//===- BoundsChecking.cpp - Instrumentation for run-time bounds checking --===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Instrumentation/BoundsChecking.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/TargetFolder.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; #define DEBUG_TYPE "bounds-checking" static cl::opt SingleTrapBB("bounds-checking-single-trap", cl::desc("Use one trap block per function")); STATISTIC(ChecksAdded, "Bounds checks added"); STATISTIC(ChecksSkipped, "Bounds checks skipped"); STATISTIC(ChecksUnable, "Bounds checks unable to add"); class BuilderTy : public IRBuilder { public: BuilderTy(BasicBlock *TheBB, BasicBlock::iterator IP, TargetFolder Folder) : IRBuilder(TheBB, IP, Folder) { SetNoSanitizeMetadata(); } }; /// Gets the conditions under which memory accessing instructions will overflow. /// /// \p Ptr is the pointer that will be read/written, and \p InstVal is either /// the result from the load or the value being stored. It is used to determine /// the size of memory block that is touched. /// /// Returns the condition under which the access will overflow. static Value *getBoundsCheckCond(Value *Ptr, Value *InstVal, const DataLayout &DL, TargetLibraryInfo &TLI, ObjectSizeOffsetEvaluator &ObjSizeEval, BuilderTy &IRB, ScalarEvolution &SE) { TypeSize NeededSize = DL.getTypeStoreSize(InstVal->getType()); LLVM_DEBUG(dbgs() << "Instrument " << *Ptr << " for " << Twine(NeededSize) << " bytes\n"); SizeOffsetValue SizeOffset = ObjSizeEval.compute(Ptr); if (!SizeOffset.bothKnown()) { ++ChecksUnable; return nullptr; } Value *Size = SizeOffset.Size; Value *Offset = SizeOffset.Offset; ConstantInt *SizeCI = dyn_cast(Size); Type *IndexTy = DL.getIndexType(Ptr->getType()); Value *NeededSizeVal = IRB.CreateTypeSize(IndexTy, NeededSize); auto SizeRange = SE.getUnsignedRange(SE.getSCEV(Size)); auto OffsetRange = SE.getUnsignedRange(SE.getSCEV(Offset)); auto NeededSizeRange = SE.getUnsignedRange(SE.getSCEV(NeededSizeVal)); // three checks are required to ensure safety: // . Offset >= 0 (since the offset is given from the base ptr) // . Size >= Offset (unsigned) // . Size - Offset >= NeededSize (unsigned) // // optimization: if Size >= 0 (signed), skip 1st check // FIXME: add NSW/NUW here? -- we dont care if the subtraction overflows Value *ObjSize = IRB.CreateSub(Size, Offset); Value *Cmp2 = SizeRange.getUnsignedMin().uge(OffsetRange.getUnsignedMax()) ? ConstantInt::getFalse(Ptr->getContext()) : IRB.CreateICmpULT(Size, Offset); Value *Cmp3 = SizeRange.sub(OffsetRange) .getUnsignedMin() .uge(NeededSizeRange.getUnsignedMax()) ? ConstantInt::getFalse(Ptr->getContext()) : IRB.CreateICmpULT(ObjSize, NeededSizeVal); Value *Or = IRB.CreateOr(Cmp2, Cmp3); if ((!SizeCI || SizeCI->getValue().slt(0)) && !SizeRange.getSignedMin().isNonNegative()) { Value *Cmp1 = IRB.CreateICmpSLT(Offset, ConstantInt::get(IndexTy, 0)); Or = IRB.CreateOr(Cmp1, Or); } return Or; } static CallInst *InsertTrap(BuilderTy &IRB, bool DebugTrapBB, std::optional GuardKind) { if (!DebugTrapBB) return IRB.CreateIntrinsic(Intrinsic::trap, {}, {}); return IRB.CreateIntrinsic( Intrinsic::ubsantrap, {}, ConstantInt::get(IRB.getInt8Ty(), GuardKind.has_value() ? GuardKind.value() : IRB.GetInsertBlock()->getParent()->size())); } static CallInst *InsertCall(BuilderTy &IRB, bool MayReturn, StringRef Name) { Function *Fn = IRB.GetInsertBlock()->getParent(); LLVMContext &Ctx = Fn->getContext(); llvm::AttrBuilder B(Ctx); B.addAttribute(llvm::Attribute::NoUnwind); if (!MayReturn) B.addAttribute(llvm::Attribute::NoReturn); FunctionCallee Callee = Fn->getParent()->getOrInsertFunction( Name, llvm::AttributeList::get(Ctx, llvm::AttributeList::FunctionIndex, B), Type::getVoidTy(Ctx)); return IRB.CreateCall(Callee); } /// Adds run-time bounds checks to memory accessing instructions. /// /// \p Or is the condition that should guard the trap. /// /// \p GetTrapBB is a callable that returns the trap BB to use on failure. template static void insertBoundsCheck(Value *Or, BuilderTy &IRB, GetTrapBBT GetTrapBB) { // check if the comparison is always false ConstantInt *C = dyn_cast_or_null(Or); if (C) { ++ChecksSkipped; // If non-zero, nothing to do. if (!C->getZExtValue()) return; } ++ChecksAdded; BasicBlock::iterator SplitI = IRB.GetInsertPoint(); BasicBlock *OldBB = SplitI->getParent(); BasicBlock *Cont = OldBB->splitBasicBlock(SplitI); OldBB->getTerminator()->eraseFromParent(); BasicBlock *TrapBB = GetTrapBB(IRB, Cont); if (C) { // If we have a constant zero, unconditionally branch. // FIXME: We should really handle this differently to bypass the splitting // the block. BranchInst::Create(TrapBB, OldBB); return; } // Create the conditional branch. BranchInst::Create(TrapBB, Cont, Or, OldBB); } static std::string getRuntimeCallName(const BoundsCheckingPass::Options::Runtime &Opts) { std::string Name = "__ubsan_handle_local_out_of_bounds"; if (Opts.MinRuntime) Name += "_minimal"; if (!Opts.MayReturn) Name += "_abort"; return Name; } static bool addBoundsChecking(Function &F, TargetLibraryInfo &TLI, ScalarEvolution &SE, const BoundsCheckingPass::Options &Opts) { if (F.hasFnAttribute(Attribute::NoSanitizeBounds)) return false; const DataLayout &DL = F.getDataLayout(); ObjectSizeOpts EvalOpts; EvalOpts.RoundToAlign = true; EvalOpts.EvalMode = ObjectSizeOpts::Mode::ExactUnderlyingSizeAndOffset; ObjectSizeOffsetEvaluator ObjSizeEval(DL, &TLI, F.getContext(), EvalOpts); // check HANDLE_MEMORY_INST in include/llvm/Instruction.def for memory // touching instructions SmallVector, 4> TrapInfo; for (Instruction &I : instructions(F)) { Value *Or = nullptr; BuilderTy IRB(I.getParent(), BasicBlock::iterator(&I), TargetFolder(DL)); if (LoadInst *LI = dyn_cast(&I)) { if (!LI->isVolatile()) Or = getBoundsCheckCond(LI->getPointerOperand(), LI, DL, TLI, ObjSizeEval, IRB, SE); } else if (StoreInst *SI = dyn_cast(&I)) { if (!SI->isVolatile()) Or = getBoundsCheckCond(SI->getPointerOperand(), SI->getValueOperand(), DL, TLI, ObjSizeEval, IRB, SE); } else if (AtomicCmpXchgInst *AI = dyn_cast(&I)) { if (!AI->isVolatile()) Or = getBoundsCheckCond(AI->getPointerOperand(), AI->getCompareOperand(), DL, TLI, ObjSizeEval, IRB, SE); } else if (AtomicRMWInst *AI = dyn_cast(&I)) { if (!AI->isVolatile()) Or = getBoundsCheckCond(AI->getPointerOperand(), AI->getValOperand(), DL, TLI, ObjSizeEval, IRB, SE); } if (Or) { if (Opts.GuardKind) { llvm::Value *Allow = IRB.CreateIntrinsic( IRB.getInt1Ty(), Intrinsic::allow_ubsan_check, {llvm::ConstantInt::getSigned(IRB.getInt8Ty(), *Opts.GuardKind)}); Or = IRB.CreateAnd(Or, Allow); } TrapInfo.push_back(std::make_pair(&I, Or)); } } std::string Name; if (Opts.Rt) Name = getRuntimeCallName(*Opts.Rt); // Create a trapping basic block on demand using a callback. Depending on // flags, this will either create a single block for the entire function or // will create a fresh block every time it is called. BasicBlock *ReuseTrapBB = nullptr; auto GetTrapBB = [&ReuseTrapBB, &Opts, &Name](BuilderTy &IRB, BasicBlock *Cont) { Function *Fn = IRB.GetInsertBlock()->getParent(); auto DebugLoc = IRB.getCurrentDebugLocation(); IRBuilder<>::InsertPointGuard Guard(IRB); // Create a trapping basic block on demand using a callback. Depending on // flags, this will either create a single block for the entire function or // will create a fresh block every time it is called. if (ReuseTrapBB) return ReuseTrapBB; BasicBlock *TrapBB = BasicBlock::Create(Fn->getContext(), "trap", Fn); IRB.SetInsertPoint(TrapBB); bool DebugTrapBB = !Opts.Merge; CallInst *TrapCall = Opts.Rt ? InsertCall(IRB, Opts.Rt->MayReturn, Name) : InsertTrap(IRB, DebugTrapBB, Opts.GuardKind); if (DebugTrapBB) TrapCall->addFnAttr(llvm::Attribute::NoMerge); TrapCall->setDoesNotThrow(); TrapCall->setDebugLoc(DebugLoc); bool MayReturn = Opts.Rt && Opts.Rt->MayReturn; if (MayReturn) { IRB.CreateBr(Cont); } else { TrapCall->setDoesNotReturn(); IRB.CreateUnreachable(); } if (!MayReturn && SingleTrapBB && !DebugTrapBB) ReuseTrapBB = TrapBB; return TrapBB; }; for (const auto &Entry : TrapInfo) { Instruction *Inst = Entry.first; BuilderTy IRB(Inst->getParent(), BasicBlock::iterator(Inst), TargetFolder(DL)); insertBoundsCheck(Entry.second, IRB, GetTrapBB); } return !TrapInfo.empty(); } PreservedAnalyses BoundsCheckingPass::run(Function &F, FunctionAnalysisManager &AM) { auto &TLI = AM.getResult(F); auto &SE = AM.getResult(F); if (!addBoundsChecking(F, TLI, SE, Opts)) return PreservedAnalyses::all(); return PreservedAnalyses::none(); } void BoundsCheckingPass::printPipeline( raw_ostream &OS, function_ref MapClassName2PassName) { static_cast *>(this)->printPipeline( OS, MapClassName2PassName); OS << "<"; if (Opts.Rt) { if (Opts.Rt->MinRuntime) OS << "min-"; OS << "rt"; if (!Opts.Rt->MayReturn) OS << "-abort"; } else { OS << "trap"; } if (Opts.Merge) OS << ";merge"; if (Opts.GuardKind) OS << ";guard=" << static_cast(*Opts.GuardKind); OS << ">"; }