//===- llvm/unittest/ADT/ArrayRefTest.cpp - ArrayRef unit tests -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/ADT/ArrayRef.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/raw_ostream.h" #include "gtest/gtest.h" #include #include using namespace llvm; // Check that the ArrayRef-of-pointer converting constructor only allows adding // cv qualifiers (not removing them, or otherwise changing the type) static_assert(std::is_convertible_v, ArrayRef>, "Adding const"); static_assert(std::is_convertible_v, ArrayRef>, "Adding volatile"); static_assert(!std::is_convertible_v, ArrayRef>, "Changing pointer of one type to a pointer of another"); static_assert(!std::is_convertible_v, ArrayRef>, "Removing const"); static_assert(!std::is_convertible_v, ArrayRef>, "Removing volatile"); // Check that we can't accidentally assign a temporary location to an ArrayRef. // (Unfortunately we can't make use of the same thing with constructors.) static_assert(!std::is_assignable_v &, int *>, "Assigning from single prvalue element"); static_assert(!std::is_assignable_v &, int *&&>, "Assigning from single xvalue element"); static_assert(std::is_assignable_v &, int *&>, "Assigning from single lvalue element"); static_assert( !std::is_assignable_v &, std::initializer_list>, "Assigning from an initializer list"); namespace { TEST(ArrayRefTest, AllocatorCopy) { BumpPtrAllocator Alloc; static const uint16_t Words1[] = { 1, 4, 200, 37 }; ArrayRef Array1 = ArrayRef(Words1, 4); static const uint16_t Words2[] = { 11, 4003, 67, 64000, 13 }; ArrayRef Array2 = ArrayRef(Words2, 5); ArrayRef Array1c = Array1.copy(Alloc); ArrayRef Array2c = Array2.copy(Alloc); EXPECT_TRUE(Array1.equals(Array1c)); EXPECT_NE(Array1.data(), Array1c.data()); EXPECT_TRUE(Array2.equals(Array2c)); EXPECT_NE(Array2.data(), Array2c.data()); // Check that copy can cope with uninitialized memory. struct NonAssignable { const char *Ptr; NonAssignable(const char *Ptr) : Ptr(Ptr) {} NonAssignable(const NonAssignable &RHS) = default; void operator=(const NonAssignable &RHS) { assert(RHS.Ptr != nullptr); } bool operator==(const NonAssignable &RHS) const { return Ptr == RHS.Ptr; } } Array3Src[] = {"hello", "world"}; ArrayRef Array3Copy = ArrayRef(Array3Src).copy(Alloc); EXPECT_EQ(ArrayRef(Array3Src), Array3Copy); EXPECT_NE(ArrayRef(Array3Src).data(), Array3Copy.data()); } // This test is pure UB given the ArrayRef<> implementation. // You are not allowed to produce non-null pointers given null base pointer. TEST(ArrayRefTest, DISABLED_SizeTSizedOperations) { ArrayRef AR(nullptr, std::numeric_limits::max()); // Check that drop_back accepts size_t-sized numbers. EXPECT_EQ(1U, AR.drop_back(AR.size() - 1).size()); // Check that drop_front accepts size_t-sized numbers. EXPECT_EQ(1U, AR.drop_front(AR.size() - 1).size()); // Check that slice accepts size_t-sized numbers. EXPECT_EQ(1U, AR.slice(AR.size() - 1).size()); EXPECT_EQ(AR.size() - 1, AR.slice(1, AR.size() - 1).size()); } TEST(ArrayRefTest, DropBack) { static const int TheNumbers[] = {4, 8, 15, 16, 23, 42}; ArrayRef AR1(TheNumbers); ArrayRef AR2(TheNumbers, AR1.size() - 1); EXPECT_TRUE(AR1.drop_back().equals(AR2)); } TEST(ArrayRefTest, DropFront) { static const int TheNumbers[] = {4, 8, 15, 16, 23, 42}; ArrayRef AR1(TheNumbers); ArrayRef AR2(&TheNumbers[2], AR1.size() - 2); EXPECT_TRUE(AR1.drop_front(2).equals(AR2)); } TEST(ArrayRefTest, DropWhile) { static const int TheNumbers[] = {1, 3, 5, 8, 10, 11}; ArrayRef AR1(TheNumbers); ArrayRef Expected = AR1.drop_front(3); EXPECT_EQ(Expected, AR1.drop_while([](const int &N) { return N % 2 == 1; })); EXPECT_EQ(AR1, AR1.drop_while([](const int &N) { return N < 0; })); EXPECT_EQ(ArrayRef(), AR1.drop_while([](const int &N) { return N > 0; })); } TEST(ArrayRefTest, DropUntil) { static const int TheNumbers[] = {1, 3, 5, 8, 10, 11}; ArrayRef AR1(TheNumbers); ArrayRef Expected = AR1.drop_front(3); EXPECT_EQ(Expected, AR1.drop_until([](const int &N) { return N % 2 == 0; })); EXPECT_EQ(ArrayRef(), AR1.drop_until([](const int &N) { return N < 0; })); EXPECT_EQ(AR1, AR1.drop_until([](const int &N) { return N > 0; })); } TEST(ArrayRefTest, TakeBack) { static const int TheNumbers[] = {4, 8, 15, 16, 23, 42}; ArrayRef AR1(TheNumbers); ArrayRef AR2(AR1.end() - 1, 1); EXPECT_TRUE(AR1.take_back().equals(AR2)); } TEST(ArrayRefTest, TakeFront) { static const int TheNumbers[] = {4, 8, 15, 16, 23, 42}; ArrayRef AR1(TheNumbers); ArrayRef AR2(AR1.data(), 2); EXPECT_TRUE(AR1.take_front(2).equals(AR2)); } TEST(ArrayRefTest, TakeWhile) { static const int TheNumbers[] = {1, 3, 5, 8, 10, 11}; ArrayRef AR1(TheNumbers); ArrayRef Expected = AR1.take_front(3); EXPECT_EQ(Expected, AR1.take_while([](const int &N) { return N % 2 == 1; })); EXPECT_EQ(ArrayRef(), AR1.take_while([](const int &N) { return N < 0; })); EXPECT_EQ(AR1, AR1.take_while([](const int &N) { return N > 0; })); } TEST(ArrayRefTest, TakeUntil) { static const int TheNumbers[] = {1, 3, 5, 8, 10, 11}; ArrayRef AR1(TheNumbers); ArrayRef Expected = AR1.take_front(3); EXPECT_EQ(Expected, AR1.take_until([](const int &N) { return N % 2 == 0; })); EXPECT_EQ(AR1, AR1.take_until([](const int &N) { return N < 0; })); EXPECT_EQ(ArrayRef(), AR1.take_until([](const int &N) { return N > 0; })); } TEST(ArrayRefTest, Equals) { static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8}; ArrayRef AR1(A1); EXPECT_TRUE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8})); EXPECT_FALSE(AR1.equals({8, 1, 2, 4, 5, 6, 6, 7})); EXPECT_FALSE(AR1.equals({2, 4, 5, 6, 6, 7, 8, 1})); EXPECT_FALSE(AR1.equals({0, 1, 2, 4, 5, 6, 6, 7})); EXPECT_FALSE(AR1.equals({1, 2, 42, 4, 5, 6, 7, 8})); EXPECT_FALSE(AR1.equals({42, 2, 3, 4, 5, 6, 7, 8})); EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 42})); EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7})); EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8, 9})); ArrayRef AR1a = AR1.drop_back(); EXPECT_TRUE(AR1a.equals({1, 2, 3, 4, 5, 6, 7})); EXPECT_FALSE(AR1a.equals({1, 2, 3, 4, 5, 6, 7, 8})); ArrayRef AR1b = AR1a.slice(2, 4); EXPECT_TRUE(AR1b.equals({3, 4, 5, 6})); EXPECT_FALSE(AR1b.equals({2, 3, 4, 5, 6})); EXPECT_FALSE(AR1b.equals({3, 4, 5, 6, 7})); } TEST(ArrayRefTest, EmptyEquals) { EXPECT_TRUE(ArrayRef() == ArrayRef()); } TEST(ArrayRefTest, ConstConvert) { int buf[4]; for (int i = 0; i < 4; ++i) buf[i] = i; static int *A[] = {&buf[0], &buf[1], &buf[2], &buf[3]}; ArrayRef a((ArrayRef(A))); a = ArrayRef(A); } static std::vector ReturnTest12() { return {1, 2}; } static void ArgTest12(ArrayRef A) { EXPECT_EQ(2U, A.size()); EXPECT_EQ(1, A[0]); EXPECT_EQ(2, A[1]); } TEST(ArrayRefTest, InitializerList) { std::initializer_list init_list = { 0, 1, 2, 3, 4 }; ArrayRef A = init_list; for (int i = 0; i < 5; ++i) EXPECT_EQ(i, A[i]); std::vector B = ReturnTest12(); A = B; EXPECT_EQ(1, A[0]); EXPECT_EQ(2, A[1]); ArgTest12({1, 2}); } TEST(ArrayRefTest, EmptyInitializerList) { ArrayRef A = {}; EXPECT_TRUE(A.empty()); A = {}; EXPECT_TRUE(A.empty()); } TEST(ArrayRefTest, ArrayRef) { static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8}; // A copy is expected for non-const ArrayRef (thin copy) ArrayRef AR1(A1); const ArrayRef &AR1Ref = ArrayRef(AR1); EXPECT_NE(&AR1, &AR1Ref); EXPECT_TRUE(AR1.equals(AR1Ref)); // A copy is expected for non-const ArrayRef (thin copy) const ArrayRef AR2(A1); const ArrayRef &AR2Ref = ArrayRef(AR2); EXPECT_NE(&AR2Ref, &AR2); EXPECT_TRUE(AR2.equals(AR2Ref)); } TEST(ArrayRefTest, OwningArrayRef) { static const int A1[] = {0, 1}; OwningArrayRef A{ArrayRef(A1)}; OwningArrayRef B(std::move(A)); EXPECT_EQ(A.data(), nullptr); } TEST(ArrayRefTest, ArrayRefFromStdArray) { std::array A1{{42, -5, 0, 1000000, -1000000}}; ArrayRef A2 = ArrayRef(A1); EXPECT_EQ(A1.size(), A2.size()); for (std::size_t i = 0; i < A1.size(); ++i) { EXPECT_EQ(A1[i], A2[i]); } } static_assert(std::is_trivially_copyable_v>, "trivially copyable"); TEST(ArrayRefTest, MutableArrayRefDeductionGuides) { // Single element { int x = 0; auto aref = MutableArrayRef(x); static_assert(std::is_same_v, decltype(aref)>); EXPECT_EQ(aref.data(), &x); EXPECT_EQ(aref.size(), 1u); // Make sure it's mutable still aref[0] = 1; EXPECT_EQ(x, 1); } // Pointer + length { int x[] = {0, 1, 2, 3}; auto aref = MutableArrayRef(&x[0], 4); static_assert(std::is_same_v, decltype(aref)>); EXPECT_EQ(aref.data(), &x[0]); EXPECT_EQ(aref.size(), 4u); } // // Pointer + pointer { int x[] = {0, 1, 2, 3}; auto aref = MutableArrayRef(std::begin(x), std::end(x)); static_assert(std::is_same_v, decltype(aref)>); EXPECT_EQ(aref.data(), &x[0]); EXPECT_EQ(aref.size(), 4u); } // SmallVector { SmallVector sv1; SmallVectorImpl &sv2 = sv1; sv1.resize(5); auto aref1 = MutableArrayRef(sv1); auto aref2 = MutableArrayRef(sv2); static_assert(std::is_same_v, decltype(aref1)>); static_assert(std::is_same_v, decltype(aref2)>); EXPECT_EQ(aref1.data(), sv1.data()); EXPECT_EQ(aref1.size(), sv1.size()); EXPECT_EQ(aref2.data(), sv2.data()); EXPECT_EQ(aref2.size(), sv2.size()); } // std::vector { std::vector x(5); auto aref = MutableArrayRef(x); static_assert(std::is_same_v, decltype(aref)>); EXPECT_EQ(aref.data(), x.data()); EXPECT_EQ(aref.size(), x.size()); } // std::array { std::array x{}; auto aref = MutableArrayRef(x); static_assert(std::is_same_v, decltype(aref)>); EXPECT_EQ(aref.data(), x.data()); EXPECT_EQ(aref.size(), x.size()); } // MutableArrayRef { MutableArrayRef x{}; auto aref = MutableArrayRef(x); static_assert(std::is_same_v, decltype(aref)>); EXPECT_EQ(aref.data(), x.data()); EXPECT_EQ(aref.size(), x.size()); const MutableArrayRef y{}; auto aref2 = MutableArrayRef(y); static_assert(std::is_same_v, decltype(aref2)>); EXPECT_EQ(aref2.data(), y.data()); EXPECT_EQ(aref2.size(), y.size()); } // C-style array { int x[] = {0, 1, 2, 3}; auto aref = MutableArrayRef(x); static_assert(std::is_same_v, decltype(aref)>); EXPECT_EQ(aref.data(), &x[0]); EXPECT_EQ(aref.size(), 4u); } } } // end anonymous namespace