//===- llvm/unittest/IR/IRBuilderTest.cpp - IRBuilder tests ---------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/Analysis/InstSimplifyFolder.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/IntrinsicsAArch64.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Module.h" #include "llvm/IR/NoFolder.h" #include "llvm/IR/Verifier.h" #include "gmock/gmock.h" #include "gtest/gtest.h" #include using namespace llvm; using ::testing::UnorderedElementsAre; namespace { class IRBuilderTest : public testing::Test { protected: void SetUp() override { M.reset(new Module("MyModule", Ctx)); FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), /*isVarArg=*/false); F = Function::Create(FTy, Function::ExternalLinkage, "", M.get()); BB = BasicBlock::Create(Ctx, "", F); GV = new GlobalVariable(*M, Type::getFloatTy(Ctx), true, GlobalValue::ExternalLinkage, nullptr); } void TearDown() override { BB = nullptr; M.reset(); } LLVMContext Ctx; std::unique_ptr M; Function *F; BasicBlock *BB; GlobalVariable *GV; }; TEST_F(IRBuilderTest, Intrinsics) { IRBuilder<> Builder(BB); Value *V; Instruction *I; Value *Result; IntrinsicInst *II; V = Builder.CreateLoad(GV->getValueType(), GV); I = cast(Builder.CreateFAdd(V, V)); I->setHasNoInfs(true); I->setHasNoNaNs(false); Result = Builder.CreateMinNum(V, V); II = cast(Result); EXPECT_EQ(II->getIntrinsicID(), Intrinsic::minnum); Result = Builder.CreateMaxNum(V, V); II = cast(Result); EXPECT_EQ(II->getIntrinsicID(), Intrinsic::maxnum); Result = Builder.CreateMinimum(V, V); II = cast(Result); EXPECT_EQ(II->getIntrinsicID(), Intrinsic::minimum); Result = Builder.CreateMaximum(V, V); II = cast(Result); EXPECT_EQ(II->getIntrinsicID(), Intrinsic::maximum); Result = Builder.CreateIntrinsic(Intrinsic::readcyclecounter, {}, {}); II = cast(Result); EXPECT_EQ(II->getIntrinsicID(), Intrinsic::readcyclecounter); Result = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, V); II = cast(Result); EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fabs); EXPECT_FALSE(II->hasNoInfs()); EXPECT_FALSE(II->hasNoNaNs()); Result = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, V, I); II = cast(Result); EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fabs); EXPECT_TRUE(II->hasNoInfs()); EXPECT_FALSE(II->hasNoNaNs()); Result = Builder.CreateBinaryIntrinsic(Intrinsic::pow, V, V); II = cast(Result); EXPECT_EQ(II->getIntrinsicID(), Intrinsic::pow); EXPECT_FALSE(II->hasNoInfs()); EXPECT_FALSE(II->hasNoNaNs()); Result = Builder.CreateBinaryIntrinsic(Intrinsic::pow, V, V, I); II = cast(Result); EXPECT_EQ(II->getIntrinsicID(), Intrinsic::pow); EXPECT_TRUE(II->hasNoInfs()); EXPECT_FALSE(II->hasNoNaNs()); Result = Builder.CreateIntrinsic(Intrinsic::fma, {V->getType()}, {V, V, V}); II = cast(Result); EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fma); EXPECT_FALSE(II->hasNoInfs()); EXPECT_FALSE(II->hasNoNaNs()); Result = Builder.CreateIntrinsic(Intrinsic::fma, {V->getType()}, {V, V, V}, I); II = cast(Result); EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fma); EXPECT_TRUE(II->hasNoInfs()); EXPECT_FALSE(II->hasNoNaNs()); Result = Builder.CreateIntrinsic(Intrinsic::fma, {V->getType()}, {V, V, V}, I); II = cast(Result); EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fma); EXPECT_TRUE(II->hasNoInfs()); EXPECT_FALSE(II->hasNoNaNs()); Result = Builder.CreateUnaryIntrinsic(Intrinsic::roundeven, V); II = cast(Result); EXPECT_EQ(II->getIntrinsicID(), Intrinsic::roundeven); EXPECT_FALSE(II->hasNoInfs()); EXPECT_FALSE(II->hasNoNaNs()); Result = Builder.CreateIntrinsic( Intrinsic::set_rounding, {}, {Builder.getInt32(static_cast(RoundingMode::TowardZero))}); II = cast(Result); EXPECT_EQ(II->getIntrinsicID(), Intrinsic::set_rounding); } TEST_F(IRBuilderTest, IntrinsicMangling) { IRBuilder<> Builder(BB); Type *VoidTy = Builder.getVoidTy(); Type *Int64Ty = Builder.getInt64Ty(); Value *Int64Val = Builder.getInt64(0); Value *DoubleVal = PoisonValue::get(Builder.getDoubleTy()); CallInst *Call; // Mangled return type, no arguments. Call = Builder.CreateIntrinsic(Int64Ty, Intrinsic::coro_size, {}); EXPECT_EQ(Call->getCalledFunction()->getName(), "llvm.coro.size.i64"); // Void return type, mangled argument type. Call = Builder.CreateIntrinsic(VoidTy, Intrinsic::set_loop_iterations, Int64Val); EXPECT_EQ(Call->getCalledFunction()->getName(), "llvm.set.loop.iterations.i64"); // Mangled return type and argument type. Call = Builder.CreateIntrinsic(Int64Ty, Intrinsic::lround, DoubleVal); EXPECT_EQ(Call->getCalledFunction()->getName(), "llvm.lround.i64.f64"); } TEST_F(IRBuilderTest, IntrinsicsWithScalableVectors) { IRBuilder<> Builder(BB); CallInst *Call; FunctionType *FTy; // Test scalable flag isn't dropped for intrinsic that is explicitly defined // with scalable vectors, e.g. LLVMType. Type *SrcVecTy = VectorType::get(Builder.getHalfTy(), 8, true); Type *DstVecTy = VectorType::get(Builder.getInt32Ty(), 4, true); Type *PredTy = VectorType::get(Builder.getInt1Ty(), 4, true); SmallVector ArgTys; ArgTys.push_back(UndefValue::get(DstVecTy)); ArgTys.push_back(UndefValue::get(PredTy)); ArgTys.push_back(UndefValue::get(SrcVecTy)); Call = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_fcvtzs_i32f16, {}, ArgTys, nullptr, "aarch64.sve.fcvtzs.i32f16"); FTy = Call->getFunctionType(); EXPECT_EQ(FTy->getReturnType(), DstVecTy); for (unsigned i = 0; i != ArgTys.size(); ++i) EXPECT_EQ(FTy->getParamType(i), ArgTys[i]->getType()); // Test scalable flag isn't dropped for intrinsic defined with // LLVMScalarOrSameVectorWidth. Type *VecTy = VectorType::get(Builder.getInt32Ty(), 4, true); Type *PtrToVecTy = Builder.getPtrTy(); PredTy = VectorType::get(Builder.getInt1Ty(), 4, true); ArgTys.clear(); ArgTys.push_back(UndefValue::get(PtrToVecTy)); ArgTys.push_back(UndefValue::get(Builder.getInt32Ty())); ArgTys.push_back(UndefValue::get(PredTy)); ArgTys.push_back(UndefValue::get(VecTy)); Call = Builder.CreateIntrinsic(Intrinsic::masked_load, {VecTy, PtrToVecTy}, ArgTys, nullptr, "masked.load"); FTy = Call->getFunctionType(); EXPECT_EQ(FTy->getReturnType(), VecTy); for (unsigned i = 0; i != ArgTys.size(); ++i) EXPECT_EQ(FTy->getParamType(i), ArgTys[i]->getType()); } TEST_F(IRBuilderTest, CreateVScale) { IRBuilder<> Builder(BB); Constant *Zero = Builder.getInt32(0); Value *VScale = Builder.CreateVScale(Zero); EXPECT_TRUE(isa(VScale) && cast(VScale)->isZero()); } TEST_F(IRBuilderTest, CreateStepVector) { IRBuilder<> Builder(BB); // Fixed width vectors Type *DstVecTy = VectorType::get(Builder.getInt32Ty(), 4, false); Value *StepVec = Builder.CreateStepVector(DstVecTy); EXPECT_TRUE(isa(StepVec)); EXPECT_EQ(StepVec->getType(), DstVecTy); const auto *VectorValue = cast(StepVec); for (unsigned i = 0; i < 4; i++) { EXPECT_TRUE(isa(VectorValue->getAggregateElement(i))); ConstantInt *El = cast(VectorValue->getAggregateElement(i)); EXPECT_EQ(El->getValue(), i); } // Scalable vectors DstVecTy = VectorType::get(Builder.getInt32Ty(), 4, true); StepVec = Builder.CreateStepVector(DstVecTy); EXPECT_TRUE(isa(StepVec)); CallInst *Call = cast(StepVec); FunctionType *FTy = Call->getFunctionType(); EXPECT_EQ(FTy->getReturnType(), DstVecTy); EXPECT_EQ(Call->getIntrinsicID(), Intrinsic::stepvector); } TEST_F(IRBuilderTest, CreateStepVectorI3) { IRBuilder<> Builder(BB); // Scalable vectors Type *DstVecTy = VectorType::get(IntegerType::get(Ctx, 3), 2, true); Type *VecI8Ty = VectorType::get(Builder.getInt8Ty(), 2, true); Value *StepVec = Builder.CreateStepVector(DstVecTy); EXPECT_TRUE(isa(StepVec)); TruncInst *Trunc = cast(StepVec); EXPECT_EQ(Trunc->getDestTy(), DstVecTy); EXPECT_EQ(Trunc->getSrcTy(), VecI8Ty); EXPECT_TRUE(isa(Trunc->getOperand(0))); CallInst *Call = cast(Trunc->getOperand(0)); FunctionType *FTy = Call->getFunctionType(); EXPECT_EQ(FTy->getReturnType(), VecI8Ty); EXPECT_EQ(Call->getIntrinsicID(), Intrinsic::stepvector); } TEST_F(IRBuilderTest, ConstrainedFP) { IRBuilder<> Builder(BB); Value *V; Value *VDouble; Value *VInt; CallInst *Call; IntrinsicInst *II; GlobalVariable *GVDouble = new GlobalVariable(*M, Type::getDoubleTy(Ctx), true, GlobalValue::ExternalLinkage, nullptr); V = Builder.CreateLoad(GV->getValueType(), GV); VDouble = Builder.CreateLoad(GVDouble->getValueType(), GVDouble); // See if we get constrained intrinsics instead of non-constrained // instructions. Builder.setIsFPConstrained(true); auto Parent = BB->getParent(); Parent->addFnAttr(Attribute::StrictFP); V = Builder.CreateFAdd(V, V); ASSERT_TRUE(isa(V)); II = cast(V); EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fadd); V = Builder.CreateFSub(V, V); ASSERT_TRUE(isa(V)); II = cast(V); EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fsub); V = Builder.CreateFMul(V, V); ASSERT_TRUE(isa(V)); II = cast(V); EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fmul); V = Builder.CreateFDiv(V, V); ASSERT_TRUE(isa(V)); II = cast(V); EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fdiv); V = Builder.CreateFRem(V, V); ASSERT_TRUE(isa(V)); II = cast(V); EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_frem); VInt = Builder.CreateFPToUI(VDouble, Builder.getInt32Ty()); ASSERT_TRUE(isa(VInt)); II = cast(VInt); EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fptoui); VInt = Builder.CreateFPToSI(VDouble, Builder.getInt32Ty()); ASSERT_TRUE(isa(VInt)); II = cast(VInt); EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fptosi); VDouble = Builder.CreateUIToFP(VInt, Builder.getDoubleTy()); ASSERT_TRUE(isa(VDouble)); II = cast(VDouble); EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_uitofp); VDouble = Builder.CreateSIToFP(VInt, Builder.getDoubleTy()); ASSERT_TRUE(isa(VDouble)); II = cast(VDouble); EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_sitofp); V = Builder.CreateFPTrunc(VDouble, Type::getFloatTy(Ctx)); ASSERT_TRUE(isa(V)); II = cast(V); EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fptrunc); VDouble = Builder.CreateFPExt(V, Type::getDoubleTy(Ctx)); ASSERT_TRUE(isa(VDouble)); II = cast(VDouble); EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fpext); // Verify attributes on the call are created automatically. AttributeSet CallAttrs = II->getAttributes().getFnAttrs(); EXPECT_EQ(CallAttrs.hasAttribute(Attribute::StrictFP), true); // Verify attributes on the containing function are created when requested. Builder.setConstrainedFPFunctionAttr(); AttributeList Attrs = BB->getParent()->getAttributes(); AttributeSet FnAttrs = Attrs.getFnAttrs(); EXPECT_EQ(FnAttrs.hasAttribute(Attribute::StrictFP), true); // Verify the codepaths for setting and overriding the default metadata. V = Builder.CreateFAdd(V, V); ASSERT_TRUE(isa(V)); auto *CII = cast(V); EXPECT_EQ(fp::ebStrict, CII->getExceptionBehavior()); EXPECT_EQ(RoundingMode::Dynamic, CII->getRoundingMode()); Builder.setDefaultConstrainedExcept(fp::ebIgnore); Builder.setDefaultConstrainedRounding(RoundingMode::TowardPositive); V = Builder.CreateFAdd(V, V); CII = cast(V); EXPECT_EQ(fp::ebIgnore, CII->getExceptionBehavior()); EXPECT_EQ(CII->getRoundingMode(), RoundingMode::TowardPositive); Builder.setDefaultConstrainedExcept(fp::ebIgnore); Builder.setDefaultConstrainedRounding(RoundingMode::NearestTiesToEven); V = Builder.CreateFAdd(V, V); CII = cast(V); EXPECT_EQ(fp::ebIgnore, CII->getExceptionBehavior()); EXPECT_EQ(RoundingMode::NearestTiesToEven, CII->getRoundingMode()); Builder.setDefaultConstrainedExcept(fp::ebMayTrap); Builder.setDefaultConstrainedRounding(RoundingMode::TowardNegative); V = Builder.CreateFAdd(V, V); CII = cast(V); EXPECT_EQ(fp::ebMayTrap, CII->getExceptionBehavior()); EXPECT_EQ(RoundingMode::TowardNegative, CII->getRoundingMode()); Builder.setDefaultConstrainedExcept(fp::ebStrict); Builder.setDefaultConstrainedRounding(RoundingMode::TowardZero); V = Builder.CreateFAdd(V, V); CII = cast(V); EXPECT_EQ(fp::ebStrict, CII->getExceptionBehavior()); EXPECT_EQ(RoundingMode::TowardZero, CII->getRoundingMode()); Builder.setDefaultConstrainedExcept(fp::ebIgnore); Builder.setDefaultConstrainedRounding(RoundingMode::Dynamic); V = Builder.CreateFAdd(V, V); CII = cast(V); EXPECT_EQ(fp::ebIgnore, CII->getExceptionBehavior()); EXPECT_EQ(RoundingMode::Dynamic, CII->getRoundingMode()); // Now override the defaults. Call = Builder.CreateConstrainedFPBinOp( Intrinsic::experimental_constrained_fadd, V, V, nullptr, "", nullptr, RoundingMode::TowardNegative, fp::ebMayTrap); CII = cast(Call); EXPECT_EQ(CII->getIntrinsicID(), Intrinsic::experimental_constrained_fadd); EXPECT_EQ(fp::ebMayTrap, CII->getExceptionBehavior()); EXPECT_EQ(RoundingMode::TowardNegative, CII->getRoundingMode()); Builder.CreateRetVoid(); EXPECT_FALSE(verifyModule(*M)); } TEST_F(IRBuilderTest, ConstrainedFPIntrinsics) { IRBuilder<> Builder(BB); Value *V; Value *VDouble; ConstrainedFPIntrinsic *CII; GlobalVariable *GVDouble = new GlobalVariable( *M, Type::getDoubleTy(Ctx), true, GlobalValue::ExternalLinkage, nullptr); VDouble = Builder.CreateLoad(GVDouble->getValueType(), GVDouble); Builder.setDefaultConstrainedExcept(fp::ebStrict); Builder.setDefaultConstrainedRounding(RoundingMode::TowardZero); Function *Fn = Intrinsic::getOrInsertDeclaration( M.get(), Intrinsic::experimental_constrained_roundeven, {Type::getDoubleTy(Ctx)}); V = Builder.CreateConstrainedFPCall(Fn, { VDouble }); CII = cast(V); EXPECT_EQ(Intrinsic::experimental_constrained_roundeven, CII->getIntrinsicID()); EXPECT_EQ(fp::ebStrict, CII->getExceptionBehavior()); } TEST_F(IRBuilderTest, ConstrainedFPFunctionCall) { IRBuilder<> Builder(BB); // Create an empty constrained FP function. FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), /*isVarArg=*/false); Function *Callee = Function::Create(FTy, Function::ExternalLinkage, "", M.get()); BasicBlock *CalleeBB = BasicBlock::Create(Ctx, "", Callee); IRBuilder<> CalleeBuilder(CalleeBB); CalleeBuilder.setIsFPConstrained(true); CalleeBuilder.setConstrainedFPFunctionAttr(); CalleeBuilder.CreateRetVoid(); // Now call the empty constrained FP function. Builder.setIsFPConstrained(true); Builder.setConstrainedFPFunctionAttr(); CallInst *FCall = Builder.CreateCall(Callee, {}); // Check the attributes to verify the strictfp attribute is on the call. EXPECT_TRUE( FCall->getAttributes().getFnAttrs().hasAttribute(Attribute::StrictFP)); Builder.CreateRetVoid(); EXPECT_FALSE(verifyModule(*M)); } TEST_F(IRBuilderTest, Lifetime) { IRBuilder<> Builder(BB); AllocaInst *Var1 = Builder.CreateAlloca(Builder.getInt8Ty()); AllocaInst *Var2 = Builder.CreateAlloca(Builder.getInt32Ty()); AllocaInst *Var3 = Builder.CreateAlloca(Builder.getInt8Ty(), Builder.getInt32(123)); CallInst *Start1 = Builder.CreateLifetimeStart(Var1); CallInst *Start2 = Builder.CreateLifetimeStart(Var2); CallInst *Start3 = Builder.CreateLifetimeStart(Var3, Builder.getInt64(100)); EXPECT_EQ(Start1->getArgOperand(0), Builder.getInt64(-1)); EXPECT_EQ(Start2->getArgOperand(0), Builder.getInt64(-1)); EXPECT_EQ(Start3->getArgOperand(0), Builder.getInt64(100)); EXPECT_EQ(Start1->getArgOperand(1), Var1); EXPECT_EQ(Start2->getArgOperand(1)->stripPointerCasts(), Var2); EXPECT_EQ(Start3->getArgOperand(1), Var3); Value *End1 = Builder.CreateLifetimeEnd(Var1); Builder.CreateLifetimeEnd(Var2); Builder.CreateLifetimeEnd(Var3); IntrinsicInst *II_Start1 = dyn_cast(Start1); IntrinsicInst *II_End1 = dyn_cast(End1); ASSERT_TRUE(II_Start1 != nullptr); EXPECT_EQ(II_Start1->getIntrinsicID(), Intrinsic::lifetime_start); ASSERT_TRUE(II_End1 != nullptr); EXPECT_EQ(II_End1->getIntrinsicID(), Intrinsic::lifetime_end); } TEST_F(IRBuilderTest, CreateCondBr) { IRBuilder<> Builder(BB); BasicBlock *TBB = BasicBlock::Create(Ctx, "", F); BasicBlock *FBB = BasicBlock::Create(Ctx, "", F); BranchInst *BI = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB); Instruction *TI = BB->getTerminator(); EXPECT_EQ(BI, TI); EXPECT_EQ(2u, TI->getNumSuccessors()); EXPECT_EQ(TBB, TI->getSuccessor(0)); EXPECT_EQ(FBB, TI->getSuccessor(1)); BI->eraseFromParent(); MDNode *Weights = MDBuilder(Ctx).createBranchWeights(42, 13); BI = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB, Weights); TI = BB->getTerminator(); EXPECT_EQ(BI, TI); EXPECT_EQ(2u, TI->getNumSuccessors()); EXPECT_EQ(TBB, TI->getSuccessor(0)); EXPECT_EQ(FBB, TI->getSuccessor(1)); EXPECT_EQ(Weights, TI->getMetadata(LLVMContext::MD_prof)); } TEST_F(IRBuilderTest, LandingPadName) { IRBuilder<> Builder(BB); LandingPadInst *LP = Builder.CreateLandingPad(Builder.getInt32Ty(), 0, "LP"); EXPECT_EQ(LP->getName(), "LP"); } TEST_F(IRBuilderTest, DataLayout) { std::unique_ptr M(new Module("test", Ctx)); M->setDataLayout("e-n32"); EXPECT_TRUE(M->getDataLayout().isLegalInteger(32)); M->setDataLayout("e"); EXPECT_FALSE(M->getDataLayout().isLegalInteger(32)); } TEST_F(IRBuilderTest, GetIntTy) { IRBuilder<> Builder(BB); IntegerType *Ty1 = Builder.getInt1Ty(); EXPECT_EQ(Ty1, IntegerType::get(Ctx, 1)); const DataLayout &DL = M->getDataLayout(); IntegerType *IntPtrTy = Builder.getIntPtrTy(DL); unsigned IntPtrBitSize = DL.getPointerSizeInBits(0); EXPECT_EQ(IntPtrTy, IntegerType::get(Ctx, IntPtrBitSize)); } TEST_F(IRBuilderTest, UnaryOperators) { IRBuilder Builder(BB); Value *V = Builder.CreateLoad(GV->getValueType(), GV); // Test CreateUnOp(X) Value *U = Builder.CreateUnOp(Instruction::FNeg, V); ASSERT_TRUE(isa(U)); ASSERT_TRUE(isa(U)); ASSERT_TRUE(isa(U)); ASSERT_FALSE(isa(U)); // Test CreateFNegFMF(X) Instruction *I = cast(U); I->setHasNoSignedZeros(true); I->setHasNoNaNs(true); Value *VFMF = Builder.CreateFNegFMF(V, I); Instruction *IFMF = cast(VFMF); EXPECT_TRUE(IFMF->hasNoSignedZeros()); EXPECT_TRUE(IFMF->hasNoNaNs()); EXPECT_FALSE(IFMF->hasAllowReassoc()); } TEST_F(IRBuilderTest, FastMathFlags) { IRBuilder<> Builder(BB); Value *F, *FC; Instruction *FDiv, *FAdd, *FCmp, *FCall, *FNeg, *FSub, *FMul, *FRem; F = Builder.CreateLoad(GV->getValueType(), GV); F = Builder.CreateFAdd(F, F); EXPECT_FALSE(Builder.getFastMathFlags().any()); ASSERT_TRUE(isa(F)); FAdd = cast(F); EXPECT_FALSE(FAdd->hasNoNaNs()); FastMathFlags FMF; Builder.setFastMathFlags(FMF); // By default, no flags are set. F = Builder.CreateFAdd(F, F); EXPECT_FALSE(Builder.getFastMathFlags().any()); ASSERT_TRUE(isa(F)); FAdd = cast(F); EXPECT_FALSE(FAdd->hasNoNaNs()); EXPECT_FALSE(FAdd->hasNoInfs()); EXPECT_FALSE(FAdd->hasNoSignedZeros()); EXPECT_FALSE(FAdd->hasAllowReciprocal()); EXPECT_FALSE(FAdd->hasAllowContract()); EXPECT_FALSE(FAdd->hasAllowReassoc()); EXPECT_FALSE(FAdd->hasApproxFunc()); // Set all flags in the instruction. FAdd->setFast(true); EXPECT_TRUE(FAdd->hasNoNaNs()); EXPECT_TRUE(FAdd->hasNoInfs()); EXPECT_TRUE(FAdd->hasNoSignedZeros()); EXPECT_TRUE(FAdd->hasAllowReciprocal()); EXPECT_TRUE(FAdd->hasAllowContract()); EXPECT_TRUE(FAdd->hasAllowReassoc()); EXPECT_TRUE(FAdd->hasApproxFunc()); // All flags are set in the builder. FMF.setFast(); Builder.setFastMathFlags(FMF); F = Builder.CreateFAdd(F, F); EXPECT_TRUE(Builder.getFastMathFlags().any()); EXPECT_TRUE(Builder.getFastMathFlags().all()); ASSERT_TRUE(isa(F)); FAdd = cast(F); EXPECT_TRUE(FAdd->hasNoNaNs()); EXPECT_TRUE(FAdd->isFast()); // Now, try it with CreateBinOp F = Builder.CreateBinOp(Instruction::FAdd, F, F); EXPECT_TRUE(Builder.getFastMathFlags().any()); ASSERT_TRUE(isa(F)); FAdd = cast(F); EXPECT_TRUE(FAdd->hasNoNaNs()); EXPECT_TRUE(FAdd->isFast()); F = Builder.CreateFDiv(F, F); EXPECT_TRUE(Builder.getFastMathFlags().all()); ASSERT_TRUE(isa(F)); FDiv = cast(F); EXPECT_TRUE(FDiv->hasAllowReciprocal()); // Clear all FMF in the builder. Builder.clearFastMathFlags(); F = Builder.CreateFDiv(F, F); ASSERT_TRUE(isa(F)); FDiv = cast(F); EXPECT_FALSE(FDiv->hasAllowReciprocal()); // Try individual flags. FMF.clear(); FMF.setAllowReciprocal(); Builder.setFastMathFlags(FMF); F = Builder.CreateFDiv(F, F); EXPECT_TRUE(Builder.getFastMathFlags().any()); EXPECT_TRUE(Builder.getFastMathFlags().AllowReciprocal); ASSERT_TRUE(isa(F)); FDiv = cast(F); EXPECT_TRUE(FDiv->hasAllowReciprocal()); Builder.clearFastMathFlags(); FC = Builder.CreateFCmpOEQ(F, F); ASSERT_TRUE(isa(FC)); FCmp = cast(FC); EXPECT_FALSE(FCmp->hasAllowReciprocal()); FMF.clear(); FMF.setAllowReciprocal(); Builder.setFastMathFlags(FMF); FC = Builder.CreateFCmpOEQ(F, F); EXPECT_TRUE(Builder.getFastMathFlags().any()); EXPECT_TRUE(Builder.getFastMathFlags().AllowReciprocal); ASSERT_TRUE(isa(FC)); FCmp = cast(FC); EXPECT_TRUE(FCmp->hasAllowReciprocal()); Builder.clearFastMathFlags(); // Test FP-contract FC = Builder.CreateFAdd(F, F); ASSERT_TRUE(isa(FC)); FAdd = cast(FC); EXPECT_FALSE(FAdd->hasAllowContract()); FMF.clear(); FMF.setAllowContract(true); Builder.setFastMathFlags(FMF); FC = Builder.CreateFAdd(F, F); EXPECT_TRUE(Builder.getFastMathFlags().any()); EXPECT_TRUE(Builder.getFastMathFlags().AllowContract); ASSERT_TRUE(isa(FC)); FAdd = cast(FC); EXPECT_TRUE(FAdd->hasAllowContract()); FMF.setApproxFunc(); Builder.clearFastMathFlags(); Builder.setFastMathFlags(FMF); // Now 'aml' and 'contract' are set. F = Builder.CreateFMul(F, F); FAdd = cast(F); EXPECT_TRUE(FAdd->hasApproxFunc()); EXPECT_TRUE(FAdd->hasAllowContract()); EXPECT_FALSE(FAdd->hasAllowReassoc()); FMF.setAllowReassoc(); Builder.clearFastMathFlags(); Builder.setFastMathFlags(FMF); // Now 'aml' and 'contract' and 'reassoc' are set. F = Builder.CreateFMul(F, F); FAdd = cast(F); EXPECT_TRUE(FAdd->hasApproxFunc()); EXPECT_TRUE(FAdd->hasAllowContract()); EXPECT_TRUE(FAdd->hasAllowReassoc()); // Test a call with FMF. auto CalleeTy = FunctionType::get(Type::getFloatTy(Ctx), /*isVarArg=*/false); auto Callee = Function::Create(CalleeTy, Function::ExternalLinkage, "", M.get()); FCall = Builder.CreateCall(Callee, {}); EXPECT_FALSE(FCall->hasNoNaNs()); Function *V = Function::Create(CalleeTy, Function::ExternalLinkage, "", M.get()); FCall = Builder.CreateCall(V, {}); EXPECT_FALSE(FCall->hasNoNaNs()); FMF.clear(); FMF.setNoNaNs(); Builder.setFastMathFlags(FMF); FCall = Builder.CreateCall(Callee, {}); EXPECT_TRUE(Builder.getFastMathFlags().any()); EXPECT_TRUE(Builder.getFastMathFlags().NoNaNs); EXPECT_TRUE(FCall->hasNoNaNs()); FCall = Builder.CreateCall(V, {}); EXPECT_TRUE(Builder.getFastMathFlags().any()); EXPECT_TRUE(Builder.getFastMathFlags().NoNaNs); EXPECT_TRUE(FCall->hasNoNaNs()); Builder.clearFastMathFlags(); // To test a copy, make sure that a '0' and a '1' change state. F = Builder.CreateFDiv(F, F); ASSERT_TRUE(isa(F)); FDiv = cast(F); EXPECT_FALSE(FDiv->getFastMathFlags().any()); FDiv->setHasAllowReciprocal(true); FAdd->setHasAllowReciprocal(false); FAdd->setHasNoNaNs(true); FDiv->copyFastMathFlags(FAdd); EXPECT_TRUE(FDiv->hasNoNaNs()); EXPECT_FALSE(FDiv->hasAllowReciprocal()); // Test that CreateF*FMF functions copy flags from the source instruction // instead of using the builder default. Instruction *const FMFSource = FAdd; EXPECT_FALSE(Builder.getFastMathFlags().noNaNs()); EXPECT_TRUE(FMFSource->hasNoNaNs()); F = Builder.CreateFNegFMF(F, FMFSource); ASSERT_TRUE(isa(F)); FNeg = cast(F); EXPECT_TRUE(FNeg->hasNoNaNs()); F = Builder.CreateFAddFMF(F, F, FMFSource); ASSERT_TRUE(isa(F)); FAdd = cast(F); EXPECT_TRUE(FAdd->hasNoNaNs()); F = Builder.CreateFSubFMF(F, F, FMFSource); ASSERT_TRUE(isa(F)); FSub = cast(F); EXPECT_TRUE(FSub->hasNoNaNs()); F = Builder.CreateFMulFMF(F, F, FMFSource); ASSERT_TRUE(isa(F)); FMul = cast(F); EXPECT_TRUE(FMul->hasNoNaNs()); F = Builder.CreateFDivFMF(F, F, FMFSource); ASSERT_TRUE(isa(F)); FDiv = cast(F); EXPECT_TRUE(FDiv->hasNoNaNs()); F = Builder.CreateFRemFMF(F, F, FMFSource); ASSERT_TRUE(isa(F)); FRem = cast(F); EXPECT_TRUE(FRem->hasNoNaNs()); } TEST_F(IRBuilderTest, WrapFlags) { IRBuilder Builder(BB); // Test instructions. GlobalVariable *G = new GlobalVariable(*M, Builder.getInt32Ty(), true, GlobalValue::ExternalLinkage, nullptr); Value *V = Builder.CreateLoad(G->getValueType(), G); EXPECT_TRUE( cast(Builder.CreateNSWAdd(V, V))->hasNoSignedWrap()); EXPECT_TRUE( cast(Builder.CreateNSWMul(V, V))->hasNoSignedWrap()); EXPECT_TRUE( cast(Builder.CreateNSWSub(V, V))->hasNoSignedWrap()); EXPECT_TRUE(cast( Builder.CreateShl(V, V, "", /* NUW */ false, /* NSW */ true)) ->hasNoSignedWrap()); EXPECT_TRUE( cast(Builder.CreateNUWAdd(V, V))->hasNoUnsignedWrap()); EXPECT_TRUE( cast(Builder.CreateNUWMul(V, V))->hasNoUnsignedWrap()); EXPECT_TRUE( cast(Builder.CreateNUWSub(V, V))->hasNoUnsignedWrap()); EXPECT_TRUE(cast( Builder.CreateShl(V, V, "", /* NUW */ true, /* NSW */ false)) ->hasNoUnsignedWrap()); // Test operators created with constants. Constant *C = Builder.getInt32(42); EXPECT_TRUE(cast(Builder.CreateNSWAdd(C, C)) ->hasNoSignedWrap()); EXPECT_TRUE(cast(Builder.CreateNSWSub(C, C)) ->hasNoSignedWrap()); EXPECT_TRUE(cast(Builder.CreateNSWMul(C, C)) ->hasNoSignedWrap()); EXPECT_TRUE(cast( Builder.CreateShl(C, C, "", /* NUW */ false, /* NSW */ true)) ->hasNoSignedWrap()); EXPECT_TRUE(cast(Builder.CreateNUWAdd(C, C)) ->hasNoUnsignedWrap()); EXPECT_TRUE(cast(Builder.CreateNUWSub(C, C)) ->hasNoUnsignedWrap()); EXPECT_TRUE(cast(Builder.CreateNUWMul(C, C)) ->hasNoUnsignedWrap()); EXPECT_TRUE(cast( Builder.CreateShl(C, C, "", /* NUW */ true, /* NSW */ false)) ->hasNoUnsignedWrap()); } TEST_F(IRBuilderTest, RAIIHelpersTest) { IRBuilder<> Builder(BB); EXPECT_FALSE(Builder.getFastMathFlags().allowReciprocal()); MDBuilder MDB(M->getContext()); MDNode *FPMathA = MDB.createFPMath(0.01f); MDNode *FPMathB = MDB.createFPMath(0.1f); Builder.setDefaultFPMathTag(FPMathA); { IRBuilder<>::FastMathFlagGuard Guard(Builder); FastMathFlags FMF; FMF.setAllowReciprocal(); Builder.setFastMathFlags(FMF); Builder.setDefaultFPMathTag(FPMathB); EXPECT_TRUE(Builder.getFastMathFlags().allowReciprocal()); EXPECT_EQ(FPMathB, Builder.getDefaultFPMathTag()); } EXPECT_FALSE(Builder.getFastMathFlags().allowReciprocal()); EXPECT_EQ(FPMathA, Builder.getDefaultFPMathTag()); Value *F = Builder.CreateLoad(GV->getValueType(), GV); { IRBuilder<>::InsertPointGuard Guard(Builder); Builder.SetInsertPoint(cast(F)); EXPECT_EQ(F, &*Builder.GetInsertPoint()); } EXPECT_EQ(BB->end(), Builder.GetInsertPoint()); EXPECT_EQ(BB, Builder.GetInsertBlock()); } TEST_F(IRBuilderTest, createFunction) { IRBuilder<> Builder(BB); DIBuilder DIB(*M); auto File = DIB.createFile("error.swift", "/"); auto CU = DIB.createCompileUnit(dwarf::DW_LANG_Swift, File, "swiftc", true, "", 0); auto Type = DIB.createSubroutineType(DIB.getOrCreateTypeArray({})); auto NoErr = DIB.createFunction( CU, "noerr", "", File, 1, Type, 1, DINode::FlagZero, DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); EXPECT_TRUE(!NoErr->getThrownTypes()); auto Int = DIB.createBasicType("Int", 64, dwarf::DW_ATE_signed); auto Error = DIB.getOrCreateArray({Int}); auto Err = DIB.createFunction( CU, "err", "", File, 1, Type, 1, DINode::FlagZero, DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized, nullptr, nullptr, Error.get()); EXPECT_TRUE(Err->getThrownTypes().get() == Error.get()); DIB.finalize(); } TEST_F(IRBuilderTest, DIBuilder) { auto GetLastDbgRecord = [](const Instruction *I) -> DbgRecord * { if (I->getDbgRecordRange().empty()) return nullptr; return &*std::prev(I->getDbgRecordRange().end()); }; auto ExpectOrder = [&](DbgInstPtr First, BasicBlock::iterator Second) { if (M->IsNewDbgInfoFormat) { EXPECT_TRUE(isa(First)); EXPECT_FALSE(Second->getDbgRecordRange().empty()); EXPECT_EQ(GetLastDbgRecord(&*Second), cast(First)); } else { EXPECT_TRUE(isa(First)); EXPECT_EQ(&*std::prev(Second), cast(First)); } }; auto RunTest = [&]() { IRBuilder<> Builder(BB); DIBuilder DIB(*M); auto File = DIB.createFile("F.CBL", "/"); auto CU = DIB.createCompileUnit(dwarf::DW_LANG_Cobol74, DIB.createFile("F.CBL", "/"), "llvm-cobol74", true, "", 0); auto Type = DIB.createSubroutineType(DIB.getOrCreateTypeArray({})); auto SP = DIB.createFunction( CU, "foo", "", File, 1, Type, 1, DINode::FlagZero, DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); F->setSubprogram(SP); AllocaInst *I = Builder.CreateAlloca(Builder.getInt8Ty()); auto BarSP = DIB.createFunction( CU, "bar", "", File, 1, Type, 1, DINode::FlagZero, DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); auto BarScope = DIB.createLexicalBlockFile(BarSP, File, 0); I->setDebugLoc(DILocation::get(Ctx, 2, 0, BarScope)); // Create another instruction so that there's one before the alloca we're // inserting debug intrinsics before, to make end-checking easier. I = Builder.CreateAlloca(Builder.getInt1Ty()); // Label metadata and records // -------------------------- DILocation *LabelLoc = DILocation::get(Ctx, 1, 0, BarScope); DILabel *AlwaysPreserveLabel = DIB.createLabel( BarScope, "meles_meles", File, 1, /*AlwaysPreserve*/ true); DILabel *Label = DIB.createLabel(BarScope, "badger", File, 1, /*AlwaysPreserve*/ false); { /* dbg.label | DbgLabelRecord */ // Insert before I and check order. ExpectOrder(DIB.insertLabel(Label, LabelLoc, I), I->getIterator()); // We should be able to insert at the end of the block, even if there's // no terminator yet. Note that in RemoveDIs mode this record won't get // inserted into the block untill another instruction is added. DbgInstPtr LabelRecord = DIB.insertLabel(Label, LabelLoc, BB); // Specifically do not insert a terminator, to check this works. `I` // should have absorbed the DbgLabelRecord in the new debug info mode. I = Builder.CreateAlloca(Builder.getInt32Ty()); ExpectOrder(LabelRecord, I->getIterator()); } // Variable metadata and records // ----------------------------- DILocation *VarLoc = DILocation::get(Ctx, 2, 0, BarScope); auto *IntType = DIB.createBasicType("int", 32, dwarf::DW_ATE_signed); DILocalVariable *VarX = DIB.createAutoVariable(BarSP, "X", File, 2, IntType, true); DILocalVariable *VarY = DIB.createAutoVariable(BarSP, "Y", File, 2, IntType, true); { /* dbg.value | DbgVariableRecord::Value */ ExpectOrder(DIB.insertDbgValueIntrinsic(I, VarX, DIB.createExpression(), VarLoc, I), I->getIterator()); // Check inserting at end of the block works as with labels. DbgInstPtr VarXValue = DIB.insertDbgValueIntrinsic( I, VarX, DIB.createExpression(), VarLoc, BB); I = Builder.CreateAlloca(Builder.getInt32Ty()); ExpectOrder(VarXValue, I->getIterator()); EXPECT_EQ(BB->getTrailingDbgRecords(), nullptr); } { /* dbg.declare | DbgVariableRecord::Declare */ ExpectOrder(DIB.insertDeclare(I, VarY, DIB.createExpression(), VarLoc, I), I->getIterator()); // Check inserting at end of the block works as with labels. DbgInstPtr VarYDeclare = DIB.insertDeclare(I, VarY, DIB.createExpression(), VarLoc, BB); I = Builder.CreateAlloca(Builder.getInt32Ty()); ExpectOrder(VarYDeclare, I->getIterator()); EXPECT_EQ(BB->getTrailingDbgRecords(), nullptr); } { /* dbg.assign | DbgVariableRecord::Assign */ I = Builder.CreateAlloca(Builder.getInt32Ty()); I->setMetadata(LLVMContext::MD_DIAssignID, DIAssignID::getDistinct(Ctx)); // DbgAssign interface is slightly different - it always inserts after the // linked instr. Check we can do this with no instruction to insert // before. DbgInstPtr VarXAssign = DIB.insertDbgAssign(I, I, VarX, DIB.createExpression(), I, DIB.createExpression(), VarLoc); I = Builder.CreateAlloca(Builder.getInt32Ty()); ExpectOrder(VarXAssign, I->getIterator()); EXPECT_EQ(BB->getTrailingDbgRecords(), nullptr); } Builder.CreateRet(nullptr); DIB.finalize(); // Check the labels are not/are added to Bar's retainedNodes array // (AlwaysPreserve). EXPECT_EQ(find(BarSP->getRetainedNodes(), Label), BarSP->getRetainedNodes().end()); EXPECT_NE(find(BarSP->getRetainedNodes(), AlwaysPreserveLabel), BarSP->getRetainedNodes().end()); EXPECT_NE(find(BarSP->getRetainedNodes(), VarX), BarSP->getRetainedNodes().end()); EXPECT_NE(find(BarSP->getRetainedNodes(), VarY), BarSP->getRetainedNodes().end()); EXPECT_TRUE(verifyModule(*M)); }; // Test in new-debug mode. EXPECT_TRUE(M->IsNewDbgInfoFormat); RunTest(); // Test in old-debug mode. // Reset the test then call convertFromNewDbgValues to flip the flag // on the test's Module, Function and BasicBlock. TearDown(); SetUp(); M->convertFromNewDbgValues(); EXPECT_FALSE(M->IsNewDbgInfoFormat); RunTest(); } TEST_F(IRBuilderTest, createArtificialSubprogram) { IRBuilder<> Builder(BB); DIBuilder DIB(*M); auto File = DIB.createFile("main.c", "/"); auto CU = DIB.createCompileUnit(dwarf::DW_LANG_C, File, "clang", /*isOptimized=*/true, /*Flags=*/"", /*Runtime Version=*/0); auto Type = DIB.createSubroutineType(DIB.getOrCreateTypeArray({})); auto SP = DIB.createFunction( CU, "foo", /*LinkageName=*/"", File, /*LineNo=*/1, Type, /*ScopeLine=*/2, DINode::FlagZero, DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); EXPECT_TRUE(SP->isDistinct()); F->setSubprogram(SP); AllocaInst *I = Builder.CreateAlloca(Builder.getInt8Ty()); ReturnInst *R = Builder.CreateRetVoid(); I->setDebugLoc(DILocation::get(Ctx, 3, 2, SP)); R->setDebugLoc(DILocation::get(Ctx, 4, 2, SP)); DIB.finalize(); EXPECT_FALSE(verifyModule(*M)); Function *G = Function::Create(F->getFunctionType(), Function::ExternalLinkage, "", M.get()); BasicBlock *GBB = BasicBlock::Create(Ctx, "", G); Builder.SetInsertPoint(GBB); I->removeFromParent(); Builder.Insert(I); Builder.CreateRetVoid(); EXPECT_FALSE(verifyModule(*M)); DISubprogram *GSP = DIBuilder::createArtificialSubprogram(F->getSubprogram()); EXPECT_EQ(SP->getFile(), GSP->getFile()); EXPECT_EQ(SP->getType(), GSP->getType()); EXPECT_EQ(SP->getLine(), GSP->getLine()); EXPECT_EQ(SP->getScopeLine(), GSP->getScopeLine()); EXPECT_TRUE(GSP->isDistinct()); G->setSubprogram(GSP); EXPECT_TRUE(verifyModule(*M)); auto *InlinedAtNode = DILocation::getDistinct(Ctx, GSP->getScopeLine(), 0, GSP); DebugLoc DL = I->getDebugLoc(); DenseMap IANodes; auto IA = DebugLoc::appendInlinedAt(DL, InlinedAtNode, Ctx, IANodes); auto NewDL = DILocation::get(Ctx, DL.getLine(), DL.getCol(), DL.getScope(), IA); I->setDebugLoc(NewDL); EXPECT_FALSE(verifyModule(*M)); EXPECT_EQ("foo", SP->getName()); EXPECT_EQ("foo", GSP->getName()); EXPECT_FALSE(SP->isArtificial()); EXPECT_TRUE(GSP->isArtificial()); } // Check that we can add debug info to an existing DICompileUnit. TEST_F(IRBuilderTest, appendDebugInfo) { IRBuilder<> Builder(BB); Builder.CreateRetVoid(); EXPECT_FALSE(verifyModule(*M)); auto GetNames = [](DICompileUnit *CU) { SmallVector Names; for (auto *ET : CU->getEnumTypes()) Names.push_back(ET->getName()); for (auto *RT : CU->getRetainedTypes()) Names.push_back(RT->getName()); for (auto *GV : CU->getGlobalVariables()) Names.push_back(GV->getVariable()->getName()); for (auto *IE : CU->getImportedEntities()) Names.push_back(IE->getName()); for (auto *Node : CU->getMacros()) if (auto *MN = dyn_cast_or_null(Node)) Names.push_back(MN->getName()); return Names; }; DICompileUnit *CU; { DIBuilder DIB(*M); auto *File = DIB.createFile("main.c", "/"); CU = DIB.createCompileUnit(dwarf::DW_LANG_C, File, "clang", /*isOptimized=*/true, /*Flags=*/"", /*Runtime Version=*/0); auto *ByteTy = DIB.createBasicType("byte0", 8, dwarf::DW_ATE_signed); DIB.createEnumerationType(CU, "ET0", File, /*LineNo=*/0, /*SizeInBits=*/8, /*AlignInBits=*/8, /*Elements=*/{}, ByteTy); DIB.retainType(ByteTy); DIB.createGlobalVariableExpression(CU, "GV0", /*LinkageName=*/"", File, /*LineNo=*/1, ByteTy, /*IsLocalToUnit=*/true); DIB.createImportedDeclaration(CU, nullptr, File, /*LineNo=*/2, "IM0"); DIB.createMacro(nullptr, /*LineNo=*/0, dwarf::DW_MACINFO_define, "M0"); DIB.finalize(); } EXPECT_FALSE(verifyModule(*M)); EXPECT_THAT(GetNames(CU), UnorderedElementsAre("ET0", "byte0", "GV0", "IM0", "M0")); { DIBuilder DIB(*M, true, CU); auto *File = CU->getFile(); auto *ByteTy = DIB.createBasicType("byte1", 8, dwarf::DW_ATE_signed); DIB.createEnumerationType(CU, "ET1", File, /*LineNo=*/0, /*SizeInBits=*/8, /*AlignInBits=*/8, /*Elements=*/{}, ByteTy); DIB.retainType(ByteTy); DIB.createGlobalVariableExpression(CU, "GV1", /*LinkageName=*/"", File, /*LineNo=*/1, ByteTy, /*IsLocalToUnit=*/true); DIB.createImportedDeclaration(CU, nullptr, File, /*LineNo=*/2, "IM1"); DIB.createMacro(nullptr, /*LineNo=*/0, dwarf::DW_MACINFO_define, "M1"); DIB.finalize(); } EXPECT_FALSE(verifyModule(*M)); EXPECT_THAT(GetNames(CU), UnorderedElementsAre("ET0", "byte0", "GV0", "IM0", "M0", "ET1", "byte1", "GV1", "IM1", "M1")); } TEST_F(IRBuilderTest, InsertExtractElement) { IRBuilder<> Builder(BB); auto VecTy = FixedVectorType::get(Builder.getInt64Ty(), 4); auto Elt1 = Builder.getInt64(-1); auto Elt2 = Builder.getInt64(-2); Value *Vec = Builder.CreateInsertElement(VecTy, Elt1, Builder.getInt8(1)); Vec = Builder.CreateInsertElement(Vec, Elt2, 2); auto X1 = Builder.CreateExtractElement(Vec, 1); auto X2 = Builder.CreateExtractElement(Vec, Builder.getInt32(2)); EXPECT_EQ(Elt1, X1); EXPECT_EQ(Elt2, X2); } TEST_F(IRBuilderTest, CreateGlobalString) { IRBuilder<> Builder(BB); auto String1a = Builder.CreateGlobalString("TestString", "String1a"); auto String1b = Builder.CreateGlobalString("TestString", "String1b", 0); auto String2 = Builder.CreateGlobalString("TestString", "String2", 1); auto String3 = Builder.CreateGlobalString("TestString", "String3", 2); EXPECT_TRUE(String1a->getType()->getPointerAddressSpace() == 0); EXPECT_TRUE(String1b->getType()->getPointerAddressSpace() == 0); EXPECT_TRUE(String2->getType()->getPointerAddressSpace() == 1); EXPECT_TRUE(String3->getType()->getPointerAddressSpace() == 2); } TEST_F(IRBuilderTest, DebugLoc) { auto CalleeTy = FunctionType::get(Type::getVoidTy(Ctx), /*isVarArg=*/false); auto Callee = Function::Create(CalleeTy, Function::ExternalLinkage, "", M.get()); DIBuilder DIB(*M); auto File = DIB.createFile("tmp.cpp", "/"); auto CU = DIB.createCompileUnit(dwarf::DW_LANG_C_plus_plus_11, DIB.createFile("tmp.cpp", "/"), "", true, "", 0); auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray({})); auto SP = DIB.createFunction(CU, "foo", "foo", File, 1, SPType, 1, DINode::FlagZero, DISubprogram::SPFlagDefinition); DebugLoc DL1 = DILocation::get(Ctx, 2, 0, SP); DebugLoc DL2 = DILocation::get(Ctx, 3, 0, SP); auto BB2 = BasicBlock::Create(Ctx, "bb2", F); auto Br = BranchInst::Create(BB2, BB); Br->setDebugLoc(DL1); IRBuilder<> Builder(Ctx); Builder.SetInsertPoint(Br); EXPECT_EQ(DL1, Builder.getCurrentDebugLocation()); auto Call1 = Builder.CreateCall(Callee, {}); EXPECT_EQ(DL1, Call1->getDebugLoc()); Call1->setDebugLoc(DL2); Builder.SetInsertPoint(Call1->getParent(), Call1->getIterator()); EXPECT_EQ(DL2, Builder.getCurrentDebugLocation()); auto Call2 = Builder.CreateCall(Callee, {}); EXPECT_EQ(DL2, Call2->getDebugLoc()); DIB.finalize(); } TEST_F(IRBuilderTest, DIImportedEntity) { IRBuilder<> Builder(BB); DIBuilder DIB(*M); auto F = DIB.createFile("F.CBL", "/"); auto CU = DIB.createCompileUnit(dwarf::DW_LANG_Cobol74, F, "llvm-cobol74", true, "", 0); MDTuple *Elements = MDTuple::getDistinct(Ctx, {}); DIB.createImportedDeclaration(CU, nullptr, F, 1); DIB.createImportedDeclaration(CU, nullptr, F, 1); DIB.createImportedModule(CU, (DIImportedEntity *)nullptr, F, 2); DIB.createImportedModule(CU, (DIImportedEntity *)nullptr, F, 2); DIB.createImportedModule(CU, (DIImportedEntity *)nullptr, F, 2, Elements); DIB.createImportedModule(CU, (DIImportedEntity *)nullptr, F, 2, Elements); DIB.finalize(); EXPECT_TRUE(verifyModule(*M)); EXPECT_TRUE(CU->getImportedEntities().size() == 3); } // 0: #define M0 V0 <-- command line definition // 0: main.c <-- main file // 3: #define M1 V1 <-- M1 definition in main.c // 5: #include "file.h" <-- inclusion of file.h from main.c // 1: #define M2 <-- M2 definition in file.h with no value // 7: #undef M1 V1 <-- M1 un-definition in main.c TEST_F(IRBuilderTest, DIBuilderMacro) { IRBuilder<> Builder(BB); DIBuilder DIB(*M); auto File1 = DIB.createFile("main.c", "/"); auto File2 = DIB.createFile("file.h", "/"); auto CU = DIB.createCompileUnit( dwarf::DW_LANG_C, DIB.createFile("main.c", "/"), "llvm-c", true, "", 0); auto MDef0 = DIB.createMacro(nullptr, 0, dwarf::DW_MACINFO_define, "M0", "V0"); auto TMF1 = DIB.createTempMacroFile(nullptr, 0, File1); auto MDef1 = DIB.createMacro(TMF1, 3, dwarf::DW_MACINFO_define, "M1", "V1"); auto TMF2 = DIB.createTempMacroFile(TMF1, 5, File2); auto MDef2 = DIB.createMacro(TMF2, 1, dwarf::DW_MACINFO_define, "M2"); auto MUndef1 = DIB.createMacro(TMF1, 7, dwarf::DW_MACINFO_undef, "M1"); EXPECT_EQ(dwarf::DW_MACINFO_define, MDef1->getMacinfoType()); EXPECT_EQ(3u, MDef1->getLine()); EXPECT_EQ("M1", MDef1->getName()); EXPECT_EQ("V1", MDef1->getValue()); EXPECT_EQ(dwarf::DW_MACINFO_undef, MUndef1->getMacinfoType()); EXPECT_EQ(7u, MUndef1->getLine()); EXPECT_EQ("M1", MUndef1->getName()); EXPECT_EQ("", MUndef1->getValue()); EXPECT_EQ(dwarf::DW_MACINFO_start_file, TMF2->getMacinfoType()); EXPECT_EQ(5u, TMF2->getLine()); EXPECT_EQ(File2, TMF2->getFile()); DIB.finalize(); SmallVector Elements; Elements.push_back(MDef2); auto MF2 = DIMacroFile::get(Ctx, dwarf::DW_MACINFO_start_file, 5, File2, DIB.getOrCreateMacroArray(Elements)); Elements.clear(); Elements.push_back(MDef1); Elements.push_back(MF2); Elements.push_back(MUndef1); auto MF1 = DIMacroFile::get(Ctx, dwarf::DW_MACINFO_start_file, 0, File1, DIB.getOrCreateMacroArray(Elements)); Elements.clear(); Elements.push_back(MDef0); Elements.push_back(MF1); auto MN0 = MDTuple::get(Ctx, Elements); EXPECT_EQ(MN0, CU->getRawMacros()); Elements.clear(); Elements.push_back(MDef1); Elements.push_back(MF2); Elements.push_back(MUndef1); auto MN1 = MDTuple::get(Ctx, Elements); EXPECT_EQ(MN1, MF1->getRawElements()); Elements.clear(); Elements.push_back(MDef2); auto MN2 = MDTuple::get(Ctx, Elements); EXPECT_EQ(MN2, MF2->getRawElements()); EXPECT_TRUE(verifyModule(*M)); } TEST_F(IRBuilderTest, NoFolderNames) { IRBuilder Builder(BB); auto *Add = Builder.CreateAdd(Builder.getInt32(1), Builder.getInt32(2), "add"); EXPECT_EQ(Add->getName(), "add"); } TEST_F(IRBuilderTest, CTAD) { struct TestInserter : public IRBuilderDefaultInserter { TestInserter() = default; }; InstSimplifyFolder Folder(M->getDataLayout()); IRBuilder Builder1(Ctx, Folder, TestInserter()); static_assert(std::is_same_v>); IRBuilder Builder2(Ctx); static_assert(std::is_same_v>); IRBuilder Builder3(BB, Folder); static_assert( std::is_same_v>); IRBuilder Builder4(BB); static_assert(std::is_same_v>); // The block BB is empty, so don't test this one. // IRBuilder Builder5(BB->getTerminator()); // static_assert(std::is_same_v>); IRBuilder Builder6(BB, BB->end(), Folder); static_assert( std::is_same_v>); IRBuilder Builder7(BB, BB->end()); static_assert(std::is_same_v>); } }