// -*- C++ -*- //===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef _LIBCPP___FORMAT_PARSER_STD_FORMAT_SPEC_H #define _LIBCPP___FORMAT_PARSER_STD_FORMAT_SPEC_H /// \file Contains the std-format-spec parser. /// /// Most of the code can be reused in the chrono-format-spec. /// This header has some support for the chrono-format-spec since it doesn't /// affect the std-format-spec. #include <__algorithm/copy_n.h> #include <__algorithm/min.h> #include <__assert> #include <__concepts/arithmetic.h> #include <__concepts/same_as.h> #include <__config> #include <__format/format_arg.h> #include <__format/format_error.h> #include <__format/format_parse_context.h> #include <__format/format_string.h> #include <__format/unicode.h> #include <__format/width_estimation_table.h> #include <__iterator/concepts.h> #include <__iterator/iterator_traits.h> // iter_value_t #include <__memory/addressof.h> #include <__type_traits/common_type.h> #include <__type_traits/is_constant_evaluated.h> #include <__type_traits/is_trivially_copyable.h> #include <__variant/monostate.h> #include #include #include #if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER) # pragma GCC system_header #endif _LIBCPP_PUSH_MACROS #include <__undef_macros> _LIBCPP_BEGIN_NAMESPACE_STD #if _LIBCPP_STD_VER >= 20 namespace __format_spec { [[noreturn]] _LIBCPP_HIDE_FROM_ABI inline void __throw_invalid_option_format_error(const char* __id, const char* __option) { std::__throw_format_error( (string("The format specifier for ") + __id + " does not allow the " + __option + " option").c_str()); } [[noreturn]] _LIBCPP_HIDE_FROM_ABI inline void __throw_invalid_type_format_error(const char* __id) { std::__throw_format_error( (string("The type option contains an invalid value for ") + __id + " formatting argument").c_str()); } template _LIBCPP_HIDE_FROM_ABI constexpr __format::__parse_number_result<_Iterator> __parse_arg_id(_Iterator __begin, _Iterator __end, _ParseContext& __ctx) { using _CharT = iter_value_t<_Iterator>; // This function is a wrapper to call the real parser. But it does the // validation for the pre-conditions and post-conditions. if (__begin == __end) std::__throw_format_error("End of input while parsing an argument index"); __format::__parse_number_result __r = __format::__parse_arg_id(__begin, __end, __ctx); if (__r.__last == __end || *__r.__last != _CharT('}')) std::__throw_format_error("The argument index is invalid"); ++__r.__last; return __r; } template _LIBCPP_HIDE_FROM_ABI constexpr uint32_t __substitute_arg_id(basic_format_arg<_Context> __format_arg) { // [format.string.std]/8 // If the corresponding formatting argument is not of integral type... // This wording allows char and bool too. LWG-3720 changes the wording to // If the corresponding formatting argument is not of standard signed or // unsigned integer type, // This means the 128-bit will not be valid anymore. // TODO FMT Verify this resolution is accepted and add a test to verify // 128-bit integrals fail and switch to visit_format_arg. return std::__visit_format_arg( [](auto __arg) -> uint32_t { using _Type = decltype(__arg); if constexpr (same_as<_Type, monostate>) std::__throw_format_error("The argument index value is too large for the number of arguments supplied"); // [format.string.std]/8 // If { arg-idopt } is used in a width or precision, the value of the // corresponding formatting argument is used in its place. If the // corresponding formatting argument is not of standard signed or unsigned // integer type, or its value is negative for precision or non-positive for // width, an exception of type format_error is thrown. // // When an integral is used in a format function, it is stored as one of // the types checked below. Other integral types are promoted. For example, // a signed char is stored as an int. if constexpr (same_as<_Type, int> || same_as<_Type, unsigned int> || // same_as<_Type, long long> || same_as<_Type, unsigned long long>) { if constexpr (signed_integral<_Type>) { if (__arg < 0) std::__throw_format_error("An argument index may not have a negative value"); } using _CT = common_type_t<_Type, decltype(__format::__number_max)>; if (static_cast<_CT>(__arg) > static_cast<_CT>(__format::__number_max)) std::__throw_format_error("The value of the argument index exceeds its maximum value"); return __arg; } else std::__throw_format_error("Replacement argument isn't a standard signed or unsigned integer type"); }, __format_arg); } /// These fields are a filter for which elements to parse. /// /// They default to false so when a new field is added it needs to be opted in /// explicitly. struct _LIBCPP_HIDE_FROM_ABI __fields { uint16_t __sign_ : 1 {false}; uint16_t __alternate_form_ : 1 {false}; uint16_t __zero_padding_ : 1 {false}; uint16_t __precision_ : 1 {false}; uint16_t __locale_specific_form_ : 1 {false}; uint16_t __type_ : 1 {false}; // Determines the valid values for fill. // // Originally the fill could be any character except { and }. Range-based // formatters use the colon to mark the beginning of the // underlying-format-spec. To avoid parsing ambiguities these formatter // specializations prohibit the use of the colon as a fill character. uint16_t __use_range_fill_ : 1 {false}; uint16_t __clear_brackets_ : 1 {false}; uint16_t __consume_all_ : 1 {false}; }; // By not placing this constant in the formatter class it's not duplicated for // char and wchar_t. inline constexpr __fields __fields_bool{.__locale_specific_form_ = true, .__type_ = true, .__consume_all_ = true}; inline constexpr __fields __fields_integral{ .__sign_ = true, .__alternate_form_ = true, .__zero_padding_ = true, .__locale_specific_form_ = true, .__type_ = true, .__consume_all_ = true}; inline constexpr __fields __fields_floating_point{ .__sign_ = true, .__alternate_form_ = true, .__zero_padding_ = true, .__precision_ = true, .__locale_specific_form_ = true, .__type_ = true, .__consume_all_ = true}; inline constexpr __fields __fields_string{.__precision_ = true, .__type_ = true, .__consume_all_ = true}; inline constexpr __fields __fields_pointer{.__zero_padding_ = true, .__type_ = true, .__consume_all_ = true}; # if _LIBCPP_STD_VER >= 23 inline constexpr __fields __fields_tuple{.__use_range_fill_ = true, .__clear_brackets_ = true}; inline constexpr __fields __fields_range{.__use_range_fill_ = true, .__clear_brackets_ = true}; inline constexpr __fields __fields_fill_align_width{}; # endif enum class __alignment : uint8_t { /// No alignment is set in the format string. __default, __left, __center, __right, __zero_padding }; enum class __sign : uint8_t { /// No sign is set in the format string. /// /// The sign isn't allowed for certain format-types. By using this value /// it's possible to detect whether or not the user explicitly set the sign /// flag. For formatting purposes it behaves the same as \ref __minus. __default, __minus, __plus, __space }; enum class __type : uint8_t { __default = 0, __string, __binary_lower_case, __binary_upper_case, __octal, __decimal, __hexadecimal_lower_case, __hexadecimal_upper_case, __pointer_lower_case, __pointer_upper_case, __char, __hexfloat_lower_case, __hexfloat_upper_case, __scientific_lower_case, __scientific_upper_case, __fixed_lower_case, __fixed_upper_case, __general_lower_case, __general_upper_case, __debug }; _LIBCPP_HIDE_FROM_ABI inline constexpr uint32_t __create_type_mask(__type __t) { uint32_t __shift = static_cast(__t); if (__shift == 0) return 1; if (__shift > 31) std::__throw_format_error("The type does not fit in the mask"); return 1 << __shift; } inline constexpr uint32_t __type_mask_integer = __create_type_mask(__type::__binary_lower_case) | // __create_type_mask(__type::__binary_upper_case) | // __create_type_mask(__type::__decimal) | // __create_type_mask(__type::__octal) | // __create_type_mask(__type::__hexadecimal_lower_case) | // __create_type_mask(__type::__hexadecimal_upper_case); struct __std { __alignment __alignment_ : 3; __sign __sign_ : 2; bool __alternate_form_ : 1; bool __locale_specific_form_ : 1; __type __type_; }; struct __chrono { __alignment __alignment_ : 3; bool __locale_specific_form_ : 1; bool __hour_ : 1; bool __weekday_name_ : 1; bool __weekday_ : 1; bool __day_of_year_ : 1; bool __week_of_year_ : 1; bool __month_name_ : 1; }; // The fill UCS scalar value. // // This is always an array, with 1, 2, or 4 elements. // The size of the data structure is always 32-bits. template struct __code_point; template <> struct __code_point { char __data[4] = {' '}; }; # if _LIBCPP_HAS_WIDE_CHARACTERS template <> struct __code_point { wchar_t __data[4 / sizeof(wchar_t)] = {L' '}; }; # endif /// Contains the parsed formatting specifications. /// /// This contains information for both the std-format-spec and the /// chrono-format-spec. This results in some unused members for both /// specifications. However these unused members don't increase the size /// of the structure. /// /// This struct doesn't cross ABI boundaries so its layout doesn't need to be /// kept stable. template struct __parsed_specifications { union { // The field __alignment_ is the first element in __std_ and __chrono_. // This allows the code to always inspect this value regards which member // of the union is the active member [class.union.general]/2. // // This is needed since the generic output routines handle the alignment of // the output. __alignment __alignment_ : 3; __std __std_; __chrono __chrono_; }; /// The requested width. /// /// When the format-spec used an arg-id for this field it has already been /// replaced with the value of that arg-id. int32_t __width_; /// The requested precision. /// /// When the format-spec used an arg-id for this field it has already been /// replaced with the value of that arg-id. int32_t __precision_; __code_point<_CharT> __fill_; _LIBCPP_HIDE_FROM_ABI constexpr bool __has_width() const { return __width_ > 0; } _LIBCPP_HIDE_FROM_ABI constexpr bool __has_precision() const { return __precision_ >= 0; } }; // Validate the struct is small and cheap to copy since the struct is passed by // value in formatting functions. static_assert(sizeof(__parsed_specifications) == 16); static_assert(is_trivially_copyable_v<__parsed_specifications>); # if _LIBCPP_HAS_WIDE_CHARACTERS static_assert(sizeof(__parsed_specifications) == 16); static_assert(is_trivially_copyable_v<__parsed_specifications>); # endif /// The parser for the std-format-spec. /// /// Note this class is a member of std::formatter specializations. It's /// expected developers will create their own formatter specializations that /// inherit from the std::formatter specializations. This means this class /// must be ABI stable. To aid the stability the unused bits in the class are /// set to zero. That way they can be repurposed if a future revision of the /// Standards adds new fields to std-format-spec. template class _LIBCPP_TEMPLATE_VIS __parser { public: // Parses the format specification. // // Depending on whether the parsing is done compile-time or run-time // the method slightly differs. // - Only parses a field when it is in the __fields. Accepting all // fields and then validating the valid ones has a performance impact. // This is faster but gives slighly worse error messages. // - At compile-time when a field is not accepted the parser will still // parse it and give an error when it's present. This gives a more // accurate error. // The idea is that most times the format instead of the vformat // functions are used. In that case the error will be detected during // compilation and there is no need to pay for the run-time overhead. template _LIBCPP_HIDE_FROM_ABI constexpr typename _ParseContext::iterator __parse(_ParseContext& __ctx, __fields __fields) { auto __begin = __ctx.begin(); auto __end = __ctx.end(); if (__begin == __end || *__begin == _CharT('}') || (__fields.__use_range_fill_ && *__begin == _CharT(':'))) return __begin; if (__parse_fill_align(__begin, __end) && __begin == __end) return __begin; if (__fields.__sign_) { if (__parse_sign(__begin) && __begin == __end) return __begin; } else if (std::is_constant_evaluated() && __parse_sign(__begin)) { std::__throw_format_error("The format specification does not allow the sign option"); } if (__fields.__alternate_form_) { if (__parse_alternate_form(__begin) && __begin == __end) return __begin; } else if (std::is_constant_evaluated() && __parse_alternate_form(__begin)) { std::__throw_format_error("The format specifier does not allow the alternate form option"); } if (__fields.__zero_padding_) { if (__parse_zero_padding(__begin) && __begin == __end) return __begin; } else if (std::is_constant_evaluated() && __parse_zero_padding(__begin)) { std::__throw_format_error("The format specifier does not allow the zero-padding option"); } if (__parse_width(__begin, __end, __ctx) && __begin == __end) return __begin; if (__fields.__precision_) { if (__parse_precision(__begin, __end, __ctx) && __begin == __end) return __begin; } else if (std::is_constant_evaluated() && __parse_precision(__begin, __end, __ctx)) { std::__throw_format_error("The format specifier does not allow the precision option"); } if (__fields.__locale_specific_form_) { if (__parse_locale_specific_form(__begin) && __begin == __end) return __begin; } else if (std::is_constant_evaluated() && __parse_locale_specific_form(__begin)) { std::__throw_format_error("The format specifier does not allow the locale-specific form option"); } if (__fields.__clear_brackets_) { if (__parse_clear_brackets(__begin) && __begin == __end) return __begin; } else if (std::is_constant_evaluated() && __parse_clear_brackets(__begin)) { std::__throw_format_error("The format specifier does not allow the n option"); } if (__fields.__type_) __parse_type(__begin); if (!__fields.__consume_all_) return __begin; if (__begin != __end && *__begin != _CharT('}')) std::__throw_format_error("The format specifier should consume the input or end with a '}'"); return __begin; } // Validates the selected the parsed data. // // The valid fields in the parser may depend on the display type // selected. But the type is the last optional field, so by the time // it's known an option can't be used, it already has been parsed. // This does the validation again. // // For example an integral may have a sign, zero-padding, or alternate // form when the type option is not 'c'. So the generic approach is: // // typename _ParseContext::iterator __result = __parser_.__parse(__ctx, __format_spec::__fields_integral); // if (__parser.__type_ == __format_spec::__type::__char) { // __parser.__validate((__format_spec::__fields_bool, "an integer"); // ... // more char adjustments // } else { // ... // validate an integral type. // } // // For some types all valid options need a second validation run, like // boolean types. // // Depending on whether the validation is done at compile-time or // run-time the error differs // - run-time the exception is thrown and contains the type of field // being validated. // - at compile-time the line with `std::__throw_format_error` is shown // in the output. In that case it's important for the error to be on one // line. // Note future versions of C++ may allow better compile-time error // reporting. _LIBCPP_HIDE_FROM_ABI constexpr void __validate(__fields __fields, const char* __id, uint32_t __type_mask = -1) const { if (!__fields.__sign_ && __sign_ != __sign::__default) { if (std::is_constant_evaluated()) std::__throw_format_error("The format specifier does not allow the sign option"); else __format_spec::__throw_invalid_option_format_error(__id, "sign"); } if (!__fields.__alternate_form_ && __alternate_form_) { if (std::is_constant_evaluated()) std::__throw_format_error("The format specifier does not allow the alternate form option"); else __format_spec::__throw_invalid_option_format_error(__id, "alternate form"); } if (!__fields.__zero_padding_ && __alignment_ == __alignment::__zero_padding) { if (std::is_constant_evaluated()) std::__throw_format_error("The format specifier does not allow the zero-padding option"); else __format_spec::__throw_invalid_option_format_error(__id, "zero-padding"); } if (!__fields.__precision_ && __precision_ != -1) { // Works both when the precision has a value or an arg-id. if (std::is_constant_evaluated()) std::__throw_format_error("The format specifier does not allow the precision option"); else __format_spec::__throw_invalid_option_format_error(__id, "precision"); } if (!__fields.__locale_specific_form_ && __locale_specific_form_) { if (std::is_constant_evaluated()) std::__throw_format_error("The format specifier does not allow the locale-specific form option"); else __format_spec::__throw_invalid_option_format_error(__id, "locale-specific form"); } if ((__create_type_mask(__type_) & __type_mask) == 0) { if (std::is_constant_evaluated()) std::__throw_format_error("The format specifier uses an invalid value for the type option"); else __format_spec::__throw_invalid_type_format_error(__id); } } /// \returns the `__parsed_specifications` with the resolved dynamic sizes.. _LIBCPP_HIDE_FROM_ABI __parsed_specifications<_CharT> __get_parsed_std_specifications(auto& __ctx) const { return __parsed_specifications<_CharT>{ .__std_ = __std{.__alignment_ = __alignment_, .__sign_ = __sign_, .__alternate_form_ = __alternate_form_, .__locale_specific_form_ = __locale_specific_form_, .__type_ = __type_}, .__width_{__get_width(__ctx)}, .__precision_{__get_precision(__ctx)}, .__fill_{__fill_}}; } _LIBCPP_HIDE_FROM_ABI __parsed_specifications<_CharT> __get_parsed_chrono_specifications(auto& __ctx) const { return __parsed_specifications<_CharT>{ .__chrono_ = __chrono{.__alignment_ = __alignment_, .__locale_specific_form_ = __locale_specific_form_, .__hour_ = __hour_, .__weekday_name_ = __weekday_name_, .__weekday_ = __weekday_, .__day_of_year_ = __day_of_year_, .__week_of_year_ = __week_of_year_, .__month_name_ = __month_name_}, .__width_{__get_width(__ctx)}, .__precision_{__get_precision(__ctx)}, .__fill_{__fill_}}; } __alignment __alignment_ : 3 {__alignment::__default}; __sign __sign_ : 2 {__sign::__default}; bool __alternate_form_ : 1 {false}; bool __locale_specific_form_ : 1 {false}; bool __clear_brackets_ : 1 {false}; __type __type_{__type::__default}; // These flags are only used for formatting chrono. Since the struct has // padding space left it's added to this structure. bool __hour_ : 1 {false}; bool __weekday_name_ : 1 {false}; bool __weekday_ : 1 {false}; bool __day_of_year_ : 1 {false}; bool __week_of_year_ : 1 {false}; bool __month_name_ : 1 {false}; uint8_t __reserved_0_ : 2 {0}; uint8_t __reserved_1_ : 6 {0}; // These two flags are only used internally and not part of the // __parsed_specifications. Therefore put them at the end. bool __width_as_arg_ : 1 {false}; bool __precision_as_arg_ : 1 {false}; /// The requested width, either the value or the arg-id. int32_t __width_{0}; /// The requested precision, either the value or the arg-id. int32_t __precision_{-1}; __code_point<_CharT> __fill_{}; private: _LIBCPP_HIDE_FROM_ABI constexpr bool __parse_alignment(_CharT __c) { switch (__c) { case _CharT('<'): __alignment_ = __alignment::__left; return true; case _CharT('^'): __alignment_ = __alignment::__center; return true; case _CharT('>'): __alignment_ = __alignment::__right; return true; } return false; } _LIBCPP_HIDE_FROM_ABI constexpr void __validate_fill_character(_CharT __fill) { // The forbidden fill characters all code points formed from a single code unit, thus the // check can be omitted when more code units are used. if (__fill == _CharT('{')) std::__throw_format_error("The fill option contains an invalid value"); } # if _LIBCPP_HAS_UNICODE // range-fill and tuple-fill are identical template requires same_as<_CharT, char> # if _LIBCPP_HAS_WIDE_CHARACTERS || (same_as<_CharT, wchar_t> && sizeof(wchar_t) == 2) # endif _LIBCPP_HIDE_FROM_ABI constexpr bool __parse_fill_align(_Iterator& __begin, _Iterator __end) { _LIBCPP_ASSERT_VALID_ELEMENT_ACCESS( __begin != __end, "when called with an empty input the function will cause " "undefined behavior by evaluating data not in the input"); __unicode::__code_point_view<_CharT> __view{__begin, __end}; __unicode::__consume_result __consumed = __view.__consume(); if (__consumed.__status != __unicode::__consume_result::__ok) std::__throw_format_error("The format specifier contains malformed Unicode characters"); if (__view.__position() < __end && __parse_alignment(*__view.__position())) { ptrdiff_t __code_units = __view.__position() - __begin; if (__code_units == 1) // The forbidden fill characters all are code points encoded // in one code unit, thus the check can be omitted when more // code units are used. __validate_fill_character(*__begin); std::copy_n(__begin, __code_units, std::addressof(__fill_.__data[0])); __begin += __code_units + 1; return true; } if (!__parse_alignment(*__begin)) return false; ++__begin; return true; } # if _LIBCPP_HAS_WIDE_CHARACTERS template requires(same_as<_CharT, wchar_t> && sizeof(wchar_t) == 4) _LIBCPP_HIDE_FROM_ABI constexpr bool __parse_fill_align(_Iterator& __begin, _Iterator __end) { _LIBCPP_ASSERT_VALID_ELEMENT_ACCESS( __begin != __end, "when called with an empty input the function will cause " "undefined behavior by evaluating data not in the input"); if (__begin + 1 != __end && __parse_alignment(*(__begin + 1))) { if (!__unicode::__is_scalar_value(*__begin)) std::__throw_format_error("The fill option contains an invalid value"); __validate_fill_character(*__begin); __fill_.__data[0] = *__begin; __begin += 2; return true; } if (!__parse_alignment(*__begin)) return false; ++__begin; return true; } # endif // _LIBCPP_HAS_WIDE_CHARACTERS # else // _LIBCPP_HAS_UNICODE // range-fill and tuple-fill are identical template _LIBCPP_HIDE_FROM_ABI constexpr bool __parse_fill_align(_Iterator& __begin, _Iterator __end) { _LIBCPP_ASSERT_VALID_ELEMENT_ACCESS( __begin != __end, "when called with an empty input the function will cause " "undefined behavior by evaluating data not in the input"); if (__begin + 1 != __end) { if (__parse_alignment(*(__begin + 1))) { __validate_fill_character(*__begin); __fill_.__data[0] = *__begin; __begin += 2; return true; } } if (!__parse_alignment(*__begin)) return false; ++__begin; return true; } # endif // _LIBCPP_HAS_UNICODE template _LIBCPP_HIDE_FROM_ABI constexpr bool __parse_sign(_Iterator& __begin) { switch (*__begin) { case _CharT('-'): __sign_ = __sign::__minus; break; case _CharT('+'): __sign_ = __sign::__plus; break; case _CharT(' '): __sign_ = __sign::__space; break; default: return false; } ++__begin; return true; } template _LIBCPP_HIDE_FROM_ABI constexpr bool __parse_alternate_form(_Iterator& __begin) { if (*__begin != _CharT('#')) return false; __alternate_form_ = true; ++__begin; return true; } template _LIBCPP_HIDE_FROM_ABI constexpr bool __parse_zero_padding(_Iterator& __begin) { if (*__begin != _CharT('0')) return false; if (__alignment_ == __alignment::__default) __alignment_ = __alignment::__zero_padding; ++__begin; return true; } template _LIBCPP_HIDE_FROM_ABI constexpr bool __parse_width(_Iterator& __begin, _Iterator __end, auto& __ctx) { if (*__begin == _CharT('0')) std::__throw_format_error("The width option should not have a leading zero"); if (*__begin == _CharT('{')) { __format::__parse_number_result __r = __format_spec::__parse_arg_id(++__begin, __end, __ctx); __width_as_arg_ = true; __width_ = __r.__value; __begin = __r.__last; return true; } if (*__begin < _CharT('0') || *__begin > _CharT('9')) return false; __format::__parse_number_result __r = __format::__parse_number(__begin, __end); __width_ = __r.__value; _LIBCPP_ASSERT_INTERNAL(__width_ != 0, "A zero value isn't allowed and should be impossible, " "due to validations in this function"); __begin = __r.__last; return true; } template _LIBCPP_HIDE_FROM_ABI constexpr bool __parse_precision(_Iterator& __begin, _Iterator __end, auto& __ctx) { if (*__begin != _CharT('.')) return false; ++__begin; if (__begin == __end) std::__throw_format_error("End of input while parsing format specifier precision"); if (*__begin == _CharT('{')) { __format::__parse_number_result __arg_id = __format_spec::__parse_arg_id(++__begin, __end, __ctx); __precision_as_arg_ = true; __precision_ = __arg_id.__value; __begin = __arg_id.__last; return true; } if (*__begin < _CharT('0') || *__begin > _CharT('9')) std::__throw_format_error("The precision option does not contain a value or an argument index"); __format::__parse_number_result __r = __format::__parse_number(__begin, __end); __precision_ = __r.__value; __precision_as_arg_ = false; __begin = __r.__last; return true; } template _LIBCPP_HIDE_FROM_ABI constexpr bool __parse_locale_specific_form(_Iterator& __begin) { if (*__begin != _CharT('L')) return false; __locale_specific_form_ = true; ++__begin; return true; } template _LIBCPP_HIDE_FROM_ABI constexpr bool __parse_clear_brackets(_Iterator& __begin) { if (*__begin != _CharT('n')) return false; __clear_brackets_ = true; ++__begin; return true; } template _LIBCPP_HIDE_FROM_ABI constexpr void __parse_type(_Iterator& __begin) { // Determines the type. It does not validate whether the selected type is // valid. Most formatters have optional fields that are only allowed for // certain types. These parsers need to do validation after the type has // been parsed. So its easier to implement the validation for all types in // the specific parse function. switch (*__begin) { case 'A': __type_ = __type::__hexfloat_upper_case; break; case 'B': __type_ = __type::__binary_upper_case; break; case 'E': __type_ = __type::__scientific_upper_case; break; case 'F': __type_ = __type::__fixed_upper_case; break; case 'G': __type_ = __type::__general_upper_case; break; case 'X': __type_ = __type::__hexadecimal_upper_case; break; case 'a': __type_ = __type::__hexfloat_lower_case; break; case 'b': __type_ = __type::__binary_lower_case; break; case 'c': __type_ = __type::__char; break; case 'd': __type_ = __type::__decimal; break; case 'e': __type_ = __type::__scientific_lower_case; break; case 'f': __type_ = __type::__fixed_lower_case; break; case 'g': __type_ = __type::__general_lower_case; break; case 'o': __type_ = __type::__octal; break; case 'p': __type_ = __type::__pointer_lower_case; break; case 'P': __type_ = __type::__pointer_upper_case; break; case 's': __type_ = __type::__string; break; case 'x': __type_ = __type::__hexadecimal_lower_case; break; # if _LIBCPP_STD_VER >= 23 case '?': __type_ = __type::__debug; break; # endif default: return; } ++__begin; } _LIBCPP_HIDE_FROM_ABI int32_t __get_width(auto& __ctx) const { if (!__width_as_arg_) return __width_; return __format_spec::__substitute_arg_id(__ctx.arg(__width_)); } _LIBCPP_HIDE_FROM_ABI int32_t __get_precision(auto& __ctx) const { if (!__precision_as_arg_) return __precision_; return __format_spec::__substitute_arg_id(__ctx.arg(__precision_)); } }; // Validates whether the reserved bitfields don't change the size. static_assert(sizeof(__parser) == 16); # if _LIBCPP_HAS_WIDE_CHARACTERS static_assert(sizeof(__parser) == 16); # endif _LIBCPP_HIDE_FROM_ABI constexpr void __process_display_type_string(__format_spec::__type __type) { switch (__type) { case __format_spec::__type::__default: case __format_spec::__type::__string: case __format_spec::__type::__debug: break; default: std::__throw_format_error("The type option contains an invalid value for a string formatting argument"); } } template _LIBCPP_HIDE_FROM_ABI constexpr void __process_display_type_bool_string(__parser<_CharT>& __parser, const char* __id) { __parser.__validate(__format_spec::__fields_bool, __id); if (__parser.__alignment_ == __alignment::__default) __parser.__alignment_ = __alignment::__left; } template _LIBCPP_HIDE_FROM_ABI constexpr void __process_display_type_char(__parser<_CharT>& __parser, const char* __id) { __format_spec::__process_display_type_bool_string(__parser, __id); } template _LIBCPP_HIDE_FROM_ABI constexpr void __process_parsed_bool(__parser<_CharT>& __parser, const char* __id) { switch (__parser.__type_) { case __format_spec::__type::__default: case __format_spec::__type::__string: __format_spec::__process_display_type_bool_string(__parser, __id); break; case __format_spec::__type::__binary_lower_case: case __format_spec::__type::__binary_upper_case: case __format_spec::__type::__octal: case __format_spec::__type::__decimal: case __format_spec::__type::__hexadecimal_lower_case: case __format_spec::__type::__hexadecimal_upper_case: break; default: __format_spec::__throw_invalid_type_format_error(__id); } } template _LIBCPP_HIDE_FROM_ABI constexpr void __process_parsed_char(__parser<_CharT>& __parser, const char* __id) { switch (__parser.__type_) { case __format_spec::__type::__default: case __format_spec::__type::__char: case __format_spec::__type::__debug: __format_spec::__process_display_type_char(__parser, __id); break; case __format_spec::__type::__binary_lower_case: case __format_spec::__type::__binary_upper_case: case __format_spec::__type::__octal: case __format_spec::__type::__decimal: case __format_spec::__type::__hexadecimal_lower_case: case __format_spec::__type::__hexadecimal_upper_case: break; default: __format_spec::__throw_invalid_type_format_error(__id); } } template _LIBCPP_HIDE_FROM_ABI constexpr void __process_parsed_integer(__parser<_CharT>& __parser, const char* __id) { switch (__parser.__type_) { case __format_spec::__type::__default: case __format_spec::__type::__binary_lower_case: case __format_spec::__type::__binary_upper_case: case __format_spec::__type::__octal: case __format_spec::__type::__decimal: case __format_spec::__type::__hexadecimal_lower_case: case __format_spec::__type::__hexadecimal_upper_case: break; case __format_spec::__type::__char: __format_spec::__process_display_type_char(__parser, __id); break; default: __format_spec::__throw_invalid_type_format_error(__id); } } template _LIBCPP_HIDE_FROM_ABI constexpr void __process_parsed_floating_point(__parser<_CharT>& __parser, const char* __id) { switch (__parser.__type_) { case __format_spec::__type::__default: case __format_spec::__type::__hexfloat_lower_case: case __format_spec::__type::__hexfloat_upper_case: // Precision specific behavior will be handled later. break; case __format_spec::__type::__scientific_lower_case: case __format_spec::__type::__scientific_upper_case: case __format_spec::__type::__fixed_lower_case: case __format_spec::__type::__fixed_upper_case: case __format_spec::__type::__general_lower_case: case __format_spec::__type::__general_upper_case: if (!__parser.__precision_as_arg_ && __parser.__precision_ == -1) // Set the default precision for the call to to_chars. __parser.__precision_ = 6; break; default: __format_spec::__throw_invalid_type_format_error(__id); } } _LIBCPP_HIDE_FROM_ABI constexpr void __process_display_type_pointer(__format_spec::__type __type, const char* __id) { switch (__type) { case __format_spec::__type::__default: case __format_spec::__type::__pointer_lower_case: case __format_spec::__type::__pointer_upper_case: break; default: __format_spec::__throw_invalid_type_format_error(__id); } } template struct __column_width_result { /// The number of output columns. size_t __width_; /// One beyond the last code unit used in the estimation. /// /// This limits the original output to fit in the wanted number of columns. _Iterator __last_; }; template __column_width_result(size_t, _Iterator) -> __column_width_result<_Iterator>; /// Since a column width can be two it's possible that the requested column /// width can't be achieved. Depending on the intended usage the policy can be /// selected. /// - When used as precision the maximum width may not be exceeded and the /// result should be "rounded down" to the previous boundary. /// - When used as a width we're done once the minimum is reached, but /// exceeding is not an issue. Rounding down is an issue since that will /// result in writing fill characters. Therefore the result needs to be /// "rounded up". enum class __column_width_rounding { __down, __up }; # if _LIBCPP_HAS_UNICODE namespace __detail { template _LIBCPP_HIDE_FROM_ABI constexpr __column_width_result<_Iterator> __estimate_column_width_grapheme_clustering( _Iterator __first, _Iterator __last, size_t __maximum, __column_width_rounding __rounding) noexcept { using _CharT = iter_value_t<_Iterator>; __unicode::__extended_grapheme_cluster_view<_CharT> __view{__first, __last}; __column_width_result<_Iterator> __result{0, __first}; while (__result.__last_ != __last && __result.__width_ <= __maximum) { typename __unicode::__extended_grapheme_cluster_view<_CharT>::__cluster __cluster = __view.__consume(); int __width = __width_estimation_table::__estimated_width(__cluster.__code_point_); // When the next entry would exceed the maximum width the previous width // might be returned. For example when a width of 100 is requested the // returned width might be 99, since the next code point has an estimated // column width of 2. This depends on the rounding flag. // When the maximum is exceeded the loop will abort the next iteration. if (__rounding == __column_width_rounding::__down && __result.__width_ + __width > __maximum) return __result; __result.__width_ += __width; __result.__last_ = __cluster.__last_; } return __result; } } // namespace __detail // Unicode can be stored in several formats: UTF-8, UTF-16, and UTF-32. // Depending on format the relation between the number of code units stored and // the number of output columns differs. The first relation is the number of // code units forming a code point. (The text assumes the code units are // unsigned.) // - UTF-8 The number of code units is between one and four. The first 127 // Unicode code points match the ASCII character set. When the highest bit is // set it means the code point has more than one code unit. // - UTF-16: The number of code units is between 1 and 2. When the first // code unit is in the range [0xd800,0xdfff) it means the code point uses two // code units. // - UTF-32: The number of code units is always one. // // The code point to the number of columns is specified in // [format.string.std]/11. This list might change in the future. // // Another thing to be taken into account is Grapheme clustering. This means // that in some cases multiple code points are combined one element in the // output. For example: // - an ASCII character with a combined diacritical mark // - an emoji with a skin tone modifier // - a group of combined people emoji to create a family // - a combination of flag emoji // // See also: // - [format.string.general]/11 // - https://en.wikipedia.org/wiki/UTF-8#Encoding // - https://en.wikipedia.org/wiki/UTF-16#U+D800_to_U+DFFF _LIBCPP_HIDE_FROM_ABI constexpr bool __is_ascii(char32_t __c) { return __c < 0x80; } /// Determines the number of output columns needed to render the input. /// /// \note When the scanner encounters malformed Unicode it acts as-if every /// code unit is a one column code point. Typically a terminal uses the same /// strategy and replaces every malformed code unit with a one column /// replacement character. /// /// \param __first Points to the first element of the input range. /// \param __last Points beyond the last element of the input range. /// \param __maximum The maximum number of output columns. The returned number /// of estimated output columns will not exceed this value. /// \param __rounding Selects the rounding method. /// \c __down result.__width_ <= __maximum /// \c __up result.__width_ <= __maximum + 1 template ::const_iterator> _LIBCPP_HIDE_FROM_ABI constexpr __column_width_result<_Iterator> __estimate_column_width( basic_string_view<_CharT> __str, size_t __maximum, __column_width_rounding __rounding) noexcept { // The width estimation is done in two steps: // - Quickly process for the ASCII part. ASCII has the following properties // - One code unit is one code point // - Every code point has an estimated width of one // - When needed it will a Unicode Grapheme clustering algorithm to find // the proper place for truncation. if (__str.empty() || __maximum == 0) return {0, __str.begin()}; // ASCII has one caveat; when an ASCII character is followed by a non-ASCII // character they might be part of an extended grapheme cluster. For example: // an ASCII letter and a COMBINING ACUTE ACCENT // The truncate should happen after the COMBINING ACUTE ACCENT. Therefore we // need to scan one code unit beyond the requested precision. When this code // unit is non-ASCII we omit the current code unit and let the Grapheme // clustering algorithm do its work. auto __it = __str.begin(); if (__format_spec::__is_ascii(*__it)) { do { --__maximum; ++__it; if (__it == __str.end()) return {__str.size(), __str.end()}; if (__maximum == 0) { if (__format_spec::__is_ascii(*__it)) return {static_cast(__it - __str.begin()), __it}; break; } } while (__format_spec::__is_ascii(*__it)); --__it; ++__maximum; } ptrdiff_t __ascii_size = __it - __str.begin(); __column_width_result __result = __detail::__estimate_column_width_grapheme_clustering(__it, __str.end(), __maximum, __rounding); __result.__width_ += __ascii_size; return __result; } # else // _LIBCPP_HAS_UNICODE template _LIBCPP_HIDE_FROM_ABI constexpr __column_width_result::const_iterator> __estimate_column_width(basic_string_view<_CharT> __str, size_t __maximum, __column_width_rounding) noexcept { // When Unicode isn't supported assume ASCII and every code unit is one code // point. In ASCII the estimated column width is always one. Thus there's no // need for rounding. size_t __width = std::min(__str.size(), __maximum); return {__width, __str.begin() + __width}; } # endif // _LIBCPP_HAS_UNICODE } // namespace __format_spec #endif // _LIBCPP_STD_VER >= 20 _LIBCPP_END_NAMESPACE_STD _LIBCPP_POP_MACROS #endif // _LIBCPP___FORMAT_PARSER_STD_FORMAT_SPEC_H