " "as a result of conjunction with zero mask dim"); return success(); } bool ConstantMaskOp::isAllOnesMask() { auto resultType = getVectorType(); // Check the corner case of 0-D vectors first. if (resultType.getRank() == 0) { assert(getMaskDimSizes().size() == 1 && "invalid sizes for zero rank mask"); return getMaskDimSizes()[0] == 1; } for (const auto [resultSize, maskDimSize] : llvm::zip_equal(resultType.getShape(), getMaskDimSizes())) { if (maskDimSize < resultSize) return false; } return true; } //===----------------------------------------------------------------------===// // CreateMaskOp //===----------------------------------------------------------------------===// void CreateMaskOp::build(OpBuilder &builder, OperationState &result, VectorType type, ArrayRef mixedOperands) { SmallVector operands = getValueOrCreateConstantIndexOp(builder, result.location, mixedOperands); build(builder, result, type, operands); } LogicalResult CreateMaskOp::verify() { auto vectorType = llvm::cast(getResult().getType()); // Verify that an operand was specified for each result vector each dimension. if (vectorType.getRank() == 0) { if (getNumOperands() != 1) return emitOpError( "must specify exactly one operand for 0-D create_mask"); } else if (getNumOperands() != llvm::cast(getResult().getType()).getRank()) { return emitOpError( "must specify an operand for each result vector dimension"); } return success(); } namespace { /// Pattern to rewrite a CreateMaskOp with a ConstantMaskOp. /// /// Ex 1: /// %c2 = arith.constant 2 : index /// %c3 = arith.constant 3 : index /// %0 = vector.create_mask %c3, %c2 : vector<4x3xi1> /// Becomes: /// vector.constant_mask [3, 2] : vector<4x3xi1> /// /// Ex 2: /// %c_neg_1 = arith.constant -1 : index /// %0 = vector.create_mask %c_neg_1 : vector<[8]xi1> /// becomes: /// vector.constant_mask [0] : vector<[8]xi1> /// /// Ex 3: /// %c8 = arith.constant 8 : index /// %c16 = arith.constant 16 : index /// %0 = vector.vscale /// %1 = arith.muli %0, %c16 : index /// %10 = vector.create_mask %c8, %1 : vector<8x[16]xi1> /// becomes: /// %0 = vector.constant_mask [8, 16] : vector<8x[16]xi1> class CreateMaskFolder final : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(CreateMaskOp createMaskOp, PatternRewriter &rewriter) const override { VectorType maskType = createMaskOp.getVectorType(); ArrayRef maskTypeDimSizes = maskType.getShape(); ArrayRef maskTypeDimScalableFlags = maskType.getScalableDims(); // Special case: Rank zero shape. constexpr std::array rankZeroShape{1}; constexpr std::array rankZeroScalableDims{false}; if (maskType.getRank() == 0) { maskTypeDimSizes = rankZeroShape; maskTypeDimScalableFlags = rankZeroScalableDims; } // Determine if this CreateMaskOp can be folded to a ConstantMaskOp and // collect the `constantDims` (for the ConstantMaskOp). SmallVector constantDims; for (auto [i, dimSize] : llvm::enumerate(createMaskOp.getOperands())) { if (auto intSize = getConstantIntValue(dimSize)) { // Constant value. // If the mask dim is non-scalable this can be any value. // If the mask dim is scalable only zero (all-false) is supported. if (maskTypeDimScalableFlags[i] && intSize >= 0) return failure(); constantDims.push_back(*intSize); } else if (auto vscaleMultiplier = getConstantVscaleMultiplier(dimSize)) { // Constant vscale multiple (e.g. 4 x vscale). // Must be all-true to fold to a ConstantMask. if (vscaleMultiplier < maskTypeDimSizes[i]) return failure(); constantDims.push_back(*vscaleMultiplier); } else { return failure(); } } // Clamp values to constant_mask bounds. for (auto [value, maskDimSize] : llvm::zip(constantDims, maskTypeDimSizes)) value = std::clamp(value, 0, maskDimSize); // If one of dim sizes is zero, set all dims to zero. if (llvm::is_contained(constantDims, 0)) constantDims.assign(constantDims.size(), 0); // Replace 'createMaskOp' with ConstantMaskOp. rewriter.replaceOpWithNewOp(createMaskOp, maskType, constantDims); return success(); } }; } // namespace void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); } //===----------------------------------------------------------------------===// // MaskOp //===----------------------------------------------------------------------===// void MaskOp::build( OpBuilder &builder, OperationState &result, Value mask, Operation *maskableOp, function_ref maskRegionBuilder) { assert(maskRegionBuilder && "builder callback for 'maskRegion' must be present"); result.addOperands(mask); OpBuilder::InsertionGuard guard(builder); Region *maskRegion = result.addRegion(); builder.createBlock(maskRegion); maskRegionBuilder(builder, maskableOp); } void MaskOp::build( OpBuilder &builder, OperationState &result, TypeRange resultTypes, Value mask, Operation *maskableOp, function_ref maskRegionBuilder) { build(builder, result, resultTypes, mask, /*passthru=*/Value(), maskableOp, maskRegionBuilder); } void MaskOp::build( OpBuilder &builder, OperationState &result, TypeRange resultTypes, Value mask, Value passthru, Operation *maskableOp, function_ref maskRegionBuilder) { build(builder, result, mask, maskableOp, maskRegionBuilder); if (passthru) result.addOperands(passthru); result.addTypes(resultTypes); } ParseResult MaskOp::parse(OpAsmParser &parser, OperationState &result) { // Create the op region. result.regions.reserve(1); Region &maskRegion = *result.addRegion(); auto &builder = parser.getBuilder(); // Parse all the operands. OpAsmParser::UnresolvedOperand mask; if (parser.parseOperand(mask)) return failure(); // Optional passthru operand. OpAsmParser::UnresolvedOperand passthru; ParseResult parsePassthru = parser.parseOptionalComma(); if (parsePassthru.succeeded() && parser.parseOperand(passthru)) return failure(); // Parse op region. if (parser.parseRegion(maskRegion, /*arguments=*/{}, /*argTypes=*/{})) return failure(); MaskOp::ensureTerminator(maskRegion, builder, result.location); // Parse the optional attribute list. if (parser.parseOptionalAttrDict(result.attributes)) return failure(); // Parse all the types. Type maskType; if (parser.parseColonType(maskType)) return failure(); SmallVector resultTypes; if (parser.parseOptionalArrowTypeList(resultTypes)) return failure(); result.types.append(resultTypes); // Resolve operands. if (parser.resolveOperand(mask, maskType, result.operands)) return failure(); if (parsePassthru.succeeded()) if (parser.resolveOperand(passthru, resultTypes[0], result.operands)) return failure(); return success(); } void mlir::vector::MaskOp::print(OpAsmPrinter &p) { p << " " << getMask(); if (getPassthru()) p << ", " << getPassthru(); // Print single masked operation and skip terminator. p << " { "; Block *singleBlock = &getMaskRegion().getBlocks().front(); if (singleBlock && !singleBlock->getOperations().empty()) p.printCustomOrGenericOp(&singleBlock->front()); p << " }"; p.printOptionalAttrDict(getOperation()->getAttrs()); p << " : " << getMask().getType(); if (getNumResults() > 0) p << " -> " << getResultTypes(); } void MaskOp::ensureTerminator(Region ®ion, Builder &builder, Location loc) { OpTrait::SingleBlockImplicitTerminator::Impl< MaskOp>::ensureTerminator(region, builder, loc); // Keep the default yield terminator if the number of masked operations is not // the expected. This case will trigger a verification failure. Block &block = region.front(); if (block.getOperations().size() != 2) return; // Replace default yield terminator with a new one that returns the results // from the masked operation. OpBuilder opBuilder(builder.getContext()); Operation *maskedOp = &block.front(); Operation *oldYieldOp = &block.back(); assert(isa(oldYieldOp) && "Expected vector::YieldOp"); // Empty vector.mask op. if (maskedOp == oldYieldOp) return; opBuilder.setInsertionPoint(oldYieldOp); opBuilder.create(loc, maskedOp->getResults()); oldYieldOp->dropAllReferences(); oldYieldOp->erase(); } LogicalResult MaskOp::verify() { // Structural checks. Block &block = getMaskRegion().getBlocks().front(); if (block.getOperations().empty()) return emitOpError("expects a terminator within the mask region"); unsigned numMaskRegionOps = block.getOperations().size(); if (numMaskRegionOps > 2) return emitOpError("expects only one operation to mask"); // Terminator checks. auto terminator = dyn_cast(block.back()); if (!terminator) return emitOpError("expects a terminator within the mask region"); if (terminator->getNumOperands() != getNumResults()) return emitOpError( "expects number of results to match mask region yielded values"); // Empty vector.mask. Nothing else to check. if (numMaskRegionOps == 1) return success(); auto maskableOp = dyn_cast(block.front()); if (!maskableOp) return emitOpError("expects a MaskableOpInterface within the mask region"); // Result checks. if (maskableOp->getNumResults() != getNumResults()) return emitOpError("expects number of results to match maskable operation " "number of results"); if (!llvm::equal(maskableOp->getResultTypes(), getResultTypes())) return emitOpError( "expects result type to match maskable operation result type"); if (llvm::count_if(maskableOp->getResultTypes(), [](Type t) { return llvm::isa(t); }) > 1) return emitOpError("multiple vector results not supported"); // Mask checks. Type expectedMaskType = maskableOp.getExpectedMaskType(); if (getMask().getType() != expectedMaskType) return emitOpError("expects a ") << expectedMaskType << " mask for the maskable operation"; // Passthru checks. Value passthru = getPassthru(); if (passthru) { if (!maskableOp.supportsPassthru()) return emitOpError( "doesn't expect a passthru argument for this maskable operation"); if (maskableOp->getNumResults() != 1) return emitOpError("expects result when passthru argument is provided"); if (passthru.getType() != maskableOp->getResultTypes()[0]) return emitOpError("expects passthru type to match result type"); } return success(); } /// Folds vector.mask ops with an all-true mask. LogicalResult MaskOp::fold(FoldAdaptor adaptor, SmallVectorImpl &results) { MaskFormat maskFormat = getMaskFormat(getMask()); if (isEmpty()) return failure(); if (maskFormat != MaskFormat::AllTrue) return failure(); // Move maskable operation outside of the `vector.mask` region. Operation *maskableOp = getMaskableOp(); maskableOp->dropAllUses(); maskableOp->moveBefore(getOperation()); llvm::append_range(results, maskableOp->getResults()); return success(); } // Elides empty vector.mask operations with or without return values. Propagates // the yielded values by the vector.yield terminator, if any, or erases the op, // otherwise. class ElideEmptyMaskOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(MaskOp maskOp, PatternRewriter &rewriter) const override { auto maskingOp = cast(maskOp.getOperation()); if (maskingOp.getMaskableOp()) return failure(); if (!maskOp.isEmpty()) return failure(); Block *block = maskOp.getMaskBlock(); auto terminator = cast(block->front()); if (terminator.getNumOperands() == 0) rewriter.eraseOp(maskOp); else rewriter.replaceOp(maskOp, terminator.getOperands()); return success(); } }; void MaskOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); } // MaskingOpInterface definitions. /// Returns the operation masked by this 'vector.mask'. Operation *MaskOp::getMaskableOp() { Block *block = getMaskBlock(); if (block->getOperations().size() < 2) return nullptr; return &block->front(); } /// Returns true if 'vector.mask' has a passthru value. bool MaskOp::hasPassthru() { return getPassthru() != Value(); } //===----------------------------------------------------------------------===// // ScanOp //===----------------------------------------------------------------------===// LogicalResult ScanOp::verify() { VectorType srcType = getSourceType(); VectorType initialType = getInitialValueType(); // Check reduction dimension < rank. int64_t srcRank = srcType.getRank(); int64_t reductionDim = getReductionDim(); if (reductionDim >= srcRank) return emitOpError("reduction dimension ") << reductionDim << " has to be less than " << srcRank; // Check that rank(initial_value) = rank(src) - 1. int64_t initialValueRank = initialType.getRank(); if (initialValueRank != srcRank - 1) return emitOpError("initial value rank ") << initialValueRank << " has to be equal to " << srcRank - 1; // Check shapes of initial value and src. ArrayRef srcShape = srcType.getShape(); ArrayRef initialValueShapes = initialType.getShape(); SmallVector expectedShape; for (int i = 0; i < srcRank; i++) { if (i != reductionDim) expectedShape.push_back(srcShape[i]); } if (!llvm::equal(initialValueShapes, expectedShape)) { return emitOpError("incompatible input/initial value shapes"); } // Verify supported reduction kind. Type eltType = getDestType().getElementType(); if (!isSupportedCombiningKind(getKind(), eltType)) return emitOpError("unsupported reduction type ") << eltType << " for kind '" << stringifyCombiningKind(getKind()) << "'"; return success(); } void mlir::vector::populateVectorToVectorCanonicalizationPatterns( RewritePatternSet &patterns, PatternBenefit benefit) { patterns .add( patterns.getContext(), benefit); } //===----------------------------------------------------------------------===// // SplatOp //===----------------------------------------------------------------------===// OpFoldResult SplatOp::fold(FoldAdaptor adaptor) { auto constOperand = adaptor.getInput(); if (!isa_and_nonnull(constOperand)) return {}; // SplatElementsAttr::get treats single value for second arg as being a splat. return SplatElementsAttr::get(getType(), {constOperand}); } void SplatOp::inferResultRanges(ArrayRef argRanges, SetIntRangeFn setResultRanges) { setResultRanges(getResult(), argRanges.front()); } Value mlir::vector::makeArithReduction(OpBuilder &b, Location loc, CombiningKind kind, Value v1, Value acc, arith::FastMathFlagsAttr fastmath, Value mask) { Type t1 = getElementTypeOrSelf(v1.getType()); Type tAcc = getElementTypeOrSelf(acc.getType()); Value result; switch (kind) { case CombiningKind::ADD: if (t1.isIntOrIndex() && tAcc.isIntOrIndex()) result = b.createOrFold(loc, v1, acc); else if (llvm::isa(t1) && llvm::isa(tAcc)) result = b.createOrFold(loc, v1, acc, fastmath); else llvm_unreachable("invalid value types for ADD reduction"); break; case CombiningKind::AND: assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values"); result = b.createOrFold(loc, v1, acc); break; case CombiningKind::MAXNUMF: assert(llvm::isa(t1) && llvm::isa(tAcc) && "expected float values"); result = b.createOrFold(loc, v1, acc, fastmath); break; case CombiningKind::MAXIMUMF: assert(llvm::isa(t1) && llvm::isa(tAcc) && "expected float values"); result = b.createOrFold(loc, v1, acc, fastmath); break; case CombiningKind::MINNUMF: assert(llvm::isa(t1) && llvm::isa(tAcc) && "expected float values"); result = b.createOrFold(loc, v1, acc, fastmath); break; case CombiningKind::MINIMUMF: assert(llvm::isa(t1) && llvm::isa(tAcc) && "expected float values"); result = b.createOrFold(loc, v1, acc, fastmath); break; case CombiningKind::MAXSI: assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values"); result = b.createOrFold(loc, v1, acc); break; case CombiningKind::MINSI: assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values"); result = b.createOrFold(loc, v1, acc); break; case CombiningKind::MAXUI: assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values"); result = b.createOrFold(loc, v1, acc); break; case CombiningKind::MINUI: assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values"); result = b.createOrFold(loc, v1, acc); break; case CombiningKind::MUL: if (t1.isIntOrIndex() && tAcc.isIntOrIndex()) result = b.createOrFold(loc, v1, acc); else if (llvm::isa(t1) && llvm::isa(tAcc)) result = b.createOrFold(loc, v1, acc, fastmath); else llvm_unreachable("invalid value types for MUL reduction"); break; case CombiningKind::OR: assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values"); result = b.createOrFold(loc, v1, acc); break; case CombiningKind::XOR: assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values"); result = b.createOrFold(loc, v1, acc); break; }; assert(result && "unknown CombiningKind"); return selectPassthru(b, mask, result, acc); } //===----------------------------------------------------------------------===// // Vector Masking Utilities //===----------------------------------------------------------------------===// /// Create the vector.yield-ended region of a vector.mask op with `maskableOp` /// as masked operation. void mlir::vector::createMaskOpRegion(OpBuilder &builder, Operation *maskableOp) { assert(maskableOp->getBlock() && "MaskableOp must be inserted into a block"); Block *insBlock = builder.getInsertionBlock(); // Create a block and move the op to that block. insBlock->getOperations().splice( insBlock->begin(), maskableOp->getBlock()->getOperations(), maskableOp); builder.create(maskableOp->getLoc(), maskableOp->getResults()); } /// Creates a vector.mask operation around a maskable operation. Returns the /// vector.mask operation if the mask provided is valid. Otherwise, returns /// the maskable operation itself. Operation *mlir::vector::maskOperation(OpBuilder &builder, Operation *maskableOp, Value mask, Value passthru) { if (!mask) return maskableOp; if (passthru) return builder.create(maskableOp->getLoc(), maskableOp->getResultTypes(), mask, passthru, maskableOp, createMaskOpRegion); return builder.create(maskableOp->getLoc(), maskableOp->getResultTypes(), mask, maskableOp, createMaskOpRegion); } /// Creates a vector select operation that picks values from `newValue` or /// `passthru` for each result vector lane based on `mask`. This utility is used /// to propagate the pass-thru value of vector.mask or for cases where only the /// pass-thru value propagation is needed. VP intrinsics do not support /// pass-thru values and every mask-out lane is set to poison. LLVM backends are /// usually able to match op + select patterns and fold them into a native /// target instructions. Value mlir::vector::selectPassthru(OpBuilder &builder, Value mask, Value newValue, Value passthru) { if (!mask) return newValue; return builder.create(newValue.getLoc(), newValue.getType(), mask, newValue, passthru); } //===----------------------------------------------------------------------===// // TableGen'd op method definitions //===----------------------------------------------------------------------===// #define GET_ATTRDEF_CLASSES #include "mlir/Dialect/Vector/IR/VectorAttributes.cpp.inc" #define GET_OP_CLASSES #include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"