Revision tags: llvmorg-3.8.0-rc3, llvmorg-3.8.0-rc2, llvmorg-3.8.0-rc1, llvmorg-3.7.1, llvmorg-3.7.1-rc2, llvmorg-3.7.1-rc1, llvmorg-3.7.0, llvmorg-3.7.0-rc4, llvmorg-3.7.0-rc3, studio-1.4, llvmorg-3.7.0-rc2, llvmorg-3.7.0-rc1, llvmorg-3.6.2, llvmorg-3.6.2-rc1, llvmorg-3.6.1, llvmorg-3.6.1-rc1, llvmorg-3.5.2, llvmorg-3.5.2-rc1, llvmorg-3.6.0, llvmorg-3.6.0-rc4, llvmorg-3.6.0-rc3, llvmorg-3.6.0-rc2 |
|
#
df8b223d |
| 22-Jan-2015 |
Chandler Carruth <chandlerc@gmail.com> |
[PM] Actually add the new pass manager support for the assumption cache.
I had already factored this analysis specifically to enable doing this, but hadn't actually committed the necessary wiring to
[PM] Actually add the new pass manager support for the assumption cache.
I had already factored this analysis specifically to enable doing this, but hadn't actually committed the necessary wiring to get at this from the new pass manager. This also nicely shows how the separate cache object can be directly managed by the new pass manager.
This analysis didn't have any direct tests and so I've added a printer pass and a boring test case. I chose to print the i1 value which is being assumed rather than the call to llvm.assume as that seems much more useful for testing... but suggestions on an even better printing strategy welcome. My main goal was to make sure things actually work. =]
llvm-svn: 226868
show more ...
|
Revision tags: llvmorg-3.6.0-rc1 |
|
#
66b3130c |
| 04-Jan-2015 |
Chandler Carruth <chandlerc@gmail.com> |
[PM] Split the AssumptionTracker immutable pass into two separate APIs: a cache of assumptions for a single function, and an immutable pass that manages those caches.
The motivation for this change
[PM] Split the AssumptionTracker immutable pass into two separate APIs: a cache of assumptions for a single function, and an immutable pass that manages those caches.
The motivation for this change is two fold. Immutable analyses are really hacks around the current pass manager design and don't exist in the new design. This is usually OK, but it requires that the core logic of an immutable pass be reasonably partitioned off from the pass logic. This change does precisely that. As a consequence it also paves the way for the *many* utility functions that deal in the assumptions to live in both pass manager worlds by creating an separate non-pass object with its own independent API that they all rely on. Now, the only bits of the system that deal with the actual pass mechanics are those that actually need to deal with the pass mechanics.
Once this separation is made, several simplifications become pretty obvious in the assumption cache itself. Rather than using a set and callback value handles, it can just be a vector of weak value handles. The callers can easily skip the handles that are null, and eventually we can wrap all of this up behind a filter iterator.
For now, this adds boiler plate to the various passes, but this kind of boiler plate will end up making it possible to port these passes to the new pass manager, and so it will end up factored away pretty reasonably.
llvm-svn: 225131
show more ...
|