xref: /llvm-project/compiler-rt/lib/xray/xray_x86_64.cpp (revision e738a5d8e33911381dbd0e1bc5a0109e9ebb62f2)
1 #include "cpuid.h"
2 #include "sanitizer_common/sanitizer_common.h"
3 #if !SANITIZER_FUCHSIA
4 #include "sanitizer_common/sanitizer_posix.h"
5 #endif
6 #include "xray_defs.h"
7 #include "xray_interface_internal.h"
8 
9 #if SANITIZER_FREEBSD || SANITIZER_NETBSD || SANITIZER_APPLE
10 #include <sys/types.h>
11 #include <sys/sysctl.h>
12 #elif SANITIZER_FUCHSIA
13 #include <zircon/syscalls.h>
14 #endif
15 
16 #include <atomic>
17 #include <cstdint>
18 #include <errno.h>
19 #include <fcntl.h>
20 #include <iterator>
21 #include <limits>
22 #include <tuple>
23 #include <unistd.h>
24 
25 namespace __xray {
26 
27 #if SANITIZER_LINUX
28 static std::pair<ssize_t, bool>
29 retryingReadSome(int Fd, char *Begin, char *End) XRAY_NEVER_INSTRUMENT {
30   auto BytesToRead = std::distance(Begin, End);
31   ssize_t BytesRead;
32   ssize_t TotalBytesRead = 0;
33   while (BytesToRead && (BytesRead = read(Fd, Begin, BytesToRead))) {
34     if (BytesRead == -1) {
35       if (errno == EINTR)
36         continue;
37       Report("Read error; errno = %d\n", errno);
38       return std::make_pair(TotalBytesRead, false);
39     }
40 
41     TotalBytesRead += BytesRead;
42     BytesToRead -= BytesRead;
43     Begin += BytesRead;
44   }
45   return std::make_pair(TotalBytesRead, true);
46 }
47 
48 static bool readValueFromFile(const char *Filename,
49                               long long *Value) XRAY_NEVER_INSTRUMENT {
50   int Fd = open(Filename, O_RDONLY | O_CLOEXEC);
51   if (Fd == -1)
52     return false;
53   static constexpr size_t BufSize = 256;
54   char Line[BufSize] = {};
55   ssize_t BytesRead;
56   bool Success;
57   std::tie(BytesRead, Success) = retryingReadSome(Fd, Line, Line + BufSize);
58   close(Fd);
59   if (!Success)
60     return false;
61   const char *End = nullptr;
62   long long Tmp = internal_simple_strtoll(Line, &End, 10);
63   bool Result = false;
64   if (Line[0] != '\0' && (*End == '\n' || *End == '\0')) {
65     *Value = Tmp;
66     Result = true;
67   }
68   return Result;
69 }
70 
71 uint64_t getTSCFrequency() XRAY_NEVER_INSTRUMENT {
72   long long TSCFrequency = -1;
73   if (readValueFromFile("/sys/devices/system/cpu/cpu0/tsc_freq_khz",
74                         &TSCFrequency)) {
75     TSCFrequency *= 1000;
76   } else if (readValueFromFile(
77                  "/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq",
78                  &TSCFrequency)) {
79     TSCFrequency *= 1000;
80   } else {
81     Report("Unable to determine CPU frequency for TSC accounting.\n");
82   }
83   return TSCFrequency == -1 ? 0 : static_cast<uint64_t>(TSCFrequency);
84 }
85 #elif SANITIZER_FREEBSD || SANITIZER_NETBSD || SANITIZER_APPLE
86 uint64_t getTSCFrequency() XRAY_NEVER_INSTRUMENT {
87     long long TSCFrequency = -1;
88     size_t tscfreqsz = sizeof(TSCFrequency);
89 #if SANITIZER_APPLE
90     if (internal_sysctlbyname("machdep.tsc.frequency", &TSCFrequency,
91                               &tscfreqsz, NULL, 0) != -1) {
92 
93 #else
94     if (internal_sysctlbyname("machdep.tsc_freq", &TSCFrequency, &tscfreqsz,
95                               NULL, 0) != -1) {
96 #endif
97         return static_cast<uint64_t>(TSCFrequency);
98     } else {
99       Report("Unable to determine CPU frequency for TSC accounting.\n");
100     }
101 
102     return 0;
103 }
104 #elif !SANITIZER_FUCHSIA
105 uint64_t getTSCFrequency() XRAY_NEVER_INSTRUMENT {
106     /* Not supported */
107     return 0;
108 }
109 #endif
110 
111 static constexpr uint8_t CallOpCode = 0xe8;
112 static constexpr uint16_t MovR10Seq = 0xba41;
113 static constexpr uint16_t Jmp9Seq = 0x09eb;
114 static constexpr uint16_t Jmp20Seq = 0x14eb;
115 static constexpr uint16_t Jmp15Seq = 0x0feb;
116 static constexpr uint8_t JmpOpCode = 0xe9;
117 static constexpr uint8_t RetOpCode = 0xc3;
118 static constexpr uint16_t NopwSeq = 0x9066;
119 
120 static constexpr int64_t MinOffset{std::numeric_limits<int32_t>::min()};
121 static constexpr int64_t MaxOffset{std::numeric_limits<int32_t>::max()};
122 
123 bool patchFunctionEntry(const bool Enable, const uint32_t FuncId,
124                         const XRaySledEntry &Sled,
125                         const XRayTrampolines &Trampolines,
126                         bool LogArgs) XRAY_NEVER_INSTRUMENT {
127   // Here we do the dance of replacing the following sled:
128   //
129   // xray_sled_n:
130   //   jmp +9
131   //   <9 byte nop>
132   //
133   // With the following:
134   //
135   //   mov r10d, <function id>
136   //   call <relative 32bit offset to entry trampoline>
137   //
138   // We need to do this in the following order:
139   //
140   // 1. Put the function id first, 2 bytes from the start of the sled (just
141   // after the 2-byte jmp instruction).
142   // 2. Put the call opcode 6 bytes from the start of the sled.
143   // 3. Put the relative offset 7 bytes from the start of the sled.
144   // 4. Do an atomic write over the jmp instruction for the "mov r10d"
145   // opcode and first operand.
146   //
147   // Prerequisite is to compute the relative offset to the trampoline's address.
148   auto Trampoline =
149       LogArgs ? Trampolines.LogArgsTrampoline : Trampolines.EntryTrampoline;
150   const uint64_t Address = Sled.address();
151   int64_t TrampolineOffset = reinterpret_cast<int64_t>(Trampoline) -
152                              (static_cast<int64_t>(Address) + 11);
153   if (TrampolineOffset < MinOffset || TrampolineOffset > MaxOffset) {
154     Report("XRay Entry trampoline (%p) too far from sled (%p)\n",
155            reinterpret_cast<void *>(Trampoline),
156            reinterpret_cast<void *>(Address));
157     return false;
158   }
159   if (Enable) {
160     *reinterpret_cast<uint32_t *>(Address + 2) = FuncId;
161     *reinterpret_cast<uint8_t *>(Address + 6) = CallOpCode;
162     *reinterpret_cast<uint32_t *>(Address + 7) = TrampolineOffset;
163     std::atomic_store_explicit(
164         reinterpret_cast<std::atomic<uint16_t> *>(Address), MovR10Seq,
165         std::memory_order_release);
166   } else {
167     std::atomic_store_explicit(
168         reinterpret_cast<std::atomic<uint16_t> *>(Address), Jmp9Seq,
169         std::memory_order_release);
170     // FIXME: Write out the nops still?
171   }
172   return true;
173 }
174 
175 bool patchFunctionExit(
176     const bool Enable, const uint32_t FuncId, const XRaySledEntry &Sled,
177     const XRayTrampolines &Trampolines) XRAY_NEVER_INSTRUMENT {
178   // Here we do the dance of replacing the following sled:
179   //
180   // xray_sled_n:
181   //   ret
182   //   <10 byte nop>
183   //
184   // With the following:
185   //
186   //   mov r10d, <function id>
187   //   jmp <relative 32bit offset to exit trampoline>
188   //
189   // 1. Put the function id first, 2 bytes from the start of the sled (just
190   // after the 1-byte ret instruction).
191   // 2. Put the jmp opcode 6 bytes from the start of the sled.
192   // 3. Put the relative offset 7 bytes from the start of the sled.
193   // 4. Do an atomic write over the jmp instruction for the "mov r10d"
194   // opcode and first operand.
195   //
196   // Prerequisite is to compute the relative offset fo the
197   // __xray_FunctionExit function's address.
198   auto Trampoline = Trampolines.ExitTrampoline;
199   const uint64_t Address = Sled.address();
200   int64_t TrampolineOffset = reinterpret_cast<int64_t>(Trampoline) -
201                              (static_cast<int64_t>(Address) + 11);
202   if (TrampolineOffset < MinOffset || TrampolineOffset > MaxOffset) {
203     Report("XRay Exit trampoline (%p) too far from sled (%p)\n",
204            reinterpret_cast<void *>(Trampoline),
205            reinterpret_cast<void *>(Address));
206     return false;
207   }
208   if (Enable) {
209     *reinterpret_cast<uint32_t *>(Address + 2) = FuncId;
210     *reinterpret_cast<uint8_t *>(Address + 6) = JmpOpCode;
211     *reinterpret_cast<uint32_t *>(Address + 7) = TrampolineOffset;
212     std::atomic_store_explicit(
213         reinterpret_cast<std::atomic<uint16_t> *>(Address), MovR10Seq,
214         std::memory_order_release);
215   } else {
216     std::atomic_store_explicit(
217         reinterpret_cast<std::atomic<uint8_t> *>(Address), RetOpCode,
218         std::memory_order_release);
219     // FIXME: Write out the nops still?
220   }
221   return true;
222 }
223 
224 bool patchFunctionTailExit(
225     const bool Enable, const uint32_t FuncId, const XRaySledEntry &Sled,
226     const XRayTrampolines &Trampolines) XRAY_NEVER_INSTRUMENT {
227   // Here we do the dance of replacing the tail call sled with a similar
228   // sequence as the entry sled, but calls the tail exit sled instead.
229   auto Trampoline = Trampolines.TailExitTrampoline;
230   const uint64_t Address = Sled.address();
231   int64_t TrampolineOffset = reinterpret_cast<int64_t>(Trampoline) -
232                              (static_cast<int64_t>(Address) + 11);
233   if (TrampolineOffset < MinOffset || TrampolineOffset > MaxOffset) {
234     Report("XRay Tail Exit trampoline (%p) too far from sled (%p)\n",
235            reinterpret_cast<void *>(Trampoline),
236            reinterpret_cast<void *>(Address));
237     return false;
238   }
239   if (Enable) {
240     *reinterpret_cast<uint32_t *>(Address + 2) = FuncId;
241     *reinterpret_cast<uint8_t *>(Address + 6) = CallOpCode;
242     *reinterpret_cast<uint32_t *>(Address + 7) = TrampolineOffset;
243     std::atomic_store_explicit(
244         reinterpret_cast<std::atomic<uint16_t> *>(Address), MovR10Seq,
245         std::memory_order_release);
246   } else {
247     std::atomic_store_explicit(
248         reinterpret_cast<std::atomic<uint16_t> *>(Address), Jmp9Seq,
249         std::memory_order_release);
250     // FIXME: Write out the nops still?
251   }
252   return true;
253 }
254 
255 bool patchCustomEvent(const bool Enable, const uint32_t FuncId,
256                       const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
257   // Here we do the dance of replacing the following sled:
258   //
259   // xray_sled_n:
260   //   jmp +15          // 2 bytes
261   //   ...
262   //
263   // With the following:
264   //
265   //   nopw             // 2 bytes*
266   //   ...
267   //
268   //
269   // The "unpatch" should just turn the 'nopw' back to a 'jmp +15'.
270   const uint64_t Address = Sled.address();
271   if (Enable) {
272     std::atomic_store_explicit(
273         reinterpret_cast<std::atomic<uint16_t> *>(Address), NopwSeq,
274         std::memory_order_release);
275   } else {
276     std::atomic_store_explicit(
277         reinterpret_cast<std::atomic<uint16_t> *>(Address), Jmp15Seq,
278         std::memory_order_release);
279   }
280   return false;
281 }
282 
283 bool patchTypedEvent(const bool Enable, const uint32_t FuncId,
284                      const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
285   // Here we do the dance of replacing the following sled:
286   //
287   // xray_sled_n:
288   //   jmp +20          // 2 byte instruction
289   //   ...
290   //
291   // With the following:
292   //
293   //   nopw             // 2 bytes
294   //   ...
295   //
296   //
297   // The "unpatch" should just turn the 'nopw' back to a 'jmp +20'.
298   // The 20 byte sled stashes three argument registers, calls the trampoline,
299   // unstashes the registers and returns. If the arguments are already in
300   // the correct registers, the stashing and unstashing become equivalently
301   // sized nops.
302   const uint64_t Address = Sled.address();
303   if (Enable) {
304     std::atomic_store_explicit(
305         reinterpret_cast<std::atomic<uint16_t> *>(Address), NopwSeq,
306         std::memory_order_release);
307   } else {
308     std::atomic_store_explicit(
309         reinterpret_cast<std::atomic<uint16_t> *>(Address), Jmp20Seq,
310         std::memory_order_release);
311   }
312   return false;
313 }
314 
315 #if !SANITIZER_FUCHSIA
316 // We determine whether the CPU we're running on has the correct features we
317 // need. In x86_64 this will be rdtscp support.
318 bool probeRequiredCPUFeatures() XRAY_NEVER_INSTRUMENT {
319   unsigned int EAX, EBX, ECX, EDX;
320 
321   // We check whether rdtscp support is enabled. According to the x86_64 manual,
322   // level should be set at 0x80000001, and we should have a look at bit 27 in
323   // EDX. That's 0x8000000 (or 1u << 27).
324   __asm__ __volatile__("cpuid" : "=a"(EAX), "=b"(EBX), "=c"(ECX), "=d"(EDX)
325     : "0"(0x80000001));
326   if (!(EDX & (1u << 27))) {
327     Report("Missing rdtscp support.\n");
328     return false;
329   }
330   // Also check whether we can determine the CPU frequency, since if we cannot,
331   // we should use the emulated TSC instead.
332   if (!getTSCFrequency()) {
333     Report("Unable to determine CPU frequency.\n");
334     return false;
335   }
336   return true;
337 }
338 #endif
339 
340 } // namespace __xray
341