//===- LoopFusion.cpp - Code to perform loop fusion -----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements affine fusion. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Affine/Passes.h" #include "mlir/Dialect/Affine/Analysis/AffineStructures.h" #include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h" #include "mlir/Dialect/Affine/Analysis/Utils.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Affine/LoopFusionUtils.h" #include "mlir/Dialect/Affine/LoopUtils.h" #include "mlir/Dialect/Affine/Utils.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/Builders.h" #include "mlir/Transforms/Passes.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include #include #include namespace mlir { namespace affine { #define GEN_PASS_DEF_AFFINELOOPFUSION #include "mlir/Dialect/Affine/Passes.h.inc" } // namespace affine } // namespace mlir #define DEBUG_TYPE "affine-loop-fusion" using namespace mlir; using namespace mlir::affine; namespace { /// Loop fusion pass. This pass currently supports a greedy fusion policy, /// which fuses loop nests with single-writer/single-reader memref dependences /// with the goal of improving locality. // TODO: Support fusion of source loop nests which write to multiple // memrefs, where each memref can have multiple users (if profitable). struct LoopFusion : public affine::impl::AffineLoopFusionBase { LoopFusion() = default; LoopFusion(unsigned fastMemorySpace, uint64_t localBufSizeThresholdBytes, bool maximalFusion, enum FusionMode affineFusionMode) { this->fastMemorySpace = fastMemorySpace; this->localBufSizeThreshold = localBufSizeThresholdBytes / 1024; this->maximalFusion = maximalFusion; this->affineFusionMode = affineFusionMode; } void runOnBlock(Block *block); void runOnOperation() override; }; } // namespace /// Returns true if node 'srcId' can be removed after fusing it with node /// 'dstId'. The node can be removed if any of the following conditions are met: /// 1. 'srcId' has no output dependences after fusion and no escaping memrefs. /// 2. 'srcId' has no output dependences after fusion, has escaping memrefs /// and the fusion slice is maximal. /// 3. 'srcId' has output dependences after fusion, the fusion slice is /// maximal and the fusion insertion point dominates all the dependences. static bool canRemoveSrcNodeAfterFusion( unsigned srcId, unsigned dstId, const ComputationSliceState &fusionSlice, Operation *fusedLoopInsPoint, const DenseSet &escapingMemRefs, MemRefDependenceGraph *mdg) { Operation *dstNodeOp = mdg->getNode(dstId)->op; bool hasOutDepsAfterFusion = false; for (auto &outEdge : mdg->outEdges[srcId]) { Operation *depNodeOp = mdg->getNode(outEdge.id)->op; // Skip dependence with dstOp since it will be removed after fusion. if (depNodeOp == dstNodeOp) continue; // Only fusion within the same block is supported. Use domination analysis // when needed. if (depNodeOp->getBlock() != dstNodeOp->getBlock()) return false; // Check if the insertion point of the fused loop dominates the dependence. // Otherwise, the src loop can't be removed. if (fusedLoopInsPoint != depNodeOp && !fusedLoopInsPoint->isBeforeInBlock(depNodeOp)) { LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: dst loop doesn't " "dominate dependence\n"); return false; } hasOutDepsAfterFusion = true; } // If src loop has dependences after fusion or it writes to an live-out or // escaping memref, we can only remove it if the fusion slice is maximal so // that all the dependences are preserved. if (hasOutDepsAfterFusion || !escapingMemRefs.empty()) { std::optional isMaximal = fusionSlice.isMaximal(); if (!isMaximal) { LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: can't determine " "if fusion is maximal\n"); return false; } if (!*isMaximal) { LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: fusion is not maximal\n"); return false; } } return true; } /// Returns in 'srcIdCandidates' the producer fusion candidates for consumer /// 'dstId'. Candidates are sorted by node id order. This order corresponds to /// the program order when the 'mdg' is created. However, program order is not /// guaranteed and must not be required by the client. Program order won't be /// held if the 'mdg' is reused from a previous fusion step or if the node /// creation order changes in the future to support more advance cases. // TODO: Move this to a loop fusion utility once 'mdg' is also moved. static void getProducerCandidates(unsigned dstId, MemRefDependenceGraph *mdg, SmallVectorImpl &srcIdCandidates) { // Skip if no input edges along which to fuse. if (mdg->inEdges.count(dstId) == 0) return; // Gather memrefs from loads in 'dstId'. auto *dstNode = mdg->getNode(dstId); DenseSet consumedMemrefs; for (Operation *load : dstNode->loads) consumedMemrefs.insert(cast(load).getMemRef()); // Traverse 'dstId' incoming edges and gather the nodes that contain a store // to one of the consumed memrefs. for (auto &srcEdge : mdg->inEdges[dstId]) { auto *srcNode = mdg->getNode(srcEdge.id); // Skip if 'srcNode' is not a loop nest. if (!isa(srcNode->op)) continue; if (any_of(srcNode->stores, [&](Operation *op) { auto storeOp = cast(op); return consumedMemrefs.count(storeOp.getMemRef()) > 0; })) srcIdCandidates.push_back(srcNode->id); } llvm::sort(srcIdCandidates); srcIdCandidates.erase(llvm::unique(srcIdCandidates), srcIdCandidates.end()); } /// Returns in 'producerConsumerMemrefs' the memrefs involved in a /// producer-consumer dependence between 'srcId' and 'dstId'. static void gatherProducerConsumerMemrefs(unsigned srcId, unsigned dstId, MemRefDependenceGraph *mdg, DenseSet &producerConsumerMemrefs) { auto *dstNode = mdg->getNode(dstId); auto *srcNode = mdg->getNode(srcId); gatherProducerConsumerMemrefs(srcNode->stores, dstNode->loads, producerConsumerMemrefs); } /// A memref escapes in the context of the fusion pass if either: /// 1. it (or its alias) is a block argument, or /// 2. created by an op not known to guarantee alias freedom, /// 3. it (or its alias) are used by ops other than affine dereferencing ops /// (e.g., by call op, memref load/store ops, alias creating ops, unknown ops, /// terminator ops, etc.); such ops do not deference the memref in an affine /// way. static bool isEscapingMemref(Value memref, Block *block) { Operation *defOp = memref.getDefiningOp(); // Check if 'memref' is a block argument. if (!defOp) return true; // Check if this is defined to be an alias of another memref. if (auto viewOp = dyn_cast(defOp)) if (isEscapingMemref(viewOp.getViewSource(), block)) return true; // Any op besides allocating ops wouldn't guarantee alias freedom if (!hasSingleEffect(defOp, memref)) return true; // Check if 'memref' is used by a non-deferencing op (including unknown ones) // (e.g., call ops, alias creating ops, etc.). return llvm::any_of(memref.getUsers(), [&](Operation *user) { // Ignore users outside of `block`. Operation *ancestorOp = block->getParent()->findAncestorOpInRegion(*user); if (!ancestorOp) return true; if (ancestorOp->getBlock() != block) return false; return !isa(*user); }); } /// Returns in 'escapingMemRefs' the memrefs from affine store ops in node 'id' /// that escape the block or are accessed in a non-affine way. static void gatherEscapingMemrefs(unsigned id, MemRefDependenceGraph *mdg, DenseSet &escapingMemRefs) { auto *node = mdg->getNode(id); for (Operation *storeOp : node->stores) { auto memref = cast(storeOp).getMemRef(); if (escapingMemRefs.count(memref)) continue; if (isEscapingMemref(memref, &mdg->block)) escapingMemRefs.insert(memref); } } // Sinks all sequential loops to the innermost levels (while preserving // relative order among them) and moves all parallel loops to the // outermost (while again preserving relative order among them). // This can increase the loop depth at which we can fuse a slice, since we are // pushing loop carried dependence to a greater depth in the loop nest. static void sinkSequentialLoops(MemRefDependenceGraph::Node *node) { assert(isa(node->op)); AffineForOp newRootForOp = sinkSequentialLoops(cast(node->op)); node->op = newRootForOp; } // Creates and returns a private (single-user) memref for fused loop rooted // at 'forOp', with (potentially reduced) memref size based on the // MemRefRegion written to by 'srcStoreOpInst' at depth 'dstLoopDepth'. // TODO: consider refactoring the common code from generateDma and // this one. static Value createPrivateMemRef(AffineForOp forOp, Operation *srcStoreOpInst, unsigned dstLoopDepth, std::optional fastMemorySpace, uint64_t localBufSizeThreshold) { Operation *forInst = forOp.getOperation(); // Create builder to insert alloc op just before 'forOp'. OpBuilder b(forInst); // Builder to create constants at the top level. OpBuilder top(forInst->getParentRegion()); // Create new memref type based on slice bounds. auto oldMemRef = cast(srcStoreOpInst).getMemRef(); auto oldMemRefType = cast(oldMemRef.getType()); unsigned rank = oldMemRefType.getRank(); // Compute MemRefRegion for 'srcStoreOpInst' at depth 'dstLoopDepth'. MemRefRegion region(srcStoreOpInst->getLoc()); bool validRegion = succeeded(region.compute(srcStoreOpInst, dstLoopDepth)); (void)validRegion; assert(validRegion && "unexpected memref region failure"); SmallVector newShape; std::vector> lbs; SmallVector lbDivisors; lbs.reserve(rank); // Query 'region' for 'newShape' and lower bounds of MemRefRegion accessed // by 'srcStoreOpInst' at depth 'dstLoopDepth'. std::optional numElements = region.getConstantBoundingSizeAndShape(&newShape, &lbs, &lbDivisors); assert(numElements && "non-constant number of elts in local buffer"); const FlatAffineValueConstraints *cst = region.getConstraints(); // 'outerIVs' holds the values that this memory region is symbolic/parametric // on; this would correspond to loop IVs surrounding the level at which the // slice is being materialized. SmallVector outerIVs; cst->getValues(rank, cst->getNumVars(), &outerIVs); // Build 'rank' AffineExprs from MemRefRegion 'lbs' SmallVector offsets; offsets.reserve(rank); for (unsigned d = 0; d < rank; ++d) { assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size"); AffineExpr offset = top.getAffineConstantExpr(0); for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) { offset = offset + lbs[d][j] * top.getAffineDimExpr(j); } assert(lbDivisors[d] > 0); offset = (offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]); offsets.push_back(offset); } // Create 'newMemRefType' using 'newShape' from MemRefRegion accessed // by 'srcStoreOpInst'. auto eltSize = getMemRefIntOrFloatEltSizeInBytes(oldMemRefType); assert(eltSize && "memrefs with size elt types expected"); uint64_t bufSize = *eltSize * *numElements; unsigned newMemSpace; if (bufSize <= localBufSizeThreshold && fastMemorySpace.has_value()) { newMemSpace = *fastMemorySpace; } else { newMemSpace = oldMemRefType.getMemorySpaceAsInt(); } auto newMemRefType = MemRefType::get(newShape, oldMemRefType.getElementType(), {}, newMemSpace); // Create new private memref for fused loop 'forOp'. 'newShape' is always // a constant shape. // TODO: Create/move alloc ops for private memrefs closer to their // consumer loop nests to reduce their live range. Currently they are added // at the beginning of the block, because loop nests can be reordered // during the fusion pass. Value newMemRef = top.create(forOp.getLoc(), newMemRefType); // Build an AffineMap to remap access functions based on lower bound offsets. SmallVector remapExprs; remapExprs.reserve(rank); for (unsigned i = 0; i < rank; i++) { auto dimExpr = b.getAffineDimExpr(outerIVs.size() + i); auto remapExpr = simplifyAffineExpr(dimExpr - offsets[i], outerIVs.size() + rank, 0); remapExprs.push_back(remapExpr); } auto indexRemap = AffineMap::get(outerIVs.size() + rank, 0, remapExprs, forOp.getContext()); // Replace all users of 'oldMemRef' with 'newMemRef'. LogicalResult res = replaceAllMemRefUsesWith(oldMemRef, newMemRef, {}, indexRemap, /*extraOperands=*/outerIVs, /*symbolOperands=*/{}, /*domOpFilter=*/&*forOp.getBody()->begin()); assert(succeeded(res) && "replaceAllMemrefUsesWith should always succeed here"); (void)res; return newMemRef; } /// Returns true if there are any non-affine uses of `memref` in any of /// the operations between `start` and `end` (both exclusive). Any other /// than affine read/write are treated as non-affine uses of `memref`. static bool hasNonAffineUsersOnPath(Operation *start, Operation *end, Value memref) { assert(start->getBlock() == end->getBlock()); assert(start->isBeforeInBlock(end) && "start expected to be before end"); Block *block = start->getBlock(); // Check if there is a non-affine memref user in any op between `start` and // `end`. return llvm::any_of(memref.getUsers(), [&](Operation *user) { if (isa(user)) return false; Operation *ancestor = block->findAncestorOpInBlock(*user); return ancestor && start->isBeforeInBlock(ancestor) && ancestor->isBeforeInBlock(end); }); } /// Check whether a memref value used in any operation of 'src' has a /// non-affine operation that is between `src` and `end` (exclusive of `src` /// and `end`) where `src` and `end` are expected to be in the same Block. /// Any other than affine read/write are treated as non-affine uses of memref. static bool hasNonAffineUsersOnPath(Operation *src, Operation *end) { assert(src->getBlock() == end->getBlock() && "same block expected"); // Trivial case. `src` and `end` are exclusive. if (src == end || end->isBeforeInBlock(src)) return false; // Collect relevant memref values. llvm::SmallDenseSet memRefValues; src->walk([&](Operation *op) { for (Value v : op->getOperands()) // Collect memref values only. if (isa(v.getType())) memRefValues.insert(v); return WalkResult::advance(); }); // Look for non-affine users between `src` and `end`. return llvm::any_of(memRefValues, [&](Value memref) { return hasNonAffineUsersOnPath(src, end, memref); }); } // Checks the profitability of fusing a backwards slice of the loop nest // surrounding 'srcOpInst' into the loop nest surrounding 'dstLoadOpInsts'. // The argument 'srcStoreOpInst' is used to calculate the storage reduction on // the memref being produced and consumed, which is an input to the cost model. // For producer-consumer fusion, 'srcStoreOpInst' will be the same as // 'srcOpInst', as we are slicing w.r.t to that producer. For input-reuse // fusion, 'srcOpInst' will be the src loop nest LoadOp which reads from the // same memref as dst loop nest load ops, and 'srcStoreOpInst' will be the // unique store op in the src node, which will be used to check that the write // region is the same after input-reuse fusion. Computation slices are provided // in 'depthSliceUnions' for each legal fusion depth. The maximal depth at which // fusion is legal is provided in 'maxLegalFusionDepth'. Returns true if it is // profitable to fuse the candidate loop nests. Returns false otherwise. // `dstLoopDepth` is set to the most profitable depth at which to materialize // the source loop nest slice. // The profitability model executes the following steps: // *) Computes the backward computation slice at 'srcOpInst'. This // computation slice of the loop nest surrounding 'srcOpInst' is // represented by modified src loop bounds in 'sliceState', which are // functions of loop IVs in the loop nest surrounding 'srcOpInst'. // *) Computes the cost of unfused src/dst loop nests (currently the cost of a // loop nest is the total number of dynamic operation instances in the loop // nest). // *) Computes the cost of fusing a slice of the src loop nest into the dst // loop nest at various values of dst loop depth, attempting to fuse // the largest computation slice at the maximal dst loop depth (closest to // the load) to minimize reuse distance and potentially enable subsequent // load/store forwarding. // NOTE: 'dstLoopDepth' refers to the loop depth within the destination loop // nest, at which the src computation slice is inserted/fused. // NOTE: We attempt to maximize the dst loop depth, but there are cases // where a particular setting for 'dstLoopNest' might fuse an unsliced // loop (within the src computation slice) at a depth which results in // excessive recomputation (see unit tests for examples). // *) Compares the total cost of the unfused loop nests to the min cost fused // loop nest computed in the previous step, and returns true if the latter // is lower. // TODO: Extend profitability analysis to support scenarios with multiple // stores. static bool isFusionProfitable(Operation *srcOpInst, Operation *srcStoreOpInst, AffineForOp dstForOp, ArrayRef depthSliceUnions, unsigned maxLegalFusionDepth, unsigned *dstLoopDepth, double computeToleranceThreshold) { LLVM_DEBUG({ llvm::dbgs() << "Checking whether fusion is profitable between src op:\n"; llvm::dbgs() << ' ' << *srcOpInst << " and destination loop:\n"; llvm::dbgs() << dstForOp << "\n"; }); if (maxLegalFusionDepth == 0) { LLVM_DEBUG(llvm::dbgs() << "Can't fuse: maxLegalFusionDepth is 0\n"); return false; } // Compute cost of sliced and unsliced src loop nest. SmallVector srcLoopIVs; getAffineForIVs(*srcOpInst, &srcLoopIVs); // Walk src loop nest and collect stats. LoopNestStats srcLoopNestStats; if (!getLoopNestStats(srcLoopIVs[0], &srcLoopNestStats)) return false; // Compute cost of dst loop nest. LoopNestStats dstLoopNestStats; if (!getLoopNestStats(dstForOp, &dstLoopNestStats)) return false; // Search for min cost value for 'dstLoopDepth'. At each value of // 'dstLoopDepth' from 'maxLegalLoopDepth' to '1', compute computation slice // bounds between 'srcOpInst' and each op in 'dstOpinsts' (taking the union // of these bounds). Next the union slice bounds are used to calculate // the cost of the slice and the cost of the slice inserted into the dst // loop nest at 'dstLoopDepth'. uint64_t minFusedLoopNestComputeCost = std::numeric_limits::max(); double maxStorageReduction = 0.0; std::optional sliceMemEstimate; // The best loop depth at which to materialize the slice. std::optional bestDstLoopDepth; // Compute op instance count for the src loop nest without iteration slicing. uint64_t srcLoopNestCost = getComputeCost(srcLoopIVs[0], srcLoopNestStats); // Compute src loop nest write region size. MemRefRegion srcWriteRegion(srcStoreOpInst->getLoc()); if (failed(srcWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0))) { LLVM_DEBUG(llvm::dbgs() << "Unable to compute MemRefRegion for source operation\n"); return false; } std::optional maybeSrcWriteRegionSizeBytes = srcWriteRegion.getRegionSize(); if (!maybeSrcWriteRegionSizeBytes.has_value()) return false; int64_t srcWriteRegionSizeBytes = *maybeSrcWriteRegionSizeBytes; // Compute op instance count for the src loop nest. uint64_t dstLoopNestCost = getComputeCost(dstForOp, dstLoopNestStats); // Evaluate all depth choices for materializing the slice in the destination // loop nest. for (unsigned i = maxLegalFusionDepth; i >= 1; --i) { const ComputationSliceState &slice = depthSliceUnions[i - 1]; // Skip slice union if it wasn't computed for this depth. if (slice.isEmpty()) continue; int64_t fusedLoopNestComputeCost; if (!getFusionComputeCost(srcLoopIVs[0], srcLoopNestStats, dstForOp, dstLoopNestStats, slice, &fusedLoopNestComputeCost)) { LLVM_DEBUG(llvm::dbgs() << "Unable to compute fusion compute cost\n"); continue; } double additionalComputeFraction = fusedLoopNestComputeCost / (static_cast(srcLoopNestCost) + dstLoopNestCost) - 1; // Determine what the slice write MemRefRegion would be, if the src loop // nest slice 'slice' were to be inserted into the dst loop nest at loop // depth 'i'. MemRefRegion sliceWriteRegion(srcStoreOpInst->getLoc()); if (failed(sliceWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0, &slice))) { LLVM_DEBUG(llvm::dbgs() << "Failed to compute slice write region at loopDepth: " << i << "\n"); continue; } std::optional maybeSliceWriteRegionSizeBytes = sliceWriteRegion.getRegionSize(); if (!maybeSliceWriteRegionSizeBytes.has_value() || *maybeSliceWriteRegionSizeBytes == 0) { LLVM_DEBUG(llvm::dbgs() << "Failed to get slice write region size at loopDepth: " << i << "\n"); continue; } int64_t sliceWriteRegionSizeBytes = *maybeSliceWriteRegionSizeBytes; // If we are fusing for reuse, check that write regions remain the same. // TODO: Write region check should check sizes and offsets in // each dimension, so that we are sure they are covering the same memref // region. Also, move this out to a isMemRefRegionSuperSet helper function. if (srcOpInst != srcStoreOpInst && sliceWriteRegionSizeBytes != srcWriteRegionSizeBytes) continue; double storageReduction = static_cast(srcWriteRegionSizeBytes) / static_cast(sliceWriteRegionSizeBytes); LLVM_DEBUG({ std::stringstream msg; msg << " evaluating fusion profitability at depth : " << i << "\n" << std::fixed << std::setprecision(2) << " additional compute fraction: " << 100.0 * additionalComputeFraction << "%\n" << " storage reduction factor: " << storageReduction << "x\n" << " fused nest cost: " << fusedLoopNestComputeCost << "\n" << " src write region size: " << srcWriteRegionSizeBytes << "\n" << " slice write region size: " << sliceWriteRegionSizeBytes << "\n"; llvm::dbgs() << msg.str(); }); // TODO: This is a placeholder cost model. // Among all choices that add an acceptable amount of redundant computation // (as per computeToleranceThreshold), we will simply pick the one that // reduces the intermediary size the most. if ((storageReduction > maxStorageReduction) && (additionalComputeFraction < computeToleranceThreshold)) { maxStorageReduction = storageReduction; bestDstLoopDepth = i; minFusedLoopNestComputeCost = fusedLoopNestComputeCost; sliceMemEstimate = sliceWriteRegionSizeBytes; } } // A simple cost model: fuse if it reduces the memory footprint. if (!bestDstLoopDepth) { LLVM_DEBUG( llvm::dbgs() << "All fusion choices involve more than the threshold amount of " "redundant computation; NOT fusing.\n"); return false; } if (!bestDstLoopDepth) { LLVM_DEBUG(llvm::dbgs() << "no fusion depth could be evaluated.\n"); return false; } // Set dstLoopDepth based on best values from search. *dstLoopDepth = *bestDstLoopDepth; LLVM_DEBUG( llvm::dbgs() << " LoopFusion fusion stats:" << "\n best loop depth: " << bestDstLoopDepth << "\n src loop nest compute cost: " << srcLoopNestCost << "\n dst loop nest compute cost: " << dstLoopNestCost << "\n fused loop nest compute cost: " << minFusedLoopNestComputeCost << "\n"); auto dstMemSize = getMemoryFootprintBytes(dstForOp); auto srcMemSize = getMemoryFootprintBytes(srcLoopIVs[0]); std::optional storageReduction; if (!dstMemSize || !srcMemSize) { LLVM_DEBUG(llvm::dbgs() << " fusion memory benefit cannot be evaluated; NOT fusing.\n"); return false; } auto srcMemSizeVal = *srcMemSize; auto dstMemSizeVal = *dstMemSize; assert(sliceMemEstimate && "expected value"); auto fusedMem = dstMemSizeVal + *sliceMemEstimate; LLVM_DEBUG(llvm::dbgs() << " src mem: " << srcMemSizeVal << "\n" << " dst mem: " << dstMemSizeVal << "\n" << " fused mem: " << fusedMem << "\n" << " slice mem: " << sliceMemEstimate << "\n"); if (static_cast(fusedMem) > srcMemSizeVal + dstMemSizeVal) { LLVM_DEBUG(llvm::dbgs() << "Fusion is not profitable; NOT fusing.\n"); return false; } storageReduction = 100.0 * (1.0 - fusedMem / (static_cast(srcMemSizeVal) + dstMemSizeVal)); double additionalComputeFraction = 100.0 * (minFusedLoopNestComputeCost / (static_cast(srcLoopNestCost) + dstLoopNestCost) - 1); (void)additionalComputeFraction; LLVM_DEBUG({ std::stringstream msg; msg << " fusion is most profitable at depth " << *dstLoopDepth << " with " << std::setprecision(2) << additionalComputeFraction << "% redundant computation and a "; msg << (storageReduction ? std::to_string(*storageReduction) : ""); msg << "% storage reduction.\n"; llvm::dbgs() << msg.str(); }); return true; } namespace { // GreedyFusion greedily fuses loop nests which have a producer/consumer or // input-reuse relationship on a memref, with the goal of improving locality. // // The steps of the producer-consumer fusion algorithm are as follows: // // *) A worklist is initialized with node ids from the dependence graph. // *) For each node id in the worklist: // *) Pop an AffineForOp of the worklist. This 'dstAffineForOp' will be a // candidate destination AffineForOp into which fusion will be attempted. // *) Add each LoadOp currently in 'dstAffineForOp' into list 'dstLoadOps'. // *) For each LoadOp in 'dstLoadOps' do: // *) Look up dependent loop nests which have a single store op to the same // memref. // *) Check if dependences would be violated by the fusion. // *) Get a computation slice of 'srcLoopNest', which adjusts its loop // bounds to be functions of 'dstLoopNest' IVs and symbols. // *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest', // at a loop depth determined by the cost model in 'isFusionProfitable'. // *) Add the newly fused load/store operations to the state, // and also add newly fused load ops to 'dstLoopOps' to be considered // as fusion dst load ops in another iteration. // *) Remove old src loop nest and its associated state. // // The steps of the input-reuse fusion algorithm are as follows: // // *) Initialize 'worklist' with node ids from the dependence graph. // *) For each 'dstNode' in the worklist: // *) Find a candidate sibling node 'sibNode' to fuse with 'dstNode' which // loads from the same memref, but which has no dependence paths to/from. // *) Get a computation slice of 'sibLoopNest', which adjusts its loop // bounds to be functions of 'dstLoopNest' IVs and symbols. // *) Fuse the 'sibLoopNest' computation slice into the 'dstLoopNest', // at a loop depth determined by the cost model in 'isFusionProfitable'. // This function also checks that the memref write region of 'sibLoopNest', // is preserved in the fused loop nest. // *) Update graph state to reflect the fusion of 'sibNode' into 'dstNode'. // // Given a graph where top-level operations are vertices in the set 'V' and // edges in the set 'E' are dependences between vertices, this algorithm // takes O(V) time for initialization, and has runtime O(V + E). // // This greedy algorithm is not 'maximal' due to the current restriction of // fusing along single producer consumer edges, but there is a TODO: to fix // this. // // TODO: Experiment with other fusion policies. struct GreedyFusion { public: // The data dependence graph to traverse during fusion. MemRefDependenceGraph *mdg; // Worklist of graph nodes visited during the fusion pass. SmallVector worklist; // Parameter for local buffer size threshold. unsigned localBufSizeThreshold; // Parameter for fast memory space. std::optional fastMemorySpace; // If true, ignore any additional (redundant) computation tolerance threshold // that would have prevented fusion. bool maximalFusion; // The amount of additional computation that is tolerated while fusing // pair-wise as a fraction of the total computation. double computeToleranceThreshold; using Node = MemRefDependenceGraph::Node; GreedyFusion(MemRefDependenceGraph *mdg, unsigned localBufSizeThreshold, std::optional fastMemorySpace, bool maximalFusion, double computeToleranceThreshold) : mdg(mdg), localBufSizeThreshold(localBufSizeThreshold), fastMemorySpace(fastMemorySpace), maximalFusion(maximalFusion), computeToleranceThreshold(computeToleranceThreshold) {} /// Initializes 'worklist' with nodes from 'mdg'. void init() { // TODO: Add a priority queue for prioritizing nodes by different // metrics (e.g. arithmetic intensity/flops-to-bytes ratio). worklist.clear(); for (auto &idAndNode : mdg->nodes) { const Node &node = idAndNode.second; worklist.push_back(node.id); } } /// Run only sibling fusion on the `mdg`. void runSiblingFusionOnly() { fuseSiblingNodes(); eraseUnusedMemRefAllocations(); } /// Run only producer/consumer fusion on the `mdg`. void runProducerConsumerFusionOnly() { fuseProducerConsumerNodes( /*maxSrcUserCount=*/std::numeric_limits::max()); eraseUnusedMemRefAllocations(); } // Run the GreedyFusion pass. // *) First pass through the nodes fuses single-use producer nodes into their // unique consumer. // *) Second pass fuses sibling nodes which share no dependence edges. // *) Third pass fuses any remaining producer nodes into their users. void runGreedyFusion() { // TODO: Run this repeatedly until a fixed-point is reached. fuseProducerConsumerNodes(/*maxSrcUserCount=*/1); fuseSiblingNodes(); fuseProducerConsumerNodes( /*maxSrcUserCount=*/std::numeric_limits::max()); eraseUnusedMemRefAllocations(); } /// Returns true if a private memref can be created for `memref` given /// the fusion scenario reflected by the other arguments. bool canCreatePrivateMemRef(Value memref, const DenseSet &srcEscapingMemRefs, unsigned producerId, unsigned consumerId, bool removeSrcNode) { const Node *consumerNode = mdg->getNode(consumerId); // If `memref` is an escaping one, do not create a private memref // for the below scenarios, since doing so will leave the escaping // memref unmodified as all the writes originally meant for the // escaping memref would be performed on the private memref: // 1. The source is to be removed after fusion, // OR // 2. The destination writes to `memref`. if (srcEscapingMemRefs.count(memref) > 0 && (removeSrcNode || consumerNode->getStoreOpCount(memref) > 0)) return false; // Don't create a private memref if 'srcNode' has in edges on // 'memref' or 'dstNode' has out edges on 'memref'. if (mdg->getIncomingMemRefAccesses(producerId, memref) > 0 || mdg->getOutEdgeCount(consumerId, memref) > 0) return false; // If 'srcNode' will be removed but it has out edges on 'memref' to // nodes other than 'dstNode', we have to preserve dependences and // cannot create a private memref. if (removeSrcNode && any_of(mdg->outEdges[producerId], [&](const auto &edge) { return edge.value == memref && edge.id != consumerId; })) return false; return true; } /// Perform fusions with node `dstId` as the destination of fusion, with /// No fusion is performed when producers with a user count greater than /// `maxSrcUserCount` for any of the memrefs involved. void performFusionsIntoDest(unsigned dstId, unsigned maxSrcUserCount) { LLVM_DEBUG(llvm::dbgs() << "Evaluating dst loop " << dstId << "\n"); // Skip if this node was removed (fused into another node). if (mdg->nodes.count(dstId) == 0) return; // Get 'dstNode' into which to attempt fusion. auto *dstNode = mdg->getNode(dstId); // Skip if 'dstNode' is not a loop nest. if (!isa(dstNode->op)) return; // Skip if 'dstNode' is a loop nest returning values. // TODO: support loop nests that return values. if (dstNode->op->getNumResults() > 0) return; LLVM_DEBUG(llvm::dbgs() << "Evaluating dst loop " << dstId << "\n"); // Sink sequential loops in 'dstNode' (and thus raise parallel loops) // while preserving relative order. This can increase the maximum loop // depth at which we can fuse a slice of a producer loop nest into a // consumer loop nest. sinkSequentialLoops(dstNode); auto dstAffineForOp = cast(dstNode->op); // Try to fuse 'dstNode' with candidate producer loops until a fixed point // is reached. Fusing two loops may expose new fusion opportunities. bool dstNodeChanged; do { // Gather src loop candidates for 'dstNode' and visit them in "quasi" // reverse program order to minimize the number of iterations needed to // reach the fixed point. Note that this is a best effort approach since // 'getProducerCandidates' does not always guarantee that program order // in 'srcIdCandidates'. dstNodeChanged = false; SmallVector srcIdCandidates; getProducerCandidates(dstId, mdg, srcIdCandidates); for (unsigned srcId : llvm::reverse(srcIdCandidates)) { // Get 'srcNode' from which to attempt fusion into 'dstNode'. auto *srcNode = mdg->getNode(srcId); auto srcAffineForOp = cast(srcNode->op); LLVM_DEBUG(llvm::dbgs() << "Evaluating src loop " << srcId << " for dst loop " << dstId << "\n"); // Skip if 'srcNode' is a loop nest returning values. // TODO: support loop nests that return values. if (isa(srcNode->op) && srcNode->op->getNumResults() > 0) continue; DenseSet producerConsumerMemrefs; gatherProducerConsumerMemrefs(srcId, dstId, mdg, producerConsumerMemrefs); // Skip if 'srcNode' out edge count on any memref is greater than // 'maxSrcUserCount'. if (any_of(producerConsumerMemrefs, [&](Value memref) { return mdg->getOutEdgeCount(srcNode->id, memref) > maxSrcUserCount; })) continue; // Gather memrefs in 'srcNode' that are written and escape out of the // block (e.g., memref block arguments, returned memrefs, // memrefs passed to function calls, etc.). DenseSet srcEscapingMemRefs; gatherEscapingMemrefs(srcNode->id, mdg, srcEscapingMemRefs); // Skip if there are non-affine operations in between the 'srcNode' // and 'dstNode' using their memrefs. If so, we wouldn't be able to // compute a legal insertion point for now. 'srcNode' and 'dstNode' // memrefs with non-affine operation users would be considered // escaping memrefs so we can limit this check to only scenarios with // escaping memrefs. if (!srcEscapingMemRefs.empty() && hasNonAffineUsersOnPath(srcNode->op, dstNode->op)) { LLVM_DEBUG(llvm::dbgs() << "Can't fuse: non-affine users in between the loops\n"); continue; } // Compute an operation list insertion point for the fused loop // nest which preserves dependences. Operation *fusedLoopInsPoint = mdg->getFusedLoopNestInsertionPoint(srcNode->id, dstNode->id); if (fusedLoopInsPoint == nullptr) continue; // It's possible this fusion is at an inner depth (i.e., there are // common surrounding affine loops for the source and destination for // ops). We need to get this number because the call to canFuseLoops // needs to be passed the absolute depth. The max legal depth and the // depths we try below are however *relative* and as such don't include // the common depth. SmallVector surroundingLoops; getAffineForIVs(*dstAffineForOp, &surroundingLoops); unsigned numSurroundingLoops = surroundingLoops.size(); // Compute the innermost common loop depth for dstNode // producer-consumer loads/stores. SmallVector dstMemrefOps; for (Operation *op : dstNode->loads) if (producerConsumerMemrefs.count( cast(op).getMemRef()) > 0) dstMemrefOps.push_back(op); for (Operation *op : dstNode->stores) if (producerConsumerMemrefs.count( cast(op).getMemRef())) dstMemrefOps.push_back(op); unsigned dstLoopDepthTest = getInnermostCommonLoopDepth(dstMemrefOps) - numSurroundingLoops; // Check the feasibility of fusing src loop nest into dst loop nest // at loop depths in range [1, dstLoopDepthTest]. unsigned maxLegalFusionDepth = 0; SmallVector depthSliceUnions; depthSliceUnions.resize(dstLoopDepthTest); FusionStrategy strategy(FusionStrategy::ProducerConsumer); for (unsigned i = 1; i <= dstLoopDepthTest; ++i) { FusionResult result = affine::canFuseLoops(srcAffineForOp, dstAffineForOp, /*dstLoopDepth=*/i + numSurroundingLoops, &depthSliceUnions[i - 1], strategy); if (result.value == FusionResult::Success) maxLegalFusionDepth = i; } if (maxLegalFusionDepth == 0) { LLVM_DEBUG(llvm::dbgs() << "Can't fuse: fusion is not legal at any depth\n"); continue; } // Check if fusion would be profitable. We skip profitability analysis // for maximal fusion since we already know the maximal legal depth to // fuse. unsigned bestDstLoopDepth = maxLegalFusionDepth; if (!maximalFusion) { // Retrieve producer stores from the src loop. SmallVector producerStores; for (Operation *op : srcNode->stores) if (producerConsumerMemrefs.count( cast(op).getMemRef())) producerStores.push_back(op); // TODO: Suppport multiple producer stores in profitability // analysis. We limit profitability analysis to only scenarios with // a single producer store for now. Note that some multi-store // producer scenarios will still go through profitability analysis // if only one of the stores is involved the producer-consumer // relationship of the candidate loops. assert(!producerStores.empty() && "Expected producer store"); if (producerStores.size() > 1) LLVM_DEBUG(llvm::dbgs() << "Skipping profitability analysis. Not " "supported for this case\n"); else if (!isFusionProfitable(producerStores[0], producerStores[0], dstAffineForOp, depthSliceUnions, maxLegalFusionDepth, &bestDstLoopDepth, computeToleranceThreshold)) continue; } assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth"); ComputationSliceState &bestSlice = depthSliceUnions[bestDstLoopDepth - 1]; assert(!bestSlice.isEmpty() && "Missing slice union for depth"); // Determine if 'srcId' can be removed after fusion, taking into // account remaining dependences, escaping memrefs and the fusion // insertion point. bool removeSrcNode = canRemoveSrcNodeAfterFusion( srcId, dstId, bestSlice, fusedLoopInsPoint, srcEscapingMemRefs, mdg); DenseSet privateMemrefs; for (Value memref : producerConsumerMemrefs) { if (canCreatePrivateMemRef(memref, srcEscapingMemRefs, srcId, dstId, removeSrcNode)) { // Create a private version of this memref. LLVM_DEBUG(llvm::dbgs() << "Creating private memref for " << memref << '\n'); // Create a private version of this memref. privateMemrefs.insert(memref); } } // Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'. fuseLoops(srcAffineForOp, dstAffineForOp, bestSlice); dstNodeChanged = true; LLVM_DEBUG(llvm::dbgs() << "Fused src loop " << srcId << " into dst loop " << dstId << " at depth " << bestDstLoopDepth << ":\n" << dstAffineForOp << "\n"); // Move 'dstAffineForOp' before 'insertPointInst' if needed. if (fusedLoopInsPoint != dstAffineForOp) dstAffineForOp->moveBefore(fusedLoopInsPoint); // Update edges between 'srcNode' and 'dstNode'. mdg->updateEdges(srcNode->id, dstNode->id, privateMemrefs, removeSrcNode); // Create private memrefs. if (!privateMemrefs.empty()) { // Gather stores for all the private-to-be memrefs. DenseMap> privateMemRefToStores; dstAffineForOp.walk([&](AffineWriteOpInterface storeOp) { Value storeMemRef = storeOp.getMemRef(); if (privateMemrefs.count(storeMemRef) > 0) privateMemRefToStores[storeMemRef].push_back(storeOp); }); // Replace original memrefs with private memrefs. Note that all the // loads and stores on these memrefs will be replaced with a new // loads and stores. Any reference to the original ones becomes // invalid after this point. for (auto &memrefToStoresPair : privateMemRefToStores) { // TODO: Use union of memref write regions to compute // private memref footprint. SmallVector &storesForMemref = memrefToStoresPair.second; Value newMemRef = createPrivateMemRef( dstAffineForOp, storesForMemref[0], bestDstLoopDepth, fastMemorySpace, localBufSizeThreshold); // Create new node in dependence graph for 'newMemRef' alloc op. unsigned newMemRefNodeId = mdg->addNode(newMemRef.getDefiningOp()); // Add edge from 'newMemRef' node to dstNode. mdg->addEdge(newMemRefNodeId, dstId, newMemRef); } // One or more entries for 'newMemRef' alloc op are inserted into // the DenseMap mdg->nodes. Since an insertion may cause DenseMap to // reallocate, update dstNode. dstNode = mdg->getNode(dstId); } // Collect dst loop stats after memref privatization transformation. LoopNestStateCollector dstLoopCollector; dstLoopCollector.collect(dstAffineForOp); // Clear and add back loads and stores. mdg->clearNodeLoadAndStores(dstNode->id); mdg->addToNode(dstId, dstLoopCollector.loadOpInsts, dstLoopCollector.storeOpInsts); if (removeSrcNode) { LLVM_DEBUG(llvm::dbgs() << "Removing src loop " << srcId << " after fusion\n"); // srcNode is no longer valid after it is removed from mdg. srcAffineForOp.erase(); mdg->removeNode(srcId); srcNode = nullptr; } } } while (dstNodeChanged); } /// Visit each node in the graph, and for each node, attempt to fuse it with /// producer-consumer candidates. No fusion is performed when producers with a /// user count greater than `maxSrcUserCount` for any of the memrefs involved /// are encountered. void fuseProducerConsumerNodes(unsigned maxSrcUserCount) { LLVM_DEBUG(llvm::dbgs() << "--- Producer/Consumer Fusion ---\n"); init(); while (!worklist.empty()) { unsigned dstId = worklist.back(); worklist.pop_back(); performFusionsIntoDest(dstId, maxSrcUserCount); } } // Visits each node in the graph, and for each node, attempts to fuse it with // its sibling nodes (nodes which share a parent, but no dependence edges). void fuseSiblingNodes() { LLVM_DEBUG(llvm::dbgs() << "--- Sibling Fusion ---\n"); init(); while (!worklist.empty()) { unsigned dstId = worklist.back(); worklist.pop_back(); // Skip if this node was removed (fused into another node). if (mdg->nodes.count(dstId) == 0) continue; // Get 'dstNode' into which to attempt fusion. auto *dstNode = mdg->getNode(dstId); // Skip if 'dstNode' is not a loop nest. if (!isa(dstNode->op)) continue; // Attempt to fuse 'dstNode' with its sibling nodes in the graph. fuseWithSiblingNodes(dstNode); } } // Attempt to fuse 'dstNode' with sibling nodes in the graph. void fuseWithSiblingNodes(Node *dstNode) { DenseSet visitedSibNodeIds; std::pair idAndMemref; auto dstAffineForOp = cast(dstNode->op); while (findSiblingNodeToFuse(dstNode, &visitedSibNodeIds, &idAndMemref)) { unsigned sibId = idAndMemref.first; Value memref = idAndMemref.second; // TODO: Check that 'sibStoreOpInst' post-dominates all other // stores to the same memref in 'sibNode' loop nest. auto *sibNode = mdg->getNode(sibId); // Compute an operation list insertion point for the fused loop // nest which preserves dependences. assert(sibNode->op->getBlock() == dstNode->op->getBlock()); Operation *insertPointInst = sibNode->op->isBeforeInBlock(dstNode->op) ? mdg->getFusedLoopNestInsertionPoint(sibNode->id, dstNode->id) : mdg->getFusedLoopNestInsertionPoint(dstNode->id, sibNode->id); if (insertPointInst == nullptr) continue; // Check if fusion would be profitable and at what depth. // Get unique 'sibNode' load op to 'memref'. SmallVector sibLoadOpInsts; sibNode->getLoadOpsForMemref(memref, &sibLoadOpInsts); // Currently findSiblingNodeToFuse searches for siblings with one load. assert(sibLoadOpInsts.size() == 1); Operation *sibLoadOpInst = sibLoadOpInsts[0]; // Gather 'dstNode' load ops to 'memref'. SmallVector dstLoadOpInsts; dstNode->getLoadOpsForMemref(memref, &dstLoadOpInsts); // It's possible this fusion is at an inner depth (i.e., there are common // surrounding affine loops for the source and destination for ops). We // need to get this number because the call to canFuseLoops needs to be // passed the absolute depth. The max legal depth and the depths we try // below are however *relative* and as such don't include the common // depth. SmallVector surroundingLoops; getAffineForIVs(*dstAffineForOp, &surroundingLoops); unsigned numSurroundingLoops = surroundingLoops.size(); SmallVector dstLoopIVs; getAffineForIVs(*dstLoadOpInsts[0], &dstLoopIVs); unsigned dstLoopDepthTest = dstLoopIVs.size() - numSurroundingLoops; auto sibAffineForOp = cast(sibNode->op); // Compute loop depth and slice union for fusion. SmallVector depthSliceUnions; depthSliceUnions.resize(dstLoopDepthTest); unsigned maxLegalFusionDepth = 0; FusionStrategy strategy(memref); for (unsigned i = 1; i <= dstLoopDepthTest; ++i) { FusionResult result = affine::canFuseLoops(sibAffineForOp, dstAffineForOp, /*dstLoopDepth=*/i + numSurroundingLoops, &depthSliceUnions[i - 1], strategy); if (result.value == FusionResult::Success) maxLegalFusionDepth = i; } LLVM_DEBUG(llvm::dbgs() << "Max legal depth for fusion: " << maxLegalFusionDepth << '\n'); // Skip if fusion is not feasible at any loop depths. if (maxLegalFusionDepth == 0) continue; unsigned bestDstLoopDepth = maxLegalFusionDepth; if (!maximalFusion) { // Check if fusion would be profitable. For sibling fusion, the sibling // load op is treated as the src "store" op for fusion profitability // purposes. The footprint of the load in the slice relative to the // unfused source's determines reuse. if (!isFusionProfitable(sibLoadOpInst, sibLoadOpInst, dstAffineForOp, depthSliceUnions, maxLegalFusionDepth, &bestDstLoopDepth, computeToleranceThreshold)) continue; } assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth"); assert(!depthSliceUnions[bestDstLoopDepth - 1].isEmpty() && "Fusion depth has no computed slice union"); // Check if source loop is being inserted in the innermost // destination loop. Based on this, the fused loop may be optimized // further inside `fuseLoops`. bool isInnermostInsertion = (bestDstLoopDepth == dstLoopDepthTest); // Fuse computation slice of 'sibLoopNest' into 'dstLoopNest'. affine::fuseLoops(sibAffineForOp, dstAffineForOp, depthSliceUnions[bestDstLoopDepth - 1], isInnermostInsertion); auto dstForInst = cast(dstNode->op); // Update operation position of fused loop nest (if needed). if (insertPointInst != dstForInst) { dstForInst->moveBefore(insertPointInst); } // Update data dependence graph state post fusion. updateStateAfterSiblingFusion(sibNode, dstNode); } } // Searches block argument uses and the graph from 'dstNode' looking for a // fusion candidate sibling node which shares no dependences with 'dstNode' // but which loads from the same memref. Returns true and sets // 'idAndMemrefToFuse' on success. Returns false otherwise. bool findSiblingNodeToFuse(Node *dstNode, DenseSet *visitedSibNodeIds, std::pair *idAndMemrefToFuse) { // Returns true if 'sibNode' can be fused with 'dstNode' for input reuse // on 'memref'. auto canFuseWithSibNode = [&](Node *sibNode, Value memref) { // Skip if 'outEdge' is not a read-after-write dependence. // TODO: Remove restrict to single load op restriction. if (sibNode->getLoadOpCount(memref) != 1) return false; // Skip if there exists a path of dependent edges between // 'sibNode' and 'dstNode'. if (mdg->hasDependencePath(sibNode->id, dstNode->id) || mdg->hasDependencePath(dstNode->id, sibNode->id)) return false; // Skip sib node if it loads to (and stores from) the same memref on // which it also has an input dependence edge. DenseSet loadAndStoreMemrefSet; sibNode->getLoadAndStoreMemrefSet(&loadAndStoreMemrefSet); if (llvm::any_of(loadAndStoreMemrefSet, [=](Value memref) { return mdg->getIncomingMemRefAccesses(sibNode->id, memref) > 0; })) return false; // Check that all stores are to the same memref if any. DenseSet storeMemrefs; for (auto *storeOpInst : sibNode->stores) { storeMemrefs.insert( cast(storeOpInst).getMemRef()); } if (storeMemrefs.size() > 1) return false; // Skip if a memref value in one node is used by a non-affine memref // access that lies between 'dstNode' and 'sibNode'. if (hasNonAffineUsersOnPath(dstNode->op, sibNode->op) || hasNonAffineUsersOnPath(sibNode->op, dstNode->op)) return false; return true; }; // Search for siblings which load the same memref block argument. Block *block = dstNode->op->getBlock(); for (unsigned i = 0, e = block->getNumArguments(); i != e; ++i) { for (Operation *user : block->getArgument(i).getUsers()) { auto loadOp = dyn_cast(user); if (!loadOp) continue; // Gather loops surrounding 'use'. SmallVector loops; getAffineForIVs(*user, &loops); // Skip 'use' if it is not within a loop nest. // Find the surrounding affine.for nested immediately within the // block. auto *it = llvm::find_if(loops, [&](AffineForOp loop) { return loop->getBlock() == &mdg->block; }); // Skip 'use' if it is not within a loop nest in `block`. if (it == loops.end()) continue; Node *sibNode = mdg->getForOpNode(*it); assert(sibNode != nullptr); // Skip 'use' if it not a sibling to 'dstNode'. if (sibNode->id == dstNode->id) continue; // Skip 'use' if it has been visited. if (visitedSibNodeIds->count(sibNode->id) > 0) continue; // Skip 'use' if it does not load from the same memref as 'dstNode'. auto memref = loadOp.getMemRef(); if (dstNode->getLoadOpCount(memref) == 0) continue; // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'. if (canFuseWithSibNode(sibNode, memref)) { visitedSibNodeIds->insert(sibNode->id); idAndMemrefToFuse->first = sibNode->id; idAndMemrefToFuse->second = memref; return true; } } } // Search for siblings by following edges through an intermediate src node. // Collect candidate 'dstNode' input edges in 'inEdges'. SmallVector inEdges; mdg->forEachMemRefInputEdge( dstNode->id, [&](MemRefDependenceGraph::Edge inEdge) { // Add 'inEdge' if it is a read-after-write dependence. if (dstNode->getLoadOpCount(inEdge.value) > 0 && mdg->getNode(inEdge.id)->getStoreOpCount(inEdge.value) > 0) inEdges.push_back(inEdge); }); // Search for sibling nodes to fuse by visiting output edges from each input // edge in 'inEdges'. for (auto &inEdge : inEdges) { // Collect candidate output edges from each node 'inEdge.id' in 'inEdges'. SmallVector outEdges; mdg->forEachMemRefOutputEdge( inEdge.id, [&](MemRefDependenceGraph::Edge outEdge) { unsigned sibNodeId = outEdge.id; if (visitedSibNodeIds->count(sibNodeId) > 0) return; // Skip output edge if not a sibling using the same memref. if (outEdge.id == dstNode->id || outEdge.value != inEdge.value) return; auto *sibNode = mdg->getNode(sibNodeId); if (!isa(sibNode->op)) return; // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'. if (canFuseWithSibNode(sibNode, outEdge.value)) { // Add candidate 'outEdge' to sibling node. outEdges.push_back(outEdge); } }); // Add first candidate if any were returned. if (!outEdges.empty()) { visitedSibNodeIds->insert(outEdges[0].id); idAndMemrefToFuse->first = outEdges[0].id; idAndMemrefToFuse->second = outEdges[0].value; return true; } } return false; } /// Update data dependence graph state to reflect sibling fusion of 'sibNode' /// into 'dstNode'. void updateStateAfterSiblingFusion(Node *sibNode, Node *dstNode) { // Update 'sibNode' and 'dstNode' input/output edges to reflect fusion. mdg->updateEdges(sibNode->id, dstNode->id); // Collect dst loop stats after memref privatization transformation. auto dstForInst = cast(dstNode->op); LoopNestStateCollector dstLoopCollector; dstLoopCollector.collect(dstForInst); // Clear and add back loads and stores mdg->clearNodeLoadAndStores(dstNode->id); mdg->addToNode(dstNode->id, dstLoopCollector.loadOpInsts, dstLoopCollector.storeOpInsts); // Remove old sibling loop nest if it no longer has outgoing dependence // edges, and it does not write to a memref which escapes the block. if (mdg->getOutEdgeCount(sibNode->id) == 0) { Operation *op = sibNode->op; mdg->removeNode(sibNode->id); op->erase(); } } // Clean up any allocs with no users. void eraseUnusedMemRefAllocations() { for (auto &pair : mdg->memrefEdgeCount) { if (pair.second > 0) continue; auto memref = pair.first; // Skip if there exist other uses (return operation or function calls). if (!memref.use_empty()) continue; // Use list expected to match the dep graph info. auto *op = memref.getDefiningOp(); if (isa_and_nonnull(op)) op->erase(); } } }; } // namespace /// Run fusion on `block`. void LoopFusion::runOnBlock(Block *block) { MemRefDependenceGraph g(*block); if (!g.init()) { LLVM_DEBUG(llvm::dbgs() << "MDG init failed\n"); return; } std::optional fastMemorySpaceOpt; if (fastMemorySpace.hasValue()) fastMemorySpaceOpt = fastMemorySpace; unsigned localBufSizeThresholdBytes = localBufSizeThreshold * 1024; GreedyFusion fusion(&g, localBufSizeThresholdBytes, fastMemorySpaceOpt, maximalFusion, computeToleranceThreshold); if (affineFusionMode == FusionMode::ProducerConsumer) fusion.runProducerConsumerFusionOnly(); else if (affineFusionMode == FusionMode::Sibling) fusion.runSiblingFusionOnly(); else fusion.runGreedyFusion(); } void LoopFusion::runOnOperation() { // Call fusion on every op that has at least two affine.for nests (in post // order). getOperation()->walk([&](Operation *op) { for (Region ®ion : op->getRegions()) { for (Block &block : region.getBlocks()) { auto affineFors = block.getOps(); if (!affineFors.empty() && !llvm::hasSingleElement(affineFors)) runOnBlock(&block); } } }); } std::unique_ptr mlir::affine::createLoopFusionPass( unsigned fastMemorySpace, uint64_t localBufSizeThreshold, bool maximalFusion, enum FusionMode affineFusionMode) { return std::make_unique(fastMemorySpace, localBufSizeThreshold, maximalFusion, affineFusionMode); }