
Fossil, an Archival File Server

Sean Quinlan
Jim McKie
Russ Cox

jmk,rsc@plan9.bell-labs.com

ABSTRACT

This paper describes the internals and operation of Fossil, an
archival file server built for Plan 9. Fossil has not yet replaced the current
Plan 9 file server and kfs, but that is our eventual intent. Both fossil and
this documentation are works in progress. Comments on either are most
welcome.

1. Introduction

Fossil is an archival file server built for Plan 9. In a typical configuration, it maintains a
traditional file system in a local disk partition and periodically archives snapshots of the
file system to a Venti server. These archives are made available through a file system
interface. Fossil can also be run without a Venti server, in which case the snapshots (if
any) occupy local disk space.

The bulk of this paper explains the underlying data structures: Venti trees, the
Venti archival file system format, and finally Fossil�s file system format. The end of the
paper discusses the architecture of the Fossil server.

The presentation of the data structures is very detailed, perhaps too detailed for
most readers. The intent is to record all the details necessary to make structural
changes to the file system format. Feel free to jump ahead when boredom strikes.

2. Venti trees and directory hierarchies

Venti [3] is an archival block storage server. Once a block is stored, it can be retrieved
by presenting the 20-byte SHA1 hash of its contents, called a score. Blocks on Venti
have a maximum length of about 56 kilobytes, though in practice smaller blocks are
used. To store a byte stream of arbitrary length, Venti uses a hash tree. Conceptually,
the data stream is broken into fixed-size (say, dsize-byte) chunks, which are stored on
the Venti server. The resulting scores are concatenated into a new pointer stream,
which is broken into fixed size (say, psize-byte) chunks, which are stored on the Venti
server. (Psize is different from dsize so that we can ensure that each pointer block holds
an integral number of pointers.) This yields a new pointer stream, and so on, until there
is a single block and finally a single score describing the entire tree. The resulting
structure looks like:

­ 2 ­

VtDataType

...VtPointerType0

... ...VtPointerType1

...VtPointerType2

The leaves are the original data stream. Those blocks have type VtDataType. The
first pointer stream has type VtPointerType0, the next has type
VtPointerType1, and so on. The figure ends with a single block of type
VtPointerType2, but in general trees can have height up to VtPointerType6.
For a dsize of 8192 bytes and psize of 8180 bytes (409 pointers), this gives a maximum
stream size of approximately 10 zettabytes (273 or 1022 bytes).

Data blocks are truncated to remove trailing runs of zeros before storage to Venti;
they are zero-filled back to dsize bytes after retrieval from Venti. Similarly, trailing runs
of pointers to zero-length blocks are removed from and added back to pointer blocks.
These simple rules happen to make it particularly efficient to store large runs of zeros,
as might occur in a data stream with ��holes:�� the zero-length block itself can be inter­
preted as a tree of any depth encoding an all-zero data stream.

Reconstructing the data stream requires the score and type of the topmost block in
the tree, the data chunk size, the pointer chunk size, and the data stream size. (From
the data stream size and the chunk sizes we could derive the depth of the tree and thus
the type of the topmost block, but it is convenient to allow trees that are deeper than
necessary.) This information is kept in a 40-byte structure called a VtEntry:

VtEntry:
gen[4] generation number
psize[2] size of pointer blocks
dsize[2] size of data blocks
flags[1]
zero[5]
size[6] length of file
score[20] score of root block in tree

(In this notation, name[sz] indicates a sz-byte field called name. Integers are stored
in big-endian order. Size really is a 48-bit field.) Flags is made up of the following
bit fields.

0x01 VtEntryActive entry is allocated
0x02 VtEntryDir entry describes a Venti directory (q.v.)
0x1C VtEntryDepthMask mask for tree depth
0x20 VtEntryLocal reserved (q.v.)

The depth of the described tree is stored in the 3 bits indicated: a tree with a topmost
node of type VtPointerType3 has depth 4.

With VtEntry we can build more complicated data structures, ones with multiple
or nested data streams. A data stream consisting of VtEntry structures is called a
Venti directory. It is identical in structure to the Venti data stream we described earlier
except that the bottom-level type is VtDirType, and the VtEntry describing a Venti
directory has the VtEntryDir flag bit set. The dsize for a Venti directory is a multiple
of 40 so that each data chunk holds an integer number of VtEntry structures. By
analogy with Venti directories, we call the original data stream a Venti file. Note that
Venti files are assumed not to contain pointers to other Venti blocks. The only pointers
to Venti blocks occur in VtEntry structures in Venti directories (and in the internal

­ 3 ­

hash tree structure of the individual files and directories). Note also that these directo­
ries are nothing more than pointer lists. In particular, there are no names or metadata
like in a file system.

To make it easier to pass hierarchies between applications, the root of a hierarchy
is described in a 300-byte structure called a VtRoot:

VtRoot:
version[2] 2
name[128] name of structure (just a comment)
type[128] string describing structure (vac)
score[20] pointer to VtDirType block
blockSize[2] maximum block size in structure
prev[20] previous VtRoot in chain, if any

This structure is stored to Venti and its score is passed between applications, typically in
the form ��type:rootscore,�� where type is the type field from the VtRoot structure,
and rootscore is the score of the VtRoot block. VtRoot structures can be chained
together using the prev field to encode an archival history of the data structure.

For example, a small Venti hierarchy might look like:

VtRoot Key

Venti file

Venti entry (VtEntry)

Venti directory

Venti pointer (score)

Venti files are shown as white boxes, while directories are shown as shaded boxes.
Each shaded square represents a VtEntry. Arrows represent pointers from VtEntry
structures to other Venti files or directories.

The hierarchical structure provided by Venti files and directories can be used as the
base for more complicated data structures. Because this structure captures all the infor­
mation about pointers to other blocks, tools written to traverse Venti hierarchies can tra­
verse the more complicated data structures as well. For example, venti/copy (see
venti(1)) copies a Venti hierarchy from one Venti server to another, given the root
VtEntry. Because the traditional file system described in later sections is layered on a
Venti hierarchy, venti/copy can copy it without fully understanding its structure.

3. Vac file system format

The Venti archive format vac builds a traditional file system using a Venti hierarchy.
Each vac file is implemented as a Venti file; each vac directory is implemented as a Venti
directory and a Venti file to provide traditional file system metadata. The metadata is
stored in a structure called a DirEntry:

­ 4 ­

DirEntry:
magic[4] 0x1c4d9072 (DirMagic)
version[2] 9
elem[s] name (final path element only)
entry[4] entry number for Venti file or directory
gen[4] generation number
mentry[4] entry number for Venti file holding metadata
mgen[4] generation number
qid[8] unique file serial number
uid[s] owner
gid[s] group
mid[s] last modified by
mtime[4] last modification time
ctime[4] creation time
atime[4] last access time
mode[4] mode bits

The notation name[s] denotes a string stored as a two-byte length and then that
many bytes. The above describes Version 9 of the DirEntry format. Versions 7 and
8 are very similar; they can be read by the current vac source code but are not written.
Earlier versions were not widespread. A DirEntry may be followed by optional exten­
sion sections, though none are currently used. The mode bits include bits commonly
used by Unix and Windows, in addition to those used by Plan 9.

The entry field is an index into the parallel Venti directory. The gen field must
match the gen field in the corresponding VtEntry in the directory; it is used to detect
stale indices. Similarly, mentry and mgen are the index and generation number for
the metadata Venti file, if the DirEntry describes a vac directory.

The relation between Venti files and directories and vac files and directories can be
seen in this figure:

VtRoot

fs root block

root directory info block

root metadata

.
.
.
.
.....................

.

.

.

.

Key

Venti file

Venti entry (Entry)

Venti directory

Venti pointer (score)

.
.
...........

.

. Vac file

Vac entry (DirEntry)

Vac directory

Vac pointer (integer index)

In reality, the story is slightly more complicated. The metadata file in a Vac directory is
not just the concatenation of DirEntry structures. Instead, it is the concatenation of
MetaBlocks. A MetaBlock contains some number of DirEntry structures along
with a sorted index to make it easy to look for a particular DirEntry by its elem
field. The details are in the source code.

As shown in the diagram, the root directory of the file system is summarized by
three VtEntry structures describing the Venti directory for the children of the root,
the Venti file for the metadata describing the children of the root, and a Venti file hold­
ing metadata for the root directory itself. These VtEntry structures are placed in a
Venti directory of their own, described by the single VtEntry in the root block.

­ 5 ­

4. Fossil file system format

Fossil uses the vac format, with some small changes. The changes only affect the data
on the local disk; the data archived to Venti is exactly in vac format.

Blocks stored on local disk may contain scores pointing at local disk blocks or at
Venti blocks. Local block addresses are stored as 20-byte scores in which the first 16
bytes are all zero and the last 4 bytes specify a block number in the disk. Before a block
is archived, all the blocks it points to must be archived, and the local scores in the block
must be changed to Venti scores. Using block addresses rather than content hashes for
local data makes the local file system easier to manage: if a local block�s contents
change, the pointer to the block does not need to change.

4.1. Snapshots

Fossil is an archival file server. It takes periodic snapshots of the file system, which are
made accessible through the file system. Specifically, the active file system is presented
in /active. Ephemeral snapshots (those that are kept on local disk and eventually
deleted) are presented in /snapshot/yyyy/mmdd/hhmm, where yyyy is the full
year, mm is the month number, dd is the day number, hh is the hour, and mm is the
minute. Archival snapshots (those that are archived to Venti and persist forever) are
presented in /archive/yyyy/mmdds, where yyyy, mm, and dd are year, month, and
day as before, and s is a sequence number if more than one archival snapshot is done in
a day. For the first snapshot, s is null. For the subsequent snapshots, s is .1, .2, .3,
etc.

To implement the snapshots, the file server maintains a current epoch for the
active file system. Each local block has a label that records, among other things, the
epoch in which the block was allocated. If a block was allocated in an epoch earlier than
the current one, it is immutable and treated as copy-on-write. Taking a snapshot can
be accomplished by recording the address of the current root block and then increment­
ing the epoch number. Notice that the copy-on-write method makes snapshots both
time efficient and space efficient. The only time cost is waiting for all current file sys­
tem requests to finish and then incrementing a counter. After a snapshot, blocks only
get copied when they are next modified, so the per-snapshot space requirement is pro­
portional to the amount of new data rather than the total size of the file system.

The blocks in the archival snapshots are moved to Venti, but the blocks in the
ephemeral snapshots take up space in the local disk file. To allow reclamation of this
disk space, the file system maintains a low epoch, which is the epoch of the earliest
ephemeral snapshot still available. Fossil only allows access to snapshots with epoch
numbers between the low epoch and the current epoch (also called the high epoch).
Incrementing the low epoch thus makes old snapshots inaccessible. The space required
to store those snapshots can then be reclaimed, as described below.

4.2. Local blocks

The bulk of the local disk file is the local blocks. Each block has a 14-byte label associ­
ated with it, of the format:

Label:
state[1] block state
type[1] block type
epoch[4] allocation epoch
epochClose[4] close epoch
tag[4] random tag

The type is an analogue of the block types described earlier, though different names
are used, to distinguish between pointers blocks in a hash tree for a data stream and
pointer blocks for a directory stream. The epoch was mentioned in the last section.

­ 6 ­

The other fields are explained below.

There are two distinguished blocks states BsFree (0x00) and BsBad (0xFF),
which mark blocks that are available for allocation and blocks that are bad and should
be avoided. If state is not one of these values, it is a bitwise �or� of the following
flags:

0x01 BsAlloc block is in use
0x02 BsCopied block has been copied
0x04 BsVenti block has been stored on Venti
0x08 BsClosed block has been unlinked from active file system

The flags are explained as they arise in the discussions below.

It is convenient to store some extra fields in the VtEntry structure when it
describes a Venti file or directory stored on local disk. Specifically, we set the
VtEntryLocal flag bit and then use the bytes 7-16 of the score (which would other­
wise be zero, since it is a local score) to hold these fields:

archive[1] boolean: this is an archival snapshot
snap[4] epoch number if root of snapshot
tag[4] random tag

The extended VtEntry structure is called an Entry. The tag field in the Label
and the Entry is used to identify dangling pointers or other file system corruption: all
the local blocks in a hash tree must have tags matching the tag in the Entry. If this
Entry points at the root of a snapshot, the snap field is the epoch of the snapshot. If
the snapshot is intended to be archived to Venti, the archive field is non-zero.

4.3. Block reclamation

The blocks in the active file system form a tree: each block has only one parent. Once a
copy-on-write block b is replaced by its copy, it is no longer needed by the active file
system. At this point, b is unlinked from the active file system. We say that b is now
closed: it is needed only for snapshots. When a block is closed, the BsClosed bit is
set in its state, and the current epoch (called the block�s closing epoch) is stored in the
epochClose label field. (Open blocks have an epochClose of ~0).

A block is referenced by snapshots with epochs between the block�s allocation
epoch and its closing epoch. Once the file system�s low epoch grows to be greater than
or equal to the block�s closing epoch, the block is no longer needed for any snapshots
and can be reused.

In a typical configuration, where nightly archival snapshots are taken and written to
Venti, it is desirable to reclaim the space occupied by now-archived blocks if possible.
To do this, Fossil keeps track of whether the pointers in each block are unique to that
block. When a block bb is allocated, a pointer to bb is written into exactly one active
block (say, b). In the absence of snapshots, the pointer to bb will remain unique to b, so
that if the pointer is zeroed, bb can be immediately reused. Snapshots complicate this
invariant: when b is copied-on-write, all its pointers are no longer unique to it. At time
of the copy, the BsCopied state bit in the block�s label is set to note the duplication of
the pointers contained within.

4.4. Disk layout

The file system header describes the file system layout and has this format:

­ 7 ­

Header:
magic[4] 0x3776AE89 (HeaderMagic)
version[2] 1 (HeaderVersion)
blockSize[2] file system block size
super[4] block offset of super block
label[4] block offset of labels
data[4] data blocks
end[4] end of file system

The corresponding file system layout is:

empty

header

empty

super block

label
blocks

data
blocks

0

128kB

super × blockSize

label × blockSize

data × blockSize

end × blockSize

The numbers to the right of the blocks are byte offsets of the boundaries.

The super block describes the file system itself and looks like:

Super:
magic[4] 0x2340A3B1 (SuperMagic)
version[2] 1 (SuperVersion)
epochLow[4] file system low epoch
epochHigh[4] file system high (active) epoch
qid[8] next qid to allocate
active[4] data block number: root of active file system
next[4] data block number: root of next file system to archive
current[4] data block number: root of file system currently being archived
last[20] Venti score of last successful archive
name[128] name of file system (just a comment)

5. Fossil server

The Fossil server is a user-space program that runs on a standard Plan 9 kernel.

5.1. Process structure

The file server is structured as a set of processes synchronizing mostly through
message passing along queues. The processes are given names, which can be seen in
the output of ps -a.

Listen processes announce on various network addresses. A con process han­
dles each incoming connection, reading 9P requests and adding them to a central mes­
sage queue. Msg processes remove 9P requests from the queue, handle them, and
write the responses to the appropriate file descriptors.

The disk process handles disk I/O requests made by the other processes. The
flush process writes dirty blocks from the in-memory block cache to disk. The
unlink process frees previously linked blocks once the blocks that point at them have
been written to disk.

A consI reads from each console file (typically a pipe posted in /srv), adding
the typed characters to the input queue. The cons process echoes input and runs the
commands, saving output in a ring buffer. Because there is only one cons process,
only one console command may be executing at a time. A consΧ process copies this
ring buffer to each console file.

­ 8 ­

The periodic process runs periodic events, like flushing the root metadata to
disk or taking snapshots of the file system.

5.2. Block cache

Fossil maintains an in-memory block cache which holds both local disk blocks and Venti
blocks. Cache eviction follows a least recently used policy. Dirty blocks are restricted to
at most half the cache. This can be changed by editing DirtyPercentage in
dat.h.

The block cache uses soft updates [1] to ensure that the on-disk file system is
always self-consistent. Thus there is no halt console command and no need to check a
file system that was shut down without halting.

5.3. Archiving

A background process writes blocks in archival snapshots to Venti. Although
/archive/yyyy/mmdds is a copy of only /active at the time of the snapshot, the
archival process archives the entire file tree rather than just the subtree rooted at
/active. The snapshots /snapshot/yyyy/mmdd/hhmm are stored as empty
directories. Once all the blocks have been archived, a VtRoot header for the file sys­
tem is archived. The score of that header is recorded in super.score and also
printed on the file server console. The score can used by flfmt to restore a file system
(see fossil(4)).

5.4. Contrast with the old file server

The most obvious difference between Fossil and the old Plan 9 file server [2] is that Fos­
sil uses a Venti server as its archival storage in place of a WORM juke box. There are a
few other architectural differences to be aware of.

Fossil is a user-level program run on a standard kernel.

Fossil does not have any way to concatenate, stripe, or mirror disk files. For func­
tionality similar to the old file server�s configuration strings, use the experimental file
stack device (see fs(3)).

Fossil speaks only 9P2000. Old 9P (aka 9P1) is not supported.

6. References

[1] Gregory R. Ganger, Marshall Kirk McKusick, Craig A. N. Soules, and Yale N. Patt.
��Soft Updates: A Solution to the Metadata Update Problem in File Systems,�� ACM
Transactions on Computer Systems, Vol 18., No. 2, May 2000, pp. 127�153.

[2] Sean Quinlan, ��A Cached WORM File System,�� Software�Practice and Experience,
Vol 21., No 12., December 1991, pp. 1289�1299.

[3] Sean Quinlan and Sean Dorward, ��Venti: A New Approach to Archival Storage,��
Usenix Conference on File and Storage Technologies, 2002.

