//===- ParallelLoopTiling.cpp - Tiles scf.parallel ------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements loop tiling on parallel loops. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/SCF/Transforms/Passes.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/SCF/IR/SCF.h" #include "mlir/Dialect/SCF/Transforms/Transforms.h" #include "mlir/Dialect/SCF/Utils/Utils.h" namespace mlir { #define GEN_PASS_DEF_SCFPARALLELLOOPTILING #include "mlir/Dialect/SCF/Transforms/Passes.h.inc" } // namespace mlir using namespace mlir; using namespace mlir::scf; /// Tile a parallel loop of the form /// scf.parallel (%i0, %i1) = (%arg0, %arg1) to (%arg2, %arg3) /// step (%arg4, %arg5) /// /// into /// scf.parallel (%i0, %i1) = (%arg0, %arg1) to (%arg2, %arg3) /// step (%arg4*tileSize[0], /// %arg5*tileSize[1]) /// scf.parallel (%j0, %j1) = (0, 0) to (min(%arg4*tileSize[0], %arg2-%i0) /// min(%arg5*tileSize[1], %arg3-%i1)) /// step (%arg4, %arg5) /// /// or, when no-min-max-bounds is true, into /// scf.parallel (%i0, %i1) = (%arg0, %arg1) to (%arg2, %arg3) /// step (%arg4*tileSize[0], /// %arg5*tileSize[1]) /// scf.parallel (%j0, %j1) = (0, 0) to (%arg4*tileSize[0], /// %arg5*tileSize[1]) /// step (%arg4, %arg5) /// %inbound = (%j0 * %arg4 + %i0 < %arg2) && /// (%j1 * %arg5 + %i1 < %arg3) /// scf.if (%inbound) /// .... /// /// where the uses of %i0 and %i1 in the loop body are replaced by /// %i0 + j0 and %i1 + %j1. /// /// The old loop is replaced with the new one. std::pair mlir::scf::tileParallelLoop(ParallelOp op, ArrayRef tileSizes, bool noMinMaxBounds) { OpBuilder b(op); auto zero = b.create(op.getLoc(), 0); SmallVector tileSizeConstants; tileSizeConstants.reserve(op.getUpperBound().size()); for (size_t i = 0, end = op.getUpperBound().size(); i != end; ++i) { if (i < tileSizes.size()) tileSizeConstants.push_back( b.create(op.getLoc(), tileSizes[i])); else // Just pick 1 for the remaining dimensions. tileSizeConstants.push_back( b.create(op.getLoc(), 1)); } // Create the outer loop with adjusted steps. SmallVector newSteps; newSteps.reserve(op.getStep().size()); for (auto step : llvm::zip(op.getStep(), tileSizeConstants)) { newSteps.push_back(b.create(op.getLoc(), std::get<0>(step), std::get<1>(step))); } auto outerLoop = b.create(op.getLoc(), op.getLowerBound(), op.getUpperBound(), newSteps); b.setInsertionPointToStart(outerLoop.getBody()); // Compute min(size, dim - offset) to avoid out-of-bounds accesses. auto minMap = AffineMap::get( /*dimCount=*/3, /*symbolCount=*/0, {getAffineDimExpr(/*position=*/0, b.getContext()), getAffineDimExpr(/*position=*/1, b.getContext()) - getAffineDimExpr(/*position=*/2, b.getContext())}, b.getContext()); // Create the inner loop with adjusted bounds. SmallVector newBounds; newBounds.reserve(op.getUpperBound().size()); bool needInboundCheck = false; for (auto [lowerBound, upperBound, newStep, iv, step, tileSizeConstant] : llvm::zip(outerLoop.getLowerBound(), outerLoop.getUpperBound(), outerLoop.getStep(), outerLoop.getInductionVars(), op.getStep(), tileSizeConstants)) { // Collect the statically known loop bounds auto lowerBoundConstant = dyn_cast_or_null(lowerBound.getDefiningOp()); auto upperBoundConstant = dyn_cast_or_null(upperBound.getDefiningOp()); auto stepConstant = dyn_cast_or_null(step.getDefiningOp()); auto tileSize = cast(tileSizeConstant.getDefiningOp()).value(); // If the loop bounds and the loop step are constant and if the number of // loop iterations is an integer multiple of the tile size, we use a static // bound for the inner loop. if (lowerBoundConstant && upperBoundConstant && stepConstant) { auto numIterations = llvm::divideCeil(upperBoundConstant.value() - lowerBoundConstant.value(), stepConstant.value()); if (numIterations % tileSize == 0) { newBounds.push_back(newStep); continue; } } // For InboundCheck mode, just use the variable outer step if (noMinMaxBounds) { newBounds.push_back(newStep); needInboundCheck = true; continue; } // Otherwise, we dynamically compute the bound for // each iteration of the outer loop. newBounds.push_back( b.create(op.getLoc(), b.getIndexType(), minMap, ValueRange{newStep, upperBound, iv})); } auto innerLoop = b.create( op.getLoc(), SmallVector(newBounds.size(), zero), newBounds, op.getStep()); if (noMinMaxBounds && needInboundCheck) { b.setInsertionPointToStart(innerLoop.getBody()); // Insert in-bound check Value inbound = b.create(op.getLoc(), 1, b.getIntegerType(1)); for (auto [outerUpperBound, outerIV, innerIV, innerStep] : llvm::zip(outerLoop.getUpperBound(), outerLoop.getInductionVars(), innerLoop.getInductionVars(), innerLoop.getStep())) { // %in_bound = %in_bound && // (%inner_iv * %inner_step + %outer_iv < %outer_upper_bound) Value index = b.create( op.getLoc(), b.create(op.getLoc(), innerIV, innerStep), outerIV); Value dimInbound = b.create( op.getLoc(), arith::CmpIPredicate::ult, index, outerUpperBound); inbound = b.create(op.getLoc(), inbound, dimInbound); } auto ifInbound = b.create(op.getLoc(), /*resultTypes*/ ArrayRef{}, inbound, /*hasElseRegion*/ false); ifInbound.getThenRegion().takeBody(op.getRegion()); Block &thenBlock = ifInbound.getThenRegion().front(); // Replace the scf.reduce terminator with an scf.yield terminator. Operation *reduceOp = thenBlock.getTerminator(); b.setInsertionPointToEnd(&thenBlock); b.create(reduceOp->getLoc()); reduceOp->erase(); b.setInsertionPointToStart(innerLoop.getBody()); for (const auto &ivs : llvm::enumerate(llvm::zip( innerLoop.getInductionVars(), outerLoop.getInductionVars()))) { auto newIndex = b.create( op.getLoc(), std::get<0>(ivs.value()), std::get<1>(ivs.value())); thenBlock.getArgument(ivs.index()) .replaceAllUsesExcept(newIndex, newIndex); } thenBlock.eraseArguments(0, thenBlock.getNumArguments()); } else { innerLoop.getRegion().takeBody(op.getRegion()); b.setInsertionPointToStart(innerLoop.getBody()); for (auto ivs : llvm::zip(innerLoop.getInductionVars(), outerLoop.getInductionVars())) { Value innerIndex = std::get<0>(ivs); auto newIndex = b.create(op.getLoc(), std::get<0>(ivs), std::get<1>(ivs)); innerIndex.replaceAllUsesExcept(newIndex, newIndex); } } op.erase(); return std::make_pair(outerLoop, innerLoop); } namespace { struct ParallelLoopTiling : public impl::SCFParallelLoopTilingBase { ParallelLoopTiling() = default; explicit ParallelLoopTiling(ArrayRef tileSizes, bool noMinMaxBounds = false) { this->tileSizes = tileSizes; this->noMinMaxBounds = noMinMaxBounds; } void runOnOperation() override { for (auto tileSize : tileSizes) if (tileSize == 0) { mlir::emitError(mlir::UnknownLoc::get(&Pass::getContext()), "tile size cannot be 0"); return signalPassFailure(); } auto *parentOp = getOperation(); SmallVector innermostPloops; getInnermostParallelLoops(parentOp, innermostPloops); for (ParallelOp ploop : innermostPloops) { // FIXME: Add reduction support. if (ploop.getNumReductions() == 0) tileParallelLoop(ploop, tileSizes, noMinMaxBounds); } } }; } // namespace std::unique_ptr mlir::createParallelLoopTilingPass(ArrayRef tileSizes, bool noMinMaxBounds) { return std::make_unique(tileSizes, noMinMaxBounds); }