//===---------- llvm/unittest/Support/Casting.cpp - Casting tests ---------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/Support/Casting.h" #include "llvm/IR/User.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "gtest/gtest.h" #include namespace llvm { // Used to test illegal cast. If a cast doesn't match any of the "real" ones, // it will match this one. struct IllegalCast; template IllegalCast *cast(...) { return nullptr; } // set up two example classes // with conversion facility // struct bar { bar() {} struct foo *baz(); struct foo *caz(); struct foo *daz(); struct foo *naz(); private: bar(const bar &); }; struct foo { foo(const bar &) {} void ext() const; }; struct base { virtual ~base() {} }; struct derived : public base { static bool classof(const base *B) { return true; } }; struct derived_nocast : public base { static bool classof(const base *B) { return false; } }; template <> struct isa_impl { static inline bool doit(const bar &Val) { dbgs() << "Classof: " << &Val << "\n"; return true; } }; // Note for the future - please don't do this. isa_impl is an internal template // for the implementation of `isa` and should not be exposed this way. // Completely unrelated types *should* result in compiler errors if you try to // cast between them. template struct isa_impl { static inline bool doit(const T &Val) { return false; } }; foo *bar::baz() { return cast(this); } foo *bar::caz() { return cast_or_null(this); } foo *bar::daz() { return dyn_cast(this); } foo *bar::naz() { return dyn_cast_or_null(this); } bar *fub(); template <> struct simplify_type { typedef int SimpleType; static SimpleType getSimplifiedValue(foo &Val) { return 0; } }; struct T1 {}; struct T2 { T2(const T1 &x) {} static bool classof(const T1 *x) { return true; } }; template <> struct CastInfo : public OptionalValueCast {}; struct T3 { T3(const T1 *x) : hasValue(x != nullptr) {} static bool classof(const T1 *x) { return true; } bool hasValue = false; }; // T3 is convertible from a pointer to T1. template <> struct CastInfo : public ValueFromPointerCast {}; struct T4 { T4() : hasValue(false) {} T4(const T3 &x) : hasValue(true) {} static bool classof(const T3 *x) { return true; } bool hasValue = false; }; template <> struct ValueIsPresent { using UnwrappedType = T3; static inline bool isPresent(const T3 &t) { return t.hasValue; } static inline const T3 &unwrapValue(const T3 &t) { return t; } }; template <> struct CastInfo { using CastResultType = T4; static inline CastResultType doCast(const T3 &t) { return T4(t); } static inline CastResultType castFailed() { return CastResultType(); } static inline CastResultType doCastIfPossible(const T3 &f) { return doCast(f); } }; } // namespace llvm using namespace llvm; // Test the peculiar behavior of Use in simplify_type. static_assert(std::is_same_v::SimpleType, Value *>, "Use doesn't simplify correctly!"); static_assert(std::is_same_v::SimpleType, Value *>, "Use doesn't simplify correctly!"); // Test that a regular class behaves as expected. static_assert(std::is_same_v::SimpleType, int>, "Unexpected simplify_type result!"); static_assert(std::is_same_v::SimpleType, foo *>, "Unexpected simplify_type result!"); namespace { const foo *null_foo = nullptr; bar B; extern bar &B1; bar &B1 = B; extern const bar *B2; // test various configurations of const const bar &B3 = B1; const bar *const B4 = B2; TEST(CastingTest, isa) { EXPECT_TRUE(isa(B1)); EXPECT_TRUE(isa(B2)); EXPECT_TRUE(isa(B3)); EXPECT_TRUE(isa(B4)); } TEST(CastingTest, isa_and_nonnull) { EXPECT_TRUE(isa_and_nonnull(B2)); EXPECT_TRUE(isa_and_nonnull(B4)); EXPECT_FALSE(isa_and_nonnull(fub())); } TEST(CastingTest, cast) { foo &F1 = cast(B1); EXPECT_NE(&F1, null_foo); const foo *F3 = cast(B2); EXPECT_NE(F3, null_foo); const foo *F4 = cast(B2); EXPECT_NE(F4, null_foo); const foo &F5 = cast(B3); EXPECT_NE(&F5, null_foo); const foo *F6 = cast(B4); EXPECT_NE(F6, null_foo); // Can't pass null pointer to cast<>. // foo *F7 = cast(fub()); // EXPECT_EQ(F7, null_foo); foo *F8 = B1.baz(); EXPECT_NE(F8, null_foo); std::unique_ptr BP(B2); auto FP = cast(std::move(BP)); static_assert(std::is_same_v, decltype(FP)>, "Incorrect deduced return type!"); EXPECT_NE(FP.get(), null_foo); FP.release(); } TEST(CastingTest, cast_or_null) { const foo *F11 = cast_or_null(B2); EXPECT_NE(F11, null_foo); const foo *F12 = cast_or_null(B2); EXPECT_NE(F12, null_foo); const foo *F13 = cast_or_null(B4); EXPECT_NE(F13, null_foo); const foo *F14 = cast_or_null(fub()); // Shouldn't print. EXPECT_EQ(F14, null_foo); foo *F15 = B1.caz(); EXPECT_NE(F15, null_foo); std::unique_ptr BP(fub()); auto FP = cast_or_null(std::move(BP)); EXPECT_EQ(FP.get(), null_foo); } TEST(CastingTest, dyn_cast) { const foo *F1 = dyn_cast(B2); EXPECT_NE(F1, null_foo); const foo *F2 = dyn_cast(B2); EXPECT_NE(F2, null_foo); const foo *F3 = dyn_cast(B4); EXPECT_NE(F3, null_foo); // Can't pass null pointer to dyn_cast<>. // foo *F4 = dyn_cast(fub()); // EXPECT_EQ(F4, null_foo); foo *F5 = B1.daz(); EXPECT_NE(F5, null_foo); auto BP = std::make_unique(); auto FP = dyn_cast(BP); static_assert(std::is_same_v, decltype(FP)>, "Incorrect deduced return type!"); EXPECT_NE(FP.get(), nullptr); EXPECT_EQ(BP.get(), nullptr); auto BP2 = std::make_unique(); auto DP = dyn_cast(BP2); EXPECT_EQ(DP.get(), nullptr); EXPECT_NE(BP2.get(), nullptr); } // All these tests forward to dyn_cast_if_present, so they also provde an // effective test for its use cases. TEST(CastingTest, dyn_cast_or_null) { const foo *F1 = dyn_cast_or_null(B2); EXPECT_NE(F1, null_foo); const foo *F2 = dyn_cast_or_null(B2); EXPECT_NE(F2, null_foo); const foo *F3 = dyn_cast_or_null(B4); EXPECT_NE(F3, null_foo); foo *F4 = dyn_cast_or_null(fub()); EXPECT_EQ(F4, null_foo); foo *F5 = B1.naz(); EXPECT_NE(F5, null_foo); // dyn_cast_if_present should have exactly the same behavior as // dyn_cast_or_null. const foo *F6 = dyn_cast_if_present(B2); EXPECT_EQ(F6, F2); } TEST(CastingTest, dyn_cast_value_types) { T1 t1; std::optional t2 = dyn_cast(t1); EXPECT_TRUE(t2); T2 *t2ptr = dyn_cast(&t1); EXPECT_TRUE(t2ptr != nullptr); T3 t3 = dyn_cast(&t1); EXPECT_TRUE(t3.hasValue); } TEST(CastingTest, dyn_cast_if_present) { std::optional empty{}; std::optional F1 = dyn_cast_if_present(empty); EXPECT_FALSE(F1.has_value()); T1 t1; std::optional F2 = dyn_cast_if_present(t1); EXPECT_TRUE(F2.has_value()); T1 *t1Null = nullptr; // T3 should have hasValue == false because t1Null is nullptr. T3 t3 = dyn_cast_if_present(t1Null); EXPECT_FALSE(t3.hasValue); // Now because of that, T4 should receive the castFailed implementation of its // FallibleCastTraits, which default-constructs a T4, which has no value. T4 t4 = dyn_cast_if_present(t3); EXPECT_FALSE(t4.hasValue); } TEST(CastingTest, isa_check_predicates) { auto IsaFoo = IsaPred; EXPECT_TRUE(IsaFoo(B1)); EXPECT_TRUE(IsaFoo(B2)); EXPECT_TRUE(IsaFoo(B3)); EXPECT_TRUE(IsaPred(B4)); EXPECT_TRUE((IsaPred(B4))); auto IsaAndPresentFoo = IsaAndPresentPred; EXPECT_TRUE(IsaAndPresentFoo(B2)); EXPECT_TRUE(IsaAndPresentFoo(B4)); EXPECT_FALSE(IsaAndPresentPred(fub())); EXPECT_FALSE((IsaAndPresentPred(fub()))); } std::unique_ptr newd() { return std::make_unique(); } std::unique_ptr newb() { return std::make_unique(); } TEST(CastingTest, unique_dyn_cast) { derived *OrigD = nullptr; auto D = std::make_unique(); OrigD = D.get(); // Converting from D to itself is valid, it should return a new unique_ptr // and the old one should become nullptr. auto NewD = unique_dyn_cast(D); ASSERT_EQ(OrigD, NewD.get()); ASSERT_EQ(nullptr, D); // Converting from D to B is valid, B should have a value and D should be // nullptr. auto B = unique_dyn_cast(NewD); ASSERT_EQ(OrigD, B.get()); ASSERT_EQ(nullptr, NewD); // Converting from B to itself is valid, it should return a new unique_ptr // and the old one should become nullptr. auto NewB = unique_dyn_cast(B); ASSERT_EQ(OrigD, NewB.get()); ASSERT_EQ(nullptr, B); // Converting from B to D is valid, D should have a value and B should be // nullptr; D = unique_dyn_cast(NewB); ASSERT_EQ(OrigD, D.get()); ASSERT_EQ(nullptr, NewB); // This is a very contrived test, casting between completely unrelated types // should generally fail to compile. See the classof shenanigans we have in // the definition of `foo` above. auto F = unique_dyn_cast(D); ASSERT_EQ(nullptr, F); ASSERT_EQ(OrigD, D.get()); // All of the above should also hold for temporaries. auto D2 = unique_dyn_cast(newd()); EXPECT_NE(nullptr, D2); auto B2 = unique_dyn_cast(newb()); EXPECT_NE(nullptr, B2); auto B3 = unique_dyn_cast(newb()); EXPECT_NE(nullptr, B3); // This is a very contrived test, casting between completely unrelated types // should generally fail to compile. See the classof shenanigans we have in // the definition of `foo` above. auto F2 = unique_dyn_cast(newb()); EXPECT_EQ(nullptr, F2); } // These lines are errors... // foo *F20 = cast(B2); // Yields const foo* // foo &F21 = cast(B3); // Yields const foo& // foo *F22 = cast(B4); // Yields const foo* // foo &F23 = cast_or_null(B1); // const foo &F24 = cast_or_null(B3); const bar *B2 = &B; } // anonymous namespace bar *llvm::fub() { return nullptr; } namespace { namespace inferred_upcasting { // This test case verifies correct behavior of inferred upcasts when the // types are statically known to be OK to upcast. This is the case when, // for example, Derived inherits from Base, and we do `isa(Derived)`. // Note: This test will actually fail to compile without inferred // upcasting. class Base { public: // No classof. We are testing that the upcast is inferred. Base() {} }; class Derived : public Base { public: Derived() {} }; // Even with no explicit classof() in Base, we should still be able to cast // Derived to its base class. TEST(CastingTest, UpcastIsInferred) { Derived D; EXPECT_TRUE(isa(D)); Base *BP = dyn_cast(&D); EXPECT_NE(BP, nullptr); } // This test verifies that the inferred upcast takes precedence over an // explicitly written one. This is important because it verifies that the // dynamic check gets optimized away. class UseInferredUpcast { public: int Dummy; static bool classof(const UseInferredUpcast *) { return false; } }; TEST(CastingTest, InferredUpcastTakesPrecedence) { UseInferredUpcast UIU; // Since the explicit classof() returns false, this will fail if the // explicit one is used. EXPECT_TRUE(isa(&UIU)); } } // end namespace inferred_upcasting } // end anonymous namespace namespace { namespace pointer_wrappers { struct Base { bool IsDerived; Base(bool IsDerived = false) : IsDerived(IsDerived) {} }; struct Derived : Base { Derived() : Base(true) {} static bool classof(const Base *B) { return B->IsDerived; } }; class PTy { Base *B; public: PTy(Base *B) : B(B) {} explicit operator bool() const { return get(); } Base *get() const { return B; } }; } // end namespace pointer_wrappers } // end namespace namespace llvm { template <> struct ValueIsPresent { using UnwrappedType = pointer_wrappers::PTy; static inline bool isPresent(const pointer_wrappers::PTy &P) { return P.get() != nullptr; } static UnwrappedType &unwrapValue(pointer_wrappers::PTy &P) { return P; } }; template <> struct ValueIsPresent { using UnwrappedType = pointer_wrappers::PTy; static inline bool isPresent(const pointer_wrappers::PTy &P) { return P.get() != nullptr; } static UnwrappedType &unwrapValue(const pointer_wrappers::PTy &P) { return const_cast(P); } }; template <> struct simplify_type { typedef pointer_wrappers::Base *SimpleType; static SimpleType getSimplifiedValue(pointer_wrappers::PTy &P) { return P.get(); } }; template <> struct simplify_type { typedef pointer_wrappers::Base *SimpleType; static SimpleType getSimplifiedValue(const pointer_wrappers::PTy &P) { return P.get(); } }; } // end namespace llvm namespace { namespace pointer_wrappers { // Some objects. pointer_wrappers::Base B; pointer_wrappers::Derived D; // Mutable "smart" pointers. pointer_wrappers::PTy MN(nullptr); pointer_wrappers::PTy MB(&B); pointer_wrappers::PTy MD(&D); // Const "smart" pointers. const pointer_wrappers::PTy CN(nullptr); const pointer_wrappers::PTy CB(&B); const pointer_wrappers::PTy CD(&D); TEST(CastingTest, smart_isa) { EXPECT_TRUE(!isa(MB)); EXPECT_TRUE(!isa(CB)); EXPECT_TRUE(isa(MD)); EXPECT_TRUE(isa(CD)); } TEST(CastingTest, smart_cast) { EXPECT_EQ(cast(MD), &D); EXPECT_EQ(cast(CD), &D); } TEST(CastingTest, smart_cast_or_null) { EXPECT_EQ(cast_or_null(MN), nullptr); EXPECT_EQ(cast_or_null(CN), nullptr); EXPECT_EQ(cast_or_null(MD), &D); EXPECT_EQ(cast_or_null(CD), &D); } TEST(CastingTest, smart_dyn_cast) { EXPECT_EQ(dyn_cast(MB), nullptr); EXPECT_EQ(dyn_cast(CB), nullptr); EXPECT_EQ(dyn_cast(MD), &D); EXPECT_EQ(dyn_cast(CD), &D); } TEST(CastingTest, smart_dyn_cast_or_null) { EXPECT_EQ(dyn_cast_or_null(MN), nullptr); EXPECT_EQ(dyn_cast_or_null(CN), nullptr); EXPECT_EQ(dyn_cast_or_null(MB), nullptr); EXPECT_EQ(dyn_cast_or_null(CB), nullptr); EXPECT_EQ(dyn_cast_or_null(MD), &D); EXPECT_EQ(dyn_cast_or_null(CD), &D); } } // end namespace pointer_wrappers #ifndef NDEBUG namespace assertion_checks { struct Base { virtual ~Base() {} }; struct Derived : public Base { static bool classof(const Base *B) { return false; } }; TEST(CastingTest, assertion_check_const_ref) { const Base B; EXPECT_DEATH((void)cast(B), "argument of incompatible type") << "Invalid cast of const ref did not cause an abort()"; } TEST(CastingTest, assertion_check_ref) { Base B; EXPECT_DEATH((void)cast(B), "argument of incompatible type") << "Invalid cast of const ref did not cause an abort()"; } TEST(CastingTest, assertion_check_ptr) { Base B; EXPECT_DEATH((void)cast(&B), "argument of incompatible type") << "Invalid cast of const ref did not cause an abort()"; } TEST(CastingTest, assertion_check_unique_ptr) { auto B = std::make_unique(); EXPECT_DEATH((void)cast(std::move(B)), "argument of incompatible type") << "Invalid cast of const ref did not cause an abort()"; } } // end namespace assertion_checks #endif } // end namespace