//===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the X86SelectionDAGInfo class. // //===----------------------------------------------------------------------===// #include "X86SelectionDAGInfo.h" #include "X86ISelLowering.h" #include "X86InstrInfo.h" #include "X86RegisterInfo.h" #include "X86Subtarget.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/TargetLowering.h" using namespace llvm; #define DEBUG_TYPE "x86-selectiondag-info" static cl::opt UseFSRMForMemcpy("x86-use-fsrm-for-memcpy", cl::Hidden, cl::init(false), cl::desc("Use fast short rep mov in memcpy lowering")); bool X86SelectionDAGInfo::isTargetMemoryOpcode(unsigned Opcode) const { return Opcode >= X86ISD::FIRST_MEMORY_OPCODE && Opcode <= X86ISD::LAST_MEMORY_OPCODE; } bool X86SelectionDAGInfo::isTargetStrictFPOpcode(unsigned Opcode) const { return Opcode >= X86ISD::FIRST_STRICTFP_OPCODE && Opcode <= X86ISD::LAST_STRICTFP_OPCODE; } /// Returns the best type to use with repmovs/repstos depending on alignment. static MVT getOptimalRepType(const X86Subtarget &Subtarget, Align Alignment) { uint64_t Align = Alignment.value(); assert((Align != 0) && "Align is normalized"); assert(isPowerOf2_64(Align) && "Align is a power of 2"); switch (Align) { case 1: return MVT::i8; case 2: return MVT::i16; case 4: return MVT::i32; default: return Subtarget.is64Bit() ? MVT::i64 : MVT::i32; } } bool X86SelectionDAGInfo::isBaseRegConflictPossible( SelectionDAG &DAG, ArrayRef ClobberSet) const { // We cannot use TRI->hasBasePointer() until *after* we select all basic // blocks. Legalization may introduce new stack temporaries with large // alignment requirements. Fall back to generic code if there are any // dynamic stack adjustments (hopefully rare) and the base pointer would // conflict if we had to use it. MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); if (!MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment()) return false; const X86RegisterInfo *TRI = static_cast( DAG.getSubtarget().getRegisterInfo()); return llvm::is_contained(ClobberSet, TRI->getBaseRegister()); } /// Emit a single REP STOSB instruction for a particular constant size. static SDValue emitRepstos(const X86Subtarget &Subtarget, SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val, SDValue Size, MVT AVT) { const bool Use64BitRegs = Subtarget.isTarget64BitLP64(); unsigned AX = X86::AL; switch (AVT.getSizeInBits()) { case 8: AX = X86::AL; break; case 16: AX = X86::AX; break; case 32: AX = X86::EAX; break; default: AX = X86::RAX; break; } const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX; const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI; SDValue InGlue; Chain = DAG.getCopyToReg(Chain, dl, AX, Val, InGlue); InGlue = Chain.getValue(1); Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InGlue); InGlue = Chain.getValue(1); Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InGlue); InGlue = Chain.getValue(1); SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); SDValue Ops[] = {Chain, DAG.getValueType(AVT), InGlue}; return DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops); } /// Emit a single REP STOSB instruction for a particular constant size. static SDValue emitRepstosB(const X86Subtarget &Subtarget, SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val, uint64_t Size) { return emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val, DAG.getIntPtrConstant(Size, dl), MVT::i8); } /// Returns a REP STOS instruction, possibly with a few load/stores to implement /// a constant size memory set. In some cases where we know REP MOVS is /// inefficient we return an empty SDValue so the calling code can either /// generate a store sequence or call the runtime memset function. static SDValue emitConstantSizeRepstos(SelectionDAG &DAG, const X86Subtarget &Subtarget, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val, uint64_t Size, EVT SizeVT, Align Alignment, bool isVolatile, bool AlwaysInline, MachinePointerInfo DstPtrInfo) { /// In case we optimize for size, we use repstosb even if it's less efficient /// so we can save the loads/stores of the leftover. if (DAG.getMachineFunction().getFunction().hasMinSize()) { if (auto *ValC = dyn_cast(Val)) { // Special case 0 because otherwise we get large literals, // which causes larger encoding. if ((Size & 31) == 0 && (ValC->getZExtValue() & 255) == 0) { MVT BlockType = MVT::i32; const uint64_t BlockBits = BlockType.getSizeInBits(); const uint64_t BlockBytes = BlockBits / 8; const uint64_t BlockCount = Size / BlockBytes; Val = DAG.getConstant(0, dl, BlockType); // repstosd is same size as repstosb return emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val, DAG.getIntPtrConstant(BlockCount, dl), BlockType); } } return emitRepstosB(Subtarget, DAG, dl, Chain, Dst, Val, Size); } if (Size > Subtarget.getMaxInlineSizeThreshold()) return SDValue(); // If not DWORD aligned or size is more than the threshold, call the library. // The libc version is likely to be faster for these cases. It can use the // address value and run time information about the CPU. if (Alignment < Align(4)) return SDValue(); MVT BlockType = MVT::i8; uint64_t BlockCount = Size; uint64_t BytesLeft = 0; SDValue OriginalVal = Val; if (auto *ValC = dyn_cast(Val)) { BlockType = getOptimalRepType(Subtarget, Alignment); uint64_t Value = ValC->getZExtValue() & 255; const uint64_t BlockBits = BlockType.getSizeInBits(); if (BlockBits >= 16) Value = (Value << 8) | Value; if (BlockBits >= 32) Value = (Value << 16) | Value; if (BlockBits >= 64) Value = (Value << 32) | Value; const uint64_t BlockBytes = BlockBits / 8; BlockCount = Size / BlockBytes; BytesLeft = Size % BlockBytes; Val = DAG.getConstant(Value, dl, BlockType); } SDValue RepStos = emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val, DAG.getIntPtrConstant(BlockCount, dl), BlockType); /// RepStos can process the whole length. if (BytesLeft == 0) return RepStos; // Handle the last 1 - 7 bytes. SmallVector Results; Results.push_back(RepStos); unsigned Offset = Size - BytesLeft; EVT AddrVT = Dst.getValueType(); Results.push_back( DAG.getMemset(Chain, dl, DAG.getNode(ISD::ADD, dl, AddrVT, Dst, DAG.getConstant(Offset, dl, AddrVT)), OriginalVal, DAG.getConstant(BytesLeft, dl, SizeVT), Alignment, isVolatile, AlwaysInline, /* CI */ nullptr, DstPtrInfo.getWithOffset(Offset))); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results); } SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset( SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val, SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline, MachinePointerInfo DstPtrInfo) const { // If to a segment-relative address space, use the default lowering. if (DstPtrInfo.getAddrSpace() >= 256) return SDValue(); // If the base register might conflict with our physical registers, bail out. const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI, X86::ECX, X86::EAX, X86::EDI}; if (isBaseRegConflictPossible(DAG, ClobberSet)) return SDValue(); ConstantSDNode *ConstantSize = dyn_cast(Size); if (!ConstantSize) return SDValue(); const X86Subtarget &Subtarget = DAG.getMachineFunction().getSubtarget(); return emitConstantSizeRepstos( DAG, Subtarget, dl, Chain, Dst, Val, ConstantSize->getZExtValue(), Size.getValueType(), Alignment, isVolatile, AlwaysInline, DstPtrInfo); } /// Emit a single REP MOVS{B,W,D,Q} instruction. static SDValue emitRepmovs(const X86Subtarget &Subtarget, SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, SDValue Size, MVT AVT) { const bool Use64BitRegs = Subtarget.isTarget64BitLP64(); const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX; const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI; const unsigned SI = Use64BitRegs ? X86::RSI : X86::ESI; SDValue InGlue; Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InGlue); InGlue = Chain.getValue(1); Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InGlue); InGlue = Chain.getValue(1); Chain = DAG.getCopyToReg(Chain, dl, SI, Src, InGlue); InGlue = Chain.getValue(1); SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); SDValue Ops[] = {Chain, DAG.getValueType(AVT), InGlue}; return DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops); } /// Emit a single REP MOVSB instruction for a particular constant size. static SDValue emitRepmovsB(const X86Subtarget &Subtarget, SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size) { return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, DAG.getIntPtrConstant(Size, dl), MVT::i8); } /// Returns a REP MOVS instruction, possibly with a few load/stores to implement /// a constant size memory copy. In some cases where we know REP MOVS is /// inefficient we return an empty SDValue so the calling code can either /// generate a load/store sequence or call the runtime memcpy function. static SDValue emitConstantSizeRepmov( SelectionDAG &DAG, const X86Subtarget &Subtarget, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, EVT SizeVT, Align Alignment, bool isVolatile, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) { /// In case we optimize for size, we use repmovsb even if it's less efficient /// so we can save the loads/stores of the leftover. if (DAG.getMachineFunction().getFunction().hasMinSize()) return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size); /// TODO: Revisit next line: big copy with ERMSB on march >= haswell are very /// efficient. if (!AlwaysInline && Size > Subtarget.getMaxInlineSizeThreshold()) return SDValue(); /// If we have enhanced repmovs we use it. if (Subtarget.hasERMSB()) return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size); assert(!Subtarget.hasERMSB() && "No efficient RepMovs"); /// We assume runtime memcpy will do a better job for unaligned copies when /// ERMS is not present. if (!AlwaysInline && (Alignment < Align(4))) return SDValue(); const MVT BlockType = getOptimalRepType(Subtarget, Alignment); const uint64_t BlockBytes = BlockType.getSizeInBits() / 8; const uint64_t BlockCount = Size / BlockBytes; const uint64_t BytesLeft = Size % BlockBytes; SDValue RepMovs = emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, DAG.getIntPtrConstant(BlockCount, dl), BlockType); /// RepMov can process the whole length. if (BytesLeft == 0) return RepMovs; assert(BytesLeft && "We have leftover at this point"); // Handle the last 1 - 7 bytes. SmallVector Results; Results.push_back(RepMovs); unsigned Offset = Size - BytesLeft; EVT DstVT = Dst.getValueType(); EVT SrcVT = Src.getValueType(); Results.push_back(DAG.getMemcpy( Chain, dl, DAG.getNode(ISD::ADD, dl, DstVT, Dst, DAG.getConstant(Offset, dl, DstVT)), DAG.getNode(ISD::ADD, dl, SrcVT, Src, DAG.getConstant(Offset, dl, SrcVT)), DAG.getConstant(BytesLeft, dl, SizeVT), Alignment, isVolatile, /*AlwaysInline*/ true, /*CI=*/nullptr, std::nullopt, DstPtrInfo.getWithOffset(Offset), SrcPtrInfo.getWithOffset(Offset))); return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results); } SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy( SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const { // If to a segment-relative address space, use the default lowering. if (DstPtrInfo.getAddrSpace() >= 256 || SrcPtrInfo.getAddrSpace() >= 256) return SDValue(); // If the base registers conflict with our physical registers, use the default // lowering. const MCPhysReg ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI, X86::ECX, X86::ESI, X86::EDI}; if (isBaseRegConflictPossible(DAG, ClobberSet)) return SDValue(); const X86Subtarget &Subtarget = DAG.getMachineFunction().getSubtarget(); // If enabled and available, use fast short rep mov. if (UseFSRMForMemcpy && Subtarget.hasFSRM()) return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, Size, MVT::i8); /// Handle constant sizes if (ConstantSDNode *ConstantSize = dyn_cast(Size)) return emitConstantSizeRepmov(DAG, Subtarget, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Size.getValueType(), Alignment, isVolatile, AlwaysInline, DstPtrInfo, SrcPtrInfo); return SDValue(); }