xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- LoopReroll.cpp - Loop rerolling pass -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop reroller.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AliasSetTracker.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/IR/Use.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Transforms/Scalar.h"
53 #include "llvm/Transforms/Scalar/LoopReroll.h"
54 #include "llvm/Transforms/Utils.h"
55 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
56 #include "llvm/Transforms/Utils/Local.h"
57 #include "llvm/Transforms/Utils/LoopUtils.h"
58 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
59 #include <cassert>
60 #include <cstddef>
61 #include <cstdint>
62 #include <cstdlib>
63 #include <iterator>
64 #include <map>
65 #include <utility>
66 
67 using namespace llvm;
68 
69 #define DEBUG_TYPE "loop-reroll"
70 
71 STATISTIC(NumRerolledLoops, "Number of rerolled loops");
72 
73 static cl::opt<unsigned>
74 NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400),
75                           cl::Hidden,
76                           cl::desc("The maximum number of failures to tolerate"
77                                    " during fuzzy matching. (default: 400)"));
78 
79 // This loop re-rolling transformation aims to transform loops like this:
80 //
81 // int foo(int a);
82 // void bar(int *x) {
83 //   for (int i = 0; i < 500; i += 3) {
84 //     foo(i);
85 //     foo(i+1);
86 //     foo(i+2);
87 //   }
88 // }
89 //
90 // into a loop like this:
91 //
92 // void bar(int *x) {
93 //   for (int i = 0; i < 500; ++i)
94 //     foo(i);
95 // }
96 //
97 // It does this by looking for loops that, besides the latch code, are composed
98 // of isomorphic DAGs of instructions, with each DAG rooted at some increment
99 // to the induction variable, and where each DAG is isomorphic to the DAG
100 // rooted at the induction variable (excepting the sub-DAGs which root the
101 // other induction-variable increments). In other words, we're looking for loop
102 // bodies of the form:
103 //
104 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
105 // f(%iv)
106 // %iv.1 = add %iv, 1                <-- a root increment
107 // f(%iv.1)
108 // %iv.2 = add %iv, 2                <-- a root increment
109 // f(%iv.2)
110 // %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
111 // f(%iv.scale_m_1)
112 // ...
113 // %iv.next = add %iv, scale
114 // %cmp = icmp(%iv, ...)
115 // br %cmp, header, exit
116 //
117 // where each f(i) is a set of instructions that, collectively, are a function
118 // only of i (and other loop-invariant values).
119 //
120 // As a special case, we can also reroll loops like this:
121 //
122 // int foo(int);
123 // void bar(int *x) {
124 //   for (int i = 0; i < 500; ++i) {
125 //     x[3*i] = foo(0);
126 //     x[3*i+1] = foo(0);
127 //     x[3*i+2] = foo(0);
128 //   }
129 // }
130 //
131 // into this:
132 //
133 // void bar(int *x) {
134 //   for (int i = 0; i < 1500; ++i)
135 //     x[i] = foo(0);
136 // }
137 //
138 // in which case, we're looking for inputs like this:
139 //
140 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
141 // %scaled.iv = mul %iv, scale
142 // f(%scaled.iv)
143 // %scaled.iv.1 = add %scaled.iv, 1
144 // f(%scaled.iv.1)
145 // %scaled.iv.2 = add %scaled.iv, 2
146 // f(%scaled.iv.2)
147 // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
148 // f(%scaled.iv.scale_m_1)
149 // ...
150 // %iv.next = add %iv, 1
151 // %cmp = icmp(%iv, ...)
152 // br %cmp, header, exit
153 
154 namespace {
155 
156   enum IterationLimits {
157     /// The maximum number of iterations that we'll try and reroll.
158     IL_MaxRerollIterations = 32,
159     /// The bitvector index used by loop induction variables and other
160     /// instructions that belong to all iterations.
161     IL_All,
162     IL_End
163   };
164 
165   class LoopRerollLegacyPass : public LoopPass {
166   public:
167     static char ID; // Pass ID, replacement for typeid
168 
LoopRerollLegacyPass()169     LoopRerollLegacyPass() : LoopPass(ID) {
170       initializeLoopRerollLegacyPassPass(*PassRegistry::getPassRegistry());
171     }
172 
173     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
174 
getAnalysisUsage(AnalysisUsage & AU) const175     void getAnalysisUsage(AnalysisUsage &AU) const override {
176       AU.addRequired<TargetLibraryInfoWrapperPass>();
177       getLoopAnalysisUsage(AU);
178     }
179   };
180 
181   class LoopReroll {
182   public:
LoopReroll(AliasAnalysis * AA,LoopInfo * LI,ScalarEvolution * SE,TargetLibraryInfo * TLI,DominatorTree * DT,bool PreserveLCSSA)183     LoopReroll(AliasAnalysis *AA, LoopInfo *LI, ScalarEvolution *SE,
184                TargetLibraryInfo *TLI, DominatorTree *DT, bool PreserveLCSSA)
185         : AA(AA), LI(LI), SE(SE), TLI(TLI), DT(DT),
186           PreserveLCSSA(PreserveLCSSA) {}
187     bool runOnLoop(Loop *L);
188 
189   protected:
190     AliasAnalysis *AA;
191     LoopInfo *LI;
192     ScalarEvolution *SE;
193     TargetLibraryInfo *TLI;
194     DominatorTree *DT;
195     bool PreserveLCSSA;
196 
197     using SmallInstructionVector = SmallVector<Instruction *, 16>;
198     using SmallInstructionSet = SmallPtrSet<Instruction *, 16>;
199 
200     // Map between induction variable and its increment
201     DenseMap<Instruction *, int64_t> IVToIncMap;
202 
203     // For loop with multiple induction variable, remember the one used only to
204     // control the loop.
205     Instruction *LoopControlIV;
206 
207     // A chain of isomorphic instructions, identified by a single-use PHI
208     // representing a reduction. Only the last value may be used outside the
209     // loop.
210     struct SimpleLoopReduction {
SimpleLoopReduction__anon29ecfd3f0111::LoopReroll::SimpleLoopReduction211       SimpleLoopReduction(Instruction *P, Loop *L) : Instructions(1, P) {
212         assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
213         add(L);
214       }
215 
valid__anon29ecfd3f0111::LoopReroll::SimpleLoopReduction216       bool valid() const {
217         return Valid;
218       }
219 
getPHI__anon29ecfd3f0111::LoopReroll::SimpleLoopReduction220       Instruction *getPHI() const {
221         assert(Valid && "Using invalid reduction");
222         return Instructions.front();
223       }
224 
getReducedValue__anon29ecfd3f0111::LoopReroll::SimpleLoopReduction225       Instruction *getReducedValue() const {
226         assert(Valid && "Using invalid reduction");
227         return Instructions.back();
228       }
229 
get__anon29ecfd3f0111::LoopReroll::SimpleLoopReduction230       Instruction *get(size_t i) const {
231         assert(Valid && "Using invalid reduction");
232         return Instructions[i+1];
233       }
234 
operator []__anon29ecfd3f0111::LoopReroll::SimpleLoopReduction235       Instruction *operator [] (size_t i) const { return get(i); }
236 
237       // The size, ignoring the initial PHI.
size__anon29ecfd3f0111::LoopReroll::SimpleLoopReduction238       size_t size() const {
239         assert(Valid && "Using invalid reduction");
240         return Instructions.size()-1;
241       }
242 
243       using iterator = SmallInstructionVector::iterator;
244       using const_iterator = SmallInstructionVector::const_iterator;
245 
begin__anon29ecfd3f0111::LoopReroll::SimpleLoopReduction246       iterator begin() {
247         assert(Valid && "Using invalid reduction");
248         return std::next(Instructions.begin());
249       }
250 
begin__anon29ecfd3f0111::LoopReroll::SimpleLoopReduction251       const_iterator begin() const {
252         assert(Valid && "Using invalid reduction");
253         return std::next(Instructions.begin());
254       }
255 
end__anon29ecfd3f0111::LoopReroll::SimpleLoopReduction256       iterator end() { return Instructions.end(); }
end__anon29ecfd3f0111::LoopReroll::SimpleLoopReduction257       const_iterator end() const { return Instructions.end(); }
258 
259     protected:
260       bool Valid = false;
261       SmallInstructionVector Instructions;
262 
263       void add(Loop *L);
264     };
265 
266     // The set of all reductions, and state tracking of possible reductions
267     // during loop instruction processing.
268     struct ReductionTracker {
269       using SmallReductionVector = SmallVector<SimpleLoopReduction, 16>;
270 
271       // Add a new possible reduction.
addSLR__anon29ecfd3f0111::LoopReroll::ReductionTracker272       void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); }
273 
274       // Setup to track possible reductions corresponding to the provided
275       // rerolling scale. Only reductions with a number of non-PHI instructions
276       // that is divisible by the scale are considered. Three instructions sets
277       // are filled in:
278       //   - A set of all possible instructions in eligible reductions.
279       //   - A set of all PHIs in eligible reductions
280       //   - A set of all reduced values (last instructions) in eligible
281       //     reductions.
restrictToScale__anon29ecfd3f0111::LoopReroll::ReductionTracker282       void restrictToScale(uint64_t Scale,
283                            SmallInstructionSet &PossibleRedSet,
284                            SmallInstructionSet &PossibleRedPHISet,
285                            SmallInstructionSet &PossibleRedLastSet) {
286         PossibleRedIdx.clear();
287         PossibleRedIter.clear();
288         Reds.clear();
289 
290         for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
291           if (PossibleReds[i].size() % Scale == 0) {
292             PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
293             PossibleRedPHISet.insert(PossibleReds[i].getPHI());
294 
295             PossibleRedSet.insert(PossibleReds[i].getPHI());
296             PossibleRedIdx[PossibleReds[i].getPHI()] = i;
297             for (Instruction *J : PossibleReds[i]) {
298               PossibleRedSet.insert(J);
299               PossibleRedIdx[J] = i;
300             }
301           }
302       }
303 
304       // The functions below are used while processing the loop instructions.
305 
306       // Are the two instructions both from reductions, and furthermore, from
307       // the same reduction?
isPairInSame__anon29ecfd3f0111::LoopReroll::ReductionTracker308       bool isPairInSame(Instruction *J1, Instruction *J2) {
309         DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
310         if (J1I != PossibleRedIdx.end()) {
311           DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
312           if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
313             return true;
314         }
315 
316         return false;
317       }
318 
319       // The two provided instructions, the first from the base iteration, and
320       // the second from iteration i, form a matched pair. If these are part of
321       // a reduction, record that fact.
recordPair__anon29ecfd3f0111::LoopReroll::ReductionTracker322       void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
323         if (PossibleRedIdx.count(J1)) {
324           assert(PossibleRedIdx.count(J2) &&
325                  "Recording reduction vs. non-reduction instruction?");
326 
327           PossibleRedIter[J1] = 0;
328           PossibleRedIter[J2] = i;
329 
330           int Idx = PossibleRedIdx[J1];
331           assert(Idx == PossibleRedIdx[J2] &&
332                  "Recording pair from different reductions?");
333           Reds.insert(Idx);
334         }
335       }
336 
337       // The functions below can be called after we've finished processing all
338       // instructions in the loop, and we know which reductions were selected.
339 
340       bool validateSelected();
341       void replaceSelected();
342 
343     protected:
344       // The vector of all possible reductions (for any scale).
345       SmallReductionVector PossibleReds;
346 
347       DenseMap<Instruction *, int> PossibleRedIdx;
348       DenseMap<Instruction *, int> PossibleRedIter;
349       DenseSet<int> Reds;
350     };
351 
352     // A DAGRootSet models an induction variable being used in a rerollable
353     // loop. For example,
354     //
355     //   x[i*3+0] = y1
356     //   x[i*3+1] = y2
357     //   x[i*3+2] = y3
358     //
359     //   Base instruction -> i*3
360     //                    +---+----+
361     //                   /    |     \
362     //               ST[y1]  +1     +2  <-- Roots
363     //                        |      |
364     //                      ST[y2] ST[y3]
365     //
366     // There may be multiple DAGRoots, for example:
367     //
368     //   x[i*2+0] = ...   (1)
369     //   x[i*2+1] = ...   (1)
370     //   x[i*2+4] = ...   (2)
371     //   x[i*2+5] = ...   (2)
372     //   x[(i+1234)*2+5678] = ... (3)
373     //   x[(i+1234)*2+5679] = ... (3)
374     //
375     // The loop will be rerolled by adding a new loop induction variable,
376     // one for the Base instruction in each DAGRootSet.
377     //
378     struct DAGRootSet {
379       Instruction *BaseInst;
380       SmallInstructionVector Roots;
381 
382       // The instructions between IV and BaseInst (but not including BaseInst).
383       SmallInstructionSet SubsumedInsts;
384     };
385 
386     // The set of all DAG roots, and state tracking of all roots
387     // for a particular induction variable.
388     struct DAGRootTracker {
DAGRootTracker__anon29ecfd3f0111::LoopReroll::DAGRootTracker389       DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
390                      ScalarEvolution *SE, AliasAnalysis *AA,
391                      TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI,
392                      bool PreserveLCSSA,
393                      DenseMap<Instruction *, int64_t> &IncrMap,
394                      Instruction *LoopCtrlIV)
395           : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI),
396             PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap),
397             LoopControlIV(LoopCtrlIV) {}
398 
399       /// Stage 1: Find all the DAG roots for the induction variable.
400       bool findRoots();
401 
402       /// Stage 2: Validate if the found roots are valid.
403       bool validate(ReductionTracker &Reductions);
404 
405       /// Stage 3: Assuming validate() returned true, perform the
406       /// replacement.
407       /// @param BackedgeTakenCount The backedge-taken count of L.
408       void replace(const SCEV *BackedgeTakenCount);
409 
410     protected:
411       using UsesTy = MapVector<Instruction *, BitVector>;
412 
413       void findRootsRecursive(Instruction *IVU,
414                               SmallInstructionSet SubsumedInsts);
415       bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts);
416       bool collectPossibleRoots(Instruction *Base,
417                                 std::map<int64_t,Instruction*> &Roots);
418       bool validateRootSet(DAGRootSet &DRS);
419 
420       bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet);
421       void collectInLoopUserSet(const SmallInstructionVector &Roots,
422                                 const SmallInstructionSet &Exclude,
423                                 const SmallInstructionSet &Final,
424                                 DenseSet<Instruction *> &Users);
425       void collectInLoopUserSet(Instruction *Root,
426                                 const SmallInstructionSet &Exclude,
427                                 const SmallInstructionSet &Final,
428                                 DenseSet<Instruction *> &Users);
429 
430       UsesTy::iterator nextInstr(int Val, UsesTy &In,
431                                  const SmallInstructionSet &Exclude,
432                                  UsesTy::iterator *StartI=nullptr);
433       bool isBaseInst(Instruction *I);
434       bool isRootInst(Instruction *I);
435       bool instrDependsOn(Instruction *I,
436                           UsesTy::iterator Start,
437                           UsesTy::iterator End);
438       void replaceIV(DAGRootSet &DRS, const SCEV *Start, const SCEV *IncrExpr);
439 
440       LoopReroll *Parent;
441 
442       // Members of Parent, replicated here for brevity.
443       Loop *L;
444       ScalarEvolution *SE;
445       AliasAnalysis *AA;
446       TargetLibraryInfo *TLI;
447       DominatorTree *DT;
448       LoopInfo *LI;
449       bool PreserveLCSSA;
450 
451       // The loop induction variable.
452       Instruction *IV;
453 
454       // Loop step amount.
455       int64_t Inc;
456 
457       // Loop reroll count; if Inc == 1, this records the scaling applied
458       // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ;
459       // If Inc is not 1, Scale = Inc.
460       uint64_t Scale;
461 
462       // The roots themselves.
463       SmallVector<DAGRootSet,16> RootSets;
464 
465       // All increment instructions for IV.
466       SmallInstructionVector LoopIncs;
467 
468       // Map of all instructions in the loop (in order) to the iterations
469       // they are used in (or specially, IL_All for instructions
470       // used in the loop increment mechanism).
471       UsesTy Uses;
472 
473       // Map between induction variable and its increment
474       DenseMap<Instruction *, int64_t> &IVToIncMap;
475 
476       Instruction *LoopControlIV;
477     };
478 
479     // Check if it is a compare-like instruction whose user is a branch
isCompareUsedByBranch(Instruction * I)480     bool isCompareUsedByBranch(Instruction *I) {
481       auto *TI = I->getParent()->getTerminator();
482       if (!isa<BranchInst>(TI) || !isa<CmpInst>(I))
483         return false;
484       return I->hasOneUse() && TI->getOperand(0) == I;
485     };
486 
487     bool isLoopControlIV(Loop *L, Instruction *IV);
488     void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
489     void collectPossibleReductions(Loop *L,
490            ReductionTracker &Reductions);
491     bool reroll(Instruction *IV, Loop *L, BasicBlock *Header,
492                 const SCEV *BackedgeTakenCount, ReductionTracker &Reductions);
493   };
494 
495 } // end anonymous namespace
496 
497 char LoopRerollLegacyPass::ID = 0;
498 
499 INITIALIZE_PASS_BEGIN(LoopRerollLegacyPass, "loop-reroll", "Reroll loops",
500                       false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)501 INITIALIZE_PASS_DEPENDENCY(LoopPass)
502 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
503 INITIALIZE_PASS_END(LoopRerollLegacyPass, "loop-reroll", "Reroll loops", false,
504                     false)
505 
506 Pass *llvm::createLoopRerollPass() { return new LoopRerollLegacyPass; }
507 
508 // Returns true if the provided instruction is used outside the given loop.
509 // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
510 // non-loop blocks to be outside the loop.
hasUsesOutsideLoop(Instruction * I,Loop * L)511 static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
512   for (User *U : I->users()) {
513     if (!L->contains(cast<Instruction>(U)))
514       return true;
515   }
516   return false;
517 }
518 
519 // Check if an IV is only used to control the loop. There are two cases:
520 // 1. It only has one use which is loop increment, and the increment is only
521 // used by comparison and the PHI (could has sext with nsw in between), and the
522 // comparison is only used by branch.
523 // 2. It is used by loop increment and the comparison, the loop increment is
524 // only used by the PHI, and the comparison is used only by the branch.
isLoopControlIV(Loop * L,Instruction * IV)525 bool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) {
526   unsigned IVUses = IV->getNumUses();
527   if (IVUses != 2 && IVUses != 1)
528     return false;
529 
530   for (auto *User : IV->users()) {
531     int32_t IncOrCmpUses = User->getNumUses();
532     bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User));
533 
534     // User can only have one or two uses.
535     if (IncOrCmpUses != 2 && IncOrCmpUses != 1)
536       return false;
537 
538     // Case 1
539     if (IVUses == 1) {
540       // The only user must be the loop increment.
541       // The loop increment must have two uses.
542       if (IsCompInst || IncOrCmpUses != 2)
543         return false;
544     }
545 
546     // Case 2
547     if (IVUses == 2 && IncOrCmpUses != 1)
548       return false;
549 
550     // The users of the IV must be a binary operation or a comparison
551     if (auto *BO = dyn_cast<BinaryOperator>(User)) {
552       if (BO->getOpcode() == Instruction::Add) {
553         // Loop Increment
554         // User of Loop Increment should be either PHI or CMP
555         for (auto *UU : User->users()) {
556           if (PHINode *PN = dyn_cast<PHINode>(UU)) {
557             if (PN != IV)
558               return false;
559           }
560           // Must be a CMP or an ext (of a value with nsw) then CMP
561           else {
562             Instruction *UUser = dyn_cast<Instruction>(UU);
563             // Skip SExt if we are extending an nsw value
564             // TODO: Allow ZExt too
565             if (BO->hasNoSignedWrap() && UUser && UUser->hasOneUse() &&
566                 isa<SExtInst>(UUser))
567               UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
568             if (!isCompareUsedByBranch(UUser))
569               return false;
570           }
571         }
572       } else
573         return false;
574       // Compare : can only have one use, and must be branch
575     } else if (!IsCompInst)
576       return false;
577   }
578   return true;
579 }
580 
581 // Collect the list of loop induction variables with respect to which it might
582 // be possible to reroll the loop.
collectPossibleIVs(Loop * L,SmallInstructionVector & PossibleIVs)583 void LoopReroll::collectPossibleIVs(Loop *L,
584                                     SmallInstructionVector &PossibleIVs) {
585   BasicBlock *Header = L->getHeader();
586   for (BasicBlock::iterator I = Header->begin(),
587        IE = Header->getFirstInsertionPt(); I != IE; ++I) {
588     if (!isa<PHINode>(I))
589       continue;
590     if (!I->getType()->isIntegerTy() && !I->getType()->isPointerTy())
591       continue;
592 
593     if (const SCEVAddRecExpr *PHISCEV =
594             dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&*I))) {
595       if (PHISCEV->getLoop() != L)
596         continue;
597       if (!PHISCEV->isAffine())
598         continue;
599       auto IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE));
600       if (IncSCEV) {
601         IVToIncMap[&*I] = IncSCEV->getValue()->getSExtValue();
602         LLVM_DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << *PHISCEV
603                           << "\n");
604 
605         if (isLoopControlIV(L, &*I)) {
606           assert(!LoopControlIV && "Found two loop control only IV");
607           LoopControlIV = &(*I);
608           LLVM_DEBUG(dbgs() << "LRR: Possible loop control only IV: " << *I
609                             << " = " << *PHISCEV << "\n");
610         } else
611           PossibleIVs.push_back(&*I);
612       }
613     }
614   }
615 }
616 
617 // Add the remainder of the reduction-variable chain to the instruction vector
618 // (the initial PHINode has already been added). If successful, the object is
619 // marked as valid.
add(Loop * L)620 void LoopReroll::SimpleLoopReduction::add(Loop *L) {
621   assert(!Valid && "Cannot add to an already-valid chain");
622 
623   // The reduction variable must be a chain of single-use instructions
624   // (including the PHI), except for the last value (which is used by the PHI
625   // and also outside the loop).
626   Instruction *C = Instructions.front();
627   if (C->user_empty())
628     return;
629 
630   do {
631     C = cast<Instruction>(*C->user_begin());
632     if (C->hasOneUse()) {
633       if (!C->isBinaryOp())
634         return;
635 
636       if (!(isa<PHINode>(Instructions.back()) ||
637             C->isSameOperationAs(Instructions.back())))
638         return;
639 
640       Instructions.push_back(C);
641     }
642   } while (C->hasOneUse());
643 
644   if (Instructions.size() < 2 ||
645       !C->isSameOperationAs(Instructions.back()) ||
646       C->use_empty())
647     return;
648 
649   // C is now the (potential) last instruction in the reduction chain.
650   for (User *U : C->users()) {
651     // The only in-loop user can be the initial PHI.
652     if (L->contains(cast<Instruction>(U)))
653       if (cast<Instruction>(U) != Instructions.front())
654         return;
655   }
656 
657   Instructions.push_back(C);
658   Valid = true;
659 }
660 
661 // Collect the vector of possible reduction variables.
collectPossibleReductions(Loop * L,ReductionTracker & Reductions)662 void LoopReroll::collectPossibleReductions(Loop *L,
663   ReductionTracker &Reductions) {
664   BasicBlock *Header = L->getHeader();
665   for (BasicBlock::iterator I = Header->begin(),
666        IE = Header->getFirstInsertionPt(); I != IE; ++I) {
667     if (!isa<PHINode>(I))
668       continue;
669     if (!I->getType()->isSingleValueType())
670       continue;
671 
672     SimpleLoopReduction SLR(&*I, L);
673     if (!SLR.valid())
674       continue;
675 
676     LLVM_DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with "
677                       << SLR.size() << " chained instructions)\n");
678     Reductions.addSLR(SLR);
679   }
680 }
681 
682 // Collect the set of all users of the provided root instruction. This set of
683 // users contains not only the direct users of the root instruction, but also
684 // all users of those users, and so on. There are two exceptions:
685 //
686 //   1. Instructions in the set of excluded instructions are never added to the
687 //   use set (even if they are users). This is used, for example, to exclude
688 //   including root increments in the use set of the primary IV.
689 //
690 //   2. Instructions in the set of final instructions are added to the use set
691 //   if they are users, but their users are not added. This is used, for
692 //   example, to prevent a reduction update from forcing all later reduction
693 //   updates into the use set.
collectInLoopUserSet(Instruction * Root,const SmallInstructionSet & Exclude,const SmallInstructionSet & Final,DenseSet<Instruction * > & Users)694 void LoopReroll::DAGRootTracker::collectInLoopUserSet(
695   Instruction *Root, const SmallInstructionSet &Exclude,
696   const SmallInstructionSet &Final,
697   DenseSet<Instruction *> &Users) {
698   SmallInstructionVector Queue(1, Root);
699   while (!Queue.empty()) {
700     Instruction *I = Queue.pop_back_val();
701     if (!Users.insert(I).second)
702       continue;
703 
704     if (!Final.count(I))
705       for (Use &U : I->uses()) {
706         Instruction *User = cast<Instruction>(U.getUser());
707         if (PHINode *PN = dyn_cast<PHINode>(User)) {
708           // Ignore "wrap-around" uses to PHIs of this loop's header.
709           if (PN->getIncomingBlock(U) == L->getHeader())
710             continue;
711         }
712 
713         if (L->contains(User) && !Exclude.count(User)) {
714           Queue.push_back(User);
715         }
716       }
717 
718     // We also want to collect single-user "feeder" values.
719     for (Use &U : I->operands()) {
720       if (Instruction *Op = dyn_cast<Instruction>(U))
721         if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
722             !Final.count(Op))
723           Queue.push_back(Op);
724     }
725   }
726 }
727 
728 // Collect all of the users of all of the provided root instructions (combined
729 // into a single set).
collectInLoopUserSet(const SmallInstructionVector & Roots,const SmallInstructionSet & Exclude,const SmallInstructionSet & Final,DenseSet<Instruction * > & Users)730 void LoopReroll::DAGRootTracker::collectInLoopUserSet(
731   const SmallInstructionVector &Roots,
732   const SmallInstructionSet &Exclude,
733   const SmallInstructionSet &Final,
734   DenseSet<Instruction *> &Users) {
735   for (Instruction *Root : Roots)
736     collectInLoopUserSet(Root, Exclude, Final, Users);
737 }
738 
isUnorderedLoadStore(Instruction * I)739 static bool isUnorderedLoadStore(Instruction *I) {
740   if (LoadInst *LI = dyn_cast<LoadInst>(I))
741     return LI->isUnordered();
742   if (StoreInst *SI = dyn_cast<StoreInst>(I))
743     return SI->isUnordered();
744   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
745     return !MI->isVolatile();
746   return false;
747 }
748 
749 /// Return true if IVU is a "simple" arithmetic operation.
750 /// This is used for narrowing the search space for DAGRoots; only arithmetic
751 /// and GEPs can be part of a DAGRoot.
isSimpleArithmeticOp(User * IVU)752 static bool isSimpleArithmeticOp(User *IVU) {
753   if (Instruction *I = dyn_cast<Instruction>(IVU)) {
754     switch (I->getOpcode()) {
755     default: return false;
756     case Instruction::Add:
757     case Instruction::Sub:
758     case Instruction::Mul:
759     case Instruction::Shl:
760     case Instruction::AShr:
761     case Instruction::LShr:
762     case Instruction::GetElementPtr:
763     case Instruction::Trunc:
764     case Instruction::ZExt:
765     case Instruction::SExt:
766       return true;
767     }
768   }
769   return false;
770 }
771 
isLoopIncrement(User * U,Instruction * IV)772 static bool isLoopIncrement(User *U, Instruction *IV) {
773   BinaryOperator *BO = dyn_cast<BinaryOperator>(U);
774 
775   if ((BO && BO->getOpcode() != Instruction::Add) ||
776       (!BO && !isa<GetElementPtrInst>(U)))
777     return false;
778 
779   for (auto *UU : U->users()) {
780     PHINode *PN = dyn_cast<PHINode>(UU);
781     if (PN && PN == IV)
782       return true;
783   }
784   return false;
785 }
786 
787 bool LoopReroll::DAGRootTracker::
collectPossibleRoots(Instruction * Base,std::map<int64_t,Instruction * > & Roots)788 collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) {
789   SmallInstructionVector BaseUsers;
790 
791   for (auto *I : Base->users()) {
792     ConstantInt *CI = nullptr;
793 
794     if (isLoopIncrement(I, IV)) {
795       LoopIncs.push_back(cast<Instruction>(I));
796       continue;
797     }
798 
799     // The root nodes must be either GEPs, ORs or ADDs.
800     if (auto *BO = dyn_cast<BinaryOperator>(I)) {
801       if (BO->getOpcode() == Instruction::Add ||
802           BO->getOpcode() == Instruction::Or)
803         CI = dyn_cast<ConstantInt>(BO->getOperand(1));
804     } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
805       Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1);
806       CI = dyn_cast<ConstantInt>(LastOperand);
807     }
808 
809     if (!CI) {
810       if (Instruction *II = dyn_cast<Instruction>(I)) {
811         BaseUsers.push_back(II);
812         continue;
813       } else {
814         LLVM_DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I
815                           << "\n");
816         return false;
817       }
818     }
819 
820     int64_t V = std::abs(CI->getValue().getSExtValue());
821     if (Roots.find(V) != Roots.end())
822       // No duplicates, please.
823       return false;
824 
825     Roots[V] = cast<Instruction>(I);
826   }
827 
828   // Make sure we have at least two roots.
829   if (Roots.empty() || (Roots.size() == 1 && BaseUsers.empty()))
830     return false;
831 
832   // If we found non-loop-inc, non-root users of Base, assume they are
833   // for the zeroth root index. This is because "add %a, 0" gets optimized
834   // away.
835   if (BaseUsers.size()) {
836     if (Roots.find(0) != Roots.end()) {
837       LLVM_DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n");
838       return false;
839     }
840     Roots[0] = Base;
841   }
842 
843   // Calculate the number of users of the base, or lowest indexed, iteration.
844   unsigned NumBaseUses = BaseUsers.size();
845   if (NumBaseUses == 0)
846     NumBaseUses = Roots.begin()->second->getNumUses();
847 
848   // Check that every node has the same number of users.
849   for (auto &KV : Roots) {
850     if (KV.first == 0)
851       continue;
852     if (!KV.second->hasNUses(NumBaseUses)) {
853       LLVM_DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: "
854                         << "#Base=" << NumBaseUses
855                         << ", #Root=" << KV.second->getNumUses() << "\n");
856       return false;
857     }
858   }
859 
860   return true;
861 }
862 
863 void LoopReroll::DAGRootTracker::
findRootsRecursive(Instruction * I,SmallInstructionSet SubsumedInsts)864 findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) {
865   // Does the user look like it could be part of a root set?
866   // All its users must be simple arithmetic ops.
867   if (I->hasNUsesOrMore(IL_MaxRerollIterations + 1))
868     return;
869 
870   if (I != IV && findRootsBase(I, SubsumedInsts))
871     return;
872 
873   SubsumedInsts.insert(I);
874 
875   for (User *V : I->users()) {
876     Instruction *I = cast<Instruction>(V);
877     if (is_contained(LoopIncs, I))
878       continue;
879 
880     if (!isSimpleArithmeticOp(I))
881       continue;
882 
883     // The recursive call makes a copy of SubsumedInsts.
884     findRootsRecursive(I, SubsumedInsts);
885   }
886 }
887 
validateRootSet(DAGRootSet & DRS)888 bool LoopReroll::DAGRootTracker::validateRootSet(DAGRootSet &DRS) {
889   if (DRS.Roots.empty())
890     return false;
891 
892   // If the value of the base instruction is used outside the loop, we cannot
893   // reroll the loop. Check for other root instructions is unnecessary because
894   // they don't match any base instructions if their values are used outside.
895   if (hasUsesOutsideLoop(DRS.BaseInst, L))
896     return false;
897 
898   // Consider a DAGRootSet with N-1 roots (so N different values including
899   //   BaseInst).
900   // Define d = Roots[0] - BaseInst, which should be the same as
901   //   Roots[I] - Roots[I-1] for all I in [1..N).
902   // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the
903   //   loop iteration J.
904   //
905   // Now, For the loop iterations to be consecutive:
906   //   D = d * N
907   const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
908   if (!ADR)
909     return false;
910 
911   // Check that the first root is evenly spaced.
912   unsigned N = DRS.Roots.size() + 1;
913   const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), ADR);
914   const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N);
915   if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV))
916     return false;
917 
918   // Check that the remainling roots are evenly spaced.
919   for (unsigned i = 1; i < N - 1; ++i) {
920     const SCEV *NewStepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[i]),
921                                                SE->getSCEV(DRS.Roots[i-1]));
922     if (NewStepSCEV != StepSCEV)
923       return false;
924   }
925 
926   return true;
927 }
928 
929 bool LoopReroll::DAGRootTracker::
findRootsBase(Instruction * IVU,SmallInstructionSet SubsumedInsts)930 findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) {
931   // The base of a RootSet must be an AddRec, so it can be erased.
932   const auto *IVU_ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IVU));
933   if (!IVU_ADR || IVU_ADR->getLoop() != L)
934     return false;
935 
936   std::map<int64_t, Instruction*> V;
937   if (!collectPossibleRoots(IVU, V))
938     return false;
939 
940   // If we didn't get a root for index zero, then IVU must be
941   // subsumed.
942   if (V.find(0) == V.end())
943     SubsumedInsts.insert(IVU);
944 
945   // Partition the vector into monotonically increasing indexes.
946   DAGRootSet DRS;
947   DRS.BaseInst = nullptr;
948 
949   SmallVector<DAGRootSet, 16> PotentialRootSets;
950 
951   for (auto &KV : V) {
952     if (!DRS.BaseInst) {
953       DRS.BaseInst = KV.second;
954       DRS.SubsumedInsts = SubsumedInsts;
955     } else if (DRS.Roots.empty()) {
956       DRS.Roots.push_back(KV.second);
957     } else if (V.find(KV.first - 1) != V.end()) {
958       DRS.Roots.push_back(KV.second);
959     } else {
960       // Linear sequence terminated.
961       if (!validateRootSet(DRS))
962         return false;
963 
964       // Construct a new DAGRootSet with the next sequence.
965       PotentialRootSets.push_back(DRS);
966       DRS.BaseInst = KV.second;
967       DRS.Roots.clear();
968     }
969   }
970 
971   if (!validateRootSet(DRS))
972     return false;
973 
974   PotentialRootSets.push_back(DRS);
975 
976   RootSets.append(PotentialRootSets.begin(), PotentialRootSets.end());
977 
978   return true;
979 }
980 
findRoots()981 bool LoopReroll::DAGRootTracker::findRoots() {
982   Inc = IVToIncMap[IV];
983 
984   assert(RootSets.empty() && "Unclean state!");
985   if (std::abs(Inc) == 1) {
986     for (auto *IVU : IV->users()) {
987       if (isLoopIncrement(IVU, IV))
988         LoopIncs.push_back(cast<Instruction>(IVU));
989     }
990     findRootsRecursive(IV, SmallInstructionSet());
991     LoopIncs.push_back(IV);
992   } else {
993     if (!findRootsBase(IV, SmallInstructionSet()))
994       return false;
995   }
996 
997   // Ensure all sets have the same size.
998   if (RootSets.empty()) {
999     LLVM_DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n");
1000     return false;
1001   }
1002   for (auto &V : RootSets) {
1003     if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) {
1004       LLVM_DEBUG(
1005           dbgs()
1006           << "LRR: Aborting because not all root sets have the same size\n");
1007       return false;
1008     }
1009   }
1010 
1011   Scale = RootSets[0].Roots.size() + 1;
1012 
1013   if (Scale > IL_MaxRerollIterations) {
1014     LLVM_DEBUG(dbgs() << "LRR: Aborting - too many iterations found. "
1015                       << "#Found=" << Scale
1016                       << ", #Max=" << IL_MaxRerollIterations << "\n");
1017     return false;
1018   }
1019 
1020   LLVM_DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale
1021                     << "\n");
1022 
1023   return true;
1024 }
1025 
collectUsedInstructions(SmallInstructionSet & PossibleRedSet)1026 bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) {
1027   // Populate the MapVector with all instructions in the block, in order first,
1028   // so we can iterate over the contents later in perfect order.
1029   for (auto &I : *L->getHeader()) {
1030     Uses[&I].resize(IL_End);
1031   }
1032 
1033   SmallInstructionSet Exclude;
1034   for (auto &DRS : RootSets) {
1035     Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
1036     Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
1037     Exclude.insert(DRS.BaseInst);
1038   }
1039   Exclude.insert(LoopIncs.begin(), LoopIncs.end());
1040 
1041   for (auto &DRS : RootSets) {
1042     DenseSet<Instruction*> VBase;
1043     collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase);
1044     for (auto *I : VBase) {
1045       Uses[I].set(0);
1046     }
1047 
1048     unsigned Idx = 1;
1049     for (auto *Root : DRS.Roots) {
1050       DenseSet<Instruction*> V;
1051       collectInLoopUserSet(Root, Exclude, PossibleRedSet, V);
1052 
1053       // While we're here, check the use sets are the same size.
1054       if (V.size() != VBase.size()) {
1055         LLVM_DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n");
1056         return false;
1057       }
1058 
1059       for (auto *I : V) {
1060         Uses[I].set(Idx);
1061       }
1062       ++Idx;
1063     }
1064 
1065     // Make sure our subsumed instructions are remembered too.
1066     for (auto *I : DRS.SubsumedInsts) {
1067       Uses[I].set(IL_All);
1068     }
1069   }
1070 
1071   // Make sure the loop increments are also accounted for.
1072 
1073   Exclude.clear();
1074   for (auto &DRS : RootSets) {
1075     Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
1076     Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
1077     Exclude.insert(DRS.BaseInst);
1078   }
1079 
1080   DenseSet<Instruction*> V;
1081   collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V);
1082   for (auto *I : V) {
1083     if (I->mayHaveSideEffects()) {
1084       LLVM_DEBUG(dbgs() << "LRR: Aborting - "
1085                         << "An instruction which does not belong to any root "
1086                         << "sets must not have side effects: " << *I);
1087       return false;
1088     }
1089     Uses[I].set(IL_All);
1090   }
1091 
1092   return true;
1093 }
1094 
1095 /// Get the next instruction in "In" that is a member of set Val.
1096 /// Start searching from StartI, and do not return anything in Exclude.
1097 /// If StartI is not given, start from In.begin().
1098 LoopReroll::DAGRootTracker::UsesTy::iterator
nextInstr(int Val,UsesTy & In,const SmallInstructionSet & Exclude,UsesTy::iterator * StartI)1099 LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In,
1100                                       const SmallInstructionSet &Exclude,
1101                                       UsesTy::iterator *StartI) {
1102   UsesTy::iterator I = StartI ? *StartI : In.begin();
1103   while (I != In.end() && (I->second.test(Val) == 0 ||
1104                            Exclude.contains(I->first)))
1105     ++I;
1106   return I;
1107 }
1108 
isBaseInst(Instruction * I)1109 bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) {
1110   for (auto &DRS : RootSets) {
1111     if (DRS.BaseInst == I)
1112       return true;
1113   }
1114   return false;
1115 }
1116 
isRootInst(Instruction * I)1117 bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) {
1118   for (auto &DRS : RootSets) {
1119     if (is_contained(DRS.Roots, I))
1120       return true;
1121   }
1122   return false;
1123 }
1124 
1125 /// Return true if instruction I depends on any instruction between
1126 /// Start and End.
instrDependsOn(Instruction * I,UsesTy::iterator Start,UsesTy::iterator End)1127 bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I,
1128                                                 UsesTy::iterator Start,
1129                                                 UsesTy::iterator End) {
1130   for (auto *U : I->users()) {
1131     for (auto It = Start; It != End; ++It)
1132       if (U == It->first)
1133         return true;
1134   }
1135   return false;
1136 }
1137 
isIgnorableInst(const Instruction * I)1138 static bool isIgnorableInst(const Instruction *I) {
1139   if (isa<DbgInfoIntrinsic>(I))
1140     return true;
1141   const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I);
1142   if (!II)
1143     return false;
1144   switch (II->getIntrinsicID()) {
1145     default:
1146       return false;
1147     case Intrinsic::annotation:
1148     case Intrinsic::ptr_annotation:
1149     case Intrinsic::var_annotation:
1150     // TODO: the following intrinsics may also be allowed:
1151     //   lifetime_start, lifetime_end, invariant_start, invariant_end
1152       return true;
1153   }
1154   return false;
1155 }
1156 
validate(ReductionTracker & Reductions)1157 bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
1158   // We now need to check for equivalence of the use graph of each root with
1159   // that of the primary induction variable (excluding the roots). Our goal
1160   // here is not to solve the full graph isomorphism problem, but rather to
1161   // catch common cases without a lot of work. As a result, we will assume
1162   // that the relative order of the instructions in each unrolled iteration
1163   // is the same (although we will not make an assumption about how the
1164   // different iterations are intermixed). Note that while the order must be
1165   // the same, the instructions may not be in the same basic block.
1166 
1167   // An array of just the possible reductions for this scale factor. When we
1168   // collect the set of all users of some root instructions, these reduction
1169   // instructions are treated as 'final' (their uses are not considered).
1170   // This is important because we don't want the root use set to search down
1171   // the reduction chain.
1172   SmallInstructionSet PossibleRedSet;
1173   SmallInstructionSet PossibleRedLastSet;
1174   SmallInstructionSet PossibleRedPHISet;
1175   Reductions.restrictToScale(Scale, PossibleRedSet,
1176                              PossibleRedPHISet, PossibleRedLastSet);
1177 
1178   // Populate "Uses" with where each instruction is used.
1179   if (!collectUsedInstructions(PossibleRedSet))
1180     return false;
1181 
1182   // Make sure we mark the reduction PHIs as used in all iterations.
1183   for (auto *I : PossibleRedPHISet) {
1184     Uses[I].set(IL_All);
1185   }
1186 
1187   // Make sure we mark loop-control-only PHIs as used in all iterations. See
1188   // comment above LoopReroll::isLoopControlIV for more information.
1189   BasicBlock *Header = L->getHeader();
1190   if (LoopControlIV && LoopControlIV != IV) {
1191     for (auto *U : LoopControlIV->users()) {
1192       Instruction *IVUser = dyn_cast<Instruction>(U);
1193       // IVUser could be loop increment or compare
1194       Uses[IVUser].set(IL_All);
1195       for (auto *UU : IVUser->users()) {
1196         Instruction *UUser = dyn_cast<Instruction>(UU);
1197         // UUser could be compare, PHI or branch
1198         Uses[UUser].set(IL_All);
1199         // Skip SExt
1200         if (isa<SExtInst>(UUser)) {
1201           UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
1202           Uses[UUser].set(IL_All);
1203         }
1204         // Is UUser a compare instruction?
1205         if (UU->hasOneUse()) {
1206           Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin());
1207           if (BI == cast<BranchInst>(Header->getTerminator()))
1208             Uses[BI].set(IL_All);
1209         }
1210       }
1211     }
1212   }
1213 
1214   // Make sure all instructions in the loop are in one and only one
1215   // set.
1216   for (auto &KV : Uses) {
1217     if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) {
1218       LLVM_DEBUG(
1219           dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: "
1220                  << *KV.first << " (#uses=" << KV.second.count() << ")\n");
1221       return false;
1222     }
1223   }
1224 
1225   LLVM_DEBUG(for (auto &KV
1226                   : Uses) {
1227     dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n";
1228   });
1229 
1230   for (unsigned Iter = 1; Iter < Scale; ++Iter) {
1231     // In addition to regular aliasing information, we need to look for
1232     // instructions from later (future) iterations that have side effects
1233     // preventing us from reordering them past other instructions with side
1234     // effects.
1235     bool FutureSideEffects = false;
1236     AliasSetTracker AST(*AA);
1237     // The map between instructions in f(%iv.(i+1)) and f(%iv).
1238     DenseMap<Value *, Value *> BaseMap;
1239 
1240     // Compare iteration Iter to the base.
1241     SmallInstructionSet Visited;
1242     auto BaseIt = nextInstr(0, Uses, Visited);
1243     auto RootIt = nextInstr(Iter, Uses, Visited);
1244     auto LastRootIt = Uses.begin();
1245 
1246     while (BaseIt != Uses.end() && RootIt != Uses.end()) {
1247       Instruction *BaseInst = BaseIt->first;
1248       Instruction *RootInst = RootIt->first;
1249 
1250       // Skip over the IV or root instructions; only match their users.
1251       bool Continue = false;
1252       if (isBaseInst(BaseInst)) {
1253         Visited.insert(BaseInst);
1254         BaseIt = nextInstr(0, Uses, Visited);
1255         Continue = true;
1256       }
1257       if (isRootInst(RootInst)) {
1258         LastRootIt = RootIt;
1259         Visited.insert(RootInst);
1260         RootIt = nextInstr(Iter, Uses, Visited);
1261         Continue = true;
1262       }
1263       if (Continue) continue;
1264 
1265       if (!BaseInst->isSameOperationAs(RootInst)) {
1266         // Last chance saloon. We don't try and solve the full isomorphism
1267         // problem, but try and at least catch the case where two instructions
1268         // *of different types* are round the wrong way. We won't be able to
1269         // efficiently tell, given two ADD instructions, which way around we
1270         // should match them, but given an ADD and a SUB, we can at least infer
1271         // which one is which.
1272         //
1273         // This should allow us to deal with a greater subset of the isomorphism
1274         // problem. It does however change a linear algorithm into a quadratic
1275         // one, so limit the number of probes we do.
1276         auto TryIt = RootIt;
1277         unsigned N = NumToleratedFailedMatches;
1278         while (TryIt != Uses.end() &&
1279                !BaseInst->isSameOperationAs(TryIt->first) &&
1280                N--) {
1281           ++TryIt;
1282           TryIt = nextInstr(Iter, Uses, Visited, &TryIt);
1283         }
1284 
1285         if (TryIt == Uses.end() || TryIt == RootIt ||
1286             instrDependsOn(TryIt->first, RootIt, TryIt)) {
1287           LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
1288                             << *BaseInst << " vs. " << *RootInst << "\n");
1289           return false;
1290         }
1291 
1292         RootIt = TryIt;
1293         RootInst = TryIt->first;
1294       }
1295 
1296       // All instructions between the last root and this root
1297       // may belong to some other iteration. If they belong to a
1298       // future iteration, then they're dangerous to alias with.
1299       //
1300       // Note that because we allow a limited amount of flexibility in the order
1301       // that we visit nodes, LastRootIt might be *before* RootIt, in which
1302       // case we've already checked this set of instructions so we shouldn't
1303       // do anything.
1304       for (; LastRootIt < RootIt; ++LastRootIt) {
1305         Instruction *I = LastRootIt->first;
1306         if (LastRootIt->second.find_first() < (int)Iter)
1307           continue;
1308         if (I->mayWriteToMemory())
1309           AST.add(I);
1310         // Note: This is specifically guarded by a check on isa<PHINode>,
1311         // which while a valid (somewhat arbitrary) micro-optimization, is
1312         // needed because otherwise isSafeToSpeculativelyExecute returns
1313         // false on PHI nodes.
1314         if (!isa<PHINode>(I) && !isUnorderedLoadStore(I) &&
1315             !isSafeToSpeculativelyExecute(I))
1316           // Intervening instructions cause side effects.
1317           FutureSideEffects = true;
1318       }
1319 
1320       // Make sure that this instruction, which is in the use set of this
1321       // root instruction, does not also belong to the base set or the set of
1322       // some other root instruction.
1323       if (RootIt->second.count() > 1) {
1324         LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1325                           << " vs. " << *RootInst << " (prev. case overlap)\n");
1326         return false;
1327       }
1328 
1329       // Make sure that we don't alias with any instruction in the alias set
1330       // tracker. If we do, then we depend on a future iteration, and we
1331       // can't reroll.
1332       if (RootInst->mayReadFromMemory())
1333         for (auto &K : AST) {
1334           if (K.aliasesUnknownInst(RootInst, *AA)) {
1335             LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
1336                               << *BaseInst << " vs. " << *RootInst
1337                               << " (depends on future store)\n");
1338             return false;
1339           }
1340         }
1341 
1342       // If we've past an instruction from a future iteration that may have
1343       // side effects, and this instruction might also, then we can't reorder
1344       // them, and this matching fails. As an exception, we allow the alias
1345       // set tracker to handle regular (unordered) load/store dependencies.
1346       if (FutureSideEffects && ((!isUnorderedLoadStore(BaseInst) &&
1347                                  !isSafeToSpeculativelyExecute(BaseInst)) ||
1348                                 (!isUnorderedLoadStore(RootInst) &&
1349                                  !isSafeToSpeculativelyExecute(RootInst)))) {
1350         LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1351                           << " vs. " << *RootInst
1352                           << " (side effects prevent reordering)\n");
1353         return false;
1354       }
1355 
1356       // For instructions that are part of a reduction, if the operation is
1357       // associative, then don't bother matching the operands (because we
1358       // already know that the instructions are isomorphic, and the order
1359       // within the iteration does not matter). For non-associative reductions,
1360       // we do need to match the operands, because we need to reject
1361       // out-of-order instructions within an iteration!
1362       // For example (assume floating-point addition), we need to reject this:
1363       //   x += a[i]; x += b[i];
1364       //   x += a[i+1]; x += b[i+1];
1365       //   x += b[i+2]; x += a[i+2];
1366       bool InReduction = Reductions.isPairInSame(BaseInst, RootInst);
1367 
1368       if (!(InReduction && BaseInst->isAssociative())) {
1369         bool Swapped = false, SomeOpMatched = false;
1370         for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) {
1371           Value *Op2 = RootInst->getOperand(j);
1372 
1373           // If this is part of a reduction (and the operation is not
1374           // associatve), then we match all operands, but not those that are
1375           // part of the reduction.
1376           if (InReduction)
1377             if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
1378               if (Reductions.isPairInSame(RootInst, Op2I))
1379                 continue;
1380 
1381           DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
1382           if (BMI != BaseMap.end()) {
1383             Op2 = BMI->second;
1384           } else {
1385             for (auto &DRS : RootSets) {
1386               if (DRS.Roots[Iter-1] == (Instruction*) Op2) {
1387                 Op2 = DRS.BaseInst;
1388                 break;
1389               }
1390             }
1391           }
1392 
1393           if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
1394             // If we've not already decided to swap the matched operands, and
1395             // we've not already matched our first operand (note that we could
1396             // have skipped matching the first operand because it is part of a
1397             // reduction above), and the instruction is commutative, then try
1398             // the swapped match.
1399             if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched &&
1400                 BaseInst->getOperand(!j) == Op2) {
1401               Swapped = true;
1402             } else {
1403               LLVM_DEBUG(dbgs()
1404                          << "LRR: iteration root match failed at " << *BaseInst
1405                          << " vs. " << *RootInst << " (operand " << j << ")\n");
1406               return false;
1407             }
1408           }
1409 
1410           SomeOpMatched = true;
1411         }
1412       }
1413 
1414       if ((!PossibleRedLastSet.count(BaseInst) &&
1415            hasUsesOutsideLoop(BaseInst, L)) ||
1416           (!PossibleRedLastSet.count(RootInst) &&
1417            hasUsesOutsideLoop(RootInst, L))) {
1418         LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1419                           << " vs. " << *RootInst << " (uses outside loop)\n");
1420         return false;
1421       }
1422 
1423       Reductions.recordPair(BaseInst, RootInst, Iter);
1424       BaseMap.insert(std::make_pair(RootInst, BaseInst));
1425 
1426       LastRootIt = RootIt;
1427       Visited.insert(BaseInst);
1428       Visited.insert(RootInst);
1429       BaseIt = nextInstr(0, Uses, Visited);
1430       RootIt = nextInstr(Iter, Uses, Visited);
1431     }
1432     assert(BaseIt == Uses.end() && RootIt == Uses.end() &&
1433            "Mismatched set sizes!");
1434   }
1435 
1436   LLVM_DEBUG(dbgs() << "LRR: Matched all iteration increments for " << *IV
1437                     << "\n");
1438 
1439   return true;
1440 }
1441 
replace(const SCEV * BackedgeTakenCount)1442 void LoopReroll::DAGRootTracker::replace(const SCEV *BackedgeTakenCount) {
1443   BasicBlock *Header = L->getHeader();
1444 
1445   // Compute the start and increment for each BaseInst before we start erasing
1446   // instructions.
1447   SmallVector<const SCEV *, 8> StartExprs;
1448   SmallVector<const SCEV *, 8> IncrExprs;
1449   for (auto &DRS : RootSets) {
1450     const SCEVAddRecExpr *IVSCEV =
1451         cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
1452     StartExprs.push_back(IVSCEV->getStart());
1453     IncrExprs.push_back(SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), IVSCEV));
1454   }
1455 
1456   // Remove instructions associated with non-base iterations.
1457   for (BasicBlock::reverse_iterator J = Header->rbegin(), JE = Header->rend();
1458        J != JE;) {
1459     unsigned I = Uses[&*J].find_first();
1460     if (I > 0 && I < IL_All) {
1461       LLVM_DEBUG(dbgs() << "LRR: removing: " << *J << "\n");
1462       J++->eraseFromParent();
1463       continue;
1464     }
1465 
1466     ++J;
1467   }
1468 
1469   // Rewrite each BaseInst using SCEV.
1470   for (size_t i = 0, e = RootSets.size(); i != e; ++i)
1471     // Insert the new induction variable.
1472     replaceIV(RootSets[i], StartExprs[i], IncrExprs[i]);
1473 
1474   { // Limit the lifetime of SCEVExpander.
1475     BranchInst *BI = cast<BranchInst>(Header->getTerminator());
1476     const DataLayout &DL = Header->getModule()->getDataLayout();
1477     SCEVExpander Expander(*SE, DL, "reroll");
1478     auto Zero = SE->getZero(BackedgeTakenCount->getType());
1479     auto One = SE->getOne(BackedgeTakenCount->getType());
1480     auto NewIVSCEV = SE->getAddRecExpr(Zero, One, L, SCEV::FlagAnyWrap);
1481     Value *NewIV =
1482         Expander.expandCodeFor(NewIVSCEV, BackedgeTakenCount->getType(),
1483                                Header->getFirstNonPHIOrDbg());
1484     // FIXME: This arithmetic can overflow.
1485     auto TripCount = SE->getAddExpr(BackedgeTakenCount, One);
1486     auto ScaledTripCount = SE->getMulExpr(
1487         TripCount, SE->getConstant(BackedgeTakenCount->getType(), Scale));
1488     auto ScaledBECount = SE->getMinusSCEV(ScaledTripCount, One);
1489     Value *TakenCount =
1490         Expander.expandCodeFor(ScaledBECount, BackedgeTakenCount->getType(),
1491                                Header->getFirstNonPHIOrDbg());
1492     Value *Cond =
1493         new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, TakenCount, "exitcond");
1494     BI->setCondition(Cond);
1495 
1496     if (BI->getSuccessor(1) != Header)
1497       BI->swapSuccessors();
1498   }
1499 
1500   SimplifyInstructionsInBlock(Header, TLI);
1501   DeleteDeadPHIs(Header, TLI);
1502 }
1503 
replaceIV(DAGRootSet & DRS,const SCEV * Start,const SCEV * IncrExpr)1504 void LoopReroll::DAGRootTracker::replaceIV(DAGRootSet &DRS,
1505                                            const SCEV *Start,
1506                                            const SCEV *IncrExpr) {
1507   BasicBlock *Header = L->getHeader();
1508   Instruction *Inst = DRS.BaseInst;
1509 
1510   const SCEV *NewIVSCEV =
1511       SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap);
1512 
1513   { // Limit the lifetime of SCEVExpander.
1514     const DataLayout &DL = Header->getModule()->getDataLayout();
1515     SCEVExpander Expander(*SE, DL, "reroll");
1516     Value *NewIV = Expander.expandCodeFor(NewIVSCEV, Inst->getType(),
1517                                           Header->getFirstNonPHIOrDbg());
1518 
1519     for (auto &KV : Uses)
1520       if (KV.second.find_first() == 0)
1521         KV.first->replaceUsesOfWith(Inst, NewIV);
1522   }
1523 }
1524 
1525 // Validate the selected reductions. All iterations must have an isomorphic
1526 // part of the reduction chain and, for non-associative reductions, the chain
1527 // entries must appear in order.
validateSelected()1528 bool LoopReroll::ReductionTracker::validateSelected() {
1529   // For a non-associative reduction, the chain entries must appear in order.
1530   for (int i : Reds) {
1531     int PrevIter = 0, BaseCount = 0, Count = 0;
1532     for (Instruction *J : PossibleReds[i]) {
1533       // Note that all instructions in the chain must have been found because
1534       // all instructions in the function must have been assigned to some
1535       // iteration.
1536       int Iter = PossibleRedIter[J];
1537       if (Iter != PrevIter && Iter != PrevIter + 1 &&
1538           !PossibleReds[i].getReducedValue()->isAssociative()) {
1539         LLVM_DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: "
1540                           << J << "\n");
1541         return false;
1542       }
1543 
1544       if (Iter != PrevIter) {
1545         if (Count != BaseCount) {
1546           LLVM_DEBUG(dbgs()
1547                      << "LRR: Iteration " << PrevIter << " reduction use count "
1548                      << Count << " is not equal to the base use count "
1549                      << BaseCount << "\n");
1550           return false;
1551         }
1552 
1553         Count = 0;
1554       }
1555 
1556       ++Count;
1557       if (Iter == 0)
1558         ++BaseCount;
1559 
1560       PrevIter = Iter;
1561     }
1562   }
1563 
1564   return true;
1565 }
1566 
1567 // For all selected reductions, remove all parts except those in the first
1568 // iteration (and the PHI). Replace outside uses of the reduced value with uses
1569 // of the first-iteration reduced value (in other words, reroll the selected
1570 // reductions).
replaceSelected()1571 void LoopReroll::ReductionTracker::replaceSelected() {
1572   // Fixup reductions to refer to the last instruction associated with the
1573   // first iteration (not the last).
1574   for (int i : Reds) {
1575     int j = 0;
1576     for (int e = PossibleReds[i].size(); j != e; ++j)
1577       if (PossibleRedIter[PossibleReds[i][j]] != 0) {
1578         --j;
1579         break;
1580       }
1581 
1582     // Replace users with the new end-of-chain value.
1583     SmallInstructionVector Users;
1584     for (User *U : PossibleReds[i].getReducedValue()->users()) {
1585       Users.push_back(cast<Instruction>(U));
1586     }
1587 
1588     for (Instruction *User : Users)
1589       User->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
1590                               PossibleReds[i][j]);
1591   }
1592 }
1593 
1594 // Reroll the provided loop with respect to the provided induction variable.
1595 // Generally, we're looking for a loop like this:
1596 //
1597 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
1598 // f(%iv)
1599 // %iv.1 = add %iv, 1                <-- a root increment
1600 // f(%iv.1)
1601 // %iv.2 = add %iv, 2                <-- a root increment
1602 // f(%iv.2)
1603 // %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
1604 // f(%iv.scale_m_1)
1605 // ...
1606 // %iv.next = add %iv, scale
1607 // %cmp = icmp(%iv, ...)
1608 // br %cmp, header, exit
1609 //
1610 // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
1611 // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
1612 // be intermixed with eachother. The restriction imposed by this algorithm is
1613 // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
1614 // etc. be the same.
1615 //
1616 // First, we collect the use set of %iv, excluding the other increment roots.
1617 // This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
1618 // times, having collected the use set of f(%iv.(i+1)), during which we:
1619 //   - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
1620 //     the next unmatched instruction in f(%iv.(i+1)).
1621 //   - Ensure that both matched instructions don't have any external users
1622 //     (with the exception of last-in-chain reduction instructions).
1623 //   - Track the (aliasing) write set, and other side effects, of all
1624 //     instructions that belong to future iterations that come before the matched
1625 //     instructions. If the matched instructions read from that write set, then
1626 //     f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
1627 //     f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
1628 //     if any of these future instructions had side effects (could not be
1629 //     speculatively executed), and so do the matched instructions, when we
1630 //     cannot reorder those side-effect-producing instructions, and rerolling
1631 //     fails.
1632 //
1633 // Finally, we make sure that all loop instructions are either loop increment
1634 // roots, belong to simple latch code, parts of validated reductions, part of
1635 // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
1636 // have been validated), then we reroll the loop.
reroll(Instruction * IV,Loop * L,BasicBlock * Header,const SCEV * BackedgeTakenCount,ReductionTracker & Reductions)1637 bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
1638                         const SCEV *BackedgeTakenCount,
1639                         ReductionTracker &Reductions) {
1640   DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA,
1641                           IVToIncMap, LoopControlIV);
1642 
1643   if (!DAGRoots.findRoots())
1644     return false;
1645   LLVM_DEBUG(dbgs() << "LRR: Found all root induction increments for: " << *IV
1646                     << "\n");
1647 
1648   if (!DAGRoots.validate(Reductions))
1649     return false;
1650   if (!Reductions.validateSelected())
1651     return false;
1652   // At this point, we've validated the rerolling, and we're committed to
1653   // making changes!
1654 
1655   Reductions.replaceSelected();
1656   DAGRoots.replace(BackedgeTakenCount);
1657 
1658   ++NumRerolledLoops;
1659   return true;
1660 }
1661 
runOnLoop(Loop * L)1662 bool LoopReroll::runOnLoop(Loop *L) {
1663   BasicBlock *Header = L->getHeader();
1664   LLVM_DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() << "] Loop %"
1665                     << Header->getName() << " (" << L->getNumBlocks()
1666                     << " block(s))\n");
1667 
1668   // For now, we'll handle only single BB loops.
1669   if (L->getNumBlocks() > 1)
1670     return false;
1671 
1672   if (!SE->hasLoopInvariantBackedgeTakenCount(L))
1673     return false;
1674 
1675   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1676   LLVM_DEBUG(dbgs() << "\n Before Reroll:\n" << *(L->getHeader()) << "\n");
1677   LLVM_DEBUG(dbgs() << "LRR: backedge-taken count = " << *BackedgeTakenCount
1678                << "\n");
1679 
1680   // First, we need to find the induction variable with respect to which we can
1681   // reroll (there may be several possible options).
1682   SmallInstructionVector PossibleIVs;
1683   IVToIncMap.clear();
1684   LoopControlIV = nullptr;
1685   collectPossibleIVs(L, PossibleIVs);
1686 
1687   if (PossibleIVs.empty()) {
1688     LLVM_DEBUG(dbgs() << "LRR: No possible IVs found\n");
1689     return false;
1690   }
1691 
1692   ReductionTracker Reductions;
1693   collectPossibleReductions(L, Reductions);
1694   bool Changed = false;
1695 
1696   // For each possible IV, collect the associated possible set of 'root' nodes
1697   // (i+1, i+2, etc.).
1698   for (Instruction *PossibleIV : PossibleIVs)
1699     if (reroll(PossibleIV, L, Header, BackedgeTakenCount, Reductions)) {
1700       Changed = true;
1701       break;
1702     }
1703   LLVM_DEBUG(dbgs() << "\n After Reroll:\n" << *(L->getHeader()) << "\n");
1704 
1705   // Trip count of L has changed so SE must be re-evaluated.
1706   if (Changed)
1707     SE->forgetLoop(L);
1708 
1709   return Changed;
1710 }
1711 
runOnLoop(Loop * L,LPPassManager & LPM)1712 bool LoopRerollLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
1713   if (skipLoop(L))
1714     return false;
1715 
1716   auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1717   auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1718   auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1719   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
1720       *L->getHeader()->getParent());
1721   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1722   bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1723 
1724   return LoopReroll(AA, LI, SE, TLI, DT, PreserveLCSSA).runOnLoop(L);
1725 }
1726 
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater & U)1727 PreservedAnalyses LoopRerollPass::run(Loop &L, LoopAnalysisManager &AM,
1728                                       LoopStandardAnalysisResults &AR,
1729                                       LPMUpdater &U) {
1730   return LoopReroll(&AR.AA, &AR.LI, &AR.SE, &AR.TLI, &AR.DT, true).runOnLoop(&L)
1731              ? getLoopPassPreservedAnalyses()
1732              : PreservedAnalyses::all();
1733 }
1734