xref: /openbsd-src/gnu/gcc/gcc/cselib.c (revision 404b540a9034ac75a6199ad1a32d1bbc7a0d4210)
1 /* Common subexpression elimination library for GNU compiler.
2    Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2003, 2004, 2005 Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA.  */
21 
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "flags.h"
32 #include "real.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "function.h"
36 #include "emit-rtl.h"
37 #include "toplev.h"
38 #include "output.h"
39 #include "ggc.h"
40 #include "hashtab.h"
41 #include "cselib.h"
42 #include "params.h"
43 #include "alloc-pool.h"
44 #include "target.h"
45 
46 static bool cselib_record_memory;
47 static int entry_and_rtx_equal_p (const void *, const void *);
48 static hashval_t get_value_hash (const void *);
49 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
50 static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
51 static void unchain_one_value (cselib_val *);
52 static void unchain_one_elt_list (struct elt_list **);
53 static void unchain_one_elt_loc_list (struct elt_loc_list **);
54 static int discard_useless_locs (void **, void *);
55 static int discard_useless_values (void **, void *);
56 static void remove_useless_values (void);
57 static rtx wrap_constant (enum machine_mode, rtx);
58 static unsigned int cselib_hash_rtx (rtx, int);
59 static cselib_val *new_cselib_val (unsigned int, enum machine_mode);
60 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
61 static cselib_val *cselib_lookup_mem (rtx, int);
62 static void cselib_invalidate_regno (unsigned int, enum machine_mode);
63 static void cselib_invalidate_mem (rtx);
64 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
65 static void cselib_record_sets (rtx);
66 
67 /* There are three ways in which cselib can look up an rtx:
68    - for a REG, the reg_values table (which is indexed by regno) is used
69    - for a MEM, we recursively look up its address and then follow the
70      addr_list of that value
71    - for everything else, we compute a hash value and go through the hash
72      table.  Since different rtx's can still have the same hash value,
73      this involves walking the table entries for a given value and comparing
74      the locations of the entries with the rtx we are looking up.  */
75 
76 /* A table that enables us to look up elts by their value.  */
77 static htab_t cselib_hash_table;
78 
79 /* This is a global so we don't have to pass this through every function.
80    It is used in new_elt_loc_list to set SETTING_INSN.  */
81 static rtx cselib_current_insn;
82 static bool cselib_current_insn_in_libcall;
83 
84 /* Every new unknown value gets a unique number.  */
85 static unsigned int next_unknown_value;
86 
87 /* The number of registers we had when the varrays were last resized.  */
88 static unsigned int cselib_nregs;
89 
90 /* Count values without known locations.  Whenever this grows too big, we
91    remove these useless values from the table.  */
92 static int n_useless_values;
93 
94 /* Number of useless values before we remove them from the hash table.  */
95 #define MAX_USELESS_VALUES 32
96 
97 /* This table maps from register number to values.  It does not
98    contain pointers to cselib_val structures, but rather elt_lists.
99    The purpose is to be able to refer to the same register in
100    different modes.  The first element of the list defines the mode in
101    which the register was set; if the mode is unknown or the value is
102    no longer valid in that mode, ELT will be NULL for the first
103    element.  */
104 static struct elt_list **reg_values;
105 static unsigned int reg_values_size;
106 #define REG_VALUES(i) reg_values[i]
107 
108 /* The largest number of hard regs used by any entry added to the
109    REG_VALUES table.  Cleared on each cselib_clear_table() invocation.  */
110 static unsigned int max_value_regs;
111 
112 /* Here the set of indices I with REG_VALUES(I) != 0 is saved.  This is used
113    in cselib_clear_table() for fast emptying.  */
114 static unsigned int *used_regs;
115 static unsigned int n_used_regs;
116 
117 /* We pass this to cselib_invalidate_mem to invalidate all of
118    memory for a non-const call instruction.  */
119 static GTY(()) rtx callmem;
120 
121 /* Set by discard_useless_locs if it deleted the last location of any
122    value.  */
123 static int values_became_useless;
124 
125 /* Used as stop element of the containing_mem list so we can check
126    presence in the list by checking the next pointer.  */
127 static cselib_val dummy_val;
128 
129 /* Used to list all values that contain memory reference.
130    May or may not contain the useless values - the list is compacted
131    each time memory is invalidated.  */
132 static cselib_val *first_containing_mem = &dummy_val;
133 static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
134 
135 
136 /* Allocate a struct elt_list and fill in its two elements with the
137    arguments.  */
138 
139 static inline struct elt_list *
new_elt_list(struct elt_list * next,cselib_val * elt)140 new_elt_list (struct elt_list *next, cselib_val *elt)
141 {
142   struct elt_list *el;
143   el = pool_alloc (elt_list_pool);
144   el->next = next;
145   el->elt = elt;
146   return el;
147 }
148 
149 /* Allocate a struct elt_loc_list and fill in its two elements with the
150    arguments.  */
151 
152 static inline struct elt_loc_list *
new_elt_loc_list(struct elt_loc_list * next,rtx loc)153 new_elt_loc_list (struct elt_loc_list *next, rtx loc)
154 {
155   struct elt_loc_list *el;
156   el = pool_alloc (elt_loc_list_pool);
157   el->next = next;
158   el->loc = loc;
159   el->setting_insn = cselib_current_insn;
160   el->in_libcall = cselib_current_insn_in_libcall;
161   return el;
162 }
163 
164 /* The elt_list at *PL is no longer needed.  Unchain it and free its
165    storage.  */
166 
167 static inline void
unchain_one_elt_list(struct elt_list ** pl)168 unchain_one_elt_list (struct elt_list **pl)
169 {
170   struct elt_list *l = *pl;
171 
172   *pl = l->next;
173   pool_free (elt_list_pool, l);
174 }
175 
176 /* Likewise for elt_loc_lists.  */
177 
178 static void
unchain_one_elt_loc_list(struct elt_loc_list ** pl)179 unchain_one_elt_loc_list (struct elt_loc_list **pl)
180 {
181   struct elt_loc_list *l = *pl;
182 
183   *pl = l->next;
184   pool_free (elt_loc_list_pool, l);
185 }
186 
187 /* Likewise for cselib_vals.  This also frees the addr_list associated with
188    V.  */
189 
190 static void
unchain_one_value(cselib_val * v)191 unchain_one_value (cselib_val *v)
192 {
193   while (v->addr_list)
194     unchain_one_elt_list (&v->addr_list);
195 
196   pool_free (cselib_val_pool, v);
197 }
198 
199 /* Remove all entries from the hash table.  Also used during
200    initialization.  If CLEAR_ALL isn't set, then only clear the entries
201    which are known to have been used.  */
202 
203 void
cselib_clear_table(void)204 cselib_clear_table (void)
205 {
206   unsigned int i;
207 
208   for (i = 0; i < n_used_regs; i++)
209     REG_VALUES (used_regs[i]) = 0;
210 
211   max_value_regs = 0;
212 
213   n_used_regs = 0;
214 
215   htab_empty (cselib_hash_table);
216 
217   n_useless_values = 0;
218 
219   next_unknown_value = 0;
220 
221   first_containing_mem = &dummy_val;
222 }
223 
224 /* The equality test for our hash table.  The first argument ENTRY is a table
225    element (i.e. a cselib_val), while the second arg X is an rtx.  We know
226    that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
227    CONST of an appropriate mode.  */
228 
229 static int
entry_and_rtx_equal_p(const void * entry,const void * x_arg)230 entry_and_rtx_equal_p (const void *entry, const void *x_arg)
231 {
232   struct elt_loc_list *l;
233   const cselib_val *v = (const cselib_val *) entry;
234   rtx x = (rtx) x_arg;
235   enum machine_mode mode = GET_MODE (x);
236 
237   gcc_assert (GET_CODE (x) != CONST_INT
238 	      && (mode != VOIDmode || GET_CODE (x) != CONST_DOUBLE));
239 
240   if (mode != GET_MODE (v->u.val_rtx))
241     return 0;
242 
243   /* Unwrap X if necessary.  */
244   if (GET_CODE (x) == CONST
245       && (GET_CODE (XEXP (x, 0)) == CONST_INT
246 	  || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
247     x = XEXP (x, 0);
248 
249   /* We don't guarantee that distinct rtx's have different hash values,
250      so we need to do a comparison.  */
251   for (l = v->locs; l; l = l->next)
252     if (rtx_equal_for_cselib_p (l->loc, x))
253       return 1;
254 
255   return 0;
256 }
257 
258 /* The hash function for our hash table.  The value is always computed with
259    cselib_hash_rtx when adding an element; this function just extracts the
260    hash value from a cselib_val structure.  */
261 
262 static hashval_t
get_value_hash(const void * entry)263 get_value_hash (const void *entry)
264 {
265   const cselib_val *v = (const cselib_val *) entry;
266   return v->value;
267 }
268 
269 /* Return true if X contains a VALUE rtx.  If ONLY_USELESS is set, we
270    only return true for values which point to a cselib_val whose value
271    element has been set to zero, which implies the cselib_val will be
272    removed.  */
273 
274 int
references_value_p(rtx x,int only_useless)275 references_value_p (rtx x, int only_useless)
276 {
277   enum rtx_code code = GET_CODE (x);
278   const char *fmt = GET_RTX_FORMAT (code);
279   int i, j;
280 
281   if (GET_CODE (x) == VALUE
282       && (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
283     return 1;
284 
285   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
286     {
287       if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
288 	return 1;
289       else if (fmt[i] == 'E')
290 	for (j = 0; j < XVECLEN (x, i); j++)
291 	  if (references_value_p (XVECEXP (x, i, j), only_useless))
292 	    return 1;
293     }
294 
295   return 0;
296 }
297 
298 /* For all locations found in X, delete locations that reference useless
299    values (i.e. values without any location).  Called through
300    htab_traverse.  */
301 
302 static int
discard_useless_locs(void ** x,void * info ATTRIBUTE_UNUSED)303 discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
304 {
305   cselib_val *v = (cselib_val *)*x;
306   struct elt_loc_list **p = &v->locs;
307   int had_locs = v->locs != 0;
308 
309   while (*p)
310     {
311       if (references_value_p ((*p)->loc, 1))
312 	unchain_one_elt_loc_list (p);
313       else
314 	p = &(*p)->next;
315     }
316 
317   if (had_locs && v->locs == 0)
318     {
319       n_useless_values++;
320       values_became_useless = 1;
321     }
322   return 1;
323 }
324 
325 /* If X is a value with no locations, remove it from the hashtable.  */
326 
327 static int
discard_useless_values(void ** x,void * info ATTRIBUTE_UNUSED)328 discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
329 {
330   cselib_val *v = (cselib_val *)*x;
331 
332   if (v->locs == 0)
333     {
334       CSELIB_VAL_PTR (v->u.val_rtx) = NULL;
335       htab_clear_slot (cselib_hash_table, x);
336       unchain_one_value (v);
337       n_useless_values--;
338     }
339 
340   return 1;
341 }
342 
343 /* Clean out useless values (i.e. those which no longer have locations
344    associated with them) from the hash table.  */
345 
346 static void
remove_useless_values(void)347 remove_useless_values (void)
348 {
349   cselib_val **p, *v;
350   /* First pass: eliminate locations that reference the value.  That in
351      turn can make more values useless.  */
352   do
353     {
354       values_became_useless = 0;
355       htab_traverse (cselib_hash_table, discard_useless_locs, 0);
356     }
357   while (values_became_useless);
358 
359   /* Second pass: actually remove the values.  */
360 
361   p = &first_containing_mem;
362   for (v = *p; v != &dummy_val; v = v->next_containing_mem)
363     if (v->locs)
364       {
365 	*p = v;
366 	p = &(*p)->next_containing_mem;
367       }
368   *p = &dummy_val;
369 
370   htab_traverse (cselib_hash_table, discard_useless_values, 0);
371 
372   gcc_assert (!n_useless_values);
373 }
374 
375 /* Return the mode in which a register was last set.  If X is not a
376    register, return its mode.  If the mode in which the register was
377    set is not known, or the value was already clobbered, return
378    VOIDmode.  */
379 
380 enum machine_mode
cselib_reg_set_mode(rtx x)381 cselib_reg_set_mode (rtx x)
382 {
383   if (!REG_P (x))
384     return GET_MODE (x);
385 
386   if (REG_VALUES (REGNO (x)) == NULL
387       || REG_VALUES (REGNO (x))->elt == NULL)
388     return VOIDmode;
389 
390   return GET_MODE (REG_VALUES (REGNO (x))->elt->u.val_rtx);
391 }
392 
393 /* Return nonzero if we can prove that X and Y contain the same value, taking
394    our gathered information into account.  */
395 
396 int
rtx_equal_for_cselib_p(rtx x,rtx y)397 rtx_equal_for_cselib_p (rtx x, rtx y)
398 {
399   enum rtx_code code;
400   const char *fmt;
401   int i;
402 
403   if (REG_P (x) || MEM_P (x))
404     {
405       cselib_val *e = cselib_lookup (x, GET_MODE (x), 0);
406 
407       if (e)
408 	x = e->u.val_rtx;
409     }
410 
411   if (REG_P (y) || MEM_P (y))
412     {
413       cselib_val *e = cselib_lookup (y, GET_MODE (y), 0);
414 
415       if (e)
416 	y = e->u.val_rtx;
417     }
418 
419   if (x == y)
420     return 1;
421 
422   if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
423     return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
424 
425   if (GET_CODE (x) == VALUE)
426     {
427       cselib_val *e = CSELIB_VAL_PTR (x);
428       struct elt_loc_list *l;
429 
430       for (l = e->locs; l; l = l->next)
431 	{
432 	  rtx t = l->loc;
433 
434 	  /* Avoid infinite recursion.  */
435 	  if (REG_P (t) || MEM_P (t))
436 	    continue;
437 	  else if (rtx_equal_for_cselib_p (t, y))
438 	    return 1;
439 	}
440 
441       return 0;
442     }
443 
444   if (GET_CODE (y) == VALUE)
445     {
446       cselib_val *e = CSELIB_VAL_PTR (y);
447       struct elt_loc_list *l;
448 
449       for (l = e->locs; l; l = l->next)
450 	{
451 	  rtx t = l->loc;
452 
453 	  if (REG_P (t) || MEM_P (t))
454 	    continue;
455 	  else if (rtx_equal_for_cselib_p (x, t))
456 	    return 1;
457 	}
458 
459       return 0;
460     }
461 
462   if (GET_CODE (x) != GET_CODE (y) || GET_MODE (x) != GET_MODE (y))
463     return 0;
464 
465   /* These won't be handled correctly by the code below.  */
466   switch (GET_CODE (x))
467     {
468     case CONST_DOUBLE:
469       return 0;
470 
471     case LABEL_REF:
472       return XEXP (x, 0) == XEXP (y, 0);
473 
474     default:
475       break;
476     }
477 
478   code = GET_CODE (x);
479   fmt = GET_RTX_FORMAT (code);
480 
481   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
482     {
483       int j;
484 
485       switch (fmt[i])
486 	{
487 	case 'w':
488 	  if (XWINT (x, i) != XWINT (y, i))
489 	    return 0;
490 	  break;
491 
492 	case 'n':
493 	case 'i':
494 	  if (XINT (x, i) != XINT (y, i))
495 	    return 0;
496 	  break;
497 
498 	case 'V':
499 	case 'E':
500 	  /* Two vectors must have the same length.  */
501 	  if (XVECLEN (x, i) != XVECLEN (y, i))
502 	    return 0;
503 
504 	  /* And the corresponding elements must match.  */
505 	  for (j = 0; j < XVECLEN (x, i); j++)
506 	    if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j),
507 					  XVECEXP (y, i, j)))
508 	      return 0;
509 	  break;
510 
511 	case 'e':
512 	  if (i == 1
513 	      && targetm.commutative_p (x, UNKNOWN)
514 	      && rtx_equal_for_cselib_p (XEXP (x, 1), XEXP (y, 0))
515 	      && rtx_equal_for_cselib_p (XEXP (x, 0), XEXP (y, 1)))
516 	    return 1;
517 	  if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i)))
518 	    return 0;
519 	  break;
520 
521 	case 'S':
522 	case 's':
523 	  if (strcmp (XSTR (x, i), XSTR (y, i)))
524 	    return 0;
525 	  break;
526 
527 	case 'u':
528 	  /* These are just backpointers, so they don't matter.  */
529 	  break;
530 
531 	case '0':
532 	case 't':
533 	  break;
534 
535 	  /* It is believed that rtx's at this level will never
536 	     contain anything but integers and other rtx's,
537 	     except for within LABEL_REFs and SYMBOL_REFs.  */
538 	default:
539 	  gcc_unreachable ();
540 	}
541     }
542   return 1;
543 }
544 
545 /* We need to pass down the mode of constants through the hash table
546    functions.  For that purpose, wrap them in a CONST of the appropriate
547    mode.  */
548 static rtx
wrap_constant(enum machine_mode mode,rtx x)549 wrap_constant (enum machine_mode mode, rtx x)
550 {
551   if (GET_CODE (x) != CONST_INT
552       && (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
553     return x;
554   gcc_assert (mode != VOIDmode);
555   return gen_rtx_CONST (mode, x);
556 }
557 
558 /* Hash an rtx.  Return 0 if we couldn't hash the rtx.
559    For registers and memory locations, we look up their cselib_val structure
560    and return its VALUE element.
561    Possible reasons for return 0 are: the object is volatile, or we couldn't
562    find a register or memory location in the table and CREATE is zero.  If
563    CREATE is nonzero, table elts are created for regs and mem.
564    N.B. this hash function returns the same hash value for RTXes that
565    differ only in the order of operands, thus it is suitable for comparisons
566    that take commutativity into account.
567    If we wanted to also support associative rules, we'd have to use a different
568    strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
569    We used to have a MODE argument for hashing for CONST_INTs, but that
570    didn't make sense, since it caused spurious hash differences between
571     (set (reg:SI 1) (const_int))
572     (plus:SI (reg:SI 2) (reg:SI 1))
573    and
574     (plus:SI (reg:SI 2) (const_int))
575    If the mode is important in any context, it must be checked specifically
576    in a comparison anyway, since relying on hash differences is unsafe.  */
577 
578 static unsigned int
cselib_hash_rtx(rtx x,int create)579 cselib_hash_rtx (rtx x, int create)
580 {
581   cselib_val *e;
582   int i, j;
583   enum rtx_code code;
584   const char *fmt;
585   unsigned int hash = 0;
586 
587   code = GET_CODE (x);
588   hash += (unsigned) code + (unsigned) GET_MODE (x);
589 
590   switch (code)
591     {
592     case MEM:
593     case REG:
594       e = cselib_lookup (x, GET_MODE (x), create);
595       if (! e)
596 	return 0;
597 
598       return e->value;
599 
600     case CONST_INT:
601       hash += ((unsigned) CONST_INT << 7) + INTVAL (x);
602       return hash ? hash : (unsigned int) CONST_INT;
603 
604     case CONST_DOUBLE:
605       /* This is like the general case, except that it only counts
606 	 the integers representing the constant.  */
607       hash += (unsigned) code + (unsigned) GET_MODE (x);
608       if (GET_MODE (x) != VOIDmode)
609 	hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
610       else
611 	hash += ((unsigned) CONST_DOUBLE_LOW (x)
612 		 + (unsigned) CONST_DOUBLE_HIGH (x));
613       return hash ? hash : (unsigned int) CONST_DOUBLE;
614 
615     case CONST_VECTOR:
616       {
617 	int units;
618 	rtx elt;
619 
620 	units = CONST_VECTOR_NUNITS (x);
621 
622 	for (i = 0; i < units; ++i)
623 	  {
624 	    elt = CONST_VECTOR_ELT (x, i);
625 	    hash += cselib_hash_rtx (elt, 0);
626 	  }
627 
628 	return hash;
629       }
630 
631       /* Assume there is only one rtx object for any given label.  */
632     case LABEL_REF:
633       /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
634 	 differences and differences between each stage's debugging dumps.  */
635       hash += (((unsigned int) LABEL_REF << 7)
636 	       + CODE_LABEL_NUMBER (XEXP (x, 0)));
637       return hash ? hash : (unsigned int) LABEL_REF;
638 
639     case SYMBOL_REF:
640       {
641 	/* Don't hash on the symbol's address to avoid bootstrap differences.
642 	   Different hash values may cause expressions to be recorded in
643 	   different orders and thus different registers to be used in the
644 	   final assembler.  This also avoids differences in the dump files
645 	   between various stages.  */
646 	unsigned int h = 0;
647 	const unsigned char *p = (const unsigned char *) XSTR (x, 0);
648 
649 	while (*p)
650 	  h += (h << 7) + *p++; /* ??? revisit */
651 
652 	hash += ((unsigned int) SYMBOL_REF << 7) + h;
653 	return hash ? hash : (unsigned int) SYMBOL_REF;
654       }
655 
656     case PRE_DEC:
657     case PRE_INC:
658     case POST_DEC:
659     case POST_INC:
660     case POST_MODIFY:
661     case PRE_MODIFY:
662     case PC:
663     case CC0:
664     case CALL:
665     case UNSPEC_VOLATILE:
666       return 0;
667 
668     case ASM_OPERANDS:
669       if (MEM_VOLATILE_P (x))
670 	return 0;
671 
672       break;
673 
674     default:
675       break;
676     }
677 
678   i = GET_RTX_LENGTH (code) - 1;
679   fmt = GET_RTX_FORMAT (code);
680   for (; i >= 0; i--)
681     {
682       switch (fmt[i])
683 	{
684 	case 'e':
685 	  {
686 	    rtx tem = XEXP (x, i);
687 	    unsigned int tem_hash = cselib_hash_rtx (tem, create);
688 
689 	    if (tem_hash == 0)
690 	      return 0;
691 
692 	    hash += tem_hash;
693 	  }
694 	  break;
695 	case 'E':
696 	  for (j = 0; j < XVECLEN (x, i); j++)
697 	    {
698 	      unsigned int tem_hash
699 		= cselib_hash_rtx (XVECEXP (x, i, j), create);
700 
701 	      if (tem_hash == 0)
702 		return 0;
703 
704 	      hash += tem_hash;
705 	    }
706 	  break;
707 
708 	case 's':
709 	  {
710 	    const unsigned char *p = (const unsigned char *) XSTR (x, i);
711 
712 	    if (p)
713 	      while (*p)
714 		hash += *p++;
715 	    break;
716 	  }
717 
718 	case 'i':
719 	  hash += XINT (x, i);
720 	  break;
721 
722 	case '0':
723 	case 't':
724 	  /* unused */
725 	  break;
726 
727 	default:
728 	  gcc_unreachable ();
729 	}
730     }
731 
732   return hash ? hash : 1 + (unsigned int) GET_CODE (x);
733 }
734 
735 /* Create a new value structure for VALUE and initialize it.  The mode of the
736    value is MODE.  */
737 
738 static inline cselib_val *
new_cselib_val(unsigned int value,enum machine_mode mode)739 new_cselib_val (unsigned int value, enum machine_mode mode)
740 {
741   cselib_val *e = pool_alloc (cselib_val_pool);
742 
743   gcc_assert (value);
744 
745   e->value = value;
746   /* We use an alloc pool to allocate this RTL construct because it
747      accounts for about 8% of the overall memory usage.  We know
748      precisely when we can have VALUE RTXen (when cselib is active)
749      so we don't need to put them in garbage collected memory.
750      ??? Why should a VALUE be an RTX in the first place?  */
751   e->u.val_rtx = pool_alloc (value_pool);
752   memset (e->u.val_rtx, 0, RTX_HDR_SIZE);
753   PUT_CODE (e->u.val_rtx, VALUE);
754   PUT_MODE (e->u.val_rtx, mode);
755   CSELIB_VAL_PTR (e->u.val_rtx) = e;
756   e->addr_list = 0;
757   e->locs = 0;
758   e->next_containing_mem = 0;
759   return e;
760 }
761 
762 /* ADDR_ELT is a value that is used as address.  MEM_ELT is the value that
763    contains the data at this address.  X is a MEM that represents the
764    value.  Update the two value structures to represent this situation.  */
765 
766 static void
add_mem_for_addr(cselib_val * addr_elt,cselib_val * mem_elt,rtx x)767 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
768 {
769   struct elt_loc_list *l;
770 
771   /* Avoid duplicates.  */
772   for (l = mem_elt->locs; l; l = l->next)
773     if (MEM_P (l->loc)
774 	&& CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
775       return;
776 
777   addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
778   mem_elt->locs
779     = new_elt_loc_list (mem_elt->locs,
780 			replace_equiv_address_nv (x, addr_elt->u.val_rtx));
781   if (mem_elt->next_containing_mem == NULL)
782     {
783       mem_elt->next_containing_mem = first_containing_mem;
784       first_containing_mem = mem_elt;
785     }
786 }
787 
788 /* Subroutine of cselib_lookup.  Return a value for X, which is a MEM rtx.
789    If CREATE, make a new one if we haven't seen it before.  */
790 
791 static cselib_val *
cselib_lookup_mem(rtx x,int create)792 cselib_lookup_mem (rtx x, int create)
793 {
794   enum machine_mode mode = GET_MODE (x);
795   void **slot;
796   cselib_val *addr;
797   cselib_val *mem_elt;
798   struct elt_list *l;
799 
800   if (MEM_VOLATILE_P (x) || mode == BLKmode
801       || !cselib_record_memory
802       || (FLOAT_MODE_P (mode) && flag_float_store))
803     return 0;
804 
805   /* Look up the value for the address.  */
806   addr = cselib_lookup (XEXP (x, 0), mode, create);
807   if (! addr)
808     return 0;
809 
810   /* Find a value that describes a value of our mode at that address.  */
811   for (l = addr->addr_list; l; l = l->next)
812     if (GET_MODE (l->elt->u.val_rtx) == mode)
813       return l->elt;
814 
815   if (! create)
816     return 0;
817 
818   mem_elt = new_cselib_val (++next_unknown_value, mode);
819   add_mem_for_addr (addr, mem_elt, x);
820   slot = htab_find_slot_with_hash (cselib_hash_table, wrap_constant (mode, x),
821 				   mem_elt->value, INSERT);
822   *slot = mem_elt;
823   return mem_elt;
824 }
825 
826 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
827    with VALUE expressions.  This way, it becomes independent of changes
828    to registers and memory.
829    X isn't actually modified; if modifications are needed, new rtl is
830    allocated.  However, the return value can share rtl with X.  */
831 
832 rtx
cselib_subst_to_values(rtx x)833 cselib_subst_to_values (rtx x)
834 {
835   enum rtx_code code = GET_CODE (x);
836   const char *fmt = GET_RTX_FORMAT (code);
837   cselib_val *e;
838   struct elt_list *l;
839   rtx copy = x;
840   int i;
841 
842   switch (code)
843     {
844     case REG:
845       l = REG_VALUES (REGNO (x));
846       if (l && l->elt == NULL)
847 	l = l->next;
848       for (; l; l = l->next)
849 	if (GET_MODE (l->elt->u.val_rtx) == GET_MODE (x))
850 	  return l->elt->u.val_rtx;
851 
852       gcc_unreachable ();
853 
854     case MEM:
855       e = cselib_lookup_mem (x, 0);
856       if (! e)
857 	{
858 	  /* This happens for autoincrements.  Assign a value that doesn't
859 	     match any other.  */
860 	  e = new_cselib_val (++next_unknown_value, GET_MODE (x));
861 	}
862       return e->u.val_rtx;
863 
864     case CONST_DOUBLE:
865     case CONST_VECTOR:
866     case CONST_INT:
867       return x;
868 
869     case POST_INC:
870     case PRE_INC:
871     case POST_DEC:
872     case PRE_DEC:
873     case POST_MODIFY:
874     case PRE_MODIFY:
875       e = new_cselib_val (++next_unknown_value, GET_MODE (x));
876       return e->u.val_rtx;
877 
878     default:
879       break;
880     }
881 
882   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
883     {
884       if (fmt[i] == 'e')
885 	{
886 	  rtx t = cselib_subst_to_values (XEXP (x, i));
887 
888 	  if (t != XEXP (x, i) && x == copy)
889 	    copy = shallow_copy_rtx (x);
890 
891 	  XEXP (copy, i) = t;
892 	}
893       else if (fmt[i] == 'E')
894 	{
895 	  int j, k;
896 
897 	  for (j = 0; j < XVECLEN (x, i); j++)
898 	    {
899 	      rtx t = cselib_subst_to_values (XVECEXP (x, i, j));
900 
901 	      if (t != XVECEXP (x, i, j) && XVEC (x, i) == XVEC (copy, i))
902 		{
903 		  if (x == copy)
904 		    copy = shallow_copy_rtx (x);
905 
906 		  XVEC (copy, i) = rtvec_alloc (XVECLEN (x, i));
907 		  for (k = 0; k < j; k++)
908 		    XVECEXP (copy, i, k) = XVECEXP (x, i, k);
909 		}
910 
911 	      XVECEXP (copy, i, j) = t;
912 	    }
913 	}
914     }
915 
916   return copy;
917 }
918 
919 /* Look up the rtl expression X in our tables and return the value it has.
920    If CREATE is zero, we return NULL if we don't know the value.  Otherwise,
921    we create a new one if possible, using mode MODE if X doesn't have a mode
922    (i.e. because it's a constant).  */
923 
924 cselib_val *
cselib_lookup(rtx x,enum machine_mode mode,int create)925 cselib_lookup (rtx x, enum machine_mode mode, int create)
926 {
927   void **slot;
928   cselib_val *e;
929   unsigned int hashval;
930 
931   if (GET_MODE (x) != VOIDmode)
932     mode = GET_MODE (x);
933 
934   if (GET_CODE (x) == VALUE)
935     return CSELIB_VAL_PTR (x);
936 
937   if (REG_P (x))
938     {
939       struct elt_list *l;
940       unsigned int i = REGNO (x);
941 
942       l = REG_VALUES (i);
943       if (l && l->elt == NULL)
944 	l = l->next;
945       for (; l; l = l->next)
946 	if (mode == GET_MODE (l->elt->u.val_rtx))
947 	  return l->elt;
948 
949       if (! create)
950 	return 0;
951 
952       if (i < FIRST_PSEUDO_REGISTER)
953 	{
954 	  unsigned int n = hard_regno_nregs[i][mode];
955 
956 	  if (n > max_value_regs)
957 	    max_value_regs = n;
958 	}
959 
960       e = new_cselib_val (++next_unknown_value, GET_MODE (x));
961       e->locs = new_elt_loc_list (e->locs, x);
962       if (REG_VALUES (i) == 0)
963 	{
964 	  /* Maintain the invariant that the first entry of
965 	     REG_VALUES, if present, must be the value used to set the
966 	     register, or NULL.  */
967 	  used_regs[n_used_regs++] = i;
968 	  REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
969 	}
970       REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
971       slot = htab_find_slot_with_hash (cselib_hash_table, x, e->value, INSERT);
972       *slot = e;
973       return e;
974     }
975 
976   if (MEM_P (x))
977     return cselib_lookup_mem (x, create);
978 
979   hashval = cselib_hash_rtx (x, create);
980   /* Can't even create if hashing is not possible.  */
981   if (! hashval)
982     return 0;
983 
984   slot = htab_find_slot_with_hash (cselib_hash_table, wrap_constant (mode, x),
985 				   hashval, create ? INSERT : NO_INSERT);
986   if (slot == 0)
987     return 0;
988 
989   e = (cselib_val *) *slot;
990   if (e)
991     return e;
992 
993   e = new_cselib_val (hashval, mode);
994 
995   /* We have to fill the slot before calling cselib_subst_to_values:
996      the hash table is inconsistent until we do so, and
997      cselib_subst_to_values will need to do lookups.  */
998   *slot = (void *) e;
999   e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x));
1000   return e;
1001 }
1002 
1003 /* Invalidate any entries in reg_values that overlap REGNO.  This is called
1004    if REGNO is changing.  MODE is the mode of the assignment to REGNO, which
1005    is used to determine how many hard registers are being changed.  If MODE
1006    is VOIDmode, then only REGNO is being changed; this is used when
1007    invalidating call clobbered registers across a call.  */
1008 
1009 static void
cselib_invalidate_regno(unsigned int regno,enum machine_mode mode)1010 cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
1011 {
1012   unsigned int endregno;
1013   unsigned int i;
1014 
1015   /* If we see pseudos after reload, something is _wrong_.  */
1016   gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
1017 	      || reg_renumber[regno] < 0);
1018 
1019   /* Determine the range of registers that must be invalidated.  For
1020      pseudos, only REGNO is affected.  For hard regs, we must take MODE
1021      into account, and we must also invalidate lower register numbers
1022      if they contain values that overlap REGNO.  */
1023   if (regno < FIRST_PSEUDO_REGISTER)
1024     {
1025       gcc_assert (mode != VOIDmode);
1026 
1027       if (regno < max_value_regs)
1028 	i = 0;
1029       else
1030 	i = regno - max_value_regs;
1031 
1032       endregno = regno + hard_regno_nregs[regno][mode];
1033     }
1034   else
1035     {
1036       i = regno;
1037       endregno = regno + 1;
1038     }
1039 
1040   for (; i < endregno; i++)
1041     {
1042       struct elt_list **l = &REG_VALUES (i);
1043 
1044       /* Go through all known values for this reg; if it overlaps the range
1045 	 we're invalidating, remove the value.  */
1046       while (*l)
1047 	{
1048 	  cselib_val *v = (*l)->elt;
1049 	  struct elt_loc_list **p;
1050 	  unsigned int this_last = i;
1051 
1052 	  if (i < FIRST_PSEUDO_REGISTER && v != NULL)
1053 	    this_last += hard_regno_nregs[i][GET_MODE (v->u.val_rtx)] - 1;
1054 
1055 	  if (this_last < regno || v == NULL)
1056 	    {
1057 	      l = &(*l)->next;
1058 	      continue;
1059 	    }
1060 
1061 	  /* We have an overlap.  */
1062 	  if (*l == REG_VALUES (i))
1063 	    {
1064 	      /* Maintain the invariant that the first entry of
1065 		 REG_VALUES, if present, must be the value used to set
1066 		 the register, or NULL.  This is also nice because
1067 		 then we won't push the same regno onto user_regs
1068 		 multiple times.  */
1069 	      (*l)->elt = NULL;
1070 	      l = &(*l)->next;
1071 	    }
1072 	  else
1073 	    unchain_one_elt_list (l);
1074 
1075 	  /* Now, we clear the mapping from value to reg.  It must exist, so
1076 	     this code will crash intentionally if it doesn't.  */
1077 	  for (p = &v->locs; ; p = &(*p)->next)
1078 	    {
1079 	      rtx x = (*p)->loc;
1080 
1081 	      if (REG_P (x) && REGNO (x) == i)
1082 		{
1083 		  unchain_one_elt_loc_list (p);
1084 		  break;
1085 		}
1086 	    }
1087 	  if (v->locs == 0)
1088 	    n_useless_values++;
1089 	}
1090     }
1091 }
1092 
1093 /* Return 1 if X has a value that can vary even between two
1094    executions of the program.  0 means X can be compared reliably
1095    against certain constants or near-constants.  */
1096 
1097 static int
cselib_rtx_varies_p(rtx x ATTRIBUTE_UNUSED,int from_alias ATTRIBUTE_UNUSED)1098 cselib_rtx_varies_p (rtx x ATTRIBUTE_UNUSED, int from_alias ATTRIBUTE_UNUSED)
1099 {
1100   /* We actually don't need to verify very hard.  This is because
1101      if X has actually changed, we invalidate the memory anyway,
1102      so assume that all common memory addresses are
1103      invariant.  */
1104   return 0;
1105 }
1106 
1107 /* Invalidate any locations in the table which are changed because of a
1108    store to MEM_RTX.  If this is called because of a non-const call
1109    instruction, MEM_RTX is (mem:BLK const0_rtx).  */
1110 
1111 static void
cselib_invalidate_mem(rtx mem_rtx)1112 cselib_invalidate_mem (rtx mem_rtx)
1113 {
1114   cselib_val **vp, *v, *next;
1115   int num_mems = 0;
1116   rtx mem_addr;
1117 
1118   mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
1119   mem_rtx = canon_rtx (mem_rtx);
1120 
1121   vp = &first_containing_mem;
1122   for (v = *vp; v != &dummy_val; v = next)
1123     {
1124       bool has_mem = false;
1125       struct elt_loc_list **p = &v->locs;
1126       int had_locs = v->locs != 0;
1127 
1128       while (*p)
1129 	{
1130 	  rtx x = (*p)->loc;
1131 	  cselib_val *addr;
1132 	  struct elt_list **mem_chain;
1133 
1134 	  /* MEMs may occur in locations only at the top level; below
1135 	     that every MEM or REG is substituted by its VALUE.  */
1136 	  if (!MEM_P (x))
1137 	    {
1138 	      p = &(*p)->next;
1139 	      continue;
1140 	    }
1141 	  if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
1142 	      && ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
1143 		      			  x, cselib_rtx_varies_p))
1144 	    {
1145 	      has_mem = true;
1146 	      num_mems++;
1147 	      p = &(*p)->next;
1148 	      continue;
1149 	    }
1150 
1151 	  /* This one overlaps.  */
1152 	  /* We must have a mapping from this MEM's address to the
1153 	     value (E).  Remove that, too.  */
1154 	  addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0);
1155 	  mem_chain = &addr->addr_list;
1156 	  for (;;)
1157 	    {
1158 	      if ((*mem_chain)->elt == v)
1159 		{
1160 		  unchain_one_elt_list (mem_chain);
1161 		  break;
1162 		}
1163 
1164 	      mem_chain = &(*mem_chain)->next;
1165 	    }
1166 
1167 	  unchain_one_elt_loc_list (p);
1168 	}
1169 
1170       if (had_locs && v->locs == 0)
1171 	n_useless_values++;
1172 
1173       next = v->next_containing_mem;
1174       if (has_mem)
1175 	{
1176 	  *vp = v;
1177 	  vp = &(*vp)->next_containing_mem;
1178 	}
1179       else
1180 	v->next_containing_mem = NULL;
1181     }
1182   *vp = &dummy_val;
1183 }
1184 
1185 /* Invalidate DEST, which is being assigned to or clobbered.  */
1186 
1187 void
cselib_invalidate_rtx(rtx dest)1188 cselib_invalidate_rtx (rtx dest)
1189 {
1190   while (GET_CODE (dest) == SUBREG
1191 	 || GET_CODE (dest) == ZERO_EXTRACT
1192 	 || GET_CODE (dest) == STRICT_LOW_PART)
1193     dest = XEXP (dest, 0);
1194 
1195   if (REG_P (dest))
1196     cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
1197   else if (MEM_P (dest))
1198     cselib_invalidate_mem (dest);
1199 
1200   /* Some machines don't define AUTO_INC_DEC, but they still use push
1201      instructions.  We need to catch that case here in order to
1202      invalidate the stack pointer correctly.  Note that invalidating
1203      the stack pointer is different from invalidating DEST.  */
1204   if (push_operand (dest, GET_MODE (dest)))
1205     cselib_invalidate_rtx (stack_pointer_rtx);
1206 }
1207 
1208 /* A wrapper for cselib_invalidate_rtx to be called via note_stores.  */
1209 
1210 static void
cselib_invalidate_rtx_note_stores(rtx dest,rtx ignore ATTRIBUTE_UNUSED,void * data ATTRIBUTE_UNUSED)1211 cselib_invalidate_rtx_note_stores (rtx dest, rtx ignore ATTRIBUTE_UNUSED,
1212 				   void *data ATTRIBUTE_UNUSED)
1213 {
1214   cselib_invalidate_rtx (dest);
1215 }
1216 
1217 /* Record the result of a SET instruction.  DEST is being set; the source
1218    contains the value described by SRC_ELT.  If DEST is a MEM, DEST_ADDR_ELT
1219    describes its address.  */
1220 
1221 static void
cselib_record_set(rtx dest,cselib_val * src_elt,cselib_val * dest_addr_elt)1222 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
1223 {
1224   int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
1225 
1226   if (src_elt == 0 || side_effects_p (dest))
1227     return;
1228 
1229   if (dreg >= 0)
1230     {
1231       if (dreg < FIRST_PSEUDO_REGISTER)
1232 	{
1233 	  unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
1234 
1235 	  if (n > max_value_regs)
1236 	    max_value_regs = n;
1237 	}
1238 
1239       if (REG_VALUES (dreg) == 0)
1240 	{
1241 	  used_regs[n_used_regs++] = dreg;
1242 	  REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
1243 	}
1244       else
1245 	{
1246 	  /* The register should have been invalidated.  */
1247 	  gcc_assert (REG_VALUES (dreg)->elt == 0);
1248 	  REG_VALUES (dreg)->elt = src_elt;
1249 	}
1250 
1251       if (src_elt->locs == 0)
1252 	n_useless_values--;
1253       src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
1254     }
1255   else if (MEM_P (dest) && dest_addr_elt != 0
1256 	   && cselib_record_memory)
1257     {
1258       if (src_elt->locs == 0)
1259 	n_useless_values--;
1260       add_mem_for_addr (dest_addr_elt, src_elt, dest);
1261     }
1262 }
1263 
1264 /* Describe a single set that is part of an insn.  */
1265 struct set
1266 {
1267   rtx src;
1268   rtx dest;
1269   cselib_val *src_elt;
1270   cselib_val *dest_addr_elt;
1271 };
1272 
1273 /* There is no good way to determine how many elements there can be
1274    in a PARALLEL.  Since it's fairly cheap, use a really large number.  */
1275 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
1276 
1277 /* Record the effects of any sets in INSN.  */
1278 static void
cselib_record_sets(rtx insn)1279 cselib_record_sets (rtx insn)
1280 {
1281   int n_sets = 0;
1282   int i;
1283   struct set sets[MAX_SETS];
1284   rtx body = PATTERN (insn);
1285   rtx cond = 0;
1286 
1287   body = PATTERN (insn);
1288   if (GET_CODE (body) == COND_EXEC)
1289     {
1290       cond = COND_EXEC_TEST (body);
1291       body = COND_EXEC_CODE (body);
1292     }
1293 
1294   /* Find all sets.  */
1295   if (GET_CODE (body) == SET)
1296     {
1297       sets[0].src = SET_SRC (body);
1298       sets[0].dest = SET_DEST (body);
1299       n_sets = 1;
1300     }
1301   else if (GET_CODE (body) == PARALLEL)
1302     {
1303       /* Look through the PARALLEL and record the values being
1304 	 set, if possible.  Also handle any CLOBBERs.  */
1305       for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
1306 	{
1307 	  rtx x = XVECEXP (body, 0, i);
1308 
1309 	  if (GET_CODE (x) == SET)
1310 	    {
1311 	      sets[n_sets].src = SET_SRC (x);
1312 	      sets[n_sets].dest = SET_DEST (x);
1313 	      n_sets++;
1314 	    }
1315 	}
1316     }
1317 
1318   /* Look up the values that are read.  Do this before invalidating the
1319      locations that are written.  */
1320   for (i = 0; i < n_sets; i++)
1321     {
1322       rtx dest = sets[i].dest;
1323 
1324       /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
1325          the low part after invalidating any knowledge about larger modes.  */
1326       if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
1327 	sets[i].dest = dest = XEXP (dest, 0);
1328 
1329       /* We don't know how to record anything but REG or MEM.  */
1330       if (REG_P (dest)
1331 	  || (MEM_P (dest) && cselib_record_memory))
1332         {
1333 	  rtx src = sets[i].src;
1334 	  if (cond)
1335 	    src = gen_rtx_IF_THEN_ELSE (GET_MODE (src), cond, src, dest);
1336 	  sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1);
1337 	  if (MEM_P (dest))
1338 	    sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0), Pmode, 1);
1339 	  else
1340 	    sets[i].dest_addr_elt = 0;
1341 	}
1342     }
1343 
1344   /* Invalidate all locations written by this insn.  Note that the elts we
1345      looked up in the previous loop aren't affected, just some of their
1346      locations may go away.  */
1347   note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
1348 
1349   /* If this is an asm, look for duplicate sets.  This can happen when the
1350      user uses the same value as an output multiple times.  This is valid
1351      if the outputs are not actually used thereafter.  Treat this case as
1352      if the value isn't actually set.  We do this by smashing the destination
1353      to pc_rtx, so that we won't record the value later.  */
1354   if (n_sets >= 2 && asm_noperands (body) >= 0)
1355     {
1356       for (i = 0; i < n_sets; i++)
1357 	{
1358 	  rtx dest = sets[i].dest;
1359 	  if (REG_P (dest) || MEM_P (dest))
1360 	    {
1361 	      int j;
1362 	      for (j = i + 1; j < n_sets; j++)
1363 		if (rtx_equal_p (dest, sets[j].dest))
1364 		  {
1365 		    sets[i].dest = pc_rtx;
1366 		    sets[j].dest = pc_rtx;
1367 		  }
1368 	    }
1369 	}
1370     }
1371 
1372   /* Now enter the equivalences in our tables.  */
1373   for (i = 0; i < n_sets; i++)
1374     {
1375       rtx dest = sets[i].dest;
1376       if (REG_P (dest)
1377 	  || (MEM_P (dest) && cselib_record_memory))
1378 	cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
1379     }
1380 }
1381 
1382 /* Record the effects of INSN.  */
1383 
1384 void
cselib_process_insn(rtx insn)1385 cselib_process_insn (rtx insn)
1386 {
1387   int i;
1388   rtx x;
1389 
1390   if (find_reg_note (insn, REG_LIBCALL, NULL))
1391     cselib_current_insn_in_libcall = true;
1392   cselib_current_insn = insn;
1393 
1394   /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp.  */
1395   if (LABEL_P (insn)
1396       || (CALL_P (insn)
1397 	  && find_reg_note (insn, REG_SETJMP, NULL))
1398       || (NONJUMP_INSN_P (insn)
1399 	  && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
1400 	  && MEM_VOLATILE_P (PATTERN (insn))))
1401     {
1402       if (find_reg_note (insn, REG_RETVAL, NULL))
1403         cselib_current_insn_in_libcall = false;
1404       cselib_clear_table ();
1405       return;
1406     }
1407 
1408   if (! INSN_P (insn))
1409     {
1410       if (find_reg_note (insn, REG_RETVAL, NULL))
1411         cselib_current_insn_in_libcall = false;
1412       cselib_current_insn = 0;
1413       return;
1414     }
1415 
1416   /* If this is a call instruction, forget anything stored in a
1417      call clobbered register, or, if this is not a const call, in
1418      memory.  */
1419   if (CALL_P (insn))
1420     {
1421       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1422 	if (call_used_regs[i]
1423 	    || (REG_VALUES (i) && REG_VALUES (i)->elt
1424 		&& HARD_REGNO_CALL_PART_CLOBBERED (i,
1425 		      GET_MODE (REG_VALUES (i)->elt->u.val_rtx))))
1426 	  cselib_invalidate_regno (i, reg_raw_mode[i]);
1427 
1428       if (! CONST_OR_PURE_CALL_P (insn))
1429 	cselib_invalidate_mem (callmem);
1430     }
1431 
1432   cselib_record_sets (insn);
1433 
1434 #ifdef AUTO_INC_DEC
1435   /* Clobber any registers which appear in REG_INC notes.  We
1436      could keep track of the changes to their values, but it is
1437      unlikely to help.  */
1438   for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1439     if (REG_NOTE_KIND (x) == REG_INC)
1440       cselib_invalidate_rtx (XEXP (x, 0));
1441 #endif
1442 
1443   /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
1444      after we have processed the insn.  */
1445   if (CALL_P (insn))
1446     for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
1447       if (GET_CODE (XEXP (x, 0)) == CLOBBER)
1448 	cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
1449 
1450   if (find_reg_note (insn, REG_RETVAL, NULL))
1451     cselib_current_insn_in_libcall = false;
1452   cselib_current_insn = 0;
1453 
1454   if (n_useless_values > MAX_USELESS_VALUES
1455       /* remove_useless_values is linear in the hash table size.  Avoid
1456          quadratic behaviour for very large hashtables with very few
1457 	 useless elements.  */
1458       && (unsigned int)n_useless_values > cselib_hash_table->n_elements / 4)
1459     remove_useless_values ();
1460 }
1461 
1462 /* Initialize cselib for one pass.  The caller must also call
1463    init_alias_analysis.  */
1464 
1465 void
cselib_init(bool record_memory)1466 cselib_init (bool record_memory)
1467 {
1468   elt_list_pool = create_alloc_pool ("elt_list",
1469 				     sizeof (struct elt_list), 10);
1470   elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
1471 				         sizeof (struct elt_loc_list), 10);
1472   cselib_val_pool = create_alloc_pool ("cselib_val_list",
1473 				       sizeof (cselib_val), 10);
1474   value_pool = create_alloc_pool ("value", RTX_CODE_SIZE (VALUE), 100);
1475   cselib_record_memory = record_memory;
1476   /* This is only created once.  */
1477   if (! callmem)
1478     callmem = gen_rtx_MEM (BLKmode, const0_rtx);
1479 
1480   cselib_nregs = max_reg_num ();
1481 
1482   /* We preserve reg_values to allow expensive clearing of the whole thing.
1483      Reallocate it however if it happens to be too large.  */
1484   if (!reg_values || reg_values_size < cselib_nregs
1485       || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
1486     {
1487       if (reg_values)
1488 	free (reg_values);
1489       /* Some space for newly emit instructions so we don't end up
1490 	 reallocating in between passes.  */
1491       reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
1492       reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
1493     }
1494   used_regs = XNEWVEC (unsigned int, cselib_nregs);
1495   n_used_regs = 0;
1496   cselib_hash_table = htab_create (31, get_value_hash,
1497 				   entry_and_rtx_equal_p, NULL);
1498   cselib_current_insn_in_libcall = false;
1499 }
1500 
1501 /* Called when the current user is done with cselib.  */
1502 
1503 void
cselib_finish(void)1504 cselib_finish (void)
1505 {
1506   free_alloc_pool (elt_list_pool);
1507   free_alloc_pool (elt_loc_list_pool);
1508   free_alloc_pool (cselib_val_pool);
1509   free_alloc_pool (value_pool);
1510   cselib_clear_table ();
1511   htab_delete (cselib_hash_table);
1512   free (used_regs);
1513   used_regs = 0;
1514   cselib_hash_table = 0;
1515   n_useless_values = 0;
1516   next_unknown_value = 0;
1517 }
1518 
1519 #include "gt-cselib.h"
1520