
The Text Editor sam

Rob Pike
rob@plan9.bell−labs.com

ABSTRACT

Sam is an interactive multi-file text editor intended for bitmap displays.
A textual command language supplements the mouse-driven, cut-and-
paste interface to make complex or repetitive editing tasks easy to spec­
ify. The language is characterized by the composition of regular expres­
sions to describe the structure of the text being modified. The treatment
of files as a database, with changes logged as atomic transactions, guides
the implementation and makes a general �undo� mechanism straightfor­
ward.

Sam is implemented as two processes connected by a low-
bandwidth stream, one process handling the display and the other the
editing algorithms. Therefore it can run with the display process in a bit­
map terminal and the editor on a local host, with both processes on a
bitmap-equipped host, or with the display process in the terminal and
the editor in a remote host. By suppressing the display process, it can
even run without a bitmap terminal.

This paper is reprinted from Software�Practice and Experience, Vol
17, number 11, pp. 813-845, November 1987. The paper has not been
updated for the Plan 9 manuals. Although Sam has not changed much
since the paper was written, the system around it certainly has. Nonethe­
less, the description here still stands as the best introduction to the edi­
tor.

Introduction

Sam is an interactive text editor that combines cut-and-paste interactive editing with an
unusual command language based on the composition of regular expressions. It is writ­
ten as two programs: one, the �host part,� runs on a UNIX system and implements the
command language and provides file access; the other, the �terminal part,� runs asyn­
chronously on a machine with a mouse and bitmap display and supports the display and
interactive editing. The host part may be even run in isolation on an ordinary terminal
to edit text using the command language, much like a traditional line editor, without
assistance from a mouse or display. Most often, the terminal part runs on a Blit1 termi­
nal (actually on a Teletype DMD 5620, the production version of the Blit), whose host
connection is an ordinary 9600 bps RS232 link; on the SUN computer the host and dis­
play processes run on a single machine, connected by a pipe.

Sam edits uninterpreted ASCII text. It has no facilities for multiple fonts, graphics
or tables, unlike MacWrite,2 Bravo,3 Tioga4 or Lara.5 Also unlike them, it has a rich com­
mand language. (Throughout this paper, the phrase command language refers to
textual commands; commands activated from the mouse form the mouse language.)
Sam developed as an editor for use by programmers, and tries to join the styles of the
UNIX text editor ed6,7 with that of interactive cut-and-paste editors by providing a

­ 2 ­

comfortable mouse-driven interface to a program with a solid command language
driven by regular expressions. The command language developed more than the mouse
language, and acquired a notation for describing the structure of files more richly than
as a sequence of lines, using a dataflow-like syntax for specifying changes.

The interactive style was influenced by jim,1 an early cut-and-paste editor for the
Blit, and by mux,8 the Blit window system. Mux merges the original Blit window system,
mpx,1 with cut-and-paste editing, forming something like a multiplexed version of jim
that edits the output of (and input to) command sessions rather than files.

The first part of this paper describes the command language, then the mouse lan­
guage, and explains how they interact. That is followed by a description of the imple­
mentation, first of the host part, then of the terminal part. A principle that influenced
the design of sam is that it should have no explicit limits, such as upper limits on file
size or line length. A secondary consideration is that it be efficient. To honor these two
goals together requires a method for efficiently manipulating huge strings (files) without
breaking them into lines, perhaps while making thousands of changes under control of
the command language. Sam�s method is to treat the file as a transaction database,
implementing changes as atomic updates. These updates may be unwound easily to
�undo� changes. Efficiency is achieved through a collection of caches that minimizes
disc traffic and data motion, both within the two parts of the program and between
them.

The terminal part of sam is fairly straightforward. More interesting is how the two
halves of the editor stay synchronized when either half may initiate a change. This is
achieved through a data structure that organizes the communications and is maintained
in parallel by both halves.

The last part of the paper chronicles the writing of sam and discusses the lessons
that were learned through its development and use.

The paper is long, but is composed largely of two papers of reasonable length: a
description of the user interface of sam and a discussion of its implementation. They
are combined because the implementation is strongly influenced by the user interface,
and vice versa.

The Interface

Sam is a text editor for multiple files. File names may be provided when it is invoked:

sam file1 file2 ...

and there are commands to add new files and discard unneeded ones. Files are not
read until necessary to complete some command. Editing operations apply to an inter­
nal copy made when the file is read; the UNIX file associated with the copy is changed
only by an explicit command. To simplify the discussion, the internal copy is here called
a file, while the disc-resident original is called a disc file.

Sam is usually connected to a bitmap display that presents a cut-and-paste editor
driven by the mouse. In this mode, the command language is still available: text typed
in a special window, called the sam window, is interpreted as commands to be executed
in the current file. Cut-and-paste editing may be used in any window � even in the
sam window to construct commands. The other mode of operation, invoked by starting
sam with the option −d (for �no download�), does not use the mouse or bitmap display,
but still permits editing using the textual command language, even on an ordinary ter­
minal, interactively or from a script.

The following sections describe first the command language (under sam −d and
in the sam window), and then the mouse interface. These two languages are nearly
independent, but connect through the current text, described below.

­ 3 ­

The Command Language

A file consists of its contents, which are an array of characters (that is, a string); the
name of the associated disc file; the modified bit that states whether the contents match
those of the disc file; and a substring of the contents, called the current text or dot (see
Figures 1 and 2). If the current text is a null string, dot falls between characters. The
value of dot is the location of the current text; the contents of dot are the characters it
contains. Sam imparts to the text no two-dimensional interpretation such as columns
or fields; text is always one-dimensional. Even the idea of a �line� of text as understood
by most UNIX programs � a sequence of characters terminated by a newline character
� is only weakly supported.

The current file is the file to which editing commands refer. The current text is
therefore dot in the current file. If a command doesn�t explicitly name a particular file
or piece of text, the command is assumed to apply to the current text. For the moment,
ignore the presence of multiple files and consider editing a single file.

Figure 1. A typical sam screen, with the editing menu presented. The sam (command language) window is in
the middle, with file windows above and below. (The user interface makes it easy to create these abutting win-
dows.) The partially obscured window is a third file window. The uppermost window is that to which typing
and mouse operations apply, as indicated by its heavy border. Each window has its current text highlighted in
reverse video. The sam window’s current text is the null string on the last visible line, indicated by a vertical
bar. See also Figure 2.

Commands have one-letter names. Except for non-editing commands such as
writing the file to disc, most commands make some change to the text in dot and leave
dot set to the text resulting from the change. For example, the delete command, d,
deletes the text in dot, replacing it by the null string and setting dot to the result. The
change command, c, replaces dot by text delimited by an arbitrary punctuation charac­
ter, conventionally a slash. Thus,

c/Peter/

replaces the text in dot by the string Peter. Similarly,

­ 4 ­

a/Peter/

(append) adds the string after dot, and

i/Peter/

(insert) inserts before dot. All three leave dot set to the new text, Peter.

Newlines are part of the syntax of commands: the newline character lexically termi­
nates a command. Within the inserted text, however, newlines are never implicit. But
since it is often convenient to insert multiple lines of text, sam has a special syntax for
that case:

a
some lines of text
to be inserted in the file,
terminated by a period
on a line by itself
.

In the one-line syntax, a newline character may be specified by a C-like escape, so

c/\n/

replaces dot by a single newline character.

Sam also has a substitute command, s:

s/expression/replacement/

substitutes the replacement text for the first match, in dot, of the regular expression.
Thus, if dot is the string Peter, the command

s/t/st/

changes it to Pester. In general, s is unnecessary, but it was inherited from ed and it
has some convenient variations. For instance, the replacement text may include the
matched text, specified by &:

s/Peter/Oh, &, &, &, &!/

There are also three commands that apply programs to text:

< UNIX program

replaces dot by the output of the UNIX program. Similarly, the > command runs the pro­
gram with dot as its standard input, and | does both. For example,

| sort

replaces dot by the result of applying the standard sorting utility to it. Again, newlines
have no special significance for these sam commands. The text acted upon and result­
ing from these commands is not necessarily bounded by newlines, although for connec­
tion with UNIX programs, newlines may be necessary to obey conventions.

One more command: p prints the contents of dot. Table I summarizes sam�s com­
mands.

The value of dot may be changed by specifying an address for the command. The
simplest address is a line number:

3

refers to the third line of the file, so

3d

deletes the third line of the file, and implicitly renumbers the lines so the old line 4 is
now numbered 3. (This is one of the few places where sam deals with lines directly.)

­ 5 ­

Table I. Sam commands
__

Text commands
__

a/text/ Append text after dot
c/text/ Change text in dot
i/text/ Insert text before dot
d Delete text in dot
s/regexp/text/ Substitute text for match of regular expression in dot
m address Move text in dot after address
t address Copy text in dot after address
__

Display commands
__
p Print contents of dot
= Print value (line numbers and character numbers) of dot
__

File commands
__
b file−list Set current file to first file in list that sam has in menu
B file−list Same as b, but load new files
n Print menu lines of all files
D file−list Delete named files from sam
__

I/O commands
__
e filename Replace file with named disc file
r filename Replace dot by contents of named disc file
w filename Write file to named disc file
f filename Set file name and print new menu line
< UNIX−command Replace dot by standard output of command
> UNIX−command Send dot to standard input of command
| UNIX−command Replace dot by result of command applied to dot
! UNIX−command Run the command
__

Loops and conditionals
__
x/regexp/ command For each match of regexp, set dot and run command
y/regexp/ command Between adjacent matches of regexp, set dot and run command
X/regexp/ command Run command in each file whose menu line matches regexp
Y/regexp/ command Run command in each file whose menu line does not match
g/regexp/ command If dot contains a match of regexp, run command
v/regexp/ command If dot does not contain a match of regexp, run command
__

Miscellany
__
k Set address mark to value of dot
q Quit
u n Undo last n (default 1) changes
{ } Braces group commands__

­ 6 ­

Line 0 is the null string at the beginning of the file. If a command consists of only an
address, a p command is assumed, so typing an unadorned 3 prints line 3 on the termi­
nal. There are a couple of other basic addresses: a period addresses dot itself; and a
dollar sign ($) addresses the null string at the end of the file.

An address is always a single substring of the file. Thus, the address 3 addresses
the characters after the second newline of the file through the third newline of the file.
A compound address is constructed by the comma operator

address1,address2

and addresses the substring of the file from the beginning of address1 to the end of
address2. For example, the command 3,5p prints the third through fifth lines of the
file and .,$d deletes the text from the beginning of dot to the end of the file.

These addresses are all absolute positions in the file, but sam also has relative
addresses, indicated by + or −. For example,

$−3

is the third line before the end of the file and

.+1

is the line after dot. If no address appears to the left of the + or −, dot is assumed; if
nothing appears to the right, 1 is assumed. Therefore, .+1 may be abbreviated to just
a plus sign.

The + operator acts relative to the end of its first argument, while the − operator
acts relative to the beginning. Thus .+1 addresses the first line after dot, .− addresses
the first line before dot, and +− refers to the line containing the end of dot. (Dot may
span multiple lines, and + selects the line after the end of dot, then − backs up one
line.)

The final type of address is a regular expression, which addresses the text matched
by the expression. The expression is enclosed in slashes, as in

/expression/

The expressions are the same as those in the UNIX program egrep,6,7 and include clo­
sures, alternations, and so on. They find the leftmost longest string that matches the
expression, that is, the first match after the point where the search is started, and if
more than one match begins at the same spot, the longest such match. (I assume
familiarity with the syntax for regular expressions in UNIX programs.9) For example,

/x/

matches the next x character in the file,

/xx*/

matches the next run of one or more x�s, and

/x|Peter/

matches the next x or Peter. For compatibility with other UNIX programs, the �any
character� operator, a period, does not match a newline, so

/.*/

matches the text from dot to the end of the line, but excludes the newline and so will
not match across the line boundary.

Regular expressions are always relative addresses. The direction is forwards by
default, so /Peter/ is really an abbreviation for +/Peter/. The search can be
reversed with a minus sign, so

­ 7 ­

−/Peter/

finds the first Peter before dot. Regular expressions may be used with other address
forms, so 0+/Peter/ finds the first Peter in the file and $−/Peter/ finds the last.
Table II summarizes sam�s addresses.

Table II. Sam addresses
__

Simple addresses
__
#n The empty string after character n
n Line n.
/regexp/ The first following match of the regular expression
−/regexp/ The first previous match of the regular expression
$ The null string at the end of the file
. Dot
’ The address mark, set by k command
"regexp" Dot in the file whose menu line matches regexp
__

Compound addresses
__
a1+a2 The address a2 evaluated starting at right of a1
a1−a2 a2 evaluated in the reverse direction starting at left of a1
a1,a2 From the left of a1 to the right of a2 (default 0,$)
a1;a2 Like , but sets dot after evaluating a1
__

The operators + and − are high precedence, while , and ;
are low precedence. In both + and − forms, a2 defaults to
1 and a1 defaults to dot. If both a1 and a2 are present, +
may be elided.

__

The language discussed so far will not seem novel to people who use UNIX text edi­
tors such as ed or vi.9 Moreover, the kinds of editing operations these commands
allow, with the exception of regular expressions and line numbers, are clearly more con­
veniently handled by a mouse-based interface. Indeed, sam�s mouse language (dis­
cussed at length below) is the means by which simple changes are usually made. For
large or repetitive changes, however, a textual language outperforms a manual inter­
face.

Imagine that, instead of deleting just one occurrence of the string Peter, we
wanted to eliminate every Peter. What�s needed is an iterator that runs a command
for each occurrence of some text. Sam�s iterator is called x, for extract:

x/expression/ command

finds all matches in dot of the specified expression, and for each such match, sets dot
to the text matched and runs the command. So to delete all the Peters:

0,$ x/Peter/ d

(Blanks in these examples are to improve readability; sam neither requires nor inter­
prets them.) This searches the entire file (0,$) for occurrences of the string Peter,
and runs the d command with dot set to each such occurrence. (By contrast, the compa­
rable ed command would delete all lines containing Peter; sam deletes only the
Peters.) The address 0,$ is commonly used, and may be abbreviated to just a
comma. As another example,

­ 8 ­

, x/Peter/ p

prints a list of Peters, one for each appearance in the file, with no intervening text
(not even newlines to separate the instances).

Of course, the text extracted by x may be selected by a regular expression, which
complicates deciding what set of matches is chosen � matches may overlap. This is
resolved by generating the matches starting from the beginning of dot using the
leftmost-longest rule, and searching for each match starting from the end of the previ­
ous one. Regular expressions may also match null strings, but a null match adjacent to
a non-null match is never selected; at least one character must intervene. For example,

, c/AAA/
x/B*/ c/−/
, p

produces as output

−A−A−A−

because the pattern B* matches the null strings separating the A�s.

The x command has a complement, y, with similar syntax, that executes the com­
mand with dot set to the text between the matches of the expression. For example,

, c/AAA/
y/A/ c/−/
, p

produces the same result as the example above.

The x and y commands are looping constructs, and sam has a pair of conditional
commands to go with them. They have similar syntax:

g/expression/ command

(guard) runs the command exactly once if dot contains a match of the expression. This
is different from x, which runs the command for each match: x loops; g merely tests,
without changing the value of dot. Thus,

, x/Peter/ d

deletes all occurrences of Peter, but

, g/Peter/ d

deletes the whole file (reduces it to a null string) if Peter occurs anywhere in the text.
The complementary conditional is v, which runs the command if there is no match of
the expression.

These control-structure-like commands may be composed to construct more
involved operations. For example, to print those lines of text that contain the string
Peter:

, x/.*\n/ g/Peter/ p

The x breaks the file into lines, the g selects those lines containing Peter, and the p
prints them. This command gives an address for the x command (the whole file), but
because g does not have an explicit address, it applies to the value of dot produced by
the x command, that is, to each line. All commands in sam except for the command to
write a file to disc use dot for the default address.

Composition may be continued indefinitely.

, x/.*\n/ g/Peter/ v/SaltPeter/ p

prints those lines containing Peter but not those containing SaltPeter.

­ 9 ­

Structural Regular Expressions

Unlike other UNIX text editors, including the non-interactive ones such as sed and
awk,7 sam is good for manipulating files with multi-line �records.� An example is an
on-line phone book composed of records, separated by blank lines, of the form

Herbert Tic
44 Turnip Ave., Endive, NJ
201−5555642

Norbert Twinge
16 Potato St., Cabbagetown, NJ
201−5553145

...

The format may be encoded as a regular expression:

(.+\n)+

that is, a sequence of one or more non-blank lines. The command to print Mr. Tic�s
entire record is then

, x/(.+\n)+/ g/^Herbert Tic$/ p

and that to extract just the phone number is

, x/(.+\n)+/ g/^Herbert Tic$/ x/^[0−9]*−[0−9]*\n/ p

The latter command breaks the file into records, chooses Mr. Tic�s record, extracts the
phone number from the record, and finally prints the number.

A more involved problem is that of renaming a particular variable, say n, to num in
a C program. The obvious first attempt,

, x/n/ c/num/

is badly flawed: it changes not only the variable n but any letter n that appears. We
need to extract all the variables, and select those that match n and only n:

, x/[A−Za−z_][A−Za−z_0−9]*/ g/n/ v/../ c/num/

The pattern [A−Za−z_][A−Za−z_0−9]* matches C identifiers. Next g/n/ selects
those containing an n. Then v/../ rejects those containing two (or more) characters,
and finally c/num/ changes the remainder (identifiers n) to num. This version clearly
works much better, but there may still be problems. For example, in C character and
string constants, the sequence \n is interpreted as a newline character, and we don�t
want to change it to \num. This problem can be forestalled with a y command:

, y/\\n/ x/[A−Za−z_][A−Za−z_0−9]*/ g/n/ v/../ c/num/

(the second \ is necessary because of lexical conventions in regular expressions), or we
could even reject character constants and strings outright:

,y/’[^’]*’/ y/"[^"]*"/ x/[A−Za−z_][A−Za−z_0−9]*/ g/n/ v/../ c/num/

The y commands in this version exclude from consideration all character constants and
strings. The only remaining problem is to deal with the possible occurrence of \’ or
\" within these sequences, but it�s easy to see how to resolve this difficulty.

The point of these composed commands is successive refinement. A simple ver­
sion of the command is tried, and if it�s not good enough, it can be honed by adding a
clause or two. (Mistakes can be undone; see below. Also, the mouse language makes it
unnecessary to retype the command each time.) The resulting chains of commands are
somewhat reminiscent of shell pipelines.7 Unlike pipelines, though, which pass along
modified data, sam commands pass a view of the data. The text at each step of the

­ 10 ­

command is the same, but which pieces are selected is refined step by step until the
correct piece is available to the final step of the command line, which ultimately makes
the change.

In other UNIX programs, regular expressions are used only for selection, as in the
sam g command, never for extraction as in the x or y command. For example, patterns
in awk7 are used to select lines to be operated on, but cannot be used to describe the
format of the input text, or to handle newline-free text. The use of regular expressions
to describe the structure of a piece of text rather than its contents, as in the x com­
mand, has been given a name: structural regular expressions. When they are
composed, as in the above example, they are pleasantly expressive. Their use is
discussed at greater length elsewhere.10

Multiple files

Sam has a few other commands, mostly relating to input and output.

e discfilename

replaces the contents and name of the current file with those of the named disc file;

w discfilename

writes the contents to the named disc file; and

r discfilename

replaces dot with the contents of the named disc file. All these commands use the cur­
rent file�s name if none is specified. Finally,

f discfilename

changes the name associated with the file and displays the result:

’−. discfilename

This output is called the file�s menu line, because it is the contents of the file�s line in
the button 3 menu (described in the next section). The first three characters are a
concise notation for the state of the file. The apostrophe signifies that the file is
modified. The minus sign indicates the number of windows open on the file (see the
next section): − means none, + means one, and * means more than one. Finally, the
period indicates that this is the current file. These characters are useful for controlling
the X command, described shortly.

Sam may be started with a set of disc files (such as all the source for a program) by
invoking it with a list of file names as arguments, and more may be added or deleted on
demand.

B discfile1 discfile2 ...

adds the named files to sam�s list, and

D discfile1 discfile2 ...

removes them from sam�s memory (without effect on associated disc files). Both these
commands have a syntax for using the shell7 (the UNIX command interpreter) to gener­
ate the lists:

B <echo *.c

will add all C source files, and

B <grep −l variable *.c

will add all C source files referencing a particular variable (the UNIX command
grep −l lists all files in its arguments that contain matches of the specified regular

­ 11 ­

expression). Finally, D without arguments deletes the current file.

There are two ways to change which file is current:

b filename

makes the named file current. The B command does the same, but also adds any new
files to sam�s list. (In practice, of course, the current file is usually chosen by mouse
actions, not by textual commands.) The other way is to use a form of address that
refers to files:

"expression" address

refers to the address evaluated in the file whose menu line matches the expression
(there must be exactly one match). For example,

"peter.c" 3

refers to the third line of the file whose name matches peter.c. This is most useful in
the move (m) and copy (t) commands:

0,$ t "peter.c" 0

makes a copy of the current file at the beginning of peter.c.

The X command is a looping construct, like x, that refers to files instead of strings:

X/expression/ command

runs the command in all files whose menu lines match the expression. The best exam­
ple is

X/’/ w

which writes to disc all modified files. Y is the complement of X: it runs the command
on all files whose menu lines don�t match the expression:

Y/\.c/ D

deletes all files that don�t have .c in their names, that is, it keeps all C source files and
deletes the rest.

Braces allow commands to be grouped, so

{
command1
command2

}

is syntactically a single command that runs two commands. Thus,

X/\.c/ ,g/variable/ {
f
, x/.*\n/ g/variable/ p

}

finds all occurrences of variable in C source files, and prints out the file names and
lines of each match. The precise semantics of compound operations is discussed in the
implementation sections below.

Finally, the undo command, u, undoes the last command, no matter how many
files were affected. Multiple undo operations move further back in time, so

u
u

(which may be abbreviated u2) undoes the last two commands. An undo may not be
undone, however, nor may any command that adds or deletes files. Everything else is
undoable, though, including for example e commands:

­ 12 ­

e filename
u

restores the state of the file completely, including its name, dot, and modified bit.
Because of the undo, potentially dangerous commands are not guarded by confirma­
tions. Only D, which destroys the information necessary to restore itself, is protected.
It will not delete a modified file, but a second D of the same file will succeed regardless.
The q command, which exits sam, is similarly guarded.

Mouse Interface

Sam is most commonly run connected to a bitmap display and mouse for interactive
editing. The only difference in the command language between regular, mouse-driven
sam and sam −d is that if an address is provided without a command, sam −d will
print the text referenced by the address, but regular sam will highlight it on the screen
� in fact, dot is always highlighted (see Figure 2).

Figure 2. A sam window. The scroll bar down the left represents the file, with the bubble showing the fraction
visible in the window. The scroll bar may be manipulated by the mouse for convenient browsing. The current
text, which is highlighted, need not fit on a line. Here it consists of one partial line, one complete line, and
final partial line.

Each file may have zero or more windows open on the display. At any time, only
one window in all of sam is the current window, that is, the window to which typing and
mouse actions refer; this may be the sam window (that in which commands may be
typed) or one of the file windows. When a file has multiple windows, the image of the
file in each window is always kept up to date. The current file is the last file affected by
a command, so if the sam window is current, the current window is not a window on the
current file. However, each window on a file has its own value of dot, and when
switching between windows on a single file, the file�s value of dot is changed to that of
the window. Thus, flipping between windows behaves in the obvious, convenient way.

The mouse on the Blit has three buttons, numbered left to right. Button 3 has a list
of commands to manipulate windows, followed by a list of �menu lines� exactly as
printed by the f command, one per file (not one per window). These menu lines are
sorted by file name. If the list is long, the Blit menu software will make it more manage­
able by generating a scrolling menu instead of an unwieldy long list. Using the menu to
select a file from the list makes that file the current file, and the most recently current
window in that file the current window. But if that file is already current, selecting it in
the menu cycles through the windows on the file; this simple trick avoids a special menu
to choose windows on a file. If there is no window open on the file, sam changes the
mouse cursor to prompt the user to create one.

The commands on the button 3 menu are straightforward (see Figure 3), and are

­ 13 ­

like the commands to manipulate windows in mux,8 the Blit�s window system. New
makes a new file, and gives it one empty window, whose size is determined by a rectan­
gle swept by the mouse. Zerox prompts for a window to be selected, and makes a
clone of that window; this is how multiple windows are created on one file. Reshape
changes the size of the indicated window, and close deletes it. If that is the last win­
dow open on the file, close first does a D command on the file. Write is identical to
a w command on the file; it is in the menu purely for convenience. Finally, ~~sam~~ is
a menu item that appears between the commands and the file names. Selecting it
makes the sam window the current window, causing subsequent typing to be inter­
preted as commands.

Figure 3. The menu on button 3. The black rectangle on the left is a scroll bar; the menu is limited to the
length shown to prevent its becoming unwieldy. Above the ~~sam~~ line is a list of commands; beneath it is
a list of files, presented exactly as with the f command.

When sam requests that a window be swept, in response to new, zerox or
reshape, it changes the mouse cursor from the usual arrow to a box with a small
arrow. In this state, the mouse may be used to indicate an arbitrary rectangle by press­
ing button 3 at one corner and releasing it at the opposite corner. More conveniently,
button 3 may simply be clicked, whereupon sam creates the maximal rectangle that
contains the cursor and abuts the sam window. By placing the sam window in the mid­
dle of the screen, the user can define two regions (one above, one below) in which
stacked fully-overlapping windows can be created with minimal fuss (see Figure 1).
This simple user interface trick makes window creation noticeably easier.

The cut-and-paste editor is essentially the same as that in Smalltalk-80.11 The text
in dot is always highlighted on the screen. When a character is typed it replaces dot,
and sets dot to the null string after the character. Thus, ordinary typing inserts text.
Button 1 is used for selection: pressing the button, moving the mouse, and lifting the
button selects (sets dot to) the text between the points where the button was pressed
and released. Pressing and releasing at the same point selects a null string; this is
called clicking. Clicking twice quickly, or double clicking, selects larger objects; for
example, double clicking in a word selects the word, double clicking just inside an
opening bracket selects the text contained in the brackets (handling nested brackets
correctly), and similarly for parentheses, quotes, and so on. The double-clicking rules
reflect a bias toward programmers. If sam were intended more for word processing,
double-clicks would probably select linguistic structures such as sentences.

If button 1 is pressed outside the current window, it makes the indicated window

­ 14 ­

current. This is the easiest way to switch between windows and files.

Pressing button 2 brings up a menu of editing functions (see Figure 4). These
mostly apply to the selected text: cut deletes the selected text, and remembers it in a
hidden buffer called the snarf buffer, paste replaces the selected text by the contents
of the snarf buffer, snarf just copies the selected text to the snarf buffer, look
searches forward for the next literal occurrence of the selected text, and <mux>
exchanges snarf buffers with the window system in which sam is running. Finally, the
last regular expression used appears as a menu entry to search forward for the next
occurrence of a match for the expression.

Figure 4. The menu on button 2. The bottom entry tracks the most recently used regular expression, which
may be literal text.

The relationship between the command language and the mouse language is
entirely due to the equality of dot and the selected text chosen with button 1 on the
mouse. For example, to make a set of changes in a C subroutine, dot can be set by dou­
ble clicking on the left brace that begins the subroutine, which sets dot for the com­
mand language. An address-free command then typed in the sam window will apply
only to the text between the opening and closing braces of the function. The idea is to
select what you want, and then say what you want to do with it, whether invoked by a
menu selection or by a typed command. And of course, the value of dot is highlighted
on the display after the command completes. This relationship between mouse inter­
face and command language is clumsy to explain, but comfortable, even natural, in
practice.

The Implementation

The next few sections describe how sam is put together, first the host part, then the
inter-component communication, then the terminal part. After explaining how the com­
mand language is implemented, the discussion follows (roughly) the path of a character
from the temporary file on disc to the screen. The presentation centers on the data
structures, because that is how the program was designed and because the algorithms
are easy to provide, given the right data structures.

Parsing and execution

The command language is interpreted by parsing each command with a table-driven
recursive descent parser, and when a complete command is assembled, invoking a top-
down executor. Most editors instead employ a simple character-at-a-time lexical scan­
ner. Use of a parser makes it easy and unambiguous to detect when a command is com­
plete, which has two advantages. First, escape conventions such as backslashes to
quote multiple-line commands are unnecessary; if the command isn�t finished, the
parser keeps reading. For example, a multiple-line append driven by an x command is
straightforward:

­ 15 ­

x/.*\n/ g/Peter/ a
one line about Peter
another line about Peter
.

Other UNIX editors would require a backslash after all but the last line.

The other advantage is specific to the two-process structure of sam. The host pro­
cess must decide when a command is completed so the command interpreter can be
called. This problem is easily resolved by having the lexical analyzer read the single
stream of events from the terminal, directly executing all typing and mouse commands,
but passing to the parser characters typed to the sam command window. This scheme
is slightly complicated by the availability of cut-and-paste editing in the sam window,
but that difficulty is resolved by applying the rules used in mux: when a newline is typed
to the sam window, all text between the newline and the previously typed newline is
made available to the parser. This permits arbitrary editing to be done to a command
before typing newline and thereby requesting execution.

The parser is driven by a table because the syntax of addresses and commands is
regular enough to be encoded compactly. There are few special cases, such as the
replacement text in a substitution, so the syntax of almost all commands can be
encoded with a few flags. These include whether the command allows an address (for
example, e does not), whether it takes a regular expression (as in x and s), whether it
takes replacement text (as in c or i), which may be multi-line, and so on. The internal
syntax of regular expressions is handled by a separate parser; a regular expression is a
leaf of the command parse tree. Regular expressions are discussed fully in the next sec­
tion.

The parser table also has information about defaults, so the interpreter is always
called with a complete tree. For example, the parser fills in the implicit 0 and $ in the
abbreviated address , (comma), inserts a + to the left of an unadorned regular expres­
sion in an address, and provides the usual default address . (dot) for commands that
expect an address but are not given one.

Once a complete command is parsed, the evaluation is easy. The address is evalu­
ated left-to-right starting from the value of dot, with a mostly ordinary expression eval­
uator. Addresses, like many of the data structures in sam, are held in a C structure and
passed around by value:

typedef long Posn; /* Position in a file */
typedef struct Range{

Posn p1, p2;
}Range;
typedef struct Address{

Range r;
File *f;

}Address;

An address is encoded as a substring (character positions p1 to p2) in a file f. (The
data type File is described in detail below.)

The address interpreter is an Address-valued function that traverses the parse
tree describing an address (the parse tree for the address has type Addrtree):

­ 16 ­

Address
address(ap, a, sign)

Addrtree *ap;
Address a;
int sign;

{
Address a2;
do

switch(ap−>type){
case ’.’:

a=a.f−>dot;
break;

case ’$’:
a.r.p1=a.r.p2=a.f−>nbytes;
break;

case ’"’:
a=matchfile(a, ap−>aregexp)−>dot;
break;

case ’,’:
a2=address(ap−>right, a, 0);
a=address(ap−>left, a, 0);
if(a.f!=a2.f || a2.r.p2<a.r.p1)

error(Eorder);
a.r.p2=a2.r.p2;
return a;

/* and so on */
}

while((ap=ap−>right)!=0);
return a;

}

Throughout, errors are handled by a non-local goto (a setjmp/longjmp in C
terminology) hidden in a routine called error that immediately aborts the execution,
retracts any partially made changes (see the section below on �undoing�), and returns to
the top level of the parser. The argument to error is an enumeration type that is
translated to a terse but possibly helpful message such as �?addresses out of order.�
Very common messages are kept short; for example the message for a failed regular
expression search is �?search.�

Character addresses such as #3 are trivial to implement, as the File data struc­
ture is accessible by character number. However, sam keeps no information about the
position of newlines � it is too expensive to track dynamically � so line addresses are
computed by reading the file, counting newlines. Except in very large files, this has pro­
ven acceptable: file access is fast enough to make the technique practical, and lines are
not central to the structure of the command language.

The command interpreter, called cmdexec, is also straightforward. The parse
table includes a function to call to interpret a particular command. That function
receives as arguments the calculated address for the command and the command tree
(of type Cmdtree), which may contain information such as the subtree for compound
commands. Here, for example, is the function for the g and v commands:

­ 17 ­

int
g_cmd(a, cp)

Address a;
Cmdtree *cp;

{
compile(cp−>regexp);
if(execute(a.f, a.r.p1, a.r.p2)!=(cp−>cmdchar==’v’)){

a.f−>dot=a;
return cmdexec(a, cp−>subcmd);

}
return TRUE; /* cause execution to continue */

}

(Compile and execute are part of the regular expression code, described in the next
section.) Because the parser and the File data structure do most of the work, most
commands are similarly brief.

Regular expressions

The regular expression code in sam is an interpreted, rather than compiled on-the-fly,
implementation of Thompson�s non-deterministic finite automaton algorithm.12 The
syntax and semantics of the expressions are as in the UNIX program egrep, including
alternation, closures, character classes, and so on. The only changes in the notation are
two additions: \n is translated to, and matches, a newline character, and @ matches any
character. In egrep, the character . matches any character except newline, and in
sam the same rule seemed safest, to prevent idioms like .* from spanning newlines.
Egrep expressions are arguably too complicated for an interactive editor � certainly it
would make sense if all the special characters were two-character sequences, so that
most of the punctuation characters wouldn�t have peculiar meanings � but for an inter­
esting command language, full regular expressions are necessary, and egrep defines
the full regular expression syntax for UNIX programs. Also, it seemed superfluous to
define a new syntax, since various UNIX programs (ed, egrep and vi) define too many
already.

The expressions are compiled by a routine, compile, that generates the descrip­
tion of the non-deterministic finite state machine. A second routine, execute, inter­
prets the machine to generate the leftmost-longest match of the expression in a sub­
string of the file. The algorithm is described elsewhere.12,13 Execute reports whether
a match was found, and sets a global variable, of type Range, to the substring
matched.

A trick is required to evaluate the expression in reverse, such as when searching
backwards for an expression. For example,

−/P.*r/

looks backwards through the file for a match of the expression. The expression, how­
ever, is defined for a forward search. The solution is to construct a machine identical to
the machine for a forward search except for a reversal of all the concatenation operators
(the other operators are symmetric under direction reversal), to exchange the meaning
of the operators ^ and $, and then to read the file backwards, looking for the usual ear­
liest longest match.

Execute generates only one match each time it is called. To interpret looping
constructs such as the x command, sam must therefore synchronize between calls of
execute to avoid problems with null matches. For example, even given the leftmost-
longest rule, the expression a* matches three times in the string ab (the character a,
the null string between the a and b, and the final null string). After returning a match
for the a, sam must not match the null string before the b. The algorithm starts
execute at the end of its previous match, and if the match it returns is null and abuts

­ 18 ­

the previous match, rejects the match and advances the initial position one character.

Memory allocation

The C language has no memory allocation primitives, although a standard library rou­
tine, malloc, provides adequate service for simple programs. For specific uses, how­
ever, it can be better to write a custom allocator. The allocator (or rather, pair of alloca­
tors) described here work in both the terminal and host parts of sam. They are
designed for efficient manipulation of strings, which are allocated and freed frequently
and vary in length from essentially zero to 32 Kbytes (very large strings are written to
disc). More important, strings may be large and change size often, so to minimize
memory usage it is helpful to reclaim and to coalesce the unused portions of strings
when they are truncated.

Objects to be allocated in sam are of two flavors: the first is C structs, which
are small and often addressed by pointer variables; the second is variable-sized arrays
of characters or integers whose base pointer is always used to access them. The mem­
ory allocator in sam is therefore in two parts: first, a traditional first-fit allocator that
provides fixed storage for structs; and second, a garbage-compacting allocator that
reduces storage overhead for variable-sized objects, at the cost of some bookkeeping.
The two types of objects are allocated from adjoining arenas, with the garbage-
compacting allocator controlling the arena with higher addresses. Separating into two
arenas simplifies compaction and prevents fragmentation due to immovable objects.
The access rules for garbage-compactable objects (discussed in the next paragraph)
allow them to be relocated, so when the first-fit arena needs space, it moves the
garbage-compacted arena to higher addresses to make room. Storage is therefore cre­
ated only at successively higher addresses, either when more garbage-compacted space
is needed or when the first-fit arena pushes up the other arena.

Objects that may be compacted declare to the allocator a cell that is guaranteed to
be the sole repository of the address of the object whenever a compaction can occur.
The compactor can then update the address when the object is moved. For example,
the implementation of type List (really a variable-length array) is:

typedef struct List{
int nused;
long *ptr;

}List;

The ptr cell must always be used directly, and never copied. When a List is to be
created the List structure is allocated in the ordinary first-fit arena and its ptr is allo­
cated in the garbage-compacted arena. A similar data type for strings, called String,
stores variable-length character arrays of up to 32767 elements.

A related matter of programming style: sam frequently passes structures by value,
which simplifies the code. Traditionally, C programs have passed structures by refer­
ence, but implicit allocation on the stack is easier to use. Structure passing is a rela­
tively new feature of C (it is not in the standard reference manual for C14), and is poorly
supported in most commercial C compilers. It�s convenient and expressive, though, and
simplifies memory management by avoiding the allocator altogether and eliminating
pointer aliases.

Data structures for manipulating files

Experience with jim showed that the requirements of the file data structure were few,
but strict. First, files need to be read and written quickly; adding a fresh file must be
painless. Second, the implementation must place no arbitrary upper limit on the num­
ber or sizes of files. (It should be practical to edit many files, and files up to megabytes
in length should be handled gracefully.) This implies that files be stored on disc, not in

­ 19 ­

main memory. (Aficionados of virtual memory may argue otherwise, but the implemen­
tation of virtual memory in our system is not something to depend on for good perfor­
mance.) Third, changes to files need be made by only two primitives: deletion and
insertion. These are inverses of each other, which simplifies the implementation of the
undo operation. Finally, it must be easy and efficient to access the file, either forwards
or backwards, a byte at a time.

The File data type is constructed from three simpler data structures that hold
arrays of characters. Each of these types has an insertion and deletion operator, and the
insertion and deletion operators of the File type itself are constructed from them.

The simplest type is the String, which is used to hold strings in main memory.
The code that manages Strings guarantees that they will never be longer than some
moderate size, and in practice they are rarely larger than 8 Kbytes. Strings have two
purposes: they hold short strings like file names with little overhead, and because they
are deliberately small, they are efficient to modify. They are therefore used as the data
structure for in-memory caches.

The disc copy of the file is managed by a data structure called a Disc, which cor­
responds to a temporary file. A Disc has no storage in main memory other than book­
keeping information; the actual data being held is all on the disc. To reduce the number
of open files needed, sam opens a dozen temporary UNIX files and multiplexes the
Discs upon them. This permits many files to be edited; the entire sam source (48
files) may be edited comfortably with a single instance of sam. Allocating one tempo­
rary file per Disc would strain the operating system�s limit on the number of open
files. Also, spreading the traffic among temporary files keeps the files shorter, and
shorter files are more efficiently implemented by the UNIX I/O subsystem.

A Disc is an array of fixed-length blocks, each of which contains between 1 and
4096 characters of active data. (The block size of our UNIX file system is 4096 bytes.)
The block addresses within the temporary file and the length of each block are stored in
a List. When changes are made the live part of blocks may change size. Blocks are
created and coalesced when necessary to try to keep the sizes between 2048 and 4096
bytes. An actively changing part of the Disc therefore typically has about a kilobyte of
slop that can be inserted or deleted without changing more than one block or affecting
the block order. When an insertion would overflow a block, the block is split, a new one
is allocated to receive the overflow, and the memory-resident list of blocks is rear­
ranged to reflect the insertion of the new block.

Obviously, going to the disc for every modification to the file is prohibitively expen­
sive. The data type Buffer consists of a Disc to hold the data and a String that
acts as a cache. This is the first of a series of caches throughout the data structures in
sam. The caches not only improve performance, they provide a way to organize the
flow of data, particularly in the communication between the host and terminal. This
idea is developed below, in the section on communications.

To reduce disc traffic, changes to a Buffer are mediated by a variable-length
string, in memory, that acts as a cache. When an insertion or deletion is made to a
Buffer, if the change can be accommodated by the cache, it is done there. If the
cache becomes bigger than a block because of an insertion, some of it is written to the
Disc and deleted from the cache. If the change does not intersect the cache, the cache
is flushed. The cache is only loaded at the new position if the change is smaller than a
block; otherwise, it is sent directly to the Disc. This is because large changes are typi­
cally sequential, whereupon the next change is unlikely to overlap the current one.

A File comprises a String to hold the file name and some ancillary data such
as dot and the modified bit. The most important components, though, are a pair of
Buffers, one called the transcript and the other the contents. Their use is described
in the next section.

­ 20 ­

The overall structure is shown in Figure 5. Although it may seem that the data is
touched many times on its way from the Disc, it is read (by one UNIX system call)
directly into the cache of the associated Buffer; no extra copy is done. Similarly,
when flushing the cache, the text is written directly from the cache to disc. Most opera­
tions act directly on the text in the cache. A principle applied throughout sam is that
the fewer times the data is copied, the faster the program will run (see also the paper by
Waite15).

Disc

temp. file

Disc

temp. file

Buffer
(transcript)

String
(cache)

Buffer
(contents)

String
(cache)

File

Figure 5. File data structures. The temporary files are stored in the standard repository for such files on the
host system.

The contents of a File are accessed by a routine that copies to a buffer a sub­
string of a file starting at a specified offset. To read a byte at a time, a per-File array
is loaded starting from a specified initial position, and bytes may then be read from the
array. The implementation is done by a macro similar to the C standard I/O getc
macro.14 Because the reading may be done at any address, a minor change to the macro
allows the file to be read backwards. This array is read-only; there is no putc.

Doing and undoing

Sam has an unusual method for managing changes to files. The command language
makes it easy to specify multiple variable-length changes to a file millions of bytes long,
and such changes must be made efficiently if the editor is to be practical. The usual
techniques for inserting and deleting strings are inadequate under these conditions.
The Buffer and Disc data structures are designed for efficient random access to
long strings, but care must be taken to avoid super-linear behavior when making many
changes simultaneously.

Sam uses a two-pass algorithm for making changes, and treats each file as a data­
base against which transactions are registered. Changes are not made directly to the
contents. Instead, when a command is started, a �mark� containing a sequence number
is placed in the transcript Buffer, and each change made to the file, either an inser­
tion or deletion or a change to the file name, is appended to the end of the transcript.
When the command is complete, the transcript is rewound to the mark and applied to
the contents.

One reason for separating evaluation from application in this way is to simplify
tracking the addresses of changes made in the middle of a long sequence. The two-
pass algorithm also allows all changes to apply to the original data: no change can
affect another change made in the same command. This is particularly important when
evaluating an x command because it prevents regular expression matches from stum­
bling over changes made earlier in the execution. Also, the two-pass algorithm is

­ 21 ­

cleaner than the way other UNIX editors allow changes to affect each other; for example,
ed�s idioms to do things like delete every other line depend critically on the implemen­
tation. Instead, sam�s simple model, in which all changes in a command occur effec­
tively simultaneously, is easy to explain and to understand.

The records in the transcript are of the form ��delete substring from locations 123
to 456�� and ��insert 11 characters �hello there� at location 789.�� (It is an error if the
changes are not at monotonically greater positions through the file.) While the update is
occurring, these numbers must be offset by earlier changes, but that is straightforward
and local to the update routine; moreover, all the numbers have been computed before
the first is examined.

Treating the file as a transaction system has another advantage: undo is trivial. All
it takes is to invert the transcript after it has been implemented, converting insertions
into deletions and vice versa, and saving them in a holding Buffer. The �do� tran­
script can then be deleted from the transcript Buffer and replaced by the �undo� tran­
script. If an undo is requested, the transcript is rewound and the undo transcript exe­
cuted. Because the transcript Buffer is not truncated after each command, it accumu­
lates successive changes. A sequence of undo commands can therefore back up the file
arbitrarily, which is more helpful than the more commonly implemented self-inverse
form of undo. (Sam provides no way to undo an undo, but if it were desired, it would
be easy to provide by re-interpreting the �do� transcript.) Each mark in the transcript
contains a sequence number and the offset into the transcript of the previous mark, to
aid in unwinding the transcript. Marks also contain the value of dot and the modified bit
so these can be restored easily. Undoing multiple files is easy; it merely demands undo­
ing all files whose latest change has the same sequence number as the current file.

Another benefit of having a transcript is that errors encountered in the middle of a
complicated command need not leave the files in an intermediate state. By rewinding
the transcript to the mark beginning the command, the partial command can be trivially
undone.

When the update algorithm was first implemented, it was unacceptably slow, so a
cache was added to coalesce nearby changes, replacing multiple small changes by a sin­
gle larger one. This reduced the number of insertions into the transaction Buffer,
and made a dramatic improvement in performance, but made it impossible to handle
changes in non-monotonic order in the file; the caching method only works if changes
don�t overlap. Before the cache was added, the transaction could in principle be sorted
if the changes were out of order, although this was never done. The current status is
therefore acceptable performance with a minor restriction on global changes, which is
sometimes, but rarely, an annoyance.

The update algorithm obviously paws the data more than simpler algorithms, but it
is not prohibitively expensive; the caches help. (The principle of avoiding copying the
data is still honored here, although not as piously: the data is moved from contents�
cache to the transcript�s all at once and through only one internal buffer.) Performance
figures confirm the efficiency. To read from a dead start a hundred kilobyte file on a
VAX-11/750 takes 1.4 seconds of user time, 2.5 seconds of system time, and 5 seconds
of real time. Reading the same file in ed takes 6.0 seconds of user time, 1.7 seconds of
system time, and 8 seconds of real time. Sam uses about half the CPU time. A more
interesting example is the one stated above: inserting a character between every pair of
characters in the file. The sam command is

,y/@/ a/x/

and takes 3 CPU seconds per kilobyte of input file, of which about a third is spent in the
regular expression code. This translates to about 500 changes per second. Ed takes
1.5 seconds per kilobyte to make a similar change (ignoring newlines), but cannot undo
it. The same example in ex,9 a variant of ed done at the University of California at

­ 22 ­

Berkeley, which allows one level of undoing, again takes 3 seconds. In summary, sam�s
performance is comparable to that of other UNIX editors, although it solves a harder
problem.

Communications

The discussion so far has described the implementation of the host part of sam; the
next few sections explain how a machine with mouse and bitmap display can be
engaged to improve interaction. Sam is not the first editor to be written as two pro­
cesses,16 but its implementation has some unusual aspects.

There are several ways sam�s host and terminal parts may be connected. The first
and simplest is to forgo the terminal part and use the host part�s command language to
edit text on an ordinary terminal. This mode is invoked by starting sam with the −d
option. With no options, sam runs separate host and terminal programs, communicat­
ing with a message protocol over the physical connection that joins them. Typically, the
connection is an RS-232 link between a Blit (the prototypical display for sam) and a host
running the Ninth Edition of the UNIX operating system.8 (This is the version of the sys­
tem used in the Computing Sciences Research Center at AT&T Bell Laboratories [now
Lucent Technologies, Bell Labs], where I work. Its relevant aspects are discussed in the
Blit paper.1) The implementation of sam for the SUN computer runs both processes on
the same machine and connects them by a pipe.

The low bandwidth of an RS-232 link necessitated the split between the two pro­
grams. The division is a mixed blessing: a program in two parts is much harder to write
and to debug than a self-contained one, but the split makes several unusual configura­
tions possible. The terminal may be physically separated from the host, allowing the
conveniences of a mouse and bitmap display to be taken home while leaving the files at
work. It is also possible to run the host part on a remote machine:

sam −r host

connects to the terminal in the usual way, and then makes a call across the network to
establish the host part of sam on the named machine. Finally, it cross-connects the I/O
to join the two parts. This allows sam to be run on machines that do not support bit­
map displays; for example, sam is the editor of choice on our Cray X-MP/24. Sam −r
involves three machines: the remote host, the terminal, and the local host. The local
host�s job is simple but vital: it passes the data between the remote host and terminal.

The host and terminal exchange messages asynchronously (rather than, say, as
remote procedure calls) but there is no error detection or correction because, whatever
the configuration, the connection is reliable. Because the terminal handles mundane
interaction tasks such as popping up menus and interpreting the responses, the mes­
sages are about data, not actions. For example, the host knows nothing about what is
displayed on the screen, and when the user types a character, the message sent to the
host says ��insert a one-byte string at location 123 in file 7,�� not ��a character was typed
at the current position in the current file.�� In other words, the messages look very
much like the transaction records in the transcripts.

Either the host or terminal part of sam may initiate a change to a file. The com­
mand language operates on the host, while typing and some mouse operations are exe­
cuted directly in the terminal to optimize response. Changes initiated by the host pro­
gram must be transmitted to the terminal, and vice versa. (A token is exchanged to
determine which end is in control, which means that characters typed while a time-
consuming command runs must be buffered and do not appear until the command is
complete.) To maintain consistent information, the host and terminal track changes
through a per-file data structure that records what portions of the file the terminal has
received. The data structure, called a Rasp (a weak pun: it�s a file with holes) is held
and updated by both the host and terminal. A Rasp is a list of Strings holding those

­ 23 ­

parts of the file known to the terminal, separated by counts of the number of bytes in
the interstices. Of course, the host doesn�t keep a separate copy of the data (it only
needs the lengths of the various pieces), but the structure is the same on both ends.

The Rasp in the terminal doubles as a cache. Since the terminal keeps the text for
portions of the file it has displayed, it need not request data from the host when revisit­
ing old parts of the file or redrawing obscured windows, which speeds things up consid­
erably over low-speed links.

It�s trivial for the terminal to maintain its Rasp, because all changes made on the
terminal apply to parts of the file already loaded there. Changes made by the host are
compared against the Rasp during the update sequence after each command. Small
changes to pieces of the file loaded in the terminal are sent in their entirety. Larger
changes, and changes that fall entirely in the holes, are transmitted as messages with­
out literal data: only the lengths of the deleted and inserted strings are transmitted.
When a command is completed, the terminal examines its visible windows to see if any
holes in their Rasps intersect the visible portion of the file. It then requests the miss­
ing data from the host, along with up to 512 bytes of surrounding data, to minimize the
number of messages when visiting a new portion of the file. This technique provides a
kind of two-level lazy evaluation for the terminal. The first level sends a minimum of
information about parts of the file not being edited interactively; the second level waits
until a change is displayed before transmitting the new data. Of course, performance is
also helped by having the terminal respond immediately to typing and simple mouse
requests. Except for small changes to active pieces of the file, which are transmitted to
the terminal without negotiation, the terminal is wholly responsible for deciding what is
displayed; the host uses the Rasp only to tell the terminal what might be relevant.

When a change is initiated by the host, the messages to the terminal describing the
change are generated by the routine that applies the transcript of the changes to the
contents of the File. Since changes are undone by the same update routine, undoing
requires no extra code in the communications; the usual messages describing changes
to the file are sufficient to back up the screen image.

The Rasp is a particularly good example of the way caches are used in sam. First,
it facilitates access to the active portion of the text by placing the busy text in main
memory. In so doing, it provides efficient access to a large data structure that does not
fit in memory. Since the form of data is to be imposed by the user, not by the program,
and because characters will frequently be scanned sequentially, files are stored as flat
objects. Caches help keep performance good and linear when working with such data.

Second, the Rasp and several of the other caches have some read−ahead; that is,
the cache is loaded with more information than is needed for the job immediately at
hand. When manipulating linear structures, the accesses are usually sequential, and
read-ahead can significantly reduce the average time to access the next element of the
object. Sequential access is a common mode for people as well as programs; consider
scrolling through a document while looking for something.

Finally, like any good data structure, the cache guides the algorithm, or at least the
implementation. The Rasp was actually invented to control the communications
between the host and terminal parts, but I realized very early that it was also a form of
cache. Other caches were more explicitly intended to serve a double purpose: for exam­
ple, the caches in Files that coalesce updates not only reduce traffic to the transcript
and contents Buffers, they also clump screen updates so that complicated changes to
the screen are achieved in just a few messages to the terminal. This saved me consider­
able work: I did not need to write special code to optimize the message traffic to the ter­
minal. Caches pay off in surprising ways. Also, they tend to be independent, so their
performance improvements are multiplicative.

­ 24 ­

Data structures in the terminal

The terminal�s job is to display and to maintain a consistent image of pieces of the files
being edited. Because the text is always in memory, the data structures are consider­
ably simpler than those in the host part.

Sam typically has far more windows than does mux, the window system within
which its Blit implementation runs. Mux has a fairly small number of asynchronously
updated windows; sam needs a large number of synchronously updated windows that
are usually static and often fully obscured. The different tradeoffs guided sam away
from the memory-intensive implementation of windows, called Layers,17 used in
mux. Rather than depending on a complete bitmap image of the display for each win­
dow, sam regenerates the image from its in-memory text (stored in the Rasp) when
necessary, although it will use such an image if it is available. Like Layers, though,
sam uses the screen bitmap as active storage in which to update the image using
bitblt.18,19 The resulting organization, pictured in Figure 6, has a global array of win­
dows, called Flayers, each of which holds an image of a piece of text held in a data
structure called a Frame, which in turn represents a rectangular window full of text dis­
played in some Bitmap. Each Flayer appears in a global list that orders them all
front-to-back on the display, and simultaneously as an element of a per-file array that
holds all the open windows for that file. The complement in the terminal of the File
on the host is called a Text; each connects its Flayers to the associated Rasp.

Text Rasp to host

Flayer ...

...Frame
Bitmap
(cache)

Box ...

Figure 6. Data structures in the terminal. Flayers are also linked together into a front−to−back list.
Boxes are discussed in the next section.

The Bitmap for a Frame contains the image of the text. For a fully visible win­
dow, the Bitmap will be the screen (or at least the Layer in which sam is being run),
while for partially obscured windows the Bitmap will be off-screen. If the window is
fully obscured, the Bitmap will be null.

The Bitmap is a kind of cache. When making changes to the display, most of the
original image will look the same in the final image, and the update algorithms exploit
this. The Frame software updates the image in the Bitmap incrementally; the
Bitmap is not just an image, it is a data structure.18,19 The job of the software that
updates the display is therefore to use as much as possible of the existing image (con­
verting the text from ASCII characters to pixels is expensive) in a sort of two-
dimensional string insertion algorithm. The details of this process are described in the
next section.

The Frame software has no code to support overlapping windows; its job is to
keep a single Bitmap up to date. It falls to the Flayer software to multiplex the

­ 25 ­

various Bitmaps onto the screen. The problem of maintaining overlapping Flayers
is easier than for Layers17 because changes are made synchronously and because the
contents of the window can be reconstructed from the data stored in the Frame; the
Layers software makes no such assumptions. In sam, the window being changed is
almost always fully visible, because the current window is always fully visible, by con­
struction. However, when multi-file changes are being made, or when more than one
window is open on a file, it may be necessary to update partially obscured windows.

There are three cases: the window is fully visible, invisible (fully obscured), or par­
tially visible. If fully visible, the Bitmap is part of the screen, so when the Flayer
update routine calls the Frame update routine, the screen will be updated directly. If
the window is invisible, there is no associated Bitmap, and all that is necessary is to
update the Frame data structure, not the image. If the window is partially visible, the
Frame routine is called to update the image in the off-screen Bitmap, which may
require regenerating it from the text of the window. The Flayer code then clips this
Bitmap against the Bitmaps of all Frames in front of the Frame being modified,
and the remainder is copied to the display.

This is much faster than recreating the image off-screen for every change, or clip­
ping all the changes made to the image during its update. Unfortunately, these caches
can also consume prohibitive amounts of memory, so they are freed fairly liberally �
after every change to the front-to-back order of the Flayers. The result is that the
off-screen Bitmaps exist only while multi-window changes are occurring, which is the
only time the performance improvement they provide is needed. Also, the user interface
causes fully-obscured windows to be the easiest to make � creating a canonically sized
and placed window requires only a button click � which reduces the need for caching
still further.

Screen update

Only two low-level primitives are needed for incremental update: bitblt, which copies
rectangles of pixels, and string (which in turn calls bitblt), which draws a null-
terminated character string in a Bitmap. A Frame contains a list of Boxes, each of
which defines a horizontal strip of text in the window (see Figure 7). A Box has a char­
acter string str, and a Rectangle rect that defines the location of the strip in the
window. (The text in str is stored in the Box separately from the Rasp associated
with the window�s file, so Boxes are self-contained.) The invariant is that the image of
the Box can be reproduced by calling string with argument str to draw the string in
rect, and the resulting picture fits perfectly within rect. In other words, the Boxes
define the tiling of the window. The tiling may be complicated by long lines of text,
which are folded onto the next line. Some editors use horizontal scrolling to avoid this
complication, but to be comfortable this technique requires that lines not be too long;
sam has no such restriction. Also, and perhaps more importantly, UNIX programs and
terminals traditionally fold long lines to make their contents fully visible.

Two special kinds of Boxes contain a single character: either a newline or a tab.
Newlines and tabs are white space. A newline Box always extends to the right edge of
the window, forcing the following Box to the next line. The width of a tab depends on
where it is located: it forces the next Box to begin at a tab location. Tabs also have a
minimum width equivalent to a blank (blanks are drawn by string and are not treated
specially); newlines have a minimum width of zero.

for(i=0; i<NL; i++){ /* for each element */

Figure 7. A line of text showing its Boxes. The first two blank Boxes contain tabs; the last contains a new-
line. Spaces are handled as ordinary characters.

­ 26 ­

The update algorithms always use the Bitmap image of the text (either the dis­
play or cache Bitmap); they never examine the characters within a Box except when
the Box needs to be split in two. Before a change, the window consists of a tiling of
Boxes; after the change the window is tiled differently. The update algorithms rear­
range the tiles in place, without backup storage. The algorithms are not strictly optimal
� for example, they can clear a pixel that is later going to be written upon � but they
never move a tile that doesn�t need to be moved, and they move each tile at most once.
Frinsert on a Blit can absorb over a thousand characters a second if the strings
being inserted are a few tens of characters long.

Consider frdelete. Its job is to delete a substring from a Frame and restore
the image of the Frame. The image of a substring has a peculiar shape (see Figure 2)
comprising possibly a partial line, zero or more full lines, and possibly a final partial
line. For reference, call this the Z−shape. Frdelete begins by splitting, if necessary,
the Boxes containing the ends of the substring so the substring begins and ends on
Box boundaries. Because the substring is being deleted, its image is not needed, so
the Z-shape is then cleared. Then, tiles (that is, the images of Boxes) are copied,
using bitblt, from immediately after the Z-shape to the beginning of the Z-shape,
resulting in a new Z-shape. (Boxes whose contents would span two lines in the new
position must first be split.)

Copying the remainder of the Frame tile by tile this way will clearly accomplish the
deletion but eventually, typically when the copying algorithm encounters a tab or new­
line, the old and new x coordinates of the tile to be copied are the same. This corre­
spondence implies that the Z-shape has its beginning and ending edges aligned verti­
cally, and a sequence of at most two bitblts can be used to copy the remaining tiles.
The last step is to clear out the resulting empty space at the bottom of the window; the
number of lines to be cleared is the number of complete lines in the Z-shape closed by
the final bitblts. The final step is to merge horizontally adjacent Boxes of plain
text. The complete source to frdelete is less than 100 lines of C.

frinsert is more complicated because it must do four passes: one to construct
the Box list for the inserted string, one to reconnoitre, one to copy (in opposite order to
frdelete) the Boxes to make the hole for the new text, and finally one to copy the
new text into place. Overall, though, frinsert has a similar flavor to frdelete,
and needn�t be described further. Frinsert and its subsidiary routines comprise 211
lines of C.

The terminal source code is 3024 lines of C, and the host source is 5797 lines.

Discussion

History

The immediate ancestor of sam was the original text editor for the Blit, called jim.
Sam inherited jim�s two-process structure and mouse language almost unchanged, but
jim suffered from several drawbacks that were addressed in the design of sam. The
most important of these was the lack of a command language. Although jim was easy
to use for simple editing, it provided no direct help with large or repetitive editing tasks.
Instead, it provided a command to pass selected text through a shell pipeline, but this
was no more satisfactory than could be expected of a stopgap measure.

Jim was written primarily as a vehicle for experimenting with a mouse-based
interface to text, and the experiment was successful. Jim had some spin-offs: mux,
the second window system for the Blit, is essentially a multiplexed version of the termi­
nal part of jim; and the debugger pi�s user interface20 was closely modeled on jim�s.
But after a couple of years, jim had become difficult to maintain and limiting to use,
and its replacement was overdue.

­ 27 ­

I began the design of sam by asking jim customers what they wanted. This was
probably a mistake; the answers were essentially a list of features to be found in other
editors, which did not provide any of the guiding principles I was seeking. For instance,
one common request was for a ��global substitute,�� but no one suggested how to pro­
vide it within a cut-and-paste editor. I was looking for a scheme that would support
such specialized features comfortably in the context of some general command lan­
guage. Ideas were not forthcoming, though, particularly given my insistence on remov­
ing all limits on file sizes, line lengths and so on. Even worse, I recognized that, since
the mouse could easily indicate a region of the screen that was not an integral number
of lines, the command language would best forget about newlines altogether, and that
meant the command language had to treat the file as a single string, not an array of
lines.

Eventually, I decided that thinking was not getting me very far and it was time to
try building. I knew that the terminal part could be built easily � that part of jim
behaved acceptably well � and that most of the hard work was going to be in the host
part: the file interface, command interpreter and so on. Moreover, I had some ideas
about how the architecture of jim could be improved without destroying its basic struc­
ture, which I liked in principle but which hadn�t worked out as well as I had hoped. So I
began by designing the file data structure, starting with the way jim worked � compa­
rable to a single structure merging Disc and Buffer, which I split to make the cache
more general � and thinking about how global substitute could be implemented. The
answer was clearly that it had to be done in two passes, and the transcript-oriented
implementation fell out naturally.

Sam was written bottom-up, starting from the data structures and algorithms for
manipulating text, through the command language and up to the code for maintaining
the display. In retrospect, it turned out well, but this implementation method is not rec­
ommended in general. There were several times when I had a large body of interesting
code assembled and no clue how to proceed with it. The command language, in particu­
lar, took almost a year to figure out, but can be implemented (given what was there at
the beginning of that year) in a day or two. Similarly, inventing the Rasp data structure
delayed the connection of the host and terminal pieces by another few months. Sam
took about two years to write, although only about four months were spent actually
working on it.

Part of the design process was unusual: the subset of the protocol that maintains
the Rasp was simulated, debugged and verified by an automatic protocol analyzer,21

and was bug-free from the start. The rest of the protocol, concerned mostly with keep­
ing menus up to date, was unfortunately too unwieldy for such analysis, and was
debugged by more traditional methods, primarily by logging in a file all messages in
and out of the host.

Reflections

Sam is essentially the only interactive editor used by the sixty or so members of the
computing science research center in which I work. The same could not be said of jim;
the lack of a command language kept some people from adopting it. The union of a
user interface as comfortable as jim�s with a command language as powerful as ed�s
is essential to sam�s success. When sam was first made available to the jim commu­
nity, almost everyone switched to it within two or three days. In the months that fol­
lowed, even people who had never adopted jim started using sam exclusively.

To be honest, ed still gets occasional use, but usually when something quick

 The people who criticize ed as an interactive program often forget that it and its close relative
sed7 still thrive as programmable editors. The strength of these programs is independent of their
convenience for interactive editing.

­ 28 ­

needs to be done and the overhead of downloading the terminal part of sam isn�t worth
the trouble. Also, as a �line� editor, sam −d is a bit odd; when using a good old ASCII
terminal, it�s comforting to have a true line editor. But it is fair to say that sam�s com­
mand language has displaced ed�s for most of the complicated editing that has kept
line editors (that is, command-driven editors) with us.

Sam�s command language is even fancier than ed�s, and most sam customers
don�t come near to using all its capabilities. Does it need to be so sophisticated? I think
the answer is yes, for two reasons.

First, the model for sam�s command language is really relatively simple, and cer­
tainly simpler than that of ed. For instance, there is only one kind of textual loop in
sam � the x command � while ed has three (the g command, the global flag on sub­
stitutions, and the implicit loop over lines in multi-line substitutions). Also, ed�s substi­
tute command is necessary to make changes within lines, but in sam the s command is
more of a familiar convenience than a necessity; c and t can do all the work.

Second, given a community that expects an editor to be about as powerful as ed,
it�s hard to see how sam could really be much simpler and still satisfy that expectation.
People want to do ��global substitutes,�� and most are content to have the recipe for that
and a few other fancy changes. The sophistication of the command language is really
just a veneer over a design that makes it possible to do global substitutes in a screen
editor. Some people will always want something more, however, and it�s gratifying to be
able to provide it. The real power of sam�s command language comes from compos­
ability of the operators, which is by nature orthogonal to the underlying model. In other
words, sam is not itself complex, but it makes complex things possible. If you don�t
want to do anything complex, you can ignore the complexity altogether, and many peo­
ple do so.

Sometimes I am asked the opposite question: why didn�t I just make sam a real
programmable editor, with macros and variables and so on? The main reason is a mat­
ter of taste: I like the editor to be the same every time I use it. There is one technical
reason, though: programmability in editors is largely a workaround for insufficient inter­
activity. Programmable editors are used to make particular, usually short-term, things
easy to do, such as by providing shorthands for common actions. If things are generally
easy to do in the first place, shorthands are not as helpful. Sam makes common editing
operations very easy, and the solutions to complex editing problems seem commensu­
rate with the problems themselves. Also, the ability to edit the sam window makes it
easy to repeat commands � it only takes a mouse button click to execute a command
again.

Pros and cons

Sam has several other good points, and its share of problems. Among the good things
is the idea of structural regular expressions, whose usefulness has only begun to be
explored. They were arrived at serendipitously when I attempted to distill the essence
of ed�s way of doing global substitution and recognized that the looping command in
ed was implicitly imposing a structure (an array of lines) on the file.

Another of sam�s good things is its undo capability. I had never before used an
editor with a true undo, but I would never go back now. Undo must be done well, but if
it is, it can be relied on. For example, it�s safe to experiment if you�re not sure how to
write some intricate command, because if you make a mistake, it can be fixed simply
and reliably. I learned two things about undo from writing sam: first, it�s easy to pro­
vide if you design it in from the beginning, and second, it�s necessary, particularly if the
system has some subtle properties that may be unfamiliar or error-prone for users.

Sam�s lack of internal limits and sizes is a virtue. Because it avoids all fixed-size
tables and data structures, sam is able to make global changes to files that some of our

­ 29 ­

other tools cannot even read. Moreover, the design keeps the performance linear when
doing such operations, although I must admit sam does get slow when editing a huge
file.

Now, the problems. Externally, the most obvious is that it is poorly integrated into
the surrounding window system. By design, the user interface in sam feels almost iden­
tical to that of mux, but a thick wall separates text in sam from the programs running in
mux. For instance, the �snarf buffer� in sam must be maintained separately from that in
mux. This is regrettable, but probably necessary given the unusual configuration of the
system, with a programmable terminal on the far end of an RS-232 link.

Sam is reliable; otherwise, people wouldn�t use it. But it was written over such a
long time, and has so many new (to me) ideas in it, that I would like to see it done over
again to clean up the code and remove many of the lingering problems in the implemen­
tation. The worst part is in the interconnection of the host and terminal parts, which
might even be able to go away in a redesign for a more conventional window system.
The program must be split in two to use the terminal effectively, but the low bandwidth
of the connection forces the separation to occur in an inconvenient part of the design if
performance is to be acceptable. A simple remote procedure call protocol driven by the
host, emitting only graphics commands, would be easy to write but wouldn�t have nearly
the necessary responsiveness. On the other hand, if the terminal were in control and
requested much simpler file services from the host, regular expression searches would
require that the terminal read the entire file over its RS-232 link, which would be unrea­
sonably slow. A compromise in which either end can take control is necessary. In retro­
spect, the communications protocol should have been designed and verified formally,
although I do not know of any tool that can adequately relate the protocol to its imple­
mentation.

Not all of sam�s users are comfortable with its command language, and few are
adept. Some (venerable) people use a sort of ��ed subset�� of sam�s command lan­
guage, and even ask why sam�s command language is not exactly ed�s. (The reason, of
course, is that sam�s model for text does not include newlines, which are central to ed.
Making the text an array of newlines to the command language would be too much of a
break from the seamless model provided by the mouse. Some editors, such as vi, are
willing to make this break, though.) The difficulty is that sam�s syntax is so close to
ed�s that people believe it should be the same. I thought, with some justification in
hindsight, that making sam similar to ed would make it easier to learn and to accept.
But I may have overstepped and raised the users� expectations too much. It�s hard to
decide which way to resolve this problem.

Finally, there is a tradeoff in sam that was decided by the environment in which it
runs: sam is a multi-file editor, although in a different system there might instead be
multiple single-file editors. The decision was made primarily because starting a new
program in a Blit is time-consuming. If the choice could be made freely, however, I
would still choose the multi-file architecture, because it allows groups of files to be han­
dled as a unit; the usefulness of the multi-file commands is incontrovertible. It is
delightful to have the source to an entire program available at your fingertips.

Acknowledgements

Tom Cargill suggested the idea behind the Rasp data structure. Norman Wilson and
Ken Thompson influenced the command language. This paper was improved by com­
ments from Al Aho, Jon Bentley, Chris Fraser, Gerard Holzmann, Brian Kernighan, Ted
Kowalski, Doug McIlroy and Dennis Ritchie.

­ 30 ­

REFERENCES

1. R. Pike, �The Blit: a multiplexed graphics terminal,� AT&T Bell Labs. Tech. J., 63, (8),
1607-1631 (1984).

2. L. Johnson, MacWrite, Apple Computer Inc., Cupertino, Calif. 1983.

3. B. Lampson, �Bravo Manual,� in Alto User’s Handbook, pp. 31-62, Xerox Palo Alto
Research Center, Palo Alto, Calif. 1979.

4. W. Teitelman, �A tour through Cedar,� IEEE Software, 1 (2), 44-73 (1984).

5. J. Gutknecht, �Concepts of the text editor Lara,� Comm. ACM, 28, (9), 942-960
(1985).

6. Bell Telephone Laboratories, UNIX Programmer’s Manual, Holt, Rinehart and
Winston, New York 1983.

7. B. W. Kernighan and R. Pike, The Unix Programming Environment, Prentice-Hall,
Englewood Cliffs, New Jersey 1984.

8. Unix Time−Sharing System Programmer’s Manual, Research Version, Ninth Edition,
Volume 1, AT&T Bell Laboratories, Murray Hill, New Jersey 1986.

9. Unix Time−Sharing System Programmer’s Manual, 4.1 Berkeley Software
Distribution, Volumes 1 and 2C, University of California, Berkeley, Calif. 1981.

10. R. Pike, �Structural Regular Expressions,� Proc. EUUG Spring Conf., Helsinki 1987,
Eur. Unix User�s Group, Buntingford, Herts, UK 1987.

11. A. Goldberg, Smalltalk−80 � The Interactive Programming Environment, Addison-
Wesley, Reading, Mass. 1984.

12. K. Thompson, �Regular expression search algorithm,� Comm. ACM, 11, (6), 419-422
(1968).

13. A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Mass. 1974.

14. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall,
Englewood Cliffs, New Jersey 1978.

15. W. M. Waite, �The cost of lexical analysis,� Softw. Pract. Exp., 16, (5), 473-488
(1986).

16. C. W. Fraser, �A generalized text editor,� Comm. ACM, 23, (3), 154-158 (1980).

17. R. Pike, �Graphics in overlapping bitmap layers,� ACM Trans. on Graph., 2, (2)
135-160 (1983).

18. L. J. Guibas and J. Stolfi, �A language for bitmap manipulation,� ACM Trans. on
Graph., 1, (3), 191-214 (1982).

19. R. Pike, B. Locanthi and J. Reiser, �Hardware/software trade-offs for bitmap graphics
on the Blit,� Softw. Pract. Exp., 15, (2), 131-151 (1985).

20. T. A. Cargill, �The feel of Pi,� Winter USENIX Conference Proceedings, Denver 1986,
62-71, USENIX Assoc., El Cerrito, CA.

21. G. J. Holzmann, �Tracing protocols,� AT&T Tech. J., 64, (10), 2413-2434 (1985).

