//===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the linalg dialect Vectorization transformations. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Affine/Utils.h" #include "mlir/Analysis/SliceAnalysis.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/Linalg/IR/Linalg.h" #include "mlir/Dialect/Linalg/Transforms/Transforms.h" #include "mlir/Dialect/Linalg/Utils/Utils.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/Dialect/Tensor/Utils/Utils.h" #include "mlir/Dialect/Utils/IndexingUtils.h" #include "mlir/Dialect/Utils/StructuredOpsUtils.h" #include "mlir/Dialect/Vector/IR/VectorOps.h" #include "mlir/Dialect/Vector/Interfaces/MaskableOpInterface.h" #include "mlir/Dialect/Vector/Utils/VectorUtils.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/OpDefinition.h" #include "mlir/IR/PatternMatch.h" #include "mlir/Support/LLVM.h" #include "mlir/Transforms/RegionUtils.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Sequence.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/TypeSwitch.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace mlir; using namespace mlir::linalg; #define DEBUG_TYPE "linalg-vectorization" #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ") #define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n") /// Try to vectorize `convOp` as a convolution. static FailureOr vectorizeConvolution(RewriterBase &rewriter, LinalgOp convOp, ArrayRef inputVecSizes = {}, ArrayRef inputVecScalableFlags = {}, bool flatten1DDepthwiseConv = false); /// Return the unique instance of OpType in `block` if it is indeed unique. /// Return null if none or more than 1 instances exist. template static OpType getSingleOpOfType(Block &block) { OpType res; block.walk([&](OpType op) { if (res) { res = nullptr; return WalkResult::interrupt(); } res = op; return WalkResult::advance(); }); return res; } /// Helper function to extract the input slices after filter is unrolled along /// kw. static SmallVector extractConvInputSlices(RewriterBase &rewriter, Location loc, Value input, int64_t nSize, int64_t wSize, int64_t cSize, int64_t kwSize, int strideW, int dilationW, int64_t wSizeStep, bool isSingleChanneled) { SmallVector result; if (isSingleChanneled) { // Extract input slice of size {wSizeStep} @ [w + kw] for non-channeled // convolution. SmallVector sizes = {wSizeStep}; SmallVector strides = {1}; for (int64_t kw = 0; kw < kwSize; ++kw) { for (int64_t w = 0; w < wSize; w += wSizeStep) { result.push_back(rewriter.create( loc, input, /*offsets=*/ArrayRef{w + kw}, sizes, strides)); } } } else { // Extract lhs slice of size {n, wSizeStep, c} @ [0, sw * w + dw * kw, 0] // for channeled convolution. SmallVector sizes = {nSize, wSizeStep, cSize}; SmallVector strides = {1, 1, 1}; for (int64_t kw = 0; kw < kwSize; ++kw) { for (int64_t w = 0; w < wSize; w += wSizeStep) { result.push_back(rewriter.create( loc, input, /*offsets=*/ArrayRef{0, w * strideW + kw * dilationW, 0}, sizes, strides)); } } } return result; } /// Helper function to extract the filter slices after filter is unrolled along /// kw. static SmallVector extractConvFilterSlices(RewriterBase &rewriter, Location loc, Value filter, int64_t kwSize) { SmallVector result; // Extract rhs slice of size [{c, f} for channeled convolutions and {1} for // non-chanelled convolution] @ [kw]. for (int64_t kw = 0; kw < kwSize; ++kw) { result.push_back(rewriter.create( loc, filter, /*offsets=*/ArrayRef{kw})); } return result; } /// Helper function to extract the result slices after filter is unrolled along /// kw. static SmallVector extractConvResultSlices(RewriterBase &rewriter, Location loc, Value res, int64_t nSize, int64_t wSize, int64_t fSize, int64_t wSizeStep, bool isSingleChanneled) { SmallVector result; if (isSingleChanneled) { // Extract res slice: {wSizeStep} @ [w] for non-channeled convolution. SmallVector sizes = {wSizeStep}; SmallVector strides = {1}; for (int64_t w = 0; w < wSize; w += wSizeStep) { result.push_back(rewriter.create( loc, res, /*offsets=*/ArrayRef{w}, sizes, strides)); } } else { // Extract res slice: {n, wSizeStep, f} @ [0, w, 0] for channeled // convolution. SmallVector sizes = {nSize, wSizeStep, fSize}; SmallVector strides = {1, 1, 1}; for (int64_t w = 0; w < wSize; w += wSizeStep) { result.push_back(rewriter.create( loc, res, /*offsets=*/ArrayRef{0, w, 0}, sizes, strides)); } } return result; } /// Helper function to insert the computed result slices. static Value insertConvResultSlices(RewriterBase &rewriter, Location loc, Value res, int64_t wSize, int64_t wSizeStep, SmallVectorImpl &resVals, bool isSingleChanneled) { if (isSingleChanneled) { // Write back res slice: {wSizeStep} @ [w] for non-channeled convolution. // This does not depend on kw. SmallVector strides = {1}; for (int64_t w = 0; w < wSize; w += wSizeStep) { res = rewriter.create( loc, resVals[w], res, /*offsets=*/ArrayRef{w}, strides); } } else { // Write back res slice: {n, wSizeStep, f} @ [0, w, 0] for channeled // convolution. This does not depend on kw. SmallVector strides = {1, 1, 1}; for (int64_t w = 0; w < wSize; w += wSizeStep) { res = rewriter.create( loc, resVals[w], res, /*offsets=*/ArrayRef{0, w, 0}, strides); } } return res; } /// Contains the vectorization state and related methods used across the /// vectorization process of a given operation. struct VectorizationState { VectorizationState(RewriterBase &rewriter) : rewriterGuard(rewriter) {} /// Initializes the vectorization state, including the computation of the /// canonical vector shape for vectorization. LogicalResult initState(RewriterBase &rewriter, LinalgOp linalgOp, ArrayRef inputVectorSizes, ArrayRef inputScalableVecDims); /// Returns the canonical vector shape used to vectorize the iteration space. ArrayRef getCanonicalVecShape() const { return canonicalVecShape; } /// Returns the vector dimensions that are scalable in the canonical vector /// shape. ArrayRef getScalableVecDims() const { return scalableVecDims; } /// Returns a vector type of the provided `elementType` with the canonical /// vector shape and the corresponding fixed/scalable dimensions bit. If /// `dimPermutation` is provided, the canonical vector dimensions are permuted /// accordingly. VectorType getCanonicalVecType( Type elementType, std::optional dimPermutation = std::nullopt) const { SmallVector vectorShape; SmallVector scalableDims; if (dimPermutation.has_value()) { vectorShape = applyPermutationMap(*dimPermutation, canonicalVecShape); scalableDims = applyPermutationMap(*dimPermutation, scalableVecDims); } else { vectorShape.append(canonicalVecShape.begin(), canonicalVecShape.end()); scalableDims.append(scalableVecDims.begin(), scalableVecDims.end()); } return VectorType::get(vectorShape, elementType, scalableDims); } /// Masks an operation with the canonical vector mask if the operation needs /// masking. Returns the masked operation or the original operation if masking /// is not needed. If provided, the canonical mask for this operation is /// permuted using `maybeIndexingMap`. Operation * maskOperation(RewriterBase &rewriter, Operation *opToMask, LinalgOp linalgOp, std::optional maybeIndexingMap = std::nullopt); private: /// Initializes the iteration space static sizes using the Linalg op /// information. This may become more complicated in the future. void initIterSpaceStaticSizes(LinalgOp linalgOp) { iterSpaceStaticSizes.append(linalgOp.getStaticLoopRanges()); } /// Generates 'arith.constant' and 'tensor/memref.dim' operations for /// all the static and dynamic dimensions of the iteration space to be /// vectorized and store them in `iterSpaceValueSizes`. LogicalResult precomputeIterSpaceValueSizes(RewriterBase &rewriter, LinalgOp linalgOp); /// Create or retrieve an existing mask value to mask `opToMask` in the /// canonical vector iteration space. If `maybeMaskingMap` the mask is /// permuted using that permutation map. If a new mask is created, it will be /// cached for future users. Value getOrCreateMaskFor(RewriterBase &rewriter, Operation *opToMask, LinalgOp linalgOp, std::optional maybeMaskingMap); /// Check whether this permutation map can be used for masking. At the /// moment we only make sure that there are no broadcast dimensions, but this /// might change if indexing maps evolve. bool isValidMaskingMap(AffineMap maskingMap) { return maskingMap.getBroadcastDims().size() == 0; } /// Turn the input indexing map into a valid masking map. /// /// The input indexing map may contain "zero" results, e.g.: /// (d0, d1, d2, d3) -> (d2, d1, d0, 0) /// Applying such maps to canonical vector shapes like this one: /// (1, 16, 16, 4) /// would yield an invalid vector shape like this: /// (16, 16, 1, 0) /// Instead, drop the broadcasting dims that make no sense for masking perm. /// maps: /// (d0, d1, d2, d3) -> (d2, d1, d0) /// This way, the corresponding vector/mask type will be: /// vector<16x16x1xty> /// rather than this invalid Vector type: /// vector<16x16x1x0xty> AffineMap getMaskingMapFromIndexingMap(AffineMap &indexingMap) { return indexingMap.dropZeroResults(); } // Holds the compile-time static sizes of the iteration space to vectorize. // Dynamic dimensions are represented using ShapedType::kDynamic. SmallVector iterSpaceStaticSizes; /// Holds the value sizes of the iteration space to vectorize. Static /// dimensions are represented by 'arith.constant' and dynamic /// dimensions by 'tensor/memref.dim'. SmallVector iterSpaceValueSizes; /// Holds the canonical vector shape used to vectorize the iteration space. SmallVector canonicalVecShape; /// Holds the vector dimensions that are scalable in the canonical vector /// shape. SmallVector scalableVecDims; /// Holds the active masks for permutations of the canonical vector iteration /// space. DenseMap activeMaskCache; /// Global vectorization guard for the incoming rewriter. It's initialized /// when the vectorization state is initialized. OpBuilder::InsertionGuard rewriterGuard; }; LogicalResult VectorizationState::precomputeIterSpaceValueSizes(RewriterBase &rewriter, LinalgOp linalgOp) { // TODO: Support 0-d vectors. for (int vecDim = 0, end = canonicalVecShape.size(); vecDim < end; ++vecDim) { if (!ShapedType::isDynamic(iterSpaceStaticSizes[vecDim])) { // Create constant index op for static dimensions. iterSpaceValueSizes.push_back(rewriter.create( linalgOp.getLoc(), iterSpaceStaticSizes[vecDim])); continue; } // Find an operand defined on this dimension of the iteration space to // extract the runtime dimension size. Value operand; unsigned operandDimPos; if (failed(linalgOp.mapIterationSpaceDimToOperandDim(vecDim, operand, operandDimPos))) return failure(); Value dynamicDim = linalgOp.hasPureTensorSemantics() ? (Value)rewriter.create( linalgOp.getLoc(), operand, operandDimPos) : (Value)rewriter.create( linalgOp.getLoc(), operand, operandDimPos); iterSpaceValueSizes.push_back(dynamicDim); } return success(); } /// Initializes the vectorization state, including the computation of the /// canonical vector shape for vectorization. // TODO: Move this to the constructor when we can remove the failure cases. LogicalResult VectorizationState::initState(RewriterBase &rewriter, LinalgOp linalgOp, ArrayRef inputVectorSizes, ArrayRef inputScalableVecDims) { // Initialize the insertion point. rewriter.setInsertionPoint(linalgOp); if (!inputVectorSizes.empty()) { // Get the canonical vector shape from the input vector sizes provided. This // path should be taken to vectorize code with dynamic shapes and when using // vector sizes greater than the iteration space sizes. canonicalVecShape.append(inputVectorSizes.begin(), inputVectorSizes.end()); scalableVecDims.append(inputScalableVecDims.begin(), inputScalableVecDims.end()); } else { // Compute the canonical vector shape from the operation shape. If there are // dynamic shapes, the operation won't be vectorized. We assume all the // vector dimensions are fixed. canonicalVecShape = linalgOp.getStaticLoopRanges(); scalableVecDims.append(linalgOp.getNumLoops(), false); } LDBG("Canonical vector shape: "); LLVM_DEBUG(llvm::interleaveComma(canonicalVecShape, llvm::dbgs())); LLVM_DEBUG(llvm::dbgs() << "\n"); LDBG("Scalable vector dims: "); LLVM_DEBUG(llvm::interleaveComma(scalableVecDims, llvm::dbgs())); LLVM_DEBUG(llvm::dbgs() << "\n"); if (ShapedType::isDynamicShape(canonicalVecShape)) return failure(); // Initialize iteration space static sizes. initIterSpaceStaticSizes(linalgOp); // Generate 'arith.constant' and 'tensor/memref.dim' operations for // all the static and dynamic dimensions of the iteration space, needed to // compute a mask during vectorization. if (failed(precomputeIterSpaceValueSizes(rewriter, linalgOp))) return failure(); return success(); } /// Create or retrieve an existing mask value to mask `opToMask` in the /// canonical vector iteration space. If `maybeMaskingMap` the mask is permuted /// using that permutation map. If a new mask is created, it will be cached for /// future users. Value VectorizationState::getOrCreateMaskFor( RewriterBase &rewriter, Operation *opToMask, LinalgOp linalgOp, std::optional maybeMaskingMap) { assert((!maybeMaskingMap || isValidMaskingMap(*maybeMaskingMap)) && "Ill-formed masking map."); // No mask is needed if the operation is not maskable. auto maskableOp = dyn_cast(opToMask); if (!maskableOp) return Value(); assert(!maskableOp.isMasked() && "Masking an operation that is already masked"); // If no masking map was provided, use an identity map with the loop dims. assert((!maybeMaskingMap || *maybeMaskingMap) && "Unexpected null mask permutation map"); AffineMap maskingMap = maybeMaskingMap ? *maybeMaskingMap : AffineMap::getMultiDimIdentityMap( linalgOp.getNumLoops(), rewriter.getContext()); LDBG("Masking map: " << maskingMap << "\n"); // Return the active mask for the masking map of this operation if it was // already created. auto activeMaskIt = activeMaskCache.find(maskingMap); if (activeMaskIt != activeMaskCache.end()) { Value mask = activeMaskIt->second; LDBG("Reusing mask: " << mask << "\n"); return mask; } // Compute permuted projection of the iteration space to be masked and the // corresponding mask shape. If the resulting iteration space dimensions are // static and identical to the mask shape, masking is not needed for this // operation. // TODO: Improve this check. Only projected permutation indexing maps are // supported. SmallVector permutedStaticSizes = applyPermutationMap(maskingMap, iterSpaceStaticSizes); auto maskType = getCanonicalVecType(rewriter.getI1Type(), maskingMap); auto maskShape = maskType.getShape(); LDBG("Mask shape: "); LLVM_DEBUG(llvm::interleaveComma(maskShape, llvm::dbgs())); LLVM_DEBUG(llvm::dbgs() << "\n"); if (permutedStaticSizes == maskShape) { LDBG("Masking is not needed for masking map: " << maskingMap << "\n"); activeMaskCache[maskingMap] = Value(); return Value(); } // Permute the iteration space value sizes to compute the mask upper bounds. SmallVector upperBounds = applyPermutationMap(maskingMap, ArrayRef(iterSpaceValueSizes)); assert(!maskShape.empty() && !upperBounds.empty() && "Masked 0-d vectors are not supported yet"); // Create the mask based on the dimension values. Value mask = rewriter.create(linalgOp.getLoc(), maskType, upperBounds); LDBG("Creating new mask: " << mask << "\n"); activeMaskCache[maskingMap] = mask; return mask; } Operation * VectorizationState::maskOperation(RewriterBase &rewriter, Operation *opToMask, LinalgOp linalgOp, std::optional maybeIndexingMap) { LDBG("Trying to mask: " << *opToMask << "\n"); std::optional maybeMaskingMap = std::nullopt; if (maybeIndexingMap) maybeMaskingMap = getMaskingMapFromIndexingMap(*maybeIndexingMap); // Create or retrieve mask for this operation. Value mask = getOrCreateMaskFor(rewriter, opToMask, linalgOp, maybeMaskingMap); if (!mask) { LDBG("No mask required\n"); return opToMask; } // Wrap the operation with a new `vector.mask` and update D-U chain. assert(opToMask && "Expected a valid operation to mask"); auto maskOp = cast( mlir::vector::maskOperation(rewriter, opToMask, mask)); Operation *maskOpTerminator = &maskOp.getMaskRegion().front().back(); for (auto [resIdx, resVal] : llvm::enumerate(opToMask->getResults())) rewriter.replaceAllUsesExcept(resVal, maskOp.getResult(resIdx), maskOpTerminator); LDBG("Masked operation: " << *maskOp << "\n"); return maskOp; } /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a /// projectedPermutation, compress the unused dimensions to serve as a /// permutation_map for a vector transfer operation. /// For example, given a linalg op such as: /// /// ``` /// %0 = linalg.generic { /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>, /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)> /// } /// ins(%0 : tensor<2x3x4xf32>) /// outs(%1 : tensor<5x6xf32>) /// ``` /// /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`. static AffineMap reindexIndexingMap(AffineMap map) { assert(map.isProjectedPermutation(/*allowZeroInResults=*/true) && "expected projected permutation"); auto res = compressUnusedDims(map); assert(res.getNumDims() == (res.getNumResults() - res.getNumOfZeroResults()) && "expected reindexed map with same number of dims and results"); return res; } /// Helper enum to represent conv1d input traversal order. enum class Conv1DOpOrder { W, // Corresponds to non-channeled 1D convolution operation. Ncw, // Corresponds to operation that traverses the input in (n, c, w) order. Nwc // Corresponds to operation that traverses the input in (n, w, c) order. }; /// Helper data structure to represent the result of vectorization. /// In certain specific cases, like terminators, we do not want to propagate/ enum VectorizationStatus { /// Op failed to vectorize. Failure = 0, /// Op vectorized and custom function took care of replacement logic NoReplace, /// Op vectorized into a new Op whose results will replace original Op's /// results. NewOp // TODO: support values if Op vectorized to Many-Ops whose results we need to // aggregate for replacement. }; struct VectorizationResult { /// Return status from vectorizing the current op. enum VectorizationStatus status = VectorizationStatus::Failure; /// New vectorized operation to replace the current op. /// Replacement behavior is specified by `status`. Operation *newOp; }; std::optional mlir::linalg::getCombinerOpKind(Operation *combinerOp) { using ::mlir::vector::CombiningKind; if (!combinerOp) return std::nullopt; return llvm::TypeSwitch>(combinerOp) .Case( [&](auto op) { return CombiningKind::ADD; }) .Case([&](auto op) { return CombiningKind::AND; }) .Case([&](auto op) { return CombiningKind::MAXSI; }) .Case([&](auto op) { return CombiningKind::MAXUI; }) .Case([&](auto op) { return CombiningKind::MAXIMUMF; }) .Case([&](auto op) { return CombiningKind::MAXNUMF; }) .Case([&](auto op) { return CombiningKind::MINSI; }) .Case([&](auto op) { return CombiningKind::MINUI; }) .Case([&](auto op) { return CombiningKind::MINIMUMF; }) .Case([&](auto op) { return CombiningKind::MINNUMF; }) .Case( [&](auto op) { return CombiningKind::MUL; }) .Case([&](auto op) { return CombiningKind::OR; }) .Case([&](auto op) { return CombiningKind::XOR; }) .Default([&](auto op) { return std::nullopt; }); } /// Check whether `outputOperand` is a reduction with a single combiner /// operation. Return the combiner operation of the reduction. Return /// nullptr otherwise. Multiple reduction operations would impose an /// ordering between reduction dimensions and is currently unsupported in /// Linalg. This limitation is motivated by the fact that e.g. min(max(X)) != /// max(min(X)) // TODO: use in LinalgOp verification, there is a circular dependency atm. static Operation *matchLinalgReduction(OpOperand *outputOperand) { auto linalgOp = cast(outputOperand->getOwner()); unsigned outputPos = outputOperand->getOperandNumber() - linalgOp.getNumDpsInputs(); // Only single combiner operations are supported for now. SmallVector combinerOps; if (!matchReduction(linalgOp.getRegionOutputArgs(), outputPos, combinerOps) || combinerOps.size() != 1) return nullptr; // Return the combiner operation. return combinerOps[0]; } /// Broadcast `value` to a vector of `shape` if possible. Return value /// otherwise. static Value broadcastIfNeeded(OpBuilder &b, Value value, Type dstType) { auto dstVecType = dyn_cast(dstType); // If no shape to broadcast to, just return `value`. if (dstVecType.getRank() == 0) return value; if (vector::isBroadcastableTo(value.getType(), dstVecType) != vector::BroadcastableToResult::Success) return value; Location loc = b.getInsertionPoint()->getLoc(); return b.createOrFold(loc, dstVecType, value); } /// Create MultiDimReductionOp to compute the reduction for `reductionOp`. This /// assumes that `reductionOp` has two operands and one of them is the reduction /// initial value.buildMultiDimReduce // Note: this is a true builder that notifies the OpBuilder listener. // TODO: Consider moving as a static helper on the ReduceOp. static Operation *buildMultiDimReduce(OpBuilder &b, Operation *reduceOp, Value valueToReduce, Value acc, ArrayRef dimsToMask) { auto maybeKind = getCombinerOpKind(reduceOp); assert(maybeKind && "Failed precondition: could not get reduction kind"); return b.create( reduceOp->getLoc(), valueToReduce, acc, dimsToMask, *maybeKind); } static SmallVector getDimsToReduce(LinalgOp linalgOp) { return llvm::to_vector( llvm::map_range(linalgOp.getIteratorTypesArray(), isReductionIterator)); } /// Check if `op` is a linalg.reduce or a linalg.generic that has at least one /// reduction iterator. static bool hasReductionIterator(LinalgOp &op) { return isa(op) || (isa(op) && llvm::any_of(op.getIteratorTypesArray(), isReductionIterator)); } /// Build a vector.transfer_write of `value` into `outputOperand` at indices set /// to all `0`; where `outputOperand` is an output operand of the LinalgOp /// currently being vectorized. If `dest` has null rank, build an memref.store. /// Return the produced value or null if no value is produced. // Note: this is a true builder that notifies the OpBuilder listener. // TODO: Consider moving as a static helper on the ReduceOp. static Value buildVectorWrite(RewriterBase &rewriter, Value value, OpOperand *outputOperand, VectorizationState &state) { Location loc = value.getLoc(); auto linalgOp = cast(outputOperand->getOwner()); AffineMap opOperandMap = linalgOp.getMatchingIndexingMap(outputOperand); // Compute the vector type of the value to store. This type should be an // identity or projection of the canonical vector type without any permutation // applied, given that any permutation in a transfer write happens as part of // the write itself. AffineMap vectorTypeMap = AffineMap::getFilteredIdentityMap( opOperandMap.getContext(), opOperandMap.getNumInputs(), [&](AffineDimExpr dimExpr) -> bool { return llvm::is_contained(opOperandMap.getResults(), dimExpr); }); auto vectorType = state.getCanonicalVecType( getElementTypeOrSelf(outputOperand->get().getType()), vectorTypeMap); Operation *write; if (vectorType.getRank() > 0) { AffineMap writeMap = inversePermutation(reindexIndexingMap(opOperandMap)); SmallVector indices(linalgOp.getRank(outputOperand), rewriter.create(loc, 0)); value = broadcastIfNeeded(rewriter, value, vectorType); assert(value.getType() == vectorType && "Incorrect type"); write = rewriter.create( loc, value, outputOperand->get(), indices, writeMap); } else { // 0-d case is still special: do not invert the reindexing writeMap. if (!isa(value.getType())) value = rewriter.create(loc, vectorType, value); assert(value.getType() == vectorType && "Incorrect type"); write = rewriter.create( loc, value, outputOperand->get(), ValueRange{}); } write = state.maskOperation(rewriter, write, linalgOp, opOperandMap); // If masked, set in-bounds to true. Masking guarantees that the access will // be in-bounds. if (auto maskOp = dyn_cast(write)) { auto maskedWriteOp = cast(maskOp.getMaskableOp()); SmallVector inBounds(maskedWriteOp.getVectorType().getRank(), true); maskedWriteOp.setInBoundsAttr(rewriter.getBoolArrayAttr(inBounds)); } LDBG("vectorized op: " << *write << "\n"); if (!write->getResults().empty()) return write->getResult(0); return Value(); } // Custom vectorization precondition function type. This is intented to be used // with CustomVectorizationHook. Returns success if the corresponding custom // hook can vectorize the op. using CustomVectorizationPrecondition = std::function; // Custom vectorization function type. Produce a vector form of Operation* // assuming all its vectorized operands are already in the IRMapping. // Return nullptr if the Operation cannot be vectorized. using CustomVectorizationHook = std::function; /// Helper function to vectorize the terminator of a `linalgOp`. New result /// vector values are appended to `newResults`. Return /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it /// should not try to map produced operations and instead return the results /// using the `newResults` vector making them available to the vectorization /// algorithm for RAUW. This function is meant to be used as a /// CustomVectorizationHook. static VectorizationResult vectorizeLinalgYield(RewriterBase &rewriter, Operation *op, const IRMapping &bvm, VectorizationState &state, LinalgOp linalgOp, SmallVectorImpl &newResults) { auto yieldOp = dyn_cast(op); if (!yieldOp) return VectorizationResult{VectorizationStatus::Failure, nullptr}; for (const auto &output : llvm::enumerate(yieldOp.getValues())) { // TODO: Scan for an opportunity for reuse. // TODO: use a map. Value vectorValue = bvm.lookup(output.value()); Value newResult = buildVectorWrite(rewriter, vectorValue, linalgOp.getDpsInitOperand(output.index()), state); if (newResult) newResults.push_back(newResult); } return VectorizationResult{VectorizationStatus::NoReplace, nullptr}; } /// Helper function to vectorize the index operations of a `linalgOp`. Return /// VectorizationStatus::NewOp to signal the vectorization algorithm that it /// should map the produced operations. This function is meant to be used as a /// CustomVectorizationHook. static VectorizationResult vectorizeLinalgIndex(RewriterBase &rewriter, VectorizationState &state, Operation *op, LinalgOp linalgOp) { IndexOp indexOp = dyn_cast(op); if (!indexOp) return VectorizationResult{VectorizationStatus::Failure, nullptr}; auto loc = indexOp.getLoc(); // Compute the static loop sizes of the index op. ArrayRef targetShape = state.getCanonicalVecShape(); auto dim = indexOp.getDim(); // Compute a one-dimensional index vector for the index op dimension. auto indexVectorType = VectorType::get({targetShape[dim]}, rewriter.getIndexType(), state.getScalableVecDims()[dim]); auto indexSteps = rewriter.create(loc, indexVectorType); // Return the one-dimensional index vector if it lives in the trailing // dimension of the iteration space since the vectorization algorithm in this // case can handle the broadcast. if (dim == targetShape.size() - 1) return VectorizationResult{VectorizationStatus::NewOp, indexSteps}; // Otherwise permute the targetShape to move the index dimension last, // broadcast the one-dimensional index vector to the permuted shape, and // finally transpose the broadcasted index vector to undo the permutation. auto permPattern = llvm::to_vector(llvm::seq(0, targetShape.size())); std::swap(permPattern[dim], permPattern.back()); auto permMap = AffineMap::getPermutationMap(permPattern, linalgOp.getContext()); auto broadCastOp = rewriter.create( loc, state.getCanonicalVecType(rewriter.getIndexType(), permMap), indexSteps); SmallVector transposition = llvm::to_vector<16>(llvm::seq(0, linalgOp.getNumLoops())); std::swap(transposition.back(), transposition[dim]); auto transposeOp = rewriter.create(loc, broadCastOp, transposition); return VectorizationResult{VectorizationStatus::NewOp, transposeOp}; } /// Helper function to check if the tensor.extract can be vectorized by the /// custom hook vectorizeTensorExtract. static LogicalResult tensorExtractVectorizationPrecondition(Operation *op, bool vectorizeNDExtract) { tensor::ExtractOp extractOp = dyn_cast(op); if (!extractOp) return failure(); if (extractOp.getIndices().size() != 1 && !vectorizeNDExtract) return failure(); // Check the index type, but only for non 0-d tensors (for which we do need // access indices). if (not extractOp.getIndices().empty()) { if (!VectorType::isValidElementType(extractOp.getIndices()[0].getType())) return failure(); } if (llvm::any_of(extractOp->getResultTypes(), [](Type type) { return !VectorType::isValidElementType(type); })) { return failure(); } return success(); } /// Calculates the offsets (`$index_vec`) for `vector.gather` operations /// generated from `tensor.extract`. The offset is calculated as follows /// (example using scalar values): /// /// offset = extractOp.indices[0] /// for (i = 1; i < numIndices; i++) /// offset = extractOp.dimSize[i] * offset + extractOp.indices[i]; /// /// For tensor<45 x 80 x 15 x f32> and index [1, 2, 3], this leads to: /// offset = ( ( 1 ) * 80 + 2 ) * 15 + 3 static Value calculateGatherOffset(RewriterBase &rewriter, VectorizationState &state, tensor::ExtractOp extractOp, const IRMapping &bvm) { // The vector of indices for GatherOp should be shaped as the output vector. auto indexVecType = state.getCanonicalVecType(rewriter.getIndexType()); auto loc = extractOp.getLoc(); Value offset = broadcastIfNeeded( rewriter, bvm.lookup(extractOp.getIndices()[0]), indexVecType); const size_t numIndices = extractOp.getIndices().size(); for (size_t i = 1; i < numIndices; i++) { Value dimIdx = rewriter.create(loc, i); auto dimSize = broadcastIfNeeded( rewriter, rewriter.create(loc, extractOp.getTensor(), dimIdx), indexVecType); offset = rewriter.create(loc, offset, dimSize); auto extractOpIndex = broadcastIfNeeded( rewriter, bvm.lookup(extractOp.getIndices()[i]), indexVecType); offset = rewriter.create(loc, extractOpIndex, offset); } return offset; } enum VectorMemoryAccessKind { ScalarBroadcast, Contiguous, Gather }; /// Find the index of the trailing non-unit dim in linalgOp. This hook is used /// when checking whether `tensor.extract` Op (within a `linalg.generic` Op) /// represents a contiguous load operation. /// /// Note that when calling this hook, it is assumed that the output vector is /// effectively 1D. Other cases (i.e. reading n-D vectors) should've been /// labelled as a gather load before entering this method. /// /// Following on from the above, it is assumed that: /// * for statically shaped loops, when no masks are used, only one dim is != /// 1 (that's what the shape of the output vector is based on). /// * for dynamically shaped loops, there might be more non-unit dims /// as the output vector type is user-specified. /// /// TODO: Statically shaped loops + vector masking static uint64_t getTrailingNonUnitLoopDimIdx(LinalgOp linalgOp) { SmallVector loopRanges = linalgOp.getStaticLoopRanges(); assert( (linalgOp.hasDynamicShape() || llvm::count_if(loopRanges, [](int64_t dim) { return dim != 1; }) == 1) && "For statically shaped Linalg Ops, only one " "non-unit loop dim is expected"); assert(loopRanges.size() != 0 && "Empty loops, nothing to analyse."); size_t idx = loopRanges.size() - 1; for (; idx != 0; idx--) if (loopRanges[idx] != 1) break; return idx; } /// Checks whether `val` can be used for calculating a loop invariant index. static bool isLoopInvariantIdx(LinalgOp &linalgOp, Value &val, VectorType resType) { assert(((llvm::count_if(resType.getShape(), [](int64_t dimSize) { return dimSize > 1; }) == 1)) && "n-D vectors are not yet supported"); // Blocks outside _this_ linalg.generic are effectively loop invariant. // However, analysing block arguments for _this_ linalg.generic Op is a bit // tricky. Just bail out in the latter case. // TODO: We could try analysing the corresponding affine map here. auto *block = linalgOp.getBlock(); if (isa(val)) return llvm::all_of(block->getArguments(), [&val](Value v) { return (v != val); }); Operation *defOp = val.getDefiningOp(); assert(defOp && "This is neither a block argument nor an operation result"); // IndexOp is loop invariant as long as its result remains constant across // iterations. Note that for dynamic shapes, the corresponding dim will also // be conservatively treated as != 1. if (auto indexOp = dyn_cast(defOp)) { return linalgOp.getStaticLoopRanges()[indexOp.getDim()] == 1; } auto *ancestor = block->findAncestorOpInBlock(*defOp); // Values define outside `linalgOp` are loop invariant. if (!ancestor) return true; // Values defined inside `linalgOp`, which are constant, are loop invariant. if (isa(ancestor)) return true; bool result = true; for (auto op : ancestor->getOperands()) result &= isLoopInvariantIdx(linalgOp, op, resType); return result; } /// Check whether `val` could be used for calculating the trailing index for a /// contiguous load operation. /// /// There are currently 3 types of values that are allowed here: /// 1. loop-invariant values, /// 2. values that increment by 1 with every loop iteration, /// 3. results of basic arithmetic operations (linear and continuous) /// involving 1., 2. and 3. /// This method returns True if indeed only such values are used in calculating /// `val.` /// /// Additionally, the trailing index for a contiguous load operation should /// increment by 1 with every loop iteration, i.e. be based on: /// * `linalg.index ` , /// where is the trailing non-unit dim of the iteration space (this way, /// `linalg.index ` increments by 1 with every loop iteration). /// `foundIndexOp` is updated to `true` when such Op is found. static bool isContiguousLoadIdx(LinalgOp &linalgOp, Value &val, bool &foundIndexOp, VectorType resType) { assert(((llvm::count_if(resType.getShape(), [](int64_t dimSize) { return dimSize > 1; }) == 1)) && "n-D vectors are not yet supported"); // Blocks outside _this_ linalg.generic are effectively loop invariant. // However, analysing block arguments for _this_ linalg.generic Op is a bit // tricky. Just bail out in the latter case. // TODO: We could try analysing the corresponding affine map here. auto *block = linalgOp.getBlock(); if (isa(val)) return llvm::all_of(block->getArguments(), [&val](Value v) { return (v != val); }); Operation *defOp = val.getDefiningOp(); assert(defOp && "This is neither a block argument nor an operation result"); if (auto indexOp = dyn_cast(defOp)) { auto loopDimThatIncrementsByOne = getTrailingNonUnitLoopDimIdx(linalgOp); foundIndexOp = (indexOp.getDim() == loopDimThatIncrementsByOne); return true; } auto *ancestor = block->findAncestorOpInBlock(*defOp); if (!ancestor) return false; // Conservatively reject Ops that could lead to indices with stride other // than 1. if (!isa(ancestor)) return false; bool result = false; for (auto op : ancestor->getOperands()) result |= isContiguousLoadIdx(linalgOp, op, foundIndexOp, resType); return result; } /// Infer the memory access pattern for the input ExtractOp /// /// Based on the ExtratOp result shape and the access indices, decides whether /// this Op corresponds to a contiguous load (including a broadcast of a scalar) /// or a gather load. When analysing the ExtractOp indices (to identify /// contiguous laods), this method looks for "loop" invariant indices (e.g. /// block arguments) and indices that change linearly (e.g. via `linalg.index` /// Op). /// /// Note that it is always safe to use gather load operations for contiguous /// loads (albeit slow), but not vice-versa. When in doubt, bail out and assume /// that `extractOp` is a gather load. static VectorMemoryAccessKind getTensorExtractMemoryAccessPattern(tensor::ExtractOp extractOp, LinalgOp &linalgOp, VectorType resType) { auto inputShape = cast(extractOp.getTensor().getType()); // 0. Is this a 0-D vector? If yes then this is a scalar broadcast. if (inputShape.getShape().empty()) return VectorMemoryAccessKind::ScalarBroadcast; // True for vectors that are effectively 1D, e.g. `vector<1x4x1xi32>`, false // otherwise. bool isOutput1DVector = (llvm::count_if(resType.getShape(), [](int64_t dimSize) { return dimSize > 1; }) == 1); // 1. Assume that it's a gather load when reading non-1D vector. if (!isOutput1DVector) return VectorMemoryAccessKind::Gather; bool leadingIdxsLoopInvariant = true; // 2. Analyze the leading indices of `extractOp`. // Look at the way each index is calculated and decide whether it is suitable // for a contiguous load, i.e. whether it's loop invariant. If not, it's a // gather load. auto indices = extractOp.getIndices(); auto leadIndices = indices.drop_back(1); for (auto [i, indexVal] : llvm::enumerate(leadIndices)) { if (inputShape.getShape()[i] == 1) continue; leadingIdxsLoopInvariant &= isLoopInvariantIdx(linalgOp, indexVal, resType); } if (!leadingIdxsLoopInvariant) { LDBG("Found gather load: " << extractOp); return VectorMemoryAccessKind::Gather; } // 3. Analyze the trailing index for `extractOp`. // At this point we know that the leading indices are loop invariant. This // means that is potentially a scalar or a contiguous load. We can decide // based on the trailing idx. auto extractOpTrailingIdx = indices.back(); // 3a. Scalar broadcast load // If the trailing index is loop invariant then this is a scalar load. if (leadingIdxsLoopInvariant && isLoopInvariantIdx(linalgOp, extractOpTrailingIdx, resType)) { LDBG("Found scalar broadcast load: " << extractOp); return VectorMemoryAccessKind::ScalarBroadcast; } // 3b. Contiguous loads // The trailing `extractOp` index should increment with every loop iteration. // This effectively means that it must be based on the trailing loop index. // This is what the following bool captures. bool foundIndexOp = false; bool isContiguousLoad = isContiguousLoadIdx(linalgOp, extractOpTrailingIdx, foundIndexOp, resType); // TODO: Support generating contiguous loads for column vectors - that will // require adding a permutation map to tranfer_read Ops. bool isRowVector = resType.getShape().back() != 1; isContiguousLoad &= (foundIndexOp && isRowVector); if (isContiguousLoad) { LDBG("Found contigous load: " << extractOp); return VectorMemoryAccessKind::Contiguous; } // 4. Fallback case - gather load. LDBG("Found gather load: " << extractOp); return VectorMemoryAccessKind::Gather; } /// Helper function to vectorize the tensor.extract operations. Returns /// VectorizationStatus::NewOp to signal the vectorization algorithm that it /// should map the produced operations. This function is meant to be used as a /// CustomVectorizationHook. static VectorizationResult vectorizeTensorExtract(RewriterBase &rewriter, VectorizationState &state, Operation *op, LinalgOp linalgOp, const IRMapping &bvm) { tensor::ExtractOp extractOp = dyn_cast(op); if (!extractOp) return VectorizationResult{VectorizationStatus::Failure, nullptr}; auto loc = extractOp.getLoc(); // Compute the static loop sizes of the extract op. auto resultType = state.getCanonicalVecType(extractOp.getResult().getType()); auto maskConstantOp = rewriter.create( loc, DenseIntElementsAttr::get(state.getCanonicalVecType(rewriter.getI1Type()), /*value=*/true)); auto passThruConstantOp = rewriter.create(loc, rewriter.getZeroAttr(resultType)); // Base indices are currently set to 0. We will need to re-visit if more // generic scenarios are to be supported. SmallVector baseIndices( extractOp.getIndices().size(), rewriter.create(loc, 0)); VectorMemoryAccessKind memAccessKind = getTensorExtractMemoryAccessPattern(extractOp, linalgOp, resultType); // 1. Handle gather access if (memAccessKind == VectorMemoryAccessKind::Gather) { Value offset = calculateGatherOffset(rewriter, state, extractOp, bvm); // Generate the gather load Operation *gatherOp = rewriter.create( loc, resultType, extractOp.getTensor(), baseIndices, offset, maskConstantOp, passThruConstantOp); gatherOp = state.maskOperation(rewriter, gatherOp, linalgOp); LDBG("Vectorised as gather load: " << extractOp << "\n"); return VectorizationResult{VectorizationStatus::NewOp, gatherOp}; } // 2. Handle: // a. scalar loads + broadcast, // b. contiguous loads. // Both cases use vector.transfer_read. // Collect indices for `vector.transfer_read`. At this point, the indices will // either be scalars or would have been broadcast to vectors matching the // result type. For indices that are vectors, there are two options: // * for non-trailing indices, all elements are identical (contiguous // loads are identified by looking for non-trailing indices that are // invariant with respect to the corresponding linalg.generic), or // * for trailing indices, the index vector will contain values with stride // one, but for `vector.transfer_read` only the first (i.e. 0th) index is // needed. // This means that // * for scalar indices - just re-use it, // * for vector indices (e.g. `vector<1x1x4xindex>`) - extract the bottom // (0th) element and use that. SmallVector transferReadIdxs; for (size_t i = 0; i < extractOp.getIndices().size(); i++) { Value idx = bvm.lookup(extractOp.getIndices()[i]); if (idx.getType().isIndex()) { transferReadIdxs.push_back(idx); continue; } auto indexAs1dVector = rewriter.create( loc, VectorType::get(resultType.getShape().back(), rewriter.getIndexType(), resultType.getScalableDims().back()), idx); transferReadIdxs.push_back( rewriter.create(loc, indexAs1dVector, 0)); } // `tensor.extract_element` is always in-bounds, hence the following holds. auto dstRank = resultType.getRank(); auto srcRank = extractOp.getTensor().getType().getRank(); SmallVector inBounds(dstRank, true); // 2a. Handle scalar broadcast access. if (memAccessKind == VectorMemoryAccessKind::ScalarBroadcast) { MLIRContext *ctx = rewriter.getContext(); SmallVector exprs(dstRank, getAffineConstantExpr(0, ctx)); auto permutationMap = AffineMap::get(srcRank, 0, exprs, ctx); auto transferReadOp = rewriter.create( loc, resultType, extractOp.getTensor(), transferReadIdxs, permutationMap, inBounds); // Mask this broadcasting xfer_read here rather than relying on the generic // path (the generic path assumes identity masking map, which wouldn't be // valid here). SmallVector readMaskShape = {1}; auto readMaskType = VectorType::get(readMaskShape, rewriter.getI1Type()); auto allTrue = rewriter.create( loc, readMaskType, vector::ConstantMaskKind::AllTrue); auto *maskedReadOp = mlir::vector::maskOperation(rewriter, transferReadOp, allTrue); LDBG("Vectorised as scalar broadcast load: " << extractOp << "\n"); return VectorizationResult{VectorizationStatus::NewOp, maskedReadOp}; } // 2b. Handle contiguous access. auto permutationMap = AffineMap::getMinorIdentityMap( srcRank, std::min(dstRank, srcRank), rewriter.getContext()); int32_t rankDiff = dstRank - srcRank; // When dstRank > srcRank, broadcast the source tensor to the unitary leading // dims so that the ranks match. This is done by extending the map with 0s. // For example, for dstRank = 3, srcRank = 2, the following map created // above: // (d0, d1) --> (d0, d1) // is extended as: // (d0, d1) --> (0, d0, d1) while (rankDiff > 0) { permutationMap = permutationMap.insertResult( mlir::getAffineConstantExpr(0, rewriter.getContext()), 0); rankDiff--; } auto transferReadOp = rewriter.create( loc, resultType, extractOp.getTensor(), transferReadIdxs, permutationMap, inBounds); LDBG("Vectorised as contiguous load: " << extractOp); return VectorizationResult{VectorizationStatus::NewOp, transferReadOp}; } /// Emit reduction operations if the shapes of the value to reduce is different /// that the result shape. // Note: this is a true builder that notifies the OpBuilder listener. // TODO: Consider moving as a static helper on the ReduceOp. static Operation *reduceIfNeeded(OpBuilder &b, LinalgOp linalgOp, Operation *op, Value reduceValue, Value initialValue, const IRMapping &bvm) { Value reduceVec = bvm.lookup(reduceValue); Value outputVec = bvm.lookup(initialValue); auto reduceType = dyn_cast(reduceVec.getType()); auto outputType = dyn_cast(outputVec.getType()); // Reduce only if needed as the value may already have been reduce for // contraction vectorization. if (!reduceType || (outputType && reduceType.getShape() == outputType.getShape())) return nullptr; SmallVector dimsToMask = getDimsToReduce(linalgOp); return buildMultiDimReduce(b, op, reduceVec, outputVec, dimsToMask); } /// Generic vectorization for a single operation `op`, given already vectorized /// operands carried by `bvm`. Vectorization occurs as follows: /// 1. Try to apply any of the `customVectorizationHooks` and return its /// result on success. /// 2. Clone any constant in the current scope without vectorization: each /// consumer of the constant will later determine the shape to which the /// constant needs to be broadcast to. /// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose /// of the `customVectorizationHooks` to cover such cases. /// 4. Clone `op` in vector form to a vector of shape prescribed by the first /// operand of maximal rank. Other operands have smaller rank and are /// broadcast accordingly. It is assumed this broadcast is always legal, /// otherwise, it means one of the `customVectorizationHooks` is incorrect. /// /// This function assumes all operands of `op` have been vectorized and are in /// the `bvm` mapping. As a consequence, this function is meant to be called on /// a topologically-sorted list of ops. /// This function does not update `bvm` but returns a VectorizationStatus that /// instructs the caller what `bvm` update needs to occur. static VectorizationResult vectorizeOneOp(RewriterBase &rewriter, VectorizationState &state, LinalgOp linalgOp, Operation *op, const IRMapping &bvm, ArrayRef customVectorizationHooks) { LDBG("vectorize op " << *op << "\n"); // 1. Try to apply any CustomVectorizationHook. if (!customVectorizationHooks.empty()) { for (auto &customFunc : customVectorizationHooks) { VectorizationResult result = customFunc(op, bvm); if (result.status == VectorizationStatus::Failure) continue; return result; } } // 2. Constant ops don't get vectorized but rather broadcasted at their users. // Clone so that the constant is not confined to the linalgOp block . if (isa(op)) return VectorizationResult{VectorizationStatus::NewOp, rewriter.clone(*op)}; // 3. Only ElementwiseMappable are allowed in the generic vectorization. if (!OpTrait::hasElementwiseMappableTraits(op)) return VectorizationResult{VectorizationStatus::Failure, nullptr}; // 4 . Check if the operation is a reduction. SmallVector> reductionOperands; for (Value operand : op->getOperands()) { auto blockArg = dyn_cast(operand); if (!blockArg || blockArg.getOwner() != linalgOp.getBlock() || blockArg.getArgNumber() < linalgOp.getNumDpsInputs()) continue; SmallVector reductionOps; Value reduceValue = matchReduction( linalgOp.getRegionOutputArgs(), blockArg.getArgNumber() - linalgOp.getNumDpsInputs(), reductionOps); if (!reduceValue) continue; reductionOperands.push_back(std::make_pair(reduceValue, operand)); } if (!reductionOperands.empty()) { assert(reductionOperands.size() == 1); Operation *reduceOp = reduceIfNeeded(rewriter, linalgOp, op, reductionOperands[0].first, reductionOperands[0].second, bvm); if (reduceOp) return VectorizationResult{VectorizationStatus::NewOp, reduceOp}; } // 5. Generic vectorization path for ElementwiseMappable ops. // a. Get the first max ranked shape. VectorType firstMaxRankedType; for (Value operand : op->getOperands()) { auto vecOperand = bvm.lookup(operand); assert(vecOperand && "Vector operand couldn't be found"); auto vecType = dyn_cast(vecOperand.getType()); if (vecType && (!firstMaxRankedType || firstMaxRankedType.getRank() < vecType.getRank())) firstMaxRankedType = vecType; } // b. Broadcast each op if needed. SmallVector vecOperands; for (Value scalarOperand : op->getOperands()) { Value vecOperand = bvm.lookup(scalarOperand); assert(vecOperand && "Vector operand couldn't be found"); if (firstMaxRankedType) { auto vecType = VectorType::get(firstMaxRankedType.getShape(), getElementTypeOrSelf(vecOperand.getType()), firstMaxRankedType.getScalableDims()); vecOperands.push_back(broadcastIfNeeded(rewriter, vecOperand, vecType)); } else { vecOperands.push_back(vecOperand); } } // c. for elementwise, the result is the vector with the firstMaxRankedShape SmallVector resultTypes; for (Type resultType : op->getResultTypes()) { resultTypes.push_back( firstMaxRankedType ? VectorType::get(firstMaxRankedType.getShape(), resultType, firstMaxRankedType.getScalableDims()) : resultType); } // d. Build and return the new op. return VectorizationResult{ VectorizationStatus::NewOp, rewriter.create(op->getLoc(), op->getName().getIdentifier(), vecOperands, resultTypes, op->getAttrs())}; } /// Generic vectorization function that rewrites the body of a `linalgOp` into /// vector form. Generic vectorization proceeds as follows: /// 1. Verify the `linalgOp` has one non-empty region. /// 2. Values defined above the region are mapped to themselves and will be /// broadcasted on a per-need basis by their consumers. /// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d /// load). /// TODO: Reuse opportunities for RAR dependencies. /// 4a. Register CustomVectorizationHook for YieldOp to capture the results. /// 4rewriter. Register CustomVectorizationHook for IndexOp to access the /// iteration indices. /// 5. Iteratively call vectorizeOneOp on the region operations. /// /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is /// performed to the maximal common vector size implied by the `linalgOp` /// iteration space. This eager broadcasting is introduced in the /// permutation_map of the vector.transfer_read operations. The eager /// broadcasting makes it trivial to detrmine where broadcast, transposes and /// reductions should occur, without any bookkeeping. The tradeoff is that, in /// the absence of good canonicalizations, the amount of work increases. /// This is not deemed a problem as we expect canonicalizations and foldings to /// aggressively clean up the useless work. static LogicalResult vectorizeAsLinalgGeneric(RewriterBase &rewriter, VectorizationState &state, LinalgOp linalgOp, SmallVectorImpl &newResults) { LDBG("Vectorizing operation as linalg generic\n"); Block *block = linalgOp.getBlock(); // 2. Values defined above the region can only be broadcast for now. Make them // map to themselves. IRMapping bvm; SetVector valuesSet; mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet); bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef()); if (linalgOp.getNumDpsInits() == 0) return failure(); // 3. Turn all BBArgs into vector.transfer_read / load. Location loc = linalgOp.getLoc(); Value zero = rewriter.create(loc, 0); for (OpOperand *opOperand : linalgOp.getOpOperandsMatchingBBargs()) { BlockArgument bbarg = linalgOp.getMatchingBlockArgument(opOperand); if (linalgOp.isScalar(opOperand)) { bvm.map(bbarg, opOperand->get()); continue; } // 3.a. Convert the indexing map for this input/output to a transfer read // permutation map and masking map. AffineMap indexingMap = linalgOp.getMatchingIndexingMap(opOperand); AffineMap readMap; VectorType readType; Type elemType = getElementTypeOrSelf(opOperand->get()); if (linalgOp.isDpsInput(opOperand)) { // 3.a.i. For input reads we use the canonical vector shape. readMap = inverseAndBroadcastProjectedPermutation(indexingMap); readType = state.getCanonicalVecType(elemType); } else { // 3.a.ii. For output reads (iteration-carried dependence, e.g., // reductions), the vector shape is computed by mapping the canonical // vector shape to the output domain and back to the canonical domain. readMap = inversePermutation(reindexIndexingMap(indexingMap)); readType = state.getCanonicalVecType(elemType, readMap.compose(indexingMap)); } SmallVector indices(linalgOp.getShape(opOperand).size(), zero); Operation *read = rewriter.create( loc, readType, opOperand->get(), indices, readMap); read = state.maskOperation(rewriter, read, linalgOp, indexingMap); Value readValue = read->getResult(0); // 3.b. If masked, set in-bounds to true. Masking guarantees that the access // will be in-bounds. if (auto maskOp = dyn_cast(read)) { SmallVector inBounds(readType.getRank(), true); cast(maskOp.getMaskableOp()) .setInBoundsAttr(rewriter.getBoolArrayAttr(inBounds)); } // 3.c. Not all ops support 0-d vectors, extract the scalar for now. // TODO: remove this. if (readType.getRank() == 0) readValue = rewriter.create(loc, readValue, ArrayRef()); LDBG("New vectorized bbarg(" << bbarg.getArgNumber() << "): " << readValue << "\n"); bvm.map(bbarg, readValue); bvm.map(opOperand->get(), readValue); } SmallVector hooks; // 4a. Register CustomVectorizationHook for yieldOp. CustomVectorizationHook vectorizeYield = [&](Operation *op, const IRMapping &bvm) -> VectorizationResult { return vectorizeLinalgYield(rewriter, op, bvm, state, linalgOp, newResults); }; hooks.push_back(vectorizeYield); // 4b. Register CustomVectorizationHook for indexOp. CustomVectorizationHook vectorizeIndex = [&](Operation *op, const IRMapping &bvm) -> VectorizationResult { return vectorizeLinalgIndex(rewriter, state, op, linalgOp); }; hooks.push_back(vectorizeIndex); // 4c. Register CustomVectorizationHook for extractOp. CustomVectorizationHook vectorizeExtract = [&](Operation *op, const IRMapping &bvm) -> VectorizationResult { return vectorizeTensorExtract(rewriter, state, op, linalgOp, bvm); }; hooks.push_back(vectorizeExtract); // 5. Iteratively call `vectorizeOneOp` to each op in the slice. for (Operation &op : block->getOperations()) { VectorizationResult result = vectorizeOneOp(rewriter, state, linalgOp, &op, bvm, hooks); if (result.status == VectorizationStatus::Failure) { LDBG("failed to vectorize: " << op << "\n"); return failure(); } if (result.status == VectorizationStatus::NewOp) { Operation *maybeMaskedOp = state.maskOperation(rewriter, result.newOp, linalgOp); LDBG("New vector op: " << *maybeMaskedOp << "\n"); bvm.map(op.getResults(), maybeMaskedOp->getResults()); } } return success(); } /// Given a tensor::PackOp, return the `dest` shape before any packing /// permutations. static SmallVector getTiledPackShape(tensor::PackOp packOp, ArrayRef destShape) { return applyPermutation(destShape, tensor::getPackInverseDestPerm(packOp)); } /// Given an input, the mixed destSizes, and the vector sizes for vectorization, /// create an empty destination tensor and create a TransferWriteOp from the /// input to the empty tensor. If the destination shape is not the same as the /// inputVectorSizes for the first rank(inputVectorSizes) dims, then create a /// mask for the write. If `useInBoundsInsteadOfMasking` is set, then update the /// inBounds attribute of the transfer write op instead of masking. static Operation *createWriteOrMaskedWrite(OpBuilder &builder, Location loc, Value input, SmallVector destSizes, ArrayRef inputVectorSizes, bool useInBoundsInsteadOfMasking) { auto inputType = cast(input.getType()); Value dest = builder.create(loc, destSizes, inputType.getElementType()); int64_t rank = cast(dest.getType()).getRank(); auto zero = builder.create(loc, 0); auto destShape = cast(dest.getType()).getShape(); SmallVector inBoundsVal(rank, true); if (useInBoundsInsteadOfMasking) { // Update the inBounds attribute. for (unsigned i = 0; i < rank; i++) inBoundsVal[i] = (destShape[i] == inputVectorSizes[i]) && !ShapedType::isDynamic(destShape[i]); } Operation *write = builder.create( loc, /*vector=*/input, /*source=*/dest, /*indices=*/SmallVector(rank, zero), /*inBounds=*/inBoundsVal); assert(llvm::none_of( destShape.drop_front(inputVectorSizes.size()), [](int64_t size) { return size == ShapedType::kDynamic; }) && "Only dims aligned with inputVectorSizes may be dynamic"); if (useInBoundsInsteadOfMasking) return write; bool needMaskForWrite = !llvm::equal( inputVectorSizes, destShape.take_front(inputVectorSizes.size())); if (needMaskForWrite) { SmallVector writeMaskShape; writeMaskShape.append(inputVectorSizes.begin(), inputVectorSizes.end()); writeMaskShape.append(destShape.begin() + inputVectorSizes.size(), destShape.end()); auto writeMaskType = VectorType::get(writeMaskShape, builder.getI1Type()); Value maskForWrite = builder.create(loc, writeMaskType, destSizes); write = mlir::vector::maskOperation(builder, write, maskForWrite); } return write; } /// Vectorize tensor::PackOp with (1) static innerTiles (2) constant /// padding value and (3) input vector sizes into: /// masked_transfer_read->shape_cast->transpose->transfer_write_in_bounds /// As in the following example: /// %pack = tensor.pack %src inner_dims_pos = [2, 1] inner_tiles = [16, 2] /// into %dst : tensor<32x8x16xf32> -> tensor<32x4x1x16x2xf32> /// /// This pack would be vectorized to: /// /// %load = vector.mask %mask { /// vector.transfer_read %arg0[%c0, %c0, %c0], %cst /// {in_bounds = [true, true, true]} : /// tensor<32x7x16xf32>, vector<32x8x16xf32> /// } : vector<32x8x16xi1> -> vector<32x8x16xf32> /// %shape_cast = vector.shape_cast %load : vector<32x8x16xf32> /// to vector<32x4x2x1x16xf32> /// %transpose = vector.transpose %shape_cast, [0, 1, 3, 4, 2] /// : vector<32x4x2x1x16xf32> to vector<32x4x1x16x2xf32> /// %write = vector.transfer_write %transpose, /// %empty[%c0_0, %c0_0, %c0_0, %c0_0, %c0_0] /// {in_bounds = [true, true, true, true, true]} /// : vector<32x4x1x16x2xf32>, tensor<32x4x1x16x2xf32> /// /// If the (3) input vector sizes are not provided, the vector sizes are /// determined by the result tensor shape. Also, we update the inBounds /// attribute instead of masking. static LogicalResult vectorizeAsTensorPackOp(RewriterBase &rewriter, tensor::PackOp packOp, ArrayRef inputVectorSizes, SmallVectorImpl &newResults) { OpBuilder::InsertionGuard g(rewriter); rewriter.setInsertionPoint(packOp); Location loc = packOp.getLoc(); auto padValue = packOp.getPaddingValue(); if (!padValue) { padValue = rewriter.create( loc, rewriter.getZeroAttr(packOp.getSourceType().getElementType())); } ReifiedRankedShapedTypeDims reifiedReturnShapes; LogicalResult status = cast(packOp.getOperation()) .reifyResultShapes(rewriter, reifiedReturnShapes); (void)status; // prevent unused variable warning on non-assert builds. assert(succeeded(status) && "failed to reify result shapes"); // If the input vector sizes are not provided, then the vector sizes are // determined by the result tensor shape. In case the vector sizes aren't // provided, we update the inBounds attribute instead of masking. bool useInBoundsInsteadOfMasking = false; if (inputVectorSizes.empty()) { ArrayRef resultTensorShape = packOp.getDestType().getShape(); inputVectorSizes = resultTensorShape.take_front(packOp.getSourceRank()); useInBoundsInsteadOfMasking = true; } // Create masked TransferReadOp. SmallVector inputShape(inputVectorSizes); auto innerTiles = packOp.getStaticInnerTiles(); auto innerDimsPos = packOp.getInnerDimsPos(); auto outerDimsPerm = packOp.getOuterDimsPerm(); if (!outerDimsPerm.empty()) applyPermutationToVector(inputShape, invertPermutationVector(outerDimsPerm)); for (auto [idx, size] : enumerate(innerTiles)) inputShape[innerDimsPos[idx]] *= size; auto maskedRead = vector::createReadOrMaskedRead( rewriter, loc, packOp.getSource(), inputShape, padValue, useInBoundsInsteadOfMasking); // Create ShapeCastOp. SmallVector destShape(inputVectorSizes); destShape.append(innerTiles.begin(), innerTiles.end()); auto tiledPackType = VectorType::get(getTiledPackShape(packOp, destShape), packOp.getDestType().getElementType()); auto shapeCastOp = rewriter.create(loc, tiledPackType, maskedRead); // Create TransposeOp. auto destPermutation = invertPermutationVector(tensor::getPackInverseDestPerm(packOp)); auto transposeOp = rewriter.create( loc, shapeCastOp.getResult(), destPermutation); // Create TransferWriteOp. Operation *write = createWriteOrMaskedWrite( rewriter, loc, transposeOp.getResult(), reifiedReturnShapes[0], inputVectorSizes, /*useInBoundsInsteadOfMasking=*/false); newResults.push_back(write->getResult(0)); return success(); } /// Vectorize a `tensor::UnPackOp` to these 4 Ops: /// Vector::TransferReadOp - Reads a vector from the source tensor /// vector::TransposeOp - Transpose the Source tensor /// ShapeCastOp - Reshape the data based on the target. /// vector::TransferWriteOp. - Write the result vector back to the destination /// tensor. /// If the vector sizes are not provided: /// * the vector sizes are determined by the input operand and attributes, /// * update the inBounds attribute instead of masking. static LogicalResult vectorizeAsTensorUnpackOp(RewriterBase &rewriter, tensor::UnPackOp unpackOp, ArrayRef inputVectorSizes, SmallVectorImpl &newResults) { OpBuilder::InsertionGuard g(rewriter); rewriter.setInsertionPoint(unpackOp); RankedTensorType unpackTensorType = unpackOp.getSourceType(); ArrayRef innerDimPos = unpackOp.getInnerDimsPos(); ArrayRef innerTiles = unpackOp.getStaticInnerTiles(); ArrayRef sourceShape = unpackTensorType.getShape(); bool useInBoundsInsteadOfMasking = false; ArrayRef outerDimsPerm = unpackOp.getOuterDimsPerm(); auto destSize = unpackOp.getDestRank(); if (!inputVectorSizes.empty()) assert(inputVectorSizes.size() == destSize && "Incorrect number of input vector sizes"); // vectorSizes is the shape of the vector that will be used to do final // write on the destination tensor. It is set like this: Let's say the // source tensor is rank 'M' and the dest tensor rank 'N', where N <= M. // Thus: // 1. vectorSizes = sourceShape.take_front(N) // 2. if outer_dims_perms is present: do that permutation on vectorSizes. // 3. multiply all the locations in vectorSize pointed by innerDimPos by the // innerTiles attribute value. SmallVector vectorSizes(inputVectorSizes); if (vectorSizes.empty()) { llvm::append_range(vectorSizes, sourceShape.take_front(destSize)); if (!outerDimsPerm.empty()) applyPermutationToVector(vectorSizes, outerDimsPerm); for (auto [i, pos] : llvm::enumerate(innerDimPos)) vectorSizes[pos] *= innerTiles[i]; useInBoundsInsteadOfMasking = true; } // readVectorSizes is the size of tensor used to read and apply mask. It is // set like this: Let's say the vectorSize (VS) array is size 'N' and // the sourceShape(SS) is 'M' where M >= N and InnerTileSizes (IT) of // size M-N // Thus: // - initially: readVectorSizes = vectorInputSizes // - Divide all the readMaskShape locations pointed by innerDimPos // by the innerTileSize attribute value. // - if outer_dims_perms is present: do that permutation on readVectorSizes. // - Append the remaining shape from SS // E.g. let's say let's say unpackTensorType.getShape() = <8x8x32x16> // inner Dim Pos = [0, 1] and Inner Tiles = [32, 16], vector_sizes are [512, // 128] and outer_dims_perm is [1, 0] then read shape is: // ReadVectorSizes(initial): [512, 128] // Final Value(after innerDim Adjustment): [512/32, 128/16] // = [16, 8] // After applying outer_dims_perm: [8, 16] // After appending the rest of the sourceShape: [8, 16, 32, 16] SmallVector readVectorSizes(vectorSizes.begin(), vectorSizes.end()); for (auto [index, size] : enumerate(innerTiles)) { readVectorSizes[innerDimPos[index]] = llvm::divideCeil(readVectorSizes[innerDimPos[index]], size); } if (!outerDimsPerm.empty()) { applyPermutationToVector(readVectorSizes, outerDimsPerm); } readVectorSizes.append(sourceShape.begin() + vectorSizes.size(), sourceShape.end()); ReifiedRankedShapedTypeDims reifiedRetShapes; LogicalResult status = cast(unpackOp.getOperation()) .reifyResultShapes(rewriter, reifiedRetShapes); if (status.failed()) { LDBG("Unable to reify result shapes of " << unpackOp); return failure(); } Location loc = unpackOp->getLoc(); auto padValue = rewriter.create( loc, rewriter.getZeroAttr(unpackOp.getSourceType().getElementType())); // Read result, mask if necessary. If transferReadOp shape is not equal // to shape of source, then a mask is necessary. Value readResult = vector::createReadOrMaskedRead( rewriter, loc, unpackOp.getSource(), readVectorSizes, padValue, /*useInBoundsInsteadOfMasking=*/false); PackingMetadata packMetadata; SmallVector lastDimToInsertPosPerm = tensor::getUnPackInverseSrcPerm(unpackOp, packMetadata); ShapedType maskedOpShapedType = cast(readResult.getType()); SmallVector stripMineShape(maskedOpShapedType.getShape()); mlir::Type stripMineElemType = maskedOpShapedType.getElementType(); applyPermutationToVector(stripMineShape, lastDimToInsertPosPerm); RankedTensorType stripMineTensorType = RankedTensorType::get(stripMineShape, stripMineElemType); // Transpose the appropriate rows to match output. vector::TransposeOp transposeOp = rewriter.create( loc, readResult, lastDimToInsertPosPerm); // Collapse the vector to the size required by result. RankedTensorType collapsedType = tensor::CollapseShapeOp::inferCollapsedType( stripMineTensorType, packMetadata.reassociations); mlir::VectorType vecCollapsedType = VectorType::get(collapsedType.getShape(), collapsedType.getElementType()); vector::ShapeCastOp shapeCastOp = rewriter.create( loc, vecCollapsedType, transposeOp->getResult(0)); // writeVectorSizes had to match the shapecast shape for dynamic sizes, // otherwise the validator complains that the mask size is invalid. SmallVector writeVectorSizes( unpackOp.getDestType().hasStaticShape() ? vectorSizes : shapeCastOp.getResultVectorType().getShape()); Operation *write = createWriteOrMaskedWrite( rewriter, loc, shapeCastOp.getResult(), reifiedRetShapes[0], writeVectorSizes, useInBoundsInsteadOfMasking); newResults.push_back(write->getResult(0)); return success(); } /// Vectorize a `padOp` with (1) static result type, (2) constant padding value /// and (3) all-zero lowPad to /// `transfer_write_in_bounds(transfer_read_masked(pad_source, pad_value))`. static LogicalResult vectorizeAsTensorPadOp(RewriterBase &rewriter, tensor::PadOp padOp, ArrayRef inputVectorSizes, SmallVectorImpl &newResults) { auto padValue = padOp.getConstantPaddingValue(); Location loc = padOp.getLoc(); // transfer_write_in_bounds(transfer_read_masked(pad_source, pad_value)) OpBuilder::InsertionGuard g(rewriter); rewriter.setInsertionPoint(padOp); ReifiedRankedShapedTypeDims reifiedReturnShapes; LogicalResult status = cast(padOp.getOperation()) .reifyResultShapes(rewriter, reifiedReturnShapes); (void)status; // prevent unused variable warning on non-assert builds assert(succeeded(status) && "failed to reify result shapes"); auto maskedRead = vector::createReadOrMaskedRead( rewriter, loc, padOp.getSource(), inputVectorSizes, padValue, /*useInBoundsInsteadOfMasking=*/false); Operation *write = createWriteOrMaskedWrite( rewriter, loc, maskedRead, reifiedReturnShapes[0], inputVectorSizes, /*useInBoundsInsteadOfMasking=*/false); newResults.push_back(write->getResult(0)); return success(); } // TODO: probably need some extra checks for reduction followed by consumer // ops that may not commute (e.g. linear reduction + non-linear instructions). static LogicalResult reductionPreconditions(LinalgOp op) { if (llvm::none_of(op.getIteratorTypesArray(), isReductionIterator)) { LDBG("reduction precondition failed: no reduction iterator\n"); return failure(); } for (OpOperand &opOperand : op.getDpsInitsMutable()) { AffineMap indexingMap = op.getMatchingIndexingMap(&opOperand); if (indexingMap.isPermutation()) continue; Operation *reduceOp = matchLinalgReduction(&opOperand); if (!reduceOp || !getCombinerOpKind(reduceOp)) { LDBG("reduction precondition failed: reduction detection failed\n"); return failure(); } } return success(); } static LogicalResult vectorizeDynamicConvOpPrecondition(linalg::LinalgOp conv, bool flatten1DDepthwiseConv) { if (flatten1DDepthwiseConv) { LDBG("Vectorization of flattened convs with dynamic shapes is not " "supported\n"); return failure(); } if (!isa(conv)) { LDBG("Not a 1D depth-wise WC conv, dynamic shapes are not supported\n"); return failure(); } // Support dynamic shapes in 1D depthwise convolution, but only in the // _channel_ dimension. Value lhs = conv.getDpsInputOperand(0)->get(); ArrayRef lhsShape = cast(lhs.getType()).getShape(); auto shapeWithoutCh = lhsShape.drop_back(1); if (ShapedType::isDynamicShape(shapeWithoutCh)) { LDBG("Dynamically-shaped op vectorization precondition failed: only " "channel dim can be dynamic\n"); return failure(); } return success(); } static LogicalResult vectorizeDynamicLinalgOpPrecondition(linalg::LinalgOp op, bool flatten1DDepthwiseConv) { if (isa(op.getOperation())) return vectorizeDynamicConvOpPrecondition(op, flatten1DDepthwiseConv); if (hasReductionIterator(op)) return reductionPreconditions(op); // TODO: Masking only supports dynamic element-wise ops, linalg.generic ops, // linalg.copy ops and ops that implement ContractionOpInterface for now. if (!isElementwise(op) && !isa( op.getOperation())) return failure(); LDBG("Dynamically-shaped op meets vectorization pre-conditions\n"); return success(); } /// Need to check if the inner-tiles are static/constant. static LogicalResult vectorizeUnPackOpPrecondition(tensor::UnPackOp unpackOp, ArrayRef inputVectorSizes) { if (llvm::any_of(unpackOp.getInnerTiles(), [](OpFoldResult res) { return !getConstantIntValue(res).has_value(); })) { LDBG("Inner-tiles must be constant: " << unpackOp << "\n"); return failure(); } ArrayRef resultShape = unpackOp.getDestType().getShape(); bool satisfyEmptyCond = inputVectorSizes.empty() && unpackOp.getDestType().hasStaticShape() && unpackOp.getSourceType().hasStaticShape(); if (!satisfyEmptyCond && failed(vector::isValidMaskedInputVector(resultShape, inputVectorSizes))) return failure(); return success(); } static LogicalResult vectorizeLinalgOpPrecondition( LinalgOp linalgOp, ArrayRef inputVectorSizes, bool vectorizeNDExtract, bool flatten1DDepthwiseConv) { // tensor with dimension of 0 cannot be vectorized. if (llvm::is_contained(linalgOp.getStaticShape(), 0)) return failure(); // Check API contract for input vector sizes. if (!inputVectorSizes.empty() && failed(vector::isValidMaskedInputVector(linalgOp.getStaticLoopRanges(), inputVectorSizes))) return failure(); if (linalgOp.hasDynamicShape() && failed(vectorizeDynamicLinalgOpPrecondition( linalgOp, flatten1DDepthwiseConv))) { LDBG("Dynamically-shaped op failed vectorization pre-conditions\n"); return failure(); } SmallVector customPreconditions; // Register CustomVectorizationPrecondition for extractOp. customPreconditions.push_back(tensorExtractVectorizationPrecondition); // All types in the body should be a supported element type for VectorType. for (Operation &innerOp : linalgOp->getRegion(0).front()) { // Check if any custom hook can vectorize the inner op. if (llvm::any_of( customPreconditions, [&](const CustomVectorizationPrecondition &customPrecondition) { return succeeded( customPrecondition(&innerOp, vectorizeNDExtract)); })) { continue; } if (llvm::any_of(innerOp.getOperandTypes(), [](Type type) { return !VectorType::isValidElementType(type); })) { return failure(); } if (llvm::any_of(innerOp.getResultTypes(), [](Type type) { return !VectorType::isValidElementType(type); })) { return failure(); } } if (isElementwise(linalgOp)) return success(); // TODO: isaConvolutionOpInterface that can also infer from generic // features. But we will still need stride/dilation attributes that will be // annoying to reverse-engineer... if (isa(linalgOp.getOperation())) return success(); // TODO: the common vector shape is equal to the static loop sizes only when // all indexing maps are projected permutations. For convs and stencils the // logic will need to evolve. if (!allIndexingsAreProjectedPermutation(linalgOp)) { LDBG("precondition failed: not projected permutations\n"); return failure(); } if (failed(reductionPreconditions(linalgOp))) { LDBG("precondition failed: reduction preconditions\n"); return failure(); } return success(); } static LogicalResult vectorizePackOpPrecondition(tensor::PackOp packOp, ArrayRef inputVectorSizes) { auto padValue = packOp.getPaddingValue(); Attribute cstAttr; if (padValue && !matchPattern(padValue, m_Constant(&cstAttr))) { LDBG("pad value is not constant: " << packOp << "\n"); return failure(); } ArrayRef resultTensorShape = packOp.getDestType().getShape(); bool satisfyEmptyCond = true; if (inputVectorSizes.empty()) { if (!packOp.getDestType().hasStaticShape() || !packOp.getSourceType().hasStaticShape()) satisfyEmptyCond = false; } if (!satisfyEmptyCond && failed(vector::isValidMaskedInputVector( resultTensorShape.take_front(packOp.getSourceRank()), inputVectorSizes))) return failure(); if (llvm::any_of(packOp.getInnerTiles(), [](OpFoldResult v) { return !getConstantIntValue(v).has_value(); })) { LDBG("inner_tiles must be constant: " << packOp << "\n"); return failure(); } return success(); } static LogicalResult vectorizePadOpPrecondition(tensor::PadOp padOp, ArrayRef inputVectorSizes) { auto padValue = padOp.getConstantPaddingValue(); if (!padValue) { LDBG("pad value is not constant: " << padOp << "\n"); return failure(); } ArrayRef resultTensorShape = padOp.getResultType().getShape(); if (failed(vector::isValidMaskedInputVector(resultTensorShape, inputVectorSizes))) return failure(); if (llvm::any_of(padOp.getLow(), [](Value v) { std::optional res = getConstantIntValue(v); return !res.has_value() || res.value() != 0; })) { LDBG("low pad must all be zero: " << padOp << "\n"); return failure(); } return success(); } /// Preconditions for scalable vectors. This is quite restrictive - it models /// the fact that in practice we would only make selected dimensions scalable. static LogicalResult vectorizeScalableVectorPrecondition(Operation *op, ArrayRef inputVectorSizes, ArrayRef inputScalableVecDims) { assert(inputVectorSizes.size() == inputScalableVecDims.size() && "Number of input vector sizes and scalable dims doesn't match"); size_t numOfScalableDims = llvm::count_if(inputScalableVecDims, [](bool flag) { return flag; }); if (numOfScalableDims == 0) return success(); auto linalgOp = dyn_cast(op); // Cond 1: There's been no need for scalable vectorisation of // non-linalg Ops so far if (!linalgOp) return failure(); // Cond 2: There's been no need for more than 2 scalable dims so far if (numOfScalableDims > 2) return failure(); // Cond 3: Look at the configuration in `inputScalableVecDims` and verify that // it matches one of the supported cases: // 1. Exactly 1 dim is scalable and that's the _last_ non-unit parallel dim // (*). // 2. Exactly 2 dims are scalable and those are the _last two adjacent_ // parallel dims. // 3. Exactly 1 reduction dim is scalable and that's the last (innermost) // dim. // The 2nd restriction above means that only Matmul-like Ops are supported // when 2 dims are scalable, e.g. : // * iterators = [parallel, parallel, reduction] // * scalable flags = [true, true, false] // // (*) Non-unit dims get folded away in practice. // TODO: Relax these conditions as good motivating examples are identified. // Find the first scalable flag. bool seenNonUnitParallel = false; auto iterators = linalgOp.getIteratorTypesArray(); SmallVector scalableFlags(inputScalableVecDims); int64_t idx = scalableFlags.size() - 1; while (!scalableFlags[idx]) { bool isNonUnitDim = (inputVectorSizes[idx] != 1); seenNonUnitParallel |= (iterators[idx] == utils::IteratorType::parallel && isNonUnitDim); iterators.pop_back(); scalableFlags.pop_back(); --idx; } // Analyze the iterator corresponding to the first scalable dim. switch (iterators.back()) { case utils::IteratorType::reduction: { // Check 3. above is met. if (iterators.size() != inputVectorSizes.size()) { LDBG("Non-trailing reduction dim requested for scalable " "vectorization\n"); return failure(); } if (isa(op) || isa(op)) { LDBG("Scalable vectorization of the reduction dim in Matmul-like ops " "is not supported\n"); return failure(); } break; } case utils::IteratorType::parallel: { // Check 1. and 2. above are met. if (seenNonUnitParallel) { LDBG("Inner parallel dim not requested for scalable " "vectorization\n"); return failure(); } break; } } // If present, check the 2nd scalable dim. ATM, only Matmul-like Ops are // supported for which expect the folowing config: // * iterators = [parallel, parallel, reduction] // * scalable flags = [true, true, false] if (numOfScalableDims == 2) { // Disallow below case which breaks 3. above: // * iterators = [..., parallel, reduction] // * scalable flags = [..., true, true] if (iterators.back() == utils::IteratorType::reduction) { LDBG("Higher dim than the trailing reduction dim requested for scalable " "vectorization\n"); return failure(); } scalableFlags.pop_back(); iterators.pop_back(); if (!scalableFlags.back() || (iterators.back() != utils::IteratorType::parallel)) return failure(); } // Check to not let go the matmul with extended semantic, through this // transform. if (linalgOp.hasUserDefinedMaps()) return failure(); // Cond 4: Only the following ops are supported in the // presence of scalable vectors return success(isElementwise(linalgOp) || isa(op) || isa(op) || isa(op) || isa(op) || hasReductionIterator(linalgOp)); } LogicalResult mlir::linalg::vectorizeOpPrecondition( Operation *op, ArrayRef inputVectorSizes, ArrayRef inputScalableVecDims, bool vectorizeNDExtract, bool flatten1DDepthwiseConv) { if (!hasVectorizationImpl(op)) return failure(); if (failed(vectorizeScalableVectorPrecondition(op, inputVectorSizes, inputScalableVecDims))) return failure(); return TypeSwitch(op) .Case([&](auto linalgOp) { return vectorizeLinalgOpPrecondition(linalgOp, inputVectorSizes, vectorizeNDExtract, flatten1DDepthwiseConv); }) .Case([&](auto padOp) { return vectorizePadOpPrecondition(padOp, inputVectorSizes); }) .Case([&](auto packOp) { return vectorizePackOpPrecondition(packOp, inputVectorSizes); }) .Case([&](auto unpackOp) { return vectorizeUnPackOpPrecondition(unpackOp, inputVectorSizes); }) .Default([](auto) { return failure(); }); } /// Converts affine.apply Ops to arithmetic operations. static void convertAffineApply(RewriterBase &rewriter, LinalgOp linalgOp) { OpBuilder::InsertionGuard g(rewriter); auto toReplace = linalgOp.getBlock()->getOps(); for (auto op : make_early_inc_range(toReplace)) { rewriter.setInsertionPoint(op); auto expanded = affine::expandAffineExpr( rewriter, op->getLoc(), op.getAffineMap().getResult(0), op.getOperands().take_front(op.getAffineMap().getNumDims()), op.getOperands().take_back(op.getAffineMap().getNumSymbols())); rewriter.replaceOp(op, expanded); } } bool mlir::linalg::hasVectorizationImpl(Operation *op) { return isa( op); } /// Emit a suitable vector form for an operation. If provided, /// `inputVectorSizes` are used to vectorize this operation. /// `inputVectorSizes` must match the rank of the iteration space of the /// operation and the input vector sizes must be greater than or equal to /// their counterpart iteration space sizes, if static. `inputVectorShapes` /// also allows the vectorization of operations with dynamic shapes. LogicalResult mlir::linalg::vectorize(RewriterBase &rewriter, Operation *op, ArrayRef inputVectorSizes, ArrayRef inputScalableVecDims, bool vectorizeNDExtract, bool flatten1DDepthwiseConv) { LDBG("Attempting to vectorize:\n" << *op << "\n"); LDBG("Input vector sizes: "); LLVM_DEBUG(llvm::interleaveComma(inputVectorSizes, llvm::dbgs())); LLVM_DEBUG(llvm::dbgs() << "\n"); LDBG("Input scalable vector dims: "); LLVM_DEBUG(llvm::interleaveComma(inputScalableVecDims, llvm::dbgs())); LLVM_DEBUG(llvm::dbgs() << "\n"); if (failed(vectorizeOpPrecondition(op, inputVectorSizes, inputScalableVecDims, vectorizeNDExtract, flatten1DDepthwiseConv))) { LDBG("Vectorization pre-conditions failed\n"); return failure(); } // Initialize vectorization state. VectorizationState state(rewriter); if (auto linalgOp = dyn_cast(op)) { if (failed(state.initState(rewriter, linalgOp, inputVectorSizes, inputScalableVecDims))) { LDBG("Vectorization state couldn't be initialized\n"); return failure(); } } SmallVector results; auto vectorizeResult = TypeSwitch(op) .Case([&](auto linalgOp) { // TODO: isaConvolutionOpInterface that can also infer from // generic features. Will require stride/dilation attributes // inference. if (isa(linalgOp.getOperation())) { FailureOr convOr = vectorizeConvolution( rewriter, linalgOp, inputVectorSizes, inputScalableVecDims, flatten1DDepthwiseConv); if (succeeded(convOr)) { llvm::append_range(results, (*convOr)->getResults()); return success(); } LDBG("Unsupported convolution can't be vectorized.\n"); return failure(); } LDBG("Vectorize generic by broadcasting to the canonical vector " "shape\n"); // Pre-process before proceeding. convertAffineApply(rewriter, linalgOp); // TODO: 'vectorize' takes in a 'RewriterBase' which is up-casted // to 'OpBuilder' when it is passed over to some methods like // 'vectorizeAsLinalgGeneric'. This is highly problematic: if we // erase an op within these methods, the actual rewriter won't be // notified and we will end up with read-after-free issues! return vectorizeAsLinalgGeneric(rewriter, state, linalgOp, results); }) .Case([&](auto padOp) { return vectorizeAsTensorPadOp(rewriter, padOp, inputVectorSizes, results); }) .Case([&](auto packOp) { return vectorizeAsTensorPackOp(rewriter, packOp, inputVectorSizes, results); }) .Case([&](auto unpackOp) { return vectorizeAsTensorUnpackOp(rewriter, unpackOp, inputVectorSizes, results); }) .Default([](auto) { return failure(); }); if (failed(vectorizeResult)) { LDBG("Vectorization failed\n"); return failure(); } if (!results.empty()) rewriter.replaceOp(op, results); else rewriter.eraseOp(op); return success(); } LogicalResult mlir::linalg::vectorizeCopy(RewriterBase &rewriter, memref::CopyOp copyOp) { auto srcType = cast(copyOp.getSource().getType()); auto dstType = cast(copyOp.getTarget().getType()); if (!srcType.hasStaticShape() || !dstType.hasStaticShape()) return failure(); auto srcElementType = getElementTypeOrSelf(srcType); auto dstElementType = getElementTypeOrSelf(dstType); if (!VectorType::isValidElementType(srcElementType) || !VectorType::isValidElementType(dstElementType)) return failure(); auto readType = VectorType::get(srcType.getShape(), srcElementType); auto writeType = VectorType::get(dstType.getShape(), dstElementType); Location loc = copyOp->getLoc(); Value zero = rewriter.create(loc, 0); SmallVector indices(srcType.getRank(), zero); Value readValue = rewriter.create( loc, readType, copyOp.getSource(), indices, rewriter.getMultiDimIdentityMap(srcType.getRank())); if (cast(readValue.getType()).getRank() == 0) { readValue = rewriter.create(loc, readValue, ArrayRef()); readValue = rewriter.create(loc, writeType, readValue); } Operation *writeValue = rewriter.create( loc, readValue, copyOp.getTarget(), indices, rewriter.getMultiDimIdentityMap(srcType.getRank())); rewriter.replaceOp(copyOp, writeValue->getResults()); return success(); } //----------------------------------------------------------------------------// // Misc. vectorization patterns. //----------------------------------------------------------------------------// /// Base pattern for rewriting tensor::PadOps whose result is consumed by a /// given operation type OpTy. template struct VectorizePadOpUserPattern : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(tensor::PadOp padOp, PatternRewriter &rewriter) const final { bool changed = false; // Insert users in vector, because some users may be replaced/removed. for (auto *user : llvm::to_vector<4>(padOp->getUsers())) if (auto op = dyn_cast(user)) changed |= rewriteUser(rewriter, padOp, op).succeeded(); return success(changed); } protected: virtual LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, OpTy op) const = 0; }; /// Rewrite use of tensor::PadOp result in TransferReadOp. E.g.: /// ``` /// %0 = tensor.pad %src ... : tensor to tensor<17x5xf32> /// %r = vector.transfer_read %0[%c0, %c0], %cst /// {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32> /// ``` /// is rewritten to: /// ``` /// %r = vector.transfer_read %src[%c0, %c0], %padding /// {in_bounds = [true, true]} /// : tensor, vector<17x5xf32> /// ``` /// Note: By restricting this pattern to in-bounds TransferReadOps, we can be /// sure that the original padding value %cst was never used. /// /// This rewrite is possible if: /// - `xferOp` has no out-of-bounds dims or mask. /// - Low padding is static 0. /// - Single, scalar padding value. struct PadOpVectorizationWithTransferReadPattern : public VectorizePadOpUserPattern { using VectorizePadOpUserPattern< vector::TransferReadOp>::VectorizePadOpUserPattern; LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, vector::TransferReadOp xferOp) const override { // Low padding must be static 0. if (!padOp.hasZeroLowPad()) return failure(); // Pad value must be a constant. auto padValue = padOp.getConstantPaddingValue(); if (!padValue) return failure(); // Padding value of existing `xferOp` is unused. if (xferOp.hasOutOfBoundsDim() || xferOp.getMask()) return failure(); rewriter.modifyOpInPlace(xferOp, [&]() { SmallVector inBounds(xferOp.getVectorType().getRank(), false); xferOp->setAttr(xferOp.getInBoundsAttrName(), rewriter.getBoolArrayAttr(inBounds)); xferOp.getSourceMutable().assign(padOp.getSource()); xferOp.getPaddingMutable().assign(padValue); }); return success(); } }; /// Rewrite use of tensor::PadOp result in TransferWriteOp. /// This pattern rewrites TransferWriteOps that write to a padded tensor /// value, where the same amount of padding is immediately removed again after /// the write. In such cases, the TransferWriteOp can write to the non-padded /// tensor value and apply out-of-bounds masking. E.g.: /// ``` /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] /// : tensor<...> to tensor /// %1 = tensor.pad %0 ... : tensor to tensor<17x5xf32> /// %2 = vector.transfer_write %vec, %1[...] /// : vector<17x5xf32>, tensor<17x5xf32> /// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1] /// : tensor<17x5xf32> to tensor /// ``` /// is rewritten to: /// ``` /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] /// : tensor<...> to tensor /// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>, /// tensor /// ``` /// Note: It is important that the ExtractSliceOp %r resizes the result of the /// TransferWriteOp to the same size as the input of the TensorPadOp (or an /// even smaller size). Otherwise, %r's new (dynamic) dimensions would differ /// from %r's old dimensions. /// /// This rewrite is possible if: /// - Low padding is static 0. /// - `xferOp` has exactly one use, which is an ExtractSliceOp. This /// ExtractSliceOp trims the same amount of padding that was added /// beforehand. /// - Single, scalar padding value. struct PadOpVectorizationWithTransferWritePattern : public VectorizePadOpUserPattern { using VectorizePadOpUserPattern< vector::TransferWriteOp>::VectorizePadOpUserPattern; LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, vector::TransferWriteOp xferOp) const override { // TODO: support 0-d corner case. if (xferOp.getTransferRank() == 0) return failure(); // Low padding must be static 0. if (!padOp.hasZeroLowPad()) return failure(); // Pad value must be a constant. auto padValue = padOp.getConstantPaddingValue(); if (!padValue) return failure(); // TransferWriteOp result must be directly consumed by an ExtractSliceOp. if (!xferOp->hasOneUse()) return failure(); auto trimPadding = dyn_cast(*xferOp->user_begin()); if (!trimPadding) return failure(); // Only static zero offsets supported when trimming padding. if (!trimPadding.hasZeroOffset()) return failure(); // trimPadding must remove the amount of padding that was added earlier. if (!hasSameTensorSize(padOp.getSource(), trimPadding)) return failure(); // Insert the new TransferWriteOp at position of the old TransferWriteOp. rewriter.setInsertionPoint(xferOp); SmallVector inBounds(xferOp.getVectorType().getRank(), false); auto newXferOp = rewriter.replaceOpWithNewOp( xferOp, padOp.getSource().getType(), xferOp.getVector(), padOp.getSource(), xferOp.getIndices(), xferOp.getPermutationMapAttr(), xferOp.getMask(), rewriter.getBoolArrayAttr(inBounds)); rewriter.replaceOp(trimPadding, newXferOp->getResult(0)); return success(); } /// Check if `beforePadding` and `afterTrimming` have the same tensor size, /// i.e., same dimensions. /// /// Dimensions may be static, dynamic or mix of both. In case of dynamic /// dimensions, this function tries to infer the (static) tensor size by /// looking at the defining op and utilizing op-specific knowledge. /// /// This is a conservative analysis. In case equal tensor sizes cannot be /// proven statically, this analysis returns `false` even though the tensor /// sizes may turn out to be equal at runtime. bool hasSameTensorSize(Value beforePadding, tensor::ExtractSliceOp afterTrimming) const { // If the input to tensor::PadOp is a CastOp, try with both CastOp // result and CastOp operand. if (auto castOp = beforePadding.getDefiningOp()) if (hasSameTensorSize(castOp.getSource(), afterTrimming)) return true; auto t1 = dyn_cast(beforePadding.getType()); auto t2 = dyn_cast(afterTrimming.getType()); // Only RankedTensorType supported. if (!t1 || !t2) return false; // Rank of both values must be the same. if (t1.getRank() != t2.getRank()) return false; // All static dimensions must be the same. Mixed cases (e.g., dimension // static in `t1` but dynamic in `t2`) are not supported. for (unsigned i = 0; i < t1.getRank(); ++i) { if (t1.isDynamicDim(i) != t2.isDynamicDim(i)) return false; if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i)) return false; } // Nothing more to check if all dimensions are static. if (t1.getNumDynamicDims() == 0) return true; // All dynamic sizes must be the same. The only supported case at the // moment is when `beforePadding` is an ExtractSliceOp (or a cast // thereof). // Apart from CastOp, only ExtractSliceOp is supported. auto beforeSlice = beforePadding.getDefiningOp(); if (!beforeSlice) return false; assert(static_cast(t1.getRank()) == beforeSlice.getMixedSizes().size()); assert(static_cast(t2.getRank()) == afterTrimming.getMixedSizes().size()); for (unsigned i = 0; i < t1.getRank(); ++i) { // Skip static dimensions. if (!t1.isDynamicDim(i)) continue; auto size1 = beforeSlice.getMixedSizes()[i]; auto size2 = afterTrimming.getMixedSizes()[i]; // Case 1: Same value or same constant int. if (isEqualConstantIntOrValue(size1, size2)) continue; // Other cases: Take a deeper look at defining ops of values. auto v1 = llvm::dyn_cast_if_present(size1); auto v2 = llvm::dyn_cast_if_present(size2); if (!v1 || !v2) return false; // Case 2: Both values are identical AffineMinOps. (Should not happen if // CSE is run.) auto minOp1 = v1.getDefiningOp(); auto minOp2 = v2.getDefiningOp(); if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() && minOp1.getOperands() == minOp2.getOperands()) continue; // Add additional cases as needed. } // All tests passed. return true; } }; /// Returns the effective Pad value for the input op, provided it's a scalar. /// /// Many Ops exhibit pad-like behaviour, but this isn't always explicit. If /// this Op performs padding, retrieve the padding value provided that it's /// a scalar and static/fixed for all the padded values. Returns an empty value /// otherwise. static Value getStaticPadVal(Operation *op) { if (!op) return {}; // 1. vector.broadcast (f32 -> vector <...xf32>) - return the value that's // being broadcast, provided that it's a scalar. if (auto bcast = llvm::dyn_cast(op)) { auto source = bcast.getSource(); if (llvm::dyn_cast(source.getType())) return {}; return source; } // 2. linalg.fill - use the scalar input value that used to fill the output // tensor. if (auto fill = llvm::dyn_cast(op)) { return fill.getInputs()[0]; } // 3. tensor.generateOp - can't guarantee the value is fixed without // analysing, bail out. if (auto generate = llvm::dyn_cast(op)) { return {}; } // 4. vector.transfer_write - inspect the input vector that's written from. If // if contains a single value that has been broadcast (e.g. via // vector.broadcast), extract it, fail otherwise. if (auto xferWrite = llvm::dyn_cast(op)) return getStaticPadVal(xferWrite.getVector().getDefiningOp()); // 5. tensor.insert_slice - inspect the destination tensor. If it's larger // than the input tensor, then, provided it's constant, we'll extract the // value that was used to generate it (via e.g. linalg.fill), fail otherwise. // TODO: Clarify the semantics when the input tensor is larger than the // destination. if (auto slice = llvm::dyn_cast(op)) return getStaticPadVal(slice.getDest().getDefiningOp()); return {}; } /// Rewrite tensor.insert.slice as a vector.transfer_read + /// vector.transfer_write pair. The vector size is inferred from the static /// dims in the input and output tensors. If a dim is dynamic in both the input /// and output tensors, bails out. /// /// Before: /// !t_in_type = tensor<1x2x3xf32> /// !t_out_type = tensor<9x8x7x1x2x3xf32> /// !v_type = vector<1x2x3xf32> /// %inserted_slice = tensor.insert_slice %src into %dest ... : !t_in_type /// into !t_out_type /// After: /// %read = vector.transfer_read %src[...], %pad ... : !t_in_type, !v_type /// %write = vector.transfer_write %read, %dest ... : !v_type, !t_out_type /// /// TODO: Support masking struct InsertSliceVectorizePattern : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(tensor::InsertSliceOp sliceOp, PatternRewriter &rewriter) const final { auto sourceType = sliceOp.getSource().getType(); if (!VectorType::isValidElementType(sourceType.getElementType())) return failure(); auto resultType = sliceOp.getResultType(); // 1. Get the pad value. // TransferReadOp requires a scalar padding value. Note that: // * for in-bounds access, the value is actually irrelevant. // There are 2 cases in which xfer.read accesses are known to be in-bounds: // 1. The source shape is static (output vector sizes would be based on // the source shape and hence all memory accesses would be in-bounds), // 2. Masking is used (output vector sizes would be user-provided, in which // case it is assumed that all memory accesses are in-bounds). This // remains a TODO. // // When the value is not known and not needed, use 0. Otherwise, bail out. Value padValue = getStaticPadVal(sliceOp); bool isOutOfBoundsRead = !sourceType.hasStaticShape(); if (!padValue && isOutOfBoundsRead) { LDBG("Failed to get a pad value for out-of-bounds read access\n"); return failure(); } if (!padValue) { auto elemType = sourceType.getElementType(); padValue = rewriter.create( sliceOp.getLoc(), elemType, rewriter.getZeroAttr(elemType)); } // 2. Get the vector shape and in-bounds attributes SmallVector vecShape; SmallVector readInBounds; SmallVector writeInBounds; size_t rankDiff = resultType.getRank() - sourceType.getRank(); for (unsigned i = 0; i < sourceType.getRank(); ++i) { if (!sourceType.isDynamicDim(i)) { vecShape.push_back(sourceType.getDimSize(i)); // Source shape is statically known: Neither read nor write are // out-of-bounds. readInBounds.push_back(true); writeInBounds.push_back(true); } else if (!resultType.isDynamicDim(i)) { // Source shape is not statically known, but result shape is. // Vectorize with size of result shape. This may be larger than the // source size. // FIXME: Using rankDiff implies that the source tensor is inserted at // the end of the destination tensor. However, that's not required. vecShape.push_back(resultType.getDimSize(rankDiff + i)); // Read may be out-of-bounds because the result size could be larger // than the source size. readInBounds.push_back(false); // Write will in-bounds provided that the corresponding write idx is 0. // To keep this logic simple, conservatively mark as out-of-bounds. writeInBounds.push_back(false); } else { // Neither source nor result dim of padOp is static. Cannot vectorize // the copy. // TODO: Add support for masking return failure(); } } auto vecType = VectorType::get(vecShape, sourceType.getElementType()); // 3. Generate TransferReadOp. SmallVector readIndices( vecType.getRank(), rewriter.create(sliceOp.getLoc(), 0)); auto read = rewriter.create( sliceOp.getLoc(), vecType, sliceOp.getSource(), readIndices, padValue, ArrayRef{readInBounds}); // 4. Generate TransferWriteOp. auto writeIndices = getValueOrCreateConstantIndexOp( rewriter, sliceOp.getLoc(), sliceOp.getMixedOffsets()); // 5. Finalize rewriter.replaceOpWithNewOp( sliceOp, read, sliceOp.getDest(), writeIndices, ArrayRef{writeInBounds}); return success(); } }; /// Rewrite use of tensor::PadOp result in InsertSliceOp. E.g.: /// ``` /// %0 = tensor.pad %src ... : tensor to tensor<17x5xf32> /// %r = tensor.insert_slice %0 /// into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1] /// : tensor<17x5xf32> into tensor /// ``` /// is rewritten to: /// ``` /// %0 = vector.transfer_read %src[%c0, %c0], %padding /// : tensor, vector<17x5xf32> /// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0] /// {in_bounds = [true, true]} : vector<17x5xf32>, tensor /// ``` /// /// This rewrite is possible if: /// - Low padding is static 0. /// - `padOp` result shape is static. /// - The entire padded tensor is inserted. /// (Implies that sizes of `insertOp` are all static.) /// - Only unit strides in `insertOp`. /// - Single, scalar padding value. /// - `padOp` result not used as destination. struct PadOpVectorizationWithInsertSlicePattern : public VectorizePadOpUserPattern { using VectorizePadOpUserPattern< tensor::InsertSliceOp>::VectorizePadOpUserPattern; LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, tensor::InsertSliceOp insertOp) const override { // Low padding must be static 0. if (!padOp.hasZeroLowPad()) return failure(); // Only unit stride supported. if (!insertOp.hasUnitStride()) return failure(); // Pad value must be a constant. auto padValue = padOp.getConstantPaddingValue(); if (!padValue) return failure(); // Dynamic shapes not supported. if (!cast(padOp.getResult().getType()).hasStaticShape()) return failure(); // Pad result not used as destination. if (insertOp.getDest() == padOp.getResult()) return failure(); auto vecType = VectorType::get(padOp.getType().getShape(), padOp.getType().getElementType()); unsigned vecRank = vecType.getRank(); unsigned tensorRank = insertOp.getType().getRank(); // Check if sizes match: Insert the entire tensor into most minor dims. // (No permutations allowed.) SmallVector expectedSizes(tensorRank - vecRank, 1); expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end()); if (!llvm::all_of( llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) { return getConstantIntValue(std::get<0>(it)) == std::get<1>(it); })) return failure(); // Insert the TransferReadOp and TransferWriteOp at the position of the // InsertSliceOp. rewriter.setInsertionPoint(insertOp); // Generate TransferReadOp: Read entire source tensor and add high // padding. SmallVector readIndices( vecRank, rewriter.create(padOp.getLoc(), 0)); auto read = rewriter.create( padOp.getLoc(), vecType, padOp.getSource(), readIndices, padValue); // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at // specified offsets. Write is fully in-bounds because a InsertSliceOp's // source must fit into the destination at the specified offsets. auto writeIndices = getValueOrCreateConstantIndexOp( rewriter, padOp.getLoc(), insertOp.getMixedOffsets()); SmallVector inBounds(vecRank, true); rewriter.replaceOpWithNewOp( insertOp, read, insertOp.getDest(), writeIndices, ArrayRef{inBounds}); return success(); } }; void mlir::linalg::populateInsertSliceVectorizationPatterns( RewritePatternSet &patterns) { patterns.add(patterns.getContext()); } void mlir::linalg::populatePadOpVectorizationPatterns( RewritePatternSet &patterns, PatternBenefit baseBenefit) { patterns.add( patterns.getContext(), baseBenefit.getBenefit() + 1); } //----------------------------------------------------------------------------// // Forwarding patterns //----------------------------------------------------------------------------// /// Check whether there is any interleaved use of any `values` between /// `firstOp` and `secondOp`. Conservatively return `true` if any op or value /// is in a different block. static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp, ValueRange values) { if (firstOp->getBlock() != secondOp->getBlock() || !firstOp->isBeforeInBlock(secondOp)) { LDBG("interleavedUses precondition failed, firstOp: " << *firstOp << ", second op: " << *secondOp << "\n"); return true; } for (auto v : values) { for (auto &u : v.getUses()) { Operation *owner = u.getOwner(); if (owner == firstOp || owner == secondOp) continue; // TODO: this is too conservative, use dominance info in the future. if (owner->getBlock() == firstOp->getBlock() && (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner))) continue; LDBG(" found interleaved op " << *owner << ", firstOp: " << *firstOp << ", second op: " << *secondOp << "\n"); return true; } } return false; } /// Return the unique subview use of `v` if it is indeed unique, null /// otherwise. static memref::SubViewOp getSubViewUseIfUnique(Value v) { memref::SubViewOp subViewOp; for (auto &u : v.getUses()) { if (auto newSubViewOp = dyn_cast(u.getOwner())) { if (subViewOp) return memref::SubViewOp(); subViewOp = newSubViewOp; } } return subViewOp; } /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, /// when available. LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite( vector::TransferReadOp xferOp, PatternRewriter &rewriter) const { // TODO: support mask. if (xferOp.getMask()) return rewriter.notifyMatchFailure(xferOp, "unsupported mask"); // Transfer into `view`. Value viewOrAlloc = xferOp.getSource(); if (!viewOrAlloc.getDefiningOp() && !viewOrAlloc.getDefiningOp()) return rewriter.notifyMatchFailure(xferOp, "source not a view or alloc"); // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); if (!subViewOp) return rewriter.notifyMatchFailure(xferOp, "no subview found"); Value subView = subViewOp.getResult(); // Find the copy into `subView` without interleaved uses. memref::CopyOp copyOp; for (auto &u : subView.getUses()) { if (auto newCopyOp = dyn_cast(u.getOwner())) { assert(isa(newCopyOp.getTarget().getType())); if (newCopyOp.getTarget() != subView) continue; if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView})) continue; copyOp = newCopyOp; break; } } if (!copyOp) return rewriter.notifyMatchFailure(xferOp, "no copy found"); // Find the fill into `viewOrAlloc` without interleaved uses before the // copy. FillOp maybeFillOp; for (auto &u : viewOrAlloc.getUses()) { if (auto newFillOp = dyn_cast(u.getOwner())) { assert(isa(newFillOp.output().getType())); if (newFillOp.output() != viewOrAlloc) continue; if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView})) continue; maybeFillOp = newFillOp; break; } } // Ensure padding matches. if (maybeFillOp && xferOp.getPadding() != maybeFillOp.value()) return rewriter.notifyMatchFailure(xferOp, "padding value does not match fill"); // `in` is the subview that memref.copy reads. Replace it. Value in = copyOp.getSource(); // memref.copy + linalg.fill can be used to create a padded local buffer. // The `masked` attribute is only valid on this padded buffer. // When forwarding to vector.transfer_read, the attribute must be reset // conservatively. auto vectorType = xferOp.getVectorType(); Value res = rewriter.create( xferOp.getLoc(), vectorType, in, xferOp.getIndices(), xferOp.getPermutationMapAttr(), xferOp.getPadding(), xferOp.getMask(), rewriter.getBoolArrayAttr( SmallVector(vectorType.getRank(), false))); if (maybeFillOp) rewriter.eraseOp(maybeFillOp); rewriter.eraseOp(copyOp); rewriter.replaceOp(xferOp, res); return success(); } /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, /// when available. LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite( vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const { // TODO: support mask. if (xferOp.getMask()) return rewriter.notifyMatchFailure(xferOp, "unsupported mask"); // Transfer into `viewOrAlloc`. Value viewOrAlloc = xferOp.getSource(); if (!viewOrAlloc.getDefiningOp() && !viewOrAlloc.getDefiningOp()) return rewriter.notifyMatchFailure(xferOp, "source not a view or alloc"); // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); if (!subViewOp) return rewriter.notifyMatchFailure(xferOp, "no subview found"); Value subView = subViewOp.getResult(); // Find the copy from `subView` without interleaved uses. memref::CopyOp copyOp; for (auto &u : subViewOp.getResult().getUses()) { if (auto newCopyOp = dyn_cast(u.getOwner())) { if (newCopyOp.getSource() != subView) continue; if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView})) continue; copyOp = newCopyOp; break; } } if (!copyOp) return rewriter.notifyMatchFailure(xferOp, "no copy found"); // `out` is the subview copied into that we replace. assert(isa(copyOp.getTarget().getType())); Value out = copyOp.getTarget(); // Forward vector.transfer into copy. // memref.copy + linalg.fill can be used to create a padded local buffer. // The `masked` attribute is only valid on this padded buffer. // When forwarding to vector.transfer_write, the attribute must be reset // conservatively. auto vector = xferOp.getVector(); rewriter.create( xferOp.getLoc(), vector, out, xferOp.getIndices(), xferOp.getPermutationMapAttr(), xferOp.getMask(), rewriter.getBoolArrayAttr( SmallVector(vector.getType().getRank(), false))); rewriter.eraseOp(copyOp); rewriter.eraseOp(xferOp); return success(); } //===----------------------------------------------------------------------===// // Convolution vectorization patterns //===----------------------------------------------------------------------===// template static void bindShapeDims(ShapedType shapedType) {} template static void bindShapeDims(ShapedType shapedType, IntTy &val, IntTy2 &...vals) { val = shapedType.getShape()[N]; bindShapeDims(shapedType, vals...); } /// Bind a pack of int& to the leading dimensions of shapedType.getShape(). template static void bindShapeDims(ShapedType shapedType, IntTy &...vals) { bindShapeDims<0>(shapedType, vals...); } namespace { bool isCastOfBlockArgument(Operation *op) { return isa(op) && op->getNumOperands() == 1 && isa(op->getOperand(0)); } bool isSupportedPoolKind(vector::CombiningKind kind) { switch (kind) { case vector::CombiningKind::ADD: case vector::CombiningKind::MAXNUMF: case vector::CombiningKind::MAXIMUMF: case vector::CombiningKind::MAXSI: case vector::CombiningKind::MAXUI: case vector::CombiningKind::MINNUMF: case vector::CombiningKind::MINIMUMF: case vector::CombiningKind::MINSI: case vector::CombiningKind::MINUI: return true; default: return false; } } /// Generate a vector implementation for either: /// ``` /// Op def: ( w, kw ) /// Iters: ({Par(), Red()}) /// Layout: {{w + kw}, {kw}, {w}} /// ``` /// kw is unrolled. /// /// or /// /// ``` /// Op def: ( n, w, c, kw, f ) /// Iters: ({Par(), Par(), Par(), Red(), Red()}) /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} /// ``` /// kw is unrolled, w is unrolled iff dilationW > 1. /// /// or /// /// ``` /// Op def: ( n, c, w, f, kw ) /// Iters: ({Par(), Par(), Par(), Red(), Red()}) /// Layout: {{n, c, strideW * w + dilationW * kw}, {f, c, kw}, {n, f, w}} /// ``` /// kw is unrolled, w is unrolled iff dilationW > 1. /// /// or /// /// ``` /// Op def: ( n, w, c, kw ) /// Iters: ({Par(), Par(), Par(), Red()}) /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}} /// ``` /// kw is unrolled, w is unrolled iff dilationW > 1. struct Conv1DGenerator : public StructuredGenerator { Conv1DGenerator(RewriterBase &rewriter, LinalgOp linalgOp, int strideW, int dilationW) : StructuredGenerator(rewriter, linalgOp), strideW(strideW), dilationW(dilationW) { // Determine whether `linalgOp` can be generated with this generator if (linalgOp.getNumDpsInputs() != 2 || linalgOp.getNumDpsInits() != 1) return; lhsShaped = linalgOp.getDpsInputOperand(0)->get(); rhsShaped = linalgOp.getDpsInputOperand(1)->get(); resShaped = linalgOp.getDpsInitOperand(0)->get(); lhsShapedType = dyn_cast(lhsShaped.getType()); rhsShapedType = dyn_cast(rhsShaped.getType()); resShapedType = dyn_cast(resShaped.getType()); if (!lhsShapedType || !rhsShapedType || !resShapedType) return; // (LHS has dimension NCW/NWC and RES has dimension NFW/NCW/NWF/NWC) OR // (non-channeled convolution -> LHS and RHS both have single dimensions). if ((lhsShapedType.getRank() != 3 || resShapedType.getRank() != 3) && (lhsShapedType.getRank() != 1 || resShapedType.getRank() != 1)) return; Operation *reduceOp = matchLinalgReduction(linalgOp.getDpsInitOperand(0)); if (!reduceOp) return; redOp = reduceOp->getName().getIdentifier(); if (!setOperKind(reduceOp)) return; auto maybeKind = getCombinerOpKind(reduceOp); // Typically convolution will have a `Add` CombiningKind but for i1 type it // can get strength reduced to `OR` which is also supported. This strength // reduction logic is in `buildBinaryFn` helper in the Linalg dialect. if (!maybeKind || ((*maybeKind != vector::CombiningKind::ADD && *maybeKind != vector::CombiningKind::OR) && (oper != Pool || !isSupportedPoolKind(*maybeKind)))) { return; } reductionKind = maybeKind.value(); auto rhsRank = rhsShapedType.getRank(); switch (oper) { case Conv: if (rhsRank != 1 && rhsRank != 2 && rhsRank != 3) return; break; case Pool: if (rhsRank != 1) return; break; } // The op is now known to be valid. valid = true; } /// Generate a vector implementation for: /// ``` /// Op def: ( w, kw ) /// Iters: ({Par(), Red()}) /// Layout: {{w + kw}, {kw}, {w}} /// ``` /// kw is always unrolled. /// /// or /// /// ``` /// Op def: ( n, w, c, kw, f ) /// Iters: ({Par(), Par(), Par(), Red(), Red()}) /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} /// ``` /// kw is always unrolled. /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is /// > 1. FailureOr conv(Conv1DOpOrder conv1DOpOrder) { if (!valid) return rewriter.notifyMatchFailure(op, "unvectorizable 1-D conv/pool"); int64_t nSize, wSize, cSize, kwSize, fSize; SmallVector lhsShape, rhsShape, resShape; bool isSingleChanneled = (conv1DOpOrder == Conv1DOpOrder::W); switch (conv1DOpOrder) { case Conv1DOpOrder::W: // Initialize unused dimensions nSize = fSize = cSize = 0; // out{W} bindShapeDims(resShapedType, wSize); // kernel{kw} bindShapeDims(rhsShapedType, kwSize); lhsShape = {// iw = ow + kw - 1 // (i.e. 16 convolved with 3 -> 14) (wSize + kwSize - 1)}; rhsShape = {kwSize}; resShape = {wSize}; break; case Conv1DOpOrder::Nwc: // out{n, w, f} bindShapeDims(resShapedType, nSize, wSize, fSize); switch (oper) { case Conv: // kernel{kw, c, f} bindShapeDims(rhsShapedType, kwSize, cSize); break; case Pool: // kernel{kw} bindShapeDims(rhsShapedType, kwSize); cSize = fSize; break; } lhsShape = {nSize, // iw = ow * sw + kw * dw - 1 // (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14) // Perform the proper inclusive -> exclusive -> inclusive. ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1, cSize}; switch (oper) { case Conv: rhsShape = {kwSize, cSize, fSize}; break; case Pool: rhsShape = {kwSize}; break; } resShape = {nSize, wSize, fSize}; break; case Conv1DOpOrder::Ncw: // out{n, f, w} bindShapeDims(resShapedType, nSize, fSize, wSize); switch (oper) { case Conv: // kernel{f, c, kw} bindShapeDims(rhsShapedType, fSize, cSize, kwSize); break; case Pool: // kernel{kw} bindShapeDims(rhsShapedType, kwSize); cSize = fSize; break; } lhsShape = {nSize, cSize, // iw = ow * sw + kw * dw - 1 // (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14) // Perform the proper inclusive -> exclusive -> inclusive. ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1}; switch (oper) { case Conv: rhsShape = {fSize, cSize, kwSize}; break; case Pool: rhsShape = {kwSize}; break; } resShape = {nSize, fSize, wSize}; break; } vector::TransferWriteOp write; Value zero = rewriter.create(loc, 0); // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1. // When strideW == 1, we can batch the contiguous loads and avoid // unrolling int64_t wSizeStep = strideW == 1 ? wSize : 1; Type lhsEltType = lhsShapedType.getElementType(); Type rhsEltType = rhsShapedType.getElementType(); Type resEltType = resShapedType.getElementType(); auto lhsType = VectorType::get(lhsShape, lhsEltType); auto rhsType = VectorType::get(rhsShape, rhsEltType); auto resType = VectorType::get(resShape, resEltType); // Zero padding with the corresponding dimensions for lhs, rhs and res. SmallVector lhsPadding(lhsShape.size(), zero); SmallVector rhsPadding(rhsShape.size(), zero); SmallVector resPadding(resShape.size(), zero); // Read the whole lhs, rhs and res in one shot (with zero padding). Value lhs = rewriter.create(loc, lhsType, lhsShaped, lhsPadding); // This is needed only for Conv. Value rhs = nullptr; if (oper == Conv) rhs = rewriter.create(loc, rhsType, rhsShaped, rhsPadding); Value res = rewriter.create(loc, resType, resShaped, resPadding); // The base vectorization case for channeled convolution is input: // {n,w,c}, weight: {kw,c,f}, output: {n,w,f}. To reuse the base pattern // vectorization case, we do pre transpose on input, weight, and output. switch (conv1DOpOrder) { case Conv1DOpOrder::W: case Conv1DOpOrder::Nwc: // Base case, so no transposes necessary. break; case Conv1DOpOrder::Ncw: { // To match base vectorization case, we pre-transpose current case. // ncw -> nwc static constexpr std::array permLhs = {0, 2, 1}; lhs = rewriter.create(loc, lhs, permLhs); // fcw -> wcf static constexpr std::array permRhs = {2, 1, 0}; // This is needed only for Conv. if (oper == Conv) rhs = rewriter.create(loc, rhs, permRhs); // nfw -> nwf static constexpr std::array permRes = {0, 2, 1}; res = rewriter.create(loc, res, permRes); break; } } //===------------------------------------------------------------------===// // Begin vector-only rewrite part //===------------------------------------------------------------------===// // Unroll along kw and read slices of lhs and rhs. SmallVector lhsVals, rhsVals, resVals; lhsVals = extractConvInputSlices(rewriter, loc, lhs, nSize, wSize, cSize, kwSize, strideW, dilationW, wSizeStep, isSingleChanneled); // Do not do for pooling. if (oper == Conv) rhsVals = extractConvFilterSlices(rewriter, loc, rhs, kwSize); resVals = extractConvResultSlices(rewriter, loc, res, nSize, wSize, fSize, wSizeStep, isSingleChanneled); auto linearIndex = [&](int64_t kw, int64_t w) { return kw * (wSize / wSizeStep) + w; }; // Compute contraction: O{n, w, f} += I{n, sw * w + dw * kw, c} * F{c, f} // or perform outerproduct for non-channeled convolution or perform simple // arith operation for pooling for (int64_t kw = 0; kw < kwSize; ++kw) { for (int64_t w = 0; w < wSize; w += wSizeStep) { switch (oper) { case Conv: if (isSingleChanneled) { resVals[w] = conv1dSliceAsOuterProduct(rewriter, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw], resVals[w]); } else { resVals[w] = conv1dSliceAsContraction(rewriter, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw], resVals[w]); } break; case Pool: resVals[w] = pool1dSlice(rewriter, loc, lhsVals[linearIndex(kw, w)], resVals[w]); break; } } } res = insertConvResultSlices(rewriter, loc, res, wSize, wSizeStep, resVals, isSingleChanneled); //===------------------------------------------------------------------===// // End vector-only rewrite part //===------------------------------------------------------------------===// // The base vectorization case for channeled convolution is output: // {n,w,f} To reuse the result from base pattern vectorization case, we // post transpose the base case result. switch (conv1DOpOrder) { case Conv1DOpOrder::W: case Conv1DOpOrder::Nwc: // Base case, so no transposes necessary. break; case Conv1DOpOrder::Ncw: { // nwf -> nfw static constexpr std::array perm = {0, 2, 1}; res = rewriter.create(loc, res, perm); break; } } return rewriter .create(loc, res, resShaped, resPadding) .getOperation(); } // Take a value and widen to have the same element type as `ty`. Value promote(RewriterBase &rewriter, Location loc, Value val, Type ty) { const Type srcElementType = getElementTypeOrSelf(val.getType()); const Type dstElementType = getElementTypeOrSelf(ty); assert(isa(dstElementType) || isa(dstElementType)); if (srcElementType == dstElementType) return val; const int64_t srcWidth = srcElementType.getIntOrFloatBitWidth(); const int64_t dstWidth = dstElementType.getIntOrFloatBitWidth(); const Type dstType = cast(val.getType()).cloneWith(std::nullopt, dstElementType); if (isa(srcElementType) && isa(dstElementType)) { return rewriter.create(loc, dstType, val); } if (isa(srcElementType) && isa(dstElementType) && srcWidth < dstWidth) return rewriter.create(loc, dstType, val); if (isa(srcElementType) && isa(dstElementType) && srcWidth < dstWidth) return rewriter.create(loc, dstType, val); assert(false && "unhandled promotion case"); return nullptr; } // Create a contraction: lhs{n, w, c} * rhs{c, f} -> res{n, w, f} Value conv1dSliceAsContraction(RewriterBase &rewriter, Location loc, Value lhs, Value rhs, Value res) { vector::IteratorType par = vector::IteratorType::parallel; vector::IteratorType red = vector::IteratorType::reduction; AffineExpr n, w, f, c; bindDims(ctx, n, w, f, c); lhs = promote(rewriter, loc, lhs, res.getType()); rhs = promote(rewriter, loc, rhs, res.getType()); auto contrationOp = rewriter.create( loc, lhs, rhs, res, /*indexingMaps=*/MapList{{n, w, c}, {c, f}, {n, w, f}}, /*iteratorTypes=*/ArrayRef{par, par, par, red}); contrationOp.setKind(reductionKind); return contrationOp; } // Create an outerproduct: lhs{w} * rhs{1} -> res{w} for single channel // convolution. Value conv1dSliceAsOuterProduct(RewriterBase &rewriter, Location loc, Value lhs, Value rhs, Value res) { return rewriter.create( loc, res.getType(), lhs, rhs, res, vector::CombiningKind::ADD); } // Create a reduction: lhs{n, w, c} -> res{n, w, c} Value pool1dSlice(RewriterBase &rewriter, Location loc, Value lhs, Value res) { if (isPoolExt) lhs = rewriter.create(loc, poolExtOp, lhs, res.getType())->getResult(0); return rewriter .create(loc, redOp, ArrayRef{lhs, res}, res.getType()) ->getResult(0); } /// Generate a vector implementation for: /// ``` /// Op def: ( n, w, c, kw) /// Iters: ({Par(), Par(), Par(), Red()}) /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}} /// ``` /// kw is always unrolled. /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is /// > 1. FailureOr depthwiseConv(uint64_t channelDimVecSize, bool channelDimScalableFlag, bool flatten) { if (!valid) return rewriter.notifyMatchFailure(op, "unvectorizable depthwise conv"); bool scalableChDim = false; bool useMasking = false; int64_t nSize, wSize, cSize, kwSize; // kernel{kw, c} bindShapeDims(rhsShapedType, kwSize, cSize); if (ShapedType::isDynamic(cSize)) { assert(channelDimVecSize != 0 && "Channel dim vec size must be > 0"); cSize = channelDimVecSize; // Scalable vectors are only used when both conditions are met: // 1. channel dim is dynamic // 2. channelDimScalableFlag is set scalableChDim = channelDimScalableFlag; useMasking = true; } assert(!(useMasking && flatten) && "Unsupported flattened conv with dynamic shapes"); // out{n, w, c} bindShapeDims(resShapedType, nSize, wSize); vector::TransferWriteOp write; Value zero = rewriter.create(loc, 0); // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1. // When strideW == 1, we can batch the contiguous loads and avoid // unrolling int64_t wSizeStep = strideW == 1 ? wSize : 1; Type lhsEltType = lhsShapedType.getElementType(); Type rhsEltType = rhsShapedType.getElementType(); Type resEltType = resShapedType.getElementType(); VectorType lhsType = VectorType::get( {nSize, // iw = ow * sw + kw * dw - 1 // (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14) ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1, cSize}, lhsEltType, /*scalableDims=*/{false, false, scalableChDim}); VectorType rhsType = VectorType::get({kwSize, cSize}, rhsEltType, /*scalableDims=*/{false, scalableChDim}); VectorType resType = VectorType::get({nSize, wSize, cSize}, resEltType, /*scalableDims=*/{false, false, scalableChDim}); // Masks the input xfer Op along the channel dim, iff the corresponding // scalable flag is set. auto maybeMaskXferOp = [&](ArrayRef maskShape, ArrayRef scalableDims, Operation *opToMask) { if (!useMasking) return opToMask; auto maskType = VectorType::get(maskShape, rewriter.getI1Type(), scalableDims); SmallVector inBounds(maskShape.size(), true); auto xferOp = cast(opToMask); xferOp->setAttr(xferOp.getInBoundsAttrName(), rewriter.getBoolArrayAttr(inBounds)); SmallVector mixedDims = vector::getMixedSizesXfer( cast(op).hasPureTensorSemantics(), opToMask, rewriter); Value maskOp = rewriter.create(loc, maskType, mixedDims); return mlir::vector::maskOperation(rewriter, opToMask, maskOp); }; // Read lhs slice of size {n, w * strideW + kw * dilationW, c} @ [0, 0, // 0]. Value lhs = rewriter.create( loc, lhsType, lhsShaped, ValueRange{zero, zero, zero}); auto maybeMaskedLhs = maybeMaskXferOp( lhsType.getShape(), lhsType.getScalableDims(), lhs.getDefiningOp()); // Read rhs slice of size {kw, c} @ [0, 0]. Value rhs = rewriter.create(loc, rhsType, rhsShaped, ValueRange{zero, zero}); auto maybeMaskedRhs = maybeMaskXferOp( rhsType.getShape(), rhsType.getScalableDims(), rhs.getDefiningOp()); // Read res slice of size {n, w, c} @ [0, 0, 0]. Value res = rewriter.create( loc, resType, resShaped, ValueRange{zero, zero, zero}); auto maybeMaskedRes = maybeMaskXferOp( resType.getShape(), resType.getScalableDims(), res.getDefiningOp()); //===------------------------------------------------------------------===// // Begin vector-only rewrite part //===------------------------------------------------------------------===// // Unroll along kw and read slices of lhs and rhs. SmallVector lhsVals, rhsVals, resVals; SmallVector inOutSliceSizes = {nSize, wSizeStep, cSize}; SmallVector inOutStrides = {1, 1, 1}; // Extract lhs slice of size {n, wSizeStep, c} // @ [0, sw * w + dw * kw, 0]. for (int64_t kw = 0; kw < kwSize; ++kw) { for (int64_t w = 0; w < wSize; w += wSizeStep) { lhsVals.push_back(rewriter.create( loc, maybeMaskedLhs->getResult(0), /*offsets=*/ArrayRef{0, w * strideW + kw * dilationW, 0}, inOutSliceSizes, inOutStrides)); } } // Extract rhs slice of size {c} @ [kw]. for (int64_t kw = 0; kw < kwSize; ++kw) { rhsVals.push_back(rewriter.create( loc, maybeMaskedRhs->getResult(0), /*offsets=*/ArrayRef{kw})); } // Extract res slice: {n, wSizeStep, c} @ [0, w, 0]. for (int64_t w = 0; w < wSize; w += wSizeStep) { resVals.push_back(rewriter.create( loc, maybeMaskedRes->getResult(0), /*offsets=*/ArrayRef{0, w, 0}, inOutSliceSizes, inOutStrides)); } auto linearIndex = [&](int64_t kw, int64_t w) { return kw * (wSize / wSizeStep) + w; }; // Note - the scalable flags are ignored as flattening combined with // scalable vectorization is not supported. SmallVector inOutFlattenSliceSizes = {nSize, wSizeStep * cSize}; auto lhsTypeAfterFlattening = VectorType::get(inOutFlattenSliceSizes, lhsEltType); auto resTypeAfterFlattening = VectorType::get(inOutFlattenSliceSizes, resEltType); // Compute contraction: O{n, w, c} += I{n, sw * w + dw * kw, c} * F{c} for (int64_t kw = 0; kw < kwSize; ++kw) { for (int64_t w = 0; w < wSize; w += wSizeStep) { Value lhsVal = lhsVals[linearIndex(kw, w)]; Value resVal = resVals[w]; if (flatten) { // Flatten the input and output vectors (collapse the channel // dimension) lhsVal = rewriter.create( loc, lhsTypeAfterFlattening, lhsVals[linearIndex(kw, w)]); resVal = rewriter.create( loc, resTypeAfterFlattening, resVals[w]); } resVals[w] = depthwiseConv1dSliceAsMulAcc(rewriter, loc, lhsVal, rhsVals[kw], resVal, flatten); if (flatten) { // Un-flatten the output vector (restore the channel dimension) resVals[w] = rewriter.create( loc, VectorType::get(inOutSliceSizes, resEltType), resVals[w]); } } } // Its possible we failed to create the Fma. if (!llvm::all_of(resVals, [](Value v) { return v; })) { // Manually revert (in reverse order) to avoid leaving a bad IR state. for (auto &collection : {resVals, rhsVals, lhsVals, {res, rhs, lhs, zero}}) for (Value v : collection) rewriter.eraseOp(v.getDefiningOp()); return rewriter.notifyMatchFailure(op, "failed to create FMA"); } // Write back res slice: {n, wSizeStep, c} @ [0, w, 0]. // This does not depend on kw. for (int64_t w = 0; w < wSize; w += wSizeStep) { maybeMaskedRes = rewriter.create( loc, resVals[w], maybeMaskedRes->getResult(0), /*offsets=*/ArrayRef{0, w, 0}, /*strides=*/ArrayRef{1, 1, 1}); } //===------------------------------------------------------------------===// // End vector-only rewrite part //===------------------------------------------------------------------===// // Write back res slice of size {n, w, c} @ [0, 0, 0]. Operation *resOut = rewriter.create( loc, maybeMaskedRes->getResult(0), resShaped, ValueRange{zero, zero, zero}); return maybeMaskXferOp(resType.getShape(), resType.getScalableDims(), resOut); } /// Lower: /// * lhs{n, w, c} * rhs{c} -> res{n, w, c} (flatten = false) /// * lhs{n, w * c} * rhs{c} -> res{n, w * c} (flatten = true) /// to MulAcc. Value depthwiseConv1dSliceAsMulAcc(RewriterBase &rewriter, Location loc, Value lhs, Value rhs, Value res, bool flatten) { auto rhsTy = cast(rhs.getType()); auto resTy = cast(res.getType()); // TODO(suderman): Change this to use a vector.ima intrinsic. lhs = promote(rewriter, loc, lhs, resTy); if (flatten) { // NOTE: This following logic won't work for scalable vectors. For this // reason, "flattening" is not supported when shapes are dynamic (this // should be captured by one of the pre-conditions). // There are two options for handling the filter: // * shape_cast(broadcast(filter)) // * broadcast(shuffle(filter)) // Opt for the option without shape_cast to simplify the codegen. auto rhsSize = cast(rhs.getType()).getShape()[0]; auto resSize = cast(res.getType()).getShape()[1]; SmallVector indices; for (int i = 0; i < resSize / rhsSize; ++i) { for (int j = 0; j < rhsSize; ++j) indices.push_back(j); } rhs = rewriter.create(loc, rhs, rhs, indices); } // Broadcast the filter to match the output vector rhs = rewriter.create( loc, resTy.clone(rhsTy.getElementType()), rhs); rhs = promote(rewriter, loc, rhs, resTy); if (!lhs || !rhs) return nullptr; if (isa(resTy.getElementType())) return rewriter.create(loc, lhs, rhs, res); auto mul = rewriter.create(loc, lhs, rhs); return rewriter.create(loc, mul, res); } /// Entry point for non-channeled convolution: /// {{w + kw}, {kw}, {w}} FailureOr generateNonChanneledConv() { AffineExpr w, kw; bindDims(ctx, w, kw); if (!iters({Par(), Red()})) return rewriter.notifyMatchFailure(op, "failed to match conv::W 1-par 1-red"); // No transposition needed. if (layout({/*lhsIndex*/ {w + kw}, /*rhsIndex*/ {kw}, /*resIndex*/ {w}})) return conv(Conv1DOpOrder::W); return rewriter.notifyMatchFailure(op, "not a conv::W layout"); } /// Entry point that transposes into the common form: /// {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} FailureOr generateNwcConv() { AffineExpr n, w, f, kw, c; bindDims(ctx, n, w, f, kw, c); if (!iters({Par(), Par(), Par(), Red(), Red()})) return rewriter.notifyMatchFailure( op, "failed to match conv::Nwc 3-par 2-red"); // No transposition needed. if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c}, /*rhsIndex*/ {kw, c, f}, /*resIndex*/ {n, w, f}})) return conv(Conv1DOpOrder::Nwc); return rewriter.notifyMatchFailure(op, "not a conv::Nwc layout"); } /// Entry point that transposes into the common form: /// {{n, c, strideW * w + dilationW * kw}, {f, c, kw}, {n, f, w}} FailureOr generateNcwConv() { AffineExpr n, w, f, kw, c; bindDims(ctx, n, f, w, c, kw); if (!iters({Par(), Par(), Par(), Red(), Red()})) return rewriter.notifyMatchFailure( op, "failed to match conv::Ncw 3-par 2-red"); if (layout({/*lhsIndex*/ {n, c, strideW * w + dilationW * kw}, /*rhsIndex*/ {f, c, kw}, /*resIndex*/ {n, f, w}})) return conv(Conv1DOpOrder::Ncw); return rewriter.notifyMatchFailure(op, "not a conv::Ncw layout"); } /// Entry point that transposes into the common form: /// {{n, strideW * w + dilationW * kw, c}, {kw}, {n, w, c}} for pooling FailureOr generateNwcPooling() { AffineExpr n, w, c, kw; bindDims(ctx, n, w, c, kw); if (!iters({Par(), Par(), Par(), Red()})) return rewriter.notifyMatchFailure(op, "failed to match pooling 3-par 1-red"); // No transposition needed. if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c}, /*rhsIndex*/ {kw}, /*resIndex*/ {n, w, c}})) return conv(Conv1DOpOrder::Nwc); return rewriter.notifyMatchFailure(op, "not a pooling::Nwc layout"); } /// Entry point that transposes into the common form: /// {{n, c, strideW * w + dilationW * kw}, {kw}, {n, c, w}} for pooling FailureOr generateNcwPooling() { AffineExpr n, w, c, kw; bindDims(ctx, n, c, w, kw); if (!iters({Par(), Par(), Par(), Red()})) return rewriter.notifyMatchFailure(op, "failed to match pooling 3-par 1-red"); if (layout({/*lhsIndex*/ {n, c, strideW * w + dilationW * kw}, /*rhsIndex*/ {kw}, /*resIndex*/ {n, c, w}})) return conv(Conv1DOpOrder::Ncw); return rewriter.notifyMatchFailure(op, "not a pooling::Ncw layout"); } /// Entry point that transposes into the common form: /// {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}} FailureOr generateDilatedConv(uint64_t vecChDimSize = 0, bool vecChDimScalableFlag = false, bool flatten = false) { AffineExpr n, w, c, kw; bindDims(ctx, n, w, c, kw); if (!iters({Par(), Par(), Par(), Red()})) return rewriter.notifyMatchFailure( op, "failed to match depthwise::Nwc conv 3-par 1-red"); // No transposition needed. if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c}, /*rhsIndex*/ {kw, c}, /*resIndex*/ {n, w, c}})) return depthwiseConv(vecChDimSize, vecChDimScalableFlag, flatten); return rewriter.notifyMatchFailure(op, "not a depthwise::Nwc layout"); } private: enum OperKind { Conv, Pool }; bool valid = false; OperKind oper = Conv; StringAttr redOp; StringAttr poolExtOp; bool isPoolExt = false; int strideW, dilationW; Value lhsShaped, rhsShaped, resShaped; ShapedType lhsShapedType, rhsShapedType, resShapedType; vector::CombiningKind reductionKind; // Sets oper, poolExtOp and isPoolExt for valid conv/pooling ops. // Returns true iff it is a valid conv/pooling op. // If (region has 2 ops (reduction + yield) or 3 ops (extension + reduction // + yield) and rhs is not used) then it is the body of a pooling // If conv, check for single `mul` predecessor. The `mul` operands must be // block arguments or extension of block arguments. // Otherwise, check for one or zero `ext` predecessor. The `ext` operands // must be block arguments or extension of block arguments. bool setOperKind(Operation *reduceOp) { int numBlockArguments = llvm::count_if(reduceOp->getOperands(), llvm::IsaPred); switch (numBlockArguments) { case 1: { // Will be convolution if feeder is a MulOp. // A strength reduced version of MulOp for i1 type is AndOp which is also // supported. Otherwise, it can be pooling. This strength reduction logic // is in `buildBinaryFn` helper in the Linalg dialect. auto feedValIt = llvm::find_if_not(reduceOp->getOperands(), llvm::IsaPred); Operation *feedOp = (*feedValIt).getDefiningOp(); if (isCastOfBlockArgument(feedOp)) { oper = Pool; isPoolExt = true; poolExtOp = feedOp->getName().getIdentifier(); } else if (!((isa(feedOp) || (isa(feedOp) && feedOp->getResultTypes()[0].isInteger(1))) && llvm::all_of(feedOp->getOperands(), [](Value v) { if (isa(v)) return true; if (Operation *op = v.getDefiningOp()) return isCastOfBlockArgument(op); return false; }))) { return false; } return true; } case 2: // Must be pooling oper = Pool; isPoolExt = false; return true; default: return false; } } }; } // namespace /// Helper function to vectorize a LinalgOp with convolution semantics. // TODO: extend the generic vectorization to support windows and drop this. static FailureOr vectorizeConvolution( RewriterBase &rewriter, LinalgOp op, ArrayRef inputVecSizes, ArrayRef inputScalableVecDims, bool flatten1DDepthwiseConv) { // The ConvolutionOpInterface gives us guarantees of existence for // strides/dilations. However, we do not need to rely on those, we can // simply use them if present, otherwise use the default and let the generic // conv. matcher in the ConvGenerator succeed or fail. auto strides = op->getAttrOfType("strides"); auto dilations = op->getAttrOfType("dilations"); auto stride = strides ? *strides.getValues().begin() : 1; auto dilation = dilations ? *dilations.getValues().begin() : 1; Conv1DGenerator e(rewriter, op, stride, dilation); auto res = e.generateNonChanneledConv(); if (succeeded(res)) return res; res = e.generateNwcConv(); if (succeeded(res)) return res; res = e.generateNcwConv(); if (succeeded(res)) return res; res = e.generateNwcPooling(); if (succeeded(res)) return res; res = e.generateNcwPooling(); if (succeeded(res)) return res; // Only depthwise 1D NWC convs are left - these can be vectorized using masks // and scalable vectors. Note that ATM the only dim that can be dynamic (i.e. // masked/scalable) is the channel dim (i.e. the trailing dim). uint64_t vecChDimSize = ShapedType::kDynamic; bool vecChDimScalableFlag = false; if (!inputVecSizes.empty()) { // Only use the input vector size corresponding to the channel dim. Other // vector dims will be inferred from the Ops. assert((isa(*op) || isa(*op)) && "Not a 1D depthwise conv!"); size_t chDimIdx = TypeSwitch(op) .Case([](auto conv) { return 2; }) .Case([](auto conv) { return 1; }); vecChDimSize = inputVecSizes[chDimIdx]; vecChDimScalableFlag = inputScalableVecDims[chDimIdx]; } return e.generateDilatedConv(vecChDimSize, vecChDimScalableFlag, flatten1DDepthwiseConv); } struct VectorizeConvolution : public OpInterfaceRewritePattern { using OpInterfaceRewritePattern::OpInterfaceRewritePattern; LogicalResult matchAndRewrite(LinalgOp op, PatternRewriter &rewriter) const override { FailureOr resultOrFail = vectorizeConvolution(rewriter, op); if (failed(resultOrFail)) return failure(); Operation *newOp = *resultOrFail; if (newOp->getNumResults() == 0) { rewriter.eraseOp(op.getOperation()); return success(); } assert(newOp->getNumResults() == 1 && "expected single result"); rewriter.replaceOp(op.getOperation(), newOp->getResult(0)); return success(); } }; void mlir::linalg::populateConvolutionVectorizationPatterns( RewritePatternSet &patterns, PatternBenefit benefit) { patterns.add(patterns.getContext(), benefit); }