//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file promotes memory references to be register references. It promotes // alloca instructions which only have loads and stores as uses. An alloca is // transformed by using iterated dominator frontiers to place PHI nodes, then // traversing the function in depth-first order to rewrite loads and stores as // appropriate. // //===----------------------------------------------------------------------===// #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/IteratedDominanceFrontier.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DebugProgramInstruction.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/Support/Casting.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/PromoteMemToReg.h" #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "mem2reg" STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); bool llvm::isAllocaPromotable(const AllocaInst *AI) { // Only allow direct and non-volatile loads and stores... for (const User *U : AI->users()) { if (const LoadInst *LI = dyn_cast(U)) { // Note that atomic loads can be transformed; atomic semantics do // not have any meaning for a local alloca. if (LI->isVolatile() || LI->getType() != AI->getAllocatedType()) return false; } else if (const StoreInst *SI = dyn_cast(U)) { if (SI->getValueOperand() == AI || SI->getValueOperand()->getType() != AI->getAllocatedType()) return false; // Don't allow a store OF the AI, only INTO the AI. // Note that atomic stores can be transformed; atomic semantics do // not have any meaning for a local alloca. if (SI->isVolatile()) return false; } else if (const IntrinsicInst *II = dyn_cast(U)) { if (!II->isLifetimeStartOrEnd() && !II->isDroppable() && II->getIntrinsicID() != Intrinsic::fake_use) return false; } else if (const BitCastInst *BCI = dyn_cast(U)) { if (!onlyUsedByLifetimeMarkersOrDroppableInsts(BCI)) return false; } else if (const GetElementPtrInst *GEPI = dyn_cast(U)) { if (!GEPI->hasAllZeroIndices()) return false; if (!onlyUsedByLifetimeMarkersOrDroppableInsts(GEPI)) return false; } else if (const AddrSpaceCastInst *ASCI = dyn_cast(U)) { if (!onlyUsedByLifetimeMarkers(ASCI)) return false; } else { return false; } } return true; } namespace { static void createDebugValue(DIBuilder &DIB, Value *NewValue, DILocalVariable *Variable, DIExpression *Expression, const DILocation *DI, DbgVariableRecord *InsertBefore) { // FIXME: Merge these two functions now that DIBuilder supports // DbgVariableRecords. We neeed the API to accept DbgVariableRecords as an // insert point for that to work. (void)DIB; DbgVariableRecord::createDbgVariableRecord(NewValue, Variable, Expression, DI, *InsertBefore); } static void createDebugValue(DIBuilder &DIB, Value *NewValue, DILocalVariable *Variable, DIExpression *Expression, const DILocation *DI, Instruction *InsertBefore) { DIB.insertDbgValueIntrinsic(NewValue, Variable, Expression, DI, InsertBefore); } /// Helper for updating assignment tracking debug info when promoting allocas. class AssignmentTrackingInfo { /// DbgAssignIntrinsics linked to the alloca with at most one per variable /// fragment. (i.e. not be a comprehensive set if there are multiple /// dbg.assigns for one variable fragment). SmallVector DbgAssigns; SmallVector DVRAssigns; public: void init(AllocaInst *AI) { SmallSet Vars; for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(AI)) { if (Vars.insert(DebugVariable(DAI)).second) DbgAssigns.push_back(DAI); } for (DbgVariableRecord *DVR : at::getDVRAssignmentMarkers(AI)) { if (Vars.insert(DebugVariable(DVR)).second) DVRAssigns.push_back(DVR); } } /// Update assignment tracking debug info given for the to-be-deleted store /// \p ToDelete that stores to this alloca. void updateForDeletedStore( StoreInst *ToDelete, DIBuilder &DIB, SmallSet *DbgAssignsToDelete, SmallSet *DVRAssignsToDelete) const { // There's nothing to do if the alloca doesn't have any variables using // assignment tracking. if (DbgAssigns.empty() && DVRAssigns.empty()) return; // Insert a dbg.value where the linked dbg.assign is and remember to delete // the dbg.assign later. Demoting to dbg.value isn't necessary for // correctness but does reduce compile time and memory usage by reducing // unnecessary function-local metadata. Remember that we've seen a // dbg.assign for each variable fragment for the untracked store handling // (after this loop). SmallSet VarHasDbgAssignForStore; auto InsertValueForAssign = [&](auto *DbgAssign, auto *&AssignList) { VarHasDbgAssignForStore.insert(DebugVariableAggregate(DbgAssign)); AssignList->insert(DbgAssign); createDebugValue(DIB, DbgAssign->getValue(), DbgAssign->getVariable(), DbgAssign->getExpression(), DbgAssign->getDebugLoc(), DbgAssign); }; for (auto *Assign : at::getAssignmentMarkers(ToDelete)) InsertValueForAssign(Assign, DbgAssignsToDelete); for (auto *Assign : at::getDVRAssignmentMarkers(ToDelete)) InsertValueForAssign(Assign, DVRAssignsToDelete); // It's possible for variables using assignment tracking to have no // dbg.assign linked to this store. These are variables in DbgAssigns that // are missing from VarHasDbgAssignForStore. Since there isn't a dbg.assign // to mark the assignment - and the store is going to be deleted - insert a // dbg.value to do that now. An untracked store may be either one that // cannot be represented using assignment tracking (non-const offset or // size) or one that is trackable but has had its DIAssignID attachment // dropped accidentally. auto ConvertUnlinkedAssignToValue = [&](auto *Assign) { if (VarHasDbgAssignForStore.contains(DebugVariableAggregate(Assign))) return; ConvertDebugDeclareToDebugValue(Assign, ToDelete, DIB); }; for_each(DbgAssigns, ConvertUnlinkedAssignToValue); for_each(DVRAssigns, ConvertUnlinkedAssignToValue); } /// Update assignment tracking debug info given for the newly inserted PHI \p /// NewPhi. void updateForNewPhi(PHINode *NewPhi, DIBuilder &DIB) const { // Regardless of the position of dbg.assigns relative to stores, the // incoming values into a new PHI should be the same for the (imaginary) // debug-phi. for (auto *DAI : DbgAssigns) ConvertDebugDeclareToDebugValue(DAI, NewPhi, DIB); for (auto *DVR : DVRAssigns) ConvertDebugDeclareToDebugValue(DVR, NewPhi, DIB); } void clear() { DbgAssigns.clear(); DVRAssigns.clear(); } bool empty() { return DbgAssigns.empty() && DVRAssigns.empty(); } }; struct AllocaInfo { using DbgUserVec = SmallVector; using DPUserVec = SmallVector; SmallVector DefiningBlocks; SmallVector UsingBlocks; StoreInst *OnlyStore; BasicBlock *OnlyBlock; bool OnlyUsedInOneBlock; /// Debug users of the alloca - does not include dbg.assign intrinsics. DbgUserVec DbgUsers; DPUserVec DPUsers; /// Helper to update assignment tracking debug info. AssignmentTrackingInfo AssignmentTracking; void clear() { DefiningBlocks.clear(); UsingBlocks.clear(); OnlyStore = nullptr; OnlyBlock = nullptr; OnlyUsedInOneBlock = true; DbgUsers.clear(); DPUsers.clear(); AssignmentTracking.clear(); } /// Scan the uses of the specified alloca, filling in the AllocaInfo used /// by the rest of the pass to reason about the uses of this alloca. void AnalyzeAlloca(AllocaInst *AI) { clear(); // As we scan the uses of the alloca instruction, keep track of stores, // and decide whether all of the loads and stores to the alloca are within // the same basic block. for (User *U : AI->users()) { Instruction *User = cast(U); if (StoreInst *SI = dyn_cast(User)) { // Remember the basic blocks which define new values for the alloca DefiningBlocks.push_back(SI->getParent()); OnlyStore = SI; } else { LoadInst *LI = cast(User); // Otherwise it must be a load instruction, keep track of variable // reads. UsingBlocks.push_back(LI->getParent()); } if (OnlyUsedInOneBlock) { if (!OnlyBlock) OnlyBlock = User->getParent(); else if (OnlyBlock != User->getParent()) OnlyUsedInOneBlock = false; } } DbgUserVec AllDbgUsers; SmallVector AllDPUsers; findDbgUsers(AllDbgUsers, AI, &AllDPUsers); std::copy_if(AllDbgUsers.begin(), AllDbgUsers.end(), std::back_inserter(DbgUsers), [](DbgVariableIntrinsic *DII) { return !isa(DII); }); std::copy_if(AllDPUsers.begin(), AllDPUsers.end(), std::back_inserter(DPUsers), [](DbgVariableRecord *DVR) { return !DVR->isDbgAssign(); }); AssignmentTracking.init(AI); } }; /// Data package used by RenamePass(). struct RenamePassData { using ValVector = std::vector; using LocationVector = std::vector; RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L) : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {} BasicBlock *BB; BasicBlock *Pred; ValVector Values; LocationVector Locations; }; /// This assigns and keeps a per-bb relative ordering of load/store /// instructions in the block that directly load or store an alloca. /// /// This functionality is important because it avoids scanning large basic /// blocks multiple times when promoting many allocas in the same block. class LargeBlockInfo { /// For each instruction that we track, keep the index of the /// instruction. /// /// The index starts out as the number of the instruction from the start of /// the block. DenseMap InstNumbers; public: /// This code only looks at accesses to allocas. static bool isInterestingInstruction(const Instruction *I) { return (isa(I) && isa(I->getOperand(0))) || (isa(I) && isa(I->getOperand(1))); } /// Get or calculate the index of the specified instruction. unsigned getInstructionIndex(const Instruction *I) { assert(isInterestingInstruction(I) && "Not a load/store to/from an alloca?"); // If we already have this instruction number, return it. DenseMap::iterator It = InstNumbers.find(I); if (It != InstNumbers.end()) return It->second; // Scan the whole block to get the instruction. This accumulates // information for every interesting instruction in the block, in order to // avoid gratuitus rescans. const BasicBlock *BB = I->getParent(); unsigned InstNo = 0; for (const Instruction &BBI : *BB) if (isInterestingInstruction(&BBI)) InstNumbers[&BBI] = InstNo++; It = InstNumbers.find(I); assert(It != InstNumbers.end() && "Didn't insert instruction?"); return It->second; } void deleteValue(const Instruction *I) { InstNumbers.erase(I); } void clear() { InstNumbers.clear(); } }; struct PromoteMem2Reg { /// The alloca instructions being promoted. std::vector Allocas; DominatorTree &DT; DIBuilder DIB; /// A cache of @llvm.assume intrinsics used by SimplifyInstruction. AssumptionCache *AC; const SimplifyQuery SQ; /// Reverse mapping of Allocas. DenseMap AllocaLookup; /// The PhiNodes we're adding. /// /// That map is used to simplify some Phi nodes as we iterate over it, so /// it should have deterministic iterators. We could use a MapVector, but /// since basic blocks have numbers, using these are more efficient. DenseMap, PHINode *> NewPhiNodes; /// For each PHI node, keep track of which entry in Allocas it corresponds /// to. DenseMap PhiToAllocaMap; /// For each alloca, we keep track of the dbg.declare intrinsic that /// describes it, if any, so that we can convert it to a dbg.value /// intrinsic if the alloca gets promoted. SmallVector AllocaDbgUsers; SmallVector AllocaDPUsers; /// For each alloca, keep an instance of a helper class that gives us an easy /// way to update assignment tracking debug info if the alloca is promoted. SmallVector AllocaATInfo; /// A set of dbg.assigns to delete because they've been demoted to /// dbg.values. Call cleanUpDbgAssigns to delete them. SmallSet DbgAssignsToDelete; SmallSet DVRAssignsToDelete; /// The set of basic blocks the renamer has already visited. BitVector Visited; /// Lazily compute the number of predecessors a block has, indexed by block /// number. SmallVector BBNumPreds; /// Whether the function has the no-signed-zeros-fp-math attribute set. bool NoSignedZeros = false; public: PromoteMem2Reg(ArrayRef Allocas, DominatorTree &DT, AssumptionCache *AC) : Allocas(Allocas.begin(), Allocas.end()), DT(DT), DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false), AC(AC), SQ(DT.getRoot()->getDataLayout(), nullptr, &DT, AC) {} void run(); private: void RemoveFromAllocasList(unsigned &AllocaIdx) { Allocas[AllocaIdx] = Allocas.back(); Allocas.pop_back(); --AllocaIdx; } unsigned getNumPreds(const BasicBlock *BB) { // BBNumPreds is resized to getMaxBlockNumber() at the beginning. unsigned &NP = BBNumPreds[BB->getNumber()]; if (NP == 0) NP = pred_size(BB) + 1; return NP - 1; } void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, const SmallPtrSetImpl &DefBlocks, SmallPtrSetImpl &LiveInBlocks); void RenamePass(BasicBlock *BB, BasicBlock *Pred, RenamePassData::ValVector &IncVals, RenamePassData::LocationVector &IncLocs, std::vector &Worklist); bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); /// Delete dbg.assigns that have been demoted to dbg.values. void cleanUpDbgAssigns() { for (auto *DAI : DbgAssignsToDelete) DAI->eraseFromParent(); DbgAssignsToDelete.clear(); for (auto *DVR : DVRAssignsToDelete) DVR->eraseFromParent(); DVRAssignsToDelete.clear(); } }; } // end anonymous namespace /// Given a LoadInst LI this adds assume(LI != null) after it. static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) { Function *AssumeIntrinsic = Intrinsic::getOrInsertDeclaration(LI->getModule(), Intrinsic::assume); ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI, Constant::getNullValue(LI->getType())); LoadNotNull->insertAfter(LI->getIterator()); CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull}); CI->insertAfter(LoadNotNull->getIterator()); AC->registerAssumption(cast(CI)); } static void convertMetadataToAssumes(LoadInst *LI, Value *Val, const DataLayout &DL, AssumptionCache *AC, const DominatorTree *DT) { if (isa(Val) && LI->hasMetadata(LLVMContext::MD_noundef)) { // Insert non-terminator unreachable. LLVMContext &Ctx = LI->getContext(); new StoreInst(ConstantInt::getTrue(Ctx), PoisonValue::get(PointerType::getUnqual(Ctx)), /*isVolatile=*/false, Align(1), LI->getIterator()); return; } // If the load was marked as nonnull we don't want to lose that information // when we erase this Load. So we preserve it with an assume. As !nonnull // returns poison while assume violations are immediate undefined behavior, // we can only do this if the value is known non-poison. if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && LI->getMetadata(LLVMContext::MD_noundef) && !isKnownNonZero(Val, SimplifyQuery(DL, DT, AC, LI))) addAssumeNonNull(AC, LI); } static void removeIntrinsicUsers(AllocaInst *AI) { // Knowing that this alloca is promotable, we know that it's safe to kill all // instructions except for load and store. for (Use &U : llvm::make_early_inc_range(AI->uses())) { Instruction *I = cast(U.getUser()); if (isa(I) || isa(I)) continue; // Drop the use of AI in droppable instructions. if (I->isDroppable()) { I->dropDroppableUse(U); continue; } if (!I->getType()->isVoidTy()) { // The only users of this bitcast/GEP instruction are lifetime intrinsics. // Follow the use/def chain to erase them now instead of leaving it for // dead code elimination later. for (Use &UU : llvm::make_early_inc_range(I->uses())) { Instruction *Inst = cast(UU.getUser()); // Drop the use of I in droppable instructions. if (Inst->isDroppable()) { Inst->dropDroppableUse(UU); continue; } Inst->eraseFromParent(); } } I->eraseFromParent(); } } /// Rewrite as many loads as possible given a single store. /// /// When there is only a single store, we can use the domtree to trivially /// replace all of the dominated loads with the stored value. Do so, and return /// true if this has successfully promoted the alloca entirely. If this returns /// false there were some loads which were not dominated by the single store /// and thus must be phi-ed with undef. We fall back to the standard alloca /// promotion algorithm in that case. static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, LargeBlockInfo &LBI, const DataLayout &DL, DominatorTree &DT, AssumptionCache *AC, SmallSet *DbgAssignsToDelete, SmallSet *DVRAssignsToDelete) { StoreInst *OnlyStore = Info.OnlyStore; Value *ReplVal = OnlyStore->getOperand(0); // Loads may either load the stored value or uninitialized memory (undef). // If the stored value may be poison, then replacing an uninitialized memory // load with it would be incorrect. If the store dominates the load, we know // it is always initialized. bool RequireDominatingStore = isa(ReplVal) || !isGuaranteedNotToBePoison(ReplVal); BasicBlock *StoreBB = OnlyStore->getParent(); int StoreIndex = -1; // Clear out UsingBlocks. We will reconstruct it here if needed. Info.UsingBlocks.clear(); for (User *U : make_early_inc_range(AI->users())) { Instruction *UserInst = cast(U); if (UserInst == OnlyStore) continue; LoadInst *LI = cast(UserInst); // Okay, if we have a load from the alloca, we want to replace it with the // only value stored to the alloca. We can do this if the value is // dominated by the store. If not, we use the rest of the mem2reg machinery // to insert the phi nodes as needed. if (RequireDominatingStore) { if (LI->getParent() == StoreBB) { // If we have a use that is in the same block as the store, compare the // indices of the two instructions to see which one came first. If the // load came before the store, we can't handle it. if (StoreIndex == -1) StoreIndex = LBI.getInstructionIndex(OnlyStore); if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { // Can't handle this load, bail out. Info.UsingBlocks.push_back(StoreBB); continue; } } else if (!DT.dominates(StoreBB, LI->getParent())) { // If the load and store are in different blocks, use BB dominance to // check their relationships. If the store doesn't dom the use, bail // out. Info.UsingBlocks.push_back(LI->getParent()); continue; } } // Otherwise, we *can* safely rewrite this load. // If the replacement value is the load, this must occur in unreachable // code. if (ReplVal == LI) ReplVal = PoisonValue::get(LI->getType()); convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT); LI->replaceAllUsesWith(ReplVal); LI->eraseFromParent(); LBI.deleteValue(LI); } // Finally, after the scan, check to see if the store is all that is left. if (!Info.UsingBlocks.empty()) return false; // If not, we'll have to fall back for the remainder. DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); // Update assignment tracking info for the store we're going to delete. Info.AssignmentTracking.updateForDeletedStore( Info.OnlyStore, DIB, DbgAssignsToDelete, DVRAssignsToDelete); // Record debuginfo for the store and remove the declaration's // debuginfo. auto ConvertDebugInfoForStore = [&](auto &Container) { for (auto *DbgItem : Container) { if (DbgItem->isAddressOfVariable()) { ConvertDebugDeclareToDebugValue(DbgItem, Info.OnlyStore, DIB); DbgItem->eraseFromParent(); } else if (DbgItem->isValueOfVariable() && DbgItem->getExpression()->startsWithDeref()) { InsertDebugValueAtStoreLoc(DbgItem, Info.OnlyStore, DIB); DbgItem->eraseFromParent(); } else if (DbgItem->getExpression()->startsWithDeref()) { DbgItem->eraseFromParent(); } } }; ConvertDebugInfoForStore(Info.DbgUsers); ConvertDebugInfoForStore(Info.DPUsers); // Remove dbg.assigns linked to the alloca as these are now redundant. at::deleteAssignmentMarkers(AI); // Remove the (now dead) store and alloca. Info.OnlyStore->eraseFromParent(); LBI.deleteValue(Info.OnlyStore); AI->eraseFromParent(); return true; } /// Many allocas are only used within a single basic block. If this is the /// case, avoid traversing the CFG and inserting a lot of potentially useless /// PHI nodes by just performing a single linear pass over the basic block /// using the Alloca. /// /// If we cannot promote this alloca (because it is read before it is written), /// return false. This is necessary in cases where, due to control flow, the /// alloca is undefined only on some control flow paths. e.g. code like /// this is correct in LLVM IR: /// // A is an alloca with no stores so far /// for (...) { /// int t = *A; /// if (!first_iteration) /// use(t); /// *A = 42; /// } static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info, LargeBlockInfo &LBI, const DataLayout &DL, DominatorTree &DT, AssumptionCache *AC, SmallSet *DbgAssignsToDelete, SmallSet *DVRAssignsToDelete) { // The trickiest case to handle is when we have large blocks. Because of this, // this code is optimized assuming that large blocks happen. This does not // significantly pessimize the small block case. This uses LargeBlockInfo to // make it efficient to get the index of various operations in the block. // Walk the use-def list of the alloca, getting the locations of all stores. using StoresByIndexTy = SmallVector, 64>; StoresByIndexTy StoresByIndex; for (User *U : AI->users()) if (StoreInst *SI = dyn_cast(U)) StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); // Sort the stores by their index, making it efficient to do a lookup with a // binary search. llvm::sort(StoresByIndex, less_first()); // Walk all of the loads from this alloca, replacing them with the nearest // store above them, if any. for (User *U : make_early_inc_range(AI->users())) { LoadInst *LI = dyn_cast(U); if (!LI) continue; unsigned LoadIdx = LBI.getInstructionIndex(LI); // Find the nearest store that has a lower index than this load. StoresByIndexTy::iterator I = llvm::lower_bound( StoresByIndex, std::make_pair(LoadIdx, static_cast(nullptr)), less_first()); Value *ReplVal; if (I == StoresByIndex.begin()) { if (StoresByIndex.empty()) // If there are no stores, the load takes the undef value. ReplVal = UndefValue::get(LI->getType()); else // There is no store before this load, bail out (load may be affected // by the following stores - see main comment). return false; } else { // Otherwise, there was a store before this load, the load takes its // value. ReplVal = std::prev(I)->second->getOperand(0); } convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT); // If the replacement value is the load, this must occur in unreachable // code. if (ReplVal == LI) ReplVal = PoisonValue::get(LI->getType()); LI->replaceAllUsesWith(ReplVal); LI->eraseFromParent(); LBI.deleteValue(LI); } // Remove the (now dead) stores and alloca. DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); while (!AI->use_empty()) { StoreInst *SI = cast(AI->user_back()); // Update assignment tracking info for the store we're going to delete. Info.AssignmentTracking.updateForDeletedStore(SI, DIB, DbgAssignsToDelete, DVRAssignsToDelete); // Record debuginfo for the store before removing it. auto DbgUpdateForStore = [&](auto &Container) { for (auto *DbgItem : Container) { if (DbgItem->isAddressOfVariable()) { ConvertDebugDeclareToDebugValue(DbgItem, SI, DIB); } } }; DbgUpdateForStore(Info.DbgUsers); DbgUpdateForStore(Info.DPUsers); SI->eraseFromParent(); LBI.deleteValue(SI); } // Remove dbg.assigns linked to the alloca as these are now redundant. at::deleteAssignmentMarkers(AI); AI->eraseFromParent(); // The alloca's debuginfo can be removed as well. auto DbgUpdateForAlloca = [&](auto &Container) { for (auto *DbgItem : Container) if (DbgItem->isAddressOfVariable() || DbgItem->getExpression()->startsWithDeref()) DbgItem->eraseFromParent(); }; DbgUpdateForAlloca(Info.DbgUsers); DbgUpdateForAlloca(Info.DPUsers); ++NumLocalPromoted; return true; } void PromoteMem2Reg::run() { Function &F = *DT.getRoot()->getParent(); AllocaDbgUsers.resize(Allocas.size()); AllocaATInfo.resize(Allocas.size()); AllocaDPUsers.resize(Allocas.size()); AllocaInfo Info; LargeBlockInfo LBI; ForwardIDFCalculator IDF(DT); NoSignedZeros = F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool(); for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { AllocaInst *AI = Allocas[AllocaNum]; assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); assert(AI->getParent()->getParent() == &F && "All allocas should be in the same function, which is same as DF!"); removeIntrinsicUsers(AI); if (AI->use_empty()) { // If there are no uses of the alloca, just delete it now. AI->eraseFromParent(); // Remove the alloca from the Allocas list, since it has been processed RemoveFromAllocasList(AllocaNum); ++NumDeadAlloca; continue; } // Calculate the set of read and write-locations for each alloca. This is // analogous to finding the 'uses' and 'definitions' of each variable. Info.AnalyzeAlloca(AI); // If there is only a single store to this value, replace any loads of // it that are directly dominated by the definition with the value stored. if (Info.DefiningBlocks.size() == 1) { if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC, &DbgAssignsToDelete, &DVRAssignsToDelete)) { // The alloca has been processed, move on. RemoveFromAllocasList(AllocaNum); ++NumSingleStore; continue; } } // If the alloca is only read and written in one basic block, just perform a // linear sweep over the block to eliminate it. if (Info.OnlyUsedInOneBlock && promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC, &DbgAssignsToDelete, &DVRAssignsToDelete)) { // The alloca has been processed, move on. RemoveFromAllocasList(AllocaNum); continue; } // Initialize BBNumPreds lazily if (BBNumPreds.empty()) BBNumPreds.resize(F.getMaxBlockNumber()); // Remember the dbg.declare intrinsic describing this alloca, if any. if (!Info.DbgUsers.empty()) AllocaDbgUsers[AllocaNum] = Info.DbgUsers; if (!Info.AssignmentTracking.empty()) AllocaATInfo[AllocaNum] = Info.AssignmentTracking; if (!Info.DPUsers.empty()) AllocaDPUsers[AllocaNum] = Info.DPUsers; // Keep the reverse mapping of the 'Allocas' array for the rename pass. AllocaLookup[Allocas[AllocaNum]] = AllocaNum; // Unique the set of defining blocks for efficient lookup. SmallPtrSet DefBlocks(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end()); // Determine which blocks the value is live in. These are blocks which lead // to uses. SmallPtrSet LiveInBlocks; ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); // At this point, we're committed to promoting the alloca using IDF's, and // the standard SSA construction algorithm. Determine which blocks need phi // nodes and see if we can optimize out some work by avoiding insertion of // dead phi nodes. IDF.setLiveInBlocks(LiveInBlocks); IDF.setDefiningBlocks(DefBlocks); SmallVector PHIBlocks; IDF.calculate(PHIBlocks); llvm::sort(PHIBlocks, [](BasicBlock *A, BasicBlock *B) { return A->getNumber() < B->getNumber(); }); unsigned CurrentVersion = 0; for (BasicBlock *BB : PHIBlocks) QueuePhiNode(BB, AllocaNum, CurrentVersion); } if (Allocas.empty()) { cleanUpDbgAssigns(); return; // All of the allocas must have been trivial! } LBI.clear(); // Set the incoming values for the basic block to be null values for all of // the alloca's. We do this in case there is a load of a value that has not // been stored yet. In this case, it will get this null value. RenamePassData::ValVector Values(Allocas.size()); for (unsigned i = 0, e = Allocas.size(); i != e; ++i) Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); // When handling debug info, treat all incoming values as if they have unknown // locations until proven otherwise. RenamePassData::LocationVector Locations(Allocas.size()); // The renamer uses the Visited set to avoid infinite loops. Visited.resize(F.getMaxBlockNumber()); // Walks all basic blocks in the function performing the SSA rename algorithm // and inserting the phi nodes we marked as necessary std::vector RenamePassWorkList; RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values), std::move(Locations)); do { RenamePassData RPD = std::move(RenamePassWorkList.back()); RenamePassWorkList.pop_back(); // RenamePass may add new worklist entries. RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList); } while (!RenamePassWorkList.empty()); // Remove the allocas themselves from the function. for (Instruction *A : Allocas) { // Remove dbg.assigns linked to the alloca as these are now redundant. at::deleteAssignmentMarkers(A); // If there are any uses of the alloca instructions left, they must be in // unreachable basic blocks that were not processed by walking the dominator // tree. Just delete the users now. if (!A->use_empty()) A->replaceAllUsesWith(PoisonValue::get(A->getType())); A->eraseFromParent(); } // Remove alloca's dbg.declare intrinsics from the function. auto RemoveDbgDeclares = [&](auto &Container) { for (auto &DbgUsers : Container) { for (auto *DbgItem : DbgUsers) if (DbgItem->isAddressOfVariable() || DbgItem->getExpression()->startsWithDeref()) DbgItem->eraseFromParent(); } }; RemoveDbgDeclares(AllocaDbgUsers); RemoveDbgDeclares(AllocaDPUsers); // Loop over all of the PHI nodes and see if there are any that we can get // rid of because they merge all of the same incoming values. This can // happen due to undef values coming into the PHI nodes. This process is // iterative, because eliminating one PHI node can cause others to be removed. bool EliminatedAPHI = true; while (EliminatedAPHI) { EliminatedAPHI = false; // Iterating over NewPhiNodes is deterministic, so it is safe to try to // simplify and RAUW them as we go. If it was not, we could add uses to // the values we replace with in a non-deterministic order, thus creating // non-deterministic def->use chains. for (DenseMap, PHINode *>::iterator I = NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) { PHINode *PN = I->second; // If this PHI node merges one value and/or undefs, get the value. if (Value *V = simplifyInstruction(PN, SQ)) { PN->replaceAllUsesWith(V); PN->eraseFromParent(); NewPhiNodes.erase(I++); EliminatedAPHI = true; continue; } ++I; } } // At this point, the renamer has added entries to PHI nodes for all reachable // code. Unfortunately, there may be unreachable blocks which the renamer // hasn't traversed. If this is the case, the PHI nodes may not // have incoming values for all predecessors. Loop over all PHI nodes we have // created, inserting poison values if they are missing any incoming values. for (DenseMap, PHINode *>::iterator I = NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) { // We want to do this once per basic block. As such, only process a block // when we find the PHI that is the first entry in the block. PHINode *SomePHI = I->second; BasicBlock *BB = SomePHI->getParent(); if (&BB->front() != SomePHI) continue; // Only do work here if there the PHI nodes are missing incoming values. We // know that all PHI nodes that were inserted in a block will have the same // number of incoming values, so we can just check any of them. if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) continue; // Get the preds for BB. SmallVector Preds(predecessors(BB)); // Ok, now we know that all of the PHI nodes are missing entries for some // basic blocks. Start by sorting the incoming predecessors for efficient // access. auto CompareBBNumbers = [](BasicBlock *A, BasicBlock *B) { return A->getNumber() < B->getNumber(); }; llvm::sort(Preds, CompareBBNumbers); // Now we loop through all BB's which have entries in SomePHI and remove // them from the Preds list. for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { // Do a log(n) search of the Preds list for the entry we want. SmallVectorImpl::iterator EntIt = llvm::lower_bound( Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers); assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && "PHI node has entry for a block which is not a predecessor!"); // Remove the entry Preds.erase(EntIt); } // At this point, the blocks left in the preds list must have dummy // entries inserted into every PHI nodes for the block. Update all the phi // nodes in this block that we are inserting (there could be phis before // mem2reg runs). unsigned NumBadPreds = SomePHI->getNumIncomingValues(); BasicBlock::iterator BBI = BB->begin(); while ((SomePHI = dyn_cast(BBI++)) && SomePHI->getNumIncomingValues() == NumBadPreds) { Value *PoisonVal = PoisonValue::get(SomePHI->getType()); for (BasicBlock *Pred : Preds) SomePHI->addIncoming(PoisonVal, Pred); } } NewPhiNodes.clear(); cleanUpDbgAssigns(); } /// Determine which blocks the value is live in. /// /// These are blocks which lead to uses. Knowing this allows us to avoid /// inserting PHI nodes into blocks which don't lead to uses (thus, the /// inserted phi nodes would be dead). void PromoteMem2Reg::ComputeLiveInBlocks( AllocaInst *AI, AllocaInfo &Info, const SmallPtrSetImpl &DefBlocks, SmallPtrSetImpl &LiveInBlocks) { // To determine liveness, we must iterate through the predecessors of blocks // where the def is live. Blocks are added to the worklist if we need to // check their predecessors. Start with all the using blocks. SmallVector LiveInBlockWorklist(Info.UsingBlocks.begin(), Info.UsingBlocks.end()); // If any of the using blocks is also a definition block, check to see if the // definition occurs before or after the use. If it happens before the use, // the value isn't really live-in. for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { BasicBlock *BB = LiveInBlockWorklist[i]; if (!DefBlocks.count(BB)) continue; // Okay, this is a block that both uses and defines the value. If the first // reference to the alloca is a def (store), then we know it isn't live-in. for (BasicBlock::iterator I = BB->begin();; ++I) { if (StoreInst *SI = dyn_cast(I)) { if (SI->getOperand(1) != AI) continue; // We found a store to the alloca before a load. The alloca is not // actually live-in here. LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); LiveInBlockWorklist.pop_back(); --i; --e; break; } if (LoadInst *LI = dyn_cast(I)) // Okay, we found a load before a store to the alloca. It is actually // live into this block. if (LI->getOperand(0) == AI) break; } } // Now that we have a set of blocks where the phi is live-in, recursively add // their predecessors until we find the full region the value is live. while (!LiveInBlockWorklist.empty()) { BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); // The block really is live in here, insert it into the set. If already in // the set, then it has already been processed. if (!LiveInBlocks.insert(BB).second) continue; // Since the value is live into BB, it is either defined in a predecessor or // live into it to. Add the preds to the worklist unless they are a // defining block. for (BasicBlock *P : predecessors(BB)) { // The value is not live into a predecessor if it defines the value. if (DefBlocks.count(P)) continue; // Otherwise it is, add to the worklist. LiveInBlockWorklist.push_back(P); } } } /// Queue a phi-node to be added to a basic-block for a specific Alloca. /// /// Returns true if there wasn't already a phi-node for that variable bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, unsigned &Version) { // Look up the basic-block in question. PHINode *&PN = NewPhiNodes[std::make_pair(BB->getNumber(), AllocaNo)]; // If the BB already has a phi node added for the i'th alloca then we're done! if (PN) return false; // Create a PhiNode using the dereferenced type... and add the phi-node to the // BasicBlock. PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), Allocas[AllocaNo]->getName() + "." + Twine(Version++)); PN->insertBefore(BB->begin()); ++NumPHIInsert; PhiToAllocaMap[PN] = AllocaNo; return true; } /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to /// create a merged location incorporating \p DL, or to set \p DL directly. static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL, bool ApplyMergedLoc) { if (ApplyMergedLoc) PN->applyMergedLocation(PN->getDebugLoc(), DL); else PN->setDebugLoc(DL); } /// Recursively traverse the CFG of the function, renaming loads and /// stores to the allocas which we are promoting. /// /// IncomingVals indicates what value each Alloca contains on exit from the /// predecessor block Pred. void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, RenamePassData::ValVector &IncomingVals, RenamePassData::LocationVector &IncomingLocs, std::vector &Worklist) { NextIteration: // If we are inserting any phi nodes into this BB, they will already be in the // block. if (PHINode *APN = dyn_cast(BB->begin())) { // If we have PHI nodes to update, compute the number of edges from Pred to // BB. if (PhiToAllocaMap.count(APN)) { // We want to be able to distinguish between PHI nodes being inserted by // this invocation of mem2reg from those phi nodes that already existed in // the IR before mem2reg was run. We determine that APN is being inserted // because it is missing incoming edges. All other PHI nodes being // inserted by this pass of mem2reg will have the same number of incoming // operands so far. Remember this count. unsigned NewPHINumOperands = APN->getNumOperands(); unsigned NumEdges = llvm::count(successors(Pred), BB); assert(NumEdges && "Must be at least one edge from Pred to BB!"); // Add entries for all the phis. BasicBlock::iterator PNI = BB->begin(); do { unsigned AllocaNo = PhiToAllocaMap[APN]; // Update the location of the phi node. updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo], APN->getNumIncomingValues() > 0); // Add N incoming values to the PHI node. for (unsigned i = 0; i != NumEdges; ++i) APN->addIncoming(IncomingVals[AllocaNo], Pred); // For the sequence `return X > 0.0 ? X : -X`, it is expected that this // results in fabs intrinsic. However, without no-signed-zeros(nsz) flag // on the phi node generated at this stage, fabs folding does not // happen. So, we try to infer nsz flag from the function attributes to // enable this fabs folding. if (isa(APN) && NoSignedZeros) APN->setHasNoSignedZeros(true); // The currently active variable for this block is now the PHI. IncomingVals[AllocaNo] = APN; AllocaATInfo[AllocaNo].updateForNewPhi(APN, DIB); auto ConvertDbgDeclares = [&](auto &Container) { for (auto *DbgItem : Container) if (DbgItem->isAddressOfVariable()) ConvertDebugDeclareToDebugValue(DbgItem, APN, DIB); }; ConvertDbgDeclares(AllocaDbgUsers[AllocaNo]); ConvertDbgDeclares(AllocaDPUsers[AllocaNo]); // Get the next phi node. ++PNI; APN = dyn_cast(PNI); if (!APN) break; // Verify that it is missing entries. If not, it is not being inserted // by this mem2reg invocation so we want to ignore it. } while (APN->getNumOperands() == NewPHINumOperands); } } // Don't revisit blocks. if (Visited.test(BB->getNumber())) return; Visited.set(BB->getNumber()); for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) { Instruction *I = &*II++; // get the instruction, increment iterator if (LoadInst *LI = dyn_cast(I)) { AllocaInst *Src = dyn_cast(LI->getPointerOperand()); if (!Src) continue; DenseMap::iterator AI = AllocaLookup.find(Src); if (AI == AllocaLookup.end()) continue; Value *V = IncomingVals[AI->second]; convertMetadataToAssumes(LI, V, SQ.DL, AC, &DT); // Anything using the load now uses the current value. LI->replaceAllUsesWith(V); LI->eraseFromParent(); } else if (StoreInst *SI = dyn_cast(I)) { // Delete this instruction and mark the name as the current holder of the // value AllocaInst *Dest = dyn_cast(SI->getPointerOperand()); if (!Dest) continue; DenseMap::iterator ai = AllocaLookup.find(Dest); if (ai == AllocaLookup.end()) continue; // what value were we writing? unsigned AllocaNo = ai->second; IncomingVals[AllocaNo] = SI->getOperand(0); // Record debuginfo for the store before removing it. IncomingLocs[AllocaNo] = SI->getDebugLoc(); AllocaATInfo[AllocaNo].updateForDeletedStore(SI, DIB, &DbgAssignsToDelete, &DVRAssignsToDelete); auto ConvertDbgDeclares = [&](auto &Container) { for (auto *DbgItem : Container) if (DbgItem->isAddressOfVariable()) ConvertDebugDeclareToDebugValue(DbgItem, SI, DIB); }; ConvertDbgDeclares(AllocaDbgUsers[ai->second]); ConvertDbgDeclares(AllocaDPUsers[ai->second]); SI->eraseFromParent(); } } // 'Recurse' to our successors. succ_iterator I = succ_begin(BB), E = succ_end(BB); if (I == E) return; // Keep track of the successors so we don't visit the same successor twice SmallPtrSet VisitedSuccs; // Handle the first successor without using the worklist. VisitedSuccs.insert(*I); Pred = BB; BB = *I; ++I; for (; I != E; ++I) if (VisitedSuccs.insert(*I).second) Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs); goto NextIteration; } void llvm::PromoteMemToReg(ArrayRef Allocas, DominatorTree &DT, AssumptionCache *AC) { // If there is nothing to do, bail out... if (Allocas.empty()) return; PromoteMem2Reg(Allocas, DT, AC).run(); }