//===- RegAllocBase.cpp - Register Allocator Base Class -------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the RegAllocBase class which provides common functionality // for LiveIntervalUnion-based register allocators. // //===----------------------------------------------------------------------===// #include "RegAllocBase.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/LiveInterval.h" #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/CodeGen/LiveRegMatrix.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Spiller.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/VirtRegMap.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Module.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Timer.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; #define DEBUG_TYPE "regalloc" STATISTIC(NumNewQueued, "Number of new live ranges queued"); // Temporary verification option until we can put verification inside // MachineVerifier. static cl::opt VerifyRegAlloc("verify-regalloc", cl::location(RegAllocBase::VerifyEnabled), cl::Hidden, cl::desc("Verify during register allocation")); const char RegAllocBase::TimerGroupName[] = "regalloc"; const char RegAllocBase::TimerGroupDescription[] = "Register Allocation"; bool RegAllocBase::VerifyEnabled = false; //===----------------------------------------------------------------------===// // RegAllocBase Implementation //===----------------------------------------------------------------------===// // Pin the vtable to this file. void RegAllocBase::anchor() {} void RegAllocBase::init(VirtRegMap &vrm, LiveIntervals &lis, LiveRegMatrix &mat) { TRI = &vrm.getTargetRegInfo(); MRI = &vrm.getRegInfo(); VRM = &vrm; LIS = &lis; Matrix = &mat; MRI->freezeReservedRegs(); RegClassInfo.runOnMachineFunction(vrm.getMachineFunction()); } // Visit all the live registers. If they are already assigned to a physical // register, unify them with the corresponding LiveIntervalUnion, otherwise push // them on the priority queue for later assignment. void RegAllocBase::seedLiveRegs() { NamedRegionTimer T("seed", "Seed Live Regs", TimerGroupName, TimerGroupDescription, TimePassesIsEnabled); for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { Register Reg = Register::index2VirtReg(i); if (MRI->reg_nodbg_empty(Reg)) continue; enqueue(&LIS->getInterval(Reg)); } } // Top-level driver to manage the queue of unassigned VirtRegs and call the // selectOrSplit implementation. void RegAllocBase::allocatePhysRegs() { seedLiveRegs(); // Continue assigning vregs one at a time to available physical registers. while (const LiveInterval *VirtReg = dequeue()) { assert(!VRM->hasPhys(VirtReg->reg()) && "Register already assigned"); // Unused registers can appear when the spiller coalesces snippets. if (MRI->reg_nodbg_empty(VirtReg->reg())) { LLVM_DEBUG(dbgs() << "Dropping unused " << *VirtReg << '\n'); aboutToRemoveInterval(*VirtReg); LIS->removeInterval(VirtReg->reg()); continue; } // Invalidate all interference queries, live ranges could have changed. Matrix->invalidateVirtRegs(); // selectOrSplit requests the allocator to return an available physical // register if possible and populate a list of new live intervals that // result from splitting. LLVM_DEBUG(dbgs() << "\nselectOrSplit " << TRI->getRegClassName(MRI->getRegClass(VirtReg->reg())) << ':' << *VirtReg << '\n'); using VirtRegVec = SmallVector; VirtRegVec SplitVRegs; MCRegister AvailablePhysReg = selectOrSplit(*VirtReg, SplitVRegs); if (AvailablePhysReg == ~0u) { // selectOrSplit failed to find a register! // Probably caused by an inline asm. MachineInstr *MI = nullptr; for (MachineInstr &MIR : MRI->reg_instructions(VirtReg->reg())) { MI = &MIR; if (MI->isInlineAsm()) break; } const TargetRegisterClass *RC = MRI->getRegClass(VirtReg->reg()); AvailablePhysReg = getErrorAssignment(*RC, MI); // Keep going after reporting the error. VRM->assignVirt2Phys(VirtReg->reg(), AvailablePhysReg); } else if (AvailablePhysReg) Matrix->assign(*VirtReg, AvailablePhysReg); for (Register Reg : SplitVRegs) { assert(LIS->hasInterval(Reg)); LiveInterval *SplitVirtReg = &LIS->getInterval(Reg); assert(!VRM->hasPhys(SplitVirtReg->reg()) && "Register already assigned"); if (MRI->reg_nodbg_empty(SplitVirtReg->reg())) { assert(SplitVirtReg->empty() && "Non-empty but used interval"); LLVM_DEBUG(dbgs() << "not queueing unused " << *SplitVirtReg << '\n'); aboutToRemoveInterval(*SplitVirtReg); LIS->removeInterval(SplitVirtReg->reg()); continue; } LLVM_DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg << "\n"); assert(SplitVirtReg->reg().isVirtual() && "expect split value in virtual register"); enqueue(SplitVirtReg); ++NumNewQueued; } } } void RegAllocBase::postOptimization() { spiller().postOptimization(); for (auto *DeadInst : DeadRemats) { LIS->RemoveMachineInstrFromMaps(*DeadInst); DeadInst->eraseFromParent(); } DeadRemats.clear(); } void RegAllocBase::enqueue(const LiveInterval *LI) { const Register Reg = LI->reg(); assert(Reg.isVirtual() && "Can only enqueue virtual registers"); if (VRM->hasPhys(Reg)) return; if (shouldAllocateRegister(Reg)) { LLVM_DEBUG(dbgs() << "Enqueuing " << printReg(Reg, TRI) << '\n'); enqueueImpl(LI); } else { LLVM_DEBUG(dbgs() << "Not enqueueing " << printReg(Reg, TRI) << " in skipped register class\n"); } } MCPhysReg RegAllocBase::getErrorAssignment(const TargetRegisterClass &RC, const MachineInstr *CtxMI) { MachineFunction &MF = VRM->getMachineFunction(); // Avoid printing the error for every single instance of the register. It // would be better if this were per register class. bool EmitError = !MF.getProperties().hasProperty( MachineFunctionProperties::Property::FailedRegAlloc); if (EmitError) MF.getProperties().set(MachineFunctionProperties::Property::FailedRegAlloc); const Function &Fn = MF.getFunction(); LLVMContext &Context = Fn.getContext(); ArrayRef AllocOrder = RegClassInfo.getOrder(&RC); if (AllocOrder.empty()) { // If the allocation order is empty, it likely means all registers in the // class are reserved. We still to need to pick something, so look at the // underlying class. ArrayRef RawRegs = RC.getRegisters(); if (EmitError) { Context.diagnose(DiagnosticInfoRegAllocFailure( "no registers from class available to allocate", Fn, CtxMI ? CtxMI->getDebugLoc() : DiagnosticLocation())); } assert(!RawRegs.empty() && "register classes cannot have no registers"); return RawRegs.front(); } if (EmitError) { if (CtxMI && CtxMI->isInlineAsm()) { CtxMI->emitInlineAsmError( "inline assembly requires more registers than available"); } else { Context.diagnose(DiagnosticInfoRegAllocFailure( "ran out of registers during register allocation", Fn, CtxMI ? CtxMI->getDebugLoc() : DiagnosticLocation())); } } return AllocOrder.front(); }