/llvm-project/mlir/lib/Dialect/NVGPU/IR/ |
H A D | NVGPUDialect.cpp | 126 ::mlir::OperationState &odsState, Value matrixA, in build() argument 128 build(odsBuilder, odsState, matrixC.getType(), matrixA, matrixB, matrixC, in build() 133 ::mlir::OperationState &odsState, Value matrixA, in build() argument 136 build(odsBuilder, odsState, matrixC.getType(), matrixA, matrixB, matrixC, in build() 143 TypedValue<VectorType> matrixA, in verifyMmaSyncOp() argument 166 auto aVector = matrixA.getType(); in verifyMmaSyncOp() 207 return op->emitError() << "matrixA must be 2 dimensional vector"; in verifyMmaSyncOp() 279 ::mlir::OperationState &odsState, Value matrixA, in verify() 282 build(odsBuilder, odsState, matrixC.getType(), matrixA, matrixB, matrixC, in verify() 566 MemRefType matrixA in verify() 267 build(::mlir::OpBuilder & odsBuilder,::mlir::OperationState & odsState,Value matrixA,Value matrixB,Value matrixC,Value sparseMetadata,ArrayRef<int64_t> mmaShape) build() argument 554 MemRefType matrixA = getDescriptorA().getType().getTensor(); verify() local [all...] |
/llvm-project/llvm/test/CodeGen/Hexagon/ |
H A D | float-amode.ll | 22 %matrixA = getelementptr inbounds %struct.matrix_params, ptr %params, i32 0, i32 2 23 %0 = load ptr, ptr %matrixA, align 4 45 %matrixA = getelementptr inbounds %struct.matrix_params, ptr %params, i32 0, i32 2 46 %0 = load ptr, ptr %matrixA, align 4 64 %matrixA = getelementptr inbounds %struct.matrix_params, ptr %params, i32 0, i32 2 65 %0 = load ptr, ptr %matrixA, align 4
|
/llvm-project/mlir/include/mlir/Dialect/NVGPU/IR/ |
H A D | NVGPU.td | 268 PredOpTrait<"matrixA and matrixB have same element type", 300 %res = nvgpu.mma.sync (%matrixA, %matrixB, %matrixC) {mmaShape = [16, 8, 16]} : 304 let arguments = (ins AnyVectorOfNonZeroRank:$matrixA, 313 OpBuilder<(ins "Value":$matrixA, 317 OpBuilder<(ins "Value":$matrixA, 325 `(` $matrixA`,` $matrixB`,` $matrixC `)` attr-dict 326 `:` `(` type($matrixA) `,` type($matrixB) `,` type($matrixC) `)` `->` type($res) 339 where operand A is "structured sparse". In this case, the `matrixA` operand 360 let arguments = (ins AnyVectorOfNonZeroRank:$matrixA, 372 OpBuilder<(ins "Value":$matrixA, [all...] |
/llvm-project/mlir/test/Integration/GPU/CUDA/sm90/ |
H A D | gemm_pred_f32_f16_f16_128x128x128.mlir | 106 %matrixA:2 = gpu.alloc async [%token] () : memref<128x128xf16> 109 %1 = gpu.memcpy async [%token] %matrixA, %matrixAHost : memref<128x128xf16>, memref<128x128xf16> 111 %castA = memref.cast %matrixA : memref<128x128xf16> to memref<*xf16>
|
H A D | gemm_f32_f16_f16_128x128x128.mlir | 106 %matrixA:2 = gpu.alloc async [%token] () : memref<128x128xf16> 109 %1 = gpu.memcpy async [%token] %matrixA, %matrixAHost : memref<128x128xf16>, memref<128x128xf16> 111 %castA = memref.cast %matrixA : memref<128x128xf16> to memref<*xf16>
|
/llvm-project/mlir/test/Conversion/VectorToGPU/ |
H A D | fold-arith-vector-to-mma-ops-mma-sync.mlir | 4 // FP16 input, F32 accumulation row-row-row (ldmatrix x4 for matrixA and ldmatrix x4 for matrixB)
|
H A D | vector-to-mma-ops-mma-sync.mlir | 169 // FP16 row-row-row (ldmatrix x4 for matrixA and ldmatrix x2 for matrixB) 203 // FP16 row-row-row (ldmatrix x4 for matrixA and ldmatrix x4 for matrixB)
|
/llvm-project/flang/unittests/Optimizer/Builder/Runtime/ |
H A D | TransformationalTest.cpp | 159 mlir::Value matrixA = builder.create<fir::UndefOp>(loc, boxTy1); in testGenMatmul() local 161 fir::runtime::genMatmul(builder, loc, result, matrixA, matrixB); in testGenMatmul()
|
/llvm-project/mlir/test/Dialect/NVGPU/ |
H A D | invalid.mlir | 130 // expected-error @+1 {{op failed to verify that matrixA and matrixB have same element type}} 361 // expected-error @+1 {{matrixA must be 2 dimensional vector}}
|
/llvm-project/flang/lib/Optimizer/Builder/ |
H A D | IntrinsicCall.cpp | 6035 mlir::Value matrixA = fir::getBase(matrixTmpA); in genScan() 6048 fir::runtime::genMatmul(builder, loc, resultIrBox, matrixA, matrixB); in genScan() 6062 mlir::Value matrixA = fir::getBase(matrixTmpA); in genScan() 6075 fir::runtime::genMatmulTranspose(builder, loc, resultIrBox, matrixA, matrixB); in genScan() 5324 mlir::Value matrixA = fir::getBase(matrixTmpA); genMatmul() local 5351 mlir::Value matrixA = fir::getBase(matrixTmpA); genMatmulTranspose() local
|