/* * Copyright (c) 1985 Regents of the University of California. * * Use and reproduction of this software are granted in accordance with * the terms and conditions specified in the Berkeley Software License * Agreement (in particular, this entails acknowledgement of the programs' * source, and inclusion of this notice) with the additional understanding * that all recipients should regard themselves as participants in an * ongoing research project and hence should feel obligated to report * their experiences (good or bad) with these elementary function codes, * using "sendbug 4bsd-bugs@BERKELEY", to the authors. */ #ifndef lint static char sccsid[] = "@(#)log__L.c 1.2 (Berkeley) 8/21/85; 1.4 (ucb.elefunt) 07/10/87"; #endif not lint /* log__L(Z) * LOG(1+X) - 2S X * RETURN --------------- WHERE Z = S*S, S = ------- , 0 <= Z <= .0294... * S 2 + X * * DOUBLE PRECISION (VAX D FORMAT 56 bits or IEEE DOUBLE 53 BITS) * KERNEL FUNCTION FOR LOG; TO BE USED IN LOG1P, LOG, AND POW FUNCTIONS * CODED IN C BY K.C. NG, 1/19/85; * REVISED BY K.C. Ng, 2/3/85, 4/16/85. * * Method : * 1. Polynomial approximation: let s = x/(2+x). * Based on log(1+x) = log(1+s) - log(1-s) * = 2s + 2/3 s**3 + 2/5 s**5 + ....., * * (log(1+x) - 2s)/s is computed by * * z*(L1 + z*(L2 + z*(... (L7 + z*L8)...))) * * where z=s*s. (See the listing below for Lk's values.) The * coefficients are obtained by a special Remez algorithm. * * Accuracy: * Assuming no rounding error, the maximum magnitude of the approximation * error (absolute) is 2**(-58.49) for IEEE double, and 2**(-63.63) * for VAX D format. * * Constants: * The hexadecimal values are the intended ones for the following constants. * The decimal values may be used, provided that the compiler will convert * from decimal to binary accurately enough to produce the hexadecimal values * shown. */ #if (defined(VAX)||defined(TAHOE)) /* VAX D format (56 bits) */ #ifdef VAX #define _0x(A,B) 0x/**/A/**/B #else /* VAX */ #define _0x(A,B) 0x/**/B/**/A #endif /* VAX */ /* static double */ /* L1 = 6.6666666666666703212E-1 , Hex 2^ 0 * .AAAAAAAAAAAAC5 */ /* L2 = 3.9999999999970461961E-1 , Hex 2^ -1 * .CCCCCCCCCC2684 */ /* L3 = 2.8571428579395698188E-1 , Hex 2^ -1 * .92492492F85782 */ /* L4 = 2.2222221233634724402E-1 , Hex 2^ -2 * .E38E3839B7AF2C */ /* L5 = 1.8181879517064680057E-1 , Hex 2^ -2 * .BA2EB4CC39655E */ /* L6 = 1.5382888777946145467E-1 , Hex 2^ -2 * .9D8551E8C5781D */ /* L7 = 1.3338356561139403517E-1 , Hex 2^ -2 * .8895B3907FCD92 */ /* L8 = 1.2500000000000000000E-1 , Hex 2^ -2 * .80000000000000 */ static long L1x[] = { _0x(aaaa,402a), _0x(aac5,aaaa)}; static long L2x[] = { _0x(cccc,3fcc), _0x(2684,cccc)}; static long L3x[] = { _0x(4924,3f92), _0x(5782,92f8)}; static long L4x[] = { _0x(8e38,3f63), _0x(af2c,39b7)}; static long L5x[] = { _0x(2eb4,3f3a), _0x(655e,cc39)}; static long L6x[] = { _0x(8551,3f1d), _0x(781d,e8c5)}; static long L7x[] = { _0x(95b3,3f08), _0x(cd92,907f)}; static long L8x[] = { _0x(0000,3f00), _0x(0000,0000)}; #define L1 (*(double*)L1x) #define L2 (*(double*)L2x) #define L3 (*(double*)L3x) #define L4 (*(double*)L4x) #define L5 (*(double*)L5x) #define L6 (*(double*)L6x) #define L7 (*(double*)L7x) #define L8 (*(double*)L8x) #else /* IEEE double */ static double L1 = 6.6666666666667340202E-1 , /*Hex 2^ -1 * 1.5555555555592 */ L2 = 3.9999999999416702146E-1 , /*Hex 2^ -2 * 1.999999997FF24 */ L3 = 2.8571428742008753154E-1 , /*Hex 2^ -2 * 1.24924941E07B4 */ L4 = 2.2222198607186277597E-1 , /*Hex 2^ -3 * 1.C71C52150BEA6 */ L5 = 1.8183562745289935658E-1 , /*Hex 2^ -3 * 1.74663CC94342F */ L6 = 1.5314087275331442206E-1 , /*Hex 2^ -3 * 1.39A1EC014045B */ L7 = 1.4795612545334174692E-1 ; /*Hex 2^ -3 * 1.2F039F0085122 */ #endif double log__L(z) double z; { #if (defined(VAX)||defined(TAHOE)) return(z*(L1+z*(L2+z*(L3+z*(L4+z*(L5+z*(L6+z*(L7+z*L8)))))))); #else /* IEEE double */ return(z*(L1+z*(L2+z*(L3+z*(L4+z*(L5+z*(L6+z*L7))))))); #endif }