//===- Type.cpp - Implement the Type class --------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the Type class for the IR library. // //===----------------------------------------------------------------------===// #include "llvm/IR/Type.h" #include "LLVMContextImpl.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Error.h" #include "llvm/Support/TypeSize.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TargetParser/RISCVTargetParser.h" #include #include using namespace llvm; //===----------------------------------------------------------------------===// // Type Class Implementation //===----------------------------------------------------------------------===// Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) { switch (IDNumber) { case VoidTyID : return getVoidTy(C); case HalfTyID : return getHalfTy(C); case BFloatTyID : return getBFloatTy(C); case FloatTyID : return getFloatTy(C); case DoubleTyID : return getDoubleTy(C); case X86_FP80TyID : return getX86_FP80Ty(C); case FP128TyID : return getFP128Ty(C); case PPC_FP128TyID : return getPPC_FP128Ty(C); case LabelTyID : return getLabelTy(C); case MetadataTyID : return getMetadataTy(C); case X86_AMXTyID : return getX86_AMXTy(C); case TokenTyID : return getTokenTy(C); default: return nullptr; } } bool Type::isIntegerTy(unsigned Bitwidth) const { return isIntegerTy() && cast(this)->getBitWidth() == Bitwidth; } bool Type::isScalableTy(SmallPtrSetImpl &Visited) const { if (const auto *ATy = dyn_cast(this)) return ATy->getElementType()->isScalableTy(Visited); if (const auto *STy = dyn_cast(this)) return STy->isScalableTy(Visited); return getTypeID() == ScalableVectorTyID || isScalableTargetExtTy(); } bool Type::isScalableTy() const { SmallPtrSet Visited; return isScalableTy(Visited); } bool Type::containsNonGlobalTargetExtType( SmallPtrSetImpl &Visited) const { if (const auto *ATy = dyn_cast(this)) return ATy->getElementType()->containsNonGlobalTargetExtType(Visited); if (const auto *STy = dyn_cast(this)) return STy->containsNonGlobalTargetExtType(Visited); if (auto *TT = dyn_cast(this)) return !TT->hasProperty(TargetExtType::CanBeGlobal); return false; } bool Type::containsNonGlobalTargetExtType() const { SmallPtrSet Visited; return containsNonGlobalTargetExtType(Visited); } bool Type::containsNonLocalTargetExtType( SmallPtrSetImpl &Visited) const { if (const auto *ATy = dyn_cast(this)) return ATy->getElementType()->containsNonLocalTargetExtType(Visited); if (const auto *STy = dyn_cast(this)) return STy->containsNonLocalTargetExtType(Visited); if (auto *TT = dyn_cast(this)) return !TT->hasProperty(TargetExtType::CanBeLocal); return false; } bool Type::containsNonLocalTargetExtType() const { SmallPtrSet Visited; return containsNonLocalTargetExtType(Visited); } const fltSemantics &Type::getFltSemantics() const { switch (getTypeID()) { case HalfTyID: return APFloat::IEEEhalf(); case BFloatTyID: return APFloat::BFloat(); case FloatTyID: return APFloat::IEEEsingle(); case DoubleTyID: return APFloat::IEEEdouble(); case X86_FP80TyID: return APFloat::x87DoubleExtended(); case FP128TyID: return APFloat::IEEEquad(); case PPC_FP128TyID: return APFloat::PPCDoubleDouble(); default: llvm_unreachable("Invalid floating type"); } } bool Type::isIEEE() const { return APFloat::getZero(getFltSemantics()).isIEEE(); } bool Type::isScalableTargetExtTy() const { if (auto *TT = dyn_cast(this)) return isa(TT->getLayoutType()); return false; } Type *Type::getFloatingPointTy(LLVMContext &C, const fltSemantics &S) { Type *Ty; if (&S == &APFloat::IEEEhalf()) Ty = Type::getHalfTy(C); else if (&S == &APFloat::BFloat()) Ty = Type::getBFloatTy(C); else if (&S == &APFloat::IEEEsingle()) Ty = Type::getFloatTy(C); else if (&S == &APFloat::IEEEdouble()) Ty = Type::getDoubleTy(C); else if (&S == &APFloat::x87DoubleExtended()) Ty = Type::getX86_FP80Ty(C); else if (&S == &APFloat::IEEEquad()) Ty = Type::getFP128Ty(C); else { assert(&S == &APFloat::PPCDoubleDouble() && "Unknown FP format"); Ty = Type::getPPC_FP128Ty(C); } return Ty; } bool Type::isRISCVVectorTupleTy() const { if (!isTargetExtTy()) return false; return cast(this)->getName() == "riscv.vector.tuple"; } bool Type::canLosslesslyBitCastTo(Type *Ty) const { // Identity cast means no change so return true if (this == Ty) return true; // They are not convertible unless they are at least first class types if (!this->isFirstClassType() || !Ty->isFirstClassType()) return false; // Vector -> Vector conversions are always lossless if the two vector types // have the same size, otherwise not. if (isa(this) && isa(Ty)) return getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits(); // 8192-bit fixed width vector types can be losslessly converted to x86amx. if (((isa(this)) && Ty->isX86_AMXTy()) && getPrimitiveSizeInBits().getFixedValue() == 8192) return true; if ((isX86_AMXTy() && isa(Ty)) && Ty->getPrimitiveSizeInBits().getFixedValue() == 8192) return true; // Conservatively assume we can't losslessly convert between pointers with // different address spaces. return false; } bool Type::isEmptyTy() const { if (auto *ATy = dyn_cast(this)) { unsigned NumElements = ATy->getNumElements(); return NumElements == 0 || ATy->getElementType()->isEmptyTy(); } if (auto *STy = dyn_cast(this)) { unsigned NumElements = STy->getNumElements(); for (unsigned i = 0; i < NumElements; ++i) if (!STy->getElementType(i)->isEmptyTy()) return false; return true; } return false; } TypeSize Type::getPrimitiveSizeInBits() const { switch (getTypeID()) { case Type::HalfTyID: return TypeSize::getFixed(16); case Type::BFloatTyID: return TypeSize::getFixed(16); case Type::FloatTyID: return TypeSize::getFixed(32); case Type::DoubleTyID: return TypeSize::getFixed(64); case Type::X86_FP80TyID: return TypeSize::getFixed(80); case Type::FP128TyID: return TypeSize::getFixed(128); case Type::PPC_FP128TyID: return TypeSize::getFixed(128); case Type::X86_AMXTyID: return TypeSize::getFixed(8192); case Type::IntegerTyID: return TypeSize::getFixed(cast(this)->getBitWidth()); case Type::FixedVectorTyID: case Type::ScalableVectorTyID: { const VectorType *VTy = cast(this); ElementCount EC = VTy->getElementCount(); TypeSize ETS = VTy->getElementType()->getPrimitiveSizeInBits(); assert(!ETS.isScalable() && "Vector type should have fixed-width elements"); return {ETS.getFixedValue() * EC.getKnownMinValue(), EC.isScalable()}; } default: return TypeSize::getFixed(0); } } unsigned Type::getScalarSizeInBits() const { // It is safe to assume that the scalar types have a fixed size. return getScalarType()->getPrimitiveSizeInBits().getFixedValue(); } int Type::getFPMantissaWidth() const { if (auto *VTy = dyn_cast(this)) return VTy->getElementType()->getFPMantissaWidth(); assert(isFloatingPointTy() && "Not a floating point type!"); if (getTypeID() == HalfTyID) return 11; if (getTypeID() == BFloatTyID) return 8; if (getTypeID() == FloatTyID) return 24; if (getTypeID() == DoubleTyID) return 53; if (getTypeID() == X86_FP80TyID) return 64; if (getTypeID() == FP128TyID) return 113; assert(getTypeID() == PPC_FP128TyID && "unknown fp type"); return -1; } bool Type::isSizedDerivedType(SmallPtrSetImpl *Visited) const { if (auto *ATy = dyn_cast(this)) return ATy->getElementType()->isSized(Visited); if (auto *VTy = dyn_cast(this)) return VTy->getElementType()->isSized(Visited); if (auto *TTy = dyn_cast(this)) return TTy->getLayoutType()->isSized(Visited); return cast(this)->isSized(Visited); } //===----------------------------------------------------------------------===// // Primitive 'Type' data //===----------------------------------------------------------------------===// Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; } Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; } Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; } Type *Type::getBFloatTy(LLVMContext &C) { return &C.pImpl->BFloatTy; } Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; } Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; } Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; } Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; } Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; } Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; } Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; } Type *Type::getX86_AMXTy(LLVMContext &C) { return &C.pImpl->X86_AMXTy; } IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; } IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; } IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; } IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; } IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; } IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; } IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) { return IntegerType::get(C, N); } Type *Type::getWasm_ExternrefTy(LLVMContext &C) { // opaque pointer in addrspace(10) static PointerType *Ty = PointerType::get(C, 10); return Ty; } Type *Type::getWasm_FuncrefTy(LLVMContext &C) { // opaque pointer in addrspace(20) static PointerType *Ty = PointerType::get(C, 20); return Ty; } //===----------------------------------------------------------------------===// // IntegerType Implementation //===----------------------------------------------------------------------===// IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) { assert(NumBits >= MIN_INT_BITS && "bitwidth too small"); assert(NumBits <= MAX_INT_BITS && "bitwidth too large"); // Check for the built-in integer types switch (NumBits) { case 1: return cast(Type::getInt1Ty(C)); case 8: return cast(Type::getInt8Ty(C)); case 16: return cast(Type::getInt16Ty(C)); case 32: return cast(Type::getInt32Ty(C)); case 64: return cast(Type::getInt64Ty(C)); case 128: return cast(Type::getInt128Ty(C)); default: break; } IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits]; if (!Entry) Entry = new (C.pImpl->Alloc) IntegerType(C, NumBits); return Entry; } APInt IntegerType::getMask() const { return APInt::getAllOnes(getBitWidth()); } //===----------------------------------------------------------------------===// // FunctionType Implementation //===----------------------------------------------------------------------===// FunctionType::FunctionType(Type *Result, ArrayRef Params, bool IsVarArgs) : Type(Result->getContext(), FunctionTyID) { Type **SubTys = reinterpret_cast(this+1); assert(isValidReturnType(Result) && "invalid return type for function"); setSubclassData(IsVarArgs); SubTys[0] = Result; for (unsigned i = 0, e = Params.size(); i != e; ++i) { assert(isValidArgumentType(Params[i]) && "Not a valid type for function argument!"); SubTys[i+1] = Params[i]; } ContainedTys = SubTys; NumContainedTys = Params.size() + 1; // + 1 for result type } // This is the factory function for the FunctionType class. FunctionType *FunctionType::get(Type *ReturnType, ArrayRef Params, bool isVarArg) { LLVMContextImpl *pImpl = ReturnType->getContext().pImpl; const FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg); FunctionType *FT; // Since we only want to allocate a fresh function type in case none is found // and we don't want to perform two lookups (one for checking if existent and // one for inserting the newly allocated one), here we instead lookup based on // Key and update the reference to the function type in-place to a newly // allocated one if not found. auto Insertion = pImpl->FunctionTypes.insert_as(nullptr, Key); if (Insertion.second) { // The function type was not found. Allocate one and update FunctionTypes // in-place. FT = (FunctionType *)pImpl->Alloc.Allocate( sizeof(FunctionType) + sizeof(Type *) * (Params.size() + 1), alignof(FunctionType)); new (FT) FunctionType(ReturnType, Params, isVarArg); *Insertion.first = FT; } else { // The function type was found. Just return it. FT = *Insertion.first; } return FT; } FunctionType *FunctionType::get(Type *Result, bool isVarArg) { return get(Result, {}, isVarArg); } bool FunctionType::isValidReturnType(Type *RetTy) { return !RetTy->isFunctionTy() && !RetTy->isLabelTy() && !RetTy->isMetadataTy(); } bool FunctionType::isValidArgumentType(Type *ArgTy) { return ArgTy->isFirstClassType(); } //===----------------------------------------------------------------------===// // StructType Implementation //===----------------------------------------------------------------------===// // Primitive Constructors. StructType *StructType::get(LLVMContext &Context, ArrayRef ETypes, bool isPacked) { LLVMContextImpl *pImpl = Context.pImpl; const AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked); StructType *ST; // Since we only want to allocate a fresh struct type in case none is found // and we don't want to perform two lookups (one for checking if existent and // one for inserting the newly allocated one), here we instead lookup based on // Key and update the reference to the struct type in-place to a newly // allocated one if not found. auto Insertion = pImpl->AnonStructTypes.insert_as(nullptr, Key); if (Insertion.second) { // The struct type was not found. Allocate one and update AnonStructTypes // in-place. ST = new (Context.pImpl->Alloc) StructType(Context); ST->setSubclassData(SCDB_IsLiteral); // Literal struct. ST->setBody(ETypes, isPacked); *Insertion.first = ST; } else { // The struct type was found. Just return it. ST = *Insertion.first; } return ST; } bool StructType::isScalableTy(SmallPtrSetImpl &Visited) const { if ((getSubclassData() & SCDB_ContainsScalableVector) != 0) return true; if ((getSubclassData() & SCDB_NotContainsScalableVector) != 0) return false; if (!Visited.insert(this).second) return false; for (Type *Ty : elements()) { if (Ty->isScalableTy(Visited)) { const_cast(this)->setSubclassData( getSubclassData() | SCDB_ContainsScalableVector); return true; } } // For structures that are opaque, return false but do not set the // SCDB_NotContainsScalableVector flag since it may gain scalable vector type // when it becomes non-opaque. if (!isOpaque()) const_cast(this)->setSubclassData( getSubclassData() | SCDB_NotContainsScalableVector); return false; } bool StructType::containsNonGlobalTargetExtType( SmallPtrSetImpl &Visited) const { if ((getSubclassData() & SCDB_ContainsNonGlobalTargetExtType) != 0) return true; if ((getSubclassData() & SCDB_NotContainsNonGlobalTargetExtType) != 0) return false; if (!Visited.insert(this).second) return false; for (Type *Ty : elements()) { if (Ty->containsNonGlobalTargetExtType(Visited)) { const_cast(this)->setSubclassData( getSubclassData() | SCDB_ContainsNonGlobalTargetExtType); return true; } } // For structures that are opaque, return false but do not set the // SCDB_NotContainsNonGlobalTargetExtType flag since it may gain non-global // target extension types when it becomes non-opaque. if (!isOpaque()) const_cast(this)->setSubclassData( getSubclassData() | SCDB_NotContainsNonGlobalTargetExtType); return false; } bool StructType::containsNonLocalTargetExtType( SmallPtrSetImpl &Visited) const { if ((getSubclassData() & SCDB_ContainsNonLocalTargetExtType) != 0) return true; if ((getSubclassData() & SCDB_NotContainsNonLocalTargetExtType) != 0) return false; if (!Visited.insert(this).second) return false; for (Type *Ty : elements()) { if (Ty->containsNonLocalTargetExtType(Visited)) { const_cast(this)->setSubclassData( getSubclassData() | SCDB_ContainsNonLocalTargetExtType); return true; } } // For structures that are opaque, return false but do not set the // SCDB_NotContainsNonLocalTargetExtType flag since it may gain non-local // target extension types when it becomes non-opaque. if (!isOpaque()) const_cast(this)->setSubclassData( getSubclassData() | SCDB_NotContainsNonLocalTargetExtType); return false; } bool StructType::containsHomogeneousScalableVectorTypes() const { if (getNumElements() <= 0 || !isa(elements().front())) return false; return containsHomogeneousTypes(); } bool StructType::containsHomogeneousTypes() const { ArrayRef ElementTys = elements(); return !ElementTys.empty() && all_equal(ElementTys); } void StructType::setBody(ArrayRef Elements, bool isPacked) { cantFail(setBodyOrError(Elements, isPacked)); } Error StructType::setBodyOrError(ArrayRef Elements, bool isPacked) { assert(isOpaque() && "Struct body already set!"); if (auto E = checkBody(Elements)) return E; setSubclassData(getSubclassData() | SCDB_HasBody); if (isPacked) setSubclassData(getSubclassData() | SCDB_Packed); NumContainedTys = Elements.size(); ContainedTys = Elements.empty() ? nullptr : Elements.copy(getContext().pImpl->Alloc).data(); return Error::success(); } Error StructType::checkBody(ArrayRef Elements) { SmallSetVector Worklist(Elements.begin(), Elements.end()); for (unsigned I = 0; I < Worklist.size(); ++I) { Type *Ty = Worklist[I]; if (Ty == this) return createStringError(Twine("identified structure type '") + getName() + "' is recursive"); Worklist.insert(Ty->subtype_begin(), Ty->subtype_end()); } return Error::success(); } void StructType::setName(StringRef Name) { if (Name == getName()) return; StringMap &SymbolTable = getContext().pImpl->NamedStructTypes; using EntryTy = StringMap::MapEntryTy; // If this struct already had a name, remove its symbol table entry. Don't // delete the data yet because it may be part of the new name. if (SymbolTableEntry) SymbolTable.remove((EntryTy *)SymbolTableEntry); // If this is just removing the name, we're done. if (Name.empty()) { if (SymbolTableEntry) { // Delete the old string data. ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator()); SymbolTableEntry = nullptr; } return; } // Look up the entry for the name. auto IterBool = getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this)); // While we have a name collision, try a random rename. if (!IterBool.second) { SmallString<64> TempStr(Name); TempStr.push_back('.'); raw_svector_ostream TmpStream(TempStr); unsigned NameSize = Name.size(); do { TempStr.resize(NameSize + 1); TmpStream << getContext().pImpl->NamedStructTypesUniqueID++; IterBool = getContext().pImpl->NamedStructTypes.insert( std::make_pair(TmpStream.str(), this)); } while (!IterBool.second); } // Delete the old string data. if (SymbolTableEntry) ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator()); SymbolTableEntry = &*IterBool.first; } //===----------------------------------------------------------------------===// // StructType Helper functions. StructType *StructType::create(LLVMContext &Context, StringRef Name) { StructType *ST = new (Context.pImpl->Alloc) StructType(Context); if (!Name.empty()) ST->setName(Name); return ST; } StructType *StructType::get(LLVMContext &Context, bool isPacked) { return get(Context, {}, isPacked); } StructType *StructType::create(LLVMContext &Context, ArrayRef Elements, StringRef Name, bool isPacked) { StructType *ST = create(Context, Name); ST->setBody(Elements, isPacked); return ST; } StructType *StructType::create(LLVMContext &Context, ArrayRef Elements) { return create(Context, Elements, StringRef()); } StructType *StructType::create(LLVMContext &Context) { return create(Context, StringRef()); } StructType *StructType::create(ArrayRef Elements, StringRef Name, bool isPacked) { assert(!Elements.empty() && "This method may not be invoked with an empty list"); return create(Elements[0]->getContext(), Elements, Name, isPacked); } StructType *StructType::create(ArrayRef Elements) { assert(!Elements.empty() && "This method may not be invoked with an empty list"); return create(Elements[0]->getContext(), Elements, StringRef()); } bool StructType::isSized(SmallPtrSetImpl *Visited) const { if ((getSubclassData() & SCDB_IsSized) != 0) return true; if (isOpaque()) return false; if (Visited && !Visited->insert(const_cast(this)).second) return false; // Okay, our struct is sized if all of the elements are, but if one of the // elements is opaque, the struct isn't sized *yet*, but may become sized in // the future, so just bail out without caching. // The ONLY special case inside a struct that is considered sized is when the // elements are homogeneous of a scalable vector type. if (containsHomogeneousScalableVectorTypes()) { const_cast(this)->setSubclassData(getSubclassData() | SCDB_IsSized); return true; } for (Type *Ty : elements()) { // If the struct contains a scalable vector type, don't consider it sized. // This prevents it from being used in loads/stores/allocas/GEPs. The ONLY // special case right now is a structure of homogenous scalable vector // types and is handled by the if-statement before this for-loop. if (Ty->isScalableTy()) return false; if (!Ty->isSized(Visited)) return false; } // Here we cheat a bit and cast away const-ness. The goal is to memoize when // we find a sized type, as types can only move from opaque to sized, not the // other way. const_cast(this)->setSubclassData( getSubclassData() | SCDB_IsSized); return true; } StringRef StructType::getName() const { assert(!isLiteral() && "Literal structs never have names"); if (!SymbolTableEntry) return StringRef(); return ((StringMapEntry *)SymbolTableEntry)->getKey(); } bool StructType::isValidElementType(Type *ElemTy) { return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() && !ElemTy->isTokenTy(); } bool StructType::isLayoutIdentical(StructType *Other) const { if (this == Other) return true; if (isPacked() != Other->isPacked()) return false; return elements() == Other->elements(); } Type *StructType::getTypeAtIndex(const Value *V) const { unsigned Idx = (unsigned)cast(V)->getUniqueInteger().getZExtValue(); assert(indexValid(Idx) && "Invalid structure index!"); return getElementType(Idx); } bool StructType::indexValid(const Value *V) const { // Structure indexes require (vectors of) 32-bit integer constants. In the // vector case all of the indices must be equal. if (!V->getType()->isIntOrIntVectorTy(32)) return false; if (isa(V->getType())) return false; const Constant *C = dyn_cast(V); if (C && V->getType()->isVectorTy()) C = C->getSplatValue(); const ConstantInt *CU = dyn_cast_or_null(C); return CU && CU->getZExtValue() < getNumElements(); } StructType *StructType::getTypeByName(LLVMContext &C, StringRef Name) { return C.pImpl->NamedStructTypes.lookup(Name); } //===----------------------------------------------------------------------===// // ArrayType Implementation //===----------------------------------------------------------------------===// ArrayType::ArrayType(Type *ElType, uint64_t NumEl) : Type(ElType->getContext(), ArrayTyID), ContainedType(ElType), NumElements(NumEl) { ContainedTys = &ContainedType; NumContainedTys = 1; } ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) { assert(isValidElementType(ElementType) && "Invalid type for array element!"); LLVMContextImpl *pImpl = ElementType->getContext().pImpl; ArrayType *&Entry = pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)]; if (!Entry) Entry = new (pImpl->Alloc) ArrayType(ElementType, NumElements); return Entry; } bool ArrayType::isValidElementType(Type *ElemTy) { return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() && !ElemTy->isTokenTy() && !ElemTy->isX86_AMXTy(); } //===----------------------------------------------------------------------===// // VectorType Implementation //===----------------------------------------------------------------------===// VectorType::VectorType(Type *ElType, unsigned EQ, Type::TypeID TID) : Type(ElType->getContext(), TID), ContainedType(ElType), ElementQuantity(EQ) { ContainedTys = &ContainedType; NumContainedTys = 1; } VectorType *VectorType::get(Type *ElementType, ElementCount EC) { if (EC.isScalable()) return ScalableVectorType::get(ElementType, EC.getKnownMinValue()); else return FixedVectorType::get(ElementType, EC.getKnownMinValue()); } bool VectorType::isValidElementType(Type *ElemTy) { return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() || ElemTy->isPointerTy() || ElemTy->getTypeID() == TypedPointerTyID; } //===----------------------------------------------------------------------===// // FixedVectorType Implementation //===----------------------------------------------------------------------===// FixedVectorType *FixedVectorType::get(Type *ElementType, unsigned NumElts) { assert(NumElts > 0 && "#Elements of a VectorType must be greater than 0"); assert(isValidElementType(ElementType) && "Element type of a VectorType must " "be an integer, floating point, or " "pointer type."); auto EC = ElementCount::getFixed(NumElts); LLVMContextImpl *pImpl = ElementType->getContext().pImpl; VectorType *&Entry = ElementType->getContext() .pImpl->VectorTypes[std::make_pair(ElementType, EC)]; if (!Entry) Entry = new (pImpl->Alloc) FixedVectorType(ElementType, NumElts); return cast(Entry); } //===----------------------------------------------------------------------===// // ScalableVectorType Implementation //===----------------------------------------------------------------------===// ScalableVectorType *ScalableVectorType::get(Type *ElementType, unsigned MinNumElts) { assert(MinNumElts > 0 && "#Elements of a VectorType must be greater than 0"); assert(isValidElementType(ElementType) && "Element type of a VectorType must " "be an integer, floating point, or " "pointer type."); auto EC = ElementCount::getScalable(MinNumElts); LLVMContextImpl *pImpl = ElementType->getContext().pImpl; VectorType *&Entry = ElementType->getContext() .pImpl->VectorTypes[std::make_pair(ElementType, EC)]; if (!Entry) Entry = new (pImpl->Alloc) ScalableVectorType(ElementType, MinNumElts); return cast(Entry); } //===----------------------------------------------------------------------===// // PointerType Implementation //===----------------------------------------------------------------------===// PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) { assert(EltTy && "Can't get a pointer to type!"); assert(isValidElementType(EltTy) && "Invalid type for pointer element!"); // Automatically convert typed pointers to opaque pointers. return get(EltTy->getContext(), AddressSpace); } PointerType *PointerType::get(LLVMContext &C, unsigned AddressSpace) { LLVMContextImpl *CImpl = C.pImpl; // Since AddressSpace #0 is the common case, we special case it. PointerType *&Entry = AddressSpace == 0 ? CImpl->AS0PointerType : CImpl->PointerTypes[AddressSpace]; if (!Entry) Entry = new (CImpl->Alloc) PointerType(C, AddressSpace); return Entry; } PointerType::PointerType(LLVMContext &C, unsigned AddrSpace) : Type(C, PointerTyID) { setSubclassData(AddrSpace); } PointerType *Type::getPointerTo(unsigned AddrSpace) const { return PointerType::get(getContext(), AddrSpace); } bool PointerType::isValidElementType(Type *ElemTy) { return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && !ElemTy->isMetadataTy() && !ElemTy->isTokenTy() && !ElemTy->isX86_AMXTy(); } bool PointerType::isLoadableOrStorableType(Type *ElemTy) { return isValidElementType(ElemTy) && !ElemTy->isFunctionTy(); } //===----------------------------------------------------------------------===// // TargetExtType Implementation //===----------------------------------------------------------------------===// TargetExtType::TargetExtType(LLVMContext &C, StringRef Name, ArrayRef Types, ArrayRef Ints) : Type(C, TargetExtTyID), Name(C.pImpl->Saver.save(Name)) { NumContainedTys = Types.size(); // Parameter storage immediately follows the class in allocation. Type **Params = reinterpret_cast(this + 1); ContainedTys = Params; for (Type *T : Types) *Params++ = T; setSubclassData(Ints.size()); unsigned *IntParamSpace = reinterpret_cast(Params); IntParams = IntParamSpace; for (unsigned IntParam : Ints) *IntParamSpace++ = IntParam; } TargetExtType *TargetExtType::get(LLVMContext &C, StringRef Name, ArrayRef Types, ArrayRef Ints) { return cantFail(getOrError(C, Name, Types, Ints)); } Expected TargetExtType::getOrError(LLVMContext &C, StringRef Name, ArrayRef Types, ArrayRef Ints) { const TargetExtTypeKeyInfo::KeyTy Key(Name, Types, Ints); TargetExtType *TT; // Since we only want to allocate a fresh target type in case none is found // and we don't want to perform two lookups (one for checking if existent and // one for inserting the newly allocated one), here we instead lookup based on // Key and update the reference to the target type in-place to a newly // allocated one if not found. auto [Iter, Inserted] = C.pImpl->TargetExtTypes.insert_as(nullptr, Key); if (Inserted) { // The target type was not found. Allocate one and update TargetExtTypes // in-place. TT = (TargetExtType *)C.pImpl->Alloc.Allocate( sizeof(TargetExtType) + sizeof(Type *) * Types.size() + sizeof(unsigned) * Ints.size(), alignof(TargetExtType)); new (TT) TargetExtType(C, Name, Types, Ints); *Iter = TT; return checkParams(TT); } // The target type was found. Just return it. return *Iter; } Expected TargetExtType::checkParams(TargetExtType *TTy) { // Opaque types in the AArch64 name space. if (TTy->Name == "aarch64.svcount" && (TTy->getNumTypeParameters() != 0 || TTy->getNumIntParameters() != 0)) return createStringError( "target extension type aarch64.svcount should have no parameters"); // Opaque types in the RISC-V name space. if (TTy->Name == "riscv.vector.tuple" && (TTy->getNumTypeParameters() != 1 || TTy->getNumIntParameters() != 1)) return createStringError( "target extension type riscv.vector.tuple should have one " "type parameter and one integer parameter"); // Opaque types in the AMDGPU name space. if (TTy->Name == "amdgcn.named.barrier" && (TTy->getNumTypeParameters() != 0 || TTy->getNumIntParameters() != 1)) { return createStringError("target extension type amdgcn.named.barrier " "should have no type parameters " "and one integer parameter"); } return TTy; } namespace { struct TargetTypeInfo { Type *LayoutType; uint64_t Properties; template TargetTypeInfo(Type *LayoutType, ArgTys... Properties) : LayoutType(LayoutType), Properties((0 | ... | Properties)) {} }; } // anonymous namespace static TargetTypeInfo getTargetTypeInfo(const TargetExtType *Ty) { LLVMContext &C = Ty->getContext(); StringRef Name = Ty->getName(); if (Name == "spirv.Image") return TargetTypeInfo(PointerType::get(C, 0), TargetExtType::CanBeGlobal, TargetExtType::CanBeLocal); if (Name.starts_with("spirv.")) return TargetTypeInfo(PointerType::get(C, 0), TargetExtType::HasZeroInit, TargetExtType::CanBeGlobal, TargetExtType::CanBeLocal); // Opaque types in the AArch64 name space. if (Name == "aarch64.svcount") return TargetTypeInfo(ScalableVectorType::get(Type::getInt1Ty(C), 16), TargetExtType::HasZeroInit, TargetExtType::CanBeLocal); // RISC-V vector tuple type. The layout is represented as the type that needs // the same number of vector registers(VREGS) as this tuple type, represented // as . if (Name == "riscv.vector.tuple") { unsigned TotalNumElts = std::max(cast(Ty->getTypeParameter(0)) ->getMinNumElements(), RISCV::RVVBitsPerBlock / 8) * Ty->getIntParameter(0); return TargetTypeInfo( ScalableVectorType::get(Type::getInt8Ty(C), TotalNumElts), TargetExtType::CanBeLocal, TargetExtType::HasZeroInit); } // DirectX resources if (Name.starts_with("dx.")) return TargetTypeInfo(PointerType::get(C, 0), TargetExtType::CanBeGlobal, TargetExtType::CanBeLocal); // Opaque types in the AMDGPU name space. if (Name == "amdgcn.named.barrier") { return TargetTypeInfo(FixedVectorType::get(Type::getInt32Ty(C), 4), TargetExtType::CanBeGlobal); } return TargetTypeInfo(Type::getVoidTy(C)); } Type *TargetExtType::getLayoutType() const { return getTargetTypeInfo(this).LayoutType; } bool TargetExtType::hasProperty(Property Prop) const { uint64_t Properties = getTargetTypeInfo(this).Properties; return (Properties & Prop) == Prop; }