; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py ; RUN: opt -disable-output "-passes=print" %s 2>&1 | FileCheck %s define i32 @logical_and_2ops(i32 %n, i32 %m) { ; CHECK-LABEL: 'logical_and_2ops' ; CHECK-NEXT: Classifying expressions for: @logical_and_2ops ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_2ops ; CHECK-NEXT: Loop %loop: backedge-taken count is (%n umin_seq %m) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (%n umin_seq %m) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %n %cond_p1 = icmp ult i32 %i, %m %cond = select i1 %cond_p0, i1 %cond_p1, i1 false br i1 %cond, label %loop, label %exit exit: ret i32 %i } define i32 @logical_or_2ops(i32 %n, i32 %m) { ; CHECK-LABEL: 'logical_or_2ops' ; CHECK-NEXT: Classifying expressions for: @logical_or_2ops ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 true, i1 %cond_p1 ; CHECK-NEXT: --> %cond U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_or_2ops ; CHECK-NEXT: Loop %loop: backedge-taken count is (%n umin_seq %m) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (%n umin_seq %m) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp uge i32 %i, %n %cond_p1 = icmp uge i32 %i, %m %cond = select i1 %cond_p0, i1 true, i1 %cond_p1 br i1 %cond, label %exit, label %loop exit: ret i32 %i } define i32 @logical_and_3ops(i32 %n, i32 %m, i32 %k) { ; CHECK-LABEL: 'logical_and_3ops' ; CHECK-NEXT: Classifying expressions for: @logical_and_3ops ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m umin_seq %k) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m umin_seq %k)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond_p3 = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond = select i1 %cond_p3, i1 %cond_p2, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1 umin_seq %cond_p2) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_3ops ; CHECK-NEXT: Loop %loop: backedge-taken count is (%n umin_seq %m umin_seq %k) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (%n umin_seq %m umin_seq %k) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp ult i32 %i, %n %cond_p1 = icmp ult i32 %i, %m %cond_p2 = icmp ult i32 %i, %k %cond_p3 = select i1 %cond_p0, i1 %cond_p1, i1 false %cond = select i1 %cond_p3, i1 %cond_p2, i1 false br i1 %cond, label %loop, label %exit exit: ret i32 %i } define i32 @logical_or_3ops(i32 %n, i32 %m, i32 %k) { ; CHECK-LABEL: 'logical_or_3ops' ; CHECK-NEXT: Classifying expressions for: @logical_or_3ops ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m umin_seq %k) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m umin_seq %k)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 ; CHECK-NEXT: --> %cond_p3 U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond = select i1 %cond_p3, i1 true, i1 %cond_p2 ; CHECK-NEXT: --> %cond U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_or_3ops ; CHECK-NEXT: Loop %loop: backedge-taken count is (%n umin_seq %m umin_seq %k) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (%n umin_seq %m umin_seq %k) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp uge i32 %i, %n %cond_p1 = icmp uge i32 %i, %m %cond_p2 = icmp uge i32 %i, %k %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 %cond = select i1 %cond_p3, i1 true, i1 %cond_p2 br i1 %cond, label %exit, label %loop exit: ret i32 %i } define i32 @logical_or_3ops_duplicate(i32 %n, i32 %m, i32 %k) { ; CHECK-LABEL: 'logical_or_3ops_duplicate' ; CHECK-NEXT: Classifying expressions for: @logical_or_3ops_duplicate ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m umin_seq %k) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m umin_seq %k)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond_p4 = select i1 %cond_p0, i1 true, i1 %cond_p1 ; CHECK-NEXT: --> %cond_p4 U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond_p5 = select i1 %cond_p4, i1 true, i1 %cond_p2 ; CHECK-NEXT: --> %cond_p5 U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond = select i1 %cond_p5, i1 true, i1 %cond_p3 ; CHECK-NEXT: --> %cond U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_or_3ops_duplicate ; CHECK-NEXT: Loop %loop: backedge-taken count is (%n umin_seq %m umin_seq %k) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (%n umin_seq %m umin_seq %k) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %cond_p0 = icmp uge i32 %i, %n %cond_p1 = icmp uge i32 %i, %m %cond_p2 = icmp uge i32 %i, %n %cond_p3 = icmp uge i32 %i, %k %cond_p4 = select i1 %cond_p0, i1 true, i1 %cond_p1 %cond_p5 = select i1 %cond_p4, i1 true, i1 %cond_p2 %cond = select i1 %cond_p5, i1 true, i1 %cond_p3 br i1 %cond, label %exit, label %loop exit: ret i32 %i } define i32 @logical_or_3ops_redundant_uminseq_operand(i32 %n, i32 %m, i32 %k) { ; CHECK-LABEL: 'logical_or_3ops_redundant_uminseq_operand' ; CHECK-NEXT: Classifying expressions for: @logical_or_3ops_redundant_uminseq_operand ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((%n umin %m) umin_seq %k) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((%n umin %m) umin_seq %k)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %umin = call i32 @llvm.umin.i32(i32 %n, i32 %m) ; CHECK-NEXT: --> (%n umin %m) U: full-set S: full-set Exits: (%n umin %m) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 ; CHECK-NEXT: --> %cond_p3 U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond = select i1 %cond_p3, i1 true, i1 %cond_p2 ; CHECK-NEXT: --> %cond U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_or_3ops_redundant_uminseq_operand ; CHECK-NEXT: Loop %loop: backedge-taken count is ((%n umin %m) umin_seq %k) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((%n umin %m) umin_seq %k) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %umin = call i32 @llvm.umin.i32(i32 %n, i32 %m) %cond_p0 = icmp uge i32 %i, %umin %cond_p1 = icmp uge i32 %i, %n %cond_p2 = icmp uge i32 %i, %k %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 %cond = select i1 %cond_p3, i1 true, i1 %cond_p2 br i1 %cond, label %exit, label %loop exit: ret i32 %i } define i32 @logical_or_3ops_redundant_umin_operand(i32 %n, i32 %m, i32 %k) { ; CHECK-LABEL: 'logical_or_3ops_redundant_umin_operand' ; CHECK-NEXT: Classifying expressions for: @logical_or_3ops_redundant_umin_operand ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %k umin_seq %m) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %k umin_seq %m)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %umin = call i32 @llvm.umin.i32(i32 %n, i32 %m) ; CHECK-NEXT: --> (%n umin %m) U: full-set S: full-set Exits: (%n umin %m) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 ; CHECK-NEXT: --> %cond_p3 U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond = select i1 %cond_p3, i1 true, i1 %cond_p2 ; CHECK-NEXT: --> %cond U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_or_3ops_redundant_umin_operand ; CHECK-NEXT: Loop %loop: backedge-taken count is (%n umin_seq %k umin_seq %m) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (%n umin_seq %k umin_seq %m) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %umin = call i32 @llvm.umin.i32(i32 %n, i32 %m) %cond_p0 = icmp uge i32 %i, %n %cond_p1 = icmp uge i32 %i, %k %cond_p2 = icmp uge i32 %i, %umin %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 %cond = select i1 %cond_p3, i1 true, i1 %cond_p2 br i1 %cond, label %exit, label %loop exit: ret i32 %i } define i32 @logical_or_4ops_redundant_operand_across_umins(i32 %n, i32 %m, i32 %k, i32 %q) { ; CHECK-LABEL: 'logical_or_4ops_redundant_operand_across_umins' ; CHECK-NEXT: Classifying expressions for: @logical_or_4ops_redundant_operand_across_umins ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((%n umin %m) umin_seq %k umin_seq %q) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((%n umin %m) umin_seq %k umin_seq %q)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %umin = call i32 @llvm.umin.i32(i32 %n, i32 %m) ; CHECK-NEXT: --> (%n umin %m) U: full-set S: full-set Exits: (%n umin %m) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %umin2 = call i32 @llvm.umin.i32(i32 %n, i32 %q) ; CHECK-NEXT: --> (%n umin %q) U: full-set S: full-set Exits: (%n umin %q) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 ; CHECK-NEXT: --> %cond_p3 U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond = select i1 %cond_p3, i1 true, i1 %cond_p2 ; CHECK-NEXT: --> %cond U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_or_4ops_redundant_operand_across_umins ; CHECK-NEXT: Loop %loop: backedge-taken count is ((%n umin %m) umin_seq %k umin_seq %q) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((%n umin %m) umin_seq %k umin_seq %q) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %umin = call i32 @llvm.umin.i32(i32 %n, i32 %m) %umin2 = call i32 @llvm.umin.i32(i32 %n, i32 %q) %cond_p0 = icmp uge i32 %i, %umin %cond_p1 = icmp uge i32 %i, %k %cond_p2 = icmp uge i32 %i, %umin2 %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 %cond = select i1 %cond_p3, i1 true, i1 %cond_p2 br i1 %cond, label %exit, label %loop exit: ret i32 %i } define i32 @logical_or_3ops_operand_wise_redundant_umin(i32 %n, i32 %m, i32 %k) { ; CHECK-LABEL: 'logical_or_3ops_operand_wise_redundant_umin' ; CHECK-NEXT: Classifying expressions for: @logical_or_3ops_operand_wise_redundant_umin ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((%n umin %m) umin_seq %k) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((%n umin %m) umin_seq %k)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %umin = call i32 @llvm.umin.i32(i32 %n, i32 %m) ; CHECK-NEXT: --> (%n umin %m) U: full-set S: full-set Exits: (%n umin %m) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %umin2 = call i32 @llvm.umin.i32(i32 %n, i32 %k) ; CHECK-NEXT: --> (%n umin %k) U: full-set S: full-set Exits: (%n umin %k) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 ; CHECK-NEXT: --> %cond_p3 U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond = select i1 %cond_p3, i1 true, i1 %cond_p2 ; CHECK-NEXT: --> %cond U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_or_3ops_operand_wise_redundant_umin ; CHECK-NEXT: Loop %loop: backedge-taken count is ((%n umin %m) umin_seq %k) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((%n umin %m) umin_seq %k) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %umin = call i32 @llvm.umin.i32(i32 %n, i32 %m) %umin2 = call i32 @llvm.umin.i32(i32 %n, i32 %k) %cond_p0 = icmp uge i32 %i, %umin %cond_p1 = icmp uge i32 %i, %k %cond_p2 = icmp uge i32 %i, %umin2 %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 %cond = select i1 %cond_p3, i1 true, i1 %cond_p2 br i1 %cond, label %exit, label %loop exit: ret i32 %i } define i32 @logical_or_3ops_partially_redundant_umin(i32 %n, i32 %m, i32 %k) { ; CHECK-LABEL: 'logical_or_3ops_partially_redundant_umin' ; CHECK-NEXT: Classifying expressions for: @logical_or_3ops_partially_redundant_umin ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq (%m umin %k)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq (%m umin %k))) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %umin = call i32 @llvm.umin.i32(i32 %n, i32 %m) ; CHECK-NEXT: --> (%n umin %m) U: full-set S: full-set Exits: (%n umin %m) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %umin2 = call i32 @llvm.umin.i32(i32 %umin, i32 %k) ; CHECK-NEXT: --> (%n umin %m umin %k) U: full-set S: full-set Exits: (%n umin %m umin %k) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 true, i1 %cond_p1 ; CHECK-NEXT: --> %cond U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_or_3ops_partially_redundant_umin ; CHECK-NEXT: Loop %loop: backedge-taken count is (%n umin_seq (%m umin %k)) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (%n umin_seq (%m umin %k)) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %umin = call i32 @llvm.umin.i32(i32 %n, i32 %m) %umin2 = call i32 @llvm.umin.i32(i32 %umin, i32 %k) %cond_p0 = icmp uge i32 %i, %n %cond_p1 = icmp uge i32 %i, %umin2 %cond = select i1 %cond_p0, i1 true, i1 %cond_p1 br i1 %cond, label %exit, label %loop exit: ret i32 %i } define i32 @logical_or_5ops_redundant_opearand_of_inner_uminseq(i32 %a, i32 %b, i32 %c, i32 %d, i32 %e) { ; CHECK-LABEL: 'logical_or_5ops_redundant_opearand_of_inner_uminseq' ; CHECK-NEXT: Classifying expressions for: @logical_or_5ops_redundant_opearand_of_inner_uminseq ; CHECK-NEXT: %first.i = phi i32 [ 0, %entry ], [ %first.i.next, %first.loop ] ; CHECK-NEXT: --> {0,+,1}<%first.loop> U: full-set S: full-set Exits: (%e umin_seq %d umin_seq %a) LoopDispositions: { %first.loop: Computable } ; CHECK-NEXT: %first.i.next = add i32 %first.i, 1 ; CHECK-NEXT: --> {1,+,1}<%first.loop> U: full-set S: full-set Exits: (1 + (%e umin_seq %d umin_seq %a)) LoopDispositions: { %first.loop: Computable } ; CHECK-NEXT: %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 ; CHECK-NEXT: --> %cond_p3 U: full-set S: full-set Exits: <> LoopDispositions: { %first.loop: Variant } ; CHECK-NEXT: %cond_p4 = select i1 %cond_p3, i1 true, i1 %cond_p2 ; CHECK-NEXT: --> %cond_p4 U: full-set S: full-set Exits: <> LoopDispositions: { %first.loop: Variant } ; CHECK-NEXT: %i = phi i32 [ 0, %first.loop.exit ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%a umin_seq %b umin_seq ((%e umin_seq %d) umin %c)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%a umin_seq %b umin_seq ((%e umin_seq %d) umin %c))) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %umin = call i32 @llvm.umin.i32(i32 %c, i32 %d) ; CHECK-NEXT: --> (%c umin %d) U: full-set S: full-set Exits: (%c umin %d) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %umin2 = call i32 @llvm.umin.i32(i32 %umin, i32 %first.i) ; CHECK-NEXT: --> ({0,+,1}<%first.loop> umin %c umin %d) U: full-set S: full-set --> ((%e umin_seq %d umin_seq %a) umin %c umin %d) U: full-set S: full-set Exits: ((%e umin_seq %d umin_seq %a) umin %c umin %d) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %cond_p8 = select i1 %cond_p5, i1 true, i1 %cond_p6 ; CHECK-NEXT: --> %cond_p8 U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond = select i1 %cond_p8, i1 true, i1 %cond_p7 ; CHECK-NEXT: --> %cond U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_or_5ops_redundant_opearand_of_inner_uminseq ; CHECK-NEXT: Loop %loop: backedge-taken count is (%a umin_seq %b umin_seq ((%e umin_seq %d) umin %c)) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (%a umin_seq %b umin_seq ((%e umin_seq %d) umin %c)) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; CHECK-NEXT: Loop %first.loop: backedge-taken count is (%e umin_seq %d umin_seq %a) ; CHECK-NEXT: Loop %first.loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %first.loop: Predicated backedge-taken count is (%e umin_seq %d umin_seq %a) ; CHECK-NEXT: Predicates: ; CHECK: Loop %first.loop: Trip multiple is 1 ; entry: br label %first.loop first.loop: %first.i = phi i32 [0, %entry], [%first.i.next, %first.loop] %first.i.next = add i32 %first.i, 1 %cond_p0 = icmp uge i32 %first.i, %e %cond_p1 = icmp uge i32 %first.i, %d %cond_p2 = icmp uge i32 %first.i, %a %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 %cond_p4 = select i1 %cond_p3, i1 true, i1 %cond_p2 br i1 %cond_p4, label %first.loop.exit, label %first.loop first.loop.exit: br label %loop loop: %i = phi i32 [0, %first.loop.exit], [%i.next, %loop] %i.next = add i32 %i, 1 %umin = call i32 @llvm.umin.i32(i32 %c, i32 %d) %umin2 = call i32 @llvm.umin.i32(i32 %umin, i32 %first.i) %cond_p5 = icmp uge i32 %i, %a %cond_p6 = icmp uge i32 %i, %b %cond_p7 = icmp uge i32 %i, %umin2 %cond_p8 = select i1 %cond_p5, i1 true, i1 %cond_p6 %cond = select i1 %cond_p8, i1 true, i1 %cond_p7 br i1 %cond, label %exit, label %loop exit: ret i32 %i } define i32 @logical_and_2ops_and_constant(i32 %n, i32 %m, i32 %k) { ; CHECK-LABEL: 'logical_and_2ops_and_constant' ; CHECK-NEXT: Classifying expressions for: @logical_and_2ops_and_constant ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,43) S: [0,43) Exits: (42 umin %n) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,44) S: [1,44) Exits: (1 + (42 umin %n)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %umin = call i32 @llvm.umin.i32(i32 %n, i32 42) ; CHECK-NEXT: --> (42 umin %n) U: [0,43) S: [0,43) Exits: (42 umin %n) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %cond = select i1 %cond_p1, i1 true, i1 %cond_p0 ; CHECK-NEXT: --> %cond U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_2ops_and_constant ; CHECK-NEXT: Loop %loop: backedge-taken count is (42 umin %n) ; CHECK-NEXT: Loop %loop: max backedge-taken count is 42 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (42 umin %n) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i32 [0, %entry], [%i.next, %loop] %i.next = add i32 %i, 1 %umin = call i32 @llvm.umin.i32(i32 %n, i32 42) %cond_p0 = icmp uge i32 %i, %umin %cond_p1 = icmp uge i32 %i, %n %cond = select i1 %cond_p1, i1 true, i1 %cond_p0 br i1 %cond, label %exit, label %loop exit: ret i32 %i } define i32 @computeSCEVAtScope(i32 %d.0) { ; CHECK-LABEL: 'computeSCEVAtScope' ; CHECK-NEXT: Classifying expressions for: @computeSCEVAtScope ; CHECK-NEXT: %d.1 = phi i32 [ %inc, %for.body ], [ %d.0, %for.cond.preheader ] ; CHECK-NEXT: --> {%d.0,+,1}<%for.cond> U: full-set S: full-set Exits: 0 LoopDispositions: { %for.cond: Computable, %while.cond: Variant } ; CHECK-NEXT: %e.1 = phi i32 [ %inc3, %for.body ], [ %d.0, %for.cond.preheader ] ; CHECK-NEXT: --> {%d.0,+,1}<%for.cond> U: full-set S: full-set Exits: 0 LoopDispositions: { %for.cond: Computable, %while.cond: Variant } ; CHECK-NEXT: %0 = select i1 %tobool1, i1 %tobool2, i1 false ; CHECK-NEXT: --> (%tobool1 umin_seq %tobool2) U: full-set S: full-set Exits: false LoopDispositions: { %for.cond: Variant, %while.cond: Variant } ; CHECK-NEXT: %inc = add nsw i32 %d.1, 1 ; CHECK-NEXT: --> {(1 + %d.0),+,1}<%for.cond> U: full-set S: full-set Exits: 1 LoopDispositions: { %for.cond: Computable, %while.cond: Variant } ; CHECK-NEXT: %inc3 = add nsw i32 %e.1, 1 ; CHECK-NEXT: --> {(1 + %d.0),+,1}<%for.cond> U: full-set S: full-set Exits: 1 LoopDispositions: { %for.cond: Computable, %while.cond: Variant } ; CHECK-NEXT: %f.1 = phi i32 [ %inc8, %for.body5 ], [ 0, %for.cond4.preheader ] ; CHECK-NEXT: --> {0,+,1}<%for.cond4> U: [0,1) S: [0,1) Exits: 0 LoopDispositions: { %for.cond4: Computable, %while.cond: Variant } ; CHECK-NEXT: %inc8 = add i32 %f.1, 1 ; CHECK-NEXT: --> {1,+,1}<%for.cond4> U: [1,2) S: [1,2) Exits: 1 LoopDispositions: { %for.cond4: Computable, %while.cond: Variant } ; CHECK-NEXT: Determining loop execution counts for: @computeSCEVAtScope ; CHECK-NEXT: Loop %for.cond: backedge-taken count is (-1 * %d.0) ; CHECK-NEXT: Loop %for.cond: max backedge-taken count is -1 ; CHECK-NEXT: Loop %for.cond: Predicated backedge-taken count is (-1 * %d.0) ; CHECK-NEXT: Predicates: ; CHECK: Loop %for.cond: Trip multiple is 1 ; CHECK-NEXT: Loop %for.cond4: backedge-taken count is 0 ; CHECK-NEXT: Loop %for.cond4: max backedge-taken count is 0 ; CHECK-NEXT: Loop %for.cond4: Predicated backedge-taken count is 0 ; CHECK-NEXT: Predicates: ; CHECK: Loop %for.cond4: Trip multiple is 1 ; CHECK-NEXT: Loop %while.cond: Unpredictable backedge-taken count. ; CHECK-NEXT: Loop %while.cond: Unpredictable max backedge-taken count. ; CHECK-NEXT: Loop %while.cond: Unpredictable predicated backedge-taken count. ; entry: br label %while.cond while.cond.loopexit: ; preds = %for.cond4 br label %while.cond while.cond: ; preds = %while.cond.loopexit, %entry br label %for.cond.preheader for.cond.preheader: ; preds = %while.cond br label %for.cond for.cond: ; preds = %for.body, %for.cond.preheader %d.1 = phi i32 [ %inc, %for.body ], [ %d.0, %for.cond.preheader ] %e.1 = phi i32 [ %inc3, %for.body ], [ %d.0, %for.cond.preheader ] %tobool1 = icmp ne i32 %e.1, 0 %tobool2 = icmp ne i32 %d.1, 0 %0 = select i1 %tobool1, i1 %tobool2, i1 false br i1 %0, label %for.body, label %for.cond4.preheader for.cond4.preheader: ; preds = %for.cond br label %for.cond4 for.body: ; preds = %for.cond %inc = add nsw i32 %d.1, 1 %inc3 = add nsw i32 %e.1, 1 br label %for.cond for.cond4: ; preds = %for.body5, %for.cond4.preheader %f.1 = phi i32 [ %inc8, %for.body5 ], [ 0, %for.cond4.preheader ] %exitcond.not = icmp eq i32 %f.1, %e.1 br i1 %exitcond.not, label %while.cond.loopexit, label %for.body5 for.body5: ; preds = %for.cond4 %inc8 = add i32 %f.1, 1 br label %for.cond4 } define i64 @uminseq_vs_ptrtoint_complexity(i64 %n, i64 %m, i64* %ptr) { ; CHECK-LABEL: 'uminseq_vs_ptrtoint_complexity' ; CHECK-NEXT: Classifying expressions for: @uminseq_vs_ptrtoint_complexity ; CHECK-NEXT: %i = phi i64 [ 0, %entry ], [ %i.next, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i64 %i, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %ptr.int = ptrtoint i64* %ptr to i64 ; CHECK-NEXT: --> (ptrtoint i64* %ptr to i64) U: full-set S: full-set ; CHECK-NEXT: %r = add i64 %i, %ptr.int ; CHECK-NEXT: --> {(ptrtoint i64* %ptr to i64),+,1}<%loop> U: full-set S: full-set --> ((%n umin_seq %m) + (ptrtoint i64* %ptr to i64)) U: full-set S: full-set ; CHECK-NEXT: Determining loop execution counts for: @uminseq_vs_ptrtoint_complexity ; CHECK-NEXT: Loop %loop: backedge-taken count is (%n umin_seq %m) ; CHECK-NEXT: Loop %loop: max backedge-taken count is -1 ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is (%n umin_seq %m) ; CHECK-NEXT: Predicates: ; CHECK: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %i = phi i64 [0, %entry], [%i.next, %loop] %i.next = add i64 %i, 1 %cond_p0 = icmp ult i64 %i, %n %cond_p1 = icmp ult i64 %i, %m %cond = select i1 %cond_p0, i1 %cond_p1, i1 false br i1 %cond, label %loop, label %exit exit: %ptr.int = ptrtoint i64* %ptr to i64 %r = add i64 %i, %ptr.int ret i64 %r } declare i32 @llvm.umin.i32(i32, i32)