""" Test the 'memory read' command. """ import lldb import lldbsuite.test.lldbutil as lldbutil from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * class MemoryReadTestCase(TestBase): NO_DEBUG_INFO_TESTCASE = True def build_run_stop(self): self.build() lldbutil.run_to_source_breakpoint( self, "// break here", lldb.SBFileSpec("main.c") ) def test_memory_read_c_string(self): """Test that reading memory as a c string respects the size limit given and warns if the null terminator is missing.""" self.build_run_stop() # The size here is the size in memory so it includes the null terminator. cmd = 'memory read --format "c-string" --size {} &my_string' # Size matches the size of the array. self.expect(cmd.format(8), substrs=['"abcdefg"']) # If size would take us past the terminator we stop at the terminator. self.expect(cmd.format(10), substrs=['"abcdefg"']) # Size 3 means 2 chars and a terminator. So we print 2 chars but warn because # the third isn't 0 as expected. self.expect(cmd.format(3), substrs=['"ab"']) self.assertRegex( self.res.GetError(), "unable to find a NULL terminated string at 0x[0-9A-Fa-f]+." " Consider increasing the maximum read length.", ) def test_memory_read(self): """Test the 'memory read' command with plain and vector formats.""" self.build_run_stop() # (lldb) memory read -f d -c 1 `&argc` # 0x7fff5fbff9a0: 1 self.runCmd("memory read -f d -c 1 `&argc`") # Find the starting address for variable 'argc' to verify later that the # '--format uint32_t[] --size 4 --count 4' option increments the address # correctly. line = self.res.GetOutput().splitlines()[0] items = line.split(":") address = int(items[0], 0) argc = int(items[1], 0) self.assertGreater(address, 0) self.assertEqual(argc, 1) # (lldb) memory read --format uint32_t[] --size 4 --count 4 `&argc` # 0x7fff5fbff9a0: {0x00000001} # 0x7fff5fbff9a4: {0x00000000} # 0x7fff5fbff9a8: {0x0ec0bf27} # 0x7fff5fbff9ac: {0x215db505} self.runCmd("memory read --format uint32_t[] --size 4 --count 4 `&argc`") lines = self.res.GetOutput().splitlines() for i in range(4): if i == 0: # Verify that the printout for argc is correct. self.assertEqual(argc, int(lines[i].split(":")[1].strip(" {}"), 0)) addr = int(lines[i].split(":")[0], 0) # Verify that the printout for addr is incremented correctly. self.assertEqual(addr, (address + i * 4)) # (lldb) memory read --format char[] --size 7 --count 1 `&my_string` # 0x7fff5fbff990: {abcdefg} self.expect( "memory read --format char[] --size 7 --count 1 `&my_string`", substrs=["abcdefg"], ) # (lldb) memory read --format 'hex float' --size 16 `&argc` # 0x7fff5fbff5b0: error: unsupported byte size (16) for hex float # format self.expect( "memory read --format 'hex float' --size 16 `&argc`", substrs=["unsupported byte size (16) for hex float format"], ) self.expect( "memory read --format 'float' --count 1 --size 8 `&my_double`", substrs=["1234."], ) # (lldb) memory read --format 'float' --count 1 --size 20 `&my_double` # 0x7fff5fbff598: error: unsupported byte size (20) for float format self.expect( "memory read --format 'float' --count 1 --size 20 `&my_double`", substrs=["unsupported byte size (20) for float format"], ) self.expect( "memory read --type int --count 5 `&my_ints[0]`", substrs=["(int) 0x", "2", "4", "6", "8", "10"], ) self.expect( "memory read --type int --count 5 --format hex `&my_ints[0]`", substrs=["(int) 0x", "0x", "0a"], ) self.expect( "memory read --type int --count 5 --offset 5 `&my_ints[0]`", substrs=["(int) 0x", "12", "14", "16", "18", "20"], ) # the gdb format specifier and the size in characters for # the returned values including the 0x prefix. variations = [["b", 4], ["h", 6], ["w", 10], ["g", 18]] for v in variations: formatter = v[0] expected_object_length = v[1] self.runCmd("memory read --gdb-format 4%s &my_uint64s" % formatter) lines = self.res.GetOutput().splitlines() objects_read = [] for l in lines: objects_read.extend(l.split(":")[1].split()) # Check that we got back 4 0x0000 etc bytes for o in objects_read: self.assertEqual(len(o), expected_object_length) self.assertEqual(len(objects_read), 4) def test_memory_read_file(self): self.build_run_stop() res = lldb.SBCommandReturnObject() self.ci.HandleCommand("memory read -f d -c 1 `&argc`", res) self.assertTrue(res.Succeeded(), "memory read failed:" + res.GetError()) # Record golden output. golden_output = res.GetOutput() memory_read_file = self.getBuildArtifact("memory-read-output") def check_file_content(expected): with open(memory_read_file) as f: lines = f.readlines() lines = [s.strip() for s in lines] expected = [s.strip() for s in expected] self.assertEqual(lines, expected) # Sanity check. self.runCmd("memory read -f d -c 1 -o '{}' `&argc`".format(memory_read_file)) check_file_content([golden_output]) # Write some garbage to the file. with open(memory_read_file, "w") as f: f.write("some garbage") # Make sure the file is truncated when we run the command again. self.runCmd("memory read -f d -c 1 -o '{}' `&argc`".format(memory_read_file)) check_file_content([golden_output]) # Make sure the file is appended when we run the command with --append-outfile. self.runCmd( "memory read -f d -c 1 -o '{}' --append-outfile `&argc`".format( memory_read_file ) ) check_file_content([golden_output, golden_output])