//===- BugReporterVisitors.cpp - Helpers for reporting bugs ---------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines a set of BugReporter "visitors" which can be used to // enhance the diagnostics reported for a bug. // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclBase.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/Stmt.h" #include "clang/AST/Type.h" #include "clang/ASTMatchers/ASTMatchFinder.h" #include "clang/Analysis/Analyses/Dominators.h" #include "clang/Analysis/AnalysisDeclContext.h" #include "clang/Analysis/CFG.h" #include "clang/Analysis/CFGStmtMap.h" #include "clang/Analysis/PathDiagnostic.h" #include "clang/Analysis/ProgramPoint.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/SourceManager.h" #include "clang/Lex/Lexer.h" #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include using namespace clang; using namespace ento; using namespace bugreporter; //===----------------------------------------------------------------------===// // Utility functions. //===----------------------------------------------------------------------===// static const Expr *peelOffPointerArithmetic(const BinaryOperator *B) { if (B->isAdditiveOp() && B->getType()->isPointerType()) { if (B->getLHS()->getType()->isPointerType()) { return B->getLHS(); } else if (B->getRHS()->getType()->isPointerType()) { return B->getRHS(); } } return nullptr; } /// \return A subexpression of @c Ex which represents the /// expression-of-interest. static const Expr *peelOffOuterExpr(const Expr *Ex, const ExplodedNode *N); /// Given that expression S represents a pointer that would be dereferenced, /// try to find a sub-expression from which the pointer came from. /// This is used for tracking down origins of a null or undefined value: /// "this is null because that is null because that is null" etc. /// We wipe away field and element offsets because they merely add offsets. /// We also wipe away all casts except lvalue-to-rvalue casts, because the /// latter represent an actual pointer dereference; however, we remove /// the final lvalue-to-rvalue cast before returning from this function /// because it demonstrates more clearly from where the pointer rvalue was /// loaded. Examples: /// x->y.z ==> x (lvalue) /// foo()->y.z ==> foo() (rvalue) const Expr *bugreporter::getDerefExpr(const Stmt *S) { const auto *E = dyn_cast(S); if (!E) return nullptr; while (true) { if (const auto *CE = dyn_cast(E)) { if (CE->getCastKind() == CK_LValueToRValue) { // This cast represents the load we're looking for. break; } E = CE->getSubExpr(); } else if (const auto *B = dyn_cast(E)) { // Pointer arithmetic: '*(x + 2)' -> 'x') etc. if (const Expr *Inner = peelOffPointerArithmetic(B)) { E = Inner; } else if (B->isAssignmentOp()) { // Follow LHS of assignments: '*p = 404' -> 'p'. E = B->getLHS(); } else { // Probably more arithmetic can be pattern-matched here, // but for now give up. break; } } else if (const auto *U = dyn_cast(E)) { if (U->getOpcode() == UO_Deref || U->getOpcode() == UO_AddrOf || (U->isIncrementDecrementOp() && U->getType()->isPointerType())) { // Operators '*' and '&' don't actually mean anything. // We look at casts instead. E = U->getSubExpr(); } else { // Probably more arithmetic can be pattern-matched here, // but for now give up. break; } } // Pattern match for a few useful cases: a[0], p->f, *p etc. else if (const auto *ME = dyn_cast(E)) { // This handles the case when the dereferencing of a member reference // happens. This is needed, because the AST for dereferencing a // member reference looks like the following: // |-MemberExpr // `-DeclRefExpr // Without this special case the notes would refer to the whole object // (struct, class or union variable) instead of just the relevant member. if (ME->getMemberDecl()->getType()->isReferenceType()) break; E = ME->getBase(); } else if (const auto *IvarRef = dyn_cast(E)) { E = IvarRef->getBase(); } else if (const auto *AE = dyn_cast(E)) { E = AE->getBase(); } else if (const auto *PE = dyn_cast(E)) { E = PE->getSubExpr(); } else if (const auto *FE = dyn_cast(E)) { E = FE->getSubExpr(); } else { // Other arbitrary stuff. break; } } // Special case: remove the final lvalue-to-rvalue cast, but do not recurse // deeper into the sub-expression. This way we return the lvalue from which // our pointer rvalue was loaded. if (const auto *CE = dyn_cast(E)) if (CE->getCastKind() == CK_LValueToRValue) E = CE->getSubExpr(); return E; } static const VarDecl *getVarDeclForExpression(const Expr *E) { if (const auto *DR = dyn_cast(E)) return dyn_cast(DR->getDecl()); return nullptr; } static const MemRegion * getLocationRegionIfReference(const Expr *E, const ExplodedNode *N, bool LookingForReference = true) { if (const auto *ME = dyn_cast(E)) { // This handles null references from FieldRegions, for example: // struct Wrapper { int &ref; }; // Wrapper w = { *(int *)0 }; // w.ref = 1; const Expr *Base = ME->getBase(); const VarDecl *VD = getVarDeclForExpression(Base); if (!VD) return nullptr; const auto *FD = dyn_cast(ME->getMemberDecl()); if (!FD) return nullptr; if (FD->getType()->isReferenceType()) { SVal StructSVal = N->getState()->getLValue(VD, N->getLocationContext()); return N->getState()->getLValue(FD, StructSVal).getAsRegion(); } return nullptr; } const VarDecl *VD = getVarDeclForExpression(E); if (!VD) return nullptr; if (LookingForReference && !VD->getType()->isReferenceType()) return nullptr; return N->getState()->getLValue(VD, N->getLocationContext()).getAsRegion(); } /// Comparing internal representations of symbolic values (via /// SVal::operator==()) is a valid way to check if the value was updated, /// unless it's a LazyCompoundVal that may have a different internal /// representation every time it is loaded from the state. In this function we /// do an approximate comparison for lazy compound values, checking that they /// are the immediate snapshots of the tracked region's bindings within the /// node's respective states but not really checking that these snapshots /// actually contain the same set of bindings. static bool hasVisibleUpdate(const ExplodedNode *LeftNode, SVal LeftVal, const ExplodedNode *RightNode, SVal RightVal) { if (LeftVal == RightVal) return true; const auto LLCV = LeftVal.getAs(); if (!LLCV) return false; const auto RLCV = RightVal.getAs(); if (!RLCV) return false; return LLCV->getRegion() == RLCV->getRegion() && LLCV->getStore() == LeftNode->getState()->getStore() && RLCV->getStore() == RightNode->getState()->getStore(); } static std::optional getSValForVar(const Expr *CondVarExpr, const ExplodedNode *N) { ProgramStateRef State = N->getState(); const LocationContext *LCtx = N->getLocationContext(); assert(CondVarExpr); CondVarExpr = CondVarExpr->IgnoreImpCasts(); // The declaration of the value may rely on a pointer so take its l-value. // FIXME: As seen in VisitCommonDeclRefExpr, sometimes DeclRefExpr may // evaluate to a FieldRegion when it refers to a declaration of a lambda // capture variable. We most likely need to duplicate that logic here. if (const auto *DRE = dyn_cast(CondVarExpr)) if (const auto *VD = dyn_cast(DRE->getDecl())) return State->getSVal(State->getLValue(VD, LCtx)); if (const auto *ME = dyn_cast(CondVarExpr)) if (const auto *FD = dyn_cast(ME->getMemberDecl())) if (auto FieldL = State->getSVal(ME, LCtx).getAs()) return State->getRawSVal(*FieldL, FD->getType()); return std::nullopt; } static std::optional getConcreteIntegerValue(const Expr *CondVarExpr, const ExplodedNode *N) { if (std::optional V = getSValForVar(CondVarExpr, N)) if (auto CI = V->getAs()) return CI->getValue().get(); return std::nullopt; } static bool isVarAnInterestingCondition(const Expr *CondVarExpr, const ExplodedNode *N, const PathSensitiveBugReport *B) { // Even if this condition is marked as interesting, it isn't *that* // interesting if it didn't happen in a nested stackframe, the user could just // follow the arrows. if (!B->getErrorNode()->getStackFrame()->isParentOf(N->getStackFrame())) return false; if (std::optional V = getSValForVar(CondVarExpr, N)) if (std::optional K = B->getInterestingnessKind(*V)) return *K == bugreporter::TrackingKind::Condition; return false; } static bool isInterestingExpr(const Expr *E, const ExplodedNode *N, const PathSensitiveBugReport *B) { if (std::optional V = getSValForVar(E, N)) return B->getInterestingnessKind(*V).has_value(); return false; } /// \return name of the macro inside the location \p Loc. static StringRef getMacroName(SourceLocation Loc, BugReporterContext &BRC) { return Lexer::getImmediateMacroName( Loc, BRC.getSourceManager(), BRC.getASTContext().getLangOpts()); } /// \return Whether given spelling location corresponds to an expansion /// of a function-like macro. static bool isFunctionMacroExpansion(SourceLocation Loc, const SourceManager &SM) { if (!Loc.isMacroID()) return false; while (SM.isMacroArgExpansion(Loc)) Loc = SM.getImmediateExpansionRange(Loc).getBegin(); std::pair TLInfo = SM.getDecomposedLoc(Loc); SrcMgr::SLocEntry SE = SM.getSLocEntry(TLInfo.first); const SrcMgr::ExpansionInfo &EInfo = SE.getExpansion(); return EInfo.isFunctionMacroExpansion(); } /// \return Whether \c RegionOfInterest was modified at \p N, /// where \p ValueAfter is \c RegionOfInterest's value at the end of the /// stack frame. static bool wasRegionOfInterestModifiedAt(const SubRegion *RegionOfInterest, const ExplodedNode *N, SVal ValueAfter) { ProgramStateRef State = N->getState(); ProgramStateManager &Mgr = N->getState()->getStateManager(); if (!N->getLocationAs() && !N->getLocationAs() && !N->getLocationAs()) return false; // Writing into region of interest. if (auto PS = N->getLocationAs()) if (auto *BO = PS->getStmtAs()) if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf( N->getSVal(BO->getLHS()).getAsRegion())) return true; // SVal after the state is possibly different. SVal ValueAtN = N->getState()->getSVal(RegionOfInterest); if (!Mgr.getSValBuilder() .areEqual(State, ValueAtN, ValueAfter) .isConstrainedTrue() && (!ValueAtN.isUndef() || !ValueAfter.isUndef())) return true; return false; } //===----------------------------------------------------------------------===// // Implementation of BugReporterVisitor. //===----------------------------------------------------------------------===// PathDiagnosticPieceRef BugReporterVisitor::getEndPath(BugReporterContext &, const ExplodedNode *, PathSensitiveBugReport &) { return nullptr; } void BugReporterVisitor::finalizeVisitor(BugReporterContext &, const ExplodedNode *, PathSensitiveBugReport &) {} PathDiagnosticPieceRef BugReporterVisitor::getDefaultEndPath(const BugReporterContext &BRC, const ExplodedNode *EndPathNode, const PathSensitiveBugReport &BR) { PathDiagnosticLocation L = BR.getLocation(); const auto &Ranges = BR.getRanges(); // Only add the statement itself as a range if we didn't specify any // special ranges for this report. auto P = std::make_shared( L, BR.getDescription(), Ranges.begin() == Ranges.end()); for (SourceRange Range : Ranges) P->addRange(Range); return P; } //===----------------------------------------------------------------------===// // Implementation of NoStateChangeFuncVisitor. //===----------------------------------------------------------------------===// bool NoStateChangeFuncVisitor::isModifiedInFrame(const ExplodedNode *N) { const LocationContext *Ctx = N->getLocationContext(); const StackFrameContext *SCtx = Ctx->getStackFrame(); if (!FramesModifyingCalculated.count(SCtx)) findModifyingFrames(N); return FramesModifying.count(SCtx); } void NoStateChangeFuncVisitor::markFrameAsModifying( const StackFrameContext *SCtx) { while (!SCtx->inTopFrame()) { auto p = FramesModifying.insert(SCtx); if (!p.second) break; // Frame and all its parents already inserted. SCtx = SCtx->getParent()->getStackFrame(); } } static const ExplodedNode *getMatchingCallExitEnd(const ExplodedNode *N) { assert(N->getLocationAs()); // The stackframe of the callee is only found in the nodes succeeding // the CallEnter node. CallEnter's stack frame refers to the caller. const StackFrameContext *OrigSCtx = N->getFirstSucc()->getStackFrame(); // Similarly, the nodes preceding CallExitEnd refer to the callee's stack // frame. auto IsMatchingCallExitEnd = [OrigSCtx](const ExplodedNode *N) { return N->getLocationAs() && OrigSCtx == N->getFirstPred()->getStackFrame(); }; while (N && !IsMatchingCallExitEnd(N)) { assert(N->succ_size() <= 1 && "This function is to be used on the trimmed ExplodedGraph!"); N = N->getFirstSucc(); } return N; } void NoStateChangeFuncVisitor::findModifyingFrames( const ExplodedNode *const CallExitBeginN) { assert(CallExitBeginN->getLocationAs()); const StackFrameContext *const OriginalSCtx = CallExitBeginN->getLocationContext()->getStackFrame(); const ExplodedNode *CurrCallExitBeginN = CallExitBeginN; const StackFrameContext *CurrentSCtx = OriginalSCtx; for (const ExplodedNode *CurrN = CallExitBeginN; CurrN; CurrN = CurrN->getFirstPred()) { // Found a new inlined call. if (CurrN->getLocationAs()) { CurrCallExitBeginN = CurrN; CurrentSCtx = CurrN->getStackFrame(); FramesModifyingCalculated.insert(CurrentSCtx); // We won't see a change in between two identical exploded nodes: skip. continue; } if (auto CE = CurrN->getLocationAs()) { if (const ExplodedNode *CallExitEndN = getMatchingCallExitEnd(CurrN)) if (wasModifiedInFunction(CurrN, CallExitEndN)) markFrameAsModifying(CurrentSCtx); // We exited this inlined call, lets actualize the stack frame. CurrentSCtx = CurrN->getStackFrame(); // Stop calculating at the current function, but always regard it as // modifying, so we can avoid notes like this: // void f(Foo &F) { // F.field = 0; // note: 0 assigned to 'F.field' // // note: returning without writing to 'F.field' // } if (CE->getCalleeContext() == OriginalSCtx) { markFrameAsModifying(CurrentSCtx); break; } } if (wasModifiedBeforeCallExit(CurrN, CurrCallExitBeginN)) markFrameAsModifying(CurrentSCtx); } } PathDiagnosticPieceRef NoStateChangeFuncVisitor::VisitNode( const ExplodedNode *N, BugReporterContext &BR, PathSensitiveBugReport &R) { const LocationContext *Ctx = N->getLocationContext(); const StackFrameContext *SCtx = Ctx->getStackFrame(); ProgramStateRef State = N->getState(); auto CallExitLoc = N->getLocationAs(); // No diagnostic if region was modified inside the frame. if (!CallExitLoc || isModifiedInFrame(N)) return nullptr; CallEventRef<> Call = BR.getStateManager().getCallEventManager().getCaller(SCtx, State); // Optimistically suppress uninitialized value bugs that result // from system headers having a chance to initialize the value // but failing to do so. It's too unlikely a system header's fault. // It's much more likely a situation in which the function has a failure // mode that the user decided not to check. If we want to hunt such // omitted checks, we should provide an explicit function-specific note // describing the precondition under which the function isn't supposed to // initialize its out-parameter, and additionally check that such // precondition can actually be fulfilled on the current path. if (Call->isInSystemHeader()) { // We make an exception for system header functions that have no branches. // Such functions unconditionally fail to initialize the variable. // If they call other functions that have more paths within them, // this suppression would still apply when we visit these inner functions. // One common example of a standard function that doesn't ever initialize // its out parameter is operator placement new; it's up to the follow-up // constructor (if any) to initialize the memory. if (!N->getStackFrame()->getCFG()->isLinear()) { static int i = 0; R.markInvalid(&i, nullptr); } return nullptr; } if (const auto *MC = dyn_cast(Call)) { // If we failed to construct a piece for self, we still want to check // whether the entity of interest is in a parameter. if (PathDiagnosticPieceRef Piece = maybeEmitNoteForObjCSelf(R, *MC, N)) return Piece; } if (const auto *CCall = dyn_cast(Call)) { // Do not generate diagnostics for not modified parameters in // constructors. return maybeEmitNoteForCXXThis(R, *CCall, N); } return maybeEmitNoteForParameters(R, *Call, N); } /// \return Whether the method declaration \p Parent /// syntactically has a binary operation writing into the ivar \p Ivar. static bool potentiallyWritesIntoIvar(const Decl *Parent, const ObjCIvarDecl *Ivar) { using namespace ast_matchers; const char *IvarBind = "Ivar"; if (!Parent || !Parent->hasBody()) return false; StatementMatcher WriteIntoIvarM = binaryOperator( hasOperatorName("="), hasLHS(ignoringParenImpCasts( objcIvarRefExpr(hasDeclaration(equalsNode(Ivar))).bind(IvarBind)))); StatementMatcher ParentM = stmt(hasDescendant(WriteIntoIvarM)); auto Matches = match(ParentM, *Parent->getBody(), Parent->getASTContext()); for (BoundNodes &Match : Matches) { auto IvarRef = Match.getNodeAs(IvarBind); if (IvarRef->isFreeIvar()) return true; const Expr *Base = IvarRef->getBase(); if (const auto *ICE = dyn_cast(Base)) Base = ICE->getSubExpr(); if (const auto *DRE = dyn_cast(Base)) if (const auto *ID = dyn_cast(DRE->getDecl())) if (ID->getParameterKind() == ImplicitParamKind::ObjCSelf) return true; return false; } return false; } /// Attempts to find the region of interest in a given CXX decl, /// by either following the base classes or fields. /// Dereferences fields up to a given recursion limit. /// Note that \p Vec is passed by value, leading to quadratic copying cost, /// but it's OK in practice since its length is limited to DEREFERENCE_LIMIT. /// \return A chain fields leading to the region of interest or std::nullopt. const std::optional NoStoreFuncVisitor::findRegionOfInterestInRecord( const RecordDecl *RD, ProgramStateRef State, const MemRegion *R, const NoStoreFuncVisitor::RegionVector &Vec /* = {} */, int depth /* = 0 */) { if (depth == DEREFERENCE_LIMIT) // Limit the recursion depth. return std::nullopt; if (const auto *RDX = dyn_cast(RD)) if (!RDX->hasDefinition()) return std::nullopt; // Recursively examine the base classes. // Note that following base classes does not increase the recursion depth. if (const auto *RDX = dyn_cast(RD)) for (const auto &II : RDX->bases()) if (const RecordDecl *RRD = II.getType()->getAsRecordDecl()) if (std::optional Out = findRegionOfInterestInRecord(RRD, State, R, Vec, depth)) return Out; for (const FieldDecl *I : RD->fields()) { QualType FT = I->getType(); const FieldRegion *FR = MmrMgr.getFieldRegion(I, cast(R)); const SVal V = State->getSVal(FR); const MemRegion *VR = V.getAsRegion(); RegionVector VecF = Vec; VecF.push_back(FR); if (RegionOfInterest == VR) return VecF; if (const RecordDecl *RRD = FT->getAsRecordDecl()) if (auto Out = findRegionOfInterestInRecord(RRD, State, FR, VecF, depth + 1)) return Out; QualType PT = FT->getPointeeType(); if (PT.isNull() || PT->isVoidType() || !VR) continue; if (const RecordDecl *RRD = PT->getAsRecordDecl()) if (std::optional Out = findRegionOfInterestInRecord(RRD, State, VR, VecF, depth + 1)) return Out; } return std::nullopt; } PathDiagnosticPieceRef NoStoreFuncVisitor::maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R, const ObjCMethodCall &Call, const ExplodedNode *N) { if (const auto *IvarR = dyn_cast(RegionOfInterest)) { const MemRegion *SelfRegion = Call.getReceiverSVal().getAsRegion(); if (RegionOfInterest->isSubRegionOf(SelfRegion) && potentiallyWritesIntoIvar(Call.getRuntimeDefinition().getDecl(), IvarR->getDecl())) return maybeEmitNote(R, Call, N, {}, SelfRegion, "self", /*FirstIsReferenceType=*/false, 1); } return nullptr; } PathDiagnosticPieceRef NoStoreFuncVisitor::maybeEmitNoteForCXXThis(PathSensitiveBugReport &R, const CXXConstructorCall &Call, const ExplodedNode *N) { const MemRegion *ThisR = Call.getCXXThisVal().getAsRegion(); if (RegionOfInterest->isSubRegionOf(ThisR) && !Call.getDecl()->isImplicit()) return maybeEmitNote(R, Call, N, {}, ThisR, "this", /*FirstIsReferenceType=*/false, 1); // Do not generate diagnostics for not modified parameters in // constructors. return nullptr; } /// \return whether \p Ty points to a const type, or is a const reference. static bool isPointerToConst(QualType Ty) { return !Ty->getPointeeType().isNull() && Ty->getPointeeType().getCanonicalType().isConstQualified(); } PathDiagnosticPieceRef NoStoreFuncVisitor::maybeEmitNoteForParameters( PathSensitiveBugReport &R, const CallEvent &Call, const ExplodedNode *N) { ArrayRef Parameters = Call.parameters(); for (unsigned I = 0; I < Call.getNumArgs() && I < Parameters.size(); ++I) { const ParmVarDecl *PVD = Parameters[I]; SVal V = Call.getArgSVal(I); bool ParamIsReferenceType = PVD->getType()->isReferenceType(); std::string ParamName = PVD->getNameAsString(); unsigned IndirectionLevel = 1; QualType T = PVD->getType(); while (const MemRegion *MR = V.getAsRegion()) { if (RegionOfInterest->isSubRegionOf(MR) && !isPointerToConst(T)) return maybeEmitNote(R, Call, N, {}, MR, ParamName, ParamIsReferenceType, IndirectionLevel); QualType PT = T->getPointeeType(); if (PT.isNull() || PT->isVoidType()) break; ProgramStateRef State = N->getState(); if (const RecordDecl *RD = PT->getAsRecordDecl()) if (std::optional P = findRegionOfInterestInRecord(RD, State, MR)) return maybeEmitNote(R, Call, N, *P, RegionOfInterest, ParamName, ParamIsReferenceType, IndirectionLevel); V = State->getSVal(MR, PT); T = PT; IndirectionLevel++; } } return nullptr; } bool NoStoreFuncVisitor::wasModifiedBeforeCallExit( const ExplodedNode *CurrN, const ExplodedNode *CallExitBeginN) { return ::wasRegionOfInterestModifiedAt( RegionOfInterest, CurrN, CallExitBeginN->getState()->getSVal(RegionOfInterest)); } static llvm::StringLiteral WillBeUsedForACondition = ", which participates in a condition later"; PathDiagnosticPieceRef NoStoreFuncVisitor::maybeEmitNote( PathSensitiveBugReport &R, const CallEvent &Call, const ExplodedNode *N, const RegionVector &FieldChain, const MemRegion *MatchedRegion, StringRef FirstElement, bool FirstIsReferenceType, unsigned IndirectionLevel) { PathDiagnosticLocation L = PathDiagnosticLocation::create(N->getLocation(), SM); // For now this shouldn't trigger, but once it does (as we add more // functions to the body farm), we'll need to decide if these reports // are worth suppressing as well. if (!L.hasValidLocation()) return nullptr; SmallString<256> sbuf; llvm::raw_svector_ostream os(sbuf); os << "Returning without writing to '"; // Do not generate the note if failed to pretty-print. if (!prettyPrintRegionName(FieldChain, MatchedRegion, FirstElement, FirstIsReferenceType, IndirectionLevel, os)) return nullptr; os << "'"; if (TKind == bugreporter::TrackingKind::Condition) os << WillBeUsedForACondition; return std::make_shared(L, os.str()); } bool NoStoreFuncVisitor::prettyPrintRegionName(const RegionVector &FieldChain, const MemRegion *MatchedRegion, StringRef FirstElement, bool FirstIsReferenceType, unsigned IndirectionLevel, llvm::raw_svector_ostream &os) { if (FirstIsReferenceType) IndirectionLevel--; RegionVector RegionSequence; // Add the regions in the reverse order, then reverse the resulting array. assert(RegionOfInterest->isSubRegionOf(MatchedRegion)); const MemRegion *R = RegionOfInterest; while (R != MatchedRegion) { RegionSequence.push_back(R); R = cast(R)->getSuperRegion(); } std::reverse(RegionSequence.begin(), RegionSequence.end()); RegionSequence.append(FieldChain.begin(), FieldChain.end()); StringRef Sep; for (const MemRegion *R : RegionSequence) { // Just keep going up to the base region. // Element regions may appear due to casts. if (isa(R)) continue; if (Sep.empty()) Sep = prettyPrintFirstElement(FirstElement, /*MoreItemsExpected=*/true, IndirectionLevel, os); os << Sep; // Can only reasonably pretty-print DeclRegions. if (!isa(R)) return false; const auto *DR = cast(R); Sep = DR->getValueType()->isAnyPointerType() ? "->" : "."; DR->getDecl()->getDeclName().print(os, PP); } if (Sep.empty()) prettyPrintFirstElement(FirstElement, /*MoreItemsExpected=*/false, IndirectionLevel, os); return true; } StringRef NoStoreFuncVisitor::prettyPrintFirstElement( StringRef FirstElement, bool MoreItemsExpected, int IndirectionLevel, llvm::raw_svector_ostream &os) { StringRef Out = "."; if (IndirectionLevel > 0 && MoreItemsExpected) { IndirectionLevel--; Out = "->"; } if (IndirectionLevel > 0 && MoreItemsExpected) os << "("; for (int i = 0; i < IndirectionLevel; i++) os << "*"; os << FirstElement; if (IndirectionLevel > 0 && MoreItemsExpected) os << ")"; return Out; } //===----------------------------------------------------------------------===// // Implementation of MacroNullReturnSuppressionVisitor. //===----------------------------------------------------------------------===// namespace { /// Suppress null-pointer-dereference bugs where dereferenced null was returned /// the macro. class MacroNullReturnSuppressionVisitor final : public BugReporterVisitor { const SubRegion *RegionOfInterest; const SVal ValueAtDereference; // Do not invalidate the reports where the value was modified // after it got assigned to from the macro. bool WasModified = false; public: MacroNullReturnSuppressionVisitor(const SubRegion *R, const SVal V) : RegionOfInterest(R), ValueAtDereference(V) {} PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &BR) override { if (WasModified) return nullptr; auto BugPoint = BR.getErrorNode()->getLocation().getAs(); if (!BugPoint) return nullptr; const SourceManager &SMgr = BRC.getSourceManager(); if (auto Loc = matchAssignment(N)) { if (isFunctionMacroExpansion(*Loc, SMgr)) { std::string MacroName = std::string(getMacroName(*Loc, BRC)); SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc(); if (!BugLoc.isMacroID() || getMacroName(BugLoc, BRC) != MacroName) BR.markInvalid(getTag(), MacroName.c_str()); } } if (wasRegionOfInterestModifiedAt(RegionOfInterest, N, ValueAtDereference)) WasModified = true; return nullptr; } static void addMacroVisitorIfNecessary( const ExplodedNode *N, const MemRegion *R, bool EnableNullFPSuppression, PathSensitiveBugReport &BR, const SVal V) { AnalyzerOptions &Options = N->getState()->getAnalysisManager().options; if (EnableNullFPSuppression && Options.ShouldSuppressNullReturnPaths && isa(V)) BR.addVisitor(R->getAs(), V); } void* getTag() const { static int Tag = 0; return static_cast(&Tag); } void Profile(llvm::FoldingSetNodeID &ID) const override { ID.AddPointer(getTag()); } private: /// \return Source location of right hand side of an assignment /// into \c RegionOfInterest, empty optional if none found. std::optional matchAssignment(const ExplodedNode *N) { const Stmt *S = N->getStmtForDiagnostics(); ProgramStateRef State = N->getState(); auto *LCtx = N->getLocationContext(); if (!S) return std::nullopt; if (const auto *DS = dyn_cast(S)) { if (const auto *VD = dyn_cast(DS->getSingleDecl())) if (const Expr *RHS = VD->getInit()) if (RegionOfInterest->isSubRegionOf( State->getLValue(VD, LCtx).getAsRegion())) return RHS->getBeginLoc(); } else if (const auto *BO = dyn_cast(S)) { const MemRegion *R = N->getSVal(BO->getLHS()).getAsRegion(); const Expr *RHS = BO->getRHS(); if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(R)) { return RHS->getBeginLoc(); } } return std::nullopt; } }; } // end of anonymous namespace namespace { /// Emits an extra note at the return statement of an interesting stack frame. /// /// The returned value is marked as an interesting value, and if it's null, /// adds a visitor to track where it became null. /// /// This visitor is intended to be used when another visitor discovers that an /// interesting value comes from an inlined function call. class ReturnVisitor : public TrackingBugReporterVisitor { const StackFrameContext *CalleeSFC; enum { Initial, MaybeUnsuppress, Satisfied } Mode = Initial; bool EnableNullFPSuppression; bool ShouldInvalidate = true; AnalyzerOptions& Options; bugreporter::TrackingKind TKind; public: ReturnVisitor(TrackerRef ParentTracker, const StackFrameContext *Frame, bool Suppressed, AnalyzerOptions &Options, bugreporter::TrackingKind TKind) : TrackingBugReporterVisitor(ParentTracker), CalleeSFC(Frame), EnableNullFPSuppression(Suppressed), Options(Options), TKind(TKind) {} static void *getTag() { static int Tag = 0; return static_cast(&Tag); } void Profile(llvm::FoldingSetNodeID &ID) const override { ID.AddPointer(ReturnVisitor::getTag()); ID.AddPointer(CalleeSFC); ID.AddBoolean(EnableNullFPSuppression); } PathDiagnosticPieceRef visitNodeInitial(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &BR) { // Only print a message at the interesting return statement. if (N->getLocationContext() != CalleeSFC) return nullptr; std::optional SP = N->getLocationAs(); if (!SP) return nullptr; const auto *Ret = dyn_cast(SP->getStmt()); if (!Ret) return nullptr; // Okay, we're at the right return statement, but do we have the return // value available? ProgramStateRef State = N->getState(); SVal V = State->getSVal(Ret, CalleeSFC); if (V.isUnknownOrUndef()) return nullptr; // Don't print any more notes after this one. Mode = Satisfied; const Expr *RetE = Ret->getRetValue(); assert(RetE && "Tracking a return value for a void function"); // Handle cases where a reference is returned and then immediately used. std::optional LValue; if (RetE->isGLValue()) { if ((LValue = V.getAs())) { SVal RValue = State->getRawSVal(*LValue, RetE->getType()); if (isa(RValue)) V = RValue; } } // Ignore aggregate rvalues. if (isa(V)) return nullptr; RetE = RetE->IgnoreParenCasts(); // Let's track the return value. getParentTracker().track(RetE, N, {TKind, EnableNullFPSuppression}); // Build an appropriate message based on the return value. SmallString<64> Msg; llvm::raw_svector_ostream Out(Msg); bool WouldEventBeMeaningless = false; if (State->isNull(V).isConstrainedTrue()) { if (isa(V)) { // If we have counter-suppression enabled, make sure we keep visiting // future nodes. We want to emit a path note as well, in case // the report is resurrected as valid later on. if (EnableNullFPSuppression && Options.ShouldAvoidSuppressingNullArgumentPaths) Mode = MaybeUnsuppress; if (RetE->getType()->isObjCObjectPointerType()) { Out << "Returning nil"; } else { Out << "Returning null pointer"; } } else { Out << "Returning zero"; } } else { if (auto CI = V.getAs()) { Out << "Returning the value " << CI->getValue(); } else { // There is nothing interesting about returning a value, when it is // plain value without any constraints, and the function is guaranteed // to return that every time. We could use CFG::isLinear() here, but // constexpr branches are obvious to the compiler, not necesserily to // the programmer. if (N->getCFG().size() == 3) WouldEventBeMeaningless = true; Out << (isa(V) ? "Returning pointer" : "Returning value"); } } if (LValue) { if (const MemRegion *MR = LValue->getAsRegion()) { if (MR->canPrintPretty()) { Out << " (reference to "; MR->printPretty(Out); Out << ")"; } } } else { // FIXME: We should have a more generalized location printing mechanism. if (const auto *DR = dyn_cast(RetE)) if (const auto *DD = dyn_cast(DR->getDecl())) Out << " (loaded from '" << *DD << "')"; } PathDiagnosticLocation L(Ret, BRC.getSourceManager(), CalleeSFC); if (!L.isValid() || !L.asLocation().isValid()) return nullptr; if (TKind == bugreporter::TrackingKind::Condition) Out << WillBeUsedForACondition; auto EventPiece = std::make_shared(L, Out.str()); // If we determined that the note is meaningless, make it prunable, and // don't mark the stackframe interesting. if (WouldEventBeMeaningless) EventPiece->setPrunable(true); else BR.markInteresting(CalleeSFC); return EventPiece; } PathDiagnosticPieceRef visitNodeMaybeUnsuppress(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &BR) { assert(Options.ShouldAvoidSuppressingNullArgumentPaths); // Are we at the entry node for this call? std::optional CE = N->getLocationAs(); if (!CE) return nullptr; if (CE->getCalleeContext() != CalleeSFC) return nullptr; Mode = Satisfied; // Don't automatically suppress a report if one of the arguments is // known to be a null pointer. Instead, start tracking /that/ null // value back to its origin. ProgramStateManager &StateMgr = BRC.getStateManager(); CallEventManager &CallMgr = StateMgr.getCallEventManager(); ProgramStateRef State = N->getState(); CallEventRef<> Call = CallMgr.getCaller(CalleeSFC, State); for (unsigned I = 0, E = Call->getNumArgs(); I != E; ++I) { std::optional ArgV = Call->getArgSVal(I).getAs(); if (!ArgV) continue; const Expr *ArgE = Call->getArgExpr(I); if (!ArgE) continue; // Is it possible for this argument to be non-null? if (!State->isNull(*ArgV).isConstrainedTrue()) continue; if (getParentTracker() .track(ArgE, N, {TKind, EnableNullFPSuppression}) .FoundSomethingToTrack) ShouldInvalidate = false; // If we /can't/ track the null pointer, we should err on the side of // false negatives, and continue towards marking this report invalid. // (We will still look at the other arguments, though.) } return nullptr; } PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &BR) override { switch (Mode) { case Initial: return visitNodeInitial(N, BRC, BR); case MaybeUnsuppress: return visitNodeMaybeUnsuppress(N, BRC, BR); case Satisfied: return nullptr; } llvm_unreachable("Invalid visit mode!"); } void finalizeVisitor(BugReporterContext &, const ExplodedNode *, PathSensitiveBugReport &BR) override { if (EnableNullFPSuppression && ShouldInvalidate) BR.markInvalid(ReturnVisitor::getTag(), CalleeSFC); } }; //===----------------------------------------------------------------------===// // StoreSiteFinder //===----------------------------------------------------------------------===// /// Finds last store into the given region, /// which is different from a given symbolic value. class StoreSiteFinder final : public TrackingBugReporterVisitor { const MemRegion *R; SVal V; bool Satisfied = false; TrackingOptions Options; const StackFrameContext *OriginSFC; public: /// \param V We're searching for the store where \c R received this value. /// \param R The region we're tracking. /// \param Options Tracking behavior options. /// \param OriginSFC Only adds notes when the last store happened in a /// different stackframe to this one. Disregarded if the tracking kind /// is thorough. /// This is useful, because for non-tracked regions, notes about /// changes to its value in a nested stackframe could be pruned, and /// this visitor can prevent that without polluting the bugpath too /// much. StoreSiteFinder(bugreporter::TrackerRef ParentTracker, SVal V, const MemRegion *R, TrackingOptions Options, const StackFrameContext *OriginSFC = nullptr) : TrackingBugReporterVisitor(ParentTracker), R(R), V(V), Options(Options), OriginSFC(OriginSFC) { assert(R); } void Profile(llvm::FoldingSetNodeID &ID) const override; PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &BR) override; }; } // namespace void StoreSiteFinder::Profile(llvm::FoldingSetNodeID &ID) const { static int tag = 0; ID.AddPointer(&tag); ID.AddPointer(R); ID.Add(V); ID.AddInteger(static_cast(Options.Kind)); ID.AddBoolean(Options.EnableNullFPSuppression); } /// Returns true if \p N represents the DeclStmt declaring and initializing /// \p VR. static bool isInitializationOfVar(const ExplodedNode *N, const VarRegion *VR) { std::optional P = N->getLocationAs(); if (!P) return false; const DeclStmt *DS = P->getStmtAs(); if (!DS) return false; if (DS->getSingleDecl() != VR->getDecl()) return false; const MemSpaceRegion *VarSpace = VR->getMemorySpace(); const auto *FrameSpace = dyn_cast(VarSpace); if (!FrameSpace) { // If we ever directly evaluate global DeclStmts, this assertion will be // invalid, but this still seems preferable to silently accepting an // initialization that may be for a path-sensitive variable. assert(VR->getDecl()->isStaticLocal() && "non-static stackless VarRegion"); return true; } assert(VR->getDecl()->hasLocalStorage()); const LocationContext *LCtx = N->getLocationContext(); return FrameSpace->getStackFrame() == LCtx->getStackFrame(); } static bool isObjCPointer(const MemRegion *R) { if (R->isBoundable()) if (const auto *TR = dyn_cast(R)) return TR->getValueType()->isObjCObjectPointerType(); return false; } static bool isObjCPointer(const ValueDecl *D) { return D->getType()->isObjCObjectPointerType(); } /// Show diagnostics for initializing or declaring a region \p R with a bad value. static void showBRDiagnostics(llvm::raw_svector_ostream &OS, StoreInfo SI) { const bool HasPrefix = SI.Dest->canPrintPretty(); if (HasPrefix) { SI.Dest->printPretty(OS); OS << " "; } const char *Action = nullptr; switch (SI.StoreKind) { case StoreInfo::Initialization: Action = HasPrefix ? "initialized to " : "Initializing to "; break; case StoreInfo::BlockCapture: Action = HasPrefix ? "captured by block as " : "Captured by block as "; break; default: llvm_unreachable("Unexpected store kind"); } if (isa(SI.Value)) { OS << Action << (isObjCPointer(SI.Dest) ? "nil" : "a null pointer value"); } else if (auto CVal = SI.Value.getAs()) { OS << Action << CVal->getValue(); } else if (SI.Origin && SI.Origin->canPrintPretty()) { OS << Action << "the value of "; SI.Origin->printPretty(OS); } else if (SI.StoreKind == StoreInfo::Initialization) { // We don't need to check here, all these conditions were // checked by StoreSiteFinder, when it figured out that it is // initialization. const auto *DS = cast(SI.StoreSite->getLocationAs()->getStmt()); if (SI.Value.isUndef()) { if (isa(SI.Dest)) { const auto *VD = cast(DS->getSingleDecl()); if (VD->getInit()) { OS << (HasPrefix ? "initialized" : "Initializing") << " to a garbage value"; } else { OS << (HasPrefix ? "declared" : "Declaring") << " without an initial value"; } } } else { OS << (HasPrefix ? "initialized" : "Initialized") << " here"; } } } /// Display diagnostics for passing bad region as a parameter. static void showBRParamDiagnostics(llvm::raw_svector_ostream &OS, StoreInfo SI) { const auto *VR = cast(SI.Dest); const auto *D = VR->getDecl(); OS << "Passing "; if (isa(SI.Value)) { OS << (isObjCPointer(D) ? "nil object reference" : "null pointer value"); } else if (SI.Value.isUndef()) { OS << "uninitialized value"; } else if (auto CI = SI.Value.getAs()) { OS << "the value " << CI->getValue(); } else if (SI.Origin && SI.Origin->canPrintPretty()) { SI.Origin->printPretty(OS); } else { OS << "value"; } if (const auto *Param = dyn_cast(VR->getDecl())) { // Printed parameter indexes are 1-based, not 0-based. unsigned Idx = Param->getFunctionScopeIndex() + 1; OS << " via " << Idx << llvm::getOrdinalSuffix(Idx) << " parameter"; if (VR->canPrintPretty()) { OS << " "; VR->printPretty(OS); } } else if (const auto *ImplParam = dyn_cast(D)) { if (ImplParam->getParameterKind() == ImplicitParamKind::ObjCSelf) { OS << " via implicit parameter 'self'"; } } } /// Show default diagnostics for storing bad region. static void showBRDefaultDiagnostics(llvm::raw_svector_ostream &OS, StoreInfo SI) { const bool HasSuffix = SI.Dest->canPrintPretty(); if (isa(SI.Value)) { OS << (isObjCPointer(SI.Dest) ? "nil object reference stored" : (HasSuffix ? "Null pointer value stored" : "Storing null pointer value")); } else if (SI.Value.isUndef()) { OS << (HasSuffix ? "Uninitialized value stored" : "Storing uninitialized value"); } else if (auto CV = SI.Value.getAs()) { if (HasSuffix) OS << "The value " << CV->getValue() << " is assigned"; else OS << "Assigning " << CV->getValue(); } else if (SI.Origin && SI.Origin->canPrintPretty()) { if (HasSuffix) { OS << "The value of "; SI.Origin->printPretty(OS); OS << " is assigned"; } else { OS << "Assigning the value of "; SI.Origin->printPretty(OS); } } else { OS << (HasSuffix ? "Value assigned" : "Assigning value"); } if (HasSuffix) { OS << " to "; SI.Dest->printPretty(OS); } } static bool isTrivialCopyOrMoveCtor(const CXXConstructExpr *CE) { if (!CE) return false; const auto *CtorDecl = CE->getConstructor(); return CtorDecl->isCopyOrMoveConstructor() && CtorDecl->isTrivial(); } static const Expr *tryExtractInitializerFromList(const InitListExpr *ILE, const MemRegion *R) { const auto *TVR = dyn_cast_or_null(R); if (!TVR) return nullptr; const auto ITy = ILE->getType().getCanonicalType(); // Push each sub-region onto the stack. std::stack TVRStack; while (isa(TVR) || isa(TVR)) { // We found a region that matches the type of the init list, // so we assume this is the outer-most region. This can happen // if the initializer list is inside a class. If our assumption // is wrong, we return a nullptr in the end. if (ITy == TVR->getValueType().getCanonicalType()) break; TVRStack.push(TVR); TVR = cast(TVR->getSuperRegion()); } // If the type of the outer most region doesn't match the type // of the ILE, we can't match the ILE and the region. if (ITy != TVR->getValueType().getCanonicalType()) return nullptr; const Expr *Init = ILE; while (!TVRStack.empty()) { TVR = TVRStack.top(); TVRStack.pop(); // We hit something that's not an init list before // running out of regions, so we most likely failed. if (!isa(Init)) return nullptr; ILE = cast(Init); auto NumInits = ILE->getNumInits(); if (const auto *FR = dyn_cast(TVR)) { const auto *FD = FR->getDecl(); if (FD->getFieldIndex() >= NumInits) return nullptr; Init = ILE->getInit(FD->getFieldIndex()); } else if (const auto *ER = dyn_cast(TVR)) { const auto Ind = ER->getIndex(); // If index is symbolic, we can't figure out which expression // belongs to the region. if (!Ind.isConstant()) return nullptr; const auto IndVal = Ind.getAsInteger()->getLimitedValue(); if (IndVal >= NumInits) return nullptr; Init = ILE->getInit(IndVal); } } return Init; } PathDiagnosticPieceRef StoreSiteFinder::VisitNode(const ExplodedNode *Succ, BugReporterContext &BRC, PathSensitiveBugReport &BR) { if (Satisfied) return nullptr; const ExplodedNode *StoreSite = nullptr; const ExplodedNode *Pred = Succ->getFirstPred(); const Expr *InitE = nullptr; bool IsParam = false; // First see if we reached the declaration of the region. if (const auto *VR = dyn_cast(R)) { if (isInitializationOfVar(Pred, VR)) { StoreSite = Pred; InitE = VR->getDecl()->getInit(); } } // If this is a post initializer expression, initializing the region, we // should track the initializer expression. if (std::optional PIP = Pred->getLocationAs()) { const MemRegion *FieldReg = (const MemRegion *)PIP->getLocationValue(); if (FieldReg == R) { StoreSite = Pred; InitE = PIP->getInitializer()->getInit(); } } // Otherwise, see if this is the store site: // (1) Succ has this binding and Pred does not, i.e. this is // where the binding first occurred. // (2) Succ has this binding and is a PostStore node for this region, i.e. // the same binding was re-assigned here. if (!StoreSite) { if (Succ->getState()->getSVal(R) != V) return nullptr; if (hasVisibleUpdate(Pred, Pred->getState()->getSVal(R), Succ, V)) { std::optional PS = Succ->getLocationAs(); if (!PS || PS->getLocationValue() != R) return nullptr; } StoreSite = Succ; if (std::optional P = Succ->getLocationAs()) { // If this is an assignment expression, we can track the value // being assigned. if (const BinaryOperator *BO = P->getStmtAs()) { if (BO->isAssignmentOp()) InitE = BO->getRHS(); } // If we have a declaration like 'S s{1,2}' that needs special // handling, we handle it here. else if (const auto *DS = P->getStmtAs()) { const auto *Decl = DS->getSingleDecl(); if (isa(Decl)) { const auto *VD = cast(Decl); // FIXME: Here we only track the inner most region, so we lose // information, but it's still better than a crash or no information // at all. // // E.g.: The region we have is 's.s2.s3.s4.y' and we only track 'y', // and throw away the rest. if (const auto *ILE = dyn_cast(VD->getInit())) InitE = tryExtractInitializerFromList(ILE, R); } } else if (const auto *CE = P->getStmtAs()) { const auto State = Succ->getState(); if (isTrivialCopyOrMoveCtor(CE) && isa(R)) { // Migrate the field regions from the current object to // the parent object. If we track 'a.y.e' and encounter // 'S a = b' then we need to track 'b.y.e'. // Push the regions to a stack, from last to first, so // considering the example above the stack will look like // (bottom) 'e' -> 'y' (top). std::stack SRStack; const SubRegion *SR = cast(R); while (isa(SR) || isa(SR)) { SRStack.push(SR); SR = cast(SR->getSuperRegion()); } // Get the region for the object we copied/moved from. const auto *OriginEx = CE->getArg(0); const auto OriginVal = State->getSVal(OriginEx, Succ->getLocationContext()); // Pop the stored field regions and apply them to the origin // object in the same order we had them on the copy. // OriginField will evolve like 'b' -> 'b.y' -> 'b.y.e'. SVal OriginField = OriginVal; while (!SRStack.empty()) { const auto *TopR = SRStack.top(); SRStack.pop(); if (const auto *FR = dyn_cast(TopR)) { OriginField = State->getLValue(FR->getDecl(), OriginField); } else if (const auto *ER = dyn_cast(TopR)) { OriginField = State->getLValue(ER->getElementType(), ER->getIndex(), OriginField); } else { // FIXME: handle other region type } } // Track 'b.y.e'. getParentTracker().track(V, OriginField.getAsRegion(), Options); InitE = OriginEx; } } // This branch can occur in cases like `Ctor() : field{ x, y } {}'. else if (const auto *ILE = P->getStmtAs()) { // FIXME: Here we only track the top level region, so we lose // information, but it's still better than a crash or no information // at all. // // E.g.: The region we have is 's.s2.s3.s4.y' and we only track 'y', and // throw away the rest. InitE = tryExtractInitializerFromList(ILE, R); } } // If this is a call entry, the variable should be a parameter. // FIXME: Handle CXXThisRegion as well. (This is not a priority because // 'this' should never be NULL, but this visitor isn't just for NULL and // UndefinedVal.) if (std::optional CE = Succ->getLocationAs()) { if (const auto *VR = dyn_cast(R)) { if (const auto *Param = dyn_cast(VR->getDecl())) { ProgramStateManager &StateMgr = BRC.getStateManager(); CallEventManager &CallMgr = StateMgr.getCallEventManager(); CallEventRef<> Call = CallMgr.getCaller(CE->getCalleeContext(), Succ->getState()); InitE = Call->getArgExpr(Param->getFunctionScopeIndex()); } else { // Handle Objective-C 'self'. assert(isa(VR->getDecl())); InitE = cast(CE->getCalleeContext()->getCallSite()) ->getInstanceReceiver()->IgnoreParenCasts(); } IsParam = true; } } // If this is a CXXTempObjectRegion, the Expr responsible for its creation // is wrapped inside of it. if (const auto *TmpR = dyn_cast(R)) InitE = TmpR->getExpr(); } if (!StoreSite) return nullptr; Satisfied = true; // If we have an expression that provided the value, try to track where it // came from. if (InitE) { if (!IsParam) InitE = InitE->IgnoreParenCasts(); getParentTracker().track(InitE, StoreSite, Options); } // Let's try to find the region where the value came from. const MemRegion *OldRegion = nullptr; // If we have init expression, it might be simply a reference // to a variable, so we can use it. if (InitE) { // That region might still be not exactly what we are looking for. // In situations like `int &ref = val;`, we can't say that // `ref` is initialized with `val`, rather refers to `val`. // // In order, to mitigate situations like this, we check if the last // stored value in that region is the value that we track. // // TODO: support other situations better. if (const MemRegion *Candidate = getLocationRegionIfReference(InitE, Succ, false)) { const StoreManager &SM = BRC.getStateManager().getStoreManager(); // Here we traverse the graph up to find the last node where the // candidate region is still in the store. for (const ExplodedNode *N = StoreSite; N; N = N->getFirstPred()) { if (SM.includedInBindings(N->getState()->getStore(), Candidate)) { // And if it was bound to the target value, we can use it. if (N->getState()->getSVal(Candidate) == V) { OldRegion = Candidate; } break; } } } } // Otherwise, if the current region does indeed contain the value // we are looking for, we can look for a region where this value // was before. // // It can be useful for situations like: // new = identity(old) // where the analyzer knows that 'identity' returns the value of its // first argument. // // NOTE: If the region R is not a simple var region, it can contain // V in one of its subregions. if (!OldRegion && StoreSite->getState()->getSVal(R) == V) { // Let's go up the graph to find the node where the region is // bound to V. const ExplodedNode *NodeWithoutBinding = StoreSite->getFirstPred(); for (; NodeWithoutBinding && NodeWithoutBinding->getState()->getSVal(R) == V; NodeWithoutBinding = NodeWithoutBinding->getFirstPred()) { } if (NodeWithoutBinding) { // Let's try to find a unique binding for the value in that node. // We want to use this to find unique bindings because of the following // situations: // b = a; // c = identity(b); // // Telling the user that the value of 'a' is assigned to 'c', while // correct, can be confusing. StoreManager::FindUniqueBinding FB(V.getAsLocSymbol()); BRC.getStateManager().iterBindings(NodeWithoutBinding->getState(), FB); if (FB) OldRegion = FB.getRegion(); } } if (Options.Kind == TrackingKind::Condition && OriginSFC && !OriginSFC->isParentOf(StoreSite->getStackFrame())) return nullptr; // Okay, we've found the binding. Emit an appropriate message. SmallString<256> sbuf; llvm::raw_svector_ostream os(sbuf); StoreInfo SI = {StoreInfo::Assignment, // default kind StoreSite, InitE, V, R, OldRegion}; if (std::optional PS = StoreSite->getLocationAs()) { const Stmt *S = PS->getStmt(); const auto *DS = dyn_cast(S); const auto *VR = dyn_cast(R); if (DS) { SI.StoreKind = StoreInfo::Initialization; } else if (isa(S)) { SI.StoreKind = StoreInfo::BlockCapture; if (VR) { // See if we can get the BlockVarRegion. ProgramStateRef State = StoreSite->getState(); SVal V = StoreSite->getSVal(S); if (const auto *BDR = dyn_cast_or_null(V.getAsRegion())) { if (const VarRegion *OriginalR = BDR->getOriginalRegion(VR)) { getParentTracker().track(State->getSVal(OriginalR), OriginalR, Options, OriginSFC); } } } } } else if (SI.StoreSite->getLocation().getAs() && isa(SI.Dest)) { SI.StoreKind = StoreInfo::CallArgument; } return getParentTracker().handle(SI, BRC, Options); } //===----------------------------------------------------------------------===// // Implementation of TrackConstraintBRVisitor. //===----------------------------------------------------------------------===// void TrackConstraintBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const { static int tag = 0; ID.AddPointer(&tag); ID.AddString(Message); ID.AddBoolean(Assumption); ID.Add(Constraint); } /// Return the tag associated with this visitor. This tag will be used /// to make all PathDiagnosticPieces created by this visitor. const char *TrackConstraintBRVisitor::getTag() { return "TrackConstraintBRVisitor"; } bool TrackConstraintBRVisitor::isZeroCheck() const { return !Assumption && Constraint.getAs(); } bool TrackConstraintBRVisitor::isUnderconstrained(const ExplodedNode *N) const { if (isZeroCheck()) return N->getState()->isNull(Constraint).isUnderconstrained(); return (bool)N->getState()->assume(Constraint, !Assumption); } PathDiagnosticPieceRef TrackConstraintBRVisitor::VisitNode( const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &) { const ExplodedNode *PrevN = N->getFirstPred(); if (IsSatisfied) return nullptr; // Start tracking after we see the first state in which the value is // constrained. if (!IsTrackingTurnedOn) if (!isUnderconstrained(N)) IsTrackingTurnedOn = true; if (!IsTrackingTurnedOn) return nullptr; // Check if in the previous state it was feasible for this constraint // to *not* be true. if (isUnderconstrained(PrevN)) { IsSatisfied = true; // At this point, the negation of the constraint should be infeasible. If it // is feasible, make sure that the negation of the constrainti was // infeasible in the current state. If it is feasible, we somehow missed // the transition point. assert(!isUnderconstrained(N)); // Construct a new PathDiagnosticPiece. ProgramPoint P = N->getLocation(); // If this node already have a specialized note, it's probably better // than our generic note. // FIXME: This only looks for note tags, not for other ways to add a note. if (isa_and_nonnull(P.getTag())) return nullptr; PathDiagnosticLocation L = PathDiagnosticLocation::create(P, BRC.getSourceManager()); if (!L.isValid()) return nullptr; auto X = std::make_shared(L, Message); X->setTag(getTag()); return std::move(X); } return nullptr; } //===----------------------------------------------------------------------===// // Implementation of SuppressInlineDefensiveChecksVisitor. //===----------------------------------------------------------------------===// SuppressInlineDefensiveChecksVisitor:: SuppressInlineDefensiveChecksVisitor(DefinedSVal Value, const ExplodedNode *N) : V(Value) { // Check if the visitor is disabled. AnalyzerOptions &Options = N->getState()->getAnalysisManager().options; if (!Options.ShouldSuppressInlinedDefensiveChecks) IsSatisfied = true; } void SuppressInlineDefensiveChecksVisitor::Profile( llvm::FoldingSetNodeID &ID) const { static int id = 0; ID.AddPointer(&id); ID.Add(V); } const char *SuppressInlineDefensiveChecksVisitor::getTag() { return "IDCVisitor"; } PathDiagnosticPieceRef SuppressInlineDefensiveChecksVisitor::VisitNode(const ExplodedNode *Succ, BugReporterContext &BRC, PathSensitiveBugReport &BR) { const ExplodedNode *Pred = Succ->getFirstPred(); if (IsSatisfied) return nullptr; // Start tracking after we see the first state in which the value is null. if (!IsTrackingTurnedOn) if (Succ->getState()->isNull(V).isConstrainedTrue()) IsTrackingTurnedOn = true; if (!IsTrackingTurnedOn) return nullptr; // Check if in the previous state it was feasible for this value // to *not* be null. if (!Pred->getState()->isNull(V).isConstrainedTrue() && Succ->getState()->isNull(V).isConstrainedTrue()) { IsSatisfied = true; // Check if this is inlined defensive checks. const LocationContext *CurLC = Succ->getLocationContext(); const LocationContext *ReportLC = BR.getErrorNode()->getLocationContext(); if (CurLC != ReportLC && !CurLC->isParentOf(ReportLC)) { BR.markInvalid("Suppress IDC", CurLC); return nullptr; } // Treat defensive checks in function-like macros as if they were an inlined // defensive check. If the bug location is not in a macro and the // terminator for the current location is in a macro then suppress the // warning. auto BugPoint = BR.getErrorNode()->getLocation().getAs(); if (!BugPoint) return nullptr; ProgramPoint CurPoint = Succ->getLocation(); const Stmt *CurTerminatorStmt = nullptr; if (auto BE = CurPoint.getAs()) { CurTerminatorStmt = BE->getSrc()->getTerminator().getStmt(); } else if (auto SP = CurPoint.getAs()) { const Stmt *CurStmt = SP->getStmt(); if (!CurStmt->getBeginLoc().isMacroID()) return nullptr; CFGStmtMap *Map = CurLC->getAnalysisDeclContext()->getCFGStmtMap(); CurTerminatorStmt = Map->getBlock(CurStmt)->getTerminatorStmt(); } else { return nullptr; } if (!CurTerminatorStmt) return nullptr; SourceLocation TerminatorLoc = CurTerminatorStmt->getBeginLoc(); if (TerminatorLoc.isMacroID()) { SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc(); // Suppress reports unless we are in that same macro. if (!BugLoc.isMacroID() || getMacroName(BugLoc, BRC) != getMacroName(TerminatorLoc, BRC)) { BR.markInvalid("Suppress Macro IDC", CurLC); } return nullptr; } } return nullptr; } //===----------------------------------------------------------------------===// // TrackControlDependencyCondBRVisitor. //===----------------------------------------------------------------------===// namespace { /// Tracks the expressions that are a control dependency of the node that was /// supplied to the constructor. /// For example: /// /// cond = 1; /// if (cond) /// 10 / 0; /// /// An error is emitted at line 3. This visitor realizes that the branch /// on line 2 is a control dependency of line 3, and tracks it's condition via /// trackExpressionValue(). class TrackControlDependencyCondBRVisitor final : public TrackingBugReporterVisitor { const ExplodedNode *Origin; ControlDependencyCalculator ControlDeps; llvm::SmallSet VisitedBlocks; public: TrackControlDependencyCondBRVisitor(TrackerRef ParentTracker, const ExplodedNode *O) : TrackingBugReporterVisitor(ParentTracker), Origin(O), ControlDeps(&O->getCFG()) {} void Profile(llvm::FoldingSetNodeID &ID) const override { static int x = 0; ID.AddPointer(&x); } PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &BR) override; }; } // end of anonymous namespace static std::shared_ptr constructDebugPieceForTrackedCondition(const Expr *Cond, const ExplodedNode *N, BugReporterContext &BRC) { if (BRC.getAnalyzerOptions().AnalysisDiagOpt == PD_NONE || !BRC.getAnalyzerOptions().ShouldTrackConditionsDebug) return nullptr; std::string ConditionText = std::string(Lexer::getSourceText( CharSourceRange::getTokenRange(Cond->getSourceRange()), BRC.getSourceManager(), BRC.getASTContext().getLangOpts())); return std::make_shared( PathDiagnosticLocation::createBegin( Cond, BRC.getSourceManager(), N->getLocationContext()), (Twine() + "Tracking condition '" + ConditionText + "'").str()); } static bool isAssertlikeBlock(const CFGBlock *B, ASTContext &Context) { if (B->succ_size() != 2) return false; const CFGBlock *Then = B->succ_begin()->getReachableBlock(); const CFGBlock *Else = (B->succ_begin() + 1)->getReachableBlock(); if (!Then || !Else) return false; if (Then->isInevitablySinking() != Else->isInevitablySinking()) return true; // For the following condition the following CFG would be built: // // -------------> // / \ // [B1] -> [B2] -> [B3] -> [sink] // assert(A && B || C); \ \ // -----------> [go on with the execution] // // It so happens that CFGBlock::getTerminatorCondition returns 'A' for block // B1, 'A && B' for B2, and 'A && B || C' for B3. Let's check whether we // reached the end of the condition! if (const Stmt *ElseCond = Else->getTerminatorCondition()) if (const auto *BinOp = dyn_cast(ElseCond)) if (BinOp->isLogicalOp()) return isAssertlikeBlock(Else, Context); return false; } PathDiagnosticPieceRef TrackControlDependencyCondBRVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &BR) { // We can only reason about control dependencies within the same stack frame. if (Origin->getStackFrame() != N->getStackFrame()) return nullptr; CFGBlock *NB = const_cast(N->getCFGBlock()); // Skip if we already inspected this block. if (!VisitedBlocks.insert(NB).second) return nullptr; CFGBlock *OriginB = const_cast(Origin->getCFGBlock()); // TODO: Cache CFGBlocks for each ExplodedNode. if (!OriginB || !NB) return nullptr; if (isAssertlikeBlock(NB, BRC.getASTContext())) return nullptr; if (ControlDeps.isControlDependent(OriginB, NB)) { // We don't really want to explain for range loops. Evidence suggests that // the only thing that leads to is the addition of calls to operator!=. if (llvm::isa_and_nonnull(NB->getTerminatorStmt())) return nullptr; if (const Expr *Condition = NB->getLastCondition()) { // If we can't retrieve a sensible condition, just bail out. const Expr *InnerExpr = peelOffOuterExpr(Condition, N); if (!InnerExpr) return nullptr; // If the condition was a function call, we likely won't gain much from // tracking it either. Evidence suggests that it will mostly trigger in // scenarios like this: // // void f(int *x) { // x = nullptr; // if (alwaysTrue()) // We don't need a whole lot of explanation // // here, the function name is good enough. // *x = 5; // } // // Its easy to create a counterexample where this heuristic would make us // lose valuable information, but we've never really seen one in practice. if (isa(InnerExpr)) return nullptr; // Keeping track of the already tracked conditions on a visitor level // isn't sufficient, because a new visitor is created for each tracked // expression, hence the BugReport level set. if (BR.addTrackedCondition(N)) { getParentTracker().track(InnerExpr, N, {bugreporter::TrackingKind::Condition, /*EnableNullFPSuppression=*/false}); return constructDebugPieceForTrackedCondition(Condition, N, BRC); } } } return nullptr; } //===----------------------------------------------------------------------===// // Implementation of trackExpressionValue. //===----------------------------------------------------------------------===// static const Expr *peelOffOuterExpr(const Expr *Ex, const ExplodedNode *N) { Ex = Ex->IgnoreParenCasts(); if (const auto *FE = dyn_cast(Ex)) return peelOffOuterExpr(FE->getSubExpr(), N); if (const auto *OVE = dyn_cast(Ex)) return peelOffOuterExpr(OVE->getSourceExpr(), N); if (const auto *POE = dyn_cast(Ex)) { const auto *PropRef = dyn_cast(POE->getSyntacticForm()); if (PropRef && PropRef->isMessagingGetter()) { const Expr *GetterMessageSend = POE->getSemanticExpr(POE->getNumSemanticExprs() - 1); assert(isa(GetterMessageSend->IgnoreParenCasts())); return peelOffOuterExpr(GetterMessageSend, N); } } // Peel off the ternary operator. if (const auto *CO = dyn_cast(Ex)) { // Find a node where the branching occurred and find out which branch // we took (true/false) by looking at the ExplodedGraph. const ExplodedNode *NI = N; do { ProgramPoint ProgPoint = NI->getLocation(); if (std::optional BE = ProgPoint.getAs()) { const CFGBlock *srcBlk = BE->getSrc(); if (const Stmt *term = srcBlk->getTerminatorStmt()) { if (term == CO) { bool TookTrueBranch = (*(srcBlk->succ_begin()) == BE->getDst()); if (TookTrueBranch) return peelOffOuterExpr(CO->getTrueExpr(), N); else return peelOffOuterExpr(CO->getFalseExpr(), N); } } } NI = NI->getFirstPred(); } while (NI); } if (auto *BO = dyn_cast(Ex)) if (const Expr *SubEx = peelOffPointerArithmetic(BO)) return peelOffOuterExpr(SubEx, N); if (auto *UO = dyn_cast(Ex)) { if (UO->getOpcode() == UO_LNot) return peelOffOuterExpr(UO->getSubExpr(), N); // FIXME: There's a hack in our Store implementation that always computes // field offsets around null pointers as if they are always equal to 0. // The idea here is to report accesses to fields as null dereferences // even though the pointer value that's being dereferenced is actually // the offset of the field rather than exactly 0. // See the FIXME in StoreManager's getLValueFieldOrIvar() method. // This code interacts heavily with this hack; otherwise the value // would not be null at all for most fields, so we'd be unable to track it. if (UO->getOpcode() == UO_AddrOf && UO->getSubExpr()->isLValue()) if (const Expr *DerefEx = bugreporter::getDerefExpr(UO->getSubExpr())) return peelOffOuterExpr(DerefEx, N); } return Ex; } /// Find the ExplodedNode where the lvalue (the value of 'Ex') /// was computed. static const ExplodedNode* findNodeForExpression(const ExplodedNode *N, const Expr *Inner) { while (N) { if (N->getStmtForDiagnostics() == Inner) return N; N = N->getFirstPred(); } return N; } //===----------------------------------------------------------------------===// // Tracker implementation //===----------------------------------------------------------------------===// PathDiagnosticPieceRef StoreHandler::constructNote(StoreInfo SI, BugReporterContext &BRC, StringRef NodeText) { // Construct a new PathDiagnosticPiece. ProgramPoint P = SI.StoreSite->getLocation(); PathDiagnosticLocation L; if (P.getAs() && SI.SourceOfTheValue) L = PathDiagnosticLocation(SI.SourceOfTheValue, BRC.getSourceManager(), P.getLocationContext()); if (!L.isValid() || !L.asLocation().isValid()) L = PathDiagnosticLocation::create(P, BRC.getSourceManager()); if (!L.isValid() || !L.asLocation().isValid()) return nullptr; return std::make_shared(L, NodeText); } namespace { class DefaultStoreHandler final : public StoreHandler { public: using StoreHandler::StoreHandler; PathDiagnosticPieceRef handle(StoreInfo SI, BugReporterContext &BRC, TrackingOptions Opts) override { // Okay, we've found the binding. Emit an appropriate message. SmallString<256> Buffer; llvm::raw_svector_ostream OS(Buffer); switch (SI.StoreKind) { case StoreInfo::Initialization: case StoreInfo::BlockCapture: showBRDiagnostics(OS, SI); break; case StoreInfo::CallArgument: showBRParamDiagnostics(OS, SI); break; case StoreInfo::Assignment: showBRDefaultDiagnostics(OS, SI); break; } if (Opts.Kind == bugreporter::TrackingKind::Condition) OS << WillBeUsedForACondition; return constructNote(SI, BRC, OS.str()); } }; class ControlDependencyHandler final : public ExpressionHandler { public: using ExpressionHandler::ExpressionHandler; Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode, const ExplodedNode *LVNode, TrackingOptions Opts) override { PathSensitiveBugReport &Report = getParentTracker().getReport(); // We only track expressions if we believe that they are important. Chances // are good that control dependencies to the tracking point are also // important because of this, let's explain why we believe control reached // this point. // TODO: Shouldn't we track control dependencies of every bug location, // rather than only tracked expressions? if (LVNode->getState() ->getAnalysisManager() .getAnalyzerOptions() .ShouldTrackConditions) { Report.addVisitor( &getParentTracker(), InputNode); return {/*FoundSomethingToTrack=*/true}; } return {}; } }; class NilReceiverHandler final : public ExpressionHandler { public: using ExpressionHandler::ExpressionHandler; Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode, const ExplodedNode *LVNode, TrackingOptions Opts) override { // The message send could be nil due to the receiver being nil. // At this point in the path, the receiver should be live since we are at // the message send expr. If it is nil, start tracking it. if (const Expr *Receiver = NilReceiverBRVisitor::getNilReceiver(Inner, LVNode)) return getParentTracker().track(Receiver, LVNode, Opts); return {}; } }; class ArrayIndexHandler final : public ExpressionHandler { public: using ExpressionHandler::ExpressionHandler; Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode, const ExplodedNode *LVNode, TrackingOptions Opts) override { // Track the index if this is an array subscript. if (const auto *Arr = dyn_cast(Inner)) return getParentTracker().track( Arr->getIdx(), LVNode, {Opts.Kind, /*EnableNullFPSuppression*/ false}); return {}; } }; // TODO: extract it into more handlers class InterestingLValueHandler final : public ExpressionHandler { public: using ExpressionHandler::ExpressionHandler; Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode, const ExplodedNode *LVNode, TrackingOptions Opts) override { ProgramStateRef LVState = LVNode->getState(); const StackFrameContext *SFC = LVNode->getStackFrame(); PathSensitiveBugReport &Report = getParentTracker().getReport(); Tracker::Result Result; // See if the expression we're interested refers to a variable. // If so, we can track both its contents and constraints on its value. if (ExplodedGraph::isInterestingLValueExpr(Inner)) { SVal LVal = LVNode->getSVal(Inner); const MemRegion *RR = getLocationRegionIfReference(Inner, LVNode); bool LVIsNull = LVState->isNull(LVal).isConstrainedTrue(); // If this is a C++ reference to a null pointer, we are tracking the // pointer. In addition, we should find the store at which the reference // got initialized. if (RR && !LVIsNull) Result.combineWith(getParentTracker().track(LVal, RR, Opts, SFC)); // In case of C++ references, we want to differentiate between a null // reference and reference to null pointer. // If the LVal is null, check if we are dealing with null reference. // For those, we want to track the location of the reference. const MemRegion *R = (RR && LVIsNull) ? RR : LVNode->getSVal(Inner).getAsRegion(); if (R) { // Mark both the variable region and its contents as interesting. SVal V = LVState->getRawSVal(loc::MemRegionVal(R)); Report.addVisitor(cast(R), Opts.Kind); // When we got here, we do have something to track, and we will // interrupt. Result.FoundSomethingToTrack = true; Result.WasInterrupted = true; MacroNullReturnSuppressionVisitor::addMacroVisitorIfNecessary( LVNode, R, Opts.EnableNullFPSuppression, Report, V); Report.markInteresting(V, Opts.Kind); Report.addVisitor(R); // If the contents are symbolic and null, find out when they became // null. if (V.getAsLocSymbol(/*IncludeBaseRegions=*/true)) if (LVState->isNull(V).isConstrainedTrue()) Report.addVisitor( V.castAs(), /*Assumption=*/false, "Assuming pointer value is null"); // Add visitor, which will suppress inline defensive checks. if (auto DV = V.getAs()) if (!DV->isZeroConstant() && Opts.EnableNullFPSuppression) // Note that LVNode may be too late (i.e., too far from the // InputNode) because the lvalue may have been computed before the // inlined call was evaluated. InputNode may as well be too early // here, because the symbol is already dead; this, however, is fine // because we can still find the node in which it collapsed to null // previously. Report.addVisitor(*DV, InputNode); getParentTracker().track(V, R, Opts, SFC); } } return Result; } }; /// Adds a ReturnVisitor if the given statement represents a call that was /// inlined. /// /// This will search back through the ExplodedGraph, starting from the given /// node, looking for when the given statement was processed. If it turns out /// the statement is a call that was inlined, we add the visitor to the /// bug report, so it can print a note later. class InlinedFunctionCallHandler final : public ExpressionHandler { using ExpressionHandler::ExpressionHandler; Tracker::Result handle(const Expr *E, const ExplodedNode *InputNode, const ExplodedNode *ExprNode, TrackingOptions Opts) override { if (!CallEvent::isCallStmt(E)) return {}; // First, find when we processed the statement. // If we work with a 'CXXNewExpr' that is going to be purged away before // its call take place. We would catch that purge in the last condition // as a 'StmtPoint' so we have to bypass it. const bool BypassCXXNewExprEval = isa(E); // This is moving forward when we enter into another context. const StackFrameContext *CurrentSFC = ExprNode->getStackFrame(); do { // If that is satisfied we found our statement as an inlined call. if (std::optional CEE = ExprNode->getLocationAs()) if (CEE->getCalleeContext()->getCallSite() == E) break; // Try to move forward to the end of the call-chain. ExprNode = ExprNode->getFirstPred(); if (!ExprNode) break; const StackFrameContext *PredSFC = ExprNode->getStackFrame(); // If that is satisfied we found our statement. // FIXME: This code currently bypasses the call site for the // conservatively evaluated allocator. if (!BypassCXXNewExprEval) if (std::optional SP = ExprNode->getLocationAs()) // See if we do not enter into another context. if (SP->getStmt() == E && CurrentSFC == PredSFC) break; CurrentSFC = PredSFC; } while (ExprNode->getStackFrame() == CurrentSFC); // Next, step over any post-statement checks. while (ExprNode && ExprNode->getLocation().getAs()) ExprNode = ExprNode->getFirstPred(); if (!ExprNode) return {}; // Finally, see if we inlined the call. std::optional CEE = ExprNode->getLocationAs(); if (!CEE) return {}; const StackFrameContext *CalleeContext = CEE->getCalleeContext(); if (CalleeContext->getCallSite() != E) return {}; // Check the return value. ProgramStateRef State = ExprNode->getState(); SVal RetVal = ExprNode->getSVal(E); // Handle cases where a reference is returned and then immediately used. if (cast(E)->isGLValue()) if (std::optional LValue = RetVal.getAs()) RetVal = State->getSVal(*LValue); // See if the return value is NULL. If so, suppress the report. AnalyzerOptions &Options = State->getAnalysisManager().options; bool EnableNullFPSuppression = false; if (Opts.EnableNullFPSuppression && Options.ShouldSuppressNullReturnPaths) if (std::optional RetLoc = RetVal.getAs()) EnableNullFPSuppression = State->isNull(*RetLoc).isConstrainedTrue(); PathSensitiveBugReport &Report = getParentTracker().getReport(); Report.addVisitor(&getParentTracker(), CalleeContext, EnableNullFPSuppression, Options, Opts.Kind); return {true}; } }; class DefaultExpressionHandler final : public ExpressionHandler { public: using ExpressionHandler::ExpressionHandler; Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode, const ExplodedNode *LVNode, TrackingOptions Opts) override { ProgramStateRef LVState = LVNode->getState(); const StackFrameContext *SFC = LVNode->getStackFrame(); PathSensitiveBugReport &Report = getParentTracker().getReport(); Tracker::Result Result; // If the expression is not an "lvalue expression", we can still // track the constraints on its contents. SVal V = LVState->getSValAsScalarOrLoc(Inner, LVNode->getLocationContext()); // Is it a symbolic value? if (auto L = V.getAs()) { // FIXME: this is a hack for fixing a later crash when attempting to // dereference a void* pointer. // We should not try to dereference pointers at all when we don't care // what is written inside the pointer. bool CanDereference = true; if (const auto *SR = L->getRegionAs()) { if (SR->getPointeeStaticType()->isVoidType()) CanDereference = false; } else if (L->getRegionAs()) CanDereference = false; // At this point we are dealing with the region's LValue. // However, if the rvalue is a symbolic region, we should track it as // well. Try to use the correct type when looking up the value. SVal RVal; if (ExplodedGraph::isInterestingLValueExpr(Inner)) RVal = LVState->getRawSVal(*L, Inner->getType()); else if (CanDereference) RVal = LVState->getSVal(L->getRegion()); if (CanDereference) { Report.addVisitor(L->getRegion()); Result.FoundSomethingToTrack = true; if (!RVal.isUnknown()) Result.combineWith( getParentTracker().track(RVal, L->getRegion(), Opts, SFC)); } const MemRegion *RegionRVal = RVal.getAsRegion(); if (isa_and_nonnull(RegionRVal)) { Report.markInteresting(RegionRVal, Opts.Kind); Report.addVisitor( loc::MemRegionVal(RegionRVal), /*Assumption=*/false, "Assuming pointer value is null"); Result.FoundSomethingToTrack = true; } } return Result; } }; /// Attempts to add visitors to track an RValue expression back to its point of /// origin. class PRValueHandler final : public ExpressionHandler { public: using ExpressionHandler::ExpressionHandler; Tracker::Result handle(const Expr *E, const ExplodedNode *InputNode, const ExplodedNode *ExprNode, TrackingOptions Opts) override { if (!E->isPRValue()) return {}; const ExplodedNode *RVNode = findNodeForExpression(ExprNode, E); if (!RVNode) return {}; Tracker::Result CombinedResult; Tracker &Parent = getParentTracker(); const auto track = [&CombinedResult, &Parent, ExprNode, Opts](const Expr *Inner) { CombinedResult.combineWith(Parent.track(Inner, ExprNode, Opts)); }; // FIXME: Initializer lists can appear in many different contexts // and most of them needs a special handling. For now let's handle // what we can. If the initializer list only has 1 element, we track // that. // This snippet even handles nesting, e.g.: int *x{{{{{y}}}}}; if (const auto *ILE = dyn_cast(E)) { if (ILE->getNumInits() == 1) { track(ILE->getInit(0)); return CombinedResult; } return {}; } ProgramStateRef RVState = RVNode->getState(); SVal V = RVState->getSValAsScalarOrLoc(E, RVNode->getLocationContext()); const auto *BO = dyn_cast(E); if (!BO || !BO->isMultiplicativeOp() || !V.isZeroConstant()) return {}; SVal RHSV = RVState->getSVal(BO->getRHS(), RVNode->getLocationContext()); SVal LHSV = RVState->getSVal(BO->getLHS(), RVNode->getLocationContext()); // Track both LHS and RHS of a multiplication. if (BO->getOpcode() == BO_Mul) { if (LHSV.isZeroConstant()) track(BO->getLHS()); if (RHSV.isZeroConstant()) track(BO->getRHS()); } else { // Track only the LHS of a division or a modulo. if (LHSV.isZeroConstant()) track(BO->getLHS()); } return CombinedResult; } }; } // namespace Tracker::Tracker(PathSensitiveBugReport &Report) : Report(Report) { // Default expression handlers. addLowPriorityHandler(); addLowPriorityHandler(); addLowPriorityHandler(); addLowPriorityHandler(); addLowPriorityHandler(); addLowPriorityHandler(); addLowPriorityHandler(); // Default store handlers. addHighPriorityHandler(); } Tracker::Result Tracker::track(const Expr *E, const ExplodedNode *N, TrackingOptions Opts) { if (!E || !N) return {}; const Expr *Inner = peelOffOuterExpr(E, N); const ExplodedNode *LVNode = findNodeForExpression(N, Inner); if (!LVNode) return {}; Result CombinedResult; // Iterate through the handlers in the order according to their priorities. for (ExpressionHandlerPtr &Handler : ExpressionHandlers) { CombinedResult.combineWith(Handler->handle(Inner, N, LVNode, Opts)); if (CombinedResult.WasInterrupted) { // There is no need to confuse our users here. // We got interrupted, but our users don't need to know about it. CombinedResult.WasInterrupted = false; break; } } return CombinedResult; } Tracker::Result Tracker::track(SVal V, const MemRegion *R, TrackingOptions Opts, const StackFrameContext *Origin) { if (!V.isUnknown()) { Report.addVisitor(this, V, R, Opts, Origin); return {true}; } return {}; } PathDiagnosticPieceRef Tracker::handle(StoreInfo SI, BugReporterContext &BRC, TrackingOptions Opts) { // Iterate through the handlers in the order according to their priorities. for (StoreHandlerPtr &Handler : StoreHandlers) { if (PathDiagnosticPieceRef Result = Handler->handle(SI, BRC, Opts)) // If the handler produced a non-null piece, return it. // There is no need in asking other handlers. return Result; } return {}; } bool bugreporter::trackExpressionValue(const ExplodedNode *InputNode, const Expr *E, PathSensitiveBugReport &Report, TrackingOptions Opts) { return Tracker::create(Report) ->track(E, InputNode, Opts) .FoundSomethingToTrack; } void bugreporter::trackStoredValue(SVal V, const MemRegion *R, PathSensitiveBugReport &Report, TrackingOptions Opts, const StackFrameContext *Origin) { Tracker::create(Report)->track(V, R, Opts, Origin); } //===----------------------------------------------------------------------===// // Implementation of NulReceiverBRVisitor. //===----------------------------------------------------------------------===// const Expr *NilReceiverBRVisitor::getNilReceiver(const Stmt *S, const ExplodedNode *N) { const auto *ME = dyn_cast(S); if (!ME) return nullptr; if (const Expr *Receiver = ME->getInstanceReceiver()) { ProgramStateRef state = N->getState(); SVal V = N->getSVal(Receiver); if (state->isNull(V).isConstrainedTrue()) return Receiver; } return nullptr; } PathDiagnosticPieceRef NilReceiverBRVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &BR) { std::optional P = N->getLocationAs(); if (!P) return nullptr; const Stmt *S = P->getStmt(); const Expr *Receiver = getNilReceiver(S, N); if (!Receiver) return nullptr; llvm::SmallString<256> Buf; llvm::raw_svector_ostream OS(Buf); if (const auto *ME = dyn_cast(S)) { OS << "'"; ME->getSelector().print(OS); OS << "' not called"; } else { OS << "No method is called"; } OS << " because the receiver is nil"; // The receiver was nil, and hence the method was skipped. // Register a BugReporterVisitor to issue a message telling us how // the receiver was null. bugreporter::trackExpressionValue(N, Receiver, BR, {bugreporter::TrackingKind::Thorough, /*EnableNullFPSuppression*/ false}); // Issue a message saying that the method was skipped. PathDiagnosticLocation L(Receiver, BRC.getSourceManager(), N->getLocationContext()); return std::make_shared(L, OS.str()); } //===----------------------------------------------------------------------===// // Visitor that tries to report interesting diagnostics from conditions. //===----------------------------------------------------------------------===// /// Return the tag associated with this visitor. This tag will be used /// to make all PathDiagnosticPieces created by this visitor. const char *ConditionBRVisitor::getTag() { return "ConditionBRVisitor"; } PathDiagnosticPieceRef ConditionBRVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &BR) { auto piece = VisitNodeImpl(N, BRC, BR); if (piece) { piece->setTag(getTag()); if (auto *ev = dyn_cast(piece.get())) ev->setPrunable(true, /* override */ false); } return piece; } PathDiagnosticPieceRef ConditionBRVisitor::VisitNodeImpl(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &BR) { ProgramPoint ProgPoint = N->getLocation(); const std::pair &Tags = ExprEngine::getEagerlyAssumeBifurcationTags(); // If an assumption was made on a branch, it should be caught // here by looking at the state transition. if (std::optional BE = ProgPoint.getAs()) { const CFGBlock *SrcBlock = BE->getSrc(); if (const Stmt *Term = SrcBlock->getTerminatorStmt()) { // If the tag of the previous node is 'Eagerly Assume...' the current // 'BlockEdge' has the same constraint information. We do not want to // report the value as it is just an assumption on the predecessor node // which will be caught in the next VisitNode() iteration as a 'PostStmt'. const ProgramPointTag *PreviousNodeTag = N->getFirstPred()->getLocation().getTag(); if (PreviousNodeTag == Tags.first || PreviousNodeTag == Tags.second) return nullptr; return VisitTerminator(Term, N, SrcBlock, BE->getDst(), BR, BRC); } return nullptr; } if (std::optional PS = ProgPoint.getAs()) { const ProgramPointTag *CurrentNodeTag = PS->getTag(); if (CurrentNodeTag != Tags.first && CurrentNodeTag != Tags.second) return nullptr; bool TookTrue = CurrentNodeTag == Tags.first; return VisitTrueTest(cast(PS->getStmt()), BRC, BR, N, TookTrue); } return nullptr; } PathDiagnosticPieceRef ConditionBRVisitor::VisitTerminator( const Stmt *Term, const ExplodedNode *N, const CFGBlock *srcBlk, const CFGBlock *dstBlk, PathSensitiveBugReport &R, BugReporterContext &BRC) { const Expr *Cond = nullptr; // In the code below, Term is a CFG terminator and Cond is a branch condition // expression upon which the decision is made on this terminator. // // For example, in "if (x == 0)", the "if (x == 0)" statement is a terminator, // and "x == 0" is the respective condition. // // Another example: in "if (x && y)", we've got two terminators and two // conditions due to short-circuit nature of operator "&&": // 1. The "if (x && y)" statement is a terminator, // and "y" is the respective condition. // 2. Also "x && ..." is another terminator, // and "x" is its condition. switch (Term->getStmtClass()) { // FIXME: Stmt::SwitchStmtClass is worth handling, however it is a bit // more tricky because there are more than two branches to account for. default: return nullptr; case Stmt::IfStmtClass: Cond = cast(Term)->getCond(); break; case Stmt::ConditionalOperatorClass: Cond = cast(Term)->getCond(); break; case Stmt::BinaryOperatorClass: // When we encounter a logical operator (&& or ||) as a CFG terminator, // then the condition is actually its LHS; otherwise, we'd encounter // the parent, such as if-statement, as a terminator. const auto *BO = cast(Term); assert(BO->isLogicalOp() && "CFG terminator is not a short-circuit operator!"); Cond = BO->getLHS(); break; } Cond = Cond->IgnoreParens(); // However, when we encounter a logical operator as a branch condition, // then the condition is actually its RHS, because LHS would be // the condition for the logical operator terminator. while (const auto *InnerBO = dyn_cast(Cond)) { if (!InnerBO->isLogicalOp()) break; Cond = InnerBO->getRHS()->IgnoreParens(); } assert(Cond); assert(srcBlk->succ_size() == 2); const bool TookTrue = *(srcBlk->succ_begin()) == dstBlk; return VisitTrueTest(Cond, BRC, R, N, TookTrue); } PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest(const Expr *Cond, BugReporterContext &BRC, PathSensitiveBugReport &R, const ExplodedNode *N, bool TookTrue) { ProgramStateRef CurrentState = N->getState(); ProgramStateRef PrevState = N->getFirstPred()->getState(); const LocationContext *LCtx = N->getLocationContext(); // If the constraint information is changed between the current and the // previous program state we assuming the newly seen constraint information. // If we cannot evaluate the condition (and the constraints are the same) // the analyzer has no information about the value and just assuming it. // FIXME: This logic is not entirely correct, because e.g. in code like // void f(unsigned arg) { // if (arg >= 0) { // // ... // } // } // it will say that the "arg >= 0" check is _assuming_ something new because // the constraint that "$arg >= 0" is 1 was added to the list of known // constraints. However, the unsigned value is always >= 0 so semantically // this is not a "real" assumption. bool IsAssuming = !BRC.getStateManager().haveEqualConstraints(CurrentState, PrevState) || CurrentState->getSVal(Cond, LCtx).isUnknownOrUndef(); // These will be modified in code below, but we need to preserve the original // values in case we want to throw the generic message. const Expr *CondTmp = Cond; bool TookTrueTmp = TookTrue; while (true) { CondTmp = CondTmp->IgnoreParenCasts(); switch (CondTmp->getStmtClass()) { default: break; case Stmt::BinaryOperatorClass: if (auto P = VisitTrueTest(Cond, cast(CondTmp), BRC, R, N, TookTrueTmp, IsAssuming)) return P; break; case Stmt::DeclRefExprClass: if (auto P = VisitTrueTest(Cond, cast(CondTmp), BRC, R, N, TookTrueTmp, IsAssuming)) return P; break; case Stmt::MemberExprClass: if (auto P = VisitTrueTest(Cond, cast(CondTmp), BRC, R, N, TookTrueTmp, IsAssuming)) return P; break; case Stmt::UnaryOperatorClass: { const auto *UO = cast(CondTmp); if (UO->getOpcode() == UO_LNot) { TookTrueTmp = !TookTrueTmp; CondTmp = UO->getSubExpr(); continue; } break; } } break; } // Condition too complex to explain? Just say something so that the user // knew we've made some path decision at this point. // If it is too complex and we know the evaluation of the condition do not // repeat the note from 'BugReporter.cpp' if (!IsAssuming) return nullptr; PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx); if (!Loc.isValid() || !Loc.asLocation().isValid()) return nullptr; return std::make_shared( Loc, TookTrue ? GenericTrueMessage : GenericFalseMessage); } bool ConditionBRVisitor::patternMatch(const Expr *Ex, const Expr *ParentEx, raw_ostream &Out, BugReporterContext &BRC, PathSensitiveBugReport &report, const ExplodedNode *N, std::optional &prunable, bool IsSameFieldName) { const Expr *OriginalExpr = Ex; Ex = Ex->IgnoreParenCasts(); if (isa(Ex)) { // Use heuristics to determine if the expression is a macro // expanding to a literal and if so, use the macro's name. SourceLocation BeginLoc = OriginalExpr->getBeginLoc(); SourceLocation EndLoc = OriginalExpr->getEndLoc(); if (BeginLoc.isMacroID() && EndLoc.isMacroID()) { const SourceManager &SM = BRC.getSourceManager(); const LangOptions &LO = BRC.getASTContext().getLangOpts(); if (Lexer::isAtStartOfMacroExpansion(BeginLoc, SM, LO) && Lexer::isAtEndOfMacroExpansion(EndLoc, SM, LO)) { CharSourceRange R = Lexer::getAsCharRange({BeginLoc, EndLoc}, SM, LO); Out << Lexer::getSourceText(R, SM, LO); return false; } } } if (const auto *DR = dyn_cast(Ex)) { const bool quotes = isa(DR->getDecl()); if (quotes) { Out << '\''; const LocationContext *LCtx = N->getLocationContext(); const ProgramState *state = N->getState().get(); if (const MemRegion *R = state->getLValue(cast(DR->getDecl()), LCtx).getAsRegion()) { if (report.isInteresting(R)) prunable = false; else { const ProgramState *state = N->getState().get(); SVal V = state->getSVal(R); if (report.isInteresting(V)) prunable = false; } } } Out << DR->getDecl()->getDeclName().getAsString(); if (quotes) Out << '\''; return quotes; } if (const auto *IL = dyn_cast(Ex)) { QualType OriginalTy = OriginalExpr->getType(); if (OriginalTy->isPointerType()) { if (IL->getValue() == 0) { Out << "null"; return false; } } else if (OriginalTy->isObjCObjectPointerType()) { if (IL->getValue() == 0) { Out << "nil"; return false; } } Out << IL->getValue(); return false; } if (const auto *ME = dyn_cast(Ex)) { if (!IsSameFieldName) Out << "field '" << ME->getMemberDecl()->getName() << '\''; else Out << '\'' << Lexer::getSourceText( CharSourceRange::getTokenRange(Ex->getSourceRange()), BRC.getSourceManager(), BRC.getASTContext().getLangOpts(), nullptr) << '\''; } return false; } PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest( const Expr *Cond, const BinaryOperator *BExpr, BugReporterContext &BRC, PathSensitiveBugReport &R, const ExplodedNode *N, bool TookTrue, bool IsAssuming) { bool shouldInvert = false; std::optional shouldPrune; // Check if the field name of the MemberExprs is ambiguous. Example: // " 'a.d' is equal to 'h.d' " in 'test/Analysis/null-deref-path-notes.cpp'. bool IsSameFieldName = false; const auto *LhsME = dyn_cast(BExpr->getLHS()->IgnoreParenCasts()); const auto *RhsME = dyn_cast(BExpr->getRHS()->IgnoreParenCasts()); if (LhsME && RhsME) IsSameFieldName = LhsME->getMemberDecl()->getName() == RhsME->getMemberDecl()->getName(); SmallString<128> LhsString, RhsString; { llvm::raw_svector_ostream OutLHS(LhsString), OutRHS(RhsString); const bool isVarLHS = patternMatch(BExpr->getLHS(), BExpr, OutLHS, BRC, R, N, shouldPrune, IsSameFieldName); const bool isVarRHS = patternMatch(BExpr->getRHS(), BExpr, OutRHS, BRC, R, N, shouldPrune, IsSameFieldName); shouldInvert = !isVarLHS && isVarRHS; } BinaryOperator::Opcode Op = BExpr->getOpcode(); if (BinaryOperator::isAssignmentOp(Op)) { // For assignment operators, all that we care about is that the LHS // evaluates to "true" or "false". return VisitConditionVariable(LhsString, BExpr->getLHS(), BRC, R, N, TookTrue); } // For non-assignment operations, we require that we can understand // both the LHS and RHS. if (LhsString.empty() || RhsString.empty() || !BinaryOperator::isComparisonOp(Op) || Op == BO_Cmp) return nullptr; // Should we invert the strings if the LHS is not a variable name? SmallString<256> buf; llvm::raw_svector_ostream Out(buf); Out << (IsAssuming ? "Assuming " : "") << (shouldInvert ? RhsString : LhsString) << " is "; // Do we need to invert the opcode? if (shouldInvert) switch (Op) { default: break; case BO_LT: Op = BO_GT; break; case BO_GT: Op = BO_LT; break; case BO_LE: Op = BO_GE; break; case BO_GE: Op = BO_LE; break; } if (!TookTrue) switch (Op) { case BO_EQ: Op = BO_NE; break; case BO_NE: Op = BO_EQ; break; case BO_LT: Op = BO_GE; break; case BO_GT: Op = BO_LE; break; case BO_LE: Op = BO_GT; break; case BO_GE: Op = BO_LT; break; default: return nullptr; } switch (Op) { case BO_EQ: Out << "equal to "; break; case BO_NE: Out << "not equal to "; break; default: Out << BinaryOperator::getOpcodeStr(Op) << ' '; break; } Out << (shouldInvert ? LhsString : RhsString); const LocationContext *LCtx = N->getLocationContext(); const SourceManager &SM = BRC.getSourceManager(); if (isVarAnInterestingCondition(BExpr->getLHS(), N, &R) || isVarAnInterestingCondition(BExpr->getRHS(), N, &R)) Out << WillBeUsedForACondition; // Convert 'field ...' to 'Field ...' if it is a MemberExpr. std::string Message = std::string(Out.str()); Message[0] = toupper(Message[0]); // If we know the value create a pop-up note to the value part of 'BExpr'. if (!IsAssuming) { PathDiagnosticLocation Loc; if (!shouldInvert) { if (LhsME && LhsME->getMemberLoc().isValid()) Loc = PathDiagnosticLocation(LhsME->getMemberLoc(), SM); else Loc = PathDiagnosticLocation(BExpr->getLHS(), SM, LCtx); } else { if (RhsME && RhsME->getMemberLoc().isValid()) Loc = PathDiagnosticLocation(RhsME->getMemberLoc(), SM); else Loc = PathDiagnosticLocation(BExpr->getRHS(), SM, LCtx); } return std::make_shared(Loc, Message); } PathDiagnosticLocation Loc(Cond, SM, LCtx); auto event = std::make_shared(Loc, Message); if (shouldPrune) event->setPrunable(*shouldPrune); return event; } PathDiagnosticPieceRef ConditionBRVisitor::VisitConditionVariable( StringRef LhsString, const Expr *CondVarExpr, BugReporterContext &BRC, PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue) { // FIXME: If there's already a constraint tracker for this variable, // we shouldn't emit anything here (c.f. the double note in // test/Analysis/inlining/path-notes.c) SmallString<256> buf; llvm::raw_svector_ostream Out(buf); Out << "Assuming " << LhsString << " is "; if (!printValue(CondVarExpr, Out, N, TookTrue, /*IsAssuming=*/true)) return nullptr; const LocationContext *LCtx = N->getLocationContext(); PathDiagnosticLocation Loc(CondVarExpr, BRC.getSourceManager(), LCtx); if (isVarAnInterestingCondition(CondVarExpr, N, &report)) Out << WillBeUsedForACondition; auto event = std::make_shared(Loc, Out.str()); if (isInterestingExpr(CondVarExpr, N, &report)) event->setPrunable(false); return event; } PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest( const Expr *Cond, const DeclRefExpr *DRE, BugReporterContext &BRC, PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue, bool IsAssuming) { const auto *VD = dyn_cast(DRE->getDecl()); if (!VD) return nullptr; SmallString<256> Buf; llvm::raw_svector_ostream Out(Buf); Out << (IsAssuming ? "Assuming '" : "'") << VD->getDeclName() << "' is "; if (!printValue(DRE, Out, N, TookTrue, IsAssuming)) return nullptr; const LocationContext *LCtx = N->getLocationContext(); if (isVarAnInterestingCondition(DRE, N, &report)) Out << WillBeUsedForACondition; // If we know the value create a pop-up note to the 'DRE'. if (!IsAssuming) { PathDiagnosticLocation Loc(DRE, BRC.getSourceManager(), LCtx); return std::make_shared(Loc, Out.str()); } PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx); auto event = std::make_shared(Loc, Out.str()); if (isInterestingExpr(DRE, N, &report)) event->setPrunable(false); return std::move(event); } PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest( const Expr *Cond, const MemberExpr *ME, BugReporterContext &BRC, PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue, bool IsAssuming) { SmallString<256> Buf; llvm::raw_svector_ostream Out(Buf); Out << (IsAssuming ? "Assuming field '" : "Field '") << ME->getMemberDecl()->getName() << "' is "; if (!printValue(ME, Out, N, TookTrue, IsAssuming)) return nullptr; const LocationContext *LCtx = N->getLocationContext(); PathDiagnosticLocation Loc; // If we know the value create a pop-up note to the member of the MemberExpr. if (!IsAssuming && ME->getMemberLoc().isValid()) Loc = PathDiagnosticLocation(ME->getMemberLoc(), BRC.getSourceManager()); else Loc = PathDiagnosticLocation(Cond, BRC.getSourceManager(), LCtx); if (!Loc.isValid() || !Loc.asLocation().isValid()) return nullptr; if (isVarAnInterestingCondition(ME, N, &report)) Out << WillBeUsedForACondition; // If we know the value create a pop-up note. if (!IsAssuming) return std::make_shared(Loc, Out.str()); auto event = std::make_shared(Loc, Out.str()); if (isInterestingExpr(ME, N, &report)) event->setPrunable(false); return event; } bool ConditionBRVisitor::printValue(const Expr *CondVarExpr, raw_ostream &Out, const ExplodedNode *N, bool TookTrue, bool IsAssuming) { QualType Ty = CondVarExpr->getType(); if (Ty->isPointerType()) { Out << (TookTrue ? "non-null" : "null"); return true; } if (Ty->isObjCObjectPointerType()) { Out << (TookTrue ? "non-nil" : "nil"); return true; } if (!Ty->isIntegralOrEnumerationType()) return false; std::optional IntValue; if (!IsAssuming) IntValue = getConcreteIntegerValue(CondVarExpr, N); if (IsAssuming || !IntValue) { if (Ty->isBooleanType()) Out << (TookTrue ? "true" : "false"); else Out << (TookTrue ? "not equal to 0" : "0"); } else { if (Ty->isBooleanType()) Out << ((*IntValue)->getBoolValue() ? "true" : "false"); else Out << **IntValue; } return true; } constexpr llvm::StringLiteral ConditionBRVisitor::GenericTrueMessage; constexpr llvm::StringLiteral ConditionBRVisitor::GenericFalseMessage; bool ConditionBRVisitor::isPieceMessageGeneric( const PathDiagnosticPiece *Piece) { return Piece->getString() == GenericTrueMessage || Piece->getString() == GenericFalseMessage; } //===----------------------------------------------------------------------===// // Implementation of LikelyFalsePositiveSuppressionBRVisitor. //===----------------------------------------------------------------------===// void LikelyFalsePositiveSuppressionBRVisitor::finalizeVisitor( BugReporterContext &BRC, const ExplodedNode *N, PathSensitiveBugReport &BR) { // Here we suppress false positives coming from system headers. This list is // based on known issues. const AnalyzerOptions &Options = BRC.getAnalyzerOptions(); const Decl *D = N->getLocationContext()->getDecl(); if (AnalysisDeclContext::isInStdNamespace(D)) { // Skip reports within the 'std' namespace. Although these can sometimes be // the user's fault, we currently don't report them very well, and // Note that this will not help for any other data structure libraries, like // TR1, Boost, or llvm/ADT. if (Options.ShouldSuppressFromCXXStandardLibrary) { BR.markInvalid(getTag(), nullptr); return; } else { // If the complete 'std' suppression is not enabled, suppress reports // from the 'std' namespace that are known to produce false positives. // The analyzer issues a false use-after-free when std::list::pop_front // or std::list::pop_back are called multiple times because we cannot // reason about the internal invariants of the data structure. if (const auto *MD = dyn_cast(D)) { const CXXRecordDecl *CD = MD->getParent(); if (CD->getName() == "list") { BR.markInvalid(getTag(), nullptr); return; } } // The analyzer issues a false positive when the constructor of // std::__independent_bits_engine from algorithms is used. if (const auto *MD = dyn_cast(D)) { const CXXRecordDecl *CD = MD->getParent(); if (CD->getName() == "__independent_bits_engine") { BR.markInvalid(getTag(), nullptr); return; } } for (const LocationContext *LCtx = N->getLocationContext(); LCtx; LCtx = LCtx->getParent()) { const auto *MD = dyn_cast(LCtx->getDecl()); if (!MD) continue; const CXXRecordDecl *CD = MD->getParent(); // The analyzer issues a false positive on // std::basic_string v; v.push_back(1); // and // std::u16string s; s += u'a'; // because we cannot reason about the internal invariants of the // data structure. if (CD->getName() == "basic_string") { BR.markInvalid(getTag(), nullptr); return; } // The analyzer issues a false positive on // std::shared_ptr p(new int(1)); p = nullptr; // because it does not reason properly about temporary destructors. if (CD->getName() == "shared_ptr") { BR.markInvalid(getTag(), nullptr); return; } } } } // Skip reports within the sys/queue.h macros as we do not have the ability to // reason about data structure shapes. const SourceManager &SM = BRC.getSourceManager(); FullSourceLoc Loc = BR.getLocation().asLocation(); while (Loc.isMacroID()) { Loc = Loc.getSpellingLoc(); if (SM.getFilename(Loc).ends_with("sys/queue.h")) { BR.markInvalid(getTag(), nullptr); return; } } } //===----------------------------------------------------------------------===// // Implementation of UndefOrNullArgVisitor. //===----------------------------------------------------------------------===// PathDiagnosticPieceRef UndefOrNullArgVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &BR) { ProgramStateRef State = N->getState(); ProgramPoint ProgLoc = N->getLocation(); // We are only interested in visiting CallEnter nodes. std::optional CEnter = ProgLoc.getAs(); if (!CEnter) return nullptr; // Check if one of the arguments is the region the visitor is tracking. CallEventManager &CEMgr = BRC.getStateManager().getCallEventManager(); CallEventRef<> Call = CEMgr.getCaller(CEnter->getCalleeContext(), State); unsigned Idx = 0; ArrayRef parms = Call->parameters(); for (const auto ParamDecl : parms) { const MemRegion *ArgReg = Call->getArgSVal(Idx).getAsRegion(); ++Idx; // Are we tracking the argument or its subregion? if ( !ArgReg || !R->isSubRegionOf(ArgReg->StripCasts())) continue; // Check the function parameter type. assert(ParamDecl && "Formal parameter has no decl?"); QualType T = ParamDecl->getType(); if (!(T->isAnyPointerType() || T->isReferenceType())) { // Function can only change the value passed in by address. continue; } // If it is a const pointer value, the function does not intend to // change the value. if (T->getPointeeType().isConstQualified()) continue; // Mark the call site (LocationContext) as interesting if the value of the // argument is undefined or '0'/'NULL'. SVal BoundVal = State->getSVal(R); if (BoundVal.isUndef() || BoundVal.isZeroConstant()) { BR.markInteresting(CEnter->getCalleeContext()); return nullptr; } } return nullptr; } //===----------------------------------------------------------------------===// // Implementation of TagVisitor. //===----------------------------------------------------------------------===// int NoteTag::Kind = 0; void TagVisitor::Profile(llvm::FoldingSetNodeID &ID) const { static int Tag = 0; ID.AddPointer(&Tag); } PathDiagnosticPieceRef TagVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &R) { ProgramPoint PP = N->getLocation(); const NoteTag *T = dyn_cast_or_null(PP.getTag()); if (!T) return nullptr; if (std::optional Msg = T->generateMessage(BRC, R)) { PathDiagnosticLocation Loc = PathDiagnosticLocation::create(PP, BRC.getSourceManager()); auto Piece = std::make_shared(Loc, *Msg); Piece->setPrunable(T->isPrunable()); return Piece; } return nullptr; }