//===-- Unittests for sorting routines ------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/__support/macros/config.h" #include "src/stdlib/qsort.h" #include "test/UnitTest/Test.h" class SortingTest : public LIBC_NAMESPACE::testing::Test { using SortingRoutine = void (*)(void *array, size_t array_len, size_t elem_size, int (*compare)(const void *, const void *)); static int int_compare(const void *l, const void *r) { int li = *reinterpret_cast(l); int ri = *reinterpret_cast(r); if (li == ri) return 0; else if (li > ri) return 1; else return -1; } static void int_sort(SortingRoutine sort_func, int *array, size_t array_len) { sort_func(reinterpret_cast(array), array_len, sizeof(int), int_compare); } public: void test_sorted_array(SortingRoutine sort_func) { int array[25] = {10, 23, 33, 35, 55, 70, 71, 100, 110, 123, 133, 135, 155, 170, 171, 1100, 1110, 1123, 1133, 1135, 1155, 1170, 1171, 11100, 12310}; constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); int_sort(sort_func, array, ARRAY_LEN); ASSERT_LE(array[0], 10); ASSERT_LE(array[1], 23); ASSERT_LE(array[2], 33); ASSERT_LE(array[3], 35); ASSERT_LE(array[4], 55); ASSERT_LE(array[5], 70); ASSERT_LE(array[6], 71); ASSERT_LE(array[7], 100); ASSERT_LE(array[8], 110); ASSERT_LE(array[9], 123); ASSERT_LE(array[10], 133); ASSERT_LE(array[11], 135); ASSERT_LE(array[12], 155); ASSERT_LE(array[13], 170); ASSERT_LE(array[14], 171); ASSERT_LE(array[15], 1100); ASSERT_LE(array[16], 1110); ASSERT_LE(array[17], 1123); ASSERT_LE(array[18], 1133); ASSERT_LE(array[19], 1135); ASSERT_LE(array[20], 1155); ASSERT_LE(array[21], 1170); ASSERT_LE(array[22], 1171); ASSERT_LE(array[23], 11100); ASSERT_LE(array[24], 12310); } void test_reversed_sorted_array(SortingRoutine sort_func) { int array[] = {25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}; constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); int_sort(sort_func, array, ARRAY_LEN); for (int i = 0; i < int(ARRAY_LEN - 1); ++i) ASSERT_EQ(array[i], i + 1); } void test_all_equal_elements(SortingRoutine sort_func) { int array[] = {100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100}; constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); int_sort(sort_func, array, ARRAY_LEN); for (size_t i = 0; i < ARRAY_LEN; ++i) ASSERT_EQ(array[i], 100); } void test_unsorted_array_1(SortingRoutine sort_func) { int array[25] = {10, 23, 8, 35, 55, 45, 40, 100, 110, 123, 90, 80, 70, 60, 171, 11, 1, -1, -5, -10, 1155, 1170, 1171, 12, -100}; constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); int_sort(sort_func, array, ARRAY_LEN); ASSERT_EQ(array[0], -100); ASSERT_EQ(array[1], -10); ASSERT_EQ(array[2], -5); ASSERT_EQ(array[3], -1); ASSERT_EQ(array[4], 1); ASSERT_EQ(array[5], 8); ASSERT_EQ(array[6], 10); ASSERT_EQ(array[7], 11); ASSERT_EQ(array[8], 12); ASSERT_EQ(array[9], 23); ASSERT_EQ(array[10], 35); ASSERT_EQ(array[11], 40); ASSERT_EQ(array[12], 45); ASSERT_EQ(array[13], 55); ASSERT_EQ(array[14], 60); ASSERT_EQ(array[15], 70); ASSERT_EQ(array[16], 80); ASSERT_EQ(array[17], 90); ASSERT_EQ(array[18], 100); ASSERT_EQ(array[19], 110); ASSERT_EQ(array[20], 123); ASSERT_EQ(array[21], 171); ASSERT_EQ(array[22], 1155); ASSERT_EQ(array[23], 1170); ASSERT_EQ(array[24], 1171); } void test_unsorted_array_2(SortingRoutine sort_func) { int array[7] = {10, 40, 45, 55, 35, 23, 60}; constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); int_sort(sort_func, array, ARRAY_LEN); ASSERT_EQ(array[0], 10); ASSERT_EQ(array[1], 23); ASSERT_EQ(array[2], 35); ASSERT_EQ(array[3], 40); ASSERT_EQ(array[4], 45); ASSERT_EQ(array[5], 55); ASSERT_EQ(array[6], 60); } void test_unsorted_array_duplicated_1(SortingRoutine sort_func) { int array[6] = {10, 10, 20, 20, 5, 5}; constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); int_sort(sort_func, array, ARRAY_LEN); ASSERT_EQ(array[0], 5); ASSERT_EQ(array[1], 5); ASSERT_EQ(array[2], 10); ASSERT_EQ(array[3], 10); ASSERT_EQ(array[4], 20); ASSERT_EQ(array[5], 20); } void test_unsorted_array_duplicated_2(SortingRoutine sort_func) { int array[10] = {20, 10, 10, 10, 10, 20, 21, 21, 21, 21}; constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); int_sort(sort_func, array, ARRAY_LEN); ASSERT_EQ(array[0], 10); ASSERT_EQ(array[1], 10); ASSERT_EQ(array[2], 10); ASSERT_EQ(array[3], 10); ASSERT_EQ(array[4], 20); ASSERT_EQ(array[5], 20); ASSERT_EQ(array[6], 21); ASSERT_EQ(array[7], 21); ASSERT_EQ(array[8], 21); ASSERT_EQ(array[9], 21); } void test_unsorted_array_duplicated_3(SortingRoutine sort_func) { int array[10] = {20, 30, 30, 30, 30, 20, 21, 21, 21, 21}; constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); int_sort(sort_func, array, ARRAY_LEN); ASSERT_EQ(array[0], 20); ASSERT_EQ(array[1], 20); ASSERT_EQ(array[2], 21); ASSERT_EQ(array[3], 21); ASSERT_EQ(array[4], 21); ASSERT_EQ(array[5], 21); ASSERT_EQ(array[6], 30); ASSERT_EQ(array[7], 30); ASSERT_EQ(array[8], 30); ASSERT_EQ(array[9], 30); } void test_unsorted_three_element_1(SortingRoutine sort_func) { int array[3] = {14999024, 0, 3}; constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); int_sort(sort_func, array, ARRAY_LEN); ASSERT_EQ(array[0], 0); ASSERT_EQ(array[1], 3); ASSERT_EQ(array[2], 14999024); } void test_unsorted_three_element_2(SortingRoutine sort_func) { int array[3] = {3, 14999024, 0}; constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); int_sort(sort_func, array, ARRAY_LEN); ASSERT_EQ(array[0], 0); ASSERT_EQ(array[1], 3); ASSERT_EQ(array[2], 14999024); } void test_unsorted_three_element_3(SortingRoutine sort_func) { int array[3] = {3, 0, 14999024}; constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); int_sort(sort_func, array, ARRAY_LEN); ASSERT_EQ(array[0], 0); ASSERT_EQ(array[1], 3); ASSERT_EQ(array[2], 14999024); } void test_same_three_element(SortingRoutine sort_func) { int array[3] = {12345, 12345, 12345}; constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); int_sort(sort_func, array, ARRAY_LEN); ASSERT_EQ(array[0], 12345); ASSERT_EQ(array[1], 12345); ASSERT_EQ(array[2], 12345); } void test_unsorted_two_element_1(SortingRoutine sort_func) { int array[] = {14999024, 0}; constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); int_sort(sort_func, array, ARRAY_LEN); ASSERT_EQ(array[0], 0); ASSERT_EQ(array[1], 14999024); } void test_unsorted_two_element_2(SortingRoutine sort_func) { int array[] = {0, 14999024}; constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); int_sort(sort_func, array, ARRAY_LEN); ASSERT_EQ(array[0], 0); ASSERT_EQ(array[1], 14999024); } void test_same_two_element(SortingRoutine sort_func) { int array[] = {12345, 12345}; constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); int_sort(sort_func, array, ARRAY_LEN); ASSERT_EQ(array[0], 12345); ASSERT_EQ(array[1], 12345); } void test_single_element(SortingRoutine sort_func) { int array[] = {12345}; constexpr size_t ARRAY_LEN = sizeof(array) / sizeof(int); int_sort(sort_func, array, ARRAY_LEN); ASSERT_EQ(array[0], 12345); } void test_different_elem_size(SortingRoutine sort_func) { // Random order of values [0,50) to avoid only testing pre-sorted handling. // Long enough to reach interesting code. constexpr uint8_t ARRAY_INITIAL_VALS[] = { 42, 13, 8, 4, 17, 28, 20, 32, 22, 29, 7, 2, 46, 37, 26, 49, 24, 38, 10, 18, 40, 36, 47, 15, 11, 48, 44, 33, 1, 5, 16, 35, 39, 41, 14, 23, 3, 9, 6, 27, 21, 25, 31, 45, 12, 43, 34, 30, 19, 0}; constexpr size_t ARRAY_LEN = sizeof(ARRAY_INITIAL_VALS); constexpr size_t MAX_ELEM_SIZE = 150; constexpr size_t BUF_SIZE = ARRAY_LEN * MAX_ELEM_SIZE; static_assert(ARRAY_LEN < 256); // so we can encode the values. // Minimum alignment to test implementation for bugs related to assuming // incorrect association between alignment and element size. The buffer is // 'static' as otherwise it will exhaust the stack on the GPU targets. alignas(1) static uint8_t buf[BUF_SIZE]; // GCC still requires capturing the constant ARRAY_INITIAL_VALS in the // lambda hence, let's use & to implicitly capture all needed variables // automatically. const auto fill_buf = [&](size_t elem_size) { for (size_t i = 0; i < BUF_SIZE; ++i) { buf[i] = 0; } for (size_t elem_i = 0, buf_i = 0; elem_i < ARRAY_LEN; ++elem_i) { const uint8_t elem_val = ARRAY_INITIAL_VALS[elem_i]; for (size_t elem_byte_i = 0; elem_byte_i < elem_size; ++elem_byte_i) { buf[buf_i] = elem_val; buf_i += 1; } } }; for (size_t elem_size = 0; elem_size <= MAX_ELEM_SIZE; ++elem_size) { // Fill all bytes with data to ensure mistakes in elem swap are noticed. fill_buf(elem_size); sort_func(reinterpret_cast(buf), ARRAY_LEN, elem_size, [](const void *a, const void *b) -> int { const uint8_t a_val = *reinterpret_cast(a); const uint8_t b_val = *reinterpret_cast(b); if (a_val < b_val) { return -1; } else if (a_val > b_val) { return 1; } else { return 0; } }); for (size_t elem_i = 0, buf_i = 0; elem_i < ARRAY_LEN; ++elem_i) { const uint8_t expected_elem_val = static_cast(elem_i); for (size_t elem_byte_i = 0; elem_byte_i < elem_size; ++elem_byte_i) { const uint8_t buf_val = buf[buf_i]; // Check that every byte in the element has the expected value. ASSERT_EQ(buf_val, expected_elem_val) << "elem_size: " << elem_size << " buf_i: " << buf_i << '\n'; buf_i += 1; } } } } }; #define LIST_SORTING_TESTS(Name, Func) \ using LlvmLibc##Name##Test = SortingTest; \ TEST_F(LlvmLibc##Name##Test, SortedArray) { test_sorted_array(Func); } \ TEST_F(LlvmLibc##Name##Test, ReverseSortedArray) { \ test_reversed_sorted_array(Func); \ } \ TEST_F(LlvmLibc##Name##Test, AllEqualElements) { \ test_all_equal_elements(Func); \ } \ TEST_F(LlvmLibc##Name##Test, UnsortedArray1) { \ test_unsorted_array_1(Func); \ } \ TEST_F(LlvmLibc##Name##Test, UnsortedArray2) { \ test_unsorted_array_2(Func); \ } \ TEST_F(LlvmLibc##Name##Test, UnsortedArrayDuplicateElements1) { \ test_unsorted_array_duplicated_1(Func); \ } \ TEST_F(LlvmLibc##Name##Test, UnsortedArrayDuplicateElements2) { \ test_unsorted_array_duplicated_2(Func); \ } \ TEST_F(LlvmLibc##Name##Test, UnsortedArrayDuplicateElements3) { \ test_unsorted_array_duplicated_3(Func); \ } \ TEST_F(LlvmLibc##Name##Test, UnsortedThreeElementArray1) { \ test_unsorted_three_element_1(Func); \ } \ TEST_F(LlvmLibc##Name##Test, UnsortedThreeElementArray2) { \ test_unsorted_three_element_2(Func); \ } \ TEST_F(LlvmLibc##Name##Test, UnsortedThreeElementArray3) { \ test_unsorted_three_element_3(Func); \ } \ TEST_F(LlvmLibc##Name##Test, SameElementThreeElementArray) { \ test_same_three_element(Func); \ } \ TEST_F(LlvmLibc##Name##Test, UnsortedTwoElementArray1) { \ test_unsorted_two_element_1(Func); \ } \ TEST_F(LlvmLibc##Name##Test, UnsortedTwoElementArray2) { \ test_unsorted_two_element_2(Func); \ } \ TEST_F(LlvmLibc##Name##Test, SameElementTwoElementArray) { \ test_same_two_element(Func); \ } \ TEST_F(LlvmLibc##Name##Test, SingleElementArray) { \ test_single_element(Func); \ } \ TEST_F(LlvmLibc##Name##Test, DifferentElemSizeArray) { \ test_different_elem_size(Func); \ } \ static_assert(true)