//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // Check that the PowerPC vector registers are restored properly during // unwinding. Option -mabi=vec-extabi is required to compile the test case. // REQUIRES: target={{.+}}-aix{{.*}} // ADDITIONAL_COMPILE_FLAGS: -mabi=vec-extabi // UNSUPPORTED: no-exceptions // AIX does not support the eh_frame section. Instead, the traceback table // located at the end of each function provides the information for stack // unwinding. Non-volatile GRs, FRs, and VRs clobbered by the function are // saved on the stack and the numbers of saved registers are available in the // traceback table. Registers are saved from high number to low consecutively, // e.g., if n VRs are saved, the order on the stack will be VR31, VR30, ..., // VR31-n+1. This test cases checks the unwinder gets to the location of saved // VRs which should be 16-byte aligned and restores them correctly based on // the number specified in the traceback table. To simplify, only the 2 high // numbered VRs are checked. Because PowerPC CPUs do not have instructions to // assign a literal value to a VR directly until Power10, and the instructions // to assign to a VR from a GR and vice versa are not available until Power8, // vector instructions available on Power7 are used to facilitate the test // so that it can run on all supported PowerPC architectures. In the code // below, VR31 is equivalent to VS63, VR30 is equivalent to VS62 (see PowerPC // documents for details). // #include #include int __attribute__((noinline)) test2(int i) { if (i > 3) throw i; srand(i); return rand(); } int __attribute__((noinline)) test(int i) { // Clobber VS63 and VS62 in the function body. // Set VS63 to 16 bytes each with value 9 asm volatile("vspltisb 31, 9" : : : "v31"); // Set VS62 to 16 bytes each with value 12 asm volatile("vspltisb 30, 12" : : : "v30"); return test2(i); } #define cmpVS63(vec, result) \ { \ vector unsigned char gbg; \ asm volatile("vcmpequb. %[gbg], 31, %[veca];" \ "mfocrf %[res], 2;" \ "rlwinm %[res], %[res], 25, 31, 31" \ : [res] "=r"(result), [gbg] "=v"(gbg) \ : [veca] "v"(vec) \ : "cr6"); \ } #define cmpVS62(vec, result) \ { \ vector unsigned char gbg; \ asm volatile("vcmpequb. %[gbg], 30, %[veca];" \ "mfocrf %[res], 2;" \ "rlwinm %[res], %[res], 25, 31, 31" \ : [res] "=r"(result), [gbg] "=v"(gbg) \ : [veca] "v"(vec) \ : "cr6"); \ } int main(int, char**) { // Set VS63 to 16 bytes each with value 1 asm volatile("vspltisb 31, 1" : : : "v31"); // Set VS62 to 16 bytes each with value 2 asm volatile("vspltisb 30, 2" : : : "v30"); vector unsigned long long expectedVS63Value = {0x101010101010101, 0x101010101010101}; vector unsigned long long expectedVS62Value = {0x202020202020202, 0x202020202020202}; try { test(4); } catch (int num) { // If the unwinder restores VS63 and VS62 correctly, they should contain // 0x01's and 0x02's respectively instead of 0x09's and 0x12's. bool isEqualVS63, isEqualVS62; cmpVS63(expectedVS63Value, isEqualVS63); cmpVS62(expectedVS62Value, isEqualVS62); assert(isEqualVS63 && isEqualVS62); } return 0; }