//===--- InterpreterValuePrinter.cpp - Value printing utils -----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements routines for in-process value printing in clang-repl. // //===----------------------------------------------------------------------===// #include "IncrementalParser.h" #include "InterpreterUtils.h" #include "clang/AST/ASTContext.h" #include "clang/AST/PrettyPrinter.h" #include "clang/AST/Type.h" #include "clang/Frontend/CompilerInstance.h" #include "clang/Interpreter/Interpreter.h" #include "clang/Interpreter/Value.h" #include "clang/Lex/Preprocessor.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/Sema.h" #include "llvm/Support/Error.h" #include "llvm/Support/raw_ostream.h" #include #include #include namespace clang { llvm::Expected Interpreter::CompileDtorCall(CXXRecordDecl *CXXRD) { assert(CXXRD && "Cannot compile a destructor for a nullptr"); if (auto Dtor = Dtors.find(CXXRD); Dtor != Dtors.end()) return Dtor->getSecond(); if (CXXRD->hasIrrelevantDestructor()) return llvm::orc::ExecutorAddr{}; CXXDestructorDecl *DtorRD = getCompilerInstance()->getSema().LookupDestructor(CXXRD); llvm::StringRef Name = getCodeGen()->GetMangledName(GlobalDecl(DtorRD, Dtor_Base)); auto AddrOrErr = getSymbolAddress(Name); if (!AddrOrErr) return AddrOrErr.takeError(); Dtors[CXXRD] = *AddrOrErr; return AddrOrErr; } enum InterfaceKind { NoAlloc, WithAlloc, CopyArray, NewTag }; class InterfaceKindVisitor : public TypeVisitor { Sema &S; Expr *E; llvm::SmallVectorImpl &Args; public: InterfaceKindVisitor(Sema &S, Expr *E, llvm::SmallVectorImpl &Args) : S(S), E(E), Args(Args) {} InterfaceKind computeInterfaceKind(QualType Ty) { return Visit(Ty.getTypePtr()); } InterfaceKind VisitRecordType(const RecordType *Ty) { return InterfaceKind::WithAlloc; } InterfaceKind VisitMemberPointerType(const MemberPointerType *Ty) { return InterfaceKind::WithAlloc; } InterfaceKind VisitConstantArrayType(const ConstantArrayType *Ty) { return InterfaceKind::CopyArray; } InterfaceKind VisitFunctionProtoType(const FunctionProtoType *Ty) { HandlePtrType(Ty); return InterfaceKind::NoAlloc; } InterfaceKind VisitPointerType(const PointerType *Ty) { HandlePtrType(Ty); return InterfaceKind::NoAlloc; } InterfaceKind VisitReferenceType(const ReferenceType *Ty) { ExprResult AddrOfE = S.CreateBuiltinUnaryOp(SourceLocation(), UO_AddrOf, E); assert(!AddrOfE.isInvalid() && "Can not create unary expression"); Args.push_back(AddrOfE.get()); return InterfaceKind::NoAlloc; } InterfaceKind VisitBuiltinType(const BuiltinType *Ty) { if (Ty->isNullPtrType()) Args.push_back(E); else if (Ty->isFloatingType()) Args.push_back(E); else if (Ty->isIntegralOrEnumerationType()) HandleIntegralOrEnumType(Ty); else if (Ty->isVoidType()) { // Do we need to still run `E`? } return InterfaceKind::NoAlloc; } InterfaceKind VisitEnumType(const EnumType *Ty) { HandleIntegralOrEnumType(Ty); return InterfaceKind::NoAlloc; } private: // Force cast these types to the uint that fits the register size. That way we // reduce the number of overloads of `__clang_Interpreter_SetValueNoAlloc`. void HandleIntegralOrEnumType(const Type *Ty) { ASTContext &Ctx = S.getASTContext(); uint64_t PtrBits = Ctx.getTypeSize(Ctx.VoidPtrTy); QualType UIntTy = Ctx.getBitIntType(/*Unsigned=*/true, PtrBits); TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(UIntTy); ExprResult CastedExpr = S.BuildCStyleCastExpr(SourceLocation(), TSI, SourceLocation(), E); assert(!CastedExpr.isInvalid() && "Cannot create cstyle cast expr"); Args.push_back(CastedExpr.get()); } void HandlePtrType(const Type *Ty) { ASTContext &Ctx = S.getASTContext(); TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(Ctx.VoidPtrTy); ExprResult CastedExpr = S.BuildCStyleCastExpr(SourceLocation(), TSI, SourceLocation(), E); assert(!CastedExpr.isInvalid() && "Can not create cstyle cast expression"); Args.push_back(CastedExpr.get()); } }; // This synthesizes a call expression to a speciall // function that is responsible for generating the Value. // In general, we transform: // clang-repl> x // To: // // 1. If x is a built-in type like int, float. // __clang_Interpreter_SetValueNoAlloc(ThisInterp, OpaqueValue, xQualType, x); // // 2. If x is a struct, and a lvalue. // __clang_Interpreter_SetValueNoAlloc(ThisInterp, OpaqueValue, xQualType, // &x); // // 3. If x is a struct, but a rvalue. // new (__clang_Interpreter_SetValueWithAlloc(ThisInterp, OpaqueValue, // xQualType)) (x); llvm::Expected Interpreter::ExtractValueFromExpr(Expr *E) { Sema &S = getCompilerInstance()->getSema(); ASTContext &Ctx = S.getASTContext(); // Find the value printing builtins. if (!ValuePrintingInfo[0]) { assert(llvm::all_of(ValuePrintingInfo, [](Expr *E) { return !E; })); auto LookupInterface = [&](Expr *&Interface, llvm::StringRef Name) -> llvm::Error { LookupResult R(S, &Ctx.Idents.get(Name), SourceLocation(), Sema::LookupOrdinaryName, RedeclarationKind::ForVisibleRedeclaration); S.LookupQualifiedName(R, Ctx.getTranslationUnitDecl()); if (R.empty()) return llvm::make_error( Name + " not found!", llvm::inconvertibleErrorCode()); CXXScopeSpec CSS; Interface = S.BuildDeclarationNameExpr(CSS, R, /*ADL=*/false).get(); return llvm::Error::success(); }; static constexpr llvm::StringRef Builtin[] = { "__clang_Interpreter_SetValueNoAlloc", "__clang_Interpreter_SetValueWithAlloc", "__clang_Interpreter_SetValueCopyArr", "__ci_newtag"}; if (llvm::Error Err = LookupInterface(ValuePrintingInfo[NoAlloc], Builtin[NoAlloc])) return std::move(Err); if (Ctx.getLangOpts().CPlusPlus) { if (llvm::Error Err = LookupInterface(ValuePrintingInfo[WithAlloc], Builtin[WithAlloc])) return std::move(Err); if (llvm::Error Err = LookupInterface(ValuePrintingInfo[CopyArray], Builtin[CopyArray])) return std::move(Err); if (llvm::Error Err = LookupInterface(ValuePrintingInfo[NewTag], Builtin[NewTag])) return std::move(Err); } } llvm::SmallVector AdjustedArgs; // Create parameter `ThisInterp`. AdjustedArgs.push_back(CStyleCastPtrExpr(S, Ctx.VoidPtrTy, (uintptr_t)this)); // Create parameter `OutVal`. AdjustedArgs.push_back( CStyleCastPtrExpr(S, Ctx.VoidPtrTy, (uintptr_t)&LastValue)); // Build `__clang_Interpreter_SetValue*` call. // Get rid of ExprWithCleanups. if (auto *EWC = llvm::dyn_cast_if_present(E)) E = EWC->getSubExpr(); QualType Ty = E->getType(); QualType DesugaredTy = Ty.getDesugaredType(Ctx); // For lvalue struct, we treat it as a reference. if (DesugaredTy->isRecordType() && E->isLValue()) { DesugaredTy = Ctx.getLValueReferenceType(DesugaredTy); Ty = Ctx.getLValueReferenceType(Ty); } Expr *TypeArg = CStyleCastPtrExpr(S, Ctx.VoidPtrTy, (uintptr_t)Ty.getAsOpaquePtr()); // The QualType parameter `OpaqueType`, represented as `void*`. AdjustedArgs.push_back(TypeArg); // We push the last parameter based on the type of the Expr. Note we need // special care for rvalue struct. InterfaceKindVisitor V(S, E, AdjustedArgs); Scope *Scope = nullptr; ExprResult SetValueE; InterfaceKind Kind = V.computeInterfaceKind(DesugaredTy); switch (Kind) { case InterfaceKind::WithAlloc: LLVM_FALLTHROUGH; case InterfaceKind::CopyArray: { // __clang_Interpreter_SetValueWithAlloc. ExprResult AllocCall = S.ActOnCallExpr(Scope, ValuePrintingInfo[InterfaceKind::WithAlloc], E->getBeginLoc(), AdjustedArgs, E->getEndLoc()); assert(!AllocCall.isInvalid() && "Can't create runtime interface call!"); TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(Ty, SourceLocation()); // Force CodeGen to emit destructor. if (auto *RD = Ty->getAsCXXRecordDecl()) { auto *Dtor = S.LookupDestructor(RD); Dtor->addAttr(UsedAttr::CreateImplicit(Ctx)); getCompilerInstance()->getASTConsumer().HandleTopLevelDecl( DeclGroupRef(Dtor)); } // __clang_Interpreter_SetValueCopyArr. if (Kind == InterfaceKind::CopyArray) { const auto *ConstantArrTy = cast(DesugaredTy.getTypePtr()); size_t ArrSize = Ctx.getConstantArrayElementCount(ConstantArrTy); Expr *ArrSizeExpr = IntegerLiteralExpr(Ctx, ArrSize); Expr *Args[] = {E, AllocCall.get(), ArrSizeExpr}; SetValueE = S.ActOnCallExpr(Scope, ValuePrintingInfo[InterfaceKind::CopyArray], SourceLocation(), Args, SourceLocation()); } Expr *Args[] = {AllocCall.get(), ValuePrintingInfo[InterfaceKind::NewTag]}; ExprResult CXXNewCall = S.BuildCXXNew( E->getSourceRange(), /*UseGlobal=*/true, /*PlacementLParen=*/SourceLocation(), Args, /*PlacementRParen=*/SourceLocation(), /*TypeIdParens=*/SourceRange(), TSI->getType(), TSI, std::nullopt, E->getSourceRange(), E); assert(!CXXNewCall.isInvalid() && "Can't create runtime placement new call!"); SetValueE = S.ActOnFinishFullExpr(CXXNewCall.get(), /*DiscardedValue=*/false); break; } // __clang_Interpreter_SetValueNoAlloc. case InterfaceKind::NoAlloc: { SetValueE = S.ActOnCallExpr(Scope, ValuePrintingInfo[InterfaceKind::NoAlloc], E->getBeginLoc(), AdjustedArgs, E->getEndLoc()); break; } default: llvm_unreachable("Unhandled InterfaceKind"); } // It could fail, like printing an array type in C. (not supported) if (SetValueE.isInvalid()) return E; return SetValueE.get(); } } // namespace clang using namespace clang; // Temporary rvalue struct that need special care. REPL_EXTERNAL_VISIBILITY void * __clang_Interpreter_SetValueWithAlloc(void *This, void *OutVal, void *OpaqueType) { Value &VRef = *(Value *)OutVal; VRef = Value(static_cast(This), OpaqueType); return VRef.getPtr(); } extern "C" void REPL_EXTERNAL_VISIBILITY __clang_Interpreter_SetValueNoAlloc( void *This, void *OutVal, void *OpaqueType, ...) { Value &VRef = *(Value *)OutVal; Interpreter *I = static_cast(This); VRef = Value(I, OpaqueType); if (VRef.isVoid()) return; va_list args; va_start(args, /*last named param*/ OpaqueType); QualType QT = VRef.getType(); if (VRef.getKind() == Value::K_PtrOrObj) { VRef.setPtr(va_arg(args, void *)); } else { if (const auto *ET = QT->getAs()) QT = ET->getDecl()->getIntegerType(); switch (QT->castAs()->getKind()) { default: llvm_unreachable("unknown type kind!"); break; // Types shorter than int are resolved as int, else va_arg has UB. case BuiltinType::Bool: VRef.setBool(va_arg(args, int)); break; case BuiltinType::Char_S: VRef.setChar_S(va_arg(args, int)); break; case BuiltinType::SChar: VRef.setSChar(va_arg(args, int)); break; case BuiltinType::Char_U: VRef.setChar_U(va_arg(args, unsigned)); break; case BuiltinType::UChar: VRef.setUChar(va_arg(args, unsigned)); break; case BuiltinType::Short: VRef.setShort(va_arg(args, int)); break; case BuiltinType::UShort: VRef.setUShort(va_arg(args, unsigned)); break; case BuiltinType::Int: VRef.setInt(va_arg(args, int)); break; case BuiltinType::UInt: VRef.setUInt(va_arg(args, unsigned)); break; case BuiltinType::Long: VRef.setLong(va_arg(args, long)); break; case BuiltinType::ULong: VRef.setULong(va_arg(args, unsigned long)); break; case BuiltinType::LongLong: VRef.setLongLong(va_arg(args, long long)); break; case BuiltinType::ULongLong: VRef.setULongLong(va_arg(args, unsigned long long)); break; // Types shorter than double are resolved as double, else va_arg has UB. case BuiltinType::Float: VRef.setFloat(va_arg(args, double)); break; case BuiltinType::Double: VRef.setDouble(va_arg(args, double)); break; case BuiltinType::LongDouble: VRef.setLongDouble(va_arg(args, long double)); break; // See REPL_BUILTIN_TYPES. } } va_end(args); } // A trampoline to work around the fact that operator placement new cannot // really be forward declared due to libc++ and libstdc++ declaration mismatch. // FIXME: __clang_Interpreter_NewTag is ODR violation because we get the same // definition in the interpreter runtime. We should move it in a runtime header // which gets included by the interpreter and here. struct __clang_Interpreter_NewTag {}; REPL_EXTERNAL_VISIBILITY void * operator new(size_t __sz, void *__p, __clang_Interpreter_NewTag) noexcept { // Just forward to the standard operator placement new. return operator new(__sz, __p); }