//===- Promotion.cpp - Implementation of linalg Promotion -----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the linalg dialect Promotion pass. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Arith/Utils/Utils.h" #include "mlir/Dialect/Complex/IR/Complex.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/GPU/IR/GPUDialect.h" #include "mlir/Dialect/Linalg/IR/Linalg.h" #include "mlir/Dialect/Linalg/Passes.h" #include "mlir/Dialect/Linalg/Transforms/Transforms.h" #include "mlir/Dialect/SCF/IR/SCF.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineExprVisitor.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/Interfaces/ValueBoundsOpInterface.h" #include "mlir/Support/LLVM.h" #include "mlir/Transforms/FoldUtils.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/TypeSwitch.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" using namespace mlir; using namespace mlir::linalg; using namespace mlir::scf; using llvm::MapVector; #define DEBUG_TYPE "linalg-promotion" /// Alloc a new buffer of `size` * `width` i8; where `width` is given by the /// data `layout` for `elementType`. /// Use AllocOp or AllocaOp depending on `options`. /// Take an optional alignment. static Value allocBuffer(ImplicitLocOpBuilder &b, const LinalgPromotionOptions &options, Type elementType, Value allocSize, DataLayout &layout, std::optional alignment = std::nullopt) { llvm::TypeSize width = layout.getTypeSize(elementType); assert(!width.isScalable() && "cannot allocate buffer for a scalable vector"); IntegerAttr alignmentAttr; if (alignment.has_value()) alignmentAttr = b.getI64IntegerAttr(alignment.value()); Attribute memorySpaceAttr; if (options.memorySpace.has_value()) memorySpaceAttr = *options.memorySpace; // Static buffer. if (std::optional cst = getConstantIntValue(allocSize)) { auto staticBufferType = MemRefType::get(width.getFixedValue() * cst.value(), b.getIntegerType(8)); staticBufferType = MemRefType::Builder(staticBufferType).setMemorySpace(memorySpaceAttr); if (options.useAlloca) { return b.create(staticBufferType, ValueRange{}, alignmentAttr); } return b.create(staticBufferType, ValueRange{}, alignmentAttr); } // Fallback dynamic buffer. auto dynamicBufferType = MemRefType::get(ShapedType::kDynamic, b.getIntegerType(8)); dynamicBufferType = MemRefType::Builder(dynamicBufferType).setMemorySpace(memorySpaceAttr); Value mul = b.createOrFold( b.create(width), allocSize); if (options.useAlloca) return b.create(dynamicBufferType, mul, alignmentAttr); return b.create(dynamicBufferType, mul, alignmentAttr); } /// Default allocation callback function. This allocates a promoted buffer when /// no call back to do so is provided. The default is to allocate a /// memref<..xi8> and return a view to get a memref type of shape /// boundingSubViewSize. static std::optional defaultAllocBufferCallBack( const LinalgPromotionOptions &options, OpBuilder &builder, memref::SubViewOp subView, ArrayRef boundingSubViewSize, std::optional alignment, DataLayout &layout) { ShapedType viewType = subView.getType(); ImplicitLocOpBuilder b(subView.getLoc(), builder); auto zero = b.create(0); auto one = b.create(1); Attribute memorySpaceAttr; if (options.memorySpace.has_value()) memorySpaceAttr = *options.memorySpace; Value allocSize = one; for (const auto &size : llvm::enumerate(boundingSubViewSize)) allocSize = b.createOrFold(allocSize, size.value()); Value buffer = allocBuffer(b, options, viewType.getElementType(), allocSize, layout, alignment); SmallVector dynSizes(boundingSubViewSize.size(), ShapedType::kDynamic); auto viewMemRefType = MemRefType::get(dynSizes, viewType.getElementType()); viewMemRefType = MemRefType::Builder(viewMemRefType).setMemorySpace(memorySpaceAttr); Value view = b.createOrFold(viewMemRefType, buffer, zero, boundingSubViewSize); return view; } /// Default implementation of deallocation of the buffer use for promotion. It /// expects to get the same value that the default allocation method returned, /// i.e. result of a ViewOp. static LogicalResult defaultDeallocBufferCallBack(const LinalgPromotionOptions &options, OpBuilder &b, Value fullLocalView) { if (!options.useAlloca) { auto viewOp = cast(fullLocalView.getDefiningOp()); b.create(viewOp.getSource().getLoc(), viewOp.getSource()); } return success(); } namespace { /// Helper struct that captures the information required to apply the /// transformation on each op. This bridges the abstraction gap with the /// user-facing API which exposes positional arguments to control which operands /// are promoted. struct LinalgOpInstancePromotionOptions { LinalgOpInstancePromotionOptions(LinalgOp op, const LinalgPromotionOptions &options); /// SubViews to promote. MapVector subViews; /// Subviews operand numbers to copy in using copyInFn. llvm::SmallSet operandsNumbersToCopyIn; /// True if the full view should be used for the promoted buffer. DenseMap useFullTileBuffers; /// Callback functions for allocation and deallocation of promoted buffers, as /// well as to copy the data into and out of these buffers. AllocBufferCallbackFn allocationFn; DeallocBufferCallbackFn deallocationFn; CopyCallbackFn copyInFn; CopyCallbackFn copyOutFn; /// Alignment of promoted buffer. std::optional alignment; }; } // namespace LinalgOpInstancePromotionOptions::LinalgOpInstancePromotionOptions( LinalgOp linalgOp, const LinalgPromotionOptions &options) : subViews(), alignment(options.alignment) { assert(linalgOp.hasPureBufferSemantics() && "revisit usage of shaped operand"); auto vUseFullTileBuffers = options.useFullTileBuffers.value_or(llvm::SmallBitVector()); vUseFullTileBuffers.resize(linalgOp->getNumOperands(), options.useFullTileBuffersDefault); for (OpOperand &opOperand : linalgOp->getOpOperands()) { int64_t operandNumber = opOperand.getOperandNumber(); if (options.operandsToPromote && !options.operandsToPromote->count(operandNumber)) continue; Operation *op = opOperand.get().getDefiningOp(); if (auto sv = dyn_cast_or_null(op)) { subViews[operandNumber] = sv; // In case of linalg generic, copy in only if subview is used in linalg // payload. if (!isa(linalgOp) || linalgOp.payloadUsesValueFromOperand(&opOperand)) operandsNumbersToCopyIn.insert(operandNumber); useFullTileBuffers[sv] = vUseFullTileBuffers[operandNumber]; } } if (options.allocationFn) { allocationFn = *options.allocationFn; } else { allocationFn = [&](OpBuilder &b, memref::SubViewOp subViewOp, ArrayRef boundingSubViewSize, DataLayout &layout) -> std::optional { return defaultAllocBufferCallBack(options, b, subViewOp, boundingSubViewSize, alignment, layout); }; } if (options.deallocationFn) { deallocationFn = *options.deallocationFn; } else { deallocationFn = [&](OpBuilder &b, Value buffer) { return defaultDeallocBufferCallBack(options, b, buffer); }; } // Save the loc because `linalgOp` goes out of scope. Location loc = linalgOp.getLoc(); auto defaultCopyCallBack = [loc](OpBuilder &b, Value src, Value dst) -> LogicalResult { b.create(loc, src, dst); return success(); }; copyInFn = (options.copyInFn ? *(options.copyInFn) : defaultCopyCallBack); copyOutFn = (options.copyOutFn ? *(options.copyOutFn) : defaultCopyCallBack); } // Performs promotion of a `subView` into a local buffer of the size of the // *ranges* of the `subView`. This produces a buffer whose size may be bigger // than the actual size of the `subView` at the boundaries. // This is related to the full/partial tile problem. // Returns a PromotionInfo containing a `buffer`, `fullLocalView` and // `partialLocalView` such that: // * `buffer` is always the size of the full tile. // * `fullLocalView` is a dense contiguous view into that buffer. // * `partialLocalView` is a dense non-contiguous slice of `fullLocalView` // that corresponds to the size of `subView` and accounting for boundary // effects. // The point of the full tile buffer is that constant static tile sizes are // folded and result in a buffer type with statically known size and alignment // properties. // To account for general boundary effects, padding must be performed on the // boundary tiles. For now this is done with an unconditional `fill` op followed // by a partial `copy` op. FailureOr mlir::linalg::promoteSubviewAsNewBuffer( OpBuilder &b, Location loc, memref::SubViewOp subView, const AllocBufferCallbackFn &allocationFn, DataLayout &layout) { auto viewType = subView.getType(); auto rank = viewType.getRank(); SmallVector fullSizes; SmallVector partialSizes; fullSizes.reserve(rank); partialSizes.reserve(rank); llvm::SmallBitVector droppedDims = subView.getDroppedDims(); int64_t resultDimIdx = 0; for (const auto &en : llvm::enumerate(subView.getOrCreateRanges(b, loc))) { if (droppedDims[en.index()]) continue; auto rangeValue = en.value(); // Try to extract a tight constant. If the size is known statically, no need // to look for the bound. LLVM_DEBUG(llvm::dbgs() << "Extract tightest: " << rangeValue.size << "\n"); Value size; if (auto attr = llvm::dyn_cast_if_present(rangeValue.size)) { size = getValueOrCreateConstantIndexOp(b, loc, rangeValue.size); } else { FailureOr upperBound = ValueBoundsConstraintSet::computeConstantBound( presburger::BoundType::UB, rangeValue.size, /*stopCondition=*/nullptr, /*closedUB=*/true); size = failed(upperBound) ? getValueOrCreateConstantIndexOp(b, loc, rangeValue.size) : b.create(loc, *upperBound); } LLVM_DEBUG(llvm::dbgs() << "Extracted tightest: " << size << "\n"); fullSizes.push_back(size); partialSizes.push_back( b.createOrFold(loc, subView, resultDimIdx++)); } SmallVector dynSizes(fullSizes.size(), ShapedType::kDynamic); // If a callback is not specified, then use the default implementation for // allocating the promoted buffer. std::optional fullLocalView = allocationFn(b, subView, fullSizes, layout); if (!fullLocalView) return failure(); SmallVector zeros(fullSizes.size(), b.getIndexAttr(0)); SmallVector ones(fullSizes.size(), b.getIndexAttr(1)); auto partialLocalView = b.createOrFold( loc, *fullLocalView, zeros, partialSizes, ones); return PromotionInfo{*fullLocalView, partialLocalView}; } static FailureOr> promoteSubViews(ImplicitLocOpBuilder &b, LinalgOpInstancePromotionOptions options, DataLayout &layout) { if (options.subViews.empty()) return failure(); MapVector promotionInfoMap; for (auto v : options.subViews) { memref::SubViewOp subView = cast(v.second.getDefiningOp()); auto promotionInfo = promoteSubviewAsNewBuffer( b, b.getLoc(), subView, options.allocationFn, layout); if (failed(promotionInfo)) return failure(); promotionInfoMap[v.first] = *promotionInfo; // Only fill the buffer if the full local view is used if (!options.useFullTileBuffers[v.second]) continue; Type subviewEltType = subView.getType().getElementType(); Value fillVal = llvm::TypeSwitch(subviewEltType) .Case([&](FloatType t) { return b.create(FloatAttr::get(t, 0.0)); }) .Case([&](IntegerType t) { return b.create(IntegerAttr::get(t, 0)); }) .Case([&](ComplexType t) { Value tmp; if (auto et = dyn_cast(t.getElementType())) tmp = b.create(FloatAttr::get(et, 0.0)); else if (auto et = cast(t.getElementType())) tmp = b.create(IntegerAttr::get(et, 0)); return b.create(t, tmp, tmp); }) .Default([](auto) { return Value(); }); if (!fillVal) return failure(); b.create(fillVal, promotionInfo->fullLocalView); } // Copy data into the promoted buffers. Use callback if provided. for (auto v : options.subViews) { auto *info = promotionInfoMap.find(v.first); if (info == promotionInfoMap.end()) continue; if (options.operandsNumbersToCopyIn.count(v.first) == 0) continue; if (failed(options.copyInFn( b, cast(v.second.getDefiningOp()), info->second.partialLocalView))) return failure(); } return promotionInfoMap; } static FailureOr promoteSubViews(ImplicitLocOpBuilder &b, LinalgOp op, LinalgOpInstancePromotionOptions options, DataLayout &layout) { assert(op.hasPureBufferSemantics() && "expected linalg op with buffer semantics"); // 1. Promote the specified views and use them in the new op. auto promotedBuffersAndViews = promoteSubViews(b, options, layout); if (failed(promotedBuffersAndViews) || promotedBuffersAndViews->size() != options.subViews.size()) return failure(); // 2. Append all other operands as they appear, this enforces that such // operands are not views. This is to support cases such as FillOp taking // extra scalars etc. Keep a reference to output buffers; SmallVector opViews; opViews.reserve(op->getNumOperands()); SmallVector, 8> writebackViews; writebackViews.reserve(promotedBuffersAndViews->size()); for (OpOperand &opOperand : op->getOpOperands()) { int64_t operandNumber = opOperand.getOperandNumber(); if (options.subViews.count(operandNumber) != 0) { if (options.useFullTileBuffers[opOperand.get()]) opViews.push_back( (*promotedBuffersAndViews)[operandNumber].fullLocalView); else opViews.push_back( (*promotedBuffersAndViews)[operandNumber].partialLocalView); if (operandNumber >= op.getNumDpsInputs()) writebackViews.emplace_back(std::make_pair( opOperand.get(), (*promotedBuffersAndViews)[operandNumber].partialLocalView)); } else { opViews.push_back(opOperand.get()); } } op->setOperands(0, opViews.size(), opViews); OpBuilder::InsertionGuard guard(b); b.setInsertionPointAfter(op); // 3. Emit write-back for the promoted output views: copy the partial view. for (auto viewAndPartialLocalView : writebackViews) { if (failed(options.copyOutFn(b, viewAndPartialLocalView.second, viewAndPartialLocalView.first))) return failure(); } // 4. Dealloc all local buffers. for (const auto &pi : *promotedBuffersAndViews) (void)options.deallocationFn(b, pi.second.fullLocalView); return op; } LogicalResult mlir::linalg::promoteSubviewsPrecondition(Operation *op, LinalgPromotionOptions options) { LinalgOp linalgOp = dyn_cast(op); // Transformation applies to buffers only. if (!linalgOp || !linalgOp.hasPureBufferSemantics()) return failure(); // Check that at least one of the requested operands is indeed a subview. for (OpOperand &opOperand : linalgOp->getOpOperands()) { auto sv = isa_and_nonnull(opOperand.get().getDefiningOp()); if (sv) { if (!options.operandsToPromote || options.operandsToPromote->count(opOperand.getOperandNumber())) return success(); } } // TODO: Check all subviews requested are bound by a static constant. // TODO: Check that the total footprint fits within a given size. return failure(); } FailureOr mlir::linalg::promoteSubViews(OpBuilder &builder, LinalgOp linalgOp, const LinalgPromotionOptions &options) { LinalgOpInstancePromotionOptions linalgOptions(linalgOp, options); auto layout = DataLayout::closest(linalgOp); ImplicitLocOpBuilder b(linalgOp.getLoc(), builder); auto res = ::promoteSubViews(b, linalgOp, linalgOptions, layout); if (failed(res)) return failure(); return res; } /// Allocate the given subview to a memory address space in GPU by creating a /// allocation operation and setting the memref type address space to desired /// address space. static std::optional allocateSubviewGPUMemoryInAddressSpace( OpBuilder &builder, memref::SubViewOp subview, ArrayRef sizeBounds, gpu::AddressSpace addressSpace) { OpBuilder::InsertionGuard guard(builder); func::FuncOp funcOp = subview->getParentOfType(); if (!funcOp) return std::nullopt; // The subview size bounds are expected to be constant; they specify the shape // of the allocation. SmallVector shape; for (Value bound : sizeBounds) { APInt value; if (!matchPattern(bound, m_ConstantInt(&value))) return std::nullopt; shape.push_back(value.getSExtValue()); } builder.setInsertionPointToStart(&funcOp.front()); auto type = MemRefType::get( shape, subview.getType().getElementType(), MemRefLayoutAttrInterface{}, gpu::AddressSpaceAttr::get(builder.getContext(), addressSpace)); Value buffer; if (addressSpace == gpu::GPUDialect::getWorkgroupAddressSpace()) { buffer = builder.create(funcOp.getLoc(), type); } else if (addressSpace == gpu::GPUDialect::getPrivateAddressSpace()) { buffer = builder.create(funcOp.getLoc(), type); } else { return std::nullopt; } return buffer; } /// Allocate the subview in the GPU workgroup memory. std::optional mlir::linalg::allocateWorkgroupMemory( OpBuilder &builder, memref::SubViewOp subview, ArrayRef sizeBounds, DataLayout &) { return allocateSubviewGPUMemoryInAddressSpace( builder, subview, sizeBounds, gpu::GPUDialect::getWorkgroupAddressSpace()); } /// In case of GPU group memory there is no need to deallocate. LogicalResult mlir::linalg::deallocateWorkgroupMemory(OpBuilder &, Value /*buffer*/) { return success(); } /// Create Memref copy operations and add gpu barrier guards before and after /// the copy operation to ensure data integrity. LogicalResult mlir::linalg::copyToWorkgroupMemory(OpBuilder &b, Value src, Value dst) { b.create(src.getLoc()); Operation *copyOp = b.create(src.getLoc(), src, dst); b.create(copyOp->getLoc()); return success(); } /// Allocate the subview in the GPU private memory. std::optional mlir::linalg::allocateGPUPrivateMemory( OpBuilder &builder, memref::SubViewOp subview, ArrayRef sizeBounds, DataLayout &) { return allocateSubviewGPUMemoryInAddressSpace( builder, subview, sizeBounds, gpu::GPUDialect::getPrivateAddressSpace()); } /// Normal copy to between src and dst. LogicalResult mlir::linalg::copyToGPUPrivateMemory(OpBuilder &b, Value src, Value dst) { b.create(src.getLoc(), src, dst); return success(); } /// In case of GPU private memory there is no need to deallocate since the /// memory is freed when going outside of the scope. LogicalResult mlir::linalg::deallocateGPUPrivateMemory(OpBuilder &, Value /*buffer*/) { return success(); }