//===- StructuredOpsUtils.cpp - Utilities used by structured ops ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Utils/StructuredOpsUtils.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/IRMapping.h" #include "llvm/ADT/StringSet.h" #include "mlir/Dialect/Utils/DialectUtilsEnums.cpp.inc" using namespace mlir; bool mlir::isRowMajorMatmul(ArrayAttr indexingMaps) { if (indexingMaps.size() != 3) return false; AffineMap map0 = cast(indexingMaps[0]).getValue(); AffineMap map1 = cast(indexingMaps[1]).getValue(); AffineMap map2 = cast(indexingMaps[2]).getValue(); if (map0.getNumResults() != 2 || map1.getNumResults() != 2 || map2.getNumResults() != 2 || map0.getNumInputs() != 3 || map1.getNumInputs() != 3 || map2.getNumInputs() != 3) { return false; } // Extract dimensions for MxK * KxN -> MxN AffineExpr m = map2.getResult(0); AffineExpr n = map2.getResult(1); AffineExpr k = map0.getResult(1); auto *context = indexingMaps.getContext(); auto mapA = AffineMapAttr::get(AffineMap::get(3, 0, {m, k}, context)); auto mapB = AffineMapAttr::get(AffineMap::get(3, 0, {k, n}, context)); auto mapC = AffineMapAttr::get(AffineMap::get(3, 0, {m, n}, context)); auto maps = ArrayAttr::get(context, {mapA, mapB, mapC}); return indexingMaps == maps; } bool mlir::isColumnMajorMatmul(ArrayAttr indexingMaps) { if (indexingMaps.size() != 3) return false; AffineMap map0 = cast(indexingMaps[0]).getValue(); AffineMap map1 = cast(indexingMaps[1]).getValue(); AffineMap map2 = cast(indexingMaps[2]).getValue(); if (map0.getNumResults() != 2 || map1.getNumResults() != 2 || map2.getNumResults() != 2 || map0.getNumInputs() != 3 || map1.getNumInputs() != 3 || map2.getNumInputs() != 3) { return false; } // Extract dimensions for KxM * NxK -> NxM AffineExpr n = map2.getResult(0); AffineExpr m = map2.getResult(1); AffineExpr k = map0.getResult(0); auto *context = indexingMaps.getContext(); auto mapA = AffineMapAttr::get(AffineMap::get(3, 0, {k, m}, context)); auto mapB = AffineMapAttr::get(AffineMap::get(3, 0, {n, k}, context)); auto mapC = AffineMapAttr::get(AffineMap::get(3, 0, {n, m}, context)); auto maps = ArrayAttr::get(context, {mapA, mapB, mapC}); return indexingMaps == maps; } bool mlir::isRowMajorBatchMatmul(ArrayAttr indexingMaps) { if (indexingMaps.size() != 3) return false; AffineMap map0 = cast(indexingMaps[0]).getValue(); AffineMap map1 = cast(indexingMaps[1]).getValue(); AffineMap map2 = cast(indexingMaps[2]).getValue(); if (map0.getNumResults() != 3 || map1.getNumResults() != 3 || map2.getNumResults() != 3 || map0.getNumInputs() != 4 || map1.getNumInputs() != 4 || map2.getNumInputs() != 4) { return false; } // Extract dimensions for BxMxK * BxKxN -> BxMxN AffineExpr b = map2.getResult(0); AffineExpr m = map2.getResult(1); AffineExpr n = map2.getResult(2); AffineExpr k = map0.getResult(2); auto *context = indexingMaps.getContext(); auto mapA = AffineMapAttr::get(AffineMap::get(4, 0, {b, m, k}, context)); auto mapB = AffineMapAttr::get(AffineMap::get(4, 0, {b, k, n}, context)); auto mapC = AffineMapAttr::get(AffineMap::get(4, 0, {b, m, n}, context)); auto maps = ArrayAttr::get(context, {mapA, mapB, mapC}); return indexingMaps == maps; } bool mlir::isVecmat(ArrayAttr indexingMaps) { if (indexingMaps.size() != 3) return false; AffineMap map0 = cast(indexingMaps[0]).getValue(); AffineMap map1 = cast(indexingMaps[1]).getValue(); AffineMap map2 = cast(indexingMaps[2]).getValue(); if (map0.getNumResults() != 1 || map1.getNumResults() != 2 || map2.getNumResults() != 1 || map0.getNumInputs() != 2 || map1.getNumInputs() != 2 || map2.getNumInputs() != 2) { return false; } // Extract dimensions for K * KxN -> N AffineExpr k = map0.getResult(0); AffineExpr n = map2.getResult(0); auto *context = indexingMaps.getContext(); auto mapA = AffineMapAttr::get(AffineMap::get(2, 0, {k}, context)); auto mapB = AffineMapAttr::get(AffineMap::get(2, 0, {k, n}, context)); auto mapC = AffineMapAttr::get(AffineMap::get(2, 0, {n}, context)); auto maps = ArrayAttr::get(context, {mapA, mapB, mapC}); return indexingMaps == maps; } bool mlir::isBatchVecmat(ArrayAttr indexingMaps) { if (indexingMaps.size() != 3) return false; AffineMap map0 = cast(indexingMaps[0]).getValue(); AffineMap map1 = cast(indexingMaps[1]).getValue(); AffineMap map2 = cast(indexingMaps[2]).getValue(); if (map0.getNumResults() != 2 || map1.getNumResults() != 3 || map2.getNumResults() != 2 || map0.getNumInputs() != 3 || map1.getNumInputs() != 3 || map2.getNumInputs() != 3) { return false; } // Extract dimensions for B*K * B*K*N -> B*N AffineExpr b = map0.getResult(0); AffineExpr k = map0.getResult(1); AffineExpr n = map2.getResult(1); auto *context = indexingMaps.getContext(); auto mapA = AffineMapAttr::get(AffineMap::get(3, 0, {b, k}, context)); auto mapB = AffineMapAttr::get(AffineMap::get(3, 0, {b, k, n}, context)); auto mapC = AffineMapAttr::get(AffineMap::get(3, 0, {b, n}, context)); auto maps = ArrayAttr::get(context, {mapA, mapB, mapC}); return indexingMaps == maps; } bool mlir::isMatvec(ArrayAttr indexingMaps) { if (indexingMaps.size() != 3) return false; AffineMap map0 = cast(indexingMaps[0]).getValue(); AffineMap map1 = cast(indexingMaps[1]).getValue(); AffineMap map2 = cast(indexingMaps[2]).getValue(); if (map0.getNumResults() != 2 || map1.getNumResults() != 1 || map2.getNumResults() != 1 || map0.getNumInputs() != 2 || map1.getNumInputs() != 2 || map2.getNumInputs() != 2) { return false; } // Extract dimensions for N*K * K -> N AffineExpr k = map1.getResult(0); AffineExpr n = map2.getResult(0); auto *context = indexingMaps.getContext(); auto mapA = AffineMapAttr::get(AffineMap::get(2, 0, {n, k}, context)); auto mapB = AffineMapAttr::get(AffineMap::get(2, 0, {k}, context)); auto mapC = AffineMapAttr::get(AffineMap::get(2, 0, {n}, context)); auto maps = ArrayAttr::get(context, {mapA, mapB, mapC}); return indexingMaps == maps; } bool mlir::isBatchMatvec(ArrayAttr indexingMaps) { if (indexingMaps.size() != 3) return false; AffineMap map0 = cast(indexingMaps[0]).getValue(); AffineMap map1 = cast(indexingMaps[1]).getValue(); AffineMap map2 = cast(indexingMaps[2]).getValue(); if (map0.getNumResults() != 3 || map1.getNumResults() != 2 || map2.getNumResults() != 2 || map0.getNumInputs() != 3 || map1.getNumInputs() != 3 || map2.getNumInputs() != 3) { return false; } // Extract dimensions for B*N*K * B*K -> B*N AffineExpr b = map0.getResult(0); AffineExpr k = map1.getResult(1); AffineExpr n = map2.getResult(1); auto *context = indexingMaps.getContext(); auto mapA = AffineMapAttr::get(AffineMap::get(3, 0, {b, n, k}, context)); auto mapB = AffineMapAttr::get(AffineMap::get(3, 0, {b, k}, context)); auto mapC = AffineMapAttr::get(AffineMap::get(3, 0, {b, n}, context)); auto maps = ArrayAttr::get(context, {mapA, mapB, mapC}); return indexingMaps == maps; } Operation *mlir::clone(OpBuilder &b, Operation *op, TypeRange newResultTypes, ValueRange newOperands) { IRMapping bvm; OperationState state(op->getLoc(), op->getName(), newOperands, newResultTypes, op->getAttrs()); for (Region &r : op->getRegions()) { Region *newRegion = state.addRegion(); b.cloneRegionBefore(r, *newRegion, newRegion->begin(), bvm); } return b.create(state); } Operation *mlir::cloneWithoutRegions(OpBuilder &b, Operation *op, TypeRange newResultTypes, ValueRange newOperands) { OperationState state(op->getLoc(), op->getName(), newOperands, newResultTypes, op->getAttrs()); for (size_t cnt = 0, e = op->getNumRegions(); cnt < e; ++cnt) state.addRegion(); return b.create(state); } SmallVector mlir::getPrunedAttributeList(Operation *op, ArrayRef elidedAttrs) { llvm::StringSet<> elidedAttrsSet; elidedAttrsSet.insert(elidedAttrs.begin(), elidedAttrs.end()); SmallVector attrs; for (auto attr : op->getAttrs()) { if (elidedAttrsSet.count(attr.getName())) continue; attrs.push_back(attr); } return attrs; }