1 //===- LoopReroll.cpp - Loop rerolling pass -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop reroller.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AliasSetTracker.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/IR/Use.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Transforms/Scalar.h"
53 #include "llvm/Transforms/Scalar/LoopReroll.h"
54 #include "llvm/Transforms/Utils.h"
55 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
56 #include "llvm/Transforms/Utils/Local.h"
57 #include "llvm/Transforms/Utils/LoopUtils.h"
58 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
59 #include <cassert>
60 #include <cstddef>
61 #include <cstdint>
62 #include <cstdlib>
63 #include <iterator>
64 #include <map>
65 #include <utility>
66
67 using namespace llvm;
68
69 #define DEBUG_TYPE "loop-reroll"
70
71 STATISTIC(NumRerolledLoops, "Number of rerolled loops");
72
73 static cl::opt<unsigned>
74 NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400),
75 cl::Hidden,
76 cl::desc("The maximum number of failures to tolerate"
77 " during fuzzy matching. (default: 400)"));
78
79 // This loop re-rolling transformation aims to transform loops like this:
80 //
81 // int foo(int a);
82 // void bar(int *x) {
83 // for (int i = 0; i < 500; i += 3) {
84 // foo(i);
85 // foo(i+1);
86 // foo(i+2);
87 // }
88 // }
89 //
90 // into a loop like this:
91 //
92 // void bar(int *x) {
93 // for (int i = 0; i < 500; ++i)
94 // foo(i);
95 // }
96 //
97 // It does this by looking for loops that, besides the latch code, are composed
98 // of isomorphic DAGs of instructions, with each DAG rooted at some increment
99 // to the induction variable, and where each DAG is isomorphic to the DAG
100 // rooted at the induction variable (excepting the sub-DAGs which root the
101 // other induction-variable increments). In other words, we're looking for loop
102 // bodies of the form:
103 //
104 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
105 // f(%iv)
106 // %iv.1 = add %iv, 1 <-- a root increment
107 // f(%iv.1)
108 // %iv.2 = add %iv, 2 <-- a root increment
109 // f(%iv.2)
110 // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment
111 // f(%iv.scale_m_1)
112 // ...
113 // %iv.next = add %iv, scale
114 // %cmp = icmp(%iv, ...)
115 // br %cmp, header, exit
116 //
117 // where each f(i) is a set of instructions that, collectively, are a function
118 // only of i (and other loop-invariant values).
119 //
120 // As a special case, we can also reroll loops like this:
121 //
122 // int foo(int);
123 // void bar(int *x) {
124 // for (int i = 0; i < 500; ++i) {
125 // x[3*i] = foo(0);
126 // x[3*i+1] = foo(0);
127 // x[3*i+2] = foo(0);
128 // }
129 // }
130 //
131 // into this:
132 //
133 // void bar(int *x) {
134 // for (int i = 0; i < 1500; ++i)
135 // x[i] = foo(0);
136 // }
137 //
138 // in which case, we're looking for inputs like this:
139 //
140 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
141 // %scaled.iv = mul %iv, scale
142 // f(%scaled.iv)
143 // %scaled.iv.1 = add %scaled.iv, 1
144 // f(%scaled.iv.1)
145 // %scaled.iv.2 = add %scaled.iv, 2
146 // f(%scaled.iv.2)
147 // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
148 // f(%scaled.iv.scale_m_1)
149 // ...
150 // %iv.next = add %iv, 1
151 // %cmp = icmp(%iv, ...)
152 // br %cmp, header, exit
153
154 namespace {
155
156 enum IterationLimits {
157 /// The maximum number of iterations that we'll try and reroll.
158 IL_MaxRerollIterations = 32,
159 /// The bitvector index used by loop induction variables and other
160 /// instructions that belong to all iterations.
161 IL_All,
162 IL_End
163 };
164
165 class LoopRerollLegacyPass : public LoopPass {
166 public:
167 static char ID; // Pass ID, replacement for typeid
168
LoopRerollLegacyPass()169 LoopRerollLegacyPass() : LoopPass(ID) {
170 initializeLoopRerollLegacyPassPass(*PassRegistry::getPassRegistry());
171 }
172
173 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
174
getAnalysisUsage(AnalysisUsage & AU) const175 void getAnalysisUsage(AnalysisUsage &AU) const override {
176 AU.addRequired<TargetLibraryInfoWrapperPass>();
177 getLoopAnalysisUsage(AU);
178 }
179 };
180
181 class LoopReroll {
182 public:
LoopReroll(AliasAnalysis * AA,LoopInfo * LI,ScalarEvolution * SE,TargetLibraryInfo * TLI,DominatorTree * DT,bool PreserveLCSSA)183 LoopReroll(AliasAnalysis *AA, LoopInfo *LI, ScalarEvolution *SE,
184 TargetLibraryInfo *TLI, DominatorTree *DT, bool PreserveLCSSA)
185 : AA(AA), LI(LI), SE(SE), TLI(TLI), DT(DT),
186 PreserveLCSSA(PreserveLCSSA) {}
187 bool runOnLoop(Loop *L);
188
189 protected:
190 AliasAnalysis *AA;
191 LoopInfo *LI;
192 ScalarEvolution *SE;
193 TargetLibraryInfo *TLI;
194 DominatorTree *DT;
195 bool PreserveLCSSA;
196
197 using SmallInstructionVector = SmallVector<Instruction *, 16>;
198 using SmallInstructionSet = SmallPtrSet<Instruction *, 16>;
199
200 // Map between induction variable and its increment
201 DenseMap<Instruction *, int64_t> IVToIncMap;
202
203 // For loop with multiple induction variable, remember the one used only to
204 // control the loop.
205 Instruction *LoopControlIV;
206
207 // A chain of isomorphic instructions, identified by a single-use PHI
208 // representing a reduction. Only the last value may be used outside the
209 // loop.
210 struct SimpleLoopReduction {
SimpleLoopReduction__anon29ecfd3f0111::LoopReroll::SimpleLoopReduction211 SimpleLoopReduction(Instruction *P, Loop *L) : Instructions(1, P) {
212 assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
213 add(L);
214 }
215
valid__anon29ecfd3f0111::LoopReroll::SimpleLoopReduction216 bool valid() const {
217 return Valid;
218 }
219
getPHI__anon29ecfd3f0111::LoopReroll::SimpleLoopReduction220 Instruction *getPHI() const {
221 assert(Valid && "Using invalid reduction");
222 return Instructions.front();
223 }
224
getReducedValue__anon29ecfd3f0111::LoopReroll::SimpleLoopReduction225 Instruction *getReducedValue() const {
226 assert(Valid && "Using invalid reduction");
227 return Instructions.back();
228 }
229
get__anon29ecfd3f0111::LoopReroll::SimpleLoopReduction230 Instruction *get(size_t i) const {
231 assert(Valid && "Using invalid reduction");
232 return Instructions[i+1];
233 }
234
operator []__anon29ecfd3f0111::LoopReroll::SimpleLoopReduction235 Instruction *operator [] (size_t i) const { return get(i); }
236
237 // The size, ignoring the initial PHI.
size__anon29ecfd3f0111::LoopReroll::SimpleLoopReduction238 size_t size() const {
239 assert(Valid && "Using invalid reduction");
240 return Instructions.size()-1;
241 }
242
243 using iterator = SmallInstructionVector::iterator;
244 using const_iterator = SmallInstructionVector::const_iterator;
245
begin__anon29ecfd3f0111::LoopReroll::SimpleLoopReduction246 iterator begin() {
247 assert(Valid && "Using invalid reduction");
248 return std::next(Instructions.begin());
249 }
250
begin__anon29ecfd3f0111::LoopReroll::SimpleLoopReduction251 const_iterator begin() const {
252 assert(Valid && "Using invalid reduction");
253 return std::next(Instructions.begin());
254 }
255
end__anon29ecfd3f0111::LoopReroll::SimpleLoopReduction256 iterator end() { return Instructions.end(); }
end__anon29ecfd3f0111::LoopReroll::SimpleLoopReduction257 const_iterator end() const { return Instructions.end(); }
258
259 protected:
260 bool Valid = false;
261 SmallInstructionVector Instructions;
262
263 void add(Loop *L);
264 };
265
266 // The set of all reductions, and state tracking of possible reductions
267 // during loop instruction processing.
268 struct ReductionTracker {
269 using SmallReductionVector = SmallVector<SimpleLoopReduction, 16>;
270
271 // Add a new possible reduction.
addSLR__anon29ecfd3f0111::LoopReroll::ReductionTracker272 void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); }
273
274 // Setup to track possible reductions corresponding to the provided
275 // rerolling scale. Only reductions with a number of non-PHI instructions
276 // that is divisible by the scale are considered. Three instructions sets
277 // are filled in:
278 // - A set of all possible instructions in eligible reductions.
279 // - A set of all PHIs in eligible reductions
280 // - A set of all reduced values (last instructions) in eligible
281 // reductions.
restrictToScale__anon29ecfd3f0111::LoopReroll::ReductionTracker282 void restrictToScale(uint64_t Scale,
283 SmallInstructionSet &PossibleRedSet,
284 SmallInstructionSet &PossibleRedPHISet,
285 SmallInstructionSet &PossibleRedLastSet) {
286 PossibleRedIdx.clear();
287 PossibleRedIter.clear();
288 Reds.clear();
289
290 for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
291 if (PossibleReds[i].size() % Scale == 0) {
292 PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
293 PossibleRedPHISet.insert(PossibleReds[i].getPHI());
294
295 PossibleRedSet.insert(PossibleReds[i].getPHI());
296 PossibleRedIdx[PossibleReds[i].getPHI()] = i;
297 for (Instruction *J : PossibleReds[i]) {
298 PossibleRedSet.insert(J);
299 PossibleRedIdx[J] = i;
300 }
301 }
302 }
303
304 // The functions below are used while processing the loop instructions.
305
306 // Are the two instructions both from reductions, and furthermore, from
307 // the same reduction?
isPairInSame__anon29ecfd3f0111::LoopReroll::ReductionTracker308 bool isPairInSame(Instruction *J1, Instruction *J2) {
309 DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
310 if (J1I != PossibleRedIdx.end()) {
311 DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
312 if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
313 return true;
314 }
315
316 return false;
317 }
318
319 // The two provided instructions, the first from the base iteration, and
320 // the second from iteration i, form a matched pair. If these are part of
321 // a reduction, record that fact.
recordPair__anon29ecfd3f0111::LoopReroll::ReductionTracker322 void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
323 if (PossibleRedIdx.count(J1)) {
324 assert(PossibleRedIdx.count(J2) &&
325 "Recording reduction vs. non-reduction instruction?");
326
327 PossibleRedIter[J1] = 0;
328 PossibleRedIter[J2] = i;
329
330 int Idx = PossibleRedIdx[J1];
331 assert(Idx == PossibleRedIdx[J2] &&
332 "Recording pair from different reductions?");
333 Reds.insert(Idx);
334 }
335 }
336
337 // The functions below can be called after we've finished processing all
338 // instructions in the loop, and we know which reductions were selected.
339
340 bool validateSelected();
341 void replaceSelected();
342
343 protected:
344 // The vector of all possible reductions (for any scale).
345 SmallReductionVector PossibleReds;
346
347 DenseMap<Instruction *, int> PossibleRedIdx;
348 DenseMap<Instruction *, int> PossibleRedIter;
349 DenseSet<int> Reds;
350 };
351
352 // A DAGRootSet models an induction variable being used in a rerollable
353 // loop. For example,
354 //
355 // x[i*3+0] = y1
356 // x[i*3+1] = y2
357 // x[i*3+2] = y3
358 //
359 // Base instruction -> i*3
360 // +---+----+
361 // / | \
362 // ST[y1] +1 +2 <-- Roots
363 // | |
364 // ST[y2] ST[y3]
365 //
366 // There may be multiple DAGRoots, for example:
367 //
368 // x[i*2+0] = ... (1)
369 // x[i*2+1] = ... (1)
370 // x[i*2+4] = ... (2)
371 // x[i*2+5] = ... (2)
372 // x[(i+1234)*2+5678] = ... (3)
373 // x[(i+1234)*2+5679] = ... (3)
374 //
375 // The loop will be rerolled by adding a new loop induction variable,
376 // one for the Base instruction in each DAGRootSet.
377 //
378 struct DAGRootSet {
379 Instruction *BaseInst;
380 SmallInstructionVector Roots;
381
382 // The instructions between IV and BaseInst (but not including BaseInst).
383 SmallInstructionSet SubsumedInsts;
384 };
385
386 // The set of all DAG roots, and state tracking of all roots
387 // for a particular induction variable.
388 struct DAGRootTracker {
DAGRootTracker__anon29ecfd3f0111::LoopReroll::DAGRootTracker389 DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
390 ScalarEvolution *SE, AliasAnalysis *AA,
391 TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI,
392 bool PreserveLCSSA,
393 DenseMap<Instruction *, int64_t> &IncrMap,
394 Instruction *LoopCtrlIV)
395 : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI),
396 PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap),
397 LoopControlIV(LoopCtrlIV) {}
398
399 /// Stage 1: Find all the DAG roots for the induction variable.
400 bool findRoots();
401
402 /// Stage 2: Validate if the found roots are valid.
403 bool validate(ReductionTracker &Reductions);
404
405 /// Stage 3: Assuming validate() returned true, perform the
406 /// replacement.
407 /// @param BackedgeTakenCount The backedge-taken count of L.
408 void replace(const SCEV *BackedgeTakenCount);
409
410 protected:
411 using UsesTy = MapVector<Instruction *, BitVector>;
412
413 void findRootsRecursive(Instruction *IVU,
414 SmallInstructionSet SubsumedInsts);
415 bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts);
416 bool collectPossibleRoots(Instruction *Base,
417 std::map<int64_t,Instruction*> &Roots);
418 bool validateRootSet(DAGRootSet &DRS);
419
420 bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet);
421 void collectInLoopUserSet(const SmallInstructionVector &Roots,
422 const SmallInstructionSet &Exclude,
423 const SmallInstructionSet &Final,
424 DenseSet<Instruction *> &Users);
425 void collectInLoopUserSet(Instruction *Root,
426 const SmallInstructionSet &Exclude,
427 const SmallInstructionSet &Final,
428 DenseSet<Instruction *> &Users);
429
430 UsesTy::iterator nextInstr(int Val, UsesTy &In,
431 const SmallInstructionSet &Exclude,
432 UsesTy::iterator *StartI=nullptr);
433 bool isBaseInst(Instruction *I);
434 bool isRootInst(Instruction *I);
435 bool instrDependsOn(Instruction *I,
436 UsesTy::iterator Start,
437 UsesTy::iterator End);
438 void replaceIV(DAGRootSet &DRS, const SCEV *Start, const SCEV *IncrExpr);
439
440 LoopReroll *Parent;
441
442 // Members of Parent, replicated here for brevity.
443 Loop *L;
444 ScalarEvolution *SE;
445 AliasAnalysis *AA;
446 TargetLibraryInfo *TLI;
447 DominatorTree *DT;
448 LoopInfo *LI;
449 bool PreserveLCSSA;
450
451 // The loop induction variable.
452 Instruction *IV;
453
454 // Loop step amount.
455 int64_t Inc;
456
457 // Loop reroll count; if Inc == 1, this records the scaling applied
458 // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ;
459 // If Inc is not 1, Scale = Inc.
460 uint64_t Scale;
461
462 // The roots themselves.
463 SmallVector<DAGRootSet,16> RootSets;
464
465 // All increment instructions for IV.
466 SmallInstructionVector LoopIncs;
467
468 // Map of all instructions in the loop (in order) to the iterations
469 // they are used in (or specially, IL_All for instructions
470 // used in the loop increment mechanism).
471 UsesTy Uses;
472
473 // Map between induction variable and its increment
474 DenseMap<Instruction *, int64_t> &IVToIncMap;
475
476 Instruction *LoopControlIV;
477 };
478
479 // Check if it is a compare-like instruction whose user is a branch
isCompareUsedByBranch(Instruction * I)480 bool isCompareUsedByBranch(Instruction *I) {
481 auto *TI = I->getParent()->getTerminator();
482 if (!isa<BranchInst>(TI) || !isa<CmpInst>(I))
483 return false;
484 return I->hasOneUse() && TI->getOperand(0) == I;
485 };
486
487 bool isLoopControlIV(Loop *L, Instruction *IV);
488 void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
489 void collectPossibleReductions(Loop *L,
490 ReductionTracker &Reductions);
491 bool reroll(Instruction *IV, Loop *L, BasicBlock *Header,
492 const SCEV *BackedgeTakenCount, ReductionTracker &Reductions);
493 };
494
495 } // end anonymous namespace
496
497 char LoopRerollLegacyPass::ID = 0;
498
499 INITIALIZE_PASS_BEGIN(LoopRerollLegacyPass, "loop-reroll", "Reroll loops",
500 false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)501 INITIALIZE_PASS_DEPENDENCY(LoopPass)
502 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
503 INITIALIZE_PASS_END(LoopRerollLegacyPass, "loop-reroll", "Reroll loops", false,
504 false)
505
506 Pass *llvm::createLoopRerollPass() { return new LoopRerollLegacyPass; }
507
508 // Returns true if the provided instruction is used outside the given loop.
509 // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
510 // non-loop blocks to be outside the loop.
hasUsesOutsideLoop(Instruction * I,Loop * L)511 static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
512 for (User *U : I->users()) {
513 if (!L->contains(cast<Instruction>(U)))
514 return true;
515 }
516 return false;
517 }
518
519 // Check if an IV is only used to control the loop. There are two cases:
520 // 1. It only has one use which is loop increment, and the increment is only
521 // used by comparison and the PHI (could has sext with nsw in between), and the
522 // comparison is only used by branch.
523 // 2. It is used by loop increment and the comparison, the loop increment is
524 // only used by the PHI, and the comparison is used only by the branch.
isLoopControlIV(Loop * L,Instruction * IV)525 bool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) {
526 unsigned IVUses = IV->getNumUses();
527 if (IVUses != 2 && IVUses != 1)
528 return false;
529
530 for (auto *User : IV->users()) {
531 int32_t IncOrCmpUses = User->getNumUses();
532 bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User));
533
534 // User can only have one or two uses.
535 if (IncOrCmpUses != 2 && IncOrCmpUses != 1)
536 return false;
537
538 // Case 1
539 if (IVUses == 1) {
540 // The only user must be the loop increment.
541 // The loop increment must have two uses.
542 if (IsCompInst || IncOrCmpUses != 2)
543 return false;
544 }
545
546 // Case 2
547 if (IVUses == 2 && IncOrCmpUses != 1)
548 return false;
549
550 // The users of the IV must be a binary operation or a comparison
551 if (auto *BO = dyn_cast<BinaryOperator>(User)) {
552 if (BO->getOpcode() == Instruction::Add) {
553 // Loop Increment
554 // User of Loop Increment should be either PHI or CMP
555 for (auto *UU : User->users()) {
556 if (PHINode *PN = dyn_cast<PHINode>(UU)) {
557 if (PN != IV)
558 return false;
559 }
560 // Must be a CMP or an ext (of a value with nsw) then CMP
561 else {
562 Instruction *UUser = dyn_cast<Instruction>(UU);
563 // Skip SExt if we are extending an nsw value
564 // TODO: Allow ZExt too
565 if (BO->hasNoSignedWrap() && UUser && UUser->hasOneUse() &&
566 isa<SExtInst>(UUser))
567 UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
568 if (!isCompareUsedByBranch(UUser))
569 return false;
570 }
571 }
572 } else
573 return false;
574 // Compare : can only have one use, and must be branch
575 } else if (!IsCompInst)
576 return false;
577 }
578 return true;
579 }
580
581 // Collect the list of loop induction variables with respect to which it might
582 // be possible to reroll the loop.
collectPossibleIVs(Loop * L,SmallInstructionVector & PossibleIVs)583 void LoopReroll::collectPossibleIVs(Loop *L,
584 SmallInstructionVector &PossibleIVs) {
585 BasicBlock *Header = L->getHeader();
586 for (BasicBlock::iterator I = Header->begin(),
587 IE = Header->getFirstInsertionPt(); I != IE; ++I) {
588 if (!isa<PHINode>(I))
589 continue;
590 if (!I->getType()->isIntegerTy() && !I->getType()->isPointerTy())
591 continue;
592
593 if (const SCEVAddRecExpr *PHISCEV =
594 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&*I))) {
595 if (PHISCEV->getLoop() != L)
596 continue;
597 if (!PHISCEV->isAffine())
598 continue;
599 auto IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE));
600 if (IncSCEV) {
601 IVToIncMap[&*I] = IncSCEV->getValue()->getSExtValue();
602 LLVM_DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << *PHISCEV
603 << "\n");
604
605 if (isLoopControlIV(L, &*I)) {
606 assert(!LoopControlIV && "Found two loop control only IV");
607 LoopControlIV = &(*I);
608 LLVM_DEBUG(dbgs() << "LRR: Possible loop control only IV: " << *I
609 << " = " << *PHISCEV << "\n");
610 } else
611 PossibleIVs.push_back(&*I);
612 }
613 }
614 }
615 }
616
617 // Add the remainder of the reduction-variable chain to the instruction vector
618 // (the initial PHINode has already been added). If successful, the object is
619 // marked as valid.
add(Loop * L)620 void LoopReroll::SimpleLoopReduction::add(Loop *L) {
621 assert(!Valid && "Cannot add to an already-valid chain");
622
623 // The reduction variable must be a chain of single-use instructions
624 // (including the PHI), except for the last value (which is used by the PHI
625 // and also outside the loop).
626 Instruction *C = Instructions.front();
627 if (C->user_empty())
628 return;
629
630 do {
631 C = cast<Instruction>(*C->user_begin());
632 if (C->hasOneUse()) {
633 if (!C->isBinaryOp())
634 return;
635
636 if (!(isa<PHINode>(Instructions.back()) ||
637 C->isSameOperationAs(Instructions.back())))
638 return;
639
640 Instructions.push_back(C);
641 }
642 } while (C->hasOneUse());
643
644 if (Instructions.size() < 2 ||
645 !C->isSameOperationAs(Instructions.back()) ||
646 C->use_empty())
647 return;
648
649 // C is now the (potential) last instruction in the reduction chain.
650 for (User *U : C->users()) {
651 // The only in-loop user can be the initial PHI.
652 if (L->contains(cast<Instruction>(U)))
653 if (cast<Instruction>(U) != Instructions.front())
654 return;
655 }
656
657 Instructions.push_back(C);
658 Valid = true;
659 }
660
661 // Collect the vector of possible reduction variables.
collectPossibleReductions(Loop * L,ReductionTracker & Reductions)662 void LoopReroll::collectPossibleReductions(Loop *L,
663 ReductionTracker &Reductions) {
664 BasicBlock *Header = L->getHeader();
665 for (BasicBlock::iterator I = Header->begin(),
666 IE = Header->getFirstInsertionPt(); I != IE; ++I) {
667 if (!isa<PHINode>(I))
668 continue;
669 if (!I->getType()->isSingleValueType())
670 continue;
671
672 SimpleLoopReduction SLR(&*I, L);
673 if (!SLR.valid())
674 continue;
675
676 LLVM_DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with "
677 << SLR.size() << " chained instructions)\n");
678 Reductions.addSLR(SLR);
679 }
680 }
681
682 // Collect the set of all users of the provided root instruction. This set of
683 // users contains not only the direct users of the root instruction, but also
684 // all users of those users, and so on. There are two exceptions:
685 //
686 // 1. Instructions in the set of excluded instructions are never added to the
687 // use set (even if they are users). This is used, for example, to exclude
688 // including root increments in the use set of the primary IV.
689 //
690 // 2. Instructions in the set of final instructions are added to the use set
691 // if they are users, but their users are not added. This is used, for
692 // example, to prevent a reduction update from forcing all later reduction
693 // updates into the use set.
collectInLoopUserSet(Instruction * Root,const SmallInstructionSet & Exclude,const SmallInstructionSet & Final,DenseSet<Instruction * > & Users)694 void LoopReroll::DAGRootTracker::collectInLoopUserSet(
695 Instruction *Root, const SmallInstructionSet &Exclude,
696 const SmallInstructionSet &Final,
697 DenseSet<Instruction *> &Users) {
698 SmallInstructionVector Queue(1, Root);
699 while (!Queue.empty()) {
700 Instruction *I = Queue.pop_back_val();
701 if (!Users.insert(I).second)
702 continue;
703
704 if (!Final.count(I))
705 for (Use &U : I->uses()) {
706 Instruction *User = cast<Instruction>(U.getUser());
707 if (PHINode *PN = dyn_cast<PHINode>(User)) {
708 // Ignore "wrap-around" uses to PHIs of this loop's header.
709 if (PN->getIncomingBlock(U) == L->getHeader())
710 continue;
711 }
712
713 if (L->contains(User) && !Exclude.count(User)) {
714 Queue.push_back(User);
715 }
716 }
717
718 // We also want to collect single-user "feeder" values.
719 for (Use &U : I->operands()) {
720 if (Instruction *Op = dyn_cast<Instruction>(U))
721 if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
722 !Final.count(Op))
723 Queue.push_back(Op);
724 }
725 }
726 }
727
728 // Collect all of the users of all of the provided root instructions (combined
729 // into a single set).
collectInLoopUserSet(const SmallInstructionVector & Roots,const SmallInstructionSet & Exclude,const SmallInstructionSet & Final,DenseSet<Instruction * > & Users)730 void LoopReroll::DAGRootTracker::collectInLoopUserSet(
731 const SmallInstructionVector &Roots,
732 const SmallInstructionSet &Exclude,
733 const SmallInstructionSet &Final,
734 DenseSet<Instruction *> &Users) {
735 for (Instruction *Root : Roots)
736 collectInLoopUserSet(Root, Exclude, Final, Users);
737 }
738
isUnorderedLoadStore(Instruction * I)739 static bool isUnorderedLoadStore(Instruction *I) {
740 if (LoadInst *LI = dyn_cast<LoadInst>(I))
741 return LI->isUnordered();
742 if (StoreInst *SI = dyn_cast<StoreInst>(I))
743 return SI->isUnordered();
744 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
745 return !MI->isVolatile();
746 return false;
747 }
748
749 /// Return true if IVU is a "simple" arithmetic operation.
750 /// This is used for narrowing the search space for DAGRoots; only arithmetic
751 /// and GEPs can be part of a DAGRoot.
isSimpleArithmeticOp(User * IVU)752 static bool isSimpleArithmeticOp(User *IVU) {
753 if (Instruction *I = dyn_cast<Instruction>(IVU)) {
754 switch (I->getOpcode()) {
755 default: return false;
756 case Instruction::Add:
757 case Instruction::Sub:
758 case Instruction::Mul:
759 case Instruction::Shl:
760 case Instruction::AShr:
761 case Instruction::LShr:
762 case Instruction::GetElementPtr:
763 case Instruction::Trunc:
764 case Instruction::ZExt:
765 case Instruction::SExt:
766 return true;
767 }
768 }
769 return false;
770 }
771
isLoopIncrement(User * U,Instruction * IV)772 static bool isLoopIncrement(User *U, Instruction *IV) {
773 BinaryOperator *BO = dyn_cast<BinaryOperator>(U);
774
775 if ((BO && BO->getOpcode() != Instruction::Add) ||
776 (!BO && !isa<GetElementPtrInst>(U)))
777 return false;
778
779 for (auto *UU : U->users()) {
780 PHINode *PN = dyn_cast<PHINode>(UU);
781 if (PN && PN == IV)
782 return true;
783 }
784 return false;
785 }
786
787 bool LoopReroll::DAGRootTracker::
collectPossibleRoots(Instruction * Base,std::map<int64_t,Instruction * > & Roots)788 collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) {
789 SmallInstructionVector BaseUsers;
790
791 for (auto *I : Base->users()) {
792 ConstantInt *CI = nullptr;
793
794 if (isLoopIncrement(I, IV)) {
795 LoopIncs.push_back(cast<Instruction>(I));
796 continue;
797 }
798
799 // The root nodes must be either GEPs, ORs or ADDs.
800 if (auto *BO = dyn_cast<BinaryOperator>(I)) {
801 if (BO->getOpcode() == Instruction::Add ||
802 BO->getOpcode() == Instruction::Or)
803 CI = dyn_cast<ConstantInt>(BO->getOperand(1));
804 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
805 Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1);
806 CI = dyn_cast<ConstantInt>(LastOperand);
807 }
808
809 if (!CI) {
810 if (Instruction *II = dyn_cast<Instruction>(I)) {
811 BaseUsers.push_back(II);
812 continue;
813 } else {
814 LLVM_DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I
815 << "\n");
816 return false;
817 }
818 }
819
820 int64_t V = std::abs(CI->getValue().getSExtValue());
821 if (Roots.find(V) != Roots.end())
822 // No duplicates, please.
823 return false;
824
825 Roots[V] = cast<Instruction>(I);
826 }
827
828 // Make sure we have at least two roots.
829 if (Roots.empty() || (Roots.size() == 1 && BaseUsers.empty()))
830 return false;
831
832 // If we found non-loop-inc, non-root users of Base, assume they are
833 // for the zeroth root index. This is because "add %a, 0" gets optimized
834 // away.
835 if (BaseUsers.size()) {
836 if (Roots.find(0) != Roots.end()) {
837 LLVM_DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n");
838 return false;
839 }
840 Roots[0] = Base;
841 }
842
843 // Calculate the number of users of the base, or lowest indexed, iteration.
844 unsigned NumBaseUses = BaseUsers.size();
845 if (NumBaseUses == 0)
846 NumBaseUses = Roots.begin()->second->getNumUses();
847
848 // Check that every node has the same number of users.
849 for (auto &KV : Roots) {
850 if (KV.first == 0)
851 continue;
852 if (!KV.second->hasNUses(NumBaseUses)) {
853 LLVM_DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: "
854 << "#Base=" << NumBaseUses
855 << ", #Root=" << KV.second->getNumUses() << "\n");
856 return false;
857 }
858 }
859
860 return true;
861 }
862
863 void LoopReroll::DAGRootTracker::
findRootsRecursive(Instruction * I,SmallInstructionSet SubsumedInsts)864 findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) {
865 // Does the user look like it could be part of a root set?
866 // All its users must be simple arithmetic ops.
867 if (I->hasNUsesOrMore(IL_MaxRerollIterations + 1))
868 return;
869
870 if (I != IV && findRootsBase(I, SubsumedInsts))
871 return;
872
873 SubsumedInsts.insert(I);
874
875 for (User *V : I->users()) {
876 Instruction *I = cast<Instruction>(V);
877 if (is_contained(LoopIncs, I))
878 continue;
879
880 if (!isSimpleArithmeticOp(I))
881 continue;
882
883 // The recursive call makes a copy of SubsumedInsts.
884 findRootsRecursive(I, SubsumedInsts);
885 }
886 }
887
validateRootSet(DAGRootSet & DRS)888 bool LoopReroll::DAGRootTracker::validateRootSet(DAGRootSet &DRS) {
889 if (DRS.Roots.empty())
890 return false;
891
892 // If the value of the base instruction is used outside the loop, we cannot
893 // reroll the loop. Check for other root instructions is unnecessary because
894 // they don't match any base instructions if their values are used outside.
895 if (hasUsesOutsideLoop(DRS.BaseInst, L))
896 return false;
897
898 // Consider a DAGRootSet with N-1 roots (so N different values including
899 // BaseInst).
900 // Define d = Roots[0] - BaseInst, which should be the same as
901 // Roots[I] - Roots[I-1] for all I in [1..N).
902 // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the
903 // loop iteration J.
904 //
905 // Now, For the loop iterations to be consecutive:
906 // D = d * N
907 const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
908 if (!ADR)
909 return false;
910
911 // Check that the first root is evenly spaced.
912 unsigned N = DRS.Roots.size() + 1;
913 const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), ADR);
914 const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N);
915 if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV))
916 return false;
917
918 // Check that the remainling roots are evenly spaced.
919 for (unsigned i = 1; i < N - 1; ++i) {
920 const SCEV *NewStepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[i]),
921 SE->getSCEV(DRS.Roots[i-1]));
922 if (NewStepSCEV != StepSCEV)
923 return false;
924 }
925
926 return true;
927 }
928
929 bool LoopReroll::DAGRootTracker::
findRootsBase(Instruction * IVU,SmallInstructionSet SubsumedInsts)930 findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) {
931 // The base of a RootSet must be an AddRec, so it can be erased.
932 const auto *IVU_ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IVU));
933 if (!IVU_ADR || IVU_ADR->getLoop() != L)
934 return false;
935
936 std::map<int64_t, Instruction*> V;
937 if (!collectPossibleRoots(IVU, V))
938 return false;
939
940 // If we didn't get a root for index zero, then IVU must be
941 // subsumed.
942 if (V.find(0) == V.end())
943 SubsumedInsts.insert(IVU);
944
945 // Partition the vector into monotonically increasing indexes.
946 DAGRootSet DRS;
947 DRS.BaseInst = nullptr;
948
949 SmallVector<DAGRootSet, 16> PotentialRootSets;
950
951 for (auto &KV : V) {
952 if (!DRS.BaseInst) {
953 DRS.BaseInst = KV.second;
954 DRS.SubsumedInsts = SubsumedInsts;
955 } else if (DRS.Roots.empty()) {
956 DRS.Roots.push_back(KV.second);
957 } else if (V.find(KV.first - 1) != V.end()) {
958 DRS.Roots.push_back(KV.second);
959 } else {
960 // Linear sequence terminated.
961 if (!validateRootSet(DRS))
962 return false;
963
964 // Construct a new DAGRootSet with the next sequence.
965 PotentialRootSets.push_back(DRS);
966 DRS.BaseInst = KV.second;
967 DRS.Roots.clear();
968 }
969 }
970
971 if (!validateRootSet(DRS))
972 return false;
973
974 PotentialRootSets.push_back(DRS);
975
976 RootSets.append(PotentialRootSets.begin(), PotentialRootSets.end());
977
978 return true;
979 }
980
findRoots()981 bool LoopReroll::DAGRootTracker::findRoots() {
982 Inc = IVToIncMap[IV];
983
984 assert(RootSets.empty() && "Unclean state!");
985 if (std::abs(Inc) == 1) {
986 for (auto *IVU : IV->users()) {
987 if (isLoopIncrement(IVU, IV))
988 LoopIncs.push_back(cast<Instruction>(IVU));
989 }
990 findRootsRecursive(IV, SmallInstructionSet());
991 LoopIncs.push_back(IV);
992 } else {
993 if (!findRootsBase(IV, SmallInstructionSet()))
994 return false;
995 }
996
997 // Ensure all sets have the same size.
998 if (RootSets.empty()) {
999 LLVM_DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n");
1000 return false;
1001 }
1002 for (auto &V : RootSets) {
1003 if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) {
1004 LLVM_DEBUG(
1005 dbgs()
1006 << "LRR: Aborting because not all root sets have the same size\n");
1007 return false;
1008 }
1009 }
1010
1011 Scale = RootSets[0].Roots.size() + 1;
1012
1013 if (Scale > IL_MaxRerollIterations) {
1014 LLVM_DEBUG(dbgs() << "LRR: Aborting - too many iterations found. "
1015 << "#Found=" << Scale
1016 << ", #Max=" << IL_MaxRerollIterations << "\n");
1017 return false;
1018 }
1019
1020 LLVM_DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale
1021 << "\n");
1022
1023 return true;
1024 }
1025
collectUsedInstructions(SmallInstructionSet & PossibleRedSet)1026 bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) {
1027 // Populate the MapVector with all instructions in the block, in order first,
1028 // so we can iterate over the contents later in perfect order.
1029 for (auto &I : *L->getHeader()) {
1030 Uses[&I].resize(IL_End);
1031 }
1032
1033 SmallInstructionSet Exclude;
1034 for (auto &DRS : RootSets) {
1035 Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
1036 Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
1037 Exclude.insert(DRS.BaseInst);
1038 }
1039 Exclude.insert(LoopIncs.begin(), LoopIncs.end());
1040
1041 for (auto &DRS : RootSets) {
1042 DenseSet<Instruction*> VBase;
1043 collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase);
1044 for (auto *I : VBase) {
1045 Uses[I].set(0);
1046 }
1047
1048 unsigned Idx = 1;
1049 for (auto *Root : DRS.Roots) {
1050 DenseSet<Instruction*> V;
1051 collectInLoopUserSet(Root, Exclude, PossibleRedSet, V);
1052
1053 // While we're here, check the use sets are the same size.
1054 if (V.size() != VBase.size()) {
1055 LLVM_DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n");
1056 return false;
1057 }
1058
1059 for (auto *I : V) {
1060 Uses[I].set(Idx);
1061 }
1062 ++Idx;
1063 }
1064
1065 // Make sure our subsumed instructions are remembered too.
1066 for (auto *I : DRS.SubsumedInsts) {
1067 Uses[I].set(IL_All);
1068 }
1069 }
1070
1071 // Make sure the loop increments are also accounted for.
1072
1073 Exclude.clear();
1074 for (auto &DRS : RootSets) {
1075 Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
1076 Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
1077 Exclude.insert(DRS.BaseInst);
1078 }
1079
1080 DenseSet<Instruction*> V;
1081 collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V);
1082 for (auto *I : V) {
1083 if (I->mayHaveSideEffects()) {
1084 LLVM_DEBUG(dbgs() << "LRR: Aborting - "
1085 << "An instruction which does not belong to any root "
1086 << "sets must not have side effects: " << *I);
1087 return false;
1088 }
1089 Uses[I].set(IL_All);
1090 }
1091
1092 return true;
1093 }
1094
1095 /// Get the next instruction in "In" that is a member of set Val.
1096 /// Start searching from StartI, and do not return anything in Exclude.
1097 /// If StartI is not given, start from In.begin().
1098 LoopReroll::DAGRootTracker::UsesTy::iterator
nextInstr(int Val,UsesTy & In,const SmallInstructionSet & Exclude,UsesTy::iterator * StartI)1099 LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In,
1100 const SmallInstructionSet &Exclude,
1101 UsesTy::iterator *StartI) {
1102 UsesTy::iterator I = StartI ? *StartI : In.begin();
1103 while (I != In.end() && (I->second.test(Val) == 0 ||
1104 Exclude.contains(I->first)))
1105 ++I;
1106 return I;
1107 }
1108
isBaseInst(Instruction * I)1109 bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) {
1110 for (auto &DRS : RootSets) {
1111 if (DRS.BaseInst == I)
1112 return true;
1113 }
1114 return false;
1115 }
1116
isRootInst(Instruction * I)1117 bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) {
1118 for (auto &DRS : RootSets) {
1119 if (is_contained(DRS.Roots, I))
1120 return true;
1121 }
1122 return false;
1123 }
1124
1125 /// Return true if instruction I depends on any instruction between
1126 /// Start and End.
instrDependsOn(Instruction * I,UsesTy::iterator Start,UsesTy::iterator End)1127 bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I,
1128 UsesTy::iterator Start,
1129 UsesTy::iterator End) {
1130 for (auto *U : I->users()) {
1131 for (auto It = Start; It != End; ++It)
1132 if (U == It->first)
1133 return true;
1134 }
1135 return false;
1136 }
1137
isIgnorableInst(const Instruction * I)1138 static bool isIgnorableInst(const Instruction *I) {
1139 if (isa<DbgInfoIntrinsic>(I))
1140 return true;
1141 const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I);
1142 if (!II)
1143 return false;
1144 switch (II->getIntrinsicID()) {
1145 default:
1146 return false;
1147 case Intrinsic::annotation:
1148 case Intrinsic::ptr_annotation:
1149 case Intrinsic::var_annotation:
1150 // TODO: the following intrinsics may also be allowed:
1151 // lifetime_start, lifetime_end, invariant_start, invariant_end
1152 return true;
1153 }
1154 return false;
1155 }
1156
validate(ReductionTracker & Reductions)1157 bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
1158 // We now need to check for equivalence of the use graph of each root with
1159 // that of the primary induction variable (excluding the roots). Our goal
1160 // here is not to solve the full graph isomorphism problem, but rather to
1161 // catch common cases without a lot of work. As a result, we will assume
1162 // that the relative order of the instructions in each unrolled iteration
1163 // is the same (although we will not make an assumption about how the
1164 // different iterations are intermixed). Note that while the order must be
1165 // the same, the instructions may not be in the same basic block.
1166
1167 // An array of just the possible reductions for this scale factor. When we
1168 // collect the set of all users of some root instructions, these reduction
1169 // instructions are treated as 'final' (their uses are not considered).
1170 // This is important because we don't want the root use set to search down
1171 // the reduction chain.
1172 SmallInstructionSet PossibleRedSet;
1173 SmallInstructionSet PossibleRedLastSet;
1174 SmallInstructionSet PossibleRedPHISet;
1175 Reductions.restrictToScale(Scale, PossibleRedSet,
1176 PossibleRedPHISet, PossibleRedLastSet);
1177
1178 // Populate "Uses" with where each instruction is used.
1179 if (!collectUsedInstructions(PossibleRedSet))
1180 return false;
1181
1182 // Make sure we mark the reduction PHIs as used in all iterations.
1183 for (auto *I : PossibleRedPHISet) {
1184 Uses[I].set(IL_All);
1185 }
1186
1187 // Make sure we mark loop-control-only PHIs as used in all iterations. See
1188 // comment above LoopReroll::isLoopControlIV for more information.
1189 BasicBlock *Header = L->getHeader();
1190 if (LoopControlIV && LoopControlIV != IV) {
1191 for (auto *U : LoopControlIV->users()) {
1192 Instruction *IVUser = dyn_cast<Instruction>(U);
1193 // IVUser could be loop increment or compare
1194 Uses[IVUser].set(IL_All);
1195 for (auto *UU : IVUser->users()) {
1196 Instruction *UUser = dyn_cast<Instruction>(UU);
1197 // UUser could be compare, PHI or branch
1198 Uses[UUser].set(IL_All);
1199 // Skip SExt
1200 if (isa<SExtInst>(UUser)) {
1201 UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
1202 Uses[UUser].set(IL_All);
1203 }
1204 // Is UUser a compare instruction?
1205 if (UU->hasOneUse()) {
1206 Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin());
1207 if (BI == cast<BranchInst>(Header->getTerminator()))
1208 Uses[BI].set(IL_All);
1209 }
1210 }
1211 }
1212 }
1213
1214 // Make sure all instructions in the loop are in one and only one
1215 // set.
1216 for (auto &KV : Uses) {
1217 if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) {
1218 LLVM_DEBUG(
1219 dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: "
1220 << *KV.first << " (#uses=" << KV.second.count() << ")\n");
1221 return false;
1222 }
1223 }
1224
1225 LLVM_DEBUG(for (auto &KV
1226 : Uses) {
1227 dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n";
1228 });
1229
1230 for (unsigned Iter = 1; Iter < Scale; ++Iter) {
1231 // In addition to regular aliasing information, we need to look for
1232 // instructions from later (future) iterations that have side effects
1233 // preventing us from reordering them past other instructions with side
1234 // effects.
1235 bool FutureSideEffects = false;
1236 AliasSetTracker AST(*AA);
1237 // The map between instructions in f(%iv.(i+1)) and f(%iv).
1238 DenseMap<Value *, Value *> BaseMap;
1239
1240 // Compare iteration Iter to the base.
1241 SmallInstructionSet Visited;
1242 auto BaseIt = nextInstr(0, Uses, Visited);
1243 auto RootIt = nextInstr(Iter, Uses, Visited);
1244 auto LastRootIt = Uses.begin();
1245
1246 while (BaseIt != Uses.end() && RootIt != Uses.end()) {
1247 Instruction *BaseInst = BaseIt->first;
1248 Instruction *RootInst = RootIt->first;
1249
1250 // Skip over the IV or root instructions; only match their users.
1251 bool Continue = false;
1252 if (isBaseInst(BaseInst)) {
1253 Visited.insert(BaseInst);
1254 BaseIt = nextInstr(0, Uses, Visited);
1255 Continue = true;
1256 }
1257 if (isRootInst(RootInst)) {
1258 LastRootIt = RootIt;
1259 Visited.insert(RootInst);
1260 RootIt = nextInstr(Iter, Uses, Visited);
1261 Continue = true;
1262 }
1263 if (Continue) continue;
1264
1265 if (!BaseInst->isSameOperationAs(RootInst)) {
1266 // Last chance saloon. We don't try and solve the full isomorphism
1267 // problem, but try and at least catch the case where two instructions
1268 // *of different types* are round the wrong way. We won't be able to
1269 // efficiently tell, given two ADD instructions, which way around we
1270 // should match them, but given an ADD and a SUB, we can at least infer
1271 // which one is which.
1272 //
1273 // This should allow us to deal with a greater subset of the isomorphism
1274 // problem. It does however change a linear algorithm into a quadratic
1275 // one, so limit the number of probes we do.
1276 auto TryIt = RootIt;
1277 unsigned N = NumToleratedFailedMatches;
1278 while (TryIt != Uses.end() &&
1279 !BaseInst->isSameOperationAs(TryIt->first) &&
1280 N--) {
1281 ++TryIt;
1282 TryIt = nextInstr(Iter, Uses, Visited, &TryIt);
1283 }
1284
1285 if (TryIt == Uses.end() || TryIt == RootIt ||
1286 instrDependsOn(TryIt->first, RootIt, TryIt)) {
1287 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
1288 << *BaseInst << " vs. " << *RootInst << "\n");
1289 return false;
1290 }
1291
1292 RootIt = TryIt;
1293 RootInst = TryIt->first;
1294 }
1295
1296 // All instructions between the last root and this root
1297 // may belong to some other iteration. If they belong to a
1298 // future iteration, then they're dangerous to alias with.
1299 //
1300 // Note that because we allow a limited amount of flexibility in the order
1301 // that we visit nodes, LastRootIt might be *before* RootIt, in which
1302 // case we've already checked this set of instructions so we shouldn't
1303 // do anything.
1304 for (; LastRootIt < RootIt; ++LastRootIt) {
1305 Instruction *I = LastRootIt->first;
1306 if (LastRootIt->second.find_first() < (int)Iter)
1307 continue;
1308 if (I->mayWriteToMemory())
1309 AST.add(I);
1310 // Note: This is specifically guarded by a check on isa<PHINode>,
1311 // which while a valid (somewhat arbitrary) micro-optimization, is
1312 // needed because otherwise isSafeToSpeculativelyExecute returns
1313 // false on PHI nodes.
1314 if (!isa<PHINode>(I) && !isUnorderedLoadStore(I) &&
1315 !isSafeToSpeculativelyExecute(I))
1316 // Intervening instructions cause side effects.
1317 FutureSideEffects = true;
1318 }
1319
1320 // Make sure that this instruction, which is in the use set of this
1321 // root instruction, does not also belong to the base set or the set of
1322 // some other root instruction.
1323 if (RootIt->second.count() > 1) {
1324 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1325 << " vs. " << *RootInst << " (prev. case overlap)\n");
1326 return false;
1327 }
1328
1329 // Make sure that we don't alias with any instruction in the alias set
1330 // tracker. If we do, then we depend on a future iteration, and we
1331 // can't reroll.
1332 if (RootInst->mayReadFromMemory())
1333 for (auto &K : AST) {
1334 if (K.aliasesUnknownInst(RootInst, *AA)) {
1335 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
1336 << *BaseInst << " vs. " << *RootInst
1337 << " (depends on future store)\n");
1338 return false;
1339 }
1340 }
1341
1342 // If we've past an instruction from a future iteration that may have
1343 // side effects, and this instruction might also, then we can't reorder
1344 // them, and this matching fails. As an exception, we allow the alias
1345 // set tracker to handle regular (unordered) load/store dependencies.
1346 if (FutureSideEffects && ((!isUnorderedLoadStore(BaseInst) &&
1347 !isSafeToSpeculativelyExecute(BaseInst)) ||
1348 (!isUnorderedLoadStore(RootInst) &&
1349 !isSafeToSpeculativelyExecute(RootInst)))) {
1350 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1351 << " vs. " << *RootInst
1352 << " (side effects prevent reordering)\n");
1353 return false;
1354 }
1355
1356 // For instructions that are part of a reduction, if the operation is
1357 // associative, then don't bother matching the operands (because we
1358 // already know that the instructions are isomorphic, and the order
1359 // within the iteration does not matter). For non-associative reductions,
1360 // we do need to match the operands, because we need to reject
1361 // out-of-order instructions within an iteration!
1362 // For example (assume floating-point addition), we need to reject this:
1363 // x += a[i]; x += b[i];
1364 // x += a[i+1]; x += b[i+1];
1365 // x += b[i+2]; x += a[i+2];
1366 bool InReduction = Reductions.isPairInSame(BaseInst, RootInst);
1367
1368 if (!(InReduction && BaseInst->isAssociative())) {
1369 bool Swapped = false, SomeOpMatched = false;
1370 for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) {
1371 Value *Op2 = RootInst->getOperand(j);
1372
1373 // If this is part of a reduction (and the operation is not
1374 // associatve), then we match all operands, but not those that are
1375 // part of the reduction.
1376 if (InReduction)
1377 if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
1378 if (Reductions.isPairInSame(RootInst, Op2I))
1379 continue;
1380
1381 DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
1382 if (BMI != BaseMap.end()) {
1383 Op2 = BMI->second;
1384 } else {
1385 for (auto &DRS : RootSets) {
1386 if (DRS.Roots[Iter-1] == (Instruction*) Op2) {
1387 Op2 = DRS.BaseInst;
1388 break;
1389 }
1390 }
1391 }
1392
1393 if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
1394 // If we've not already decided to swap the matched operands, and
1395 // we've not already matched our first operand (note that we could
1396 // have skipped matching the first operand because it is part of a
1397 // reduction above), and the instruction is commutative, then try
1398 // the swapped match.
1399 if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched &&
1400 BaseInst->getOperand(!j) == Op2) {
1401 Swapped = true;
1402 } else {
1403 LLVM_DEBUG(dbgs()
1404 << "LRR: iteration root match failed at " << *BaseInst
1405 << " vs. " << *RootInst << " (operand " << j << ")\n");
1406 return false;
1407 }
1408 }
1409
1410 SomeOpMatched = true;
1411 }
1412 }
1413
1414 if ((!PossibleRedLastSet.count(BaseInst) &&
1415 hasUsesOutsideLoop(BaseInst, L)) ||
1416 (!PossibleRedLastSet.count(RootInst) &&
1417 hasUsesOutsideLoop(RootInst, L))) {
1418 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1419 << " vs. " << *RootInst << " (uses outside loop)\n");
1420 return false;
1421 }
1422
1423 Reductions.recordPair(BaseInst, RootInst, Iter);
1424 BaseMap.insert(std::make_pair(RootInst, BaseInst));
1425
1426 LastRootIt = RootIt;
1427 Visited.insert(BaseInst);
1428 Visited.insert(RootInst);
1429 BaseIt = nextInstr(0, Uses, Visited);
1430 RootIt = nextInstr(Iter, Uses, Visited);
1431 }
1432 assert(BaseIt == Uses.end() && RootIt == Uses.end() &&
1433 "Mismatched set sizes!");
1434 }
1435
1436 LLVM_DEBUG(dbgs() << "LRR: Matched all iteration increments for " << *IV
1437 << "\n");
1438
1439 return true;
1440 }
1441
replace(const SCEV * BackedgeTakenCount)1442 void LoopReroll::DAGRootTracker::replace(const SCEV *BackedgeTakenCount) {
1443 BasicBlock *Header = L->getHeader();
1444
1445 // Compute the start and increment for each BaseInst before we start erasing
1446 // instructions.
1447 SmallVector<const SCEV *, 8> StartExprs;
1448 SmallVector<const SCEV *, 8> IncrExprs;
1449 for (auto &DRS : RootSets) {
1450 const SCEVAddRecExpr *IVSCEV =
1451 cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst));
1452 StartExprs.push_back(IVSCEV->getStart());
1453 IncrExprs.push_back(SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), IVSCEV));
1454 }
1455
1456 // Remove instructions associated with non-base iterations.
1457 for (BasicBlock::reverse_iterator J = Header->rbegin(), JE = Header->rend();
1458 J != JE;) {
1459 unsigned I = Uses[&*J].find_first();
1460 if (I > 0 && I < IL_All) {
1461 LLVM_DEBUG(dbgs() << "LRR: removing: " << *J << "\n");
1462 J++->eraseFromParent();
1463 continue;
1464 }
1465
1466 ++J;
1467 }
1468
1469 // Rewrite each BaseInst using SCEV.
1470 for (size_t i = 0, e = RootSets.size(); i != e; ++i)
1471 // Insert the new induction variable.
1472 replaceIV(RootSets[i], StartExprs[i], IncrExprs[i]);
1473
1474 { // Limit the lifetime of SCEVExpander.
1475 BranchInst *BI = cast<BranchInst>(Header->getTerminator());
1476 const DataLayout &DL = Header->getModule()->getDataLayout();
1477 SCEVExpander Expander(*SE, DL, "reroll");
1478 auto Zero = SE->getZero(BackedgeTakenCount->getType());
1479 auto One = SE->getOne(BackedgeTakenCount->getType());
1480 auto NewIVSCEV = SE->getAddRecExpr(Zero, One, L, SCEV::FlagAnyWrap);
1481 Value *NewIV =
1482 Expander.expandCodeFor(NewIVSCEV, BackedgeTakenCount->getType(),
1483 Header->getFirstNonPHIOrDbg());
1484 // FIXME: This arithmetic can overflow.
1485 auto TripCount = SE->getAddExpr(BackedgeTakenCount, One);
1486 auto ScaledTripCount = SE->getMulExpr(
1487 TripCount, SE->getConstant(BackedgeTakenCount->getType(), Scale));
1488 auto ScaledBECount = SE->getMinusSCEV(ScaledTripCount, One);
1489 Value *TakenCount =
1490 Expander.expandCodeFor(ScaledBECount, BackedgeTakenCount->getType(),
1491 Header->getFirstNonPHIOrDbg());
1492 Value *Cond =
1493 new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, TakenCount, "exitcond");
1494 BI->setCondition(Cond);
1495
1496 if (BI->getSuccessor(1) != Header)
1497 BI->swapSuccessors();
1498 }
1499
1500 SimplifyInstructionsInBlock(Header, TLI);
1501 DeleteDeadPHIs(Header, TLI);
1502 }
1503
replaceIV(DAGRootSet & DRS,const SCEV * Start,const SCEV * IncrExpr)1504 void LoopReroll::DAGRootTracker::replaceIV(DAGRootSet &DRS,
1505 const SCEV *Start,
1506 const SCEV *IncrExpr) {
1507 BasicBlock *Header = L->getHeader();
1508 Instruction *Inst = DRS.BaseInst;
1509
1510 const SCEV *NewIVSCEV =
1511 SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap);
1512
1513 { // Limit the lifetime of SCEVExpander.
1514 const DataLayout &DL = Header->getModule()->getDataLayout();
1515 SCEVExpander Expander(*SE, DL, "reroll");
1516 Value *NewIV = Expander.expandCodeFor(NewIVSCEV, Inst->getType(),
1517 Header->getFirstNonPHIOrDbg());
1518
1519 for (auto &KV : Uses)
1520 if (KV.second.find_first() == 0)
1521 KV.first->replaceUsesOfWith(Inst, NewIV);
1522 }
1523 }
1524
1525 // Validate the selected reductions. All iterations must have an isomorphic
1526 // part of the reduction chain and, for non-associative reductions, the chain
1527 // entries must appear in order.
validateSelected()1528 bool LoopReroll::ReductionTracker::validateSelected() {
1529 // For a non-associative reduction, the chain entries must appear in order.
1530 for (int i : Reds) {
1531 int PrevIter = 0, BaseCount = 0, Count = 0;
1532 for (Instruction *J : PossibleReds[i]) {
1533 // Note that all instructions in the chain must have been found because
1534 // all instructions in the function must have been assigned to some
1535 // iteration.
1536 int Iter = PossibleRedIter[J];
1537 if (Iter != PrevIter && Iter != PrevIter + 1 &&
1538 !PossibleReds[i].getReducedValue()->isAssociative()) {
1539 LLVM_DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: "
1540 << J << "\n");
1541 return false;
1542 }
1543
1544 if (Iter != PrevIter) {
1545 if (Count != BaseCount) {
1546 LLVM_DEBUG(dbgs()
1547 << "LRR: Iteration " << PrevIter << " reduction use count "
1548 << Count << " is not equal to the base use count "
1549 << BaseCount << "\n");
1550 return false;
1551 }
1552
1553 Count = 0;
1554 }
1555
1556 ++Count;
1557 if (Iter == 0)
1558 ++BaseCount;
1559
1560 PrevIter = Iter;
1561 }
1562 }
1563
1564 return true;
1565 }
1566
1567 // For all selected reductions, remove all parts except those in the first
1568 // iteration (and the PHI). Replace outside uses of the reduced value with uses
1569 // of the first-iteration reduced value (in other words, reroll the selected
1570 // reductions).
replaceSelected()1571 void LoopReroll::ReductionTracker::replaceSelected() {
1572 // Fixup reductions to refer to the last instruction associated with the
1573 // first iteration (not the last).
1574 for (int i : Reds) {
1575 int j = 0;
1576 for (int e = PossibleReds[i].size(); j != e; ++j)
1577 if (PossibleRedIter[PossibleReds[i][j]] != 0) {
1578 --j;
1579 break;
1580 }
1581
1582 // Replace users with the new end-of-chain value.
1583 SmallInstructionVector Users;
1584 for (User *U : PossibleReds[i].getReducedValue()->users()) {
1585 Users.push_back(cast<Instruction>(U));
1586 }
1587
1588 for (Instruction *User : Users)
1589 User->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
1590 PossibleReds[i][j]);
1591 }
1592 }
1593
1594 // Reroll the provided loop with respect to the provided induction variable.
1595 // Generally, we're looking for a loop like this:
1596 //
1597 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
1598 // f(%iv)
1599 // %iv.1 = add %iv, 1 <-- a root increment
1600 // f(%iv.1)
1601 // %iv.2 = add %iv, 2 <-- a root increment
1602 // f(%iv.2)
1603 // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment
1604 // f(%iv.scale_m_1)
1605 // ...
1606 // %iv.next = add %iv, scale
1607 // %cmp = icmp(%iv, ...)
1608 // br %cmp, header, exit
1609 //
1610 // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
1611 // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
1612 // be intermixed with eachother. The restriction imposed by this algorithm is
1613 // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
1614 // etc. be the same.
1615 //
1616 // First, we collect the use set of %iv, excluding the other increment roots.
1617 // This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
1618 // times, having collected the use set of f(%iv.(i+1)), during which we:
1619 // - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
1620 // the next unmatched instruction in f(%iv.(i+1)).
1621 // - Ensure that both matched instructions don't have any external users
1622 // (with the exception of last-in-chain reduction instructions).
1623 // - Track the (aliasing) write set, and other side effects, of all
1624 // instructions that belong to future iterations that come before the matched
1625 // instructions. If the matched instructions read from that write set, then
1626 // f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
1627 // f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
1628 // if any of these future instructions had side effects (could not be
1629 // speculatively executed), and so do the matched instructions, when we
1630 // cannot reorder those side-effect-producing instructions, and rerolling
1631 // fails.
1632 //
1633 // Finally, we make sure that all loop instructions are either loop increment
1634 // roots, belong to simple latch code, parts of validated reductions, part of
1635 // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
1636 // have been validated), then we reroll the loop.
reroll(Instruction * IV,Loop * L,BasicBlock * Header,const SCEV * BackedgeTakenCount,ReductionTracker & Reductions)1637 bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
1638 const SCEV *BackedgeTakenCount,
1639 ReductionTracker &Reductions) {
1640 DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA,
1641 IVToIncMap, LoopControlIV);
1642
1643 if (!DAGRoots.findRoots())
1644 return false;
1645 LLVM_DEBUG(dbgs() << "LRR: Found all root induction increments for: " << *IV
1646 << "\n");
1647
1648 if (!DAGRoots.validate(Reductions))
1649 return false;
1650 if (!Reductions.validateSelected())
1651 return false;
1652 // At this point, we've validated the rerolling, and we're committed to
1653 // making changes!
1654
1655 Reductions.replaceSelected();
1656 DAGRoots.replace(BackedgeTakenCount);
1657
1658 ++NumRerolledLoops;
1659 return true;
1660 }
1661
runOnLoop(Loop * L)1662 bool LoopReroll::runOnLoop(Loop *L) {
1663 BasicBlock *Header = L->getHeader();
1664 LLVM_DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() << "] Loop %"
1665 << Header->getName() << " (" << L->getNumBlocks()
1666 << " block(s))\n");
1667
1668 // For now, we'll handle only single BB loops.
1669 if (L->getNumBlocks() > 1)
1670 return false;
1671
1672 if (!SE->hasLoopInvariantBackedgeTakenCount(L))
1673 return false;
1674
1675 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1676 LLVM_DEBUG(dbgs() << "\n Before Reroll:\n" << *(L->getHeader()) << "\n");
1677 LLVM_DEBUG(dbgs() << "LRR: backedge-taken count = " << *BackedgeTakenCount
1678 << "\n");
1679
1680 // First, we need to find the induction variable with respect to which we can
1681 // reroll (there may be several possible options).
1682 SmallInstructionVector PossibleIVs;
1683 IVToIncMap.clear();
1684 LoopControlIV = nullptr;
1685 collectPossibleIVs(L, PossibleIVs);
1686
1687 if (PossibleIVs.empty()) {
1688 LLVM_DEBUG(dbgs() << "LRR: No possible IVs found\n");
1689 return false;
1690 }
1691
1692 ReductionTracker Reductions;
1693 collectPossibleReductions(L, Reductions);
1694 bool Changed = false;
1695
1696 // For each possible IV, collect the associated possible set of 'root' nodes
1697 // (i+1, i+2, etc.).
1698 for (Instruction *PossibleIV : PossibleIVs)
1699 if (reroll(PossibleIV, L, Header, BackedgeTakenCount, Reductions)) {
1700 Changed = true;
1701 break;
1702 }
1703 LLVM_DEBUG(dbgs() << "\n After Reroll:\n" << *(L->getHeader()) << "\n");
1704
1705 // Trip count of L has changed so SE must be re-evaluated.
1706 if (Changed)
1707 SE->forgetLoop(L);
1708
1709 return Changed;
1710 }
1711
runOnLoop(Loop * L,LPPassManager & LPM)1712 bool LoopRerollLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
1713 if (skipLoop(L))
1714 return false;
1715
1716 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1717 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1718 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1719 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
1720 *L->getHeader()->getParent());
1721 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1722 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1723
1724 return LoopReroll(AA, LI, SE, TLI, DT, PreserveLCSSA).runOnLoop(L);
1725 }
1726
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater & U)1727 PreservedAnalyses LoopRerollPass::run(Loop &L, LoopAnalysisManager &AM,
1728 LoopStandardAnalysisResults &AR,
1729 LPMUpdater &U) {
1730 return LoopReroll(&AR.AA, &AR.LI, &AR.SE, &AR.TLI, &AR.DT, true).runOnLoop(&L)
1731 ? getLoopPassPreservedAnalyses()
1732 : PreservedAnalyses::all();
1733 }
1734